
-"-, COPY
1ECUCJTY CLASSIlFCATIO" OF THiS PAGE (When Dae Entered)

REPORT DOCUMENTATION-PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUM§9U 2. GOVT ACCESSION NO. 3. REcIPIENT'S CATALOG NUMBER

NW-LIS-8 9-08-05
00 4. TITLE (and Subt lte) C. TYPE OF REPORT a PERIOD COVEREO

The On-Chip Parallelism of VLSI Circuits Technical~(THESIS)
4. PERFORMING OR . REPORT NUMBER

7. AuTHOR(e) S. CONTRACT OR GRANT NUMS&R(e)

C% Mary Lane Bailey N00014-88-K-0453

9. PERFORMING ORGANIZATION NAME AND AODROSS 10. PROORAM ULMENT. I00OJ0CIT
,

TASK

Northwest Laboratory for Integrated Systems AREA G WORK UNI NUMej 6

University of Washington
Dept. of Comp. Science, FR-35 Seattle, WA 9819_

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

DARPA-ISTO August 1988

1400 Wilson Boulevard IS. NUMBER OF PAGES

Arl in~ton. V4 22209 145
14. MONITOING AGENCY NAME 6 ADORIESS4ll ditleeent from Controlllnd l11e1) IS. SECURITY CLASS. (fl tise reporl)

Office of Naval Research - ONR Unclassified
Information Systems Program - Code 1513: CAF
800 North Quincy Street Ile.. C-ASS$ PICATIONDOWNGRAOING
Arlington, VA 22217 SCHEDULE

1S. DISTRIBUTION STATEMENT (of Ohio Report) FTi
Distribution of this report is unlimited. C'

17. DISTRIBUTION STATEMENT (of the ebetect entered In Block 20, It different from Repo0lI '

1S. SUPPLEMENTARY NOTES

It. KEY WORDS (Couthwe on #revs eide It necesery and Identify by block nuumber)

NW-LIS, VLSI, parallelism, logic simulation, circuits, CMOS,
synchronous, asynchronous, unit-delay, event-driven.

20. ABSTRACT (Conlimme en reverse side It neeesear and Identify by block nUmbet)

This report uses two approaches. First,the formulation of a model for studying
circuit parallelism and the potential speedup of parallel logic-level
simulation. Second, the development of a methodology for measuring circuit
parallelism, and its-ue to determine the parallelism of nine circuits using
two different simulators.

(see attached Abstract)

DD,I'7"S, 1473 90ITION oF INov,, Is OSOLETE
S/N 0103.LF.014.6601 SECURITY CLASSIFICATION OF THIS PAGE (When Dem& ntesred)

The On-Chip Parallelism
of VLSI Circuits

Mary Lane Bailey

Department of Compute'r Science & Engineering
University of Washington

Seattle, WA 98195

Technical Report 89-08-05
August, 1989

The On-Chip Parallelism of VLSI Circuits

by

Mary Lane Bailey

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Washington

1989

Approved b__ _ __ _ _ _ _ _ _ _ _ _

(Chairperson of Supervisory Comt ittee)

Program Authorized Department of Computer Science
to Offer Degreer

Dato July 19, 1989

®Copyright by

Miary Lane Bailey

1 989

Aooessio For

NTIS GRA&I
DTIC TAB
Unannounced

Justificatio

/ B
,,V. Distribution/Availability Codes

Avail and/or

Dist Special

Doctoral Dissertation

In presenting this dissertation in partial fulfillment of the requirements for the Doc-

toral degree at the University of Washington, I agree that the Library shall make its

copies freely available for inspection. [further agree that extensive copying of this dis-

sertation is allowable only for scholarly purposes, consistent with "fair use" as prescribed

in the U.S. Copyright Law. Requests for copying or reproduction of this dissertation

may be referred to University Microfilms, 300 North Zeeb Road, Ann Arbor Michigan

48106, to whom the author has granted "the right to reproduce and seU (a) copies of

the manuscript in microform and/or (b) printed copies of the manuscript made from

microform."

Si natur l4v1'

90 04 18 '017

University of Washington

Abstract

The On-Chip Parallelism of VLSI Circuits

by Mary Lane Bailey

Chairperson of the Supervisory Committee: Professor Lawrence Snyder

Department of Computer Science

Simulation is a bottleneck in VLSI circuit design. Not only are there many simulation

runs throughout the design cycle, but each run can take hours or days to complete. One

often suggested means of speeding up event-driven simulation is to use multiple processors

to exploit the natural parallelism present in the circuit, that is to partition the circuit

among multiple processors, with each executing the same algorithm on its portion of the

circuit. This approach assumes that there is sufficient activity, or circuit parallelism, in

the circuit to keep all of the processors busy.

r used two approaches in this work. First, wehavv formulated a model for

studying circuit parallelism and the potential speedup of parallel logic-level simulation.

Using this model we-hey considered the effect of the choice of timing model and syn-

chronization strategy on speedup. We - also investigated the effect of circuit size on

pnarallelism._

Additionally, we-hale developed a methodology for measuring circuit parallelism, and

used it to determine the parallelism of nine circuits using two different simulators. Em-

pirical measurements have also been used to validate portions of the formal model. (Y N

The major results of the model are:

" Unit-delay timing provides as least as much parallelism as variable-delay or fixed-

delay timing.

" Asynchronous timing strategies can improve simulation speed over synchronous

strategies. However, for unit-delay timing, if all event evaluation times are equal.

the asynchronous strategies do not provide additional speedup over synchronous

simulation.

" In general, the percentage of parallelism is not constant over circuit size, even for

members of the same circuit family.

We have used empirical results to validate the parallelism results for variable-delay

and unit-delay synchronous simulation. We also have empirical res, c that show that the

percentage of parallelism changes as the instance size changes for these strategies.

Finally, the empirical measurements have provided a set of benchmarks for the paral-

lelism of circuits. These measurements are remarkably low for variable-delay timing. Thus.

the direct application of circuit activity to synchronous parallel simulation for variable-

delay timing is doomed! It may be feasible for unit-delay timing, or for variable-delay

timing using asynchronous strategies.

Table of Contents

List of Tables. v

List of Figures i

Chapter 1: Introduction

1.1 Timing Models 3

1.2 Synchronization Strategies

1.3 Contributions of This Work. 6

1.4 Thesis Organization.

Chapter 2: Related Work. 8

2.1 Switch-Level Algorithms

2.2 Parallelism Measurements 10

2.3 Parallel Simulators. 12

2.3.1 Parallel Hardware Simulation Engines 12

2.3.2 General Purpose Parallel Simulators. 14

2.4 General Parallel Simulation Strategies. 15

Chapter 3: A Formal Model for Circuit Simulation T

3.1 The Circuit Value Problem. 17

3.2 The Model. 20

3.3 Synchronous Simulation. 25

3.3.1 Variable-delay Model......5

3.3.2 tUnit-delay Model...............:11

3.3.3 Fixed-delay Model 32

3.3.4 Time. 3:3

3.4 Conservative Asynchronous Strategy 37

3.5 Optimistic Asynchronous Algorithms 46

3.6 Modeling the Effects o? Circuit Size on Parallelism 49

3.6.1 Tree Additions 50

3.6.2 Subtree Addition. 51

3.6.3 Dilation. 52

3.6.4 Mixed Changes 54

3.7 Summary. 55

Chapter 4: Corroborating the Model 56

4.1 How Do We Measure Circuit Parallelism?. 56

4.2 SwitchSimn. 58

4.3 RNL 59

4.3.1 Variable-Delay Algorithm. 59

4.3.2 Pseudo Unit-Delay Algorithm 60

4.3.3 Calibrating RNL. 61

4.4 The Queue Metric. 70

4.4.1 Adding the Queue Metric to the Model. 71

4.4.2 Calibrating RNL. 74

4.5 Experimental Methodology. 76

4.6 Measuring the Parallelism of a Multiplier Circuit

4.6.1 RNL Measurements. 78

4.6.2 SwitchSimn Measurements. 82

Chapter 5: Baseline Measurements. 4

iii

5.1 Test Data

.5.2 RNL Measurements

5.3 SwitchSim Measurements. 93

5.4 Summary........ 5

Chapter 6: Variable-delay Measurements 96

6.1 Effects of Increasing RN L's Timebase

6.1.1 Baugh-Wooley Multiplier 9

6.1.2 Booth Multiplier.. 104

6.1.3 Decoder 108

6.2 Effects of Decreasing RNL's Timebase. 114

6.3 Assumptions of the Formal Model 116

6.3.1 Overhead 116

6.3.2 Model Granularity 117

6.3.3 Event Sequence. 118

Chapter 7: Varying Circuit Size 122

7.1 Baugh-Wooley Multiplier. 123

7.2 Booth Multipier 126

7.3 Shift Register 130

7.4 Decoder 133

Chapter 8: Conclusions. 136

Bibliography 140

iv

List of Tables

3.1 Event Sequence Favoring Optimistic Strategy

3.2 Event Sequence Favoring Conservative Strategy 49

3.3 Summary of How Circuit Growth Affects the Percentage of Parallelism 54

4.1 Comparing SPICE and RNL Transition Times for the 2 To 4 Decoder. 62

4.2 Event Times for the 2 To 4 Decoder 64

4.3 Comparing SPICE and RNL Transition Times for the Shift Register. ... 66

4.4 Event Times for the Shift Register 67

4.5 Comparing SPICE and RNL Transition Times for the Baugh-Wooley Mul-

tiplier Cell ... 69

4.6 The Event Times for the Baugh-Wooley Multiplier Cell69

4.7 The Transition Times for the 2 To 4 Decoder 74

4.8 The Transition Times for the Shift Register 75

4.9 The Transition Times for the Baugh-Wooley Multiplier Cell 75

4.10 Data for Test Case 1 78

4.11 Parallelism for the 8 x 8 Booth Multiplier Using the Event Metric and RNL 81

4.12 Parallelism for the 8 x 8 Booth Multiplier Using the Queue Metric and RNL 82

4.13 Parallelism for the 8 x 8 Booth Multiplier Using SwitchSim 83

5.1 Circuit Parallelism Using the Event Metric and RNL 90

5.2 Percentage of Circuit Parallelism Using the Event Metric and RNL 91

5.3 Circuit Parallelism Using the Queue Metric and RNL 92

v

5.4 Percentage of Circuit Parallelism Using the Queue Metric and RNL . . .9(3

5.5 Circuit Parallelism Using SwitchSint

6.1 Static Experiment for 16 x 16 Baugh-Wooley Multiplier using the Event

Metric99

6.2 Dynamic Experiment for 16x 16 Baugh-Wooley Multiplier using the Event

M etric 99

6.3 Percentage of Events due to Charge-Sharing for the Baugh-Wooley Mul-

tiplier 101

6.4 Dynamic Experiment for 16x 16 Baugh-Wooley Multiplier using the Queue

Metric 103

6.5 Static Experiment for the 16 Booth Multiplier using the Event Metric . . 105

6.6 Dynamic Experiment for the 16 Booth Multiplier using the Event Metric 105

6.7 Percentage of Events due to Charge-Sharing in the Booth Multiplier . . . 106

6.8 Dynamic Experiment for 16 x 16 Booth Multiplier using the Queue Metric 108

6.9 Static Experiment for the 6 to 64 Decoder using the Event Metric 110

6.10 Dynamic Experiment for the 6 to 64 Decoder using the Event Metric . . . 110

6.11 Percentage of Events due to Charge-Sharing in the Decoder il

6.12 Dynamic Experiment for 6 to 64 Decoder using the Queue Metric112

6.13 Decreasing the Timebase for the Baugh-Wooley Multiplier 115

6.14 Decreasing the Timebase for the Booth Multiplier 115

6.15 Events in the Baugh-Wooley Parallelism Measurements - Event Metric . . 119

6.16 Events in the Booth Multiplier Parallelism Measurements - Event Metric 120

6.17 Events in the Decoder Parallelism Measurements - Event Metric121

7.1 Parallelism of the Baugh-Wooley Multiplier Using the Event Metric and

RNL 124

7.2 Percent Parallelism of the Baugh-Wooley Multiplier Using the Event Met-

ric and RNL 124

vi

7.3 Parallelism of the Baugh-Wooley Multiplier Using the Queue Metric and

RNL .. 25

7.4 Percent Parallelism of the Baugh-Wooley Multiplier Using the Queue Met-

ric and RNL ... 125

7.5 Parallelism of the Baugh-Wooley Multiplier Using Switch Sim125

7.6 Parallelism of the Booth Multiplier Using the Event Metric and RNL . . . 126

7.7 Percent Parallelism of the Booth Multiplier Using the Event Metric and

RNL ... 127

7.8 Parallelism of the Booth Multiplier Using the Queue Metric and RNL . . 127

7.9 Parallelism of the Booth Multiplier Using SwitchSim 128

7.10 Parallelism of the 24 x 24 Booth Multiplier Using the Event Metric and

RNL 129

7.11 Percent Parallelism of the 24x24 Booth Multiplier Using the Event Metric

and RNL 129

7.12 Parallelism of the 24 x 24 Booth Multiplier Using the Queue Metric and

RNL ... 130

7.13 Parallelism of the 24 x 24 Booth Multiplier Using SwitchSim130

7.14 Parallelism of the Shift Register Using the Event Metric and RNL 131

7.15 Percent Parallelism of the Shift Register Using the Event Metric and RNL 131

7.16 Parallelism of the Shift Register Using the Queue Metric and RNL 132

7.17 Parallelism of the Shift Register Using SwitchSim 133

7.18 Parallelism of the Decoder" Using the Event Metric and RNL 133

7.19 Percent Parallelism of the Decoder Using the Event Metric and RNL . .. 134

7.20 Parallelism of the Decoder Using the Queue Metric and RNL134

7.21 Parallelism of the Decoder Using SwitchSim 134

vii

List of Figures

1.1 Comparing Unit-Delay and Pseudo Unit-Delay Timing 4

3.1 A Stable State of a Circuit 21

3.2 An Unstable State of a Circuit 21

3.3 Initial State of the Example Circuit 23

3.4 Dependency Graph 24

3.5 Example of Applying P3 to P 28

3.6 Example where Unit-Delay Execution is Greater than Variable-Delay Ex-

ecution ... 38

3.7 Example Circuit for Conservative Asynchronous Strategy 40

3.8 Dependency Forest for the Example 41

3.9 Comparing Asynchronous Strategies with Limited Processors 48

4.1 2 To 4 Decoder Circuit 63

4.2 Portion of the Decoder Circuit 65

4.3 2-Stage 1-Bit Shift Register Circuit 66

4.4 Schematic of the Multiplier Cell 68

6.1 Timebase Experiments for the 16 x 16 Baugh-Wooley Multiplier Using the

Event Metric 98

6.2 The Effect of Charge-Sharing in the 16 x 16 Baugh-Wooley Multiplier . . 101

viii

6.3 Timebase Experiments for the 16 x 16 Baugh-Wooley Multiplier Using tile

Queue Metric 12

6.4 Comparing the Event and Queue Metrics for the Baugh-Wooley Multiplier 103

6.5 Timebase Experiments for the 16 x 16 Booth Multiplier using the Event

Metric 104

6.6 Effect of Charge-Sharing on the Parallelism of the 16 x 16 Booth MultiplierlO7

6.7 Timebase Experiments for the 16 x 16 Booth Multiplier Using the Queue

Metric 10

6.8 Comparing the Event and Queue Metrics Timebase Changes in the Booth

Multiplier 109

6.9 Timebase Experiments for the 6 to 64 Decoder using the Event Metric . . 109

6.10 Effect of Charge-Sharing on the Parallelism of the Decoder 112

6.11 Timebase Experiments for the 6 to 64 Decoder Using the Queue Metric . 113

6.12 Comparing the Event and Queue Metrics for Timebase Changes in the

Decoder 114

ix

Acknowledgements

I would like to thank my advisor, Larry Snyder, for the years of guidance. under-

standing, encouragement and support he has so generously provided during my tenure

as his student. I also would like to thank the other members of my thesis committee.

Carl Ebeling, Burton Smith, Jean-Loup Baer, Hank Levy, and Don Marshall for their

guidance during this wbrk. Jane Cameron and Fran Berman deserve credit for helping

me in the important process of selecting my advisor.

The members of the NWLIS also supported this work. Warren Jessop always seemed

to be able to find more disk space for me when necessary. Gaetano Borriello, Larry

McMurchie, Wayne Winder, Bill Barnard, and Karen Bartlett were wonderful technical

resources. Vicky Palm and Tony Marriott were invaluable when it came to travel, getting

papers out at the last minute, and all of the other administrative headaches that one

encounters in the process of doing research.

Many colleagues have contributed to the successful conclusion of my graduate career.

I would specifically like to thank my fellow graduate students Dave Socha, Magda Kon-

stantinidou, Bob Cypher, Sam Ho, and Jason Lin and my friends and colleagues at Data

I/O, Kyu Lee, Michael Bradley, Michael Holley, Brian Durwood, and Paul Brownlow.

Larry Mayhew of Data I/0 created a small fellowship when I returned to school full

time.

Finally, I would never have been able to survive.graduate school without the unending

support of my family. My parents deserve credit for encouraging me to choose my own

path, and their 'enthusiastic support of my progress. My husband, Hop, and children.

Robby and Katie, financed this endeavor and supported me throughout with love and

understanding.

X

In Memory of Joseph E. Lane, Jr.

xi

Chapter 1

Introduction

Simulation is the principal tool used in VLSI design to determine the correctness of a

circuit and for analyzing its performance before fabrication. Because fabrication is so

expensive, both in time and money, it is essential that a circuit has a high probability of

working correctly the first time. However, even moderately large circuits can take hours

or days to simulate.

In recent years, technology has allowed larger and larger circuits to be placed on a

single chip, a trend which should continue in the near future. Unfortunately, as circuit

size increases, so does simulation time, and advances in simulation have not kept up

with those in technology. Thus, circuit simulation, already a time-consuming part of the

design process, is becoming an increasing bottleneck in the VLSI design process.

One way to decrease simulation time is to increase the abstraction level of the sim-

ulator. Circuit-level simulators, for example SPICE (Nagel 75], solve the differential

equations describing the state of all structures on a chip. They provide detailed timing

information and, if parametrized with the correct process values, are widely regarded as

reliable. They use and report actual voltage values. These simulators typically can only

handle relatively small circuits, on the order of hundreds of transistors.

Switch-level simulators idealize a transistor as a switch and compute the resulting

state of a circuit. Voltages are also abstracted to a small number of discrete values,

2

typically 0, 1, and X. These simulators can handle much larger circuits thail circuit.

level simulators, including most circuits that can fit on VLSI chips today. They raitio,

correctly simulate the analog characteristics of circuits, but do correctly model the bidi-

rectionality of transistors. Switch-ievel simulators come in two varieties: those with

timing and those which only provide functional results.

There are at least two other abstraction levels that should be mentioned. Logic-level

or gate-level simulators model circuits as boolean functions. Here the bidirectionality

of transistors is lost, so if this is essential to the circuit's function, this abstraction

level will not yield the proper results. The Yorktown Simulation Engine [Denneau 831 is

an example of a gate-level simulator. Finally, behavioral or functional-level simulators

represent large portions of the circuit by a single model. N.2 [Ordy 83] is an example of

this type of simulator.

Though simulating at higher levels of abstraction is useful during the design process,

it is usually desirable to simulate the entire chip at the switch-level. Some designers

do this early in the design process, using a netlist representation of the chip. Then

the final layout can be compared to this netlist by using a verification tool such as

Gemini [Ebeling 88] to ensure correctness. Others do this just before fabrication, using

a simulation file extracted from the actual chip layout. In either case, the entire chip is

usually simulated at the switch-level abstraction. Because the entire chip is simulated at

the switch-level, the simulation time can be quite long. We would like to decrease this

time, so we are primarily concerned with switch-level simulation.

Parallel simulation has often been suggested as a means of speeding up circuit simula-

tion. For switch-level, logic-level, and functional-level simulation, one common approach

is to partition the circuit among multiple processors, with each processor executing the

same algorithm on its portion of the circuit [Smith 86]. For synchronous event-driven

simulation, this has several implications. First, there must be a large amount of circuit

activity, or circuit parallelism, in the circuit. Second, there must be a good partition

which spreads out this activity. Finally, the overhead of communication and synchro-

3

nization must be reasonable.

We focus on the first issue, circuit activity or circuit parallelism. Circuit parallelisin

provides an tipper limit on the potential speedup of synchronous parallel simulation, since

this is the average number of events that can be executed simultaneously, assuming an

infinite number of processors and no cost for communication and synchronization. If

there is little parallelism, then the other issues are not important. No matter how good

the partition and communication overhead is, without sufficient parallelism, parallel

synchronous event-driven switch-level simulation is doomed.

1.1 Timing Models

There are several different timing models that are commonly found in logic-level simula-

tors. Three are variable-delay, fixed-delay and unit-delay. Each model causes a different

simulation strategy to be employed. Thus, we need to understand these models in order

to discuss their effects on circuit parallelism.

Variable-delay simulators generally provide the most reliable timing information of

the three models. Each simulator event, a node changing value, is queued with a specific

delay which depends on both the circuit topology and the characteristics of the current

state of the circuit. There is a wide variability in the delay times that are used, and in

principle, there are an infinite number of delays available for use. The most widely used

switch-level timing simulator is RNL.

Fixed-delay simulators use a relatively small fixed number of delays in the circuit.

These simulators are primarily gate-level simulators, with each gate type having identical

delays, although there may be several delays per gate. For example, there are often

different rising and falling delays for each gate type. The simulator may also support

multiple gate types for a family of gates. For example, there may be several AND gate

types, representing different speeds. The delays depend on the dynamics of the circuit

only to the extent that they depend on the node values, but they do not depend on tlhe

topology of the circuit. Lsim, a mixed gate and switch-level simulator, is an example

02

Figure 1.1: Comparing Unit-Delay and Pseudo Unit.Delay Timing

fixed-delay simulator [Chamberlain 86].

Unit-delay simulators provide a simple delay mechanism at the expense of providing

timing. For a gate-level simulation, the definition of unit-delay timing is simple. At

each timestep, all gates whose input(s) have changed are evaluated using the current

values of the nodes, and then all of the resulting new outputs are updated and their

gates are queued for the next timestep. The two important issues here are that every

gate takes one timestep to change, and that all of the resulting node changes take effect

simultaneously. For switch-level, a similar algorithm is used, except a gate evaluation is

replaced by the evaluation of a transistor group, a set of nodes which are connected via

transistor sources and drains. MOSSIM II, SwitchSim, and COSMOS are examples of

switch-level unit-delay simulators.

For completeness, we also discuss pseudo unit-delay timing. This timing model is

analogous to unit-delay timing, with" the exception that node changes are imposed on the

circuit as soon as they are evaluated. This means that node changes within a timestep

take place incrementally instead of simultaneously. Because the node changes take place

incrementally, the event sequence depends on the order that events are placed on the

queue, and in some cases, this can affect the outcome of the simulation. For example,

consider the example circuit in Figure 1.1 (Bryant 81, Terman 831. Assume that in the

initial state of the circuit the input is 0 and both outputs are 1. We want to change

54

the input to I and see how this affects the output. With unit-delay, the next state is 0

for both outputs since in the computation both previous outputs are used. '[he outputs

will then return to I and will continue to oscillate forever. In the pseudo unit-delay

algorithm, one output, say 01, will be evaluated first, and its value will be changed to

0. Then when 02 is evaluated, the value of 01 is 0, so its value doesn't change. This

provides a stable solution, with one output staying at 1 and the other one making a

transition to 0. Which output changes, however, depends on the evaluation order. If 02

is evaluated first, the output values are reversed.

1.2 Synchronization Strategies

Early parallel logic-level simulators were generally synchronous hardware simulation en-

gines [Blank 84, Denneau 83]. In these systems, all processors are synchronized at the

end of each timestep. If the circuit activity is uneven, then some processors are idle

while others finish their computations. Because optimal speedup requires the activity

to be spread out during each timestep, as opposed to spreading out activity over the

entire simulation step, partitioning is critical and poor partitioning can greatly reduce

the efficiency of the simulation.

Asynchronous strategies attempt to reduce the synchronization overhead and also to

relieve the global event queue bottleneck. In asynchronous algorithms, each processor has

its own simulation clock which may differ from the simulation clocks of other processors.

Even though the clocks are distributed, the strategies must ensure that the resulting

simulation produces the same results as a synchronous simulation. There are two basic

techniques for assuring this: conservative and optimistic strategies.

The conservative strategies were pioneered by Bryant [Bryant 77] and Chandy and

Misra (Chandy 81]. Here the simulation clock can only proceed if it is sure that no

other events will arrive with timestamps less than the current clock time. This means

that it "knows" that the events are processed in the correct sequence. The problem

with this strategy is that the system can deadlock since all processors may be waiting

6

for messages from other processors before continuing. Thus a deadlock detection alld

recovery scheme is necessary, or there must be schemes to avoid deadlock. The deadlock

avoidance mechanisms generally involve passing NULL messages to ensure that time can

always proceed.

Optimistic strategies were pioneered by Jefferson [Jefferson 85]. Here a processor

continues to process events, even if there may be later arriving events with smaller

simulation times. Periodically, the processor also checkpoints its state. When an event

arrives with a simulation time smaller than the current simulation clock (i. e. an event

arrives in the past), the processor rolls back its state to a time less than this time.

and cancels all erroneous events produced by the premature processing of events. The

rationale for this approach is that (1) some of the time this strategy will proceed correctly

whereas the conservative strategy would idle, and (2) the time it will spend processing

erroneous events would be spent idling in the conservative strategy. However, there is

additional overhead in this strategy required to checkpoint the state (in both time and

space), and for rollback and cancellation of erroneous messages.

1.3 Contributions of This Work

In this dissertation we discuss the issues of circuit parallelism and the potential of parallel

simulation, focusing on logic-level simulation as opposed to circuit-level simulation. We

provide a formal model for comparing logic-level parallel simulation using three timing

strategies and three synchronization strategies. Assuming an infinite number of proces-

sors, we show that for synchronous simulation, unit-delay timing provides the greatest

speedup, and that for a given timing strategy, the conservative asynchronous strategy

performs better than the synchronous strategy. We also show that for a fixed number of

processors, there are cases where the optimistic strategy is better than the conservative

strategy and vice versa. The asynchronous strategies should not provide a great increase

in speedup for unit-delay timing, since if the event evaluation times are all equal, the

conservative asynchronous strategy provides the same speedup as the synchronous strat-

7

egy. We also use the formal model to show that using a synchronous strategy and a

given circuit family, the percentage of parallelism may change as the size of the circlit

increases.

In addition to the formal model, we provide a methodology for measuring circuit par-

allelism. We use two simulators to demonstrate the methodology, and provide empirical

results to corroborate the model. We find that while the model abstracts many specific

characteristics of the simulators, it still provides reasonable results.

Finally we provide measurements that show how much parallelism is available in

VLSI circuits using a synchronous strategy. Since we do not expect asynchronous tech-

niques to provide markedly faster simulation times than the unit-delay measurements,

and they may be much lower for variable-delay simulation, we can use the unit-delay

measurements to estimate the potential speedup. These measurements range from 35 to

593. These figures represent the speedup one can obtain, assuming no communication

and synchronization cost, perfect partitioning, and an infinite supply of processors. We

believe that these measurements show that there is a small amount of parallelism avail-

able for exploitation in parallel simulation, and only a small number of processors can

be effectively used to speed up sequential logic-level simulation.

1.4 Thesis Organization

In this dissertation we first present the theoretical results, and follow this with empirical

data. In particular, the dissertation is organized as follows. In Chapter 2 we provide

a summary of related work. Chapter 3 contains the formal portion of the thesis. Here

we define the formal model for considering circuit parallelism and use it to investigate

ways of speeding up logic-level simulation. The remainder of the dissertation is spent

in evaluating the model via empirical results. Chapter 4 lays the foundations for the

empirical studies by describing a methodology for measuring circuit parallelism. Chap-

ters 5 through 7 then analyze portions of the model using empirical results. Finally, in

Chapter 8 we conclude and discuss future work in this area.

