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University of Washington

Abstract

The On-Chip Parallelism of VLSI Circuits

by Mary Lane Bailey

Chairperson of the Supervisory Committee: Professor Lawrence Snyder

Department of Computer Science

Simulation is a bottleneck in VLSI circuit design. Not only are there many simulation

runs throughout the design cycle, but each run can take hours or days to complete. One

often suggested means of speeding up event-driven simulation is to use multiple processors

to exploit the natural parallelism present in the circuit, that is to partition the circuit

among multiple processors, with each executing the same algorithm on its portion of the

circuit. This approach assumes that there is sufficient activity, or circuit parallelism, in

the circuit to keep all of the processors busy.

r used two approaches in this work. First, wehavv formulated a model for

studying circuit parallelism and the potential speedup of parallel logic-level simulation.

Using this model we-hey considered the effect of the choice of timing model and syn-

chronization strategy on speedup. We - also investigated the effect of circuit size on

pnarallelism._

Additionally, we-hale developed a methodology for measuring circuit parallelism, and

used it to determine the parallelism of nine circuits using two different simulators. Em-

pirical measurements have also been used to validate portions of the formal model. (Y N

The major results of the model are:



" Unit-delay timing provides as least as much parallelism as variable-delay or fixed-

delay timing.

" Asynchronous timing strategies can improve simulation speed over synchronous

strategies. However, for unit-delay timing, if all event evaluation times are equal.

the asynchronous strategies do not provide additional speedup over synchronous

simulation.

" In general, the percentage of parallelism is not constant over circuit size, even for

members of the same circuit family.

We have used empirical results to validate the parallelism results for variable-delay

and unit-delay synchronous simulation. We also have empirical res, c that show that the

percentage of parallelism changes as the instance size changes for these strategies.

Finally, the empirical measurements have provided a set of benchmarks for the paral-

lelism of circuits. These measurements are remarkably low for variable-delay timing. Thus.

the direct application of circuit activity to synchronous parallel simulation for variable-

delay timing is doomed! It may be feasible for unit-delay timing, or for variable-delay

timing using asynchronous strategies.
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Chapter 1

Introduction

Simulation is the principal tool used in VLSI design to determine the correctness of a

circuit and for analyzing its performance before fabrication. Because fabrication is so

expensive, both in time and money, it is essential that a circuit has a high probability of

working correctly the first time. However, even moderately large circuits can take hours

or days to simulate.

In recent years, technology has allowed larger and larger circuits to be placed on a

single chip, a trend which should continue in the near future. Unfortunately, as circuit

size increases, so does simulation time, and advances in simulation have not kept up

with those in technology. Thus, circuit simulation, already a time-consuming part of the

design process, is becoming an increasing bottleneck in the VLSI design process.

One way to decrease simulation time is to increase the abstraction level of the sim-

ulator. Circuit-level simulators, for example SPICE (Nagel 75], solve the differential

equations describing the state of all structures on a chip. They provide detailed timing

information and, if parametrized with the correct process values, are widely regarded as

reliable. They use and report actual voltage values. These simulators typically can only

handle relatively small circuits, on the order of hundreds of transistors.

Switch-level simulators idealize a transistor as a switch and compute the resulting

state of a circuit. Voltages are also abstracted to a small number of discrete values,
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typically 0, 1, and X. These simulators can handle much larger circuits thail circuit.

level simulators, including most circuits that can fit on VLSI chips today. They raitio,

correctly simulate the analog characteristics of circuits, but do correctly model the bidi-

rectionality of transistors. Switch-ievel simulators come in two varieties: those with

timing and those which only provide functional results.

There are at least two other abstraction levels that should be mentioned. Logic-level

or gate-level simulators model circuits as boolean functions. Here the bidirectionality

of transistors is lost, so if this is essential to the circuit's function, this abstraction

level will not yield the proper results. The Yorktown Simulation Engine [Denneau 831 is

an example of a gate-level simulator. Finally, behavioral or functional-level simulators

represent large portions of the circuit by a single model. N.2 [Ordy 83] is an example of

this type of simulator.

Though simulating at higher levels of abstraction is useful during the design process,

it is usually desirable to simulate the entire chip at the switch-level. Some designers

do this early in the design process, using a netlist representation of the chip. Then

the final layout can be compared to this netlist by using a verification tool such as

Gemini [Ebeling 88] to ensure correctness. Others do this just before fabrication, using

a simulation file extracted from the actual chip layout. In either case, the entire chip is

usually simulated at the switch-level abstraction. Because the entire chip is simulated at

the switch-level, the simulation time can be quite long. We would like to decrease this

time, so we are primarily concerned with switch-level simulation.

Parallel simulation has often been suggested as a means of speeding up circuit simula-

tion. For switch-level, logic-level, and functional-level simulation, one common approach

is to partition the circuit among multiple processors, with each processor executing the

same algorithm on its portion of the circuit [Smith 86]. For synchronous event-driven

simulation, this has several implications. First, there must be a large amount of circuit

activity, or circuit parallelism, in the circuit. Second, there must be a good partition

which spreads out this activity. Finally, the overhead of communication and synchro-
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nization must be reasonable.

We focus on the first issue, circuit activity or circuit parallelism. Circuit parallelisin

provides an tipper limit on the potential speedup of synchronous parallel simulation, since

this is the average number of events that can be executed simultaneously, assuming an

infinite number of processors and no cost for communication and synchronization. If

there is little parallelism, then the other issues are not important. No matter how good

the partition and communication overhead is, without sufficient parallelism, parallel

synchronous event-driven switch-level simulation is doomed.

1.1 Timing Models

There are several different timing models that are commonly found in logic-level simula-

tors. Three are variable-delay, fixed-delay and unit-delay. Each model causes a different

simulation strategy to be employed. Thus, we need to understand these models in order

to discuss their effects on circuit parallelism.

Variable-delay simulators generally provide the most reliable timing information of

the three models. Each simulator event, a node changing value, is queued with a specific

delay which depends on both the circuit topology and the characteristics of the current

state of the circuit. There is a wide variability in the delay times that are used, and in

principle, there are an infinite number of delays available for use. The most widely used

switch-level timing simulator is RNL.

Fixed-delay simulators use a relatively small fixed number of delays in the circuit.

These simulators are primarily gate-level simulators, with each gate type having identical

delays, although there may be several delays per gate. For example, there are often

different rising and falling delays for each gate type. The simulator may also support

multiple gate types for a family of gates. For example, there may be several AND gate

types, representing different speeds. The delays depend on the dynamics of the circuit

only to the extent that they depend on the node values, but they do not depend on tlhe

topology of the circuit. Lsim, a mixed gate and switch-level simulator, is an example
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Figure 1.1: Comparing Unit-Delay and Pseudo Unit.Delay Timing

fixed-delay simulator [Chamberlain 86].

Unit-delay simulators provide a simple delay mechanism at the expense of providing

timing. For a gate-level simulation, the definition of unit-delay timing is simple. At

each timestep, all gates whose input(s) have changed are evaluated using the current

values of the nodes, and then all of the resulting new outputs are updated and their

gates are queued for the next timestep. The two important issues here are that every

gate takes one timestep to change, and that all of the resulting node changes take effect

simultaneously. For switch-level, a similar algorithm is used, except a gate evaluation is

replaced by the evaluation of a transistor group, a set of nodes which are connected via

transistor sources and drains. MOSSIM II, SwitchSim, and COSMOS are examples of

switch-level unit-delay simulators.

For completeness, we also discuss pseudo unit-delay timing. This timing model is

analogous to unit-delay timing, with" the exception that node changes are imposed on the

circuit as soon as they are evaluated. This means that node changes within a timestep

take place incrementally instead of simultaneously. Because the node changes take place

incrementally, the event sequence depends on the order that events are placed on the

queue, and in some cases, this can affect the outcome of the simulation. For example,

consider the example circuit in Figure 1.1 (Bryant 81, Terman 831. Assume that in the

initial state of the circuit the input is 0 and both outputs are 1. We want to change
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the input to I and see how this affects the output. With unit-delay, the next state is 0

for both outputs since in the computation both previous outputs are used. '[he outputs

will then return to I and will continue to oscillate forever. In the pseudo unit-delay

algorithm, one output, say 01, will be evaluated first, and its value will be changed to

0. Then when 02 is evaluated, the value of 01 is 0, so its value doesn't change. This

provides a stable solution, with one output staying at 1 and the other one making a

transition to 0. Which output changes, however, depends on the evaluation order. If 02

is evaluated first, the output values are reversed.

1.2 Synchronization Strategies

Early parallel logic-level simulators were generally synchronous hardware simulation en-

gines [Blank 84, Denneau 83]. In these systems, all processors are synchronized at the

end of each timestep. If the circuit activity is uneven, then some processors are idle

while others finish their computations. Because optimal speedup requires the activity

to be spread out during each timestep, as opposed to spreading out activity over the

entire simulation step, partitioning is critical and poor partitioning can greatly reduce

the efficiency of the simulation.

Asynchronous strategies attempt to reduce the synchronization overhead and also to

relieve the global event queue bottleneck. In asynchronous algorithms, each processor has

its own simulation clock which may differ from the simulation clocks of other processors.

Even though the clocks are distributed, the strategies must ensure that the resulting

simulation produces the same results as a synchronous simulation. There are two basic

techniques for assuring this: conservative and optimistic strategies.

The conservative strategies were pioneered by Bryant [Bryant 77] and Chandy and

Misra (Chandy 81]. Here the simulation clock can only proceed if it is sure that no

other events will arrive with timestamps less than the current clock time. This means

that it "knows" that the events are processed in the correct sequence. The problem

with this strategy is that the system can deadlock since all processors may be waiting
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for messages from other processors before continuing. Thus a deadlock detection alld

recovery scheme is necessary, or there must be schemes to avoid deadlock. The deadlock

avoidance mechanisms generally involve passing NULL messages to ensure that time can

always proceed.

Optimistic strategies were pioneered by Jefferson [Jefferson 85]. Here a processor

continues to process events, even if there may be later arriving events with smaller

simulation times. Periodically, the processor also checkpoints its state. When an event

arrives with a simulation time smaller than the current simulation clock (i. e. an event

arrives in the past), the processor rolls back its state to a time less than this time.

and cancels all erroneous events produced by the premature processing of events. The

rationale for this approach is that (1) some of the time this strategy will proceed correctly

whereas the conservative strategy would idle, and (2) the time it will spend processing

erroneous events would be spent idling in the conservative strategy. However, there is

additional overhead in this strategy required to checkpoint the state (in both time and

space), and for rollback and cancellation of erroneous messages.

1.3 Contributions of This Work

In this dissertation we discuss the issues of circuit parallelism and the potential of parallel

simulation, focusing on logic-level simulation as opposed to circuit-level simulation. We

provide a formal model for comparing logic-level parallel simulation using three timing

strategies and three synchronization strategies. Assuming an infinite number of proces-

sors, we show that for synchronous simulation, unit-delay timing provides the greatest

speedup, and that for a given timing strategy, the conservative asynchronous strategy

performs better than the synchronous strategy. We also show that for a fixed number of

processors, there are cases where the optimistic strategy is better than the conservative

strategy and vice versa. The asynchronous strategies should not provide a great increase

in speedup for unit-delay timing, since if the event evaluation times are all equal, the

conservative asynchronous strategy provides the same speedup as the synchronous strat-
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egy. We also use the formal model to show that using a synchronous strategy and a

given circuit family, the percentage of parallelism may change as the size of the circlit

increases.

In addition to the formal model, we provide a methodology for measuring circuit par-

allelism. We use two simulators to demonstrate the methodology, and provide empirical

results to corroborate the model. We find that while the model abstracts many specific

characteristics of the simulators, it still provides reasonable results.

Finally we provide measurements that show how much parallelism is available in

VLSI circuits using a synchronous strategy. Since we do not expect asynchronous tech-

niques to provide markedly faster simulation times than the unit-delay measurements,

and they may be much lower for variable-delay simulation, we can use the unit-delay

measurements to estimate the potential speedup. These measurements range from 35 to

593. These figures represent the speedup one can obtain, assuming no communication

and synchronization cost, perfect partitioning, and an infinite supply of processors. We

believe that these measurements show that there is a small amount of parallelism avail-

able for exploitation in parallel simulation, and only a small number of processors can

be effectively used to speed up sequential logic-level simulation.

1.4 Thesis Organization

In this dissertation we first present the theoretical results, and follow this with empirical

data. In particular, the dissertation is organized as follows. In Chapter 2 we provide

a summary of related work. Chapter 3 contains the formal portion of the thesis. Here

we define the formal model for considering circuit parallelism and use it to investigate

ways of speeding up logic-level simulation. The remainder of the dissertation is spent

in evaluating the model via empirical results. Chapter 4 lays the foundations for the

empirical studies by describing a methodology for measuring circuit parallelism. Chap-

ters 5 through 7 then analyze portions of the model using empirical results. Finally, in

Chapter 8 we conclude and discuss future work in this area.


