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FOREWORD

The work described in this report was performed as research and development funded
by the SLBM Research and Analysis Division (K40) and the Space and Surface Systems
Division (K10) of the Strategic Systems Department.

The development of this satellite theory resulted from the joint efforts of Russell H.
Lyddane, Charles J. Cohen, and the author. The expertise of Drs. Lyddane and Cohen
strongly affected the approach taken in this task, and their subsequent vigilance provided
a continuous flow of improvements to almost all sections of the theory.

Much useful information was extracted from Wayne D. McClain's two reports
CSC/TR-77/6010 and CSC/TR-78/6001, the documentation of a seniianalytic satellite
theory developed with Paul J. Cefola and others. We also had several discussions with
Dr. Cefola during his visits to NSWC; his knowledge of the subject matter is extensive.
At NSWC, Dr. Armido R. DiDonato's expertise in numerical analysis proved most helpful
when numerical difficulties arose.

This report was reviewed by J. Ralph Fallin, Head, Space and Surface Systems

Division.

Approved by:

R. L. SCHMIDT, Head
Strategic Systems Department

iii



NSWC TR 89-109

CONTENTS

IN T R O D U C T IO N .......................................................... 1

TESSERAL HARMONICS IN POINCARE VARIABLES .................... 1

THE DISTURBING FUNCTION ....................................... 1

SUM M ARY OF RESULTS ............................................ 16

EQUATIONS OF M OTION ................................................ 21

T H E D ER IVAT IO N ................................................... 21

SUMMARY OF RESULTS ............................................ 38

THE ANALYTIC SOLUTION ............................................. 44

PERTURBATIONS IN DELAUNAY VARIABLES ..................... 44

PERTURBATIONS IN POINCARft VARIABLES ..................... -i

PARTIAL DERIVATIVES OF PSI DOT ............................... 50

R E SO N A N C E ............................................................. 56

CLASSIFICATION BY PERIOD ...................................... 56

THE AM PLITUDE TEST ............................................. 59

R E F E R E N C E S ............................................................ 62

APPENDIX

A- -THE FUNCTIONS F AND ................................ :\-I

D IST R IB U T IO N .......................................................... (1)

v



NSWC TR 89-109

ILLUSTRATIONS

Figure Page

1 ORBITAL GEOMETRY ........................................ 2

2 RESONANCE CONDITIONS FOR Q........................ 59

vi



NSWC TR 89-109

INTRODUCTION

The K10-Division at NSWC has many years of experience in computing satellite orbits
by the famed "Cowell" numerical integration methods. For orbits close to the Earth, a
stepsize of 60 seconds is typical. Increasing accuracy requirements entailed ever larger
gravity fields, and orbit computation by numerical integration became more expensive.

In 1978, NSWC asked Lyddane to develop a semianalytic theory, restricted to the zonal
harmonics, but including Moon and Sun as perturbing accelerations. Lyddane promptly
produced an elegant solution, choosing the nonsingular Poincar6 elements as primary vari-
ables. His work was published as an NSWC TR in 1984 (Reference 2). As Lyddane points
out, such a solution should be at least two orders of magnitude faster than the customary
Cowell integration.

Subsequently the decision was made to develop a more complete semianalytic theory
here at NSWC. Lyddane and Cohen offered their support, a most welcome event. The
major feature of the mathematical model was the addition of the tesseral gravity field.
with particular attention given to the notoriously troublesome resonance perturbations.
This phase of the work has now been completed, and the computer program is undergoing
checkout.

In assembling the program, the tesseral algorithm was merged with Lyddaiie's op-
erational zonal routine. Since the latter is documented in Reference 2, this report will
describe the effects of the tesseral field and explain how various types of terms, especially
those with small divisors, are treated.

TESSERAL HARMONICS IN POINCARE VARIABLES

THE DISTURBING FUNCTION

In this section, the disturbing function for the tesseral gravity field will be derived in
terms of slightly modified Poincar6 orbital elements.

1
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The Earth's potential, as adopted by the International Astronomical Union (Refer-
ence 1), is written

U - + RE Pli (sin ) [Cn,. cos m + S,,,, sin mA]} (1)
n=2 Yn=0

For the sake of brevity in subsequent derivations, we write the potential in the form

11•+ E- -iE"p., iALT I + Z R )Pnm (cosO) ["yn.?leu"'l +± ,, (2)

n = 2 ?n =-0

N/

Stellite

Orbit

Figure 1. O1bital geonetry
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In the equations and figure above,

P = k2 M

k = Gaussian constant
?n = mass of Earth
RE = equatorial radius of Earth
n = degree of tesseral harmonic
m = order of tesseral harmonic

Pnm = associated Legendre function
A = longitude from Greenwich
fl = latitude (declination)
0 = colatitude

Cnm, Snm= unnormalized gravity coefficients
nn, 7nm = complex form of C, S and its conjugate
i "= V-T
S = inertial rotation rate of Earth

9)t = GMST = Greenwich Mean Sidereal Time

A comparison of (1) and (2) yields the relations

Cnm = nni +Tnm 'Ynm = I(Cim-i Sii)

Snm =(Cnm-nnr) nm = 1(Cnm + Snm) (3)

Cno = "YnO + Tno = -J

Let the Hamiltonian be

F=Fo+R (4)

where

F0 -=2L2

R Pnm(COS9) [YnrnCm + '-'17(\

n=2 m=O

3
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Since the disturbing function R contains the time, the Hamiltonian F is no longer
a constant. This feature does not affect the validity of our theory. The Delaunay and
Poincar6 variable L is defined by

L vf

where

a = semimajor axis

In preparation for subsequent developments, the disturbing function will be clad in a
differenct form. First we note that

P"",(x) - (1 - ) / d7nP(x)

dx"'

and introduce

.,,( x) d in P '*( x )

dx m

In our application, this yields

P~,,(cosO) = (sin O)"P.,,,(cos 0) (6)

Define

T. 1.(0, A ) = P ,,,(cosio)ei I (

= P,(Coso) [sine'" (7)

4
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Also substitute

rrJ L2n+2RE r+8

Finally, let

P n+2 n(~~

Rnmn- L 2 n+ 2 RE(r)Tn,(0,A) (9)

With these modifications, the disturbing function becomes

n
R -: Z YnmRnm + Y7nmRnm]

n=2 m=O

Since the zonal harmonics have already been done by Lyddane (Reference 2), we will
separate R accordingly and write

n

R= X CnoRtto + Z : [ nmR,,n + ;om °,] (10)
n=2 n=2 m=1

Next we wish to express the surface harmonics in terms of the orbital elements
u = f + g, h, and I. They are

u = argument of latitude

f = true anomaly

h = longitude of ascending node

I = inclination

5
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In doing so, we follow the work of Allan (Reference 3) who appeals to Izsak (Refer-
ence 4). Thus

n

Tnm(O, A) = Fnmp(I) ei[(n-2p)u+m(h-t)j

p=o

with the inclination function

Fnmp(i)=i.m (n + m)! k (_l)k 2n - (2p 2p 3n-m-2p-2k.Yn-n+2p+2k
2np!(n -p)! k n=. n- k)-

where

ki = 1(n- r- 2p + in - m- 2pl)

2 21(3n-m-2p-in+m-2pl )

I I
c = cos s = sin- (11)

2 2

Let us introduce

=n - m -2p

and a slightly modified inclination function

Fnmp(c,s)- (n + in)! k2  (2n - 21) ( )2n+v-2k +2 (2-p!(n - p)! L (-1) k  (/- 2 i8

kr-kl
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where

2= 2(2n + v - 12m + vi)

Then Tnr, may be written

n

Tnm(0, A) = in-m E Fnmp(c, s) ei[(n - 2p)u + m (h - °t)]

p=O

or, putting

in-nz = -i(n-m)r/2

n

Tn.(0, A) =ZEF"'P(cs)ei"mp (13)
p=o

where

0,IMP = (n - 2p)u + nih - 774t + (n - 7n)- (14)

Next, working toward Poincar6 variables, we express V,,,,,,p in terms of h and u + i

for direct orbits and of h and u - h for retrograde orbits. Accordingly, we write

T. .71 = T. "I p

p=O

7
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where

T..p = F.mp(c, s) ei[( - 2 p)( + h) - (n - m - 2p)h -  t+( -m)7r/2] (15)

for direct orbits and

Tn.mp = Fn,p(c, s) ei[(n - 2p)(u - h )+(n+m
- 2p) h - mbt+(,

- m)i r/2] (16)

for retrograde orbits.

For direct equatorial orbits, s = 0 and c = 1; for retrograde equatorial orbits, the
values interchange, becoming s = 1 and c - 0. One would therefore look for symmetry in

the exponents of c and s to overcome the indeterminancy of h in equatorial orbits, both
when c = 0 and s = 0. It turns out the symmetry is there if Fnr,,, is compared with

Fnm,n-p and then Rnmp with Rm,-p. Thus for Fm,-p, if we replace the index of

summation k by k' = n - m - k, we may write

k',

(n +=m)! L 2 (2n - 2p) C+2k' 2n+v-2

- (-1)n- mF,L(s,c)

(17)

since

k1 = n - m - k2 (n,rn, n - p) = k,(n,7n,p)

and

k' = n - 7 - kI(n, 7-, n - p) = k 2 (n, PJ)

8
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For the retrograde orbit now consider Tin,/-p. From (16), we have

Tn n,n-p = F.m,/%-p(C, s) ei[- (n - 2p)(u - h) - ( - 2p) t - h+( -m - 2p)t+( - m)r/2

(-1) -'Fnmp(s, c) e-i(n-2)(u-h)+vh+mbtlei(n
- m)r/2

after using (17). Since

(_j)n-ni(n-m)7r/2 = e-i(n-m)7r/2

we obtain

Tn,',,-p, = F/%,/p( s, c) e- i[(  - 2p )( u- h )+ vh + nz t + ( ' - i'O " /2l

This form for retrograde orbits is conveniently close to the form for direct orbits, (15),
and henceforth (18), together with

n

T ZM = TM-p, (19)
ji=O

will be used for retrograde orbits. We will return to the effects of summing on p vs 7? - p

when we later compare R/%mpq and R/%mn-,,-g, in (39).

Now let

+1 for I < M± (direct orbits)
2

-1 for I > 2 (retrograde orbits)

9
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and also

h' =E h H'= eH

(21)
= g +-- = F21c=

Let's also define a new function

ik$nmp = E[n- 2P) (u + hl - E~t) (n - m - 2P) (hi - + (n mn)

or

? -mp -f (n - 2p) (u ±') - vh' - Emt + (n- )j (22)

With these preparations, we obtain a single equation for Tnm good in both the direct

and retrograde cases:

n

Tnm = F.nmp(C',S') (23)

p=o

Let's verify this assertion:

=+1

Tn. = F.mp(c,s)
p=O

which does agree with 15.

10
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n

Tnm = 3 Fnp (s, c) e-i[(n-2p)(u-h)+1h+mt+(n-m)i]

p=o

which is, indeed, (18).

Now recall R,,, given by (9):

Rnrn - Pn2Rn n+ Tn (0, A)
L 2n+

2  E

This becomes

R L+RE+ n (a) n+1 Fn (c', s')ei[( n - 2p)(g+h') - v h' - (mbt+(n-v) ] ei,(- 2 p)f
Rnt=L2n+2 R nn c ' '

p=O

From this expression we extract the short-periodic content and expand the latter in a
Fourier series in the mean anomaly I with Hansen coefficients X (03):

i,(.-2p)f = -n-l,n-2p (o i (,-2p+q01
- n-2p+q (/3) (25)

q-=-00

where

1± (26)
Il+ VI--e

2

The e in (26), as well as below, is the eccentricity. Since the base of the natural log
always involves i, confusion should not arise.

Also note that the validity of (25) for f = -1 is easily established by taking it to be
the complex conjugate of the = +1 case.

11
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If we write

n 00

Rnm E E S Rnmpq (27)

p=O q=-oo

we obtain

11 +2 ie.[(n-2p)(g+h')-th' - 4Embt+ (n- m) - ]

Rnmpq - L2n+2 RJFnnp (c', s') e

_ ~n+2E
y-n- 1 n2p if( n-2p+q)l

n "--p+ q (

E nnn2

I n 2 _ [ t L r) -n-l,n-2p Cj'lnmPq
L~n+ E-,'nnp( is n-2p+q ( )(28)

where

nImpq [(n - 2p+ q)I + (n - 2p) (g + h') - vh' - fmt + (n - 7) (28a)

In preparation for introducing the Poincar6 variables, rearranging terms yields

O'mpq= [(n-2p+q)(l+g+h')-q(g+h')-vh'- m~t+(n-7n)., (29)

Our Poincar6 variables, modified to accommodate all inclinations, are defined by

L A=l+ g + h

= V2(L- G) cos (g + h') 1 = -V2(L- G) sin(g + h') (30)

a= V2(G--H') cos h' r= /2(G--H') sin h'

12
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Also anticipating further developments, we define the functions

F~m(C'S')- 1l,,Fnmp(c',s') '
Pnmp C , (s' I (32)

-n-l,n(-2p 1 1-n-IIn- 2p

Then, in (28),

Fnmp (c',s) .(_ e~ q ( )O. "' c, q' - - 2(1p3)

, [i[(n-2p+q) -'-q(g+h')-ih'-,,n ?t+(,-r,) ]

P""P (,, ,).-n-l,n-=P (0l) (,,) l

,C ii'vh'Ojlqje-icq(g
+ h ' )

* 2

Fn , , s) -r,-1,n- 2p (/3) K' --ifh'sgn v ILIF. C, on_2p+q

* iq

* e (33)

For the remaining steps, as well as for the computer program algorithm, the following

auxiliary relations will be useful:

2(L-G)= 2 +112  2(G-H')= 2 +r2 + 7

1 2 2+ (34)

2 L 2

13
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,EL - (i + n~2)

= L 4 L= 4L--- , )

.... (35)
"2 + -2

4- (V2 + 772)

Then

-. SI I[e-h 
sgnv

= s' [cos h'- i] n "h']

=s' [cos h' - iE sgn v sin h']

2 4L- 2( 2 +0 +) /a2 + r 2

or

Seifh'sgnt,- +(iEsgnv)r (36)
V4:L - 2(V + 12)

Quite similarly we obtain

olie(g+h').gnq (+ (ifsgnq),q (37)
V/4L - (2 + 7)2)

14
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Substituting (36) and (37), we reach teh following form for Rnm,,pq, free of small
divisors:

Rnmpq P n2+2 Rn Fnmp (c', S' 1 (/3) g x--In2
-- E n-2p~q

V'- 2( ± q2) egf2qC (38)

We note that Rnm (f =- 1)= Rnm (f + +1) but, because of a shift in the summation

indices p and q, we have Rnrnpq (IE =-1) : IRmpq (f = +1). To see the effect of the shift,
we return to (28):

Rntpq (E = -) = 2 R- Fnmp (s )X-2"~- 2p ()3)

Ruin ~ ~ ~ n+ ,np- (S, C= +1 __-n-I,-(n-2p) (3

L 2 n+ 2  E Fnm,n-p (s n c)X -2 p+q)

using (17)

15



NSWC TR 89-109

using (1)m 
i ( n - m )

P n-2-RFnmp (s, c) X-n-,n-2p (/)

, i[(n-2p+q)l+(n-2p)(g-h)+ v h + m i t - ( n - m ) i]e2(n-m)

implies

Rnmpq (--1) = Rnm,n-p,-q (e = +1) (39)

Note that use was made of

x-n-l,n-2p = x-n-1,-(n-2p)

n-2p+q -- (n-2p+q)

which follows from (25) and its complex conjugate.

SUMMARY OF RESULTS

We recapitulate showing the Hamiltonian framework and the definitions of the vari-
ables that enter Rnmpq. The canonical variables are:

L A' =l+g+h

S= V/2(L- G) cos(g + h') q = - /2 (L- G) sin(g + h') (40)

o = \42(G- H')cosh' r -v/2(G -H')sinh'

16
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Note that

H' = EH h' = eh

where

+l forI<>:±

-1 for I1 > 1:+

Once set, E is never changed during a run. The Hamiltonian is

F = Fo + R (41)

where

2F0- 2L2 (42a)

nR C71oRno + E E [y7,.jR,,n + '.m,,,](42b)

n=2 n=2 ?n=1

n 00

Rnm E E Rnimpq

p=O q=-c

Rntpq + r, F (c',n2R a + (i f sgnv) T -_-l,_-2)
L2+2 4L - 2 (2 + 112) J--2+q

* [ + (i sgn q)i; I] i(u2')q--n-m 1't~(317l 
2 

(43)

17
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Note that

V4L - 2(V + n2) = 2V'

4L (2+1 2 ) = V2(L+G)

F#mp(c,s,) = (_1)6 (n- r')!(n + r')! )bpir,(C  ' bpx'b (44)
P"I'l, Wl ) In(n - rn)!p! (n - p)!

where

1 ,
7-=n-2p (a' -a)

a =m-r -- -(a+b)

a1 2 + r 2

a = -- 4 - 2V( + 2)

b=Im+r x'= 2(c' )2 -

Compute

P0 ' (x') =1

1 1

P ab( ) -(p + 1)X' + -(a - b)
2 2

where

a + b + 1
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pa~b (XiI1{2d+, )pj, (z) =2d(d + p - 1)(2d + p - 3)
2+ 2 a

•[(2d + p - 3) (2d + p - 1) x' + (a - _ 1p~ (X,)

-(d + a - 1) (d + b - 1) (2d + p- 1) Pal_b (x') (45)

Starting with d = 2, continue until d = n - r'.

-n-l,n-2p (_1)q I (1 + 02)" (46)
whe-2p+q (13) (1 - i2) 2 fl- 1 M----O46

where

2 + 712

= 4L-(+7±2) ± -- e2

V=O

(47)t( W
N = (-i)t w b)

S=j±+ Cql + q)
2

t = j + 1 (Iql - q)

a = 2n - 2p + q - 1

= 2p - q - 1

b= (n - 2p + q) 1 - 2

19
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Alternatively, M, and N, may be computed using Lyddane's relations:

Starting with

M(O,a;b) = 1 }
Mb -)9b8/ 

(49)

M(s,s - 1;b) = (:

compute

M, - M(s,a;b) = M(s,a - 1;b) - M(s - 1,a - 1;b) (50)

Nj = N(t,-;b)- M(t,y;-b) (51)

The last line means that N is obtained similarly to M, but writing -b for b.

To truncate the summation in (46), let

A; = IMsNtj0 2 j  (52)

Terminate when

Aj + Aj+j < Max (Ak) • rx, k < j, (53)

where T. is an input.

20
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EQUATIONS OF MOTION

THE DERIVATION

The basic equations of motion for our canorical Poincar6 variables take the well-known
form

, OF OF
OL

OF OFf/- a{(54)

OF OF

where F is the Hmailtonian, developed in the previous section. In this section the partial
derivatives indicated in (54) will be derived.

As mentioned before, the central force field and the zonal harmonics

it+ E CnoR,,o

2L 2  
=2

have a eady been treated by Lyddane (Reference 2). Hence, we will address here the
tcsscral part

AF7, = R27', (55)

where the subscript 2 designates that all terms are of order two or higher. Following (42b).
we write

1: ( 56)
n=2 tnm I

21
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Also from the previous section, namely (43), each individual term in (56) is

it rtpq ac +' ± (I Esgnz ')r n 1u -9 (/3)RTlq L2fl+2  (Cfl [ VUL - 2 (e + uj2)] fl 2 p+qJ

+(z E sgn q) q~ 1 qI Si

where

2 a2 +72

() 4L -2( 2 ±+?r1) VI -=

(58)

+ 2I

Introducing short-hand notation for (57), we write

where

A =A(L) (L=7

F FLia~) C = C(L,,) (60)

B =B(L, 71, 0,r7) D = D(,\', t)J

Now let y designate any one of our Poincar6 variables. Then eventually

OR R ROA R OP ROB ROX R C ROD
-~-- +- - + I -+~ + jqj- ±- - (61)
Oy AOy y B y x Oy C (11D Oy



NSWC TR 89-109

Hence, we need the partials of the factors in (60) with respect to their Poincare
arguments. In above sequence,

,n+2 ln

A- R +"E (61a)L2n+2

which yields

OA (2n + 2) A (2
L (62)

Next

_( 16 (h - r')!(n + r')! 1 ,"(,

2"(n - m)!p!(n - p)! (c )n' (63)

1 ,
r=n-2p 6= (a -a)

a' = in - r =(a + b)

a = m - r p = a n- b + 1 (64)

b=Im + r X'= 2(c') -1

(.s') 2  2+r c' = -(')
0= 2=7 1 - s 2

4L - 2 ( 2 + 172) V1-W

Also note

4L - 2 ( 2 + r12) = 4G (64a)

23
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We also need

e0ab (X,) = 1 (65)

plal X, =1 1P+1 X (a - b)
F0 ' (x')=15O 1x+

11{(d+ -)
2 2

pab (x,) 2d(d + p- 1)(2d + p- 3)

[(2d + p- 3)(2d + p- 1)x, + (a2 -b2)],_b x

-2(d+ a- 1)(d + b- 1)(2d + p- 1)Pd_2 (x')} (66)

For convenience, let's temporarily drop a and b from P, the prime from c', s', and
x', and define

K = (1)6 (n - ,')! (n + r')!
2n (n - m)!p! (n - p)!

Then

F = CbP_,, (x) (67)

implies

OP = dc ac (6S)

24
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where y is any one of our six Poincar6 elements. Using (67), first do

= Kbcb_ p.r, (x) + KcbdPn() (69)
dc dx dc

But since

x = 2c 2 - 1,

dx- = 4c,

and (69) becomes

dF (n - r')! (n + r')!Ic [-ibP ,r(X') + 4c 2 dPn-r'(X)] (70)
dc = 2(n - m)!p!(n - p)! [c - ] dx

In order to obtain Twrite (66) in the abbreviated form

Pd(x) = 1 {a 2 [a3x + a 4]Pd-l(X) - a 5 Pd- 2 (x)}
al

implies

dPd(x) 1 a2 [ a3 X+a 4 dPd-l(x) dPd-2(x) +
dx aL dx dx a,

25
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or

dPd(x)_ 1 '(2d + p- 2)

dx 2d(d + p- 1)(2d + p- 3)

*[(2d+p- 3) (2d+p- 1)x + (a2 - b2 )] dPd(x)

dx

dPd-2 ( x)
-2(d+ a- 1)(d+ b- 1)(2d+ p- 1) dX

+ (2d+p- 1)(2d+p-2) Pd_(x)} (71)2d(d + p -

From (65) we derive

dPo(x) -0

dx • (72)

dP (x) 1((

dx 2P +

Note that (71) has the form of (66), with P replaced by P, plus an additional term.

The recurrence loops for P and dP should probably be computed simultaneously.

Now turn to

0c

Since we have now introduced s in addition to c, in (64), let's make use of

,Oc -1 0
oy= - cyy (s2) (73)
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The five partial drivatives are found to be

Oc 8 2 9c _ -~ 2

OL 2cG a 2cG

09c_ -a 09c 778s2 (74)
OcT, 4cG &tj7 2cG

Oc _-7-

Or- 4cG

The final results for F are:

OF _ (S,)2 dF
aL 2c'G del

= 2c'G del

OF(81)2 dF (75)
aq 2c'G dc'

Or -4clG dci
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where

a 2n (n - m)!p! (n -p)!

a~~b dP,- ( r )

S[bP_, brI (x') + 4(c')2  dx'] (76)

with

pa,, (x') defined by (65) and (66),

dPnr, W) defined by (71) and (72)

dx'

The next factor is B. With later developments in mind, write it as follows:

B a + (ZiE sgn v) r
4L - 2( 2 + q2)

a + (i I sgn V) r (77)
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From (77), we immediately obtain

OB_ 1oa 2V' 7s

Do' ,, G(78)
OB _ (iEsgnv)

For the other three, write

B [o +(i esgnv)r]G- 1
1
2

Hence

OB OB OG

Oy OG Oy

First get

OB 1 [o+(iesgn V)7]
OG 2 2vr-GG

or
OB -B

OG 2G(

and (79) becomes

OB -B OG

Oy 2G Oy
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Since

12

aG

OG
a

aG

Therefore

1B -B

OL 2G

O9B _ B19 C(82)
aC 2G

aB nB

Oq-2G

Let's turn to

Using (46) through (48), we write

00

= EZMN,02i (83)
j=0
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where

E = ( )Iql  (1+/32)n

(1 /32)2n-1

/=
l+Vr-e 2

or

f32 = 2 + 7,2
4L - ( 2 + 712)

1 (84)

_ l (-i)t , ( Y W ( b)w

S=j+ 1(Iql+q)
21

t = J + (Iql - q)2~+ Jiq (S5)

a = 2n - 2p + q -1

= 2pq - 1

b=(n-2p+q) 1 (2+ 7)

=(n-2p+q)V - 2  (86)
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Writing termporarily

Q =n-2p + q,

other useful relations are

1 _ 2 2/
e Q - (87)1 + 02  1 + 2

Now we proceed to obtain

O'k 0, a02
X _ O y (88)
ay 902 

(
y

Starting with (83):

-dl - - MNt + E ( N + M ) (/32)
j=o j=0

00

+ E Z MNtj (2) j - l (89)
j=0

The derivatives in (89) are as follows. First

dE [ n 2n - 1iE (90)

2+ ) + (1 - 02)
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Next

dMa ( a)S -cv) vb-1
d0 2 - (-1)} v! d32

(91)

dNt ()t - w(-b)'-l(-1) db
d02-  -- Ww! d02

wt-

Since
a

1 - fl2
b=Q 1 -2

(92)
db -2Q

d/3 (1 -02)2

(91) becomes

dM2  -2Q a (- v) by v

dNt +2Q t( (-b)' u

df 2  (1+ 3 )2 (-1)t -- (_b)! (-b02 w! (- b)

or, since

Q I+0 2

b 1 -32'
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dM, -2 a-v)b
d3 2 - 01 EVV!

V=l

(93)

dNt -2 _ _ w

W=1

Substitution of (90) and (93) into (89) yields

dX [( n + -] )I (1 + .2)n of0

32 (1 +02) 1 12 --E2) (c- Mi' g t J

di 02)n-I ==

+ Ai __ ( 1)02 n 2 -) 2a -I b

(I - 2)2 -  04o

(1-t2) noI

-2) j= --) 1 ( - (8 Vb V

W=l

1= \Sv) v

- (-1) V!w-
(95)

(=1 Z ( W) tv!
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Then

dX [ n 2n - 1__+__32_
[ n + X-- l. - 2(-1) lqRl  W2" '

d0 2  (1 + 2 ) 1 - 02j (1 - 32)2n j=o

j=0

+ (AvN 2j + (l)I(1+ , 2 )" 1 5fj 2~j- 2  (

Next we differentiate

2 + /2

4L - 2 -

with respect to L, , and 71. It will be useful to note that

( 2 + 72)= 2(L - G)

4L - ((2 + r2) = 2(L + G)

Then

032 2(G - L)

aL (L + G) 2

032 2 L
(L + G) 2 (97)

032 2 q L
071 (L + G)2
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Using (88) and (97), we finally obtain

0.k 2(G-L)OX

L (L + G) 2 032

0X 2 L &k (98)
O (L + G)2 032

0X 2i 1 L O-k
07 (L + G) 2 02

with k / 0f32 given by (96).

An alternative path to obtain the partials given in (98) uses the recurrence relations

proposed by Lyddane. Instead of (84), which uses potentially troublesome binomial coef-
ficients, we write

M, A-. (s, a; b) = M (s, a - 1; b) - M (s - 1, a - 1; b)

(99)
N, =N(t, y; b) = M (t, -y; -b)

The recurrence (99) uses the starting values

M(0, a; b) 1

)bs (100)
AM(s, s-i; b) =(- 4

Equations (99) state that Nt may be obtained using the algorithm for Al, by substituting
t and -f for s and a and by writing -b in place of +b.
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Dropping a few subscripts, we copy from Lyddane

dM = -M(s - 1, a - 1; b)
db

dN

db = +M (t - 1, -y - 1; -b)

implies

dM = dM db +2Q A(s-,a- " b)

d/#2  db3 2  (1+0 2) 2

dN _ -2Q
2 M(t- 1,- 1;-b) (101)

d# 2  (1+ 2)2

We now return to (89) and substitute (90) and (101):

d/3d' _ (1 n as)+ (2n - 1 ) J + 2 (_1)Iql (,n - 2p + q) +i .2a)n2._ [( _, 1;o
d#2 = j [f+ 2~ (1 -0) 2)2n2 E [M (s -1, a-i; b)

j=0

SM (t, -y; -b) - M (s, a; b) M(t -1, y -1; -b)]0 2 j

+ (_l)Iql (1 + )fl(n10 
20

(1 - 02)2fl S M(s, a; b)M (t, -y; -b) (j )(102)
j=1

This equation takes the place of (96) in (98).

The fifth factor in the disturbing function is

C= + (I c s g n q ) 71  (103)

V/4L - (-+ q 2)
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where

4L - ( 2 + ,12) = 2(L + G)

The three partial derivatives of C become

aC -C
DL (L + G)

0C = 1 [ 1
a - 2(L+G) ( 2(L+G) (10

aC = 1 ( gq)+ 71C 1
&7 V2 ( L±-G V2(L+G)J

Finally, with (57) and (60),

D i E[(n-2p+q)A\'-I(n-m) e i mn 6 t
D = e 21 t

dD
dA-- zE (n -2p +q)D (105)

SUMMARY OF RESULTS

Throughout this section, the abbreviation R was used for the individual term R, p q.

As in (59), we write

R = APBI 1 .C IqI D (106)
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where

tn+21 n

A P RE -- A(L)
L2n+ 2

6 (n ,) (n + r')! b bb
= ) (n ,)!n r')1 ()b. pa_ (x') = (L , 77, a, ,)

2 - (n n)!p! (n - p)! cFL

a + (iesgnv)r B(L,
4L- 2(V2 + n2)

(1.07)

S= (-I)Iql (1 _ 02)n M Nt2J (L, 77)
j=0

C + (I Esgn q) 71 Lc :+i gq~= c (L, , ,7)
i4L - (2 + 72)

D - ei[(--2p+q)'+(n-m) - e-i M t D

From (61) and (107) it follows that the final partials of R with respect to the Poincar6
variables are

R R dA R OF ROB ROX R093C
OL A dL +F OL + --X -L C OL

OR R OX R OB R OX R OC

OR R OF ROB R OX R oC
= -- + Iv -- + =- + IqI-

07 PB(lOS)

OR R OF R OB

OR R OF+" R OB

Or aOr BaT-

OR R dD

-I D n dA3'
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From the preceding pages, we find

R dA RAL -=_ (2n +2) - (109)

R OP R (s')2 dl'
POL P #2c'Gdc'

ROF R (s )2 dF

P N F 2c' G dc'

ROF R (s')2 dF (110)

1 ( 2c'G d (10

R a.P R -, dl;

R Or - 4 4cG dc'

RF _. R-- dF
PFarT ?4 c'Gdc'

where

oF ) (? - r')!(n + r')!
act= -2(7 - mi)!p!(n - p)! [(C

SPo,,_, (x') + 4(c')2 dxrW) (111)
dx' J

and

p Ib, (x') obtained with (65) and (66),

dpa,b

- .- obtaincd with (71) and (72).

dxr'
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RII ROB _ -I vR
VBOL 2G

IVl R OB _ IvK R

B -r 2G (112)

I a -2V-dB

SR B _ Ivl(izEsgnv)R
" a7 2v"G.B

Test if vu = 0. If yes, put all (112) to zero and skip (118b).

R 0X R2(G-L)dX'

(L -
+ G)2 d 2

R aOX R 2 dX (113)

k 9 - -(L+G) 2 d-T3(

R O R 271 L dXk

.k (97 -(L +G )2 d032

where

d [ n + 2 - - 2(i) ( i [Al (N ) (A ) N
d032  1(1+/32) ( l- 2)j (1 /32)2n, =, (

+ (_i)q (1 + 32) 00
~1 1:(1 - /32)N, [j/ 2 -2] (114)

with M., Nt, (Mv), and (Nw) given by (84) and (95), or where
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dX [ n 2n-1 2 !+(1+/2)n2
d0 (1 + '2) + (1- 2)] ((1+2 -(1 2)-

00

E 03[M(s - 1, a - 1; b)M(t, ;-b) - M(s, a; b)M(t - 1, - 1; -b)] 02j

j=O
3=00

+ (- (1 + .2)n (115)

(1 - #2)2n-1 1 M(s, a; b)M(t, -y; -b) [115)
j=l

with all M defined by (99) and (100).

ROC -IqIR
C L- (L + G)

_jR _C R Iq 1 + c (116)
C O - C f/2(L +G) 2(L +G)

10 ROC R jqj ('esgflq)+ ?JC
C -7 C /2(L + G) [ 2(L+G)J

If jqj = 0, put all (116) to zero and skip (118d).

R dD * d F (n - 2p + q)R (117)* dV

All ingredients required in the preceding pages are defined within this document; they
will be compiled again in the final algorithm.

Expressions such as R/F are convenient short-hand notation. Since they involve
potential zero divisors, they should be computed as follows:

42



NSWC TR 89-109

- ABvI iqiD (l18a)
F

R APBI1I cqID skip if IvI 0 (118b)
B

-R= A.,BII CqD (118c)
X

R APBI,,kClqlD skip if IqI = 0 (118d)C

With the aid of (108), we can now compute the six partial derivatives which we will

label

OR , y = L , A, 71, 7- (119)

Dy mpq

Compute

OR) =R y =(120)

nm p=O q----oc , q )' pq

A F2T 0 +- comtmplex conjugat e  y L.... (121)
Oy ~n=2 mn=1

Finally,

OAF 2Tr A2', 0AF 2T7O. 27''-OL
OA'L

0 AF2 T '- DAF 2 ""

(7, OAF 2 T 0 OAF2 7 (122)
571 Oa

"3 -
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Combine (122) with Lyddane's equation of motion. The later may be found in Refer-
ence 2, page A-26, Fortran lines 0648 to 0653.

THE ANALYTIC SOLUTION

PERTURBATIONS IN DELAUNAY VARIABLES

Each Delaunay variable can be written in the form

L = Lo + 6L (123)

where 6L is the perturbation due to the tesseral field. The Hamiltonian is, for one term
in n, in, p, q,

F =Fo + F2T

2L + (-R + ±(y),pq (124)

For brevity, the subscript n, in, p, q will be dropped for now. The familiar canonical
equations of motion are

L =F, = -FL }

G F9 g=-FG (125)

Fh, h'=-FH,

We take the time-derivative of (123), apply (125), and substitute (124). Since Lo = 0,
it follows that
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6L = (-YR 1 ±+;Ml)1

6 = (nyRg + 7Rg) (126)

6H'= ((Rh, + R,')

However, for I we find

i =io +6i

--FL

- -FOL - (-RL +y-L)

- -[(FoL)Lo + FOLL6L] - (RL + ;ML)

Since

i0 = L)Lo

there follows

2

61 = - (-yRL + fRL) - 3- L

6= - (YRG + RG) (127)

6fh' = - (-yRH' +Y RH')

The disturbing function may be written in the form

R = C(L, G, H') e4 ' ('9' '  (128)
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so that

Rt = i., R (128a)

Substitution into (126) yields

which integrates to

6L =

6G (129)

6H' = V)RhR

For reasons to be seen later, these equatins will be put into a different form. Because
of (128a), we write

yl?± -{y~-yh
-yR + R = ,(-R,- X)

and similar equations for g and h'. Then (129) becomes

-i (-yn R ,)6L=7

bG = - Rg-g) (130)

6fH' = -Z (yRh, - Rh)
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In order to solve (127), substitute the first of (129) for L:

t2, R + ;
61= -&tRL±+;ML) 3 P2

This integrates to

_ yRL -;RL _____;F

61l - 3A2 (4')

-yRG -Rge - (131)

6h' - -yRH, - RH'

Above equations require 0' and 4'. Write (28a) in the form

4' = E [Q1 + (n - 2p)g + mh' - EmOt + (n - m)72 (132)

There follows

4= Q (133)

and

4: [Q(no + i2) + (n - 2 p)g2 + m4 -f m71 (134)

where

Q =n-2p+q.
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Upon substitution of (133) into (131), the tesseral perturbations in Delaunay variables
become

6L = -(yR - R)

6G = (-yRg - i-R)

bH' = - (-yRh -"Rh,)

(135)
2 Qbi -(-yRL_- !L) +i3f4(,) ('T-yR --

6g= (-(RG -G)

h= (YRH, -YRH')

PERTURBATIONS IN POINCARE, VARIABLES

Expressing the tesseral perturbations in terms of Poincar6 variables follows a sugges-
tion by Cohen.

Let

X = (L, G, H', 1, g, h')T

and

Y = (L, , a, A', r, T) T
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Then (135) may be written as

x= x+ U (yRi ) (136)

U 03- 10
u13 03)

Upon making the canonical transformation to Poincar6 variables, we obtain

Y (X) = Y (X ) + , [ 7
x/

= yo+ Y, U (V -y (Y) -yFR (Y))

Y0' (Y) )

=0 + U( -(137)

where the temporary tilde emphasizes that I? and zP" are now functions of the Poincar6
elements.

Note that

4,'(X) 91 (Y) (138)
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and

7-) 2-I-nR 2Y)m (139)

-, I . -d

namely twice the imaginary part of -yRy. Substitution of (139) into (137) yields the final
expressions

9

AAL = 111-YR4) (- I 7,)IfR)

V,t

-2
A/ Im(yR~i)

-2

Ar -:- Im(TyR,.)

where 4"is olbtaine(l by evaluiation of (134). The various p~artial dlerivatives of the di1s-
tulbing function R? may be calculated fromn (108).

PARTIAL DERIVATIVES OF PSI DOT

The primc uisedl in the (derivationls above flagged those variables which were -1nodifi(F
)ol Icar (' ('lenilits or flinctioiis thereof. This pr'ime will be dIroppled tv'i1Iporaily so t hat it

maiy b e availab le for a dhifferenit purpose.
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As seen in the last section, we may write

Z P = U [2 Im- R ) ]  (141)

P

were now

pT = (L, , a, A, i7, r).

Equation (141) yields

/P U Im(yRp) - 2 Im(R) ,p] (142)

When the first term in (142) was developed, the assumption was made that the second
term is negligible. This premise proved erroneous. The missing terms will now be derived.
following Cohen's approach.

Let us write (134) in the form

V, 0 + A~

where

,o =eQno - m4

and

/1W = -FZT4'y. (143)
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Here

x = G , y = ,)

F H it4CoRE3H1

F1 - 4LG (

and

[ - Ql + (Q - q) g + m (h - 0) + (n - )

In preparation for subsequent steps, we make a canonical transformation to the vari-
ables

x L! y' -g- h)

\G - H -Eh

and obtain

4C20 R 2 L L -(L -) 2
F1- 4L 6 E L - ( L -" G) ]-3L ---(L - G-)

= [ QA + q (-g - h) + (n - n - 2p) (-e/h) - cmO + (n - n)

AO = -CQFL - qF,L G - cvFG,_ (144)

where

v = n - ?n - 2p.
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The leading part of tp is

3

0 = EQno,p = -- EQno6L,p,
PL LP

mhere b is the Kronecker delta. For A/kp, we use

Fl,'p =F" IjTXPT

10 0 0 0 0) (145)

' '0 0 o 0 0

For the sake of readability, we abbreviate

L -G =a

G-eH=/3

Then

A=K -3(L C,)-3[(L -~ )l

where

K = 1.

53 C2oR

53



NSWC TR 89-109

Then the required partial derivatives become

A (L,X) -(1,0), (QFL,L + qF1L,, + VFL,,)

A, (,m - (, E) (QFL,,, + qFj + vFI,f) (146)

A <a'r)- - (a,r)Q QL,3 + qF -+ VFl,

After several pages of algebra, the six partials in (146) may be written

K FIL,L=6L-'(L-) - [2(2L -) -L(L-a)] 3 (L-a I )

+6L-4(L -a)- 7 [3(5L- 2 a)(L-a- )-L(L-a)] (147a)

-FL,. =-35 (L- -8)- (L - 3) --K L -

+ 6L-4 (L- _ )-7 0[3 (4L -a) (L - a- )L(L- a)] (147b)

1 FIL,#--- 18L -4(L -a)- (2L -a) (L- a- 3)

+ 6L - 3 (L - a) - 6 (L - a - 2/3) (147c)

1 jC'r= 12L-3 (L - a) 5 [ 3 (L- _ 0)2i

-6L- 3 (L a)-6 [9 (L - -  -1] (147d)
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-F.6 -18L3 (L - )-5(L - )

- 6L - 3 (L - a)- 6 (L - a - 2/3) (147e)

K Fl#",:= 6L - 3 (L - a)- (147f)

where K, a, and 13 were defined earlier. However, a and 13 may also be computed from

a= W ( + 7,2

(148)
0 = 1 2 + 72)

With the abbreviations

DI =,F (QFIL,L + qFL,c, + VFL,3)

D2 = E (QFIL,o + qFlon + vF),3) (149)

D: = e (QFJL, + qF 1 0I,¢3 + vFl 3,3

equations (146) become

A -, -D, Al/,A, 0

A = -D,2 A,= -ID2 (150)

A 1" -a D:j AC',- -T-D 3 J
with all nmnfnbers known.
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Finally, we define

FAC= 2

FD=FAC* Irn(-tR)

and write the increment to Equations (135) in vector form:

77

DP =FAD At~(151)
or A 1
A

L/ 0

RESONANCE

CLASSIFICATION BY PERIOD

Equation (28a) may be written as

lk(n -2p +q) + (n- 2p)(g +h) -vh - e4t + (n- in)-, (152)

if we disregard c and subscripts for the time being.

Reintroducing the abbreviations

Q = nl - 2p + q

r = n- 2p } (153)
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the time derivative of (123) becomes

= Q(no + i2) - m9 + rg 2 + mrh2  (154)

where the quantities i2, 92, and h 2 are the first-order secular rates of these elements, due
to J2 = -C 20 . Formulae for the rates are found throughout the pertinent literature as,
for example, in Brouwer's (Reference 5) celebrated 1959 paper:

1-(1 3cos2 I) -i2 = 2 1- 3 v' 2

2 = IC (1- 5cos 2 I) (155)

h2 = C cos I

"where

C - -l5J2R2E V4

(1 - e2)2 L 7

Equation (154) is used to examine the frequency of each possible combination m, Q. r.
While the period of 4 is short for most terms, it may become large for some values of
Q and m. When the period is long , the associated perturbations become large. and the
term may be labeled resonant. To be more specific, a term is

short-periodic if
7,5

in shallow resonance if -<m'] < -< (156)
TD TS

in deep resonance if Lii K
T5
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Theoretical considerations suggest that TD = 15 days and TS = 0.5 days are reason-
able initial trial values. However, these two quantities are inputs to the program, to be
set according to the application at hand. Since the inequalities (156) are a bit hard to
visualize, the following should help clarify the procedure: if the critical period T

15 d <TP, the term is integrated numerically,

0.5d <T, < 15", the term is evaluated analytically,

T¢ _ 0.5", the term is ignored, except for a
few cases of low degree and order.

Since rn = 1 will only be of interest in dealing with geostationary orbits, we will
consider all m from 2 to nmax. For each such m and each r in (- nax, nmax), obtain
the resonant indices Q as follows.

Let

771 - h22) -'

C- 
710 + i2

so that

Q0+no + 12

Also, let

no + 12
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Consider now Figure 2.

a a a a+ a1,8 rD Dr

I I I I Q

Figure 2. Resonance Conditions for Q

If there- is an integer Q in the interval a - /3 /rD to a + 3/7D, we are dealing
with deep resonance. If there are any other integers Q in (a - /3/rs, a - 0J/rD) or in
(a + /3 /D,a + /3 /rs), they lead to shallow resonance.

Assuming, once again, that rs = 0.5, the spread in possible Qs is 4/3. If 4/3 < 1,
there can be, at most, one Q. This situation may occur for orbits with periods of less
than six hours. If 1 5 4/3 < 2, there can be, at most, two Qs. Such conditions may arise
for orbits with periods from six to 12 hours.

We have now identified all resonant terms with indices m, Q, r. Since the algorithm
operates in n, rn, p, q-space, proceed as follows:

n assumes all values from n,,in to nmax. All

m have been identified; they must also obey m < n.

p = (n - r)/2, but only if n - r is even, and

q =Q-r.

The computer will write two files. One will contain all n, m, p, q combinations iden-
tified as shallow resonance, the other all those that are in deep resonance.

THE AMPLITUDE TEST

Although any given term may have a period T.) large enough to classify it as resonant.
its amplitutde can still render it insignificant. Since a first-order theory neglects second
order perturbation by design, it serves no purpose to carry terms of order two and snaller.
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Cohen developed a test in which the estimated amplitude in the mean anomaly (or
longitude) is compared to a tolerance of order two. Considering Equations (135) or (140),
he approximates the amplitude as

(-,AP )j A2,,±1;
Ampl ( )_ ,L A ((3Qno + -)X sL-sx + ± LFX) (157)

where the disturbing function R is defined in (106) and (107), and where CN is the
normalization coefficient

CN [(n - ?n)! (2n + 1)(2 - 60M)]
[ (n + in)!J

A is defined in (61a), F is the normalized inclination function

F CNsIVIF

with the latter given by (44). Moreover, X is the classical Hansen coefficient

X = Ojqj)k,

where

13=
1+ 1V-e 2

and X defined by (46). The two products of partial derivatives in (157) are found to be

8LF, -gCNS' v l  [ 2 dF 18
- = 4L-( 2 +,1 2 ) [hu- sdF] (158)
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and

ILX -=4 L_ ( 2  2 ) Iql+ d+-2 (159)

The two derivatives dF/dc and dX/d32 have been defined by (76) and (96), with
(102) as an alternative.

If the amplitude (157) for any given term in n, m, p, q exceeds the tolerance

tol = -e2) 2  , (160)

it is retained as a resonant perturbation and calculated in accord with its classification. If
not, the term is dropped.
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The literature on orbital mechanics contains a vast collection of differenct expressions
for the inclination function and the Hansen coefficient. Some of the classical forms of these
functions are presented in terms of summations over products of binomial coefficients.
Such expressions are often numerically unstable, and many significant figures are lost
when calculations are made for large values of n and m, the degree and order of a tesseral
term.

In order to overcome this difficulty, and to reduce execution time, a variety of re-
currence relations have been developed and published. Cohen and Lyddane perused the
literature and eventually developed serveral methods suitable for our requirements. Given
below are the presently operational versions of F and X . Although Lyddane has derived.
algorithms more elegant than our current X, we will defer publication until numerical
tests are complete.

THE INCLINATION FUNCTION F

The current elegant fim is due to Cohen who credits McClain (Reference 6), DiDo-
nato, and Lyddane with the inspiration. Copying Equation (44),

F/,,,,(c',) = (-1 2(? - )!(, rp)! (c6 , (161)

211(n - in)!p!(i - p)! (c)P". a

The Jacobi polynonials P"' ., are calculated from the recurrence relation (45), begin-
ning with P '6 as fulction of P"'b0 and p1 ,b Rather than derive (161). we will demonstrate

that this expression always reduces to a well-known form of the inclination function. Recall
that

21)1

= 1 - " 71 (a + b)

a = I, -rj ." 2(c)2 - 1

,= I,,, + , =1 - 4L - ,2T+ 1/2)
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The Joacobi polynomial is defined by

pab _1)._,.,_ j  n -r. + a n .r + b) ,_I2( -r' ,CI

n-r(x') -
j=0

Now let 1
j = n - -(m - r + b) - k

2
then k2 = k(j = 0) 1 -(2n + v - 12m + vi)

2

since
v = n - m - 2p,

and
1k, = k(j = n - r') - (v + IVI)
2

Then

a,b ((m-r-a)+k-- '= G(7-71- - I+ + G m - r-a) + k)
k=kl )

* (s)2(k-k)(CI)2z+v-b-2k

Substituting this in Fj

1 2 (+ 7')( ±)! k .~ n ± !-(a -b)
' (n -n)! p!(n - p) 1 7"-a) +k)k=k l -2(7

( 7 - )-

Let C" k be the coefficient of (S)2(k-kl)(c' )2"+"-2k
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We will substitute for a, b in terms of rn, r in three cases:

(1) r > m. Then

1 1
ar-r-m, b--r+m, -(a+b)=r, -(a-b)--m

J (-i)k (n - ?-)!(n + ,')! (n - m)!(n + m)!

Cmk2n(n - in)! p!(n - p)! k!(n - m - k)!(rn - r + k)!(n + r -k)

2np!(n -'p. k )n - m - k)

(2) m > r > -m. Then
1 1

a= - r, b =m+r, -(a + b) =m, (a -b)= -r
22

j (-1)k (n-m)!(n+m)! n-r )(n+)
Cnmpk 2(n - m)! p!(n - p)! m - r +k k

_ (_,)k(n + m)! (? + r ( .- .

2-p!(n - p)! k k (,n -m- k)

(3) -m > r. Then

1 1
a =m - r, b = -m - r, -(a + b) = -r, -(a - b) =n

j (--)k (n + r)!(n - r)! (1 + 71)!(71'-1n)!

nmk -2n(n - m)! p!(n - p)! (m - r + k)!(n + r - k)!k!(n - in - k)!

(-X)k(n + m)! (n + r) n - r

2np!(n - p)! k )n - - k
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In all three cases, C,',,Pk has the same form in m,r. Replacing r by n - 2p, we find

I (n + m)! k2 2n - 2pF Ipc 3 =2"p!(n -p)! E (-1)k k
k=kl

• 2 (S1 )2(k-i) (c )2n+v2k (162)

where

1
k = v + IzI)

k2= 1(2n + v - 12m + vj)

With the aid of Equation (32), (162) is seen to match Equation (12). Q.E.D.

THE HANSEN COEFFICIENT X

This function is defined by Equation (46). Its principal components,

(M 1a8v)j (a(163)
v=0

are numerically unattractive. Lyddane proposed to calculate these quantities by the comi-
pact recurrence relations shown in Equations (49) through (51).
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To derive Lyddane's expressions, first define the function

M(sa; b) =(-1) 8 Z (& (165)

Substitute the relation

(n) = (n -1) + (n - )

which yields

= M(s,a -1; b) ± (-1)(1 ,1 - - v bv

v=O

= M(s,a - 1;b) - M(s - 1,a - 1;b)

which is, indeed, Equation (50). Since Nt is identical in form to M,, except for the signun
of b, we may write

Nt - M(t, -y; -b).

In other words, the relations developed for M can be used to evaluate N by simply

replacing b by -b.
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In the derivation of the equations of motion, derivatives of the disturbing function are
formed which, in due course, require differentiation of M, and Nt. With the aid of (165),
we write

d M(s b = (-1)- Z vbvi

A I: (S V V !
V=O

or

d~M(s~a;b) =-M(s - 1,a - 1;b) (166)

In a similar fashion we obtain

d

-yg( t,7; b) = M( t - 1,''-1; -b) (167)

The derivatives (166) and (167) are subsequently used in Equation (102), nalmely thc
formula for d.X/d3 2 .
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