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The work described in this report was performed as research and development funded
by the SLBM Research and Analysis Division (K40) and the Space and Surface Systems
Division (K10) of the Strategic Systems Department.

The development of this satellite theory resulted from the joint efforts of Russell H.
Lyddane, Charles J. Cohen, and the author. The expertise of Drs. Lyddane and Cohen
strongly affected the approach taken in this task, and their subsequent vigilance provided
a continuous flow of improvements to almost all sections of the theory.

Much useful information was extracted from Wayne D. McClain’s two reports
CSC/TR-77/6010 and CSC/TR-78/6001, the documentation of a semianalytic satellite
theory developed with Paul J. Cefola and others. We also had several discussions with
Dr. Cefola during his visits to NSWC; his knowledge of the subject matter is extensive.
At NSWC, Dr. Armido R. DiDonato’s expertise in numerical analysis proved most helpful
when numerical difficulties arose.

This report was reviewed by J. Ralph Fallin, Head, Space and Surface Systems
Division.

Approved by:
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R. L. SCHMIDT, Head
Strategic Systems Department
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INTRODUCTION

The K10-Division at NSWC has many years of experience in computing satellite orbits
by the famed “Cowell” numerical integration methods. For orbits close to the Earth, a
stepsize of 60 seconds is typical. Increasing accuracy requirements entailed ever larger
gravity fields, and orbit computation by numerical integration became more expensive.

In 1978, NSWC asked Lyddane to develop a semianalytic theory, restricted to the zonal
harmonics, but including Moon and Sun as perturbing accelerations. Lyddane promptly
produced an elegant solution, choosing the nonsingular Poincaré elements as primary vari-
ables. His work was published as an NSWC TR in 1984 (Reference 2). As Lyddane points
out, such a solution should be at least two orders of magnitude faster than the customary
Cowell integration.

Subsequently the decision was made to develop a more complete semianalytic theory
here at NSWC. Lyddane and Cohen offered their support, a most welcome event. The
major feature of the mathematical model was the addition of the tesseral gravity field.
with particular attention given to the notoriously troublesome resonance perturbations.
This phase of the work has now been completed, and the computer program is undergoing
checkout.

In assembling the program, the tesseral algorithm was merged with Lyddane’s op-
erational zonal routine. Since the latter is documented in Reference 2, this report will
describe the effects of the tesseral field and explain how various types of terms. especially
those with small divisors, are treated.

TESSERAL HARMONICS IN POINCARE VARIABLES

THE DISTURBING FUNCTION

In this section, the disturbing function for the tesseral gravity field will be derived in
terms of slightly modified Poincaré orbital elements.
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The Earth’s potential, as adopted by the International Astronomical Union (Refer-
ence 1), 1s written

7 - Re\" . .
T=°5C E E i .
L " {1 + ( . ) P (sin 3) [Cpm cosmA + Sy, sin m/\]} (1)

For the sake of brevity in subsequent derivations, we write the poatential in the form

.M ~ (Rg\" imA | =  —imA ;
| § E e os 0 m m 9
(, 7‘ {1 + ( r ) an (COS ) [’771 € + 71:n1€ ]} ( )

Equator

Figure 1. O1ntal g(’omctryv
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In the equations and figure above,

U =k*M
k = Gaussian constant
m = mass of Earth
Rg = equatorial radius of Earth
n = degree of tesseral harmonic
m = order of tesseral harmonic
P,n» = associated Legendre function
A = longitude from Greenwich
B = latitude (declination)
0 = colatitude

Crm, Snm= unnormalized gravity coefficients
Ynm> Tnm = complex form of C, S and its conjugate
1 =+v-1

é = inertial rotation rate of Earth

6t = GMST = Greenwich Mean Sidereal Time

A comparison of (1) and (2) yields the relations

Cnm = Ynm + Ynm Ynm = %(Cnm — i Snam) W
Snm = 7:(")lnm - ‘_Y-nm) ﬁnm = %(Cnm + Z Snm) >
CnO = Ypo + 7110 = ~Jn Y,

Let the Hamiltonian be

F=F+R
where

2

Rl

Fo=om

S (R .
R= g (-r_E> an(COSG) [’Ynme.m'\ + _'7_,,7,,(*—!"’/\]
n=2m=0

(da)
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Since the disturbing function R contains the time, the Hamiltonian F is no longer
a constant. This feature does not affect the validity of our theory. The Delaunay and
Poincaré variable L is defined by

where

a = semimajor axis

In preparation for subsequent developments, the disturbing function will be clad in a
differenct form. First we note that

den
Pom(z) =(1- IQ)"‘/Z———EI—)
/ dxm

and introduce

~ L d"Py(x)
an(l) = dz™
In our application, this yields
Ppm(cos 8) = (sin )™ P,,,,(cos 8) (6)

Define

Tnm(lea /\) = an(COS O)Gim’\

= 13,1,,,(('039) [sinﬂe“]m (7)
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Also substitute

g (Re\" _ pt? . e\
2 (%) = fmra () ®
Finally, let
n+2 n+1 .
prr o,
Rum = 5z BE (2) Tam(8,)) (9)

With these modifications, the disturbing function becomes

= Z Z [’Ynman + 7nmﬁnm]
n=2 m=0

Since the zonal harmonics have already been done by Lyddane (Reference 2), we will
separate R accordingly and write

R Z C'nO-RnO + Z Z 7nm nm + 7nman] (10)

n=2m=l1

Next we wish to express the surface harmonics in terms of the orbital elements
u=f+g, h,and I. They are

u = argument of latitude
f = true anomaly
h = longitude of ascending node

I = inclination
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In doing so, we follow the work of Allan (Reference 3) who appeals to Izsak (Refer-
ence 4). Thus

Tnm(O, ’\) = Z anp(I) ei[(n-2p)u+m(h_é¢)]

p=0
with the inclination function
kz )
i + m)! . [2n —2p 2p I _
an =" m__(ﬁ__ -1 k 3n—m-~-2p—2k ,m~n+2p+2k
p([) =i 2pl(n — p)! n;-,( ) k n—m—k)¢ °

where

ki =3(n—m—2p+|n—m—2p|)

k2 =%(3n—m—2p—|n+m—2p|)

O

Il

[

o}

wn
DO~

§ =sin < (11)

Let us introduce

v=n—m-—2p

and a slightly modified inclination function

(n 4+ m)! (2n — 2p 2 Aty 2k —vaak
F"'"P(C’S)=W) TP LGV P )emtetket 1)

n—-m-—=k
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where

ky = 3(v+|v])

k2 =3(2n+ v —[2m + v|)

Then T,,, may be written

Tam(8,0) = "™ 3 Famp(c, s) 2Pt m(b=00)

p=0
or, putting
o ei(n—m)rr/2
n ‘ :
Tnm(g,/\) = anzp(cas)elwnmp (13)
p=0
where
YVomp = (n—2p)u+nzh—7719f+(71 —m);—' (14)

Next, working toward Poincaré variables, we express ¥,mp in terms of h and u +h
for direct orbits and of h and u — h for retrograde orbits. Accordingly, we write

n
Tnm = E Tnmp
p=0
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where
Tnmp — anp(C,S) ei[(n—2p)(u+h)—(n—m—-2p)h—mét+(n—m)7r/2] (15)
for direct orbits and

Tnmp — nmp(c,s)ei[(n—2p)(u—h)+(n+m-—2p)h—mét+(n—m)1r/2] (16)

for retrograde orbits.

For direct equatorial orbits, s = 0 and ¢ = 1; for retrograde equatorial orbits, the
values interchange, becoming s = 1 and ¢ — 0. One would therefore look for symmetry in
the exponents of ¢ and s to overcome the indeterminancy of h in equatorial orbits, both
when ¢ = 0 and s = 0. It turns out the symmetry is there if Fy,, is compared with
Fumn-p and then R, with Romn—p. Thus for Fippnop, if we replace the index of
summation k by k' =n —m — k, we may write

ks

_ (n+m) I 2p 2n = 2P\ L ok omtu—2k’

Famaere) = g gt 2 O ) U )
S |
= ("1)n_anmp(ss C)
(17)
since
ki =n —m — ky(n,m,n — p) = ky(n,m,p)

and

ky =n—m~ki(n,m,n—p)=kyn,m,p)
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For the retrograde orbit now consider Ty n—p. From (16), we have

Tnm,n—p — an,n—p(c,s) ei[—(n—2p)(u—h)—(n—2p)9t—uh+(n—m-—2p)9t+(n—m)7r/2]

— (_1)n—anmp(5, C) e—i[(n—2p)(u—h)+uh+mét]ei(n—m)7r/2

after using (17). Since
(_l)n—mei(n—»m)n/2 — e—i(n-m)w/2
we obtain

Tnm,n-—p — anp(s’ C) e-i[(n-—2p)(u—h)+uh+m¢9t+(11—111)7\'/2]

This form for retrograde orbits is conveniently close to the form for direct orbits, (15),
and henceforth (18), together with

n

Tom = ZTnm,n—pa (19)

p=0

will be used for retrograde orbits. We will return to the effects of sumnung on p vs n —p
when we later compare R,mpg and Rum n—p,—q, in (39).

Now let

+1 forI<Z4% (direct orbits)

-1 forI> 2% (retrograde orbits)
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and also

h' = eh H' =eH
O A R T
Let’s also define a new function
Gy =] (320) a1 ) = = m=2) (- )+ (=)
.
b =] (=20) w0 8) = —emit (o=}

With these preparations, we obtain a single equation for T, good in both the direct
and retrograde cases:

Tom = Z anp (CI’ SI) eiw:'m" (23)

p=0

Let’s verify this assertion:

e=+1

n
Tnm = ZanP (C,S) ei[(n—2p)(u+h)—uh—mé¢+(n—m)%]
p=0

which does agree with 15.

10
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n
Tom = 32 Famy (56) -l ntassbomstoom]
p=0

- which is, indeed, (18).

Now recall Rpnm, given by (9):

Rum = Lo By (2)" Tam (0,)

This becomes

n+2

a\ntl & . , , . 1
Ram = £2n+2 E (;) Z Frmp (', 8") eie[(n=2p)(g+h")=v k' —embtt(n—m) 3] cie(n=2p)f

p=0

From this expression we extract the short-periodic content and expand the latter in a
Fourier series in the mean anomaly [ with Hansen coefficients X (/3):

o0
a

n+1 . ]
(7)) = 3 XTI () et (25)
g=—00

where

e o
- ﬂ=—————1+ Y (26)

- The e in (26), as well as below, is the eccentricity. Since the base of the natural log
always involves ¢, confusion should not arise.

Also note that the validity of (25) for € = —1 is easily established by taking it to be
the complex conjugate of the ¢ = +1 case.

11
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If we write

oo
an = Z anpq (27)

we obtain
n+2 . ] ] 0 x
Rnmpg = Iljzn+2 EFamp (¢, 8") eie[(n=2p)(g+h')—vh'—embt+(n—m) 3]
" X;—:z;pl-*,’r;—Zp (6) eic(n—2p+q)l
B 'un+2 n ( ] ,) X_n,—l.n—2p 3 W 28)
- W Ef'nmp\C,S ). n—2p+g ( )6 e (-'
where
. T
nmpg = €|(Rn=2p+q) I +(n—2p)(g+h') ~vh' —embt+ (n —m) —2—] (28a)

In preparation for introducing the Poincaré variables, rearranging terms yields

Vhmpg =€ [(n =2+ ) I+ g+ H)—q(g+ k)= vk —embt+(n—m) Z|  (29)

' il

Our Poincaré variables, modified to accommodate all inclinations, are defined by

L N=l+g+h )
£=1/2(L~-G)cos(g+h') n1=-vV2(L~G)sin(g+h") L (30)
o=12(G - H')cosh' T =+2(G - H")sinh' )

12
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Also anticipating further developments, we define the functions

F‘nmp (C’,S’) = —}“—anp (C’, 3’)
(sl)l”l
(32)
e (B) = ﬂ,q, X0 ()

Then, in (28),

amia P (B) ehmee = ()Y Fumy (5 BRI 0T ()

Famp (c'ys") Xn—2piq
eie[(n—2p+q))\' ——q(g+h')-—uh' —embt+(n—m) %]

— "’nmp (cl’ s/) 5(';:1;’)141;—2? (ﬂ) (Sl)lul

* e-—ifuh'ﬂ|q|e—ieq(g+h')

ie[(n—2p+q)A'—emét+(n-—m)§]

vl

~ 2 )
= Lnmp (C,’” )‘Yn "2”+'q’ P (ﬂ) [ Jp—ieh agn V]

* ﬂe—ie(g+h')agn q] lal

ic[(n—2p+q),\'_cméH—(n-m)%] (33)

For the remaining steps, as well as for the computer program algorithm, the following

auxiliary relations will be useful:

2(L-G)=¢€+9? 2(G - H')=0?+r? )
..— 1€2+n . _1—
I—e?=1-3>— G=1 2(€+71)L (34)

13
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o je+nr 1/e+\ g £2 + n? )
VL "Z( L ) 4L - (€2 +n?)

, 0'2+T2
§ =
4L - 2(& +n?) )

Then

1 1eh' 1T —ih'1€8gn VY
setch sgnv _ ¢ [6 :h]

]esgnu

=g [cos h' —isinh'

= s'[cosh' —iesgnvsin h')

_ o2 + 12 o+iesgnuT
“\ViZ—zE@+m | Vi

or

1 _ieh'sgnyv __ 0+(zesgnu)7'

N NOEPICETD

Quite similarly we obtain

ﬂeie(g+h')sgnq — £+ (iesgn Q) 17
VAL — (€ + %)

14

(35)

(36)
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Substituting (36) and (37), we reach teh following form for Rnmp,, free of small
divisors:

'un+2 -
— n (N
anpq - L2n+2 Eanp (C S )

oc+tieTsgnv v ";_n—l,n—~2p(ﬁ)
VAL-2(@ 7)) T

_ gl
. E+iensgng picl(n=2p+q)X +(n—m) 3] ,~imébe (38)
VAL — 2(€2 +1?)

We note that R, (e = ~1) = R,m (¢ = +1) but, because of a shift in the summation
indices p and q, we have R, 0 (€ = —1) # Kompg (€ = +1). To see the effect of the shift,
we return to (28):

N11+2 1 2
—n—1n—
anpq(f = —1) = W %‘anp (S,C) Xn—2p+q p(rB)

* e—i[(n—2p+q)l+(n—2p)(g—h)+uh+mét+(n—m) %]

+2
_ /l'n r=—n-—1,—(n—2p)
Rumncpimg (€= 41) = o R Py (5,6) X057 07 (3)
* Ci[(—-n+2p——q)l+(—n+2p)(y+h)+(n+m——2p)h—mét+(n—m)%]
using (17)

ﬂ"+2 1.n—2

_ n n—m N r—n—1,n-2p

= z—ém E(—l) an]p(é,(‘).\"_2p+q (I?)

* Ci[—(n—'lp«i»q)l—(n—2p)(g——h)—uh--mé!+(n—m)%]

15
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using (=1)""" = e!r—mI7

“n+2

= Trnrs REFams (5,0) Xt (B)

. es[(n—2p+q)l+(n-2p)(g-h)+uh+mét-(n—m);]eiz(n-m);
implies
Rompg(€ = =1) = Rum n-p,—q (€ = +1) (39)
Note that use was made of

Y—n—l,n—-2p _ ~n—1,—(n—-2p)
““n-2p+g T =(n—-2p+9q)

which follows from (25) and its complex conjugate.

SUMMARY OF RESULTS

We recapitulate showing the Hamiltonian framework and the definitions of the vari-
ables that enter R,mpq. The canonical variables are:

L M=Il+g+h )
€ =+2(L—-G)cos(g+h') n=-v2(L~-G)sin(g+ k')
o =+2(G - H')cosh' r=—2(G — H')sinh’ )

oo

(40)

16
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Note that
H' =eH h' = €h
where
+1 for I< 7+
€ =
=1 for I > %+

Once set, € is never changed during a run. The Hamiltonian is

F=F+R (41)

where

Fp=2t (422)

R= Z C"OR"O + Z Z [7uman + '—)’nman] (421))
n=2

n=2m=1

oo

Rim = Z Z anpq

p=0 g=—o0

n+42

. H n pJ [
anpq = WREanp (C v S )

, [v]
o+ (tesgnv)T F-n-tn-2p g

2 2 “tn—2p+q ()
\/4L —2(&% +9?)

£+ (tesgnq)y la

VAL — (€2 +1?)

*

eie[(n—-2p+q),\'+(‘n—m)%]e—iméf (43)

17
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Note that
VAL —2(8% + 12) = 2VG
VAL - (€ +n?) = V2L +G)
~J 1ot 5 (n—r')!(n+r')! b pa,b '
= (— P> AT
Flple) = (1P i A s () PRt (e
where
r=n-—2p 5=%(a'—a)
ad =m-—r 7*'*-1-( +5b
= = 5 a )
B 3 . 0.2 + T2
a=|m-—r| c—\/1—4L——2(£2+7)2)
b=|m+r| ' =2(c")? -1
Compute
Py =1
a, ' 1 ' 1
Pr(a') = 5(p+1)a' + 5(a = b)
where

p=a+b+1

18
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1
2d(d+p—1)(2d+p—-3)

P;’b(a:')= {(2d+p—2)

*[(2d+p=3)(2d+p—1)a' + (a® - bz)]P;;bl (z')

—2(d+a—1)(d+b—1)(2d+P—1)P;’—62(I,)}

Starting with d = 2, continue until d =n —r'.

1+87)" &
Xalapra (A= () <(—J;f?)2l'_ 2 M.Ng

where

§= £+ . e
VAL - (2497 14+ V1=

)

=y (000)5

1
S=J+§Uﬂ+®

o1
t=j+35(al-q)
a=2n-2p+q-—-1

y=2p-q-1

b=(n-2p+q)V1-e?

19
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(47)

(48)
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Alternatively, M, and N, may be computed using Lyddane’s relations:

Starting with

M(0,a;b) =1
b (49)
M(s,s = 1;b) = (=1)° o
compute
My =M(s,a;b)=M(s,a—1;b) - M(s—1,a —1;b) (50)
Ny=N(t,7;b) = M(t, v -b) (51)
The last line means that N is obtained similarly to M, but writing -b for b.
To truncate the summation in (46), let
A; = |M8Nt|132j (52)
Terminate when
A+ Aj1 <mazx (Ag) - Ta, k<, (53)

where 7, is an input.
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EQUATIONS OF MOTION

THE DERIVATION

The basic equations of motion for our canorical Poincaré variables take the well-known
form

. _OF ., OF)
L=3 *=-ar
6_211 '—_6_F_> (54)
~ dn LT ’
. _OF . _ _OF
0_67' = Oo

where F is the Hmailtonian, developed in the previous section. In this section the partial
derivatives indicated in (54) will be derived.

As mentioned before, the central force field and the zonal harmonics

e

2L2 + CnO RnO
2

n=

have already been treated by Lyddane (Reference 2). Hence, we will address here the
tesseral part

AFr = Ry, (<

i
s}

where the subscript 2 designates that all terms are of order two or higher. Following (42b).
we write

Ryp = Z Z ['7manm + 7,”"—]?11111] (96)

n=2m=]

21
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Also from the previous section, namely (43), each individual term in (56) is

anpq = [2n+2 anp

pt? o~ (s [ o+ (tesgnv)T

VAL - 2(82 +7?)
(87)
: lal
N £+ (l €sgn Q) n eie[(n—2p+q),\l+(n—m)%]e—imét
VAL ~ (€2 +1?)
where
2 2
N o+ ’ 5 )
(s) T 4L —2(€2 4 ?) c'=v1_(5)
. (58)
ﬂ _ 62 + 7]2
B 4L —2(&2 +n?) )
Introducing short-hand notation for (57), we write
R=.Fp¥'Xcllp - (59)
where

A= A(L) X =X(L,&n))
F=F(L,n,071) C=CL,Ey) f (60)

B = B(L,&,n,0,7) D =D(\,t) |

Now let y designate any one of our Poincaré variables. Then cventually
OR ROA ROF v 'RaB R8\+I ROC+ROD (61)
dy A 0_1/ F oy X Oy CJdy Doy
22
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Hence, we need the partials of the factors in (60) with respect to their Poincaré

arguments. In above sequence,

n+2 pn
_ W"T"RE
A= [2n+2
which yields
0A A
Next
~ h—r"(n+r") b ab
F=—(- 1 ( ‘ / ab ot
(-1) 27 (n — m)!pl(n — p)! () PoZpe (2)
1
r=n-—2p 525(a'—a) W
ad=m-r r'—l( +b)
= __2a ‘
a=|m-—r| p=a+b+1
b=|m+r| ' =2() -1
2, .2
e __ o' +T ' "2
(S)_4L—2(§2+772) d = 1—(:3)J
Also note

4L - 2(€* +n*) = 4G

23

(61a)

(62)

(63)

(64a)
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We also need

PPy =1 (65)
. 1 1
PP (a") = 5(p+ )2 + 5 (a ~b)

1
2d(d+p—1)(2d+p—-3)

Pyt (a") = {ears-2)

«[(2d+p—3)(2d+ p—1)z' + (a® — b2)] PSP, (2')
—2(d+a—1)(d+b—1)(2d+p—1)P;’_b2($')} (66)

For convenience, let’s temporarily drop a and b from P, the prime from ', s', and
z', and define

(n—r" M (n+r')

= (—1)°
K= 2" (n — m)!p!(n — p)!

Then
F=KcdP,_.(z) (67)
implies
OF dF dc
3 = 4o (68)

24
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where y is any one of our six Poincaré elements. Using (67), first do

dF _ dP,_.(z) dz
2 — Kbeb VP b nor\ 2
de Kbe v (2)+ Ke dz dc
But since
T =2c -1,
dz 4
de = °©
and (69) becomes
dF s_(n—rMn4r) N 4 4,2 4Pn=r'(2)
—_— =(~1 ! -
dc = Y m Tt o [P (@) 4t =

In order to obtain 4£ write (66) in the abbreviated form

Py(x) = ll {a2lasz + as)Pa_i1(z) — a5 P_s(2))

implies

dPy(z) 1

dP,;_ dP;_o(z
L 1 {a2 [a3x + aq) i—1(x) —as d 2(1)} + aza"‘Pd_,(.r)
T ay

dz dz

a,

(69)

(70)
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or

dPy(z) _ 1 )
dz -2d(d+p_1)(2d+p__3){(2d+p 2)
*[(2d+p_3)(2d+p—1)z+(02—62)]@%-{2
—-2(d+a-1)(d+b0-1)(2d+p—1) dec-l-;(x)
(2d+p—1)(2d+p—2)
2d(d+p—-1) Pd—l(x)} (71)
From (65) we derive
dz =0
dPy(z) 1 (72)
1
dx =§(P+1)

Note that (71) has the form of (66), with P replaced by ‘Z—f, plus an additional term.
The recurrence loops for P and % should probably be computed simultaneously.

Now turn to

_i)_c
Oy’

Since we have now introduced s in addition to ¢, in (64), let’s make use of

Oc -120

2 -

26
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The five partial drivatives are found to be

O 88 O _ ¢
0L~ 2¢G 0t 2¢G
e _ o gy
o 4cG dn ~ 2¢G
@ T
or  4cG
The final results for F are:
OF _()f'dF ]
8L — 2¢'G dc'
O (oL
ot 2¢'G dc!
OF _ _ () dF L
o~V Vaougde
oF _ -0 ﬁ
Oo  4c¢'G dc'
Or  4¢G dc' J

(74)

(75)




'~ NSWC TR 89-109

where

OF , 5 (n—r)(n+r) rob—1

ac' (-1) 27 (n — m)!p!(n — p)! [(C) ]

a,b ' 2 dPr‘:,—br' (:l:')
x [0P°, (z')+4(c) ——— (76)
dz

with

Pt (z') defined by (65) and (66),

dPy?, (2')

—ar defined by (71) and (72) .

The next factor is B. With later developments in mind, write it as follows:

o+ (iesgnv)T

T AL-32(E& + 70

o+ (lesgnv)T

2v/G

28
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From (77), we immediately obtain

For the other three, write

Hence

First get

or

and (79) becomes

B = %[a+(iesgnu)T]G_

0B _ 1

9o 2/G
_0_1_'3__ (tesgnv)
o 2/G

98 _ 080G
0y  0G 9y
1o+ (tesgnv)7]
2 2/GG
0B -B
oG 2G
0B _-BoG
dy ~ 2G 9y

29
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Therefore

Let’s turn to

NSWC TR 89-109

6_L_1

oG

€ -

G _ _

377_ 7
9B _ —B)
oL 2G
9B _¢B
ot 2G
9B _nB
61]—26;

‘i; = ‘i; (La €a 7’)

Using (46) through (48), we write

X=E Z M,N,%

j=0

30
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where

e (187"
E_(_l)q (1_ﬂ2)2n—-1
ﬁ—' €
T 14+ V1-¢2
or
/32 €2+n2

T 4L — (& + 1)

1

b=(n-2 1-—
(n—2p+q) I

(€2 + %)

o

=(n-2p+4q)V1-—e?

(84)

(86)
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Writing termporarily

Q=n—-2p+yq,
other useful relations are
=015 =g
Now we proceed to obtain
0X 90X o

ay"aﬂ2ay’ y:L’é.’T]

Starting with (83):

W dﬂZZM Ntﬁz]+Ez(dﬂ2

+ EEM,NU' (8%~

J=0
The derivatives in (89) are as follows. First

dE n 2n -1

Pzl I w s S Gy | B

32

(87)

(88)

(89)

(90)




Next

dM,

dap*

N,
dg?

Since

(91) becomes

dM,

NSWC TR 89-109

=(—1)’i (a‘”)”_”:d_b

_ ! 2
v=1 $ v v. dﬂ

NEY (‘r - w) w(—b)*"1(-1) db

w! dj?

1- 2
b=01 7

db  -2Q

dﬂ2 - (l_ﬂz)'Z

dg? ~

dN,

gz

or, since

2 tt —w\ (=" w
(1:;22)2(_'1) (7 >( e

w=1

o [
+
%

1- 32

(91)
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dM, o -
dp? = ﬁ4( 1)° Z=:< v)v'

dN, =2 . : v —w\ (=b)"
clﬁ2_1_ﬁ4( 1) l(t—w) —w

&

Substitution of (90) and (93) into (89) yields

d)"('_ n 2n —1 lal (1+ﬂ2 oo
dg? [(1+ﬂ2) * 1—52] (-D" (—WZM SN, 5%

q 1+[H2 oo B
+(_1)|(( ’8227112[ ﬂ4( 1 (s—v)Fth

j=0
gm0 2 (120 S }621
H_l)'ql(—(liﬂf)—"’"_leN’ﬂ% - (94)

Let now

(Mv) = (-1)° 8 (a—v)b_‘:v \
‘g \s—v/ v }
(95)
PPN t y—w ( b)w ’
(Nw) = (-1) 2 <t-—w> o w J
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Then
33% -l S 2“””'% g, )
+ (Mv)N¢ | 8Y +(-1)1¢ (—l(i_%%%_—l ,Z: M,NG32™°2 (96)
Next we differentiate
P £2 4 p?
’ 4L - &2 -2

with respect to L. €. and 5. It will be useful to note that

(2 +n?) =2(L-G)

AL - (& +n?) =2(L+G)

Then

3%  2(G-1L)\
(

oL L+G)?

03?2 2¢ L -
96 (L+G)? (97)
0.3* 2nL

M T(L+G)}
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Using (88) and (97), we finally obtain

X _2(G-L)dX )
0L ~ (L+G)? 9p?

96~ (L+G)ope

Qg 2¢L 0X $

oX 2nL 0X

9y (L+G)?ap? )

with 9X /908? given by (96).

An alternative path to obtain the partials given in (98) uses the recurrence relations

proposed by Lyddane. Instead of (84), which uses potentially troublesome binomial coef-
ficients, we write

My=M@G,a;0)=M(s,a-1;b)-—M(s—-1,a-1;b)

(99)
Ny=N(t, v b)= M(t, v; ~b)
The recurrence (99) uses the starting values
M, a;b)=1
(100)

M(s,s—1;b) =(-1)" =

Equations (99) state that N, may be obtained using the algorithm for A, by substituting
t and v for s and a and by writing —b in place of +b.
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Dropping a few subscripts, we copy from Lyddane

dM
E——M(s—l,a—l,b)
dN
— =+M(t-1,v-1; -b
o5 = TM( g )

implies

dM  dM db +2Q
= = —-1,a—-1;0
@A gy bl

dN -2Q

= = ML=ty (101)

We now return to (89) and substitute (90) and (101):

dX'_ n 2n-117¢ la| (1+ﬂ2)n_2 X . .
a5 = (1+52)+(1—ﬂ2>]x+2(_1)q(”'QP"LQ)(T—??F‘—‘T;[M(S_I’WLM

* M(t,v; =b) = M (s, a; b)M (¢t — 1, v — 1; —b)} B

2 [e’s)
+(—1)'”'(1(1_’;on Z (s, ; b) M (t, 7; —b) (j B2 (102)

This equation takes the place of (96) in (98).

The fifth factor in the disturbing function is

C - £+ (tesgng)n (103)

VAL — (€2 + n?)
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where

AL — (2 +n*) =2(L +G)

The three partial derivatives of C become

oc  -C )

8L~ (L+G)

¢ _ 1 s tC (104)
% AL+ G)|  V2AL+G) (

8—C=———————1 r(z’es n )—{——————-nc

o Lr+o | YT AL e )

Finally, with (57) and (60),

D = ei c[(n—2p+q)/\'+(n-—m)§]e—i mét

SI—D—zie(rt—?p-}-q)l) (105)
dX\

SUMMARY OF RESULTS

Throughout this section, the abbreviation R was used for the individual term R
As in (59), we write

nmpgq-

R=AFB" Xl D (106)
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where
n+42 pn
PR \
- _ 6 (n—r')!(n—{—r')! ! a,b N __
F=(-1) 5 (n = m)pl (1 — p)! (c) P, ('y=F(L, €& n,0,7)
o+ (iesgnv)T
= =B(L,&n,0,7T
NaEPCETD (I &m0 )
X = (- IQI_____(]' +B2____)n S 2j = X
X = (1" gy J;Mszvtﬁ X(L, &)
£+ (tesgnq)n
= =C(L, ¢ n)
V4L — (82 +7?) (
D = et l(n=2p+)N+(n-m)§] —im bt = D))

\ (107)

From (61) and (107) it follows that the final partials of R with respect to the Poincaré

variables are

_a_zg_gcg+RaF WELL N R OX REL ]
L ~ AdL ' FoL BaL ' x oL ' “'caL

OR _ RO&X HRaB RA8X HRac

o F O¢ Bot T¥ae TMCa

dR _ .RaF HR@B zzax I|Rac

an n an C o

7 Fon X on ! L (108)
OR _ ROF HRaB

do Fa

OR _ RoF .\ ROB

or F or B or

OR _ RdD
N Dd)\')
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From the preceding pages, we find

where

and

RdA

2
Vi 2n+)
ROF _R (s dF
FOL F2¢Gdc
ROF R 6)(3)2dF
f’@f_f( 2¢ G dc!
ROF _R () dF |
For  FU V%G
Eaf_R—aﬁ
FOoc F4cdGdc
ROF R —r dF
FOr f‘4chc J

OF _ s _(n—rin+r)
ac' (=1) 27 (n — m)!pl(n - p)! ("]
a,b i ' zdpr‘:br'(")
an r ( )+4(C) ——d‘,—'

P:'_br, (z") obtained with (65) and (66),

n—r'

dPab ( ,I) ' ‘ ] )
— obtained with (71) and (72).

40
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» iRBB
B or

90~ 2JGB

— vl

2G

v|€R
2G

=)

=y

lvln $
2G

lv| R

lv|(iesgnv)R

2V/GB )

Test if [v| = 0. If yes, put all (112) to zero and skip (118b).

R2G -L)dX)

X (L +G)? dp?

R 26 dX L

ROX _
X 0L
gaf
X o
ROX
Xon
where
dX _ n 2n -1 ] 7
dp? (1 +-32) (1-7?)
1 o\ T 0o
+ (__1)"” ( +2’[322l—]
(1 - ﬂ ) 1=1

T X(I+G)rdr

R 2L dX
X (L+G)?dp? )

1+ﬂ2nloo

)'q| WW,EHM (Nw)

> M,N, [j 7]

with M, Ny, (Mv), and (Nw) given by (84) and (95), or where

41
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~

dX n 2n—-11] & PNTY (1 +ﬂ2)n—2
ap7 = [(1 T T a- B"’)] X200 gy
* ilM(s —1,a = L;b)M(t,y; =b) — M(s,a;B)M(t — 1,7 — 1; —b)) %
j=0
1+88)" & .
+(_1)Iq| (T(%TZM(S,QJ’)M(@’Y; —b) [jﬁ2’-2] (115)
1=1
with all M defined by (99) and (100).
' |E_a_c_ — _lqu )
oL " T+6)
|q|53(’=§__i1|__ -1+__§_C__ &
Co C\2L+G)| 2L+0) (116)
QB R ld s s -6
Con~ C2AL+G) | V2AL+G)|)

If |¢| = 0, put all (116) to zero and skip (118d).

R dD

53721'6(71—2[)‘*‘(])}2 (117)

All ingredients required in the preceding pages are defined within this document; they
will be compiled again in the final algorithm.

Expressions such as R/ F are convenient short-hand notation. Since they involve
potential zero divisors, they should be computed as follows:
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§=:ABMXCMD

F

R ~ ~

& AFBYI'X Y D
3 AFD C

T _ sFpwiclip

X

R ~ ~

— = AFBWIXcld-tD
. C

(118a)
skip if |v| = 0 (118b)
(118¢)
skip if |q| = 0 (118d)

With the aid of (108), we can now compute the six partial derivatives which we will

label
R
(?_) , y=L & o, N,y T (119)
ay nmpyq
Compute
03) ﬁi = (OR)
( ay nn p=0q=—0c 011 nmpyq
0 - ,
— AN Fyr = Z Z ['7,,,,, <O—R) + complex conjugate| . y=L.... (121)
ay n=2m=1t 0(/ nm
Finally,
. ONFEyp . ONF,p
B 3¢ A==t All = —
Ly o 21 3L
é OAFQ']' . OAFQ']‘
ap = Nop = — ——————
21 an 121 o€
AFyp AF,r
gy = 00y, Tor = —0—‘*”— (122)
or do
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Combine (122) with Lyddane’s equation of motion. The later may be found in Refer-
ence 2, page A-26, Fortran lines 0648 to 0653.

THE ANALYTIC SOLUTION

PERTURBATIONS IN DELAUNAY VARIABLES

Each Delaunay variable can be written in the form

L=1Lo+ 6L (123)

where 6L is the perturbation due to the tesseral field. The Hamiltonian is, for one term
in n, m, p, q,

(124)

For brevity, the subscript n, m, p, ¢ will be dropped for now. The familiar canonical
equations of motion are

G =F, g=-Fg (125)
H,=Fh/ il'= —FH'

We take the time-derivative of (123), apply (125), and substitute (124). Since Lo =0,
it follows that
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§L = (YRi+7R;) )

§G = (vR, +7R,) |

5H' = (“/Rhl + 7ﬁh') )

However, for ! we find

| =iy + 6l
= —Fy, — (vRL +7RL)

= — [(FOL)LO + FOLL(SL] — (7RL +;7RL)

lo=~(FoL)y,

there follows

. — ,u2 )
ol = — (’)’RL +-’7R1) - BF(SL
6g = - (YRg + -’)71—26) $

8h' = — (vRu +5Ru) J

The disturbing function may be written in the form

R=C(L.G H)ev o)

45
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so that

Ri = iy|R

Substitution into (126) yields

6L =i} (YR — 7R)

which integrates to

_ 17R+7ﬁ )
5L—¢zT
66 =y, XBTTR

,l/)l
5H'=¢L,M
P

(128a)

(129)

For reasons to be seen later, these equatins will be put into a different form. Because

of (128a), we write

— i
R+7R=—"
Y Y b1

(YRi - R1)

and similar equations for g and h'. Then (129) becomes

§L = ;—’ (yR, ~ ¥R))

> (130)
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In order to solve (127), substitute the first of (129) for 6L:

. R+7R
6 = ~ (yRy +7Rz) - 357 11)'7 7 !
This integrates to
R 37 3
s1— 2 YRL _3 ¢17R R
1! i(1')?
bg = 1R —7Rs L (131)
)’
6hl — YRHI _: 7RH’
1! )
Above equations require 3; and ' . Write (28a) in the form
' ’ T
=5[Ql+(n—2p)g+mh —em9t+(n—m);] (132)
There follows
P = €Q (133)
and
P =€ Q(n0+i2)+(n—2p)gg+mil'2—emé (134)
where

Q=n-2p+q.
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Upon substitution of (133) into (131), the tesseral perturbations in Delaunay variables

become

6L = ;;i (R - 7R))
6G = ;—f (YR, —7R,)

§H' = ;—: (‘7Rhf - W-Rh')

i = o2 €Q
6l = J (7RL - 'yRL) + 131-‘-‘-(1/;1)2

59 = J (YRg - 7R¢)

6’1, = j (‘)’RH' - TEH’)

PERTURBATIONS IN POINCARE VARIABLES

(YR - 7R)

4 (135)

Expressing the tesseral perturbations in terms of Poincaré variables follows a sugges-

tion by Cohen.

Let

X=(L,G,H 1 g )

and

Y=(L¢&o N g 1)

48
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Then (135) may be written as

M) (136)
X

X=X°+U<

W

_(O0s Iy
v=(% o)

Upon making the canonical transformation to Poincaré variables, we obtain

Y (X)=Y (X° + YXTU(”Z—_TV—R>
1! ¥

- YO + Y,\’TUY'{C(’YE (y) — 7]~2(Y))
Y

W (V)

=Y +U<7——R:7R> (137)
i'{l” !

-~

where the temporary tilde emphasizes that R and ' are now functions of the Poincaré
elements.

Note that

$(X) = g (V) (138)

49
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and

1

(M) =2 Im("/ﬁy) , (139)
Y

namely twice the iinaginary part of '7fiy. Substitution of (139) into (137) yields the final
CXPressions

2
AL = E; Im(yRy)

9
A€ = j—, Im(vR,)

9
No = j Im(vR;)

(140)
-2 6eQ p’
AN = — Im(YRL) — —— = Im(yR)
¥ (pr): Lt
~2
Ay = — Im(yR¢)
P!
-2
At = —/— Im(yR,)
! )

where ' is obtained by evaluation of (134). The various partial derivatives of the dis-
turbing function R may be calculated from (108).

PARTIAL DERIVATIVES OF PSI DOT

The prime used in the derivations above flagged those variables which were “modified”
Poincaré clements or functions thereof. This priane will be dropped temporarily so that it
may be available for a different purpose.
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As seen in the last section, we may write

AP:U[M] , (141)
P
were now
PT =(L,& 0, A\ n, 7).
Equation (141) yields
2 2 :
AP=U -1!: Im(yRp) - E Im(yR)yp (142)

When the first term in (142) was developed, the assumption was made that the second
term is negligible. This premise proved erroneous. The missing terms will now be derived,
following Cohen’s approach.

Let us write (134) in the form
¥ = 4%+ O,

where

0 = eQngy — mé

and

Ay = —Fy 11, (143)

o1
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(5) )

4 2 2

Here

4I3G3 G?

and

¢=6[Ql+(Q—q)g+em(h—9)+(n—m)§

<

In preparation for subsequent steps, we make a canonical transformation to the vari-
ables

and obtain

F’—H4C’20R%[ L ]3 s(L-(L-G)-(G-eH) 2 .
Y7 4Ls |L-(L-G) ( L—(L-G) )—

P =¢ [Q/\ +q(—g —€h)+ (n —m —2p)(—€h) — emb + (n — m) Z;—}

—

AW = _EQFJI,L - quJ',L—-G - GVFII,G——fH (144)

where

v=n-—m-—2p.

[y ]
o
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The leading part of t/) pis

: 3
1/)(1)9 = eQno,p = —‘EanoéL,P,

~vhere 6 is the Kronecker delta. For Azﬁp, we use

1 0 0 0 O
=;I,I,T 0 £ 0 0 7
0 0 0 00
For the sake of readability, we abbreviate
L-G=a
G-eH=p
Then
' iy _ L—a-p
F,=KL™*(L - a) 3[3( Y
where

.1
K = ZM4C20R25

53

(145)
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Then the required partial derivatives become

A‘P.(L,/\) = —(1,0)¢ (QFllL,L + qFllL,oz + VFIIL,ﬂ) |

D == (€ e (QFiLa+aFlan+ vFias) ¢ (146)

Agry =—(0,T)e (QFllL,ﬂ +¢Fiap5 + VFllﬂ,ﬂ) )

After several pages of algebra, the six partials in (146) may be written

-11\_—,F1'L,L =607 (L) 2(2L ~ @) ~ L(L - o) [3 (%) _ 1]
~6L™*(L—a) " B[3(5L —2a)(L —a — B) = L(L — a)) (147a)
%F{L,u = ~3L~*(L - a)"® (7L - 3a) [3 (L—;—‘ji—ﬂ-y - 1}

+6L7*(L-a) " BBAL—a)(L—a—B)—L(L—a)]  (147b)

1 ,
e = 18L™*(L—a) ° (2L - a)(L —a - B)

+6L3(L-a) % (L-a-28) (147¢)

1 ! _ - L—Oz—-/3 2
— =12L7%(L — 5 R R
= Fla=12L7* (L - a) {3( — ) 1]

—6L%(L-a) %8 [9 (L—‘—“"—"-> - 1] (147d)

o4
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1 _ -3 s({L-a-p
i Filop=—-18L7° (L - a) ( A )
— 6L (L —a)" (L -a-28) (147¢)
1 ! -3 -5 ~

where I, a, and B were defined earlier. However, & and 8 may also be computed from

1 .
o = .—)- (62 + 772)
(148)
1
p=5("+ 7?)
With the abbreviations
! ! ! ‘
Dy =c¢ (QFIL,L + qFlL,a + VFIL,/i)
02 =€ (QF;I,,O + qF;o.o + I/Flln./i) ¢ (149)
Dy =e (QF1 L3t (IF;o,u + VFnl,s‘ﬂ) )
cquations (146) become
Ay, = ~D, Ay =0 )
Aje = —EDy gy =-nDy (150)

Ny = —aDy Aty = —1Dy

with all members known.

(@1
(1]
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Finally, we define

FAC =

A

FAC - Im(7R)
¥

FAD =

and write the increment to Equations (135) in vector form:

(n\ ( A":’f\
§ — LYy
T A d),
DP =FAD i
o — A by

\i/ Yy

RESONANCE

CLASSIFICATION BY PERIOD

Equation (28a) may be written as

Y=(n-2p+q)l+(n—2p)(g+ h)—vh~ emft + (n — m)

if we disregard e and subscripts for the time being.

Reintroducing the abbreviations

Q=n—‘2p+q}
r=n-2p

56

o A

(151)
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the time derivative of (123) becomes

1/} = Q(no + 12) —mé + rgs + miz2 (154)

where the quantities o, g2, and h, are the first-order secular rates of these elements, due
to Jo = —Cyo. Formulae for the rates are found throughout the pertinent literature as,
for example, in Brouwer’s (Reference 5) celebrated 1959 paper:

i2=%C(1—30052[) \/l—eﬂ

1
gy = 3C (1—5cos2 I) ( (155)
hy, = Ccos I )
where
C= —-1.5J2R% ﬁ
) (1 — 62)2 L7

Equation (154) is used to examine the frequency of each possible combination m, Q. r.
While the period of i is short for most terms, it may become large for some values of
@ and m. When the period is long , the associated perturbations become large. and the
term may be labeled resonant. To be more specific, a term is

C e 6 .
short-periodic if — <|¥|
TS
. . o . . .
in shallow resonance if — << — ¢ (156)
™D TS
in deep resonance if |1,"'| < —
D J
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Theoretical considerations suggest that rp = 15 days and 75 = 0.5 days are reason-
able initial trial values. However, these two quantities are inputs to the program, to be
set according to the application at hand. Since the inequalities (156) are a bit hard to
visualize, the following should help clarify the procedure: if the critical period T

15¢ <T,, the term is integrated numerically,
0.5¢ <T; < 159, the term is evaluated analytically,
¥ y y
T,/-, < 0.5d, the term is ignored, except for a

few cases of low degree and order.

Since m = 1 will only be of interest in dealing with geostationary orbits, we will
consider all m from 2 to nm,e;. For each such m and each 7 in (=7 mar, "mar), Obtain
the resonant indices @ as follows.

Let
m (8- i12 — 74
A Gl
ng + Iy
so that
Q=a+ 4 .
ng + Iz
Also, let
6
ng + iz

o8
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Consider now Figure 2.

B 8
a—-r% o — = «a a+€ a+ =

| 1 1 | ! Q

Figure 2. Resonance Conditions for @

If there-is an integer @ in the interval a — B/7p to a + B/Tp, we are dealing
with deep resonance. If there are any other integers Q in (a — 8/7s,a — 3/7p) or in
(a + B/7p,a + B/7s), they lead to shallow resonance.

Assuming, once again, that 7¢ = 0.5, the spread in possible Qs is 43. If 48 < 1,
there can be, at most, one . This situation may occur for orbits with periods of less
than six hours. If 1 <48 < 2, there can be, at most, two @s. Such conditions may arise
for orbits with periods from six to 12 hours.

We have now identified all resonant terms with indices m, @, r. Since the algorithm
operates in n, m, p, g-space, proceed as follows:

n assumes all values from nin to Nmer . All

m have been identified; they must also obey m < n.
p = (n—-r)/2, but only if n —r is even, and

q9 =Q-r.

The computer will write two files. One will contain all n, m, p, ¢ combinations iden-
tified as shallow resonance, the other all those that are in deep resonance.

THE AMPLITUDE TEST

Although any given term may have a period T} large enough to classify it as resonant.
its amplitutde can still render it insignificant. Since a first-order theory neglects second
order perturbation by design, it serves no purpose to carry terms of order two and smaller.
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Cohen developed a test in which the estimated amplitude in the mean anomaly (or
longitude) is compared to a tolerance of order two. Considering Equations (135) or (140),
he approximates the amplitude as

~

Ampl ‘ (‘“ﬁ‘.}()
Cny /g

7A 3Qn0 2n+2 = v Enl
CNl/} (( Lt/.) -7 )FX—*—SLFS‘X +ﬂLFX3>l (157)

where the disturbing function R is defined in (106) and (107), and where Cn is the
normalization coefficient

o = [(R=m)l 20 + 1) (2= 6om) 3
M= (n +m)!

A is defined in (61a), F is the normalized inclination function

F = C Ns'”'l?1

with the latter given by (44). Moreover, X is the classical Hansen coefficient
X = 5Iql j{',

where

€

= —————
; 14+ V1 —¢e2

and X defined by (46). The two products of partial derivatives in (157) are found to be

SL?_, =

-9 lv| . 2 JF
2CnNs [M 2 dF (158)

4L — (€% + n?) ¢ de
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and

—24l4l

X + 282

BrLXg =

(159)

dX
dj?

The two derivatives dF /dc and dX /dB® have been defined by (76) and (96), with
(102) as an alternative.

If the amplitude (157) for any given term in n, m, p, ¢ exceeds the tolerance

tol = [.2.(_J_) (EeY

it is retained as a resonant perturbation and calculated in accord with its classification. If
not, the term is dropped.

; (160)
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APPENDIX A

THE FUNCTIONS F and X

A-1




NSWC TR 89-109

The literature on orbital mechanics contains a vast collection of differenct expressions
for the inclination function and the Hansen coefficient. Some of the classical forms of these
functions are presented in terms of summations over products of binomial coefficients.
Such expressions are often numerically unstable, and many significant figures are lost
when calculations are made for large values of n and m, the degree and order of a tesseral
term.

In order to overcome this difficulty, and to reduce execution time, a variety of re-
currence relations have been developed and published. Cohen and Lyddane perused the
literature and eventually developed serveral methods suitable for our requirements. Given
below are the presently operational versions of F' and X . Although Lyddane has derived.
algorithms more elegant than our current X, we will defer publication until numerical
tests are complete.

THE INCLINATION FUNCTION F

The current elegant foim is due to Cohen who credits McClain (Reference 6), DiDo-
nato, and Lyddane with the inspiration. Copying Equation (44),

PN AY !
s (n—r")(n+r) () Pt () (161)

fj ’,x“’ = _1 - "]
(¢ =(=1) 2% (n — m)pl(n — p)! ner

nmp

. . b . .
The Jacobi polynomials P;”,, are calculated from the recurrence relation (45). begin-

1 o vb M .b b . .
ning with P} as function of Py"” and P;'”. Rather than derive (161). we will demonstrate
that this expression always reduces to a well-known form of the inclination function. Recall
that

1
r=n-—2p 0= —(a — a)
2
/ p_ 1
a=m-r = —(a+b)
2
_ . /_9‘/2__
a=|m-r| r=2c) =1
1

h=|m+r| =1
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The Joacobi polynomial is defined by

e nr p_ifn=r'+a\ n-r"+Db e —i :
Pnfr(zl) = Z("l)n J( j ) (n = j>(51)2( ])(Cl)21

=0
Now let
j=n—=(m—-r+b)—k
then
ky =k(j =0)==(2n+v —|2m + v|)

since

v=n-m-—2p,
and ]

b= k(G =n =) = 5+ )

Then

Pt =§:(—1)%(m—r-a)+k( n+3(a—b) )( n—gla—b) \

& N\jm—r+a)+k/\5(m—r—a)+k
=M1

* (Sl)2(k—k1)(CI)2n+u—b—2k

Substituting this in F)

nmpo

k 1
~ 1 (n—=r"Mn+r) < n+ ;(a—0) )
F.] /I’ll — -1 k 2
amp(€5 ) 2%(n—m)!  pl(n—p)! k=zkl( ) sm—r+a)+k

1
n—z(a—> S . 2k
N ( 2‘( ) '>(Sl)z(k—kl)<cl)2n+u—2k

Let C/ be the coefficient of (s')2(k—k) (¢ y2n+v-2k

nmpk

A-4
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We will substitute for a, b in terms of m, r in three cases:

(1) » > m. Then

a=r—m, b=r+m, %(a+b)=r, ~(a—b)=-m

(-1)f  (n=r)(n+r)! (n —m)l(n +m)!
2r(n—m)!  pln—p)} kln—-—m-k)}m-r+k)(n+r-k)

-G (1) 2l

(2) m2r > —m. Then

J —
Cnmpk -

1
a=m-—r, b=m+r, §(a+b)=m, %(a—b)z—r

o =g et) (1)

- ) ()

(8) —m > r. Then

1
a=m-r, b=—m—r, §(a+b)=—1‘, §(a—b)=7n

ol - (-1 (n+r)(n~-r) (n+ m)(n'—m)!
nmpk = on(n—m)l pln—p)! (m—r+k)Nn+r—k)ki(n-m-k)

- (;,):((::LS!)! (n : r) (n f;r- k)

A-5
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In all three cases, C,] . has the same form in m,r. Replacing r by n — 2p, we find

nmp

Fima() _2'fn';m)p)'z( ()

k=k,
* ( 2P )(s )2(k Ll)(c )2n+u -2k (162)

n—m-=£k

where
b = 1
1= 5(” + |v])

1
ky = -2—(2n+u-— [2m + v|)

With the aid of Equation (32), (162) is seen to match Equation (12). Q.E.D.

THE HANSEN COEFFICIENT X

This function is defined by Equation (46). Its principal components,
2 fa—v\b
M, =(-1)° — 163
( )Z(s—v)v! (163)
—w ( b w
Ne = (-1)f Z (f_w) —~ (164)

w=0

are nuinerically unattractive. Lyddane proposed to calculate these quantities by the com-
pact recurrence relations shown in Equations (49) through (51).

A-6
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To derive Lyddane’s expressions, first define the function

M(s,a:b) = (=1)* ) (‘::;’)b—, (165)

v=0

Substitute the relation
()= ("2 )+ (20)
= +
m m m-—1
which yields

wean =03 (710 (2100 S

v=0

S VRPN ERTE) Sl (L
v=0

vl
= M(s,a—1;b) — M(s—1,a —1;b)

which is, indeed, Equation (50). Since N, is identical in form to M, except for the signum

of b, we may write

Ny = M(t,~; -b).

In other words, the relations developed for M can be used to evaluate N by simply

replacing b by —b.

A-7
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In the derivation of the equations of motion, derivatives of the disturbing function are
formed which, in due course, require differentiation of M, and N,. With the aid of (165),

we write
d s o= v\ vb'?
= M(s,58) = (~1) 2:,(_) :
s ~fa—-v\ b}
== vz::l(s-v)(v—l)!
2 fa—v—1\b
=—(=1) ;(.s—v—l)v_!
or

d
%-M(s,a,b) =-M(s—1l,a—-1;b)

In a similar fashion we obtain

d
ZI-I;N(t,'y,b) =M(t-1,v-1;-b)

(166)

(167)

The derivatives (166) and (167) are subsequently used in Equation (102), namely the

formula for dX /dB?.

A-8
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