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Preface

This thesis devlops the application of kriging in the statistical analysis of

anthropometric data to support improvements in the design of flight equipment.

As a result of this research, engineers now have the statistical data to support the

design of flight apparatus which accounts for the shape of facial features and the

variances between individuals. The benefits of this study will include the enhanced

flight performance of crew members realized from the improved comfortability and

functional precision of newly designed flight apparatus and the reduction in custom

fittings of currently used equipment which do not accurately account for shape or

variability. In addition to the cost savings and increased mission capability, this

research may potentially benefit developers of medical equipment such as operating

room oxygen masks and prosthetic devices.

Special recognition is given to my advisor, Major David G. Robinson, who

conceived and developed the idea of adapting the estimation technique of kriging

from the field of geostatistics and applying it to the field of anthropometry. In

addition to his insights, I offer my personal thanks for his guidance and assistance

in completing this research effort.

I would also like to thank the other members of my committee, Major Kenneth

W. Bauer and Lt Col James N. Robinson. As co-advisor, Major Bauer provided

invaluable guidance and support, particularly in the multivariate analysis. Lt Col

Robinson helped immensely in the learning of IDL and offered his support throughout

the research efort.

This study was sponsored by the Human Engineering Division of the Harry

G. Armstrong Aerospace Medical Research Laboratory. I would like to thank the

laboratory and the contractor personnel who assisted in this effort. In particular, I

wish to thank Kathleen Robinette(AAMRL/HEG) for enlightening me on the field
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of anthropometrics and the challenges of designing flight equipment to the shape and

variability of human faces. Also, I would like to thank Greg Zehner(AAMRL/HEG),

Joyce C. Robinson(Scientific Research Laboratories) and Bob Beecher(Beecher As-

sociates) for their help with the data collection and manipulation.

Most of all, I thank my wife, Audrey, and sons, Christopher and Matthew,

for their support, patience, and understanding throughout the course of this effort.

They are my inspiration.

Michael Grant
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Abstract

Quality flight equipment is essential to flight crew safety and performance.

Oxygen masks, night-vision goggles, and other apparatus must fit crew members

comfortably and with complete functional precision. A problem cr.rrently facing the

Air Force is the inconsistent quality of flight equipment. As new "quipment is devel-

oped to improve crew members' performance, the requireme,,t for design engineers

to accurately account for the shape and variability of facial features becomes more

critical.

This thesis develops the application of kriging in the statistical analysis of

anthropometric data to support improvements in the design of flight equipment.

Specifically, the geostatistical estimation technique of kriging is used to estimate the

facial surfaces which influence the designs of flight apparatus. These surfaces account

for the shape of the facial features and minimize the variance between individuals.

A Kalman filter is developed to update and aggregate the kriged surfaces. As a

proof of concept study, the techniques are demontrated using data to support the

design of the night-vision goggles currently under development. Tob further enhance

the surface estimates, a multivariate analysis is performed to idertify the parameters

which account for the majority of the variability between faces and to group the faces

into homogenous clusters.
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THE APPLICATION OF KRIGING IN THE STATISTICAL

ANALYSIS OF ANTHROPOMETRIC DATA

L Introduction

This research effort develops the application of kriging to the statistical analy-

sis of anthropometric data in support of improvements in the design of flight equip.-

ment. Kriging is a geostatistical estimation procedure named after D.G. Krige, a

South African mining engineer. This study was sponsored by the Human Engineer-

ing Division of the Harry G. Armstrong Aerospace Medical Research Laboratory

(AAMRL). This first chapter provides the background, the research objectives, and

the scope of the study.

Bac;,ground

Quality flight equipment is essential to flight crew safety and performance.

Oxygen masks, night-vision goggles, helmets, and other apparatus mu3t fit crew

members comfortably and with complete functional precision. A problem currently

facing the Air Force is the inconsistent quality of flight equipment. The poor fit

of existing oxygen masks and the requirement that the new night-vision goggles be

designed such that one size will fit the entire population of crew members are only

two examples which illustrate the need for improvements in flight equipment designs.

According to Kathleen Robinette, a research physical anthropologist in the

Workload and Ergonometrics Branch at AAMRL, an estimated 30 to 40 oxygen

masks per month must be custom fitted for crew members because the current mask,

designated MBU 12/P, is not suited to the variability of facial features among indi-

viduals (20). More specifically, the shape of the mask is not adequately specified and
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this results in the passing of air through the contact surfaces and into the eyes of the

crew members, movement of the mask on the face during high G maneuvers, and a

general dissatisfaction with comfort. To further complicate the problem, the custom

constructioas can only support the fitting ef a previous mask design, the MBU 5/P,

which does not function as well as the MBU 12/P in a high G environment (20).

The problem of designing flight equipment to account for the shape of hu-

man facial features continues as new systems are being developed. The Eagle Eye

night-vision goggles are being developed by the Night Vision Corporation on the

supposition that one size will fit all crew members. To ensure proper fit, the de-

signeis will need to consider the shape in the area of the eyes and nose as well

as the length and width of the facial region. As more sophisticated systems are

being developed, the need for more precise sizing procedures increases. One such

system is the High Altitude Low Pressure System (HALPS). This system consists

of a complete flight ensemble which includes an oxygen mask for forcing oxygen

into the crew member's respiratory system to improve performance in high G ma-

neuvers. Traditionally, caliper measurements are used in the sizing procedures and

these measurements do not accurately account for the spatial variation of the objects

under study (20). To improve the quality of flight equipment, alternative statistical

methods for representing anthropometric data must be considered.

D _ -A., -ln.c 'A A A 1,40DT 1--., -_ -...n~~A4 I)- Ap-t,ýInr+,,n -F f-~.n~,0 (

measuring three dimensional surfaces using lasers. The new measurement technique

provides contour points which can be analyzed to provide designers with information

on facial regions. The laser scans are made using a 4020/PS Echo Digitizer (man-

ufactured by Cyberware Inc.) which measures the distance from the surface being

scanned to a point, on the arm which holds the laser as the arm rotates around the

subject. As a result of this new method, distances between points can be calculated

without using calipers and more information on the shape of the facial surface is

available.
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Having solved the problem of data ,ollection, researchers are now concerned

with how to analyze the data to provide the engineers with properly specified design

requirements. The goal is to find a representative surface of a particular facial region

which will account for the shape of the region and the variablity of the facial features

between individuals. If the data can be represented in this manner, the design

engineers will be able to develop flight equipment which will fit more comfortably

and with better functional precision.

Research Objectives

The purpose of this research effort was to statistically analyze anthropometr.,:

data to support improvements in the design of flight equipment. The goal was to

develop a procedure for estimating the surface region in the area where the flight

apparatus is worn which would minimize the variability between individuals and

account for the shape of the region. The resulting estimates would be used by design

engineers in the development of new flight equipment. Specifically, the following

objectives were established.

Procedure Development. The first objective was to develop a viable kriging

procedure for estimating the facial surfaces. Analogies between facial and geological

surfaces merited an investigation into determining the feasibility of applying the

geostatistical estimation technique of kriging in the estimation of anthropometric

surfaces. The development of this procedure was based on the theory of kriging from

the field of geostatistics and was adapted to the peculiarites of the anthropometric

data.

Aggregation of Individual Estimates. The second objective of this study was

to develop a recursive model for aggregating and updating the individual surface

estimates. The recursive model was required to facilitate the revision of the surface

estimates and to minimize the amount of data required to update the estimates as
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more data became available.

Facial Surface Estimation. A third objective was to apply the kriging proce-

dure to estimate the facial region affected by the contact surfaces of the night-vision

goggles currently under design. As a proof of concept study, this application demon-

strated the feasibility of the technique and provides the foundation for further study

in this area. The kriging procedure developed in this research effort was not unique

to the estimation of the surface region for the night-vision goggles and could be

applied to other anthrnpometric surfaces.

Facial Classification. A final objective of the study wes to determine if the

faces could be grouped according to specific parameters prior to kriging and updat-

ing. The hypothesis was that these groups would correspond to potertial sizes for

the flight apparatus and that the surface estimates would be ircy,:.jved further if

the sizes were estimated independently. Bccausc only one size was planned for th'E

night-vision goggles, this analysis was performed independent of the goggle;. study.

However, the primary focus of this research was in the statistical analysis of an-

thropometric data and the estimation of surface regions which would minimize the

variablity between facial features. Therefore, the potential for clustering faces based

on minimal dimensionality was explored.

Scope

This thesis develops and demonstrates the application of kriging in tl-,c analysis

of anthropometric data. Specifically, this study includes a discussion of tLe theo-

retical development of kriging, the computer programs necessary for the apIicatioi.ý.

of the techniques, the documentation of the night-vision goggles application, and 3

multivariate analysis of facial dimensions to determine potential subgroupirv,. :ti.f:

subjects. The following provides a summary of the extent of this resez,rci e-frt.
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Theory of Kriging. The literature review provides an introduction to the the-

ory and the development of kriging from the field of geostatistics. Emphasis is placed

on the the fundamental kriging equations and structural analysis of the data.

Data Collection and Orientation. A description of the data collection, manipu-

lation, and orientation processses are provided. Additionally, the computer programs

used in reformatting the data, graphically displaying the data, and aligning the facial

regions for each subject on a common coordinate system are provided.

Procedural Development. A complete development of the kriging procedure is

outlined in the Chapter III.

Kriging Programs. This document includes a complete package of the pro-

grams required in the kriging of anthropometric data. Specifically, the following

programs are included.

Experimental Variogram Program. Tbhs program determines the experimental

variogiams for each subject. Thr- program is written in FORTRAN.

Least Squares Variogram Estimation Program. This program is written in

FORTRAN and determines the least squares parameters for three of the more com-

monly used variogram models: the linear, the De Wijsian, and the spherical models.

,,u,,, i w&i' .. i111S pioUa4rn esbiina~es the values of the facial surface

throughoit the range of design points and provides the kriging variances for these

points. The program is written in C.

Recursive Model. The development of a recursive model for updating the over-

all surface estimates and variances is provided. The literature review includes a

brief introduction to Bayesian statistics and Kalman Filtering. Additionally, this

document includes the graphical representations of the updated surfaces from the

night-vision goggles study.
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Surface Estimates. A description of the process used in obtaining the facial

estimates for the night-vision goggles and the graphical representations of the esti-

mates are provided.

Multivariate Analysis. This research includes the factor analysi-, ot various dis-

tance and angular measures to determine a new set of measures wh ch would account

for the common variations expressed in the original set of variables. Furthermore,

the technique of clustering was used to construct homogenous groups within the the

subjects based on the variables identified in the factor analysis. The literature review

introduces the multivariate techniques. The data extraction programs and the SAS

procedures are also provided.

1-6



II. Literature Review

This chapter provides a review of the literature pertaining to the areas of krig-

ing, structural analysis, Bayesian statistics, and multivariate analysis to the degree

that they are developed in this thesis. The emphasis of this review is on the origin

and development of kriging in the field of geostatistics and the structural analysis

essential to the application of the kriging procedures.

Kriging

A complete review of the literature shows no documented applications of krig-

ing in the analysis of anthropometric data. Therefore, this review considers the

theory of the technique as developed in the field of geostatistics. Specifically, the

following kriging topics are discussed: the origin, a definition, the fundamental equa-

tions, the assumptions, and several types of kriging.

Origin of Kriging. The technique of kriging is considered by Clark to be "the

simplest application of the Theory of Regionalised Variables" (3, 1). Georges Math-

eron is credited with introducing the concept of regionalized variables and Clark

states that "the application of this theory to problems in geology and mining has

lead to the more popular name Geostatistics" (3, 1). Davis explains that geostatistics

was devised by Matheron "to treat problems that arise when conventional statistical

theory is used in estimating changes in ore grade within a mine" (6, 239). According

to Matheron:

Geostatistics, in their most general acceptation, are concerned with
the study of the distribution in space of useful values for mining engi-
neers and geologists, such as grade, thickness, or accumulation, includ-
ing a most important practical application of the problems arising in
ore-deposit evaluation (14, 224).
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Journel states that "in mining practice, one problem is to find the best possible

estimator of the mean grade of a block" (12, 563) He further states that D.G. Krige

proposed a regression technique for this problem in 1951 and that "in 1963, Matheron

formalized and generalized this regression procedure and gave it the name of kriging"

(12, 563) As David suggests, "the particular nature of estimation problems in mine

planning is such that i• most probably deserves the use of a special name" (5, 237).

At the time, D.G. Krige was a mining engineer in Soutii Africa (6, 383).

Definition. According to the original definition given by Matheron, "kriging

is the probabilistic process of obtaining the best linear unbiased estimator of an

unknown variable" (12, 563). Stated another way, "kriging is a local estimation

technique which provides the best linear unbiased estimator (abbreviated BLUE)

of the unknown characteristic studied" (13, 304). In this context, "best" is defined

as "having the smallest estimation variance" (3, 104). Matheron later generalized

techniques for obtaining nonlinear unbiased estimates and used the name kriging

in describing them because they also minimized the estimation variance (12, 563-

564). Because of the varied use of the name kriging, Journel suggests that kriging

should be redefined as "a probabilistic theory of estimation based on the principle

of minimization of the estimation variance" (12, 563).

In geostatistics, the estimation process is typically directed toward determi-

nation of the value of an ore deposit at an unsampled location. Clark provides an

example of estimating both the value of an uranium deposit at a specific location and

the average value of uranium over an area or block (3, 69- 74). Davis introduces an

example of determining the water table elevations at unknown points based on the

values known at different well sites (6, 386-392). To clarify the definition of kriging

and to illustrate he potential uses of this technique, the following example adapted

from Developments in Geomathematics is provided (1, 353).

Consider the five control points labeled S1 - S5 in Figure 2.1. These points are
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S5

S4

S3A

S2

Figure 2.1. Typical Kriging Problem

distributed throughout the region and have corresponding values of X 1 - X.5 which

are known for some specific attribute. Tne problem in kriging is to predict the value

of k0 at the point A from the known values in the vicinity (1, 353). The value

of Xk which minimizes the estimation error is determined by solving a set of linear

equations.

Kriqinq Equations. In kriging. the estimate for an -nknown vlue 1 t1 i qnr!%rtn

is determined by a weighted average of sample values with the sample values in closer

proximity having more weight than points further away (3, 99). Specifically, the

equation for the estimator is:

X = wIXI + w 2X2 + w 3 X +... + wX

where Xý is the estimator, w1 , w2, w3,..., ,, are the weights, and X 1 , X 2, X 3 ,

X, are the sample values (3, 99).
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If the weights sum to one and there is no trerod, then the estimator is unbiased

(3, 99). "This means that over a lot of estimations the average error will be zero"

(3, 99). Because the estimator is a linear combination of the sample values, it

is considered to be a "linear" estimator (3, 99). There are an infinite number of

estimators in the above form which are unbiased and linear (3, 104). There is,

however, a unique combination that will give minimum estimation error (6, 385).

To determine the combination which minimizes the estimation error, the esti-

mation variance must be defined. The estimation variance for the general unbiased

linear estimator is:

a = 2 wj A) - , wj w(S,, S,) - ;(A, A)
1=1 i=1 j=1

where a,' is the estimation variance, wi and wj are the weights, S is the sample set, A

is the point to be estimated, and -'(S, A) is known as the average semivariogram. The

semivariogram is a function describing the expected difference in value between pairs

of samples with a given spatial relationship (3, 11) and will be discussed at length in

the structural analysis section of this review. For any given set of observations the

variance is a function only of the values of the weights. Therefore, to minimize the

estimation variance, the partial derivatives of the estimation variance with respect

to the weights must be set to zero and the weights must be determined by solving

the resulting system of equations. To maintain the unbiased nature of the estimate,

an equation must be added to the system to ensure that the weights sum to one (3,

105). Additionally, a Lagrangian Multiplier (A) is used to ensure that the number of

unknowns and the number of eq,,ations are equal. The result is the following system
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of linear equations (referred to as the kriging system):

wij(S1,SI) + w2ý(Sl,S 2 ) + + w,(S,,S,) + A = j(S,,A)

wiO(S 2 ,SI) + w2ý(S 2,S 2) + + wnxf(S 2 ,S,) + A = %S2, A)
W1 '(S3 ,,S,) + w2ý(S 3 ,S 2 ) + + WI(S3 ,S,) + A = 1(83,A)

+ ... + + ... + =

+ ... + + ... + =

wI,(S,,S,) + w2=(S,,S2 ) + ... + w,(S,,,,s,) + A =A)

Wi + w2  + + W, = 1

In clarification of notation, the above system of equations is specified in Davis

(6, 385-386) and Henley (9, 26) in the following manner:

wy(hj) + w-'y(h 12) + w3 y(hO3 ) + + w,,y(h,,,) + A =

wiy(h 2,) + wf(h22 ) + w3-y(h23 ) + + w,-y(h2,). + A = -(h•,)

wi-y(hai) + 7ti2-f(h 32) + v).3-f(h.33) + + ,y~~ + A = y(h3p)

+ ... + ... + + ... +

+ ... -4 . + + ... +

w00.(h1i) + w2-y(h,2) + U,37(h, 3 ) + ... + w.-y(h,,) + A = y(h~p)

w + W2 + W3 +... + W 0 1

The above form of the kriging equations are equivalent to tks previous equations. In
the~~A secon notation,6AC611 V%(hý) ist e s r vai n Val e fr the UIstarý,V1ce V betw een1

the observations i and j. The only difference in the two systems of equations is that

the first set is referring to block kriging (denoted by the I structure) and the second

set refers to point kriging (denoted by the y structure) (9, 26). Block and point

kriging are only two of the forms of kriging and are discussed in more detail in the

section on types of kriging.

ýrNiging Assumptions. In point and block kriging, weak stationarity is as-

sumed. Weak stationarity implies that all random variables Xk have the same mean,

variance and autocorrelation function. This assumption is based on two conditions:
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1) the expected value of the regionalized variable Z(x) is the same all over the field of

interest; and, 2) the spatial covariance of the regionalzed variable Z(x) is the same

all over the field of interest (5, 92). Therefore, the expected value, E[Z(x)] -- m

and the covariance, E{[Z(x) - m][Z(x + h) - m]} = K(x,x + h) - K(h) where h

is a vector in R,,. Strict stationarity is assumed if, in addition to the above condi-

tions, the higher-order moments remain the same (1, 315). However, it is generally

accepted in practial applications that weak stationarity is sufficient (1, 315). While

this assumption is essential to point kriging, methods have been developed to acco-

modate violations of weak stationarity. The following section discusses a few of the

methods which are used when the weak stationarity assumption is relaxed.

Types of Kriging. Henley provides a description of several kriging tc~hniques

to include point, block, lognormal, disjunctive, and universal kriging (9, 25-31).

Additionally, Barnes and Johnson discuss the technique of positive kriging (2, 231-

243) and Journel and Huijbregts develop the theory for cokriging (13, 324-326). "The

kriging techniques are all related, and are refined versions of the weighted moving

average techniques used by Krige" (9, 25). The selection of the most appropriate

form of the kriging methods depends primarily on validation of the basic assumptions

of kriging. Table 2.1 is adapted from a figure in Nonparametric Geostatistics and

provides an overview of which kriging methods to use when the assumptions are not

satisfied (9, 27). Several of these methods are discussed below in more detail.

Point Kriging. Point kriging was discussed previously in the de-

velopment of the kriging equations. This form of kriging is used when the stationar-

ity assumption is valid and the distribution of the ore, or measurement, is assumed

normal. Davis discusses this simplest form of kriging in the context of punctual

kriging and provides an example to illustrate the mechanics of the kriging system.

The following example is adapted from Statistics and Data Analysis in Geology and

demonstrates the use of kriging in estimating the water elevation at an unsarnpled
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Table 2.1. Available Kriging Methods

DISTRIBUTION STATIONARITY
Normal Simple kriging Universal Generalizcd ?

(point or kriging covariances.
block)

Simple Lognormal ? ?
known kriging

(e.g.
lognormal)

Complex Disjunctive ? ? ?
kriging

Table 2.2. Water Table Elevation Data

Location Water Table
X Coordinate Y Coordinate Elcvation

Well 1 3.0 4.0 120
Well 2 6.3 3.4 103
Well 3 2.0 1.3 142

Point p 3.0 3.0

location (6, 386-390).

The basic problem is to estimate the water elevation at .1ome point. p based on

the elevations at three other points in the general vicinity. The coordinates and the

water table elevations at these points are listed in Table 2.2. A structural analysis

was performed and determined the semivariogram for the neighborhood of 20kmi to

be linear with a slope of 4.Om 2/km.

The objective is to determine the weights, wl, w2, and W3 which minimize the

estimation error. After solving the kriging system of equations to determine the

weights, the estimate of the water elevation Xp at the location p is obtained using
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the equation 9P = w1 X1 + w2X 2 + w3X 3. The kriging system used to determine the

weights is:

-y(h11 ) -y(hl 2) -y(h, 3) 1! ^t(hP)

-y(h2l) yI(h 22) 7f(h23) 1 W2 -f '(h 2p)

-y(h3l) (h3 2) -y(h3) 1 W3 -t(h3 )

1 1 1 0 A 1

Using the distance between the points h and the equation for the variogram,

y(hiji) = 4.0 * h, the above equations are rewritten as:

0 12.2 11.5 1 w1  4.0

12.2 0 18.1 1 W2 12.1

11.5 18.1 0 1 W3  7.9

1 1 1 0 A 1

Solving these equations produces the following estimates for the weights:

w1  0.5954

W2  0.0975

W3  0.3071

A -0. 1298

Therefore, the elevation at p is determined as X = 0.5954(120)+0.0975(103) +

0.307(142) = 125.1 meters. This example demonstrates simple or point kriging.

The system of equations is appropriate for stationary data which follow a normal

distribution. However, tnese equations must be modified when trend, or drift, is

present.

Universal Kriging. Universal kriging is used when trend is present.

Typically, a nonstationary regionalized variable is composed of drift, or the expected

value of the variable in a neighborhood, and the residual which is the difference

between the drift and the actual value (6, 393). In this form of kriging, the drift is
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removed from the regionalized variable and the stationary residuals are kriged. In

short,

Universal kriging can thus be regarded as consisting of three opera-
tions: First, the drift must be estimated and removed. Then, the sta-
tionary residuals are kriged to obtain needed estimates. Finally, the
estimated residuals are combined with the drift to obtain estimates of
the actual surface (6, 393).

The drift is generally represented by a first or second-order polynomial. One

method for removing the drift is to estimate the polynomial for the drift during

the structural analysis and then subtracting this drift from the data. However, the

complexities of combining the neighborhood size with the drift equations generally

prohibits this method in practice. Fortunately, the equations for the drift can be

incorporated directly in the kriging equations.

Davis (6, 394-395) provides the matrix form of the universal kriging system

when the first-order-polynomial drift at a point p is defined as:

MP = a 1X1 i + a 2X2i

In this equation, the a's are drift coefficients which must be estimated and X1, and

X2i are the coordinates of the ith control point.

For consistency, the matrix form for universal kriging is presented for the prob-

lem demontrated above in Point Kriging. The equations are as follows:

y(h11 ) y(h 12) y(hl 3) 1 X, X 21  W1 -y(h1 p)

y(h21 ) y(h 22) 7 (h23) 1 X 12 X12  W2 y(h2p)

y(h 31 ) y(h 32 ) -(h 3 3 ) 1 X 13 X 23  W3 y(h 3 p)

1 1 1 0 0 0 A 1

X11  X 12  X 13  0 0 0 al XjP

X 21  X22  X23  0 0 0 J .2 X'z

While universal kriging solves the problem of nonstationarity, other forms pro-

vide the means for violations of normality.
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Lognormal Kriging. The distributicn of ore gra ies, or the region-

alized variable, often is not normally distribut•d. In some ca-.s, a better represen-

tation of the data is found by fitting a lognormal distribution. In lognormal kriging,

the variable is transformed by the equation yj = log(xi + a) where a is an arbitrary

constant used to optimize the fit to a normal distribution (9, 28). Using this trans-

formation, the semivariograms and kriging estimates are obtained. However, the

resulting estimates are in terms of logarithms and must be converted using an in-

verse transformation. Unfortunately, the inverse transformation does not produce a

linear estimate of the value being estimated at a point p and the estimation variance

is not necessarily minimized (9, 28)

Disjunctive Kriging. Although disjunctive kriging is beyond the

scope of this study, the technique is briefly described to illustrate the potential of

kriging when the regionalized variable is not normally distributed. In simple kriging,

the estimate of the value at a point p is determined by a linear combination of the

values at other points in the neighborhood. Theoretically, the best estimator is the

conditional expectation of the value at p based on the neighboring values and is linear

when the distribution is normal and stationary (9, 29). Without the assumptions

of normality and stationarity, the best estimator may not be linear. In disjunctive

kriging, the data is transformed to a normal distribution. Journel and Huijbregts

describe this transformation ubing a set of Hermite Polynomials (13, 573-580). The

result of this technique is a nonlinear estimator for the value at the point p.

Structural Analysis

The semivariogram was briefly mentioned earlier in this review. Yakowitz and

Szidarovszky note:

The kriging method is compo.,ed of two activities, (i) inferring the
variograrn from the data and (ii) assuming that the inferred variogram is
indeed exact, providing a best linear unbiased estimator and associated
error variance (22, 23-24).
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Thus far, this review has concentrated on the second activity. To complete the

review of kriging, the first activity will be discussed.

Definition. Journel and Huijbregts emphasize that the first and most impor-

tant step in any geostatistical study is structural analysis (13, 12). "Structural anal-

ysis is the name given to the procedure of characterizing the structures of the spatial

distributior of the variables considered (e.g., grades, thicknesses, accumulations)"

(13, 12). Journel and Huijbregts further explain how the variogram quantifies and

summarizes the structural information and then serves to interject this knowledge

into the geological study (13, 12),

The Variogram. In geostatistics, the three second-order moments considered

are the variance, the covariance, and the variogram (13, 31). According to Omre,

"the variogram function is the backbone of geostatistical analysis" (17, 107). Ba-

sically, the variogram function is defined as the variance of the increment [Z(xi) -

Z(x 2 )]. This increment is written as:

2y(xX 2)= Var{Z(x1) -

The semivariogram is simply Y(X1, x 2).

In practice, only an estimator of the theoretical variogram is available. This

estimator is known as the experimental variogram and is calculated as follows:
N NI

( = [z(x, + ;t) -- 2
i=1

where N' is the number of pairs of data values at a distance of h apart from one

another.

The next step in the structural analysis pro)cedure is to fit a model to the

experimental variogram. David proposes several methodologies for performing this

task (5, 119-120). While this procedure is sometimes considered an art, one approach

suggests selecting a rimodel and then determining the parameters through numerical
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least-squares fitting (5, 119). Cressie proposes minimizing a weighted sum of squares

and indicates that work by Zimmerman and Zimmerman shows that the weighted

least squares approach never performs poorly and usually does well (4, 198). The

process of fitting models to experimental variograms is not trivial. Therefore, this

review will only dL.c.-s - few of the various models which appear in the literature.

Standard Models. Thtree of the more common models are the linear m~odel, he

De Wijsian model, and the spherical model (5, 120-122). A brief introduction to

each of these models is provided.

linear Model. The equation for the linear model is of the form

,y(h) = ah + b. This is one of two models used in practice which does not have a

sill (5, 120). The sill is defined as the variance of the samples and will be mentioned

again in the discussion of the spherical model. David suggests that a visual fit of the

data is usually satisfactory and that a least-squares method could bc used. However,

he emphasizes that weighted least-squares should be used since the number of pairs

used in calculating the variogram decreases as h increases (5, 120).

De Wijsian Model. The form for the De Wijsian model is 7 (h) =

a ln(h)+b. However, "one usually writes a = 3a and calls it the coefficient of intrinsic
ui3p.itnuii (i, I"IN. InL!• iiiUei ir i le heutlitu , two commonly used models whicb

does not have a sill. This model is named after Prof. H.J. de Wijs and is used

when the experimental data plots as a straight line on a logarithmic scalk (5, 120).

Weighted least-squares is also appropriate for fitting this modci.

Spherical Model. (5, 80) The spherical model is the most common

model and is defined by three parameters: a, C, and Co. T.e first parameter, a, is

called the range and is used to determine the zone of influence. The sampling error

is known as the nugget effect and is denoted by Co. Finally, the third parameter,

C, is used in conjunction with Co to determine the sill, (C + Co). The form ol the
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-y(h)

sill

Co
0 range •1h

a

Figure 2.2. Spherical Model Variogram

spherical model is as foliows:

[C(2-_I)+Co ifh<a

y(h) = C + Co if h > a

0 if h =0

The shape of this model is shown in Figure 2.2 adapted from Geostatistical Ore

Reserve Estimation (5, 102).

David provides a detailed example for fitting the spherical model (5, 122-125).

In addition to a weighted least-squares approach, David suggests the following:

One usually starts by fitting the tangent at the origin to the curve,
the intercept of that tangent at the origin is the nugget effect Co. The sill
of the variogram is equal to the variance of the samples in the deposit,
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which can be computed from the samples. This defines C + Co; finally
the tangent at the origin intersects the sill at a distance which is equal
to 2a. This defines a (5, 122).

Problems with Anisotropy. Anisotropies are typically classified ir. one of two

categories: geometric (or affine) and zonal (or stratified) (5, 134). Geometric anisotropy

refers to the situation where the value or expected variation varies more quickly in

one direction than in another. An example of geometric anisotropy that occurs in

geology is the situation where the unit of measure -varies over the region of interest.

This type of anisotropy can be handled by adjusting the coordinates of the data

sets or by using different variograms for different directions. Zonal isotropy is char-

acterized by qualitative variations or separations of the data into zones. This form

is difficult to treat. An example of zonal isotropy in geology is the situation where

different rocks are sharply divided within sediment beds (9, 98-li 9).

The anisotropy ratio (or affinity modulus), k, is equivalent to the change in

distance units between axes. For example, if the same relationship exists between

points 50 feet apart in one direction and 300 feet apart in another direction, then k

is equal to 300/50 (5, 134-135). David suggests that geometric isotropies are easily

recognized after plotting the variograms in two directions. For the linear, De Wijsian,

and spherical models, the variation for a distance h in one direction is equivalent

to the varlitions fUr d distaice kh in adntuter. Therefore, the equations for the two

variograms for direction 1 and direction 2 for these three models are presented as

follows: for the linear model,

7 = ah

"12(h) = akh

for the De Wijsian model,

"1(h) = aln(h) + b

Y2(h) = aln(kh) + b
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and, for the spherical model,

3h h3
,yj(h) = C[h h_

2a I3 + CO

-3kh k3 h3

2a 2a3]C

Proceeding further, the distance h can be decomposed into two components hi and

h2 corresponding to directional axis. Therefore, the distance between the two points

(Xl, yI) and (X 2 .y 2 ) is h' = X( - - 2 )2 + k2(y, - Y2) 2 . This distance measure is

used in obtaining the variogram equation for more than one direction (5, 138). In

this presentation, two perpendicular directions are considered. Treating geometric

anisotropy when the axes are not perpendicular and the treatment of zonal anisotropy

is beyond the scope of this study. For more information reference David (5, 134-148).

Bayesian Statistics

Bayesian statistics is the branch of statistics characterized by the use of prior

information. This section concentrates on only one area in the broader class of

Bayesion statistics, the Kalman filter. The definition, assumptions, and equations

are provided.

Definition of a Kalman Filter. "A Kalman filter is simply an optimal recursive

data processing algorithm" (15, 4). Maybeck points out that the Kalman filter is
"optimal with respect to virtually any criterion that makes sense" and that one

aspect of this optimality is that the Kalman filter uses all available information.

The filter is recursive from the standpoint that it "does not require all previouu data

to be kept in storage and reprocessed every time a new measurement is taken" (15,

4). The model is classified under Bayesian Statistics because the filter propagates

the probability density of the values conditioned on the knowledge of the data being

measured.
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Assumptions. The formulation of a Kalman filter includes the validation of

three basic assumptions. The first assumption is that the system model is linear

(15, 7). Secondly, the measurement noises are not correlated in time. Maybeck

refers to this quality as "whiteness" and explains that this means "if you know what

the value of noise is now, this knowledge does you no good in predicting what its

value will be at any other time" (15, 7). (The analogy of space and time within the

realm of spatial statistics is apparent. Further analogy is drawn with the kriging

assumptions by David in the previous section.) The third assumption of a Kalman

filter is that these measurement noises are Gaussian. The basis for this assumption

is that measurement noise includes the effects of many sources and, when added

together, resemble the Gaussian probability density.

Equations. This review is concerned primarily with the application of a rela-

tively basic form of the Kalman filter model. The following equations are adapted

from the example provided by Maybeck in the introduction of Stochastic Models,

Estimation, and Control. Vol 1. (15, 9-15).

Let z, be a measure at time #I and oa2 the variance of this measure, In

Maybeck's example, this measure refers to an estimate of the location at a particular

time. However, this measure could also be the first measurement of the value of a

surface point in a facial region. If the actual value at t1 is x(t 1 ), then the conditional

probability of x.i cond - - -nedonz•ni ....... ' t ). Therefore, te best estimate

of x(t1 ) is _i(t1 ) = z1 and the error variance is oa(t 1 ) = a",.

Furthermore, let z2 be the measure of x(t 2) at time t2 and a02 be the variance

of z2. It can be shown that the conditional density of x(t 2), given z1 and z2, is a

Gaussian density with mean p and variance a 2 where

[C2 [~~/(0 + 0, )Jz r + [02/(02 + 0,)]z2
Z2 ZI 2)] z 1 Z+Z Z2" z

and,

1/0r2 = (.1/.72) + (1/(72
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The best estimate of x(t 2 ) is (t2 ) =M with variance a'. Realizing that :W(t2) includes

all the information in fx(t2 )IZ(t0),Z(t2)(x1zl, zA), further estimates can be obtained at

time t,, based on known information at t,, 1. Therefore, the following equations

provide the best estimate of a value x(t,,) and the variance au(t,):

i(tn) = i(t.-l) + K(t,,)[zn - i(t,,_)]

and %

02(t.) = a2(t._I)- g(tn)a-(t,-_)

where
or + or

"K(tn) xn/(-- Zn

Multivariate Analysis

In general, multivariate analysis is the application of methods which deal with

the simultaneous relationships of several variables charactersitic of objects in a sam-

ple. The use of multivariate analysis in a variety of fields is firmly established and

well documented. Davis presents several uses for multivariate methods in geology

(6, 468-615). Futhermore, Flury and Riedwyl demonstrate the use of a multivariate

technique, principle components analysis, in the analysis of anthropometric data to

support the sizing of protective masks for the Swiss army (8, 218-228). Two of the

more commonly used methods in multivariate analysis are factor analysis and cluster

analysis. These methods are introduced below.

Factor Analysis. Basically, factor analysis is a method for reducing the number

of variables in a data set by determining a new and smaller set of variables which

accounts for the common variation. Typically, the new set of variables consists

of factors which represent the true dimensionality of the data. These factors are

determined by analyzing the interrelationships among the variables. Dillon and

Goldstein define factor analysis as follows:
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Factor analysis attempts to simplify complex and diverse relationships
that exist among a set of observed variables by uncovering common di-
mensions or factors that link together the seemingly unrelated variables,
and consequently provides insight into the underlying structure of the
data (7, 53).

Cluster Analysis. Cluster analysis refers to a number of techniques which clas-

sify objects in homogeneous and distinct groups. The definition of a cluster is often

determined by the researcher. The goal ,however, is to determine groups of observa-

tions which have some defined similarity. Dillon and Goldstein discuss several of the

partitioning and hierarchical techniques and present a listing of the more commonly

used clustering programs (7, 167-207).

Summary

Several kriging and structural analysis topics from the literature were pre-

sented. Specifically, this paper discussed the origin of kriging, defined kriging in

terms of being a best linear unbiased estimator, and presented the kriging system of

equations. Additionally, various forms of kriging and several of the more commonly

used models for the theoretical variogram were discussed. This review presented

the background for kriging as documented in the field of geostatistics. Other topics

presented in this review include the introduction of Kalman filtering, factor analysis,

and cluster analysis. These topics were discussed to the degree that they were used

in this study.
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III. Methodology

This chapter presents the methodology used in completing the objectives out-

lined in Chapter I. The first section discusses the procedures used in collecting and

orientating the data. The second section develops the kriging procedure for esti-

mating facial surfaces. This section is followed by the development of a recursive

procedure for aggregating the individual estimates obtained by the kriging method-

ology. The fourth section documents the application of the kriging and updating

procedures to the surface area which will influence the design of the night- vision

goggles. Finally, the last section discusses the multivariate analysis procedures in-

vestigated for use in clustering the faces.

Data Collection and Orientation

Because the majority of the data manipulation was completed prior to the

start of this study, data collection and orientation were not listed as objectives of

this study. However, the processes of collecting and preprocessing the data were

critical steps in the analysis performed in this thesis. Therefore, the procedures for

data collection and data orientation are included in the methodology.

Data Collection. As discussed in the introduction, researchers at AAMRL

have the ability to collect 3-dimensional facial data with the use of a laser scanner.

The manner in which the data is recorded is complex and, to some degree, beyond

the scope of this discussion. However, a brief explanation is appropriate. The laser

scanner is mounted on a rotating arm which rotates around the head of the subject

while the subject is seated calmly in a chair. The measurements of 131072 points are

recorded for each subject as the scanner rotates. The number of points is determined

by the 512 locations on the x axis and 256 locations on the y axis. The x axis refers

to axis of rotation (angle) and the y axis refers to the altitude of the point from
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Table 3.1. Anthropometric Landmark Names

Landmark Name Landmark Name
1 Right Frontotemporale 10 Right Infra Malar
2 Glabella 11 Pronasale
3 Right Zygofrontale 12 Subnasale
4 Right Tragion 13 Right Chelion
5 Right Zygion 14 Stomion
6 Right Ectocanthus 15 Right Gonion
7 Sellion 16 Promenton
8 Right Infraorbitale 17 R. Midlateral Infra Mandibular
9 Right Infra Zygion 18 Menton

the x axis. The third coordinate of the points, the z values, are determined by

measuring the depth of the point at each x,y location. The depth is calculated

using a triangulation procedure based on the reference point on the scanner, the

point being measured, and an arbitrary (but constant) point in the environment

surrounding the subject. In essence, the relative position of the points to each other

is being measured. Prior to each scanning, a mark is placed on selected landmarks.

Several of these landmarks are identified in Figure 3.1 and defined in Table 3.1. The

marks do not reflect the light source and are omitted from the initial data base.

However, these points are reinserted after the scaniing process during a graphical

review of the data. At the same time, the landmarks which were not marked are

identified and recorded. As a final step in the process, the data is transformed to an

axis system based on the landmark coordinates (20).

Data Orientation. After the data was collected for each of the subjects, the

sets had to be aligned on a common coordinate system. There were two reasons

which necessitated this orientation of the data sets. First, the individuals could not

possibly all sit in the same position with their heads in the same orientation while

being scanned. Secondly, the goal of the study was to estimate the facial surfaces
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Figure 3.1. Anthropometric Landmarks
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which minimize the variability between subjects. To achieve this goal, the data for

each subject had to be aligned in a manner which minimized the differences in the

reference points for the landmarks. In other words, the attempt was to align the

faces so that all the features were in the same relative position and orientation.

The alignment was achieved using a multivariate, nonlinear optimization rou-

tine implemented through a program written by Dr. David G. Robinson. This

program identifies four landmarks for each data set and minimizes the distance from

these points to four standard points established at positions which were chosen to

force the correct orientation of the faces. These four landmarks were also used in

truncating the data sets to include only the points within the region bounded by

these points. Additionally, the x axis was transformed to rectangular coordinates

so that the data. was represented in a rectangular grid structure as opposed to the

spherical structure inherent in the collection process.

Several programs were used to produce the configuration of the data used

in this thesis. These programs were developed by Dr. Robinson, Joyce Robinson

(Scientific Research Laboratories), and Dr. Robert Beecher(Beecher Associates).

Procedure Development

As discussed previously in the literature review, kriging involves both the esti-

mation of the variogram through the structural analysis of the data and the determi-

nation of the estimates and error variances. In developing a kriging procedure for the

anthropometric data, these two activities were treated as separate tasks. The first

task is discussed below under Structural Analysis and the second task is considered

under the heading of Kriging.

Structural Analysis. Structural analysis is key to the implementation of krig-

ing in any field. This analysis must validate the assumptions of stationarity and

isotropy or correct for any shortfalls inherent to the data. For this study, the struc-
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tural analysis consisted of removing the global trend from the data, calculating the

experimental variograms for each subject, and estimating the parameters of three

commonly used variogram models.

Trend Analysis. Some nonstationarity is inherently present in fa-

cial data. The removal of this trend was accomplished in two steps: 1) the removal

of the global trend by differencing each subject data set with the average of 30 data

sets, and 2) the inclusion of first-order terms in the kriging equations to account foi

local stationarity within the region of influer-e. The first step is discussed in this

section and the second step is presented in ti.e kriging methodology.

To facilitate the removal of the global trend, a method for representing the data

in a standardized manner was developed. The orignal data files were formatted so

that each record included the x, y, and z coordinates of a data point. The number

of data points varied from subject to subject, and these points were irregularly

distributed in the xy plane. (Reference Figure 3.2.)

To simplify the data configuration, a grid was imposed upon the zy axes.

(Reference Figure 3.3.) Within each block, the average z value was calculated and

used to represent the surface value for the midpoint of the block. Using this approach,

the number of data points was reduced from approximately 10000 to exactly 5000

(determined by the grid dimensions). The nuniter of points in the data sets used in

this study ranged from 7477-14861. Furthermore, the points in the new configuration

were now regularly spaced at standardized grid points. This transformation of data

was accomplished using the GRID program in Appendix G which determined the

izj indices corresponding to the row and column of the grid, the x,y coordinates for

the midpoint of the block, the z value representing the average vJie of the block,

the variance, and the number of points used to calculate the average of the block.

The number of intervals on the x axis was 100 with values ranging from 0.0 to 4.0,

while the number of intervals on the y axis was 50 with values ranging from 100.0
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Figure 3.2. Irregularly Distributed Points

to 300.0.

Graphical representations of the transformed data were created using the In-

teractive Data Language(IDL) software package. The transformed data was input

to another program which created an input file for an IDL procedure. Reference Ap-

pendix G. The plot in Figure 3.4 was produced using this procedure. Because of the

relatively large size of the data files representing the surfaces, graphical analysis was

essential in the analysis of the data. Appendix A includes the plots of all subjects

used in this study.

Using the grid configuration provided a means for comparing and averaging

the surface values for the subjects at common points across the region of interest.

The average value at each rridpoint was calculated using the data from 30 subjects.

This "average" surface represents the global trend and is presented in Figure 3.5.

To remove this trend from the data, the average value for each midpoint was

subtracted from the value of the midpoint for each data. set. This differcncing pro-
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Figure 3.3. Rectangular Grid Configuration

duced a new data set consisting of residual values. A program (reference Appendix

G) was used to create the residual files. Figure 3.6 is the plot of the residuals ob-

tained from subtracting the global trend from Subject 09. Appendix B contains the

residual plots for the subjects used in this study.

Experimental Variogram, The residual data sets were used to cal-

culate the experimental variograms for each individual. The grid structure of these

files simplified the variogram calculations. Typically, data are configured either at

regularly spaced grid points or at irregularly distributed points throughout the re-

gion of study. Thle original data files configured the data in an irregularly distributed __

manner which would have increased the difficulty of the variogram analysis. The

calculation of the variogramn is simpler when data are aligned in a grid structure

because the directions and distances are standardized. Specifically, the coordinates

of each grid point are a multiple of some incremental distance 6h; arid, the standard

directions, E-W, N-S, NW-SE, and SW-NE, are easily determined. In the irregu-
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larly spaced pattern, angles and distances are not unique and must be calculated

independently for each set of points. Additionally, approximate directions must be

determined by setting a range for the angular values.

The experimental variograms were estimated using the FORTRAN program

in Appendix G. In short, this program iteratively determines the number of pairs of

data points at a distance h, N', for each increment b/h and for each direction. The

estimator is:

S= -;. Z[zGx + h) - z(x,)]
i=1

The variograms for each of the four directions (N-S, E-W, NW-SE, and SW-NE), for

all subjects, were calculated. Figure 3.7 illustrates the four variograms for Subject

160. The y(h) value represents the value of the variogram at a distance h. In other

words, this value represents the relationship of all the points which are at a distance

h from each other. Although the f,'nction appears continuous over the range of h,

(reference Figure 3.7), the experimental variogram is actually a discrete function

based on the incremental units, or lags, for which the points here compared. The

theoretical variogram, however, is a continuous function and is discussed later. Fig-

uie 3.7 also suggests that the data is isotropic. The variograms appear to follow the

same functional pattern in all directions. This isotropic quality was not inherent to

the data and was achieved by carefully defining the dimensions of the grid structure.

Several factors were considered in establishing the grid dimensions. In the trend

analysis, the dimensions of the grid were restricted in that the spacing between points

had to be relatively small. The analogy of pixels in a newspaper picture nrovides the

reasoning for this restriction. The points must be close enough to characterize the

shape of the the region. With respect to the variogram calculations, the dimensions

were required to support a range of distance increments within the range, or zone of

influence. Additionally, the relationship of 6x to by had to account for the anisotropy

ratio k. Figure 3.7 represents the form of the variograms in their final form. In earlier
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Figure 3.7. Variograms for Subject 160

attempts, ranges of h reached values of 100 to 200, Unfortunately, the variograms

were dissimilar beyond distances of approximatley 10 units. Grid dimensions of 200

by 200 were also considered. However, using these dimensions, the data appeared

to be geometrically anisotropic. This shortfall was corrected by changing the ratio

between the x and y grid dimensions. The grid dimensions for the trend analysis
and the. variogram aknalyiuq wepre int requiired to be thL -ac owvr tedt

analysis was simplified using the same dimensions. In the kriging analysis, a grid

structure was also used. A discussion of appropriate dimensions for the kriging blocks

is presented in the the kriging section.

Theoretical Variogram. A theoretical variogram was modeled us-

ing the experimental variograms calculated in the previous section. The data of the

variograms was consolidated into a single data file and input to a weighted least-

squares program (reference Appendix G) to obtain the parameter estimates. The

following discussion presents the steps accomplished in this procedure.
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Four variograms were determined for each subject- one for each direction.

The goal of this analysis was to determine a single variogram which represented the

relationship of the points at a distance h for the four variograms of all the subjects

together. To achieve this goal, the isotropic assumption had to be verified. In

general, all of the variograms would have to follow the same pattern. The sample of

30 subjects used in the trend analysis was also used in this analysis. The hypothesis

that a sample of 30 would represent the true relationship for the population was

assumed. Perhaps the simplest method for verifying the isotropic assumpion was to

plot the variograms on the same scale. Figure 3.8 displays a plot of the variograms for

four directions for the sample of 30 subjects. Based on this plot, it was determined

that the variograms did not follow the same pattern and, therefore, were anisotropic.

However, further analysis revealed that five subjects appeared as outliers. These five

subjects were removed from the variogram analysis. Additionally, this discovery

prompted the multivatiate analysis to determine if the differences in the variogram

structures occurred as the result of natural groupings, or sizes, of the individuals.

After removing Subjects 01, 07, 12, 89, and 150, the variograms were replotted.

Reference Figure 3.9. This figure suggests that the isotropic assumption is valid in

the range 0-10 for all the subjects and for all four directions. This isotropic behavior

was crucial to the development of the procedures in this study. The importance of the

grid dieulosiuxis must be emphasized. h he variograms appeared to follow a similar

pattern because the dimensions of the grid compensated for the anisotropy ratio

k. In the kriging analysis, the distances were not equivalent to the block units and

therefore this ratio was critical to the variogram calculations. The appropriate ratio

was achieved by dividing the range of the variograms in the N-S direction by the

range of the variograms in the E-W direction. To simplify the variogram calulations,

the dimensions were scaled to reflect this ratio. In the kriging analysis, the ratio was

incorporated into the distance calculations within the kriging programs.

The discrete data points for the experimental variogram consisted of three
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variables: h, -f(h), and N', the number of pairs of points used to determine 7(h).

A data file containing these variables for the variograms of the 25 subjects which

matched was created using the program in Appendix G. With this data file and a

regression program, the parameters of the theorlAical variogram were estimated.

The regression program is provided in Appendix G. This program fits the data

to the linear, De Wijsian, and spherical models presented in Chapter II. While a

complete review of least-squares regression is beyond Lhe scope of this effort, a brief

description of the technique and the program is appropriate.

The weighted least-squares estimates of the regression coefficients in matrix

notation are:
b = (XTWX)-IXTWy

where W represents the weights (16, 327). Weighted least-squares was used to ac-

count for the various number of pairs use in determining -y(h). For this analysis,

zbl 0 0 ... 0

0 6i2 0 ... 0

S[0

0 0 0 ... tb,

where zbi is the number of pairs of points.

Furthermore,

" " -(h)2

-y(h)J

The X matrix specification was related to the model structure. For the linear
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model,

1 hi
1 h1

1

1 hn

For the De Wijsian model,

1 lnh1

1 In h,
1

1 In h,

Finally, for the spherical model,

1 hi hi

1 hi h2
1 :

1 hn hn

To determine the regression coefficients, the normal equations were rewritten

in the following form:

(XTWX)b = XTWY

In this Ax = B structure, the system of equations was solved using the LUDCMP

and LUBKSB routines adapted from Numerical Recipes. The LUDCMP routine de-

composes A into the product of two matrices, L and U, where L is lower triangular

and U is upper triangular. LUBKSB performs backsubstitution. The combination

of these programs provided an efficient method for solving the system of linear equa-

tions. (18, 29-38).

The parameters estimates for a and 6 for the linear model (-y(h) = ah + b) and

De Wijsian (y(h) = a ln(h) + b) model correspond to b, and b2 directly. However,
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the parameters of the spherical model (C, Co, and a) were foamd by the following

relationships:
Co~b1

C = a 2 -Co
3C

where a2 was the variance of the sample points.

Kriging. Having developed an estimate of the theoretical variogram, the next

step in the procedural development was to estimate the points on the surface of

interest and the variance associated with these estimates. Universal kriging was

used for estimating these values.

As discussed in the structural analysis, the configuration of the data was an

important consideration in developing the analysis techniques. The rectangular grid

structure was used in the kriging analysis to determine the range and density of the

surface estimate. The range was chosen to encompass the region of interest. The

dimensicns of each block were chosen so that the number of points estimated would

adequately represent the surface shape. If enough grid points were not estimated, the

surface would not represent the smoothness of the true surface and critical informa-

tion could potentially be lost. If too many grid points were used, the computational

time would be excessive. Although the grid dimensions were not required to be the

same as in the structure analysis, the same grid sizes were chosen. These dimensions

provided adequate density and reduced the number of graphical procedures used in

displaying the results.

Using this grid structure, the krigir.g problem for the anthropometric data

was constructed in the same manner in which kriging problems are constructed in

geostatistics. Fiyre 3.10 illustrates the problem of estimating the midpoint of a

block within the grid based on the data points in the general vicinity. Each block is

partitioned by a dotted line. The objective is to determine the value k as a weighted

average of the points within the range a. The value of ah was determined in the
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Figure 3.10. Anthropometric Kriging problem

structural. analysis. The equation for this estimate is:

- = wIXI + w2X2 +... + wX,

The weights wi are chosen to minimize the error variance

or,2 = wl-y(hj.) + wf(hlr) +.. + w,,•(h,,,) + A

These weights are determined by solving the kriging system of equations pre-

sented in the Literature Revi=w. Specifically, the universal form of kriging was used.

The first step in the process was to remove the global trend from the data (refer-

ence Structural Analysis). To remove any residual trend, the first-order terms of a

polynomial were added to the kriging matrix. Therefore, the following system of

equations wis solved to determine the weights:
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y(hl,) t(h12)... y•(hi,) 1 XI X 2 1  Wl(h 1p)

y(h 21) 7 (h22) ... 7 (h2.) 1 X12 X 22  W2 y(h2p)

y(h31 ) 11(h32) -y(h3.) 1 X 1 . X 2. w.y =

1 1 ... 1 0 0 0 A 1

X11  X 12  ... X1, 0 0 0 XJP

X21  X 22  ... X2, 0 0 0 a X2p

To solve these equations, a program was developed in the C programming

language. This program, presented in Appendix H, basically performs three tasks:

removes the trend, determines the points in the zone, and estimates the mean and

variance at the point. The following summarizes the programmed procedure.

The trend was calculated through the structural analysis proc(dure and recorded

in a data file consisting of the x,y, and z coordinates of the grid midpoints. The

first step of the kriging program reads in the data from the subject file, partitions

this data into the grid configuration, and subtracts the trend values at the grid

midpoints. The next step is to select the first point to be kriged and to determine

the known points within the region. The program iteratively progresses through

the ij grid blocks for which a trend value exists. In other words, the points to be

kriged are the midpoints of the grid blocks in the region of the grid where data

exists. Based on the structural analysis, the range for this study was a = 6.645.

The program determines the known values within the range of the point ij to be

kriged by considering the points in the blocks within A = 7 blocks (i.e. i ± 7, j ± 7).

The neighborhood is ,therefore, defined by the blocls within 7 units of the block

being estimated. Using the pointer structures of the C language, the values within

a block were recorded in the data entry routine to enhance the efficiency of the pro-

grain. Additionally, if the number of points within the neighborhood exceeded 200,

the value of A was incrementally reduced by 1 thereby decreasing the neighborhood
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until the number of points was between 0 and 200. The number of points in the

neighborhood was limited to less than 200 to reduce the computational time and to

minimize the computational errors resulting from the process of solving the system

of kriging equations. After obtaining the known points in the vicinity, the program

establishes the matrix form of the kriging equations. This step includes calculating

the distances and variograms for each pair of points. To solve kriging equations,

the LUDCMP and LUBKSB routines from Numerical Recipes in C were used (19,

28-45). The FORTRAN versions of these routines were discussed in the Theoret-

ical Variogram section. After determining the set of weights which minimized the

estimation variances, the estimates and the associated variances were recorded in

output data files. This estimation process was repeated for every ij grid block of

interest.

In some cases, numerical difficulties occured in kriging some of the ij blocks.

More research is rneeded to determine the root cause of the problem. For this study,

an additional kriging program was written to determine the values of the midpoints

where difficulties were encountered. This additional program used the values of the

midpoints in the region around the point of interest, and performed the same kriging

operations as discussed previously. This form of kriging was introduced as block

kriging in Chapter II. The program is presented in Appendix H.

-•e (Ju'tlu vOfthe'igmig prugrdins was a file consisting of residuals and a fiie

consisting of variances. To obtain the kriged surfaces, the trend previously removed

was added to the residuals. Figure 3.11 illustrates the kriged surface for Subject

09. The kriged surfaces, residuals, and variances for all 30 subjects are located in

Appendix D.

Bayesian Analysis.

After estimating each individual surface, a statistical analysis was performed

to determine a recursive relationship for updating the aggregate estimates and vari-
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ances. The program in Appendix I reads in the estimates and variances for the

current best estimate and for the next subject to be added in the best estimate.

Using this program and the following equations, the updated value of the surface

estimate (xij(t,)) and the variance of this estimate (a2 ) is calculated for every i,

j grid point:

:ii(t,, (t._,) + Kij(t)[zj,, -

and
or 2 "(t,) = 0 ,,( n-1) -KiJi(t,)C,2j,,(t,,_,)

where
IX,(,, ,r )

= Ki u,.,(L._i)/(.O,,(tn_,) + 0,,)

and zi~j is the estimate for the i, j surface point of the subject being added.

As an initial starting point, the trend, determined in the structural analysis

procedure, was used to estimate the surface at to. The initial variances at to ',,ere

calculated using the program in Appendix I. The mechanics of the filter permit the

initial estimates of the variance to be relatively large. In this analysis, the initial

variances were set equal to 20.0. The procedure was performed sequentially starting

with Subject 09 and proceeding through Subject 199. Graphical representation3 of

the surfaces are provided in Appendix D. Additionally, the surfaces estimated in the

development of this procedure were the surfaces used to support the night-vision

goggles study. Therefore, fhe surface plot of the final surface is presented in the

Surface Estimation section.

Surface Estimation.

Using the procedures developed in the previous sections, the regions around

the eyes and nose of each individual data set were kriged to determine the surfaces

which minimized the error variances. The individual regions were combined using

the recurvise model to provide an estimate of the surface which will support the

design of the night-vision goggles. This surface is illustrated in Figure 3.12.
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The following summarizes the steps taken to produce the final surface estimate.

Step 1. Data Alignment. The data sets for each face were aligned so that the

distances betweens the four landmarks (the Left and Right Tragions, the Glabella,

and the Subnasale) and the four reference points were minimized. Furthermore, these

landmarks bounded the region of interest and were logical choices for correcting the

tilt in the x and y directions. The aligned data sets are illustrated in Appendix A.

Step 2. Trend Analysis. The global trend was removed to produce residual data

sets. The trend is represented above in Figure 3.5. The residuals are represented in

Appendix B.

Step 3. Variogram Determination. The data for the area under study was orga-

nized so that the points of each face were placed in an appropriate grid block. Based

on the estimator for the experimental variogram, the variograms for the subjects

were calculated and plotted. Reference Appendix C for the Variogram Plots.

Step 4. Theoretical Variogram. The theoretical variogram was determined

using th, weighted least-squares program and the experimental variograms calculated

in Step 3. After analyzing the variograms of the 30 subjects used in the trend

analysis, five of the subjects appeared to be outliers. Therefore, the variograms for

these subjects were not included in the estimate of the theoretical variogram. This

finding prompted the multivariate analysis discussed in the next section. The form

and parameters of the theoretical variogram were as follows:

f2.226(.F645 26.453)+0.689 if h'<6.645
2.226 + 0.689 if h > 6.645

0 if h =0

The theoretical variogram is plotted with each of the individual variograms in Ap-

pendix C. Because the theoretical variogram was determined using weighted least-

squares, the plots do not reflect the emphasis of some points over others.
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Step 5. Kriging of Residuals. This kriging program was designed to krige the

residuals of the data sets. Using this routine, the residuals for the 25 subjects used

in the variograrn analysis and five additional subjects, whose variograms matched

the theoretical model, were kriged to obtain the estimates and variances.

Step 6. Verfication. The results from Step 5 were verified using the verification

program. This procedure used the interpolation function of kriging to correct for

numerical problems which were encountered in some instances.

Step 7. Addition of Trend. Because the trend was removed in the kriging

procedure, a program to add the trend was used to determine the kriged facial

region.

Step 6. Bayesian Updates. The kriged surfaces were updated using the Kalman

filter developed in the previous section and the program in Appendix I for imple-

menting this process.

The steps summarized above were developed in the previous sections and

demonstrate the process used in applying kriging in the analysis of anthropomotric

data. Basically, these steps provide the methodology for obtaining the surface esti-

mates. The following section provides the details for the multivariate analysis.

Multivariate Analysis.

To investigate the feasibility of clustering the faces prior to the estimation

process, a multivariate analysis of the data was performed. The intent of this analysis

was to determine if groups corresponding to sizes could be identified based on several

distance and angular measures. Furthermore, this analysis was performed in an

attempt to determine the relationship between the faces used in the kriging analysis

and the outliers identified in the structural analysis. The use of multivariate analysis

methods in clustering anthropometric data is well established. Therefore, for this

thesis, the multivariate analysis served only as a preliminary investigation into the
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Table 3.2. Original Angular and Distance Measures

Points Distances Angles Angles
0 Right Tragion 2-8 0-3-10 3-4-7
1 Right Infra Zygion 0-10 0-5-10 3-4-6
2 Right Zygofrontale 1-9 1-3-9 0-7-10
3 Glabella 3-7 1-6-9 0-6-10
4 Sellion 3-4 2-4-8 2-6-8
5 Pronasale 7-5 2-7-8 2-5-8
6 Subnasale 4-6 1-4-9 1-7-9
7 Promenton 3-6 3-4-5
8 Left Zygofrontale 7-4
9 Left Infra Zygion 3-5
10 Left Tragion _-

potential use of these methods in future research efforts. Specifically, this effort

consisted of variable indentification, factor analysis, and cluster analysis.

Variable Indentification. The first step in the multivariate analysis was the

selection of angular and distance measures which would capture the shape and size

characteristics of the faces. The data for the subjects used in the structural analysis

was also used for this study. Table 3.2 displays the various angle and distance

measures which were used. The coordinates for the points were used to calculate the

distances and the angles. Appendix K includes the programs used for developing the

data files.

Factor Analysis. Using the data files created in the previous step, an analysis

was performed to determine the true dimensionality of the data. The SAS factor

procedure was ,;sed for the factor analysis. This procedure is described in detail in

the SAS reference manual (21, 335-376). An iterative process was used to determine

the final facwors. This process involved the removal of variable3 which did not load

heavily on on the factors and the rotation of the axes using the varimax rotation

option to highlight the relationship between certain variables and factors. Addition-
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ally, a subjective review of the factors and the contrasts was performed to determine

if the resulting factors were logical and reasonable. This step produced a data file

containing factor scores for the observations and provided significant insight to the

underlying structure of the data.

Cluster Analysis. Given the data file of facto- scores, cluster analysis was

performed using the SAS cluster procedure. This procedure is explained in the

SAS manual (21, 255-316). Basically, the observations were classified based on the

average linkage method of the cluster procedure. The resulting groups were analyzed

to determine if natural groupings or sizes were represented or if a relationship existed

between the resulting groups and the outliers previously identified in the structural

analysis. The computer files for the SAS routines are located in Appendix K and

the results of this procedure are reported in the next chapter.
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IV. Results and Conclusions

This chapter includes the results of the analysis and several conclusions based

on these results. As previously stated, the purpose of this thesis was to statistically

analyze anthropometric data to support improvements in the design of flight equip-

ment. This goal was achieved. The following results and conclusions are provided

with reference to the objectives outlined in Chapter I.

Results

In general, the result, of this effort are the products developed to implement

the procedures for analyzing anthropometric data. The procedures developed in

Chapter III and the computer programs contained in the appendices provide the

means for statistically analyzing the data to support improvements in the design of

flight equipment. The demonstration of the procedures, using the data to support

development of the night-vision goggles, produced numerical and graphical results

which confirmed the hypothesis that kriging is a viable statistical procedure for

estimating anthropometric" ',.trfz :es. Additionally, the multivariate analysis provided

experimental results wh"-, " ..ussed in Facial Classification.

Procedure Development. ' he first objective of this study was to develop a

viable kriging procedure for estimating facial surfaces. The procedure developed for

kriging anthropometric data in the preceeding chapter is a result of this research.

The details included in the discussion and the programs contained in the appendices

are, in essence, the physical jesuits of this development.

Aggregation of Individual Estimates. The second objective of this thesis was

to develop a recursive model for updating and aggregating the individual surface es-

timates. The recursive model, or Kalman filter, developed in the preceeding chapter

and the programs listed in the appendices are results of this study.
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Facial Surface Estimation. The third objective was to apply the kriging proce-

dure to estimate the region of the face around the eyes and nose which will influence

the design of the night-vision goggles. The surface estimate obtained using the re-

suits of the first two objectives is illustrated in Figure 3.12 in the preceeding chapter.

This figure represents a surface which accounts for the shape of the facial features in

the region under study and minimizes the variability between individuals. A progres-

sion of this surface, beginning with the first kriged surface, is provided in Appendix

E. These representations are results of this effort.

Facial Classification. The purpose of the multivariate analysis was to deter-

mine if faces could be grouped into classes, based on various angular and distance

measures, which would represent various sizes required for the flight apparatus. If

sizes could be identified, the faces of a particular group could be kriged and updated

independently to further reduce the variability of the surface estimates. The results

of the multivariate analysis are summarized below.

Factor Analysis Results. The primary result of the factor analysis was the

determination that the dimensionality of the facial data is based on five underlying

factors. These factors represent five distinct features of the facial region and are

illustrated in Figure 4.1. Table 4.1 provides the angular and distance measures

associated with each of the factors. The first factor appears to identify width and

breadth features. The second factor seems to represent the length of the faces. The

third factor represents length measures within the central region of the face. Finally,

the fourth and fifth factors define the protrusion of the nose with respect to the

forehead and chin. A second result of the factor analysis was the data file containing

the factor scores for the observations. This file was used for the classification of the

faces.
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Table 4.1. Factor Definitions

Factor 1 Factor 2 Factor 3 Factor 4 Factor.5
Distances 1-9 4-6 34

3-6 3-5m
7-4

3-5
Angles 1-3-9 3-4-7 3-4-5

1-6-9 3-4-6
1-4-9
1-7-9

Table 4.2. Cluster Definitions

Clusters Subjects
1 07*
2 01*
3 33*
4 171
5 150*
6 161
7 199 12* 14
8 151* 152 89*
9 (all remaining
S_._ _ , subjects)

Cluster Aaialysis Results. Based on the cluster analysis performed using the

SAS procedures, the observations ca.n be grouped into homogeneous classes based on

the factor scc.,res obtained through the factor analysis. This analysis suggests that

facial classification prior to the estimation procedure merits further investigation.

The clusters in Table 4.2 were identified using the average linkage method for the

cluster procedure.

A major result of this analysis was the relationship between the seven faces

identified as outliers in the structural analysis and the clusters. All seven outliers
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(07, 01, 33, 150, 12, 151, and 89) appear in the smaller groups while the majority of

the standard faces appear in the larger group. This fact suggests that the variograrn

analysis may also serve as a discriminating functioii for determining which size of an

apparatus is appropriate for an individual.

Conclusions

In conclusion, this thesis develops and demonstrates the application of kriging

in the statistical analysis of anthropometric data to support improvements in the

design of flight equipment. Specifically, a procedure was developed for estimating

the surface region in the areas where flight apparatus is worn that minimizes the

variability between individuals and accounts for the shape of the region. The result-

ing estimates may be used by design engineers in constructing physical models to

support the development ot flight equipment.

In achieving the goal of this thesis, four objectives were accomplished. First, a

viable kriging procedure was developed. This kriging procedure included the struc-

tural analysis of the data and the development of a universal kriging program for

estimating the surfaces and the variances. Secc .dly, a Kalman filter was developed

for updating the suiface estimates. This procedure minimized the amount of storage

data required to update the surfaces. Thirdly, the procedures were demonstrated in

I'he est,,atio Of tl-e frcial fegion afectiig the design of the night-vision goggles.

Finally, a classification of faces based on various angular and distance measurements

was performed. This analysis supports the recommendation for more research in the

classification of faces prior to the estimation procedure.
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V. Recommendations

The primary recommendation of this thesis is the recommendation that the

procedures documented in this report be used to statistically analyze anthropomet-

ric data in support of improvements in flight equipment design. Specifically, the

application of kriging in estimating the surface which minimizes the variability be-

tween indi-idual facial features and accounts for the shape of the facial region should

be used in the development of physical models for flight equipment design. This pro-

cess should include the alignment and structural analysis of the data sets within

predetermined clusters, the actual kriging of the surfaces, and the recursive updat-

ing of the surfaces using the Kalman filter demonstrated in this study. Additionally,

more research in this area is recommended.

This chapter provides recommendations which suggest either improvements in

this effort or areas for further research related to this study. As this thesis may very

well be the first documented application of kriging in the field of anthropometrics,

further research in this area may prove promising. Recommendations are provided

for all areas of this study and are presented for consideration.

Kriging

This section provides recommendations in the area of kriging.

Numerical Analysis. In some instances, numerical difficulties were encountered

in obtaining the kriging estimates. The problem may be inherent to the numerical

routines in the kriging program, the relatively close proximity of the data prints,

or some other aspect of the procedure. One recommendation is to develop an ex-

perimental procedure for determining the root cause of the computational problem.

This would entail the analysis of the sample points in the regions where numerical

errors occurred.
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Additionally, alternative methods for matrix inversion or the solution of si-

multaneous equations could be considered. An initial step might be to assess the

performance capability o; the LUDCMP and LUBKSB routines adapted from Nu-

merical Recipes in C.

Kriging Simulataneously. In this study, the surface region for each subject

was kriged independently. Because of the relatively large size of the data files, this

approach was logical. However, a method could be used for kriging more than one

surface at a time. The potential benefits of this approach should be considered.

Determination of Grid Dimensions and Sample Sizes. As mentioned in the

methodology, the grid dimensions must be chosen to support the structure of the

data. Isotropic behavior, computing efficiency, and surface representation were dis-

cussed as factors to be considered. Further analysis of these factors in determining

the sample and grid sizes could improve the efficiency of the procedure. Perhaps,

more points or blocks were included than were necessary. A comparison of the results

obtained at various dimensions may prove beneficial.

Kriging of Other Facial Regions. This study demonstrated the use of the krig-

ing in determining the design surface for the region of the eyes and nose to support

the night-vision goggles study. The techniques developed in this thesis should now

be tested with other regions of the face such as the area around the mouth and nose

where the oxygen masks fit.

Structural A nalysis

Covariance Structure. In geostatistics, the variogram typically is used to rep-

resent the expected differences in the values of points at varying distances. However,

other second-order moments, such as the covarianc?, may provide a better repre-

sentation of the spatial relationship between points for anthropometric data. An
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investigation to the use of alternative second-order structures is suggested.

Irregularly Distributed Data. The advantages of using regulail!y spaced grid

points in the variogram calculations were discussed in the structural analysis method-

ology. However, the data collected with the use oF the laser scanner provid2s an

irregularly distributed configuration. A question worth investigating is what the

difference is in the parameter estimates obtained by the two methods of variogram

calculations.

Robustness Study. A third study concerning the structure of the variogram is

recommended. This study would be to determine the robustness of the variogram

structure in supporting the kriging of anthropometric surfa ;es. An Zxperimental

design, based on the parameters of the variogram, and a comparison of the kriging

results at the experimental levels may provide a valuable assessment of the robustness

of the kriging process.

Multivariate Analysis

This section provides recommendations in the area of multivariate analysis.

Initial Clustering. Two reasons were presented for clustering the data sets: to

determine the relationship between the outliers in the variogram analysis with the

other subjects, and to determine natural groupings which would be used to estimate

sizes of the apparatus. A study in which the faces within predefined clusters are

kriged independently is recommended to investigate the feasability of estimating

various sizes of flight equipment,

Expanded Factor and Cluster Analysis. The data in this study was limited

to the 37 subjects identified in Appendix A. Future research should include a more

comprhensive data set. Additionally, a more thorough review of the variables and

their relationships is suggested.
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