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1. INTRODUCTION

The increasing use of software in systems where a failure endangers human life is cre-
ating an awareness of the need for careful verification of the correct functioning of such
software. It is this realisation that has lead to the development of such documents as
the United Kingdom's draft Defence Standards 00-55 and 00-56(ref.1) and(ref.2) for the
development of safety-critical software systems. Works such as(ref.3) also present argu-
ments for and against the use of various languages, language constructs, development
techniques, etc, based on the need for the resulting software to be verifiably correct.

This report presents the results of the analysis of a relatively small piece of software
which controls a "smart" ordnance device. The analysis was carried out with the aid of
the MALPAS verification package(ref.4), which was chosen both because of its speed of
analysis and its ready availability.

The study had several major objectives:

* to gain expertise in the use of the MALPAS tools for verifying ordnance software,
and hence to evaluate the effectiveness of MALPAS in such a context.

" to gain insight into the restrictions on such things as programming languages
specified by documents such as(ref.1). This can then be used to determine whether
these restrictions are required or whether they could be relaxed while still allowing
verification of the software.

" to analyse the specific software and expose any flaws in programming or design
that may not have been uncovered in its development and testing, hence ensuring
that no software failure could possibly compromise safety.

" to address two specific questions related to the safety features of the software.

While many of the specifics of(ref.1) may currently not be applicable in an Australian
context, the broad thrust of the draft Standard is very relevant. In general it seeks
to mandate the use of very careful top-down development of specifications, with each
new level being a demonstrably correct instantiation of the preceding one. The choice of
programming language is also restricted to those languages (or subsets of languages) with
a certified compiler and specific language features (for example, block structured and
strongly typed). This is designed to ensure that the compiled code correctly implements
the high-level code and also that the final coding is as simple, clear and straight-forward
as possible, without any coding "tricks" which perform non-obvious functions. The
chosen language (or subset) must also have a formally defined syntax as well as well-
defined semantics, so as to disallow the use of any feature whose exact semantic meani ng
either is not precisely defined or is implementation dependent.

The specific software analysed was that designed to control the EXDET fuse. 'Io quote
the "Software Requirement Specification"(ref.5), "EXDET is a completely self contained
electronic time delay arming and firing device capable of providing an electrical impulse
to an externally connected electric detonator or a percussion impulse to an igniter con-
nected to a non-electric detonator or safety fuse". The code considered here was version
3.0 of the software.
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The EXDET software was written without knowledge of(ref.I) or any similar documents.
and as such should not be expected to meet the criteria established there. Many of the
concepts, however, such as clear, simple coding without unnecessary obscure "tricks",
and clear documentation in the code of all the assumptions on which the correct func-
tioning of the code rests, should be standard practice for all software development. This
is especially so for software that is recognised as being safety-critical. Such development
and coding not only help to reduce errors in the code, but greatly aid both the verifica-
tion that the code conforms to its specification, and also any future maintenance of the
software which may be required.

The main hardware components of interest in the EXDET device are a Philips PCD3343
microprocessor, which includes 224 bytes of RAM (for data storage) and 3 kilobytes of
ROM (for program storage), a clock/calendar chip which is used to provide a second
independent time source, and a safety timer, which provides a guaranteed thirty second
delay between the arming of the device and detonation.

The remainder of this report looks at the translation of the software into the Intermediate
Language used by the MALPAS analysers (Section 2), the results of analysing the code
(Section 3), the answers to specific questions posed about the software (Section 4) and
the conclusions arising from the analysis (Section 5).

2. TRANSLATION OF ASSEMBLY CODE

The first major step in the verification process was to translate the assembly code
provided into MALPAS Intermediate Language (IL). In the absence of an automatic
translator to perform this task the translation must be done by hand. No benefit was to
be gained by writing a translator, there being no perceived use for one beyond the end
of the EXDET verification. It was found that the best way to achieve the translation
was a two phase process; first implement procedures for each of the microprocessor
instructions that are used by the program, and then simply model each instruction of
the original assembly code by a call to the corresponding procedure with appropriate
parameters.

The PCD3343 microprocessor has one accumulator (referred to as A), a carry flag (C),
an eight-element subroutine call stack (located in part of the RAM) and two banks of
eight general registers, only one of which is active at a time (RO..R7, also mapped into
the RAM). There are several other status flags, which are grouped together with the
C flag and the stack pointer into a "processor status word" (PSW), but these are not
of interest in this report. Immediate values are specified to the assembler by preceding
them with a "#" symbol (for example, #7 denotes the value 7), heyadecimal numbers
are written followed by an "H" (so #0CH represents the literal decimal value 12) and
indirect addressing is signified by a leading "0" (ORO refers to the datum whose address
is the current contents of register 11O).

The major assembler instructions used in the EXDET software are:
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Mnemonic Function

ADD x,y Add y to x, putting the result in x
ADDC x,y Same as ADD, except add the carry bit as well
CALL dest Call subroutine at address dest
CPL x Bitwise inversion of x
CLR x Clear x (that is, set value x to 0)
DJNZ x, dest Decrement x by 1 and jump if result is non-zero
INC x Increment x by I
JBn dest Jump to dest if bit n of A is 1
JC dest Jump to dest if carry bit is 1
JMP dest Unconditional jump to dest
MOV x,y Copy data from y to x
RET Return from subroutine call
RLC A Rotate Accumulator left through Carry flag

In this table, "x" and "y" represent data items while "dest" represents a code address
within the program. Note that this list covers only those instructions that are explicitly
mentioned in this report. It does not cover all the valid instructions of the PCD3343, or
even the complete subset used by the EXDET software. Note also that some instructions
can change some of the status flags (for example, an ADD instruction can change the
carry flag C). Details of such effects are listed in(ref.6).

As well as the above instructions the macro MOVE will be referred to. This is used
by the software to generate the special opcodes required for some data transfers (for
example, reading data from program memory, transfers to and from I/O ports etc).

In general, no effort was made to optimise the code in any way during the initial trans-
lation, so as to preserve, as far as possible, the nature of the original code. The one
exception to this was to model the "MOV" instruction by an assignment statement
rather than a procedure call. All other simplification was done only after careful exam-
ination of the output from the various analysers.

2.1 Modelling microprocessor features

The microprocessor's memory can be modelled in one of two ways. Firstly, it could be
considered as a single array of 224 integer values, so the IL reference "Mmory(I)" would
refer to location I in the RAM. This approach has the advantage of being very close to the
assembly code's view of the data, and allows easy translation of such features as indirect
addressing of memory. The major disadvantage is that the MALPAS information flow
analyser is rendered useless (since the result "Memory depends on Memory" is of no
practical use). Also the simplifier would be presented with many possibly deeply nested
calls to the "update" procedure (which is used to change the value of an array element),
especially since the machine registers are memory mapped, meaning that any change
in the value in a register would change the memory state. This would slow down and
greatly complicate the analysis without any corresponding benefit being gained. Since
the information flow analyser is one of the major sources of information about the
behaviour of a program, this approach was regarded as unsuitable.
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The alternative is to model the memory as distinct variables (or small arrays in cases
where this is appropriate). Given this implementation, the MALPAS information flow
analyser can provide much valuable data about the information flows within the pro-
gram, since changes to individual variables can be traced. The disadvantage of this
approach is that indirect memory accesses require much more care to correctly translate
to IL; in particular to minimise the possibility that errors caused by variable "aliasing"
in the assembler code are lost in the translation process. Also, many of the routines,
particularly the higher level ones, must now have lengthy parameter lists, since global
variables are not currently supported by IL.

In addition to the variables allocated in RAM by the program, such objects as the
microprocessor registers, accumulator, I/O ports and status flags had to be considered
in the IL model. The initial approach was to model all these items as appropriately
typed variables declared in the main program section and passed as parameters through
to any other routines that required them.

The translation chosen modelled the status flags as a collection of Boolean variables, so
that individual flags could be passed as required. The accumulator was an integer vari-
able. The I/O ports were modelled as integer variables, with specially defined operators
to enable tracking of values read/written. The general registers presented a problem,
since the PCD3343 has two sets of eight registers, only one of which is active at any one
time. To avoid large amounts of complexity, these were initially modelled as three sets
of eight integer variables; one for each of the actual sets of registers and one to be the
"currently-in-use" set. The machine instruction for switching register sets was modelled
by copying the current set to whichever actual bank they were representing and then
copying the values for the new set into the current set.

The fundamental disadvantage experienced with this implementation was the large num-
ber of parameters that had to be passed to subroutines, particularly through the high-
level routines. Because the specification of the routines ended up being derived bottom-
up (see Section 3.1 below) this approach led to large and irrelevant information de-
pendencies being carried up to the higher level routines in the form of machine-level
variables. This complicated the analysis enormously, to the extent that the higher level
routines became impossible to analyse due to the complexity of the resulting expressions.

The solution found for this problem was to model such things as the status flags, registers
and I/O ports locally in the routines that use them, wherever this was possible. In
doing this, the results from the information flow analyser were important, since such
values could only be modelled locally when there was no relevant flow of information
through them to any calling routine. In cases where there was such information flow,
it is necessary to pass the variable as a parameter from the calling routine, so that the
information flow can be accurately modelled. This change in approach simplified the
analysis enormously, since large amounts of useless information flow (for example, the
"flow" caused by the change in value of a register which a called subroutine used as
temporary storage) was removed from the model, allowing analysis to be concentrated
on the important and relevant flows. It also allowed instances where there was a non-
obvious information flow to or from a routine through such data items to be highlighted.

The obvious danger in this translation strategy lies in code which uses techniques such
as variable aliasing or indirect addressing in such a way that assumed information flow
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is not obvious. Such programming techniques could easily lead to incorrect modelling of
the code, and thus potentially mask errors in the original code. Since examples of this
type of programming were found to be present in the EXDET software, extra care had
to be taken to avoid such errors in translation. The MALPAS data use and information
flow analysers were of use in detecting some errors in this class, since such errors are
characterised by uninitialised or badly-used variables. A more detailed discussion of
these problems is in Section 3.3 below.

2.2 Modelling interrupts

Perhaps the single largest problem with translating the assembler code was modelling
interrupts. In the general case, an interrupt can occur at any point in the code after it has
been enabled, and the interrupt handler can then proceed to make arbitrary changes to
machine registers and/or memory. Such badly behaved interrupt service routines make
verification impossible with currently available techniques. As a result, the draft UK
standard 00-55(ref.1) restricts the use of interrupts in safety-critical software applications
to "a timer interrupt at fixed intervals".

The interrupt handler in the EXDET software, however, was carefully written to avoid
such problems. In particular, it has the alternate register bank reserved for its exclusive
use, and the value of the accumulator is saved across calls to the handler. The only
values written by the routine are never written outside, except to initialise them before
interrupts are enabled. All variables read have well-defined values before interrupts are
enabled.

While the timing characteristics of the handler are not amenable to being analysed using
MALPAS, all paths through the routine appear to be short, so the routine should be
able to finish execution well before another interrupt occurs, thus allowing the main-line
code time to execute. Any problems of this sort are likely to have been found by dynamic
testing, since there are only a small number of semantically possible paths through the
handler.

The use of interrupts rather than a polling technique to detect events allows the use
of the microprocessor's "IDLE" state. This saves unnecessary power consumption and
hence allows the device to operate for much longer periods of time than would otherwise
be possible. Advantages such as this, which markedly increase the functionality of the
device, make it desirable that techniques be found to verify the safety of code using
interrupts, rather than simply banning or severly restricting their use.

Given the design of the EXDET interrupt handler, it becomes possible to apply static
code analysis to the routine in similar fashion to any other subprogram. The only
additional constraint that must be observed is that an interrupt must not be delivered

in the midst of executing a time-critical section of the main code. This can be verified by
manually locating any sections of code that are time-critical and ensuring that interrupts
are disabled during execution of such code sections.

This experience with interrupts is at odds with the UK approach, which allows only a
fixed interval timer interrupt. The results obtained here indicate that it is the interrupt
handler's interaction with the mainline code and data, more than the regularity or
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otherwise of its occurrence, which determines whether it can be analysed. Also, since
only high-level languages may be used under(refil), all code must be compiled which
makes it very difficult if not impossible to write code which exactly satisfies some time-
based design criteria. A more useful approach may be to require the developer to show
that any interrupt handler is "well-behaved" and also that the interrupt cannot be
triggered in any time-critical section of code. By "well-behaved", it is intended that the
routine should have a well defined and, as far as possible, deterministic interaction with
the main segments of the code and data. This can be achieved if the handler:

" does not read the value of any variable that may be uninitialised when interrupts
are enabled, unless the handler is guaranteed to initialise it first;

" does not change the value of any variable which may also be modified outside the
routine while interrupts are enabled; and

" completes execution in less than the expected minimum time between interrupts
occurring;

Such an interrupt will have no adverse effect on the running of the main program and can
thus be analysed in two separate stages. Firstly, the static properties of the code, such as
control flow, data use and the like, can be analysed using a tool such as MALPAS. Then
the dynamic properties, such as the timing of interrupts with respect to time-critical
sections of code, can be checked.

The verification of interrupts, including the possible revision of the above definition of
"well-behaved" handlers to include a more general class of handlers, is a topic for further
investigation.

2.3 Eight bit arithmetic

Since the PCD3343 is an eight bit microprocessor, all arithmetic operations must be done
to eight bit precision, rather than the 32 bit precision of MALPAS integers. The routines
written at AWE Aldermaston(ref.7) implemented most of the required functions, and
the remainder were easily derived from these routines. Use of these routines, however.
resulted in many calls to the simplifier and in fact exceeded the default value of 40 for
the DEPTH qualifier of MALPAS. Changing this value to 200 alleviated the problem
while still providing a check on any "infinite" recursion of the simplifier.

One problem became apparent with the REPLACE rules for the bit manipulation rou-
tines if the first parameter did not have a known explicit value. In this case, the RE-
PLACE rule was invoked, but the resulting (much more complicated) expression could
not be simplified, thus adding significant complexity to the final output from MALPAS.
This problem is overcome by changing REPLACE rules of the form

REPLACE (a,b : integer) a OP b
BY c;

where a, b and c are integer expressions and OP is an binary operator, to the equivalent
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REPLACE (ab : integer) a OP b
BY c IF a >= 0,
BY c IF a < 0;

This has the effect of preventing the application of the REPLACE rule unless an explicit
value for a is known.

2.4 "Action" routines

Another problem with using MALPAS as a verification aid for the EXDET software (or
indeed any real-time software) is that some of the routines lack obvious output data
items. For example a time delay loop has no effect on the program data, nor does the
routine to transmit data out the serial port. These aspects of the code, while clearly
being vital to the correct functioning of the software, are execution-time properties which
are dependent on the hardware and its environment (albeit influenced by the software).
For this reason, it is impossible to completely analyse such code using a tool such as
MALPAS, which is a static code analyser that analyses properties of the code and its
data independently of its operating environment.

The method chosen to partially overcome this problem was to use an artificial success
variable. This variable is an OUT parameter of a routine, and has the final value TRUE
if the routine successfully (as far as can be determined statically) performed its intended
function, or FALSE if some failure was detected. Thus the success value of the bottom
level routines may be based on status values returned from low-level I/O calls, while the
success value of higher level procedures can then easily be determined by combining the
values returned from all the lower level procedures called. This provides a simple way to
allow a static analyser such as MALPAS to analyse routines that do not just manipulate
program data, at the expense of having to carefully keep track of the success status.

Time-critical sections of code pose a different problem. One obvious approach would
be to maintain a time variable which is incremented appropriately after each inachinc
instruction, so as to accurately reflect the number of machine cycles elapsed. Any time-
critical code can then be checked to comply with the desired criteria. Rather than
add this significant extra complexity to the model, however, it was decided that any
time-critical properties of the code would be verified by hand.

3. ANALYSIS OF THE SOFTWARE

Having translated the assembler code into MALPAS IL, the various MALPAS analysers
can then applied to th- code. This process tends to be iterative in nature, since output
from one run of an analyser may suggest more effective translations of the original
assembler code into IL, to enable simpler and more useful output to be generated.
The other benefit of making coding optimisations this way, rather than in the initial
translation phase, is that by referring to the output from the analysers, it can be shown
that the optimisations in no way effect the equivalence of the model and the original
code.

A-
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3.1 The specification

Before anything can be determined about the correctness of the program, there needs
to be a well-defined specification for the software. The specification for the EXDET
software consists of two documents: the "Software Requirement Specification for the
Explosives Detonator"(ref.5) and the "EXDET Software Structured Design: Module
Specification"(ref.8). As the titles suggest,(ref.5) is a high-level English language de-
scription of the desired behaviour of the software, while(ref.8) is a much lower level
pseudo-code specification of the sequence of steps each routine of the software is required
to perform. It is notable that there is no attempt to show that the module-level specifi-
cation(ref.8) satisfies the high-level specification(ref.5), nor were any intermediate-level
specifications provided. Thus verifying the software against the module-level specifica-
tion is only half-way towards verification of the software. It then remains to show that
the module specification satisfies the high-level specification.

Detailed examination of the module specification(ref.8) reveals several places where the
specification can be shown to be flawed. For example, the following is the specification
for the procedure ConvertDaysToMonths, which is used to convert a number of days
into a number of whole months and days, based on a starting day of the 1st of January.

Raw.Months = 0
IF (Raw-Days - 31 < 0) THEN

{
RawDaysLeft - Raw-Days + 31
RETURN

I
Raw-Months = Ra.-Months + 1
IF (Raw_Days - 28 < 0) THEN

f
RawDaysLeft = Raw-Days + 28

RETURN

I
Raw.Months = Raw-Months + I
IF (Raw-Days - 31 < 0) THEN

RawDaysLeft - Raw-Days + 31
RETURN

I
Raw-Months = Raw-Months + 1

IF (Raw_Days - 30 < 0) THEN

RawDaysLeft - Raw.Days + 30

RETURN

Leap years can be (and are) correctly and safely ignored, although this assumption is
never stated explicitly anywhere in the specification, the program code or its documen-
tation. This is correct behaviour since the months figure is only used to program the
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external clock/calendar chip, which expects its delay in months, days, hours, minutes
and seconds, where months are based on the first of January in a non-leap year.

Also left implicit is the input constraint of (Raw-Days < 120), presumably since the
software (assuming it to be correct) can only be programmed up to 99 days in advance.
This omission (and similar ones elsewhere in the specification) may prove disastrous if
the software is modified to allow longer delays without a detailed knowledge of such
unstated assumptions.

A study of the above specification reveals glaring deficiencies. The value of Raw-Days
is never changed. Hence if the first 'IF" statement is not satisfied, none of the other
IF statements can be satisfied either. This leaves the value of RawDaysLeft undefined
at the end of the specification. Even if the first IF statement is satisfied, an incorrect
value of RawDaysLeft is returned.

A look at the corresponding assembler code is revealing.

DAYSTOMONTHS CLR C clear carry bit
MOV RO,#RAWDAYS get address of Raw-Days
MOV A,QRO put value of Raw.Days in A
MOV .,#O clear RI
CPL A these 3 instructions
ADD A,#31 subtract 31 from A
CPL A
JC BACK-STEP-31 Jump if Carry set,

which means that A was < 31
no branch if A was >= 31

INC RI increment number of months
CPL A subtract another 28...
ADD A,#28

CPL A
JC BACK-STEP-28 jump if result < 0

repetitious code removed

OUTWITHIT MOV RO,#RAWDAYSLEFT

MOV QRO,A store A in RawDaysLeft
MOV RO, #RAWMONTHS
MOV ,KRI

MOV ORO,A store RI in RawMonths

RET

BACK.STEP.31 ADD A,#31 add 31 back to A
iMP OUTWITHIT clean up and exit

BACK-STEP-28 ADD A,#28 add 30 back to A
iMP OUTWITHIT clean up and exit
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It can be seen here that the value A (the accumulator), which is initially RawDays, is
continuously decreased throughout the routine, until it becomes negative. When this
happens, the last-subtraction is reversed, the values of RawDays-Left and Raw.Months
are set and the routine exits. This assembler code can be verified to correctly convert
a number of days (up to 119) into whole months and remaining days, based on the
obvious, common-sense interpretation of this operation.

The fundamental problem with the specification is that the value of Raw-Days, on which
all the comparisons are done, is never changed, hence the comparisons as written make
no sense. Also, the add-back step from the assembly code, which is necessary since the
microprocessor has no "compare value" instruction but rather must continually subtract
values until the result becomes negative, is also present in the specification. Without
the repeated subtraction having been done this leads to an erroneous result.

The effects of this erroneous specification are two-fold. Firstly, sound programming prac-
tice for safety critical software development dictates that the module level specification
should have been generated from higher-level specifications, and the actual assembler
code to implement it designed and coded later. The presence of the add-back operations
in the specification suggests that the assembler code may have been written first, with
the specification then being reverse-engineered from the assembler code. This in turn
suggests that the remainder of the specification may have been similarly derived. If this
is indeed the case, then the specification can at best be a higher-level version of tie
assembler code, complete with any errors that the assembler code may contain. It can
thus in no sense be a specification of what the system is intended to do, but rather can
only be a specification of what the assembler implementation actually does do. Such a
specification is of no use for the verification of the correct functioning of the software.

Secondly, regardless of whether or not the specification is actually a reverse-engineered
version of the assembler, the fact that the specification is so clearly and badly flawed
must cast sufficient doubt on the integrity of the specification that it is of no use for
verification purposes.

This lack of confidence in the specification means that any flaws detected in the assembler
code could just as well be errors in the specification; for instance the first statement in
the specification for procedure Run-Mode is

ETest = 0

whilst the assembler code starts with

MODE-RUN NOV RO,#E.TEST

MOV *RO,#O1 enable test mode

These two versions are contradictory, and which is correct is then a matter for a sub-
jective interpretation, based on knowledge of the overall program. This need for such
subjective judgement is clearly unsatisfactory when dealing with safety-critical software.
In fact, once again, it is the specification which appears to be incorrect rather than the
assembler code.
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Another aspect of the specification which would have greatly aided the verification pro-
cess is a concise definition of the exact dependence of the output data on the inputs.
Again this is necessary information, since without it the best that can be done is to
analyse the code to find the actual dependencies (in effect, reverse engineer the specifi-
cations from the code), and then confirm that these are subjectively "reasonable". This
is again an undesirable approach when dealing with safety-critical software.

Finally, the detailed functioning of routines such as SeriaLReceive and SerialTransmit
could not be checked, since no function specification for their operation was provided
(other than a passing reference to the "Philips Single Chip Microcomputer Software
Examples" in the module specification, a document which was absent from the set of
documentation provided for the verification).

Since the module-level specification document(ref.8) is the sole detailed specification
for the system, its lack of integrity renders formal verification of the EXDET software
impossible. What can be done, however, is to consider the assembler code in bottom-
up fashion (starting with routines that call no others) using the MALPAS analysers to
derive information-flow and semantic information. This allows us to form a picture of
what the software is actually doing. If this information can be simplified sufficiently

to allow manual analysis, it can be used together with the English language system
specification to check that what the code is doing is subjectively "reasonable". Such
analysis is of course extremely informal and prone to missing some errors, especially
since the correct behaviour in all circumstances may not be intuitively clear.

Another deficiency in the high level specifications provided concerns the "safety timer".
It is stated(ref.5) that detonation will be initiated "on the expiration of the preset delay
and the safety timer's thirty second delay", once the device is armed. The specification
for the final pre-arming tests also states that there is '... a check to ensure the safety
timer is configured correctly .. '. It is not, however, stated exactly when this timer is
actually started, in particular whether it is at the completion of the final pre-arming
test, or when the device is actually armed. Reading the assembler code to determine
which has been implemented provides no answers. The safety timer is accessed through

the same I/O port as the main rotary switch, and all supporting documents refer only
to this use.

Further information was obtained from the manufacturer to fill in the missing details. In
fact, the safety timer is controlled almost entirely by hardware, the only output visible
to the software being a signal that the delay has expired. The only software control
is the initiation of the accelerated test when the unit is powered up. Despite the lack
of software control of the safety timer, it would have been extremely useful had some
details of its operation been included in the specifications and/or code, since the output
signal from this timer forms a critical part of the software's decision on whether or not
to detonate.

Overall, this project indicates quite clearly the problems associated with not develop-
ing software top-down, starting with a high-level requirements specification and then
gradually refining this until the code is written as the last step. In this case it appears
that the code was written before at least some of the specification documents, which
were later derived at least partially from the code they are intended to define. This
invalidates the specification as a reliable source of information of the intended actions
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of the software, and thus makes formal verification of the complete software impossible.

3.2 The assembler code

The code, having been translated into MALPAS IL as described in Section 1 above, was
analysed using the MALPAS analysers, as indicated in Table 1. One problem was caused
by the listing itself, which was the printed output from an assembler. The assembler
had a limit on the length of output lines which effectively meant that comments longer
than about 35 characters were truncated. In some cases, this truncation obscured the
meaning of the comments, which made interpreting the intended function of the code
harder. Despite this, the comments that were present were generally good and greatly
enhanced the readability of the code.

Initially, the control flow analyser was used to determine the structure of the code. This
enabled the IL code to be significantly simplified by the appropriate use of IL constructs
like IF ... THEN ... ELSE and LOOP ... ENDLOOP. Also a "SUB" procedure (integer
subtraction) was implemented to replace the code sequence

CPL A
ADD A,#n
CPL A

This assembler code can easily be shown to subtract the value "n" from the value in the
accumulator A, as all such calculations are effectively unsigned with appropriate checks
being made for underflows. Such simplification aids not only other analysers but also
greatly increases the readability of the code to humans.

The actual structure of the software is an initialisation phase on powering up the device.
followed by a main program loop. This loop examines the state of the rotary switch
on the device and calls the appropriate routine to handle the state currently selected.
Thus the action of the software after initialisation is determined by examination of the
five mode handlers (one for each of "PROGRAM", "STANDBY", "RUN", "TEST" and
"ARM" modes) and the handler for the timer interrupt. This partitioning of the software
aids analysis by reducing the size of the code to be analysed at once to manageable
proportions.

Having determined the structure of the program from control flow analysis, the data
use, information flow and semantic analysers can then be used to determine the actual
information flows and data dependencies within the code, as well as pointing to any
errors made in the translation, as explained earlier. Such analysis leads to the following
observations about some of the routines, presented in alphabetical order.

3.2.1 ConvertTo-BCD

The instruction "CLR C" is redundant. Also, since at least HexTo.BCD expects the
tens value returned in RI to be in the range 0 < R1 < 9, there should be an input
condition of 0 < A < 100 on input to this routine.
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TABLE 1. SUCCESS OF ANALYSERS ON THE VARIOUS ROUTINES

Routine Control Data Information Semantic Compliance
name flow se flow analysis analysis

CLEAR-DISP ok ok ok*
CON VERTLTO..BCD ok ok ok ok x
DAYS..TO-vIONTHS ok ok ok ok (ok)
DELAY-1.0 ok ok ok*
DISPLAY-MISG ok ok ok*
ERROR-LIMIT ok ok ok ok-
EXTANT null routine _____

FAIL x ok ok
HEX..TO.BCD ok (ok) ok*
INITIALISATION ok ok ok*
MAIN-PROGRAM ok ok ok*
MASK-.FILTER ok ok ok*
MODE-ARM ok ok ok
MODE-PROGRAM ok ok ok
MODEUN ok ok ok*
MODE-STANDBY ok ok ok
MODE-.TEST ok ok ok*
POWER-UP-TEST ok ok ok*
RAM ok ok ok
READ-.SWITCHES x ok ok
ROM ok x ok_____
SERIAL-JNT ____null routine ______

SERIAL-RECEIVE ok ok ok
SERIAL-.TRANSMIT x ok ok
STOPJT ok ok ok
TIME1LCLOCKJNT ok ok ok ok
ZERO-ALARM ok ok ok
ZERO-.TIME ok ok ok

Note: "x" means that the analyser detected a problem, "nindicates that the analyser
completed but the results were not fully analysed, "(ok)" means that the routine was
shown to be correct after obvious errors had been removel from the specification, and

means that the analyser was not run.
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3.2.2 Fail

This routine calls Serial-Transmit to display an error code on the liquid crystal display
(LCD). This causes no problems, unless Serial-Transmit detects an error, in which case it
calls Fail to display an error code. This potential infinite recursion and its consequences
appear not to have been considered, and leads to a possible compromise of safety. Sup-
pose that an error is detected after the device is armed; the correct action is to display
an appropriate error code and then call the "STOP" code. If some failure triggers the
infinite loop however, the "STOP" code is never reached, and the countdown continues
via the timer interrupt service routine. The countdown may then successfully expire,
despite the presence of some (detected) error condition which was supposed to stop the
processing.

While this problem does not lead to a specific identified compromise of safety, it is
considered most undesirable that code which has been identified as being safety-critical
should fail to correctly handle a detected error condition. In this case, the correct (and
obviously the intended) action is to stop the device, and the code should be modified to
ensure that this happens.

3.2.3 Hex-ToBCD

There is an implicit assumption made by this routine that the registers R6 and R7 con-
tain meaningful values on entry. In general, these are set up by the routine Displaydsg
and are required to remain valid for a sufficient period for the code to work correctly.
This is indeed the case in the present software (although this is not obvious to a casual
inspection), but this assumption should be clearly stated, so as to avoid the registers
being re-used inappropriately in some future modification of the code.

3.2.4 ReadSwitches

The assembler code

MOV RO,#F.ARM
NOV A.GRO

137 IN.ARM

INAP

is used to preform a check which the module level specification describes as

IF (FAzm a FFN) THEN

Now F-Arm (like the other F_* variables) is initially set by calling Read.Switches and
Mask-Filter eight times in a loop, each loop filling in a different bit in the variables.
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This leaves unanswered the question of whether it is justified to base checks on just
one bit of this result, or whether the check should be the more stringent version from
the specification despite the obvious additional code required to implement it. Checks
on these variables are done in the above "JB7" fashion at many places in the code.
and should really either be justified as being sufficient or replaced by a more rigorous
alternative.

3.2.5 ROM

This routine does not appear to initialise the carry flag before the "RLC A" instruction
at line 2370. Reliance on such volatile data seems likely to produce unexpected results.
A comment stating (if not justifying) that the initial value of this flag is "don't care"
would be desirable, since this fact is far from obvious without detailed consideration of
the code.

A high level definition of the CRC used would allow verification of the implementation
of the algorithm. Checking the actual expected value would have required both the
expected value and a machine-readable version of the code. This latter is arguably
unnecessary as having an incorrect expected checksum should lead to a power-up failure
very early during the testing of the device.

3.3 General comments about the code

In general, the code is clear and straight-forward to analyse, except as noted above.
However, the use of code sections such as

MOV R3,104H
NOV APSW

MOV RO,#1CH; assume register bank 1
JB4 NEXTCHAR
MOV R0,804H ; set register bank 0

NEXTCHAR NOV A,R1
MOVE A,*A
NOV ORO,A
INC R1

INC RO
DJNZ R3,NEXTCHAR

taken from the routine Display.Msg, rather than the equivalent

NOV A.RI
MOVE A,QA ; read first byte of msg
NOV R4.A store in R4
INC R1
NOV A,R1

MOVE A,QA ; read second byte
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NOV RS,A ; store in R5

INC R1
NOV A,RI
MOVE A,GA read third byte
NOV R6,A ; store in R6
INC R1
NOV A,R1
MOVE A,GA ; read last byte
NOV R7,A store in R7

obscures some of the actual data flow by referencing the registers R4, R5, R6 and R7
via the pointer RO. Such coding is usually written in an attempt to reduce the code size,
but it is interesting to note that the second version is in fact smaller in terms of bytes
of code than the first (despite the source form consisting of more lines), as well as being
much easier to understand and verify. The increased clarity of the second version may
also avoid introducing flaws if the software has to be modified, since the routine's use of
the registers would be much clearer. No mention of this use of the registers is made in
the current version of the software (despite the dependence of the routine HexTo-BCD
on the values placed in these registers by this code).

It is recognised that, unless the data is stored in RAM rather than registers, such code as
the first five lines of the current code are necessary to determine the absolute address of
the data, which is required by the routine Serial.Transmit. However, the improvement
in overall code clarity of the second version above, even with the extra lines to obtain
the required absolute address, would greatly outweigh the extra few bytes of total code
length that would be generated.

In a similar vein, there are several places in the code where sets of variables are assumed
to be allocated in consecutive memory locations. Again, while this has no influence
on the correct functioning of the code as it stands, the assumption is never explicitly
stated and may lead to problems if the software must be modified by a person who is
not extremely familiar with all of the code.

An analysis of the procedure call graph (which shows which procedures are called by
which others) shows that there are seven levels of procedures, where a procedure at any
given level is only called by procedures at higher levels. It also shows that, apart from
the potential infinite recursion discussed earlier, there is no recursion present ilk the
software. It can thus be seen that it is impossible for the microprocessor's eight-level
procedure call stack to overflow, although again there is no evidence that this potential
problem was ever considered during the design or implementation of the system.

4. SPECIFIC QUESTIONS

Towards the completion of the verification, when it had become obvious that verification
of the correctness of the software in its totality was not possible, two more specific
questions were posed relating to the safety characteristics of the software.
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* " Could the software cause incorrect operation of the thirty second safety time
delay?"

Details provided about the operation of the thirty-second safety timer show that
it is almost exclusively controlled through hardware. In particular, the timer is
enabled when the device's selector switch is moved to "TEST" mode and it is
reinitialised when the switch is moved to "ARM" mode. Also, from the semantic
analysis of the timer interrupt routine, which makes the final decision to detonate,
it is clear that all paths which allow detonation require the presence of the "ex-
pired" signal from the safety timer. Since everything else is controlled by or preset
in the hardware, most importantly the actual length of the delay, this means that
the software can in no way cause incorrect operation of the delay.

* "Could the software cause premature functioning of the device through software-
induced error in the set delay time?"

This is a more complex question, which involves consideration of the results from
data use, information flow and semantic analysis of several sections of the software.
The delay is set up in "PROGRAM" mode, but no timers are started until "RUN"
mode, and the final delay time is not passed to the independent clock/calendar
until the device is armed. Thus to answer the question, it is necessary to determine
whether the delay is correctly read in and stored, and also whether this delay is
correctly made available to and used by later routines to initialise the timers.

Using the results from the MALPAS analysers in combination with the origi-
nal code shows that the preset delay is read in and stored in three variables.
"Raw.Days", "Raw.Hours" and "Raw-Minutes". These values are initially set
to zero days, zero hours and one minute, and can be changed by firstly pressing
the "SELECT" button to choose which quantity to change and then the -IN-
CREMENT" button repeatedly to set the desired value. Each time one of these
variables is incremented its new value is displayed on the LCD, thus ensuring that
the operator is correctly informed of the currently programmed delay setting. In
the event of a failure of the LCD display, the error generated by trying to display
a value will be detected by the routine Serial-Transmit, which should ideally cause
the device to shut down. As explained above, however, the current effect is for the
software to go into an infinite loop. Since the only way out of this loop is to power
down the device, this is a safe effect, so failure of the LCD can be disregarded
from a safety point of view. Thus when the device is switched from "PROGRAM"
mode to "STANDBY" mode, the last value displayed on the LCD matches the
internally stored delay.

"STANDBY" mode will read the Raw.xxx variables if either of the push buttons
is activated. In this case, the preset delay is displayed on the LCD, for further
manual verification if this is desired. These values are copied into general registers
to be passed to the display routines, but data use analysis shows that they are
never written to, so there can be no compromise of safety while the device is in
this mode.

"RUN" mode is used to initialise the required timers, although the device is not
armed at this stage. Data use analysis shows that the Raw.xxx variables are
again only read in this mode, so there is no corruption of the preset delay fig-
ures. The Raw.xxx values are copied directly into another set of variables, named

....................
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Tim-Day, Tim-Hour and Tim-Minute, and two variables, Timer-MinMsb and
TimerMinLsb, are initialised to represent fractions of minutes. All these vari-
ables are used by the software to implement the countdown timer that forms one
of the time sources for the device. Until the countdown expires (either with the
device armed, which may result in detonation, or with it unarmed which merely
displays a message on the LCD) or an error is detected, a timer interrupt occurs
sixteen times per second.

Semantic analysis of the interrupt handler shows that the code to implement the
countdown is correct (given that the interrupts are generated at the correct fre-
quency, which is controlled by hardware). Thus the countdown timer will correctly
expire after the preset delay time, starting from when interrupts are enabled. This
is done at the end of the code to handle "RUN" mode. Also verified by semantic
analysis of this routine is the fact that all three of the software timer, the indepen-
dent hardware timer and the safety timer must correctly expire before detonation
can occur.

Also in the "RUN" mode (but before timer interrupts are enabled), the indepen-
dent clock/calendar is initialised. This device is reset to zero, and this resetting is
checked by a read-back step, with the value being verified as zero. Failure causes
the device to shut down. The alarm point of the device is similarly cleared and
verified. The count-up of this device is enabled at the same time as the software
countdown timer is enabled, but the alarm time is not set until the device is armed.
This is another safeguard against premature detonation, since until the alarm time
is set, the clock/calendar timer cannot successfully complete, and thus detonation
cannot occur.

The routine to handle "TEST" mode does not access either the preset delay
(Raw.xxx) variables or the current countdown (Tim..xxx) values in any way, ac-
cording to the data use analysis. Thus the code is of no interest to answering the
current question and is not analysed further.

The final point at which the software could conceivably cause premature deto-
nation is in "ARM" mode, when the alarm time is calculated and sent to the
independent clock/calendar. Data-use analysis shows that this routine reads the
Raw-cxx variables to obtain the preset delay time. Data use analysis has shown
that these have not been altered since they were set in "PROGRAM" mode (ex-
cept for one case which will be discussed in detail shortly), so these values still
accurately reflect the programmed and displayed delay time. The Raw-Days value
is split into Raw-Months and Raw-Days.Left, using the Convert.DaysTo.vlonths
routine discussed earlier. As stated there, the assembly language version of this
routine is correct for the currently allowed range of allowed delays (up to 99 days).
Thus this conversion will complete successfully. These delay values are then con-
verted to BCD using the Convert.To.BCD routine, which semantic analysis has
shown to be correct for the range of possible values of these variables. These BCD
values are then used to set the alarm time for the independent clock/calendar, and
the correct setting is verified by reading back the values and comparing them with
the originals, failure causing the device to shut down.

The remaining consideration is what happens if the modes are not entered in
exactly the expected order. An examination of data use analysis shows that if
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"PROGRAM" mode is entered from "STANDBY" mode, or "STANDBY" is en-
tered from "RUN", then the programmed delay time is reset to the default time of
one minute" This is the only time, apart from the delay entry sequence in "PRO-
GRAM" mode, that the Raw..xxx variables are modified by the code, as shown
by data use analysis. Despite the "reset to one minute" being part of the Re-
quirement Specification(ref.5), it is contended that this behaviour is unsafe, since
the LCD remains clear, with the new delay never being displayed unless one of
the push buttons is activated in either "STANDBY" or "RUN" mode. Thus in
this situation, the actual programmed delay no longer matches the last displayed
delay, and the device may well detonate before it is expected, which is a clear
safety hazard. Given that(ref.5) specifies this behaviour in order to conform with
the Operator Interface requirements of the Hardware Design Specification(ref.9),
this hazard must initially be addressed via a review of(ref.9), with changes flowing
through to(ref.5) and ultimately to the code.

This problem may be overcome in a number of ways. For example, the idea of
a "default delay" could be abandoned, with the operator being forced to enter a
delay at any stage that the default delay is currently set. Alternatively, the default
delay could be made to be the longest possible delay for the device (currently
99 days, 23 hours and 59 minutes) rather than the shortest. This would mean
that even if the delay was reset, the resulting delay would be at least as long as
that programmed, so detonation would never be premature. Another possibility
is that part of the sequence of initiating the timers in "RUN" mode could be to
display the programmed delay. The operator could even be required to activate
one of the push buttons after the delay is displayed, as an indication of acceptance.

As a side-effect from the analysis, the actual time of detonation of the device can
be determined. The software timer and clock/calendar devices are both initialised
when the device is switched into "RUN" mode, so this is a convenient base time
to consider as zero. The preset delay time, Dt, which matches the last time
displayed on the LCD (except for reset case described above) is the expected time
of detonation. However, the clock/calendar is not programmed with its final time
until "ARM" mode is entered at time At, and at this time the safety timer begins
its timing as well (nominally thirty seconds, but in practice it may be slightly
longer, St, where 30 < St < 55 seconds according to the hardware specification).
Thus detonation actually occurs at the later of Dt and (At + St). Since Di >= At
(or else the software timer completes with the device unarmed and detonation is
inhibited), it can be seen that, even given completely accurate timing, detonation
may be delayed for up to St seconds beyond the stored delay time. This behaviour
is in accordance with the Requirement Specification(ref.5), and is also intuitively
"safe" (that is, detonation is delayed by at least the duration of the safety timer
once the device is switched into "ARM" mode.)

The answer of the original question can now be given. The analysis has revealed
that as long as the device is stepped through each mode in the "correct" order, the
code correctly stores the preset delay and passes this value to the two independent
timers. Also, the requirement that each of these timers must expire correctly (as
well as the safety-timer) before detonation is allowed is correctly enforced by the

code. If, however, the device is returned to "PROGRAM" or "STANDBY" mode

having been taken to another mode, the preset delay may be reset to one minute

L
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without this being displayed on the LCD. Since this is the smallest possible delay
for the device, it is likely to be shorter than the programmed delay, so when the
device is finally armed detonation may occur well before it is expected.

5. CONCLUSIONS

Overall, the EXDET software appears to have been well written and tested in terms of
conventional programming practices, as shown by the small number of problems detected
in the code. While good programming practices certainly helped the verification, it is
clear that the code was not written to be verified. Such coding practices as using an
indirect reference in a loop to load several machine registers and the many undocumented
assumptions (such as certain variables being located in the correct order in consecutive
memory locations) on which the correct functioning of the code rely should not have
been present if one of the main goals was the verification of the completed code. In
conventional software development, however, where the code is checked to be correct by
dynamic testing, such coding is (arguably) less of a problem, since the main concern is
the correctness of the final answer, with the fine details of the calculation of that answer
being, in general, only of secondary importance.

There were two significant problems detected, one being in the software itself while the
other was in the specification. It is worth noting, however, that even the specification
error was detected from the MALPAS analysis of the code, which indicated behaviour
which seemed intuitively unsafe in some cases. The software error was the potential
infinite loop of the Fall and SerialTransmit routines, and the required situation for this
to happen is very unlikely to occur (which is why this was not found by dynamic testing
of the software). Nevertheless, in a recognised safety-critical context, any detected error
must cause the device to enter a safe state until the error can be corrected, since ignored
or incorrectly handled error conditions lead to unacceptable risks of a compromise of
safety. This problem thus needs to be addressed to ensure that there is no such com-
promise of safety possible in the EXDET software. The specification error was that the
programmed delay could be reset to one minute without the operator necessarily being
aware of the change. This also must be corrected as a high priority, since it leads to

detonation before the expected time.

In contrast to the generally good quality of the code, however, the specification of
the system as presented is entirely inadequate and cannot form the basis for formal
verification of the software. It has been shown that

" the module-level specification contains fundamental and obvious errors in simple
routines;

" it may well have been reverse-engineered from the code; and

* no attempt was made to show that it conformed to the top-level software specifi-
cation.

Since a verification can only be as good as the specification against which the software
is compared, any one of these points would make verification impossible.

2L
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In order to be able to verify the software as being correct, it would be necessary, as
well as fixing the errors detected in the software, to develop a series of credible speci-
fications. This should start with a (possibly revised) version of the requirements spec-
ification(ref.5), which would clearly, completely and unambiguously specify the desired
behaviour of the software. It should end with a module-level specification which would
specify for each routine (as a minimum):

" a clear, concise and complete description of its intended function,

" a complete list of any input and/or output parameters,

" a complete list of any global objects that are referenced, including the type of
access (such as read and/or written),

" a complete functional specification of any outputs (parameters or globals) in terms
of the inputs, and

" a complete fist of any assumptions on which the correct functioning of the code is
based.

Given such a series of specifications, there would then be a high degree of confidence
that the module-level specification accurately represented the top-level specification.
This immediately leads to greater confidence that software that meets the specifications
is going to meet the user's requirements. Even if such a series of specifications were to
be developed for the EXDET software, it would almost certainly be necessary to modify
substantial portions of the code so that its compliance with the specification could he
assured (even after fixing the problems identified by this study). This would clearly
require a large amount of effort, and is a good illustration of the need to consider safety
at all stages of the design and development of safety-critical software.

In a more general light, the MALPAS tools have been found to be practical to apply
to a significant sized piece of software which controls a real-time device (of the order
of 2500 fines of assembler code). In the course of the analysis, useful techniques and
"tricks" for applying MALPAS to such software have been demonstrated.

It is apparent from the results of this study that some of the restrictions imposed by the
UK Standard 00-55(ref.1) are much stronger than they need to be. It is possible, with
good programming discipline, to write good, verifiable code in assembly language using
interrupts, just as it is possible to write obscure, even unverifiable, code in "approved"
languages. Also, serious consideration must be given to whether the current level of
validation of compilers is sufficient for the code they produce to be trustworthy enough
for use in safety critical applications. Given good code development and verification
practices for assembler code, it may well be that such code is in fact at least as trust-
worthy, if not more so, than code compiled from a higher level language. While some
restrictions are obviously required (for instance, parts of a language whose semantics
are machine or compiler dependent should clearly not be allowed), banning techniques,
languages and the like is an over-reaction. Rather, we should be seeking to find the
broadest possible guidelines that allow for the verifiably safe use of such techniques.

One area where particular attention needs to be paid during the design and development
of the software is that of writing specifications. An inadequate specification forces

f



ERL-0493-TR 22

analysis of the code in a bottom-up fashion, which has two main disadvantages. Firstly,
the best result that can be obtained is a statement of what the code actually does, which
may be different from what it was intended to do. Secondly, particularly in cases such as
assembly code where many objects are globally accessible, large amounts of extraneous
detail tends to be carried up through the analysis. This leads to complication of the
upper levels of the generated specification, which may completely overwhelm the desired
results. If the analyst prunes some information out during the analysis to prevent this
happening, there is a possibility that some relevant data will be removed as well. which
renders the analysis invalid. Thus a credible and complete specification is essential for
the meaningful verification of any software.

The final observation made from the analysis is that, although the specification was
inadequate and hence the software could not be verified as being correct, use of the
MALPAS tools did help to expose significant problems in both the code and the device's
specifications. The potential infinite loop was a subtle problem with only a small chance
of occurring even under field conditions. In a controlled test situation over a relatwivly
short time the chances of it occurring were even more remote, and indeed the problem
was obviously not found during dynamic testing of the device. This clearly illustrates
the worth of using static code analysis to augment conventional dynamic testing before
the acceptance of safety-critical software. The specification problem shows the need for
careful examination of the output from packages such as MALPAS. Even though the
code is "correct" according to the software specification, and this is in turn a -correct"
refinement of the hardware design specification, human analysis of the MALPAS output
led to the discovery of a weakness in the underlying harware design specification.

A
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