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Preface

The pupose of the research preserted in this paper was fo examine the
effects of applying the technique of control variates on the principdl
components of the oulputs of a given simuiation model. Inthis researcha
combination of data and variance reduction was explored. Thistype of
expefimentation may be generaizabie to any simuiation mode.

The percertage of totd variance expianed by the principd componerts
combined wih scatter piots of the principd componerts served as the "metics”
for comparison in this study. Athough other measures of effectiveness may have
been used, the metics used hefein were adequate to expiain the findings for this
study. The experimentation done inthis thesis should be extended, as t coud be
of significant value to andlysts comparing aifrioutes of similar systems.

In peffoming the expetimentation and wiing this thess, | have had a great
ded of hefp from ofhers. |am deeply indebtedto my advisor, M. Kenneth W.
Bauer, forthe awesome patience he showed during this thesis experence. |
ciso wish fo thank Dr. James W. Chrissis, my reader, for piowing through this
document in search of nnumerabile Yaux pas.” Many thanks are dlso owedto
Corpt. Aan Gigliotti for his assistance in the helping me understand the ways of
computers and the inficacies of the many programs we both worked with forour
respective theses. Anally, | would ke to acknowledge Anthony P. Cruz, my
raison d' efre”, forthe exraordinary understanding and support he showed
auring this period.
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The purpose of this research was to examine the effects of apphing the

fechnique of confrol varictes on the principd components of a given modei.
The investigation was done by compaing ttree sets of data as follows:
1) The set of pincipdl components of the outpus of the model on which no
vaiance reduction has been applied,
2) The set of principd components of variance-confroled ouputs—confrol
variates was pefformed prior to principd components anatysis being done.
3) The set of variance-confroled principd components—-control varictes was
performed on the principd components of the oupus.
The comparison of the effects was canied our by examining the percentage
of variance expianed by the pincipd components and by reviewing the
scatter plofs of the first two principa componens. //L [
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A COMPARISON OF VARIANCE-CONTROLLED AND
NON-CONTROLLED PRINCIPAL COMPONENTS

L Bockgound

Expetmentl Des
Systems differ from each other intems of values of system parameters and
input variables. These varying paameters and variables are caled factors. For
example, a model using estimated research and deveiopment (R&D) costs,

production costs and budgeted funds is usedfor ife cycle coding. The
paameters and variables include the costs and budgeted funds and the
distrbutions that specily these costs and budgeted funcs.

in orderto find the effect of afactor on a system, the factor must be varied of
andlyzed cof diferert levels. (Alevel s a paticuiar value of afactor.)

Often, modeis contain numerous factors. A problem of andlysis resulls when
the number of these factors is high. The number of factordevel combinations
may become cumbersome or even prohiblive and inhibk clear analysis. For
exampile, 7 factors wih each factor having 2 levels lead to 2’ or 128
combinations. Limiling the number of combinations that wil actualy be
andlyzed caon be done through experimental design. An experimenta design
detemines a subset of these factordevel combindlions thal may be able to
represert the signiicant effects of al the combinations.




control Yanctes

Another problem that exists when analyzing modes is that karge variances of
the oulputs can imit the uilly of oulpus. These Imprecise oupuss then offen are
used for other higher purposes such as planning. For exampile. the oulpus of a
ife cycle model are used for pianning funding. Minmizing or confroling the
variances of the oulpuls would lead to more meaningiul and accurate pianning.

Methods to reduce the variance of a variabie are called variance reduction
techniques (VRT). VRTs are fechniques that repiace the oigind samping
procedure (hat generated the variabie) by another procedure that yields the
same expected value of the variabie bur wih a smaler variance. One such VRT
is the method of control vcrictes.

Confrol variates accompiish variance reduction by taking advantage of the
comeidtion, f any, between the Inpu and response variabies. Generaly., the
gederthe coneidtion, the grecterthe variance reduction.

Principal Components Anclysis

Large variance inthe output is not the only significant problem in modeling
systems. Often the outputs of a model can be incomprehensible because of
the great number of oulput variabies that need to be interpreted. Data
reduction procedures may be the soltion fo these types of problems.
Speciicaly, the technique of pincipd components analysis may be appled.

Principal components andlysis fokes an ofiginal set of variables and transfomms
tinfo asmdler set. The variables inthe smaler set are Inear combinations of the
variables inthe oiginal set and expiain much of the variance of the totd data

that was contained inthe ongind set. The objective of principa componerts
analysis is o produce asfew as possbie of the principd components, the
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variabies in the smdadler set. that contains as much of the infformation of the datain
the oniginal seft .

Qbjeciive
Litle research has been accompished inthe area of experdmentd design

wih vaiance reduction and prncipa components andlysis as agppledfo karge
modek. The research that has been compieted has mainly been imted to

smcll classroom-size models.

The objective of this resecrch was to examine the effects of pefforming the
technique of control variates on the principd componerts of a given model.
Before the technique of control variates and principdl components andlysis can
be accompished, data on which the fechnique and the andysis are applied
must fist be credted. The data that were created were the oulputs of a given
model. The oupus that were crected were required to be representative of o
the oulpus the model canproduce. Hence, expefimentd design was required
fo specty the signficant factors that produced the representctive oupus.

The comparison of the effects of control variates and principd components
was accompished by compaing trree sets of data. The three sefs of data
were as folows:

1) The set of pincipal components of the oulpu's of the model on which no
variance reduction had been appiled,

2) The set of principal components of variance-conroled oupus-control
vanictes was pefformed before pincipdl components andlysis was
accomplshed.

J) The set of variance-confroled principa components—-confrol varates was
petformed on the principd components of the oupus.




The comparison of the effects was done by examining the percentage of
varance expianed by the principd components and by reviewing the scalfer
pilots of two principdl components.

Rgures 1ttrough 3 show the processes the model wernt through for each set of
data. For dithree figures, DO means the inputs of the model had been
expefimentaly designed, SYS means that the model was ran wih the
expetimentaly designed inputs, PCA means pincipd componerts analysis was
accompished, CYmeans variance reduction had been perfomed through the
method of control variates. Cis the set of confrols, Yis the origind set of oulpuls of
Ihe model,  is the set of pincipd components, and AB) and XB) are variance
reduced versionsofZand Y.

Case 1. The first set of of data was generated from an experimentaly
designed model. The data were the principd components of the oulputs of the
expermerialy designed model. Rigure 1shows the experimenta design
appled onthe model. The ouputs of the model were then ransformed info
principa components.

Case 2, Tha second set of data were generated from the model on which
expetimentd design and vaiance reduction have been appled. The ddla,
agan, were the principd components of the oulpuss of the expetimentaly
designed, vaiance-conroled model. Agure 2 shows experimental design
being performed onthe model. The oupus andthe control candidctes were

then used to find the variance-confroled equivdents of the oiginal oupus.
Principal components andlysis was appiied on the variance-controled
responses.
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Case 3. The third set of data were generated from an experimentaly
designed model whose oulpuls were fist ransformed info principd components
before variance reduction was perfformed. Agure 3 shows expermentd design
appled onthe model. The ouputs were then frangformed into prncipal

components. Confrol varictes was applied using principd componerts.
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L Background and Lierghue Review

This chapter reviews Rrerature relevart to the research proposdl. Speciicaly,
this resecrch effort required a reraiure review of experimentd design, conrol
vanictes, and pincipd componert andlysis.

Expefimental Design
Experimenta designs have been developed since the 1930s, and akarge
amount of feraure is avaiabie. However, most publications do not

concentrate on smuiation experiments. Most of the expermental design
Feralure address techniques needed because of ncompiete confrol overthe
expetimenta condlions. This is especiaty frue inindustial and agriculud
expefiments. In simuiation experiments, however, the analyst has ful control over
al of the tactors. He simply mckes changes inthe inpus of the computer
program. The only uncontfroled element is the pseudorandom number and,
eventhen, the analyst can control the seed of thar sream.  Therefore, technicdl
aspects such as randomization and biocking, which are discussedto a grect
extent inthe experdmenta design reralure are not great concems in simulation
designs (Kiefnen260-261). Similaxty, these concepts wil not be discussed here.
The role of expermentd design is fo aid in utimately finding a functional
reiationship between the inputs and oulputs of a system of interest-idedlly. an
equdtion that would descrbe the system. One way of finding an equation for
descrbing a system is usually to examine the ouputs (or responses) of a system
whose input varicbles have been setto ol possbie seftings. In other words, by
setting the system input variables to al possibie combinations of factors and of
possbie levels, and then studying the system response fo those combinations,
an equation may be obtained that can adequately describe the behavior of




the system. However, to examine the system af each level and o each factor
requires N computer simuiation runs where Nis

N =L

where factorjhas L; levels and there are kfactors. N, therefore, canbe alkarge
number even for smal values of jand k. The cost and time associated wihthese
computer uns are usualy the Iimiting factors in an expetimert.

An expefimental design (or a design of expetments) is used to reshict the
number of factor-level combinations (or design poirts) that must be examined
while retaning the capabily fo have sufficient data so as to adequatety
describe the behavior of the erntire system. The objective of a design of
expefiments is to find a subset of combinations that can represent dl the
signiicart effects of al the combinations.

In an expermentd design, the factor-evel combinations or design poiris fo
be un are consolidated in a mahix called the design matix. Fthe design maihix
has othogond columns, the effects of factors can be assessed indvidudlly and
independertly. Futher, including or excluding afactor does not change the
estimctes of the parameters associcted wih the other factors. (For an extensive
description of the propetties or advantages of odhogonalty, see Box and
Draper,1967:76-77 or Neter et Q. 1985691-692.)

AMter a design mahix is chosen, a model can be fomed in which the response
orresponse vector is gven as some function of the input variables and a
parameter set associated with the input variables. The model canbe wiiten in

the folowing fom

y=f(x.p)+¢




where yis the vector of responses, xis the vector of inpuss, p is the parameder set,
and ¢is the experimentd enor (which is assumed to be nomaly dishbuted wih
zero mean). Once afunctiona fom, f, has been found, the least-squares
crienion is used 1o decide which valuesfor fare opimd. (Fora compiete
explandion of least-squares cifefion, consul Box and Draper,1987:34-67 or Neter
et a1 1986210.238.)

There are three stages in expetimentd design. The fistis a preiminary
nvestigation of the factors--n this tage. the analyst identifies or screens the
factors or factor interactions that have the gredtest imfluence uponthe the
response. inthe second stage. the analyst further investigates the impodant
factors to aclually select the factors and levels (the design points) to be
included inthe experment. The find stage of an experimentd designisto
defemmine whetherthe model obtained by the expetmentd runs is adequdte
to expiain the system (Kleinen, 1974:265).

Preimingry nvestigation. Designs that are useful inthe first sfage of
expermentd designs include two-level factornd designs. (Descriptions of these
designs may be found in Box and Draper,1967.) The computer simuiation is un
with this design matix as the input. The oulput of the simuiation is the vector of
systemn responses where each response is associadted wih a design poirt. A
regression is perfomed on the design mahix and vector of system response fo
obtainthe p vaues or parameter set associated wih the Input variables.

As previously mentioned , the object of this first phase is to discover which
effects are signicant. A common method for checking for signiicance of effects
is by piotting the parameters associcted wih the input variables (obtaned
through the first stage designs) on nomal probabilty paper. Fthe piot of an
effect tals out of a sraight Ine, the andlyst can conclude thatthe effect is
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signficant and should be investigated futher (Bauer, 1989:16-20). (Fora detaled
explanation of the technique and theory behind nomnal probabllly piofs, see
Box and Draper, 1967:126-134)

As a poirt of inferest, another supposedly common technique (accordngto
Benski:174) is an approach where the andlyst provides an “a priod” probabllly of
an effect being significant and then calcuictes, using actual experimentd resuls,

the “a postetion” probablly of the significance of the effect. Bensil, however,
offers yet another dlemative to the above two methods. Hs method combines

atestfor nomally wih atest for outiers. The method is based onthe same
assumptions as the above mentioned techniques but does not require the
andlyst to make subjective assessments conceming ether the departure foma
straight ine or a priod probabities.

Second Stage. Once the mportant factors and/or factor inferactions have
been discovered, the usud design used inthe second stage of an
experimentd design is a ful factorial design on the important factors or variables.
In aful factorid design, dl the factors and levels are examined. The resut of the
second sfage design is, again, a vector of system responses.

Aregression is again performed on the full factordl design mahix and the
vector of system responses. The Pvalues or paameter set associated wihthe
input vasiables are obtaned. These f values are the coefliciernts of the
associcted input variables in the model that descibes the system.

Adequacy ofthe Model. The model obtained from the second stage is then
checked forlack-oft. By comparing the actud responses of the systemto the
predicted responses of the model, a defermination can be made asto the
adequacy or apiness of the model. Severd methods can be used to perform
lack-ofttest. These include the examination of Mallow's Cp, siatistic, Rz and

10




adusted-R? statistics, residud andalysis, or Ftests. Box and Draper (1967,70-74) or
Neter et i (1966,109-134) discuss various approaches.

Conlrol Varicles

The concept behind the theory of control variates is the selection of model
input variables wih known means and high correidtions with the model response
variables. The comeiations of the inpuls and the responses canlead to
reductions in the vasiances of the responses

nivaricte Simuiation Response wih g Single Confrol. Let Y be an estimator of
hy where By is an esimator of aresponse of inferest. Let C be anciher random
vaiable wih known mean . and highly coneiated wih the response. The

variable C is the confrol variable. The confrolled edimator is given by

Y(b)=Y-b(C-yo) (2.2.)

whete D is a constart caled the conrol coefliciernt.
The variance of Y(b) is given by

Var(Y(D))=Var(¥)+b’Var(C)-dCov(Y.C)  (2.2.2)
Avariance reduction wil be realzed
BCov(Y.C)>bNar(C) (.2.3)
The corfroled estimator, Y(b), Wil have a smallet vakance than the uncortioled

estimator, Y, I equation (2.2.3) holds. Calculus reveds that Y(b) has minimum
variance when b k set equa to the optimal corfrol coefficient given by

11




2 Cov(Y.O)
"oy @29

Substiuling (22.4) Ifo (22.1) yieids the optima controlled esimator Y(B)

(Y- (SRS AC ) @28

wih the minimum variance given by
Va{Y(P))=(1-pedVa(Y)  (2.2.6)

where p the comeiation coeficient between Y and C. Since the comeiation

coefliciert in (226) is a squared fem, the sign of the comeliation does not matter;
only the magniude does. Thus, the higherthe conelation, the higherthe
variance reduction.

The average of the uncontroled cbservations Y is an unbiased point estimator
of py. The average of the controled observations Y,( p) Is diso anunbiased

estimator of py. Thisls given by

K
VM=(PEVD @20

i=]

where K is the sample size and

Y(B)=Y-B(Crpo  (2.2.8)

12




In practice, Cov(Y,C) and Var(C) are uninown. Therefore, ks unknown and
must be esimated. Bauer (1967at) gves an inlulive approach fo edimating f
by replacing the ight-hand side of (22 4) wih the appropriate sample statistics.
This yieids the least-squares solution. Underthe assumption of joint nomalty
between Y and C, the least squares solution is also the maxdmum kethood
solution. f ks estimated by

K
T (Y- ¥)(C-T)
~ =l
p=— @.2.9)
G-
i=
where
_ Ky,
Y-E? 2.2.10)
and
_ X
C=3¢ @2.M

(]
-t

The poirt estimate of Ry is given by

A KB
v(ﬁ)-g—'—iﬂ 2.2.12)

in)

The varance of the point esimator is given by

13




v&[?(ﬁ)]._@%ﬁﬁ 2.2.19

~ ~ Az o~
VE(Y(B))=(1-pyd V(Y)Y  (2.2.76)

Bauer (1987a:8-9) dso provides the dervation of the infervd estimale underthe

assumption of joint nomnally between Y and C.
The lm(1~a)%comdencei'te~don1hepoﬁedmdorforpy is gvenby

)
Y(B)+ 'k-2(1-°;§){‘1&[7(ﬂ)]$n} A 2.2.16)

K 2
Z(Ci-pc)
i=]

-2
KX (Ci-C)
=

andtiz( 1-0/2) sthe 100(1 - x/2) percentie of Sudent's t-cistouion wih (k-2)

degees of freedom.
Since pis eslimated, a smaler variance reduction will be recized thanf fiis

known. The loss is quariified by what is named the loss factor (LF). The LFis
defined as the ratio of the variance of the estimator of )y whenthe optimal pis

not known, to the variance of the eslimator when f is known. Bauer (1987a:9-10)
provides the derivation of the loss factor which yieids

(K-2)
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where Qs the number of controls and K is the number of replcations.
This loss factor acts as a mutiplier to the minimum variance ratio (MVR) given

by

MR TP

Vo (v) @.2.19)

The MVR represerts the possible variance reduction when the optima conrol
coefiicient s known. Muliplying (22.18) wih (2.2.19) vields the variance ratio (VR).
The VR represents the possible vaiiance reduction when p is not known
(Bauer,1987a39-10).

vector of covaiances between Yand C, and X be the (Q@XQ) covaiance
mchix of the confrok. Then, (22.13) wih mulliple conirols is given by

~ ~T
V(P)=Y-B(C-pe) @.2.20)

wherei.f,cndpccre(exnvedom. The vector of optimal control coeficients,
sthen given by

-1
P=I. 0, (2.2.2))

Since the covariance mahices are usudlly unknown, can be esimated by
substiuting the sample andalogs of X and ecy Ifo (2221). Thisleadsto the
folowing equation
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B=SoSey  (2.2.22)

where Sg isthe inverse of the (QXQ) sample covaiance mahix of the controls,

and S oy s the (QX1) vector of sample covaiances between the univaiate
response and the vector of controls (Bauer:1987a:12-13).

Under the assumption of joint normally of Y and C, Y(B) s unbiased for pyand
an exact 100(1-x)% confidence iInferva is given by

V(P hai(1-99DSyc  @2.2.29)

DK+ (K- 1) (Topey SU TR 2.2.20
2 1 2 & !
SYIC-(K'Q']) (K'])(SV'SC{SCSOD (22?5)

t k-a1(1-0/2) s the 100(1-/2) petcertie of Sudert's t-cishibution wih (K-&-1)
degrees of freedom, and $,2is the sampie vaiance of Y . Experimertal resulls
have shown that the assumption of joint mullivaricate nomally is robust (Bauer et
<l 19882-6).

s. Bauer ef al (1967D:1-3)
provide an outine of the theoreticd fomulas forthe case whenthere are P
response vaiables and Q confrol variables. Intems of the notation, the
univaricte response Y becomes a (PX1) vector of response variables, p
becomes a (PXQ) mahix of confrol coefficients, and the scalar devidtion S,
becomes the sampile covaiance mahix of the response vector. Underthe
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assumption that Yand C have the joint musivariate nomnal disioution, (B ) ks an
unbiased estimator of gy, and an exact 100(1- «)% comidence elipsoid for py is
gvenby

~ T -~
(VCBrpy) SndV(Brpy) <PK-QIXK-P-Q DF(PKP-Q)  (2.2.26)

where D2and S c2 are asin (22.24) and (2.2.26) and K(1- m1, m2) isthe 100(1-o )
percertie of the F-dishibution wih m and m; degrees of freedom (Boueret d,
198702).

Pincipd Componernts Anclysis

The objective of principa componernts andlysis (PCA) Is to examine the
nterdependence shucture of a set of varidbies. Some speciic cbjectives
include data reduction, inferpretation, and testing of prior hypothesis. Forthe
puposes of this research, the variabies being siudied are the response variables
of a system of inferest and the specific objectives are dara reduction and, to a
lesser etert, interpretation. (The system of iInferest s the same system on which
expefimentd design was pefformed.)

The god of PCAs to reduce p number of oigindl variabiles to qfactors wih q
being much lessthan p. The charactetistics of the q factors may be more readly
inferpreted than the characteristics of the ogind p variables. For exampie, letp
variables represent a sudent’s scores in severdtests. Each score by Ise¥ does
not reclly provide insight. IFthe scores were somehow compiled info two ratings
(the qfactors) that were Inear combinations of the p scores, the factors could,
for exampie, represent the sudent’s math and verbd aptiudes.
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Let X be a p-dmensiond random variable wih mean pand covakance
maiix Z. The concept behind pincipal componerts andlysis isfo ind a new sef
of variables, ¥, which are uncomeicted and whose vaiances decrease-the first
vaniable would contain the kargest variance while the iast variable would have
the least (Dilon24-%). Each Yjistakento be alnear combinaion ofthe X's sO

that

Yi= )Xy + QgXot . +apXs (2.3.1)
T
= qx

where aljis a vector of constants. Equation (2.3.1) contains an abirary scale
P 2
factor. Therefore, the condiionthat aljaj= kE]°n-1 simposed. This

nomalization procedure ensures that a unique soltion is cbtained.

The first principal componert, Y, , is found by choosing @y so that Yy hasthe
lkargest possble variance. In other words, ayis chosen so as fo maximize the
varance of aly X subject to the consiraint alay= 1,

The second principdl componernt is found by choosing a; so that Yz has the
kaxrgest possble variance for o combinations of the form (2.3.1) which are
uncoreicted wih Y; . Simikaily. Ys, ..., Yp are chosen so as to be uncorelated wih
each other and 1o have decreasing vasiance.

Beginning wih finding the first component, o, is chosen so as to maximize the
vaiance of Y; subject to the nomalzation constrairt, ayay = 1. The variance of

Y, s gvenby

Va()=va(aX) (2.3.2
-a{xo]
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Thus, a) £ a, isthe objective function to be maximized.

An accepted procedure for maximizing a function of severd variables subject
to one or more constiraints is the method of Lagrange multipliers. This method
uses the resut fromthe calculs at a stationary poirt. The partial dertvatives of @
function subject to a consiraint al vanish. For exampile, gven afuncionof p
variables, f(xy, ... o). subjectto a constrant g(x, ..., Xp). there exsts a scakr

cdledthe lagrange mudipler such that

380 wp @23

ox;  8%;

a any stationary poirt. These p equdtions, together wih the consiraint, cre
enough to detemmine the coordinates of the staionary points. Futher

investigation is neededfo see f a stalionary point is @ maximum, minimum, of
saddie poirt. s heipfulto form a new function, L(x). such that

L{xd=fx)-A(g(x)-c] (2.3.9)

wherte the term inthe square brackets, (g (x)-c). is zero. Thenthe sef of
equdtions in (2.3.3) may be wiiten as

L
—=0 2.3.
” 2.3.9)

Applying the Lagrange mutipler method to (2.3 2) wih the nomalzation
consirairt yields
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Lay=ajzay-A{aia¢ 1) (2.3.6)

This leads to

& o23ar2kay @.3.1)

oa,

Sefting (2.3.7) equal to 0 yields

(S-ADGy=0  (2.3.8)

The idenity mahix I is inseted into (2.3.8) so that the term in brackets is of the
comect order, (0Xp). 1(2.3.8) sto have a soltionfor a, that is other than the nul
vedor,then ( Z- A1) mustbe asinguiarmahix. Thus A must be chosen so that

|z-a1]=0  2.3.9

Thus a non-zefo soktion for (2.38) exists Fand only f A Is an eigenvaue of <. But

z wil generally have p eigenvalues, which must al be nonnegaiive as X s a
postive definte mattx. Fthe eigenvalues are dencted by Ay A ..., Apand

assuming they are distinct. the eigenvalue that wil detemmine the first principal
componert s the kargest eigenvaiue, A;. Then using (2.3.8), the pincipdl
componert, a, sthe eigenveciorof £ comespondngfothe kargest
elgenvalue (Chatfieid, 198059-60).
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The second pincipd componert, Y;=alX | is obtaned by an extension of
the above argumert. In addiion to the scaing constiraintthar a'>a;=1.a
second consiraint exists that Y, should be uncoreidted wih Y,

The covariance between Y, and Y; is given by

Cov(Y1Y2) = Cow( a', X, a1 X) (23.10)

=E(@R(X-p){(X-p)m)
=alz o

The covariance Is required 1o be zero Yy and Y, are 1o be unconeited. But
since I ay= Ay, anequivdent conciionisthat a'; ay=0 . In other words, &y

and a; shoud be othogonal.

In orderfo maximize the variance of Y,, a; X Az, subjectto the two
constraints, two Lagrange mutiplers are infroduced. The two muliplers are
denotedby A and § respeciively. The funcion for maximizing the variance of
Y,k gvenby

L(a) =10, A(qyay-1)-6@3q  (2.3.1)

A the stationary poirfs

i.z(z-u)o,wa,-ﬂ 2.3.12)
fay

s required. This equdtion premutipled by al, gives

2a130,-5=0 (2.3.13)
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since a"ya;=0 . Burrom (2.3.10), a'y £ Q. s requredto be zero, sothat § is
2ero atthe skationary poirnfs. Thus (2.3.12) becomes

(Z-N)a=0 (2.3.19)

Thistime A is chosento be the second larged eigenvaue of £,and a;fobe
Ihe comesponding eigenvector.

Continuing this argumert. the hy, pincipd componeriresulls inthe
eigenvector associated wihthe jn, kargest eigenvalue. More speciicaly. the
nomalized elgenvectors of I are used to form the pincipal componerts of X.
The principa components are uncomreicted and the variance of the iy, pincipal
cormponert is A{Chaifieid, 1980:60).

There is no difficuly in extending the above argumert to the case where
some of the elgenvaues of  are equal. Inthis case there is O unique way for
choosing the comesponding eigenvectors, bt as long as the eigenvectors
associated wih multiple roots are chosen to be oithogonal, the argument
cames through.

Animportant result from principd components anclysis is that the sum of the
variances of the oigind variables is equal to the sum of the variances of the

pincipa components. Hs also possble to siate thatthe Hh pincipal
z'i

p
componert accourtsfor apropotion 24, ofthe totdl variance ofthe
ju1

ofiginal data. Thistype of ssatement may aiso be made aboutthe fistm
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m

A

i=1
componerts; that the first m components accournt for a proportion %RI of

=1
the total variance (Chatfield, 1980 61).

Using the Comelation Matix. An alemnaiive way of calcuiating pincipd
components is by transforming the original set of variables afterthey have been
standardized fo have unt variance. This essentialy means that the pincipdl
components are obtained from the comrelation matix P instead of romthe
covaiance mahix I. The mathemdlical derivation is exaclly the same—the
eigenvector are eigenvectors of P. However, the eigenvectors of P are notthe
same as the eigenvectors of I. By analyzing P ratherthan . the andlyst has
decided to make the variables equaly impotant-the contoution to the foral
vaiance is equad for al the variables (Bouer,1990:27-28 ).

Forthe comreldtion matix, the diagonal temms are al one. The original
vaiables contibute exactly the same variance before principd components
analysis s perforned. Thus the frace (the sum of the diagondl ferms of a square
mathix) of the comelation mahix is equal to p where p is the number of rows of P.
The sum of the eigenvalues of P wil also be equalto p. Therefore, the propoition
ofthe fotdl variance accourted for by the Hh componert is A}{D (Colins62).

Componert Loadings. The maiix of componernt loadings is @ maix that
shows the comeidtions between the oigind variables and the principdl

componerts.
summary
This chapter has reviewed the Reraure pertinert to this research. An

expetimentd design was needed fo produce the oulputs on which conrol
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vaictes and principd components andalysis were appled. The next chapter,
Chapter 3, discusses the actud work that was performed to accompishthe

objective as sated inthe first chapter. Chapter 4 wil present the resuls and
Chapter 5 wil submi the conclusions and recommendations.
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. Methodology

To achieve the research objeciive, the concepts dscussed inthe Reralure
review had to be examined in gredt defal. In addiion, a model hadto be
selected and a computer program was used. This chapter discusses the model
used inthe resecrch, the expetimenta design empioyed to identfy the
signficant factors, and the steps that were taken fo produce the data specified
forthe three cases.

Model. The modet chosen for this resecrch is representclive of a class of
queueng systems which are frequentty analyzed in computer pefformance
modeing. This systern has been studied extensively and workabie control
variables have been developed by severd auhors.

The simuiation model selected for sudy in this research is a model of the
network pofrayed in Agure 4. Node 1has N servers, where N is the finfe number
of customers of altypes. This node might be aroom filed wih N interactive
computerterminais. The node kabeled 2 might be a holdng area or buffer
which has a capacty less than the number of teminais. The nodes iabeled 3
fhrough S are single setver queues wih the customers being served in order of
anival. Node 3 might be a cenfral processing unit (CPU) wih nodes 3ttwough S
as pefipherd devices accessed by the CPU.

The specific model studied in this research has a totd of seven nodes—he
computer room, the holding area orthe buffer, the CPU, and four peripherdl
devices. There are 25 termindls inthe computer room and the buffer has a
capacty of five (Bauer,1987a:84-90).

The S by § franstion mahix that characterizes the flow of customers inthe
network has the form
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Figure 4. Network Model
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1
J

0 1 0 0 0
0 0 1 0 0
Piid 0 0 pud Ps(d)
0 0 1 i} 0
Pd)= 0 0 1 0 0
0 0 1 0 1]
0 1] 1 0 0
0 0 1 0 0

where pdd) . k=1, ..., S. isthe one-step transtion probablly (for a customer of
lvpe d) from node 3, the CPU, fo the remaining nodes . Tabie 1shows the
actud probabiiies used inthe S by S franstion manix.

Table 1. Transtion Probabiilies rom Node 3fo Node |

Node Probabilly

02
0

0
0.3%
0.3%
004
004

OO L O N

In this network, an assumption has been made that every customer that

requests setvice fromthe CPU is immedctety grarted access. (However, only
five customers can gain ettty to the holding area.) Other assumpiltions about the
network are as follows (Bauer, 1967a.86):
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1) The network has Makovian routing-the next node visted depends only on
the cumert location.

2) the service times forthe jhiype of customer at the Hh service node are
drawn independertty from a given probabilly distiioution, Fy; (*), wih finte mean
and variance. There is no setvice time associaled with node 2, the buffer or
holding areq.

3) Service time sequences and sequences of nodes visted are mulually
independert.

An interesting fedlure that was delberctety bullinfo the model was that nodes
4through 7 contibute equal “delays” in a customer's time In system. This deiay
vakie of one time unit is found by muliplying the steady-state probabilty of
being in nodes 4through 7 by the respeciive node mean senvice time.

Alisting of the simuiation program for this model is given in Appendix 1.

Expetimental Design. In orderto execute the research as outined inthe
cases described in Chapter 1, infroduction, model oulpus were genercted.
The oulputs genercted had fo be representdiive of allthe possile outpus the

modet can produce. Thus, an experimentd design was mplemented onthe
model to detemmine which of the model parameters are signficant. Once these

significant parameters wete found, another design was then used fo produce
the outputs that were used for futher study in Cases 1, 2, and 3. By implementing
an expetimentd design onthe model, the oupus studied were representative
of the model ouputs as a whole.

The conroliable inputs of the model are the senvice times at eachnode. The
vpe of disioution, s mean, and variance describe the setvice times of each

node. The response variable examined duing the expetimentd design portion
ofthe resecrch is the customer’s mean fime in system.
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As was mertioned inthe feralure review, a preiminary evcuadtion of a model
is needed to determine or screen the iImportart factors. A 27 design was usedin
this prefiminary phase. (The mean sefvice time was ignored at this phase fo
avoid having to simulate 37 design poirts)) This means that aful factoral was
done on a percertage devidion from the mean. The data intialy used was +
10% of the mean sefvice fime. However, piotting the effects on a nomal
probabilty piot showed no effects exhbbling signficance atthe 10% devidtion.
Changing the devidtion level to + 20% led to finding significart effects of factors 4,
5, 6, and 7-sefvice times for nodes 4, 5, 6, and 7 are the significart factors. Agure 5
shows the nomal probabiity piot of the B values obtdned from regressing the il
factoral design mattix on the ouput (mean time in systern).

RANFEITS VB BITI
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Rgure 5. Nomad Probablly Piot of the f values
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Atull factorial design of the significant main effects was un. Another
regression was perfformed on the system response and model inputs to obtain
the final model. (The SAS software system was used to perform the regressions.
The SAS uns used to accompish the fit and second stage of the expermenta
design are found in Appendix 2.)

Case 1. The next step afterthe experimentd design was to execute uns of
the model to obtain principal componerts of the oulputs. The oulput vectorthat
was studied forthe three cases contains (T, (1), W3, K4), (D), WK6), IK7)] where
Tis meantime in system and W) is the utiization rate atnode j. The model was
run for 5000 time unils with the statistics cleared dafter the first 2000 time unils.

Twerly simuiation runs were executed at each of the design poirts of the
design maix selected afterthe experimentd design analysis. The design
selected was aful factodal design on the four significant factors-—-setvice times for
nodes 4, 5, 6, and 7-whike keeping the non-significant factors (service fimes for
nodes 1,2, and 3) ather meanievels. An addiiond set of uns was made wih
dl the node senvice times set o thet mean levels--this set of uns is iabelled as
Design poirt 17. The design mahix is shown in Table 2.

X B senvice ime d node j-the value 1" means the node service fime was
setto 20% below Is mean. the value 1" means the the node sevice time was
setto 20% above ts mean, and the value 0° means the node service time was
setto s mean value. The column iabeled "Run” shows the aiphabetic notation
for each design poirt. A special notation of *1° is used to represert the set of uns
when dl the signficant factors were at ther low levels. Anotation of 0" is usedto
tepresent the design poirt in which al the node service fimes were ot ther mean
levess.

The mean of each response of interest was obtained. A 17 by 7 data mahix
resuted-seventeen means each for seven responses A prncipd components
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andlysis was peformed on'the data. Table 3 shows the ofigindl data matix-—T
stands for time in system and () stands for utization rate ot node |. Nodes 1and
2 have zero ulization rates. The pincipa components were obtained through
use ofthe STATISTIX software.

Designport X1 X X X ¥ X X Rn
1 0o o0 0 O 1 A 1 1
2 0 0 0 11 a4 d
3 o o 0 1 1 a4 4 e
4 0 0 0 11 a4 de
5 6 o o0 1 1 1 a f
6 0 0 0 1 a1 1A o
7 o o0 0 A 1 1 a e
8 6 0 0 11 1 gef
9 6 6 0 1 1 1 1 g
10 6 0 0 1 a1 a0 dg
" 6 o6 06 -1 1 a eg
12 6 0 0 11 a0 deg
13 6 0 0 a2 1 1 1 g
4 6 0 O 1 a1 g
15 6 o0 0 a1 1 1 efg
16 0 0 0 S S defg
7 6 o0 0 6 o0 0 0 0

Case 2. Forthis case, varance reduction was performed before principdl
componerts of the oulpuls were found.

The candidate confrol variables selected can be classifled info three basic
ypes: 1) sefvice fime vaiables, 2) fiow variables, and 3) work variables. Al of
these variables were colected af each node for each customertype. Sewice
lime variables are the sample mean senvice times. Aow variables are the
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sampie proportion of departures from patticular nodes reidiive to the tokal
number of departures from al nodes. Work variables are the product of the

setvice fime variables and the flow variables.

Table 3. Dara Usedin Case

Designpoirt T U3 U4 U U6 u7
1 1542 04741 03843 03816 03737 03630
2 2601 04016 04848 03260 0329% 03260
3 20134 04140 03313 04%6 03314 03253
4 2047 0379 0468 0568 02919 0296
5 21392 03%3 03210 0314 04729 03180
6 264 0376 043%2 02099 04381 029
7 20616 03627 02907 04%3 0460 0288
8 27226 03283 03927 03886 04103 02669
9 2144 03%2 03142 0316 03201 05084
10 2083 03%20 04212 02791 02811 04612
N 23407 03630 02926 0446 02976 04294
12 25806 03%] 04029 04069 02662 0.404]
13 2914 0394 029846 03039 04383 04824
1L 26130 03469 0486 02746 04086 0305
15 21379 03318 02674 03986 04162 0.3991
16 30460 03054 03727 03591 03789 03680
7 23466 03684 03719 03727 03597 03844

The woik variables may be ssandardized to have a mulivaiate nomndl
distioution with a zero mean vector and an idernity covaiance mahix. Thisis
done by defining the work variables as
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o T 00,00
Oy 2

where w, = reidiive requency wih which a customer vislls stkationk, and
fk$) = number of service times that are finished a station k during the time petiod
(01) (Lavenberg et Al 1962:182-202).

The momerts of the flow variables are unknown in general. Hence,
standardization of these variables cannot be accompished, and these
candidate corrol variables are discarded in favor of a standardized
rmulinomial corrol. These new corrols are caled “rouling vanabiles®.

Al rouling in the selected model is done from the CPU. Define an indicator
varicble onthe evert of the Fh departure from the CPUto staion

U= Hn'relmdepamgcs.srm)ergoesrostdioni
= 0 otherwise

from the description of the mode, pi(*) was defined to be the probabilty of
ranstion fromthe CPUto station ). N¢) is the total number of fransitions from the
CPUuptotimet. Astandardized equdtion for routing control variables is then

Ry 2 UO-pi®
xa‘) |-2]"/er]'p|<‘)pl(‘) rOf]-]...S 'w >0
- fN(T)-U

I can be shown that these standardzed confrol variables also have the
properies of 2ero mean vector and idenity covarance mahix (Bouer, 1967a.9%-
97. Bauer, 196704 ).
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A computer program used in this research was POST.FOR (shown in Appendix
3). The program took model inputs of mean setvice times, probablly of
ranstion from the CPUfo any ofthe other nodes, sleady state probabilies of a
customer being in a patticuiar node, and the actudl number of custormers
franstioning from the CPU to a particuiar node, and calicuiated the standardzed
work and routing variables. Once this calcuiation was done, confrol variates was
accompished more readly. Datathat resuted from Case 1uns were inputs
crectty for POST.FOR.

Recal from Chapler 2the review on control variates. The equationusedin
confrol varictes is given as

Yy =Y-pOepw

¥ ) has a smaller vakance than Y F correidtion exists between the inpuls and
resporses. The values of Y are oblained direcity from the oulputs of the mode
and the ferms (¢p) are the candidate controls-the standardized work and
rouling variabies-wih g being a zeto vector. The above equation canthen
rewtiten as

Y=¥P) +pOep

After a regression is peffomed, values of the responses on which confrol varictes
has been performed is given drecity by the fig values oblained fromthe
regression. Therefore, variance-controled values of the responses were
obtained through regression on the observed Y and the cortrol candidates.

Appendix 4 cortains the SAS program that pefformed this regression.
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Once the vaance-confrolled responses were obtaned, a data mahix simiar
tothe 17 by 7 matix in Case 1 was constructed. This fime the contents were seven
variance-confroled responses for each design poirt. The data matix is shown in
Table 4. T8 stands for vaiance-confrolled time in system and U())B stands for
variance-controlled utization rate for node j. Principal components anclysis was
petformed using this data matix.

Table 4. Data Used in Case 2

Designport T8 u3B u4B UGB U6B u7B

186.17 04772 0.3791 0.3837 0.3766 0.3765
26564 040N 047409 0.3237 0.32% 03144
20134 04086 0.3297 0.4956 0.323% 0.3381
2178 03818 0.4582 0.4528 0.2904 0293
20639  039%3 0.3251 03146 04728 0.3226
2300 03775 0.4463 0291 0.4433 0.3009
23828 03648 0.2950 0.4386 0.4476 02910
5717 03418 0.4051 04114 0.3960 02672
21059  0.3952 0.3152 03176 0.3129 0.4955
2390  0.3%61 0.4266 0.2866 02698 0.4394
23457  0.3660 02907 08274 02983 0.4316
2695 03287 0.3989 0.3991 02586 0.39%53
243% 0.3 02854 02877 0.4326 0.43%
20.15 03151 03739 02678 0.3068 0.3816
2616 03379 02702 0.4093 0.3981 0.423%
2414 03098 03773 03637 03718 0.3633
2471 03624 0.3692 0372 0.3601 0.3309

ST ESSSESeeNcaawN -

Care 3, Case 3folows dreclly from Case 1 and used the same
methodoiogy as Case 2. Since the prncipd components were aready found,
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dl that was needed was fo run the control variates regression using the principal
components found for Case 1, and the same input variable information used in
Case 2.

The regression of the piincipd components found for Case 1 andthe
candidate conrol variables descibed in Case 2 resuled in values of fi which

were coeflicients of the actudl conirol variables. Appendik b cortains the SAS
program that perforns this regression.
Recal againthe control variates equation given by

WP = Y- POk

To obtain the variance-controled principd componerts of the model (which is
the pupose of Case 3), the above equation was used. Forthis case, ¥ was

actualy the vedior of pincipa componerts found in Case 1, the terms (X-p)
were the means of the candidate corirol variables of Case 2, and X ) were the

componerts were obtaned by sublracting from the origina pincipa
componerts the control variabies mulipled by the comesponding B value found
through the regression.

The next chapter discusses the analysis, comparison, and inference obtained
from the expetiments.
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V. Resusand Qoservations

This chapter presents the resulls and observations gained atter the
expetimentdion, descrbed inthe previous chapter, was compieted.

Model, The coded equation forthe model obtaned after a ful factoral
design on the significant effects was foundfo be

Y = 212.868 + 21.469X4 + 14.306X5 + 13.368X6 + 8.212X¢7 + 11.402X47 - 18.166X55

where Y is the meantime in system and X jis the mean senvice time of node |.
An examination of the residud piofs of the model showed apiness.

Case 1. The STATISTIX software package was used for principa componernts
analysis. STATISTIX uses the data comreiation matix in computing principa
cormponents. Adata comeiation matix has of ones on the diagonal. This can
be inferpreted as all oigind variables confibuting the same amount of
vaiance--namely, one--before principal components andalysis is pefformed.
Therefore, after principd components andlysis has been pefformed, a common
procedure for discarding principa components is to discard those principal
components that have eigenvalues less than one. These dscarded prncipal
components have confributed less variance than any of the orginal variables.

Table 5 shows the STATISTIX oulput for Case 1. The table of eigenvalues
showed four pincipd components wih eigenvalues gredterthan one. These
four principal components explained 99.4% of the totd variance of the dafa.

The eigenvectors and loadngs mahix clso descrbed inferesting
characteristics of the principal componerts.

1) Looking only at factor loadings wih values greater than 0.5, principal
componert 1 was made up of fime in system andthe CPU uization rate. The
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lime in system coefiicient of the loadings mahix was of oppostte sign from the
ulization rate. This principd component may be considered a conrast of time
insystem and the CPU utization rate. The description of the network model
pemnis the folowing inferpretation. Fa customer is notin node 3, Hs in one ofthe
other nodes diving up the customer’s time in system. Node 3 has amean
seivice fime of 1time unt. Althe other node mean sefvice fimes are grecter
than one time unt. Fa customer is ulizng node 3, tis not raising the cusfomer’s
time in system elksewhere. |

Tabie 6. STATISTIX Output for Case 1

Bgenvalues % of variance Cumuictive % of Variance

1 2050 342 342
2 1419 240 682
3 12719 213 795
4 119 200 94
5 2637E-02 04 99
6 7260E-03 0.1 1000
Yectors

i

06626 00708 00316 01673 0.39% 05862
06736 -0.119 00494 0.1866  0.3%9% 0.6064
00777 0240 08320 01068 0416 0240
01758 02967 00891 08149 03897 02392
02067 06306 0.1669 05006 0429 0.3126
00464 06610 05181 0216 04604 02737

SEHES™
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2) The second principd componert also had two factors wih loadng
coeflicients gredater than 0 5--ulization rate of node 6 and utization rate of node

7. The signs of the coefiicients of the loadings matix were opposte. Nodes 6
and 7 have equa mean service time and the probabiity of franstion fromthe
CPUfto these nodes are also equdl.
3) The third principd component again had two factors with coefficients grecter
than 0.5~ utization rates of node 4and node 7. The factors were also opposte in
sign. Considering the description of the modet dllows the folowing expianation.
A custormer has a 0.36 probabilty of franstioning from the CPUto node 4 and
node 4has amean sefvice fime of 2.78 time unis. Onthe otherhand, a
customer has a 0.04 probabity of franstioning from the CPU to node 7 butnode 7
has a mean service fime of 25 0 fime units. Apparentty node Atckes away
customers that could go to node 7 because customers have a higher
probabily of going to node 4. Node 7, however, has a higher mean senvice
lime and thus fies up customers that could go fo node 4. -
4) The fourth principdl component had two factors wih coefiicients grecter than
0 5~utization rate for nodes 5 and 6. The interpretation of this principal
component was similar to the inferpretation of the third principal component.
Factor scores were obtained by muliplying the eigenvectors of the principdl

components by the orgina variables. Recal the equation,

Yj' quﬁ- 02IX2+ o QHXP
T,

aqx

from fhe Chapter 2 review of pincipal componerts. Y, is the factor score, q is
the eigenvector, and X is the vector of origindl variabiles.
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The factor scores of the four principd components were calcuiated for each

design poirt and shown in Table 6. PC(D stands forthe fh principal componert.

A scaiter plot of the first two principal component is shown in igure 6. Each
point has the diphabetic notation (described in Table 2) to indicate which design
port i represerts.

Table 6. Factor Scores of Case 1 Pincipd Componerts

Design Point PCY PC2 PC3 PC4
1 3.4697 0.3731 0.142%5 -0.7841
2 1.2868 04237 -19106 06216
3 1.8444 -0.9008 0.30608 16190
4 0.9750 -0.1386 -1.7468 15306
5 0.3441 -1.5632 0.4368 -1.4741
6 -0.7873 066%  -1.364 -1.3675
7 05614 -22781 06670 04702
8 -15218 -12036  -1.0672 0.4554
9 09338 1.7328 16393 06198
10 -0.3834 24103 -0.3363 05419
1 0.3085 06648 1.3468 1.4648
12 -0.5000 15162 04616 14534
13 02788 -0.1083 14744 -1.3093
14 -1.1861 0.5200 06228 -1.2938
15 -15326 04746 16118 0.4864
16 -2.4880 02843 -0.1692 0.4313
17 00761 02368 0.069% 0.0391

Case 2. The resut of the regression to find the variance-confroled oulputs are
shown in Table 4. The values are labeled TB, U3B, U4B, UBB, U6B, and U78 for
lime in system and utization rates of the node |, respectively, to indicate that
control varictes had been pefformed .
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The eigenvectors and loadings matix also described inferesting

charactetistics of the pincipal componerts.
1) Looking only atfactors wih coeflicient values grecter than 0.5, pincipal
component 1 was made up of the vailance-confroled time in system and CPU
ulization rate. The fime in system coefiicient of the loadings matix was of
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Again, principd components analysis was peiformed, this time onthese
vaiance-reduced ouputs. The STATISTIX resulls are shown on Table 7.

The tabie of eigenvalues shows four principa component having eigenvalues
gederthan one. The four pincipa component accounts for 99.3% of the fotal
vaiance.




opposte sign from the utization rate. This principal component may be
considered a contrast of the variance-conroled time in system and the

variance-conroled CPU uization rafe. The same expianation can be made
about this factor pattem as the expaindtion about the factor pattem of the first

principd componernt of the oiginal oulpuss.

O NLCON) e
-
—
x

B 0.6693
U3 0.6574
U4B 0.1368
Us8 02475
U6B 0.0021
u7g 02306

Table 7. STATISTIX Output for Case 2

% of variance
39
238
219
18.8
05
0.1

Vectors
2 K|
-0.2043 00272
01992 -0.0376
-0.6024 0.4388
-0.0606 0.1436
01319 -0863%
0.7312 02373

Cumuictive % of variance

349

58.7

805

9.3

999

1000

4 5 6

0.1429 02179 06786
-0.1655 0.1554 -0.6693
04030 04937 0.1406
0.8608 -0.4056 00965
0.1047 04734 0.1383
-0.1947 05441 0.1480

2) The second principd component was composed of the variance-confroled
uization rates fornodes 4and 7. The inferpretation for this factor pattem was
simiarto the interpretation of the thikd and fourth princiod components found in

Csel.
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J) The third principdl component had only one factor wih a value gredter than
05. This principal componert i reflecting the contbusion of the variance-
controled uization rate of node 6 fo the totd variance.

4) The fouth pincipd componernt aiso only had one factor wih a coefiicient
gredterthan 05. This pancipal component is reflecting the contiboution of the
variance-coniroled uiization rate of node 5 to the tofal variance.

Factor scores were again obtained by mulliptying the eigenvectors of the
principd components by the odgind variables. The factor scores of the four
principda componerts of the variance-confrolled oulputs are shown on Table 8.

Ascditer piot of the first two principdl components of the variance-controled
oulputs is shown in Aigure 7. The points have the diphabetic notation of the
design porrt t represerts.

Table 8. Pincipal Componerts of the Variance-Corntroled Oupu's

Design Point PCB] PCB2 PCB3 PCBA4
1 -3.3409 09384 .18 -0.6946
2 -1.3526 -1.1938 0.8400 -12693
3 -1.7860 0.3627 0.3640 1.7046
4 -12374 -1.4968 1.4654 0.72373
5 -0.0664 -0.0075 -2.0467 06711
6 -0.3962 -15708 -0.8928 -137%
7 02894 0.4626 -1.7237 14777
8 02629 -16831 0.3091 0.7716
9 -0.1486 23881 0.6299 08199

10 0.7986 0.3961 1.7400 -1.3679
N 02083 1.4971 0.693% 1.1678
12 12246 02186 18261 05919
13 10424 1.3402 -1.3713 0.7304
14 2.3628 04618 0.3466 -1.0602
16 12687 11129 0.7747 1.1487
16 20661 08150 00371 0373
7 0.1379 0.13% 0.1368 00222
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Case J. The resut of the regression of the principd components and the
confrol variables resuled in the folowing four equdtions:

P =4

2LAP)=27-(-163369*W1 + 3.76980*W7 - 3.00164*R6)
Z3(P) = 23- (-3.867071*W1 + 329738*Wb)

Zi{P) =24

whete Z(f) is the vaiance-controled nh principd componert, Z, is the original
unconirolled pincipda components, ¥y is the working variabile of node | and Rjis
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the routing variable of node j. (Appendix § contains the SAS oulpu's of the
regression). Z, was taken drectly fromthe resulls of Case 1and W and R, were
the means of the working and routing variables used in Case 2. Note that
varance reductions were not reaized for the first and the thid principdl
componernts.

The variance-confroled principd components o each design point ae
shown in Table 9. PC)B stands for variance-conroled pincipd componert j .

A scatter pict of the first two variance-controlled pincipd components is shown
in Aigure 8. The points have the diphabelic notation of the design poirt t
represerts.

Table 9. Variance-Confroled Principd Components

Design Point PCi8 PC28 PC38 PC48
1 3.4697 -0.7688 0.3163 -0.7841
2 12068 0.5086 -1.3008 06216
3 1.8444 02873 0.3637 16190
4 09750 -0.0043 -0.6302 15305
5 0.344] 06882 0.6065 -1.4741
6 -0.7873 -0.3433 -10199 -1.3675
7 05614 0.1110 0.9994 0.4702
8 -15218 -0.5868 -0.0964 0.4564
9 09338 02272 0.8226 06198

10 0.384 1.8326 00608 05419
N 0.3086 03207 0.1132 1.4688
12 -0.5000 0699 05367 1.4634
3 02788 0.2093 14333 -1.3093
14 -1.1861 13792 00791 -12938
15 -15326 045677 -0.6286 0.4884
16 -2.4890 0.3923 -0.0290 0413
17 0.0761 0.1076 03146 0.0891
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Fgure 8. Scatter Piot of the Frst Two Yariance-Cortroled

Principal Componerts

Obsetvations

Both sefs of principal components, one found using the ofiginal outputs and
the other using the variance-controled oulputs, expiained reidtively equa
percertages of the totd variance of the origind data—-about 99%. Simiarty,
each individud principa componert of the ofigind oulpuls expiained a
reidiively equad percentage of the tokal variance as s courterpart principd
component of the variance-controled oulpuss. Futher, the lastthree pincipd
components in each set had reidiively equal elgenvalues or expianed equd
percertages of the totd vasiance.
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Severd expiandiions can be givenforthese resuls. The delays that nodes 4
through 7 contbuted to the customer’s mean time in system were equdl. This
condliion dd not alow any node’s effects fo “overpower” the effects of the
olthernodes. This characteristic may have ledfo the equal percentages of the
varance expianed by the iast three principal componerts.

A0, the model chosen may not have necessaty yielded othogonal
pincipd components. The fact that the ulization rate of node 7 loaded wihthe
ulization rate of node 6 onthe second principd componert of the original
outputs and then loaded wih the utization rate of node 4 on the second
pincipd component of the variance~coniroled oulputs impty that the principdl
componerts wefe not othogond. That the utiization rate of node 7 “wavered”
back and forth as fo what other node utiization rate tioaded with suggest that
prncipd components andlysis of the ouputs did nof lead necessally to
othogonal axes.

Given the eariier discussion about the individud principd componerts in each
case, note that the piots that were shown forthe principal components of the
onginal ouputs and the principd components using variance-controled ouputs
did not have “paraliel” axes. For both plots, the first principal component was
conrast of the time in system and the CPU utization rate. However, the second
pincipd components of the oiginal oupuls was loaded wih the uliization rates
of nodes 6 and 7 while the second piincipa componernt of the variance-
confrolled ouputs was loaded wih the vaiance-controled utlization rates of

nodes 4and 7. inferedingly enough, the third pincipal componert of the the
oniginal oulputs had similar loadings as the third pincipal component of the
varance-controled oupuss.

To faciiate a more meaningiul discussion, the piot of the principdl
components of the origind oulputs was recrawn to corntain the first and third
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principal components. This piot should stll be representalive of the variance
expianed by the fist and second pincipd componerts since, as cbserved
previously, the last three principal components had reiatively equal amourt of
vaiancas expianed. This pictis shown in Agure 9.

The folowing discussion resulls fom a compaison of the piofs of the principal
componerts of the oigina outputs, Rgure 9, the vaiance-controled oupus,
Rgure 7, and the variance-conrolled principd componerts, Agure 8:

Agure 9. Scatter Piot of the FArst and Thid Principal Componerts

1) The design poirt in which di the signiicant nodes were a ther high, mean,
and low leveks, respectively, were kabeled wih ianges. The design points which
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have just three nodes at ther high levels, 20% above the mean, were iabeled
wih rectangies. The design points which have justtwo nodes at therr high leves,
were iabeled wih cicles.

2) The poirts representing al the signiicant nodes at ther high and low levels
occured on opposte sides of the cluster of points. The point representing dlthe
nodes a ther mean levels seemed to be inthe middie of the othertwo poirnts.
This pattem presented Iseff more clearty wih the pincipd componerts ofthe
ofignal oulputs.

3) The poirts seemed to be progressing along the first pincipal components
axis as the number of nodes ot thetr high levek increase-the rectangles, as a
whole, wete ahead of the circies, as a whole, which were ahead ofthe
uniabeled poirts (which represent having only one node ot Is high level) This
rend appecared more marked forthe pincipd components of the variance-
controled ouputs. The observation, mentioned previousty, about the
nonotthogonally of the axes seem to be suppoited by this observation ofthe
plots. The progression of points as the number of nodes ot is high level increase
appeaedto be dong a pah thatis a inear combindtion of the axes, not
merely dlong just the first principd component cods.

4) Adashed ine arawn onthe piot of the principdl components of the orignal
oulpuls separates those points wih node 4 at is high level and node 4 at s low
level. Those points wih node 4 at s high level seemed to be father up onthe
trird principal component axis. The factor loadings on this pincipdl component
were dvided between the utiization rates of nodes 4 and node 7. The factor
loadings were opposte n sign andthe loading fornode 4 was higherin
magniude. Apparertty node 4 at s high level tended o ditve this pincipdl
component down,
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5) Adashed ine drawn onthe piot of the prncipdl componerts of the vaiance-
controled oupus separates those points wih node 7 at is high level and node 7
atisiow level. Those points with node 7 at is high level seemed, as a whole, fo
be farther up onthe second principal component axs. The factorloadings on
this pincipd component were divided between the variance-confroled
uization rates of nodes 4and 7. The factorloadings were opposte in sigh and
the loading fornode 7 was higher in magniude. Appcrertly, node 7 at s high
level diives this pincipal component up. This pattem of division along the level of
afactor is more clecrly seen wih the piot of the principd components of the
vanance-confroled oupus.

6) inthe piot of the variance-conroled principd componerts, the poirts “ag”
(nodes 4 and 7 atthelr high levels) and “dfg” (nodes 4, 6, and 7) atther high
levels seemed to be separated from the main cluster of poirts.
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Y. Factor Anclysis

since the principal components andlysis presented unclecr resulls, afactor
andlysis analogous fo the prncipd components andlysis was peformed. Factor
analysis is simikar to principal components andlysis inthat as few as possbie new
vaiables are used to expiain the variance of the oigind data. inthe case of
principd components analysis, the fotdl variance of the origind dara is
considered. Infactor andlysis, however, only the part of the total variance that is
shared by the ofiginal variables are explored.

The interpretation of factors (the new variables) in factor analysis is often
compicated by having many factors wih moderdte-sized loadings, al of which
are signficart. In other words, an oiigina variable loads on more than one
factor. Aconcept called factor rotation atempls to remedy the problem. A
factor rotation minimizes the number of significant ioadings on each row ofthe
pattem matix (op+maly, one significant loading per odginal variabie) and o
madmize the number of loadings with negigble values (Dilon, 1984:69).

Atype of rofation used in this research was a VARIMAX rofation. Inthis rotation,
the varidtion of the squared factor ioadings within a factor is maximized
(Kciser,1958:189-200).

The three cases of factor analysis data that were compared were 1) the
factors of the outputs of @ model on which no conirol varictes had been
appled, 2) the factors of the ouputs of a model on which conirol varictes were
first appled and, 3) the variance-confroled factors.

Case 1 Methodology. Tabie 3 showed the oginal data matix-T stood for
lime in system and W) stood for utiization rcte of node . Nodes 1and 2had

zero utizction rates. Factor anatysis was performed using this orginal data mahix.
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Case 2 Methodology. Forthis case, variance reduction was peffomed
before factor analysis of outpuls was completed. The actual steps takento
perfor the Case 2 factor andlysis were equivdent to the steps faken to peform
the Case 2 principa components analysis.

Case J Methodology. Case 3folowed drectly rom Case 1 and used the
same methodology as Case 2. Since the factors were aready found, dl that

was requred for this case was to un the control varictes regression using the
factors found in Case 1 and the same input variable information used in Case 2.
The steps used fo find the variance-controlled factors were simiar to inding the
variance-conrolled principd componerts.

Case 1 Resuls. The SAS software system was used to perform the factor
analysis. The oulpuls of the inllial factor analysis wihout any rotation of the axes
wete very simiarto the Case 1 pincipa components anatysis oupus.

The table of eigenvalues showed fourfactors wih eigenvaues gredterthan
one. The four factors expianed 99 4% of the variance of the data.

The eigenvectors and factor paitem mahix were simicr fo the eigenvectors
and pattem mahix of the principal components andlysis.

After a VARIMAX rotation, the above factor pattems changed for the third and
fourth factors. The rotated third factor had a significant ioading of the utiization
rate of node 4 only while the rotated fourth factor had a signiicant loading of the
utiization rate of node 5 only. Table 10 shows the rotated factor pattem for Case 1.

Factor scores were obtained by muliplying the elgenvectors of the factors by

the original variables. Factor scores are given by the folowing equation

Yj- C“X]'P °2ix2+ . Op‘Xp
T

-qx
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where Y isihefodorscove,q’is Ihe eigenvector, and X is the vector of oiginal
vaicbies.

Table 10. Rotared Factor Pattem for Case 1

Faoctorl Factor? Factod Factord

-0.9928 -004% 00413 00591
0.9962 0.0010 0.0032 0.0386
0.0331 -0.0686 09838 -0.1068

00773 -0.0624 -0.1369 0.9833
-0.0412 -0.7622 -0.4768 -0.3919
00270 0.8964 02963 03177

Q&E&HES™

The factor scores of the four factors were calcuiated for each design poirt.
Table 11 shows the factor scores for Case 1. Scatter piots of the first factor against
each of al the otherfactor cre shown in figures 10 through 12. Each poirt onthe
piot has the diphabetic notation (shown in Table 2) to indicate which design
poirt t represernts.

Case 2 Results, The result of the regression to find the variance-controled
outputs were shown on Table 4. The values are iabeled TB, U3B, U4B, UGB, U6B,
and U7B fortime in system and ulization rates of the node |, respeciively, to
indiccte that control variates had been perfomed .

Again, factor anclysis wos perfformed, this fime on these vaiikance-coniroled
oupuss. The eigenvalues and factor pattems obtained wihout the rotation were
simikar to the principdl components analysis ouputs of Case 2. The table showed
four factors with eigenvalues greaterthan one. The fourfactors accourted for
99.3% of the variance.
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The eigenvectors and ioadings mahix also were simiar to the eigenvectors
and loadings mahix of the Case 2 pincipd componerts.

Table 11. Factor Scores of Case 1 Factors

Design Point Factl Fact2 Factd Factq
1 25468 00162 00214 -0.102%
2 0.8546 02267 17788 04221
3 0.9991 -0.13% -0.3007 1.8666
4 02392 0.2% 15693 15100
5 0.7477 -1.2966 08144 -0.9033
6 02269 -1.2543 08362 -1.1327
7 02006 -1.023 -1.1807 0.793%
8 -10464 -12981 0.4606 0.4367
9 0.6622 1.774% 08579 -0.7801
10 04142 16751 0.8638 -10224
N 0.1183 12160 -0.8578 1.1574
] 084403 12318 0.8091 08731
13 0.1920 00731 -1.3334 -1.1646
14 -0.5968 -0.1630 05059 -1.3903
15 -10002 0.0479 -15649 02837

16 -18037 00266 0.0555 00417
7 0.0068 02233 00234 00375

Mter a VARIMAX rotction, the above pdifems stayed the same exceptforthe
third factor. The rotated third factor was loaded with the variance-coniroled
utiization rafes of node 6 and node 7. Table 12 shows the rotated factor paitem
of the Case 2 factor anclysis.

Factor scores were again obtained by muliplying the elgenvectors of the
factors by the origind variabies. The factor scores of the four factors of the
vaiance-confroled ouputs are shown in Table 13.
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Scatter piots of the first factor against each of dl the other factors are shownin
figures 13 ttrough 16. The points have the aphabetic notation of the design poirnt

i represerts.
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Table 12. Rotated Factor Pattem for Case 2

Factorl Factor? Factord Factord

T8 09936 -0.0286 00048 00791

u3B 0.99%1 0.0363 00178 0.0660

u48 00610 09462 02610 -0.1760

UsB 0.1057 -00493 0.1168 0.983%

u6B 00166 -0.1160 09779 0.1477

u7B 00258 0173 05392 04924

Table 13. Factor Scores of Case 2 Factors

Design Point Factl Fact2 Foct3 Foctd
] 25265 -0.0541 0.0364 0.1212
2 08166 16336 03483 06217
3 08706 -0.3260 -0.3320 18228
4 0231 1.4996 -0.7967 121
5 0.7609 02197 1.7336 05571
6 0.1946 134N 1.1539 09519
7 -0.1997 04144 15630 1.3205
8 0.7680 1.0698 0.7699 0.8980
9 0.8077 -1.3602 17 -1019%
10 0.1977 03703 -15740 -1.3167
n -0.0384 -12598 -0.9628 1.7967
12 -1.0286 02937 -15062 0.4361
13 -0.1479 -1.3307 0.7646 -1.1490
14 -1.399% 0.1634 03219 -1.3484
15 40.7586 -15133 03174 0.5400
16 -1.601 02027 0.1022 00670
17 -0.066b 00918 0.1524 00173
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Cose jresuls. The resul of the regression of the factors and the means of the
corirol variables resuted in the folowing four equations:

Z(B) =2 - (2.06037* W)

ZLAP) =2 ;- (-2.TN "W, + 2.09686* W, + 221997* Ry
ZAP) =2 3- (2.58496* W, - 1.57872*W 5- 3.39355* We)
Z4P)=24

where Z () ks the variance-corniroled nh factor, Z,, is the original non-controled
factor, W is the working variable of node |, and R is the routing variable of node |.
Note that variance-reduction was not reclized for the fourth factor.

The vaiance-controled factor scores af each design points are shownin
Table 14. The scatter piot of the first variance-controlled factor against each of al
the other variance-confrolled factors are shown infigures 16 through 18.

Qoservations
Both sets of factors, one found using the oiginal oulputs and the other using

the variance-controled oulpus, expianed reidtively equd amount of variances
ofthe original data--about 99%. Simiarty, each individud factor of the orginal

outpuls expianed a reidiively equd percentage of the variance as is
courterpart factor of the variance-confroled oulpus. Futher, the lastthree

factors in each set had reidlively equd eigenvalues or expianed equd
amounts of the variance.

The following discussion resul from a comparison of the picts of the factors of
the ofiginal outpuls, the piots of the factors of the variance-confrolled oupus,
andthe piots of the variance-confroled factors.
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Table 14. vaiance-Conroled Factor Scores

Design Poirt Fach!
1 2573
2 0.5667
3 05669
4 0.4071
5 05767
6 05110
7 05190
8 00607
9 05338
10 00339
¥ 04397
12 02839
13 02613
14 -0.4831
16 06310
16 -1.7575
7 0.05%

Fac2 Fact3 Factd
00762 00129 0.102%
-0.3363 13182 048211
0.7934 06022 1.8666
02466 0.3347 15100
09616 0.0079 09033
09493 0.8061 -1.1327
0.1399 0.7481 0.793%6
02678 -0.7675 0.4367
0.1120 0.4682 <0.7601
09714 0.3836 -10224
02478 0.3526 1.16574
07116 0.4699 0.8731
02417 -10108 -1.16%6
06094 0.36% -1.3903
0.2336 0.0266 02837
-0.2617 -0.0506 -0.0417
0.6538 -0.53% 0.0375

1) For dlithe piots, the design points for the signiicant nodes ot ther high, mean,
and low levels were iabeted wih fiiangies. The design poirts which have fhree
nodes ot therr high leve's, 20% above the mean, were labeled wih rectangles.
The design points which have two nodes d ther high levels were Iabeled wih

cicles.

2) The points representing d the significant nodes at thetr high and low levels
occur on opposte sides of the cluster of points. The point representing the nodes

ctther mean levels seemto be inthe midde of the other two poirts.

3) The poinfs seemto be “regressing” dong the first factor ceds as the number of
nodes ot their high levels increase-the rectangles, as a whole, are behindthe
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circies, s @ whoie, which are behind the uniabeled points (which represent
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having only one node ot is high level)) This frend appedrs very cleatty forthe
factor 1 of the variance-controled oupus.
4) The folowing observations are made about the Case 1 piofs:

a) The piot of factor 1 against factor 2 seemed to have three groupings of
poirts-those points wih node 7 at s high level (characterzed by the presence
of the letter “g"). those points wih node 6 ot s high level (etter Y7 and dithe
otherpoirts. The group of points wih node 7 at s high level was the farthest up
the factor 2 cods, while the group of points wih node 5 ot s high level was the
fathest down the factor 2 axis. The group of dllthe other points was betweenthe
othertwo groups. This pditem inthe plot was reflective of the factor pattem of
factor2. The rofated factor pattem of factor 2 had significant loadings forthe
utization rates of node 6 and 7. The loadings are opposite in sign andthe
loading for node 7 was bigger n magniude. Apparentty. node 7 atits high level
resuted in high factor scores for factor 2 whie node 6 at s high level resuted in
low factor scores forfactor 2.

b) The piot of factor 1 against factor 3 seemed to have two groupings of
points—those poirfs with node 4 at Is high level (presence of the letter *d”y and
those poirts wih node 4 at s low level (absence of the letter “d”). The group of
poirts wih node 4 at s high level was above the group of poirts wih node 4 at
slow level. This pattem in the piot was reflective of the factor pattem of factor 3.
The rotated factor pattem of factor 3 had a significant loading only forthe
utiization rate of node 4. Appaentty, node 4 at Is high level resuted in higher
factor 3 scoras whie node 4 at Is low level resutted in lower factor 3 scores.

c) The pict of factor 1 against factor 4 seemed to have two groupings of
poirts-those point wih node 5 at Is high level (presence of the letter “e”) and
node 5 atits low level (absence of the letter "e”). The group of points with node
§ at s high level was above the group of poirnts wihnode 5 at Is low level. This
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pditem inthe pict was reflective of the factor pattem of factor 4. The rotated
factor paitem of factor 4 had a significant loading only for the utization rate of
node 5. Apparertty, node 5 at is high level resutted in higher factor 4 scores whie
node 5 at is low level resuted in lower factor 4 scores.

5) The folowing cbservations are made abou the Case 2 plofs:

a) The pict of the first and second factors of the variance reduced ouputs
seemed o have three groupings of points—hose points wih node 4 at s high
level, those points wih node 7 at is high level, and dllthe other poirts. The group
of poirts wih node 4 at s high level was the fathest up the factor 2 axis while the
group of poirts wih node 7 at s high level was the farthest down the factor 2 axs.
Al the cther points were between the othertwo groups. This palfem inthe piot
was reflective of the factor paitem of factor 3. The rotated factor pattem of factor
2 was loaded wih the variance-controled utization rates of node 4and node 7.
The loadings wete opposte in sign and the ioading for node 4 was biggerin
magniude. Apparertty, node 4 ot s high level resuted in high factor 2 scores
whie node 7 a s high level resuted in low factor 2 scores.

b) The pict of the first and third factors of the variance-controlled oulputs
seemedto have three groupings—-those points wih node 6 a Is high level, those
points wih node 7 ot s high level, and all the other poinfs. The group of poirts
wih node 6 at s high level was fathest up the factor 3 axds while the group of
poirts with node 7 at s high level was fathest down the factor 3 anis. Althe other
poirts were between the othertwo groups. This paitem inthe plot was reflective
of the factor paitem of factor 3. The rotated factor patfem of factor 3 was
ioaded wih the vaiance-confrolled rates of nodes 6 and 7. The loadings wete
opposte in sign and the loading fornode 6 was biggerin magniude.
Apparenity, node 6 at is high level resuted in high factor 3 scores whie node 7 ot
Is high leve resuted in low factor 3 scores.
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¢) The plot of the first and fourth factors of the variance-controled outpuss
seemed to have two groupings of points—hose points wihnode 5 of s high
level and those poirts with node 5 a Is low level. This paifem inthe plot was
reflective of the factor paitem of factor 4. The rotated factor pattem of factor 4
was loaded solely wih the variance-controlled utization rate of node b.
Appcarentty, node b ct Is high level resuted in higher factor 4 scores while node 5
ctis low level resuted in lower factor 4 scores.
6) The folowing observations are made about the Case 3 piofs:

Q) No discemible pattem was found in the plot of the variance-controled
factors 1and 2.

b) No discemible pattem was found in the piof of the variance-confroled
factors 1and 3.

¢) The piot of the variance-confroled factors 1 and 4 seemedfo have two
goupings of poinfs—hose poinfs wih node § ot is high level and node 5 at Is low
level. The group of points with node 5 at s high level are above the group of
points wih node 5 a is low level. The inferpretation of this piot palfem was similkxr
to the interpretation of the piot of the first and fourth factor of the orgindl variabies.
7) Of dithe piots, the Case 2 piots haa the clearest distinction between the
group of poirtts wih three nodes c their high levets, the group of poirts wih two
nodes ot therr high levels, and the group of points with just one node ot is high
level. There was a very clear separation aong the factor 1 axis. An expianation
for this is that the variance inthe oigind data has been reduced The "nokse” that
was inthe original daka was causing the poirts fo siray to the other groups of
poirts; control variates prevented this siraying.
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The pupose of this thesis was to compare the valiance-controled and
uncontroled pincipa components of a speciic model. The conclusions of this
research are important because they add o the body of knowledge that an
andlyst draws upon when faced with problems of daka and variance reduction.

This resecarch was accompiished because the sudy of principd components
andlysis with the technique of conrol variates has not been petformed before.
was aiso the hope of the researcher that, given actudl systems, the results
obtaned from the study would make possible an assessmert of red systems.
For exampie, given two computer systermns with difetent node mean service
limes and probabilies of franstions ortwo similar systems with different seffings, an
index or a couple of indices (the pincipd components) can be usedto cte
each system. Ajudgement such as degree of eficiency orneed for
modifications can then be impilied from this index or set of indices. Confrol
vaicates can then be peffomedto ne fune ™ the index or set of indices.

The methods of comparison used in this study was to examine the
percentage of the fofal variance expiained by the principal components and
to review the scatter piots of the first two principdl componerts.

In Case 1, the four principal componerts were found to be signiicant and

expianed 99 4% of the totdl variance. in Case 2, four pincipd components
were akso found to be significant and expiained 9.3% of the totdl variance. For
each set of principal componerts, the iast three had relatively equal
eigenvalues—the proportion of variance each expianed were equd. The
scatter piofs yielded by the three cases of data presented similar patterms.
One can conclude that the resulls obtained from the pincipdl componerts
andlysis are inconclusive and ambiguous. However, severd explanations can
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be volurteered forthe resulls. The network model had severd uforfuncte
characterigtics that resuted in the unclear ourcomes. The nodes 4through 7
confibuted equa delays to a customer's mean time in system. None of these
nodes’ effects were dlowed to ovenide any of the other node effects. The
equak-delay characteristic may diso have resutted inthe equal-valued pincipd
componerts. Also, the model routings and corfigurations seemed to have
created nonotthogond principd components. Node 7 loaded wih ether node
4 or 6 depending onthe condlions. The prinicpa componerts piofs had
characteistics that support this expianation.

Afactor analysis of the same data generated some differert resulls. The
factor pattems were similar for both fypes of andlyses but the pilots were diferert.
Factor analysis of the variance-controlled outpus yielded more distinct “breaks”
between the groups of points clong the first factor axis; confrol variates was o
work. Aiso, the piots of the factors of the variance-confroled outpu's are more
easly infetpreted than the piots of the factors of the varance-controled factors.
Apparertty, control variates petfromed before factor analysis resuted inless
noise inthe find data--results, i *etms of plots, are better If variance reductionis
accormpished before factor andlysis. More importantty, the factor pattems of
the factors were more easly obsetved onthe piots than the factor pattems of
the principal componerts.

The observations and conclusions that were made suggest the folowing
recommendations.
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Recommendations

As was mentioned, the “metiics” used in the comparisons were percentage of
the totdl variance expiained by the principd components and areview of the
sCaiter picts. ¥ other modes of measurements or measures of effectiveness
(MOEs) were used inthe comparison, more meaningiul resulls may have
resuted. Expiandtion forthe differences, in addiion fo finding the diferences,
could have been made.

Ancther recommendation is fo change the technique used. Case 1resulls
fou .J four principal components. The iastthree princioal components
expianed reidtively equa percertages of the totd variance. There may have
been othertypes of analyses that could have produced clearer resuls.

Ancther recommendation is fo select another model for study. This change
may be ether changes inthe parameters values such as mean service times or
probabiies of transtion or a diferent model entrely. The resulls the curent
model is producing are unciear. The system makes it dificut to deterrmine which
node or nodes are criicd to forming the principa components or to reducing
vaIance.

Afindrecommendation is fo select a diferent set of oulputs to study. Perthaps
the outputs used inthis research are not as conducive to the types of andlysis
used as another set might have been.
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c progam man(npu.ouputiaped=nput fapet=ouput tape’ fapel,
c Tape2t taped)

C.“l‘*...“."#‘t#**‘#‘##t‘*.‘tt.‘.“‘t‘t“

c* Man Progam - Begin he
c:##ttttttttt#tt*t#ttt#ttttttt#*t*#ttttt‘t*tt
c

program main

dmension nset(5000)

common Gset(5000)

common/scom1/ ai(100),d 100),dak 100), dnow.imfamstop .ncre
1.ncrar npmt.nrun nnsef ntape, $s(100),ssK 100).next now xx(100)
common/ucoml/ depct(w),lrnem(IO)p('IU 10).senvi{10),ecouni(2)
common/ucomz/ isubcap nusssnnumcust fciear nstudy
common/ucom?/ nu'ne , deta, xmean(10), 2
equivaence (nsef( 1),qse4(1))
integernumexp, 2
red detq, smean, mean
nnset=5000
NCrar=5

=f)

apes?

2=0

read (ncrar,*) isubcap nusssn.numcust fclear nstudy

Ao 10 i=1,nusssr+-2
read (ncra* ) (P J=1.nusssn+2)
10 continue
c
open({uni=10fie=p750.edm’ status="old")
reack10,*) numexp, deta, (xmean() i=1.nusssrH2)

c
open{uni=15fle="p750.0p " stclus="new")

C

co skam

close(10)

close(15)

stop

end
gtttttuu:utmuauautmntttt:uuumutmu:nt

c* Man Program - end *

C.“‘tt““"“‘*t.‘#ﬁ“‘.“.*““‘..““t“

C
C““t‘tttt‘ttt“tt‘.“t““t“““‘ﬁ“tt“.

C* SUBROUTINES *




C SRRRRE SR RRRRR RS R E LB R EREER R R LR EERERERE R R RS

g SERRESRERERAEEREPERERERELERE LB SRR AR ERENERRES

C* Subrouline EVENT hd

C BEREEBEREEREREE LR RS EE SRR RSB SRR SRS R EEELED

C
subroutine evert()
common/scom1/ aib(100),aa 100),adk 100), dmw.inta,rmtop,ncrr
1.ncrar npmt.nnrun nnset niape . ss(100), 55K 100) inext now xx( 100)
common/ucom/ depaf{ 10).mean10) p{10,10).servi 10).ecouri(2)
com'non/ucoer/ subcap.nusssn.numcust iclear nstudy

ecarm)-ecout(l)-ﬂ
. fnow. g fclean) ecoun(Z=ecount(2)+1
goto (12)i
c
1 calarss
retum
2 cdlendss
refum
end
g SREREABEREEREREERRES LR EEREEE SRR ESEEERRELESE
c* Subrouine INTLC .
C BERERBER R EEEEESEE R R SRR LSRR LR BR R R K EEE RS
c
subroutine infic
cormmon/scom1/ ahib(100),dck 100),adk 100).dnow i.mfamstop.ncine
1.ncrcr npmt nnrun nnset rigpe . ss(100),ssK 100) next ow xx(100)
common/ucom1/ depart(10).mean10).p{10,10) seni(10).ecourt(2)
common/ucomz/ &bcqamssn,runcw,fdeam:dy

common/gcomb/ ised(10) joeg.jcr.mmni
mmmsm)mmWseed(wmeed(w)
common/ucom?/ , deta, simean(10), 2
common/ucom9/ leveX1
infeger keed(2000), numexp. 2
red detq, smean, mean, level

g SRR EEPEERERRRSERERRRESPRERREhhbhshbd

¢ * Read in parameter levels from *

C* design mahtx, and set parameters .

c* accordingly *

(o] FEEREERERESRERE SR ERRE RS RS SRR EREERS

C
reack10,*) (evel().=1.nusssn+2)
do 10 i=1 nusssne+2

mean(h = xmean)) + (eveXiy*(deta*xmeanD))
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10 cortirue

c

C SREEREEEE RSB SRR REESRE R SRS SRR E SR BN
C* Crecte new seedfor godw un of *
C* the expermentd mcthix *

C SR EESEEREEEEERERRERER SRR SRR LRSS SRR RS

C
f ((@*numexp)+T1)y-nun).eq0) then

=(1.0e+12)*adran1)
do 16 i=nneun, ((nnrunHUMesP)-1)
seed()=|
15 continue
Z=2+1
enclf
ised(2)=iseecnniun)
X=cran-2)
g BAREEEEEREERERERER R NN RER SRR B R R g Rk R gy
C * nlidkze vectors and varidbles .
C Aol ol ol s ol a0 ol s afn s ol ol o ol 00 0l o 2t o o 3 08 o0 0 0 s 2 0 o o 3t o e 0
C
do 20i=1,7
MUlino()=0
2 contirue
C
do26i=12
ecount()=0.
25 cortinue
c
do 30 i=1,nusssn+
depart(=0.
30 continue
c
do 35 i=1.nusssr+2
servi()=0.
H continue
g SEEESESSRESEESERBEE RS EERE SRS EER e R RRR
c * Schedue each customerfor *
C* nlid evert *

c SRS S AUSRLEEE IR AR NERB RSBV ERBRSERb S

75




4 contirue
C
do 46 i=1,nusssr+2
XxX(D=0.
& continue
wite{6,200)nnun numexp
200 fomcal(1x.'SIMULATION STUDY IN PROGRESS : RUN ' 4, ' OF
&1, RUNS)
retun
end
gtttt#tttttt‘ttt‘#ttt#ttt#‘ttttttttt‘ttt.ttt

C* Subroutine ENDSS *

C BREREEREL SRS EERE PSS S S SR ERRE R BB ISR R eRES

c
subroutine endss
common/scom1/ ahio100),da(100),dck 100), dnow i, mfa,mstop ncine
1.ncrar npmt nneun nnset nfape. 3 100),5sK 100) inext ow xx(100)
common/ucom/ depart(10).mean(10).p(10,10).servi{ 10),ecouni(2)
common/ucomz/ isubcap nusssnnumcust fciearnstudy
common/ucoma3/ mulino(7)

ol schok(1.0. )
MyGmahitX9)

f (mnmyq) ne 0) then
cdl move1.myq.ad)
wQt=Oow-cib(2)

cdl coickwat myq)

mMm=mean(my

sefv'ce-e’pogml’)

atiox D=citio(5)

ict=cirio(4)+ 00001

cdl nexguy(ictinex)
o

C PSR ESRREEEBERBIREEEASRIRRAN RS ES SRS

C* COLLECT STATISTICS WHILE PARKED *
C* ATCPU *

C SSEREEEERBESEEES SRS S EEEEERRBASREEES

c
f (at.eqd)then
enclf

1

ahb(S)=inext

cAl schak2. senice.anb)

f (now . gticlea) then
sevKmyQesenf(myq)+senice
depat(myq)=depaimyq)+1
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eg;pat(mﬂ)—depat(ml

S
myQ)=0.
c
l{myq eqiandmnc(2) g 0.andisubcap ne f.andinexdteq.]
myq).ne 0) then

cd mMmovex(1.2,aib)

service=(.

aix D=airt(5)

aio(5)=3 _
cdl scha 1 senvice, ahid)
enclf

C
refum
end
o]
C BEEBERERRABRRSEARSEREEER B SRR EERB R RS R R SR B Ry

C * Subrouine ARSS .

C REEERRRERRREEUREEERENRSEEEEESRERER R BB S S g R Ry

c
subroutine Crss
common/scom1/ aio(100),dak 100),adk 100) dnow d.mfamstop ncine
1.ncrdrnpmt.nnrun nnset ntape, ss(100),55K 100) next inow xx(100)
common/ucom1i/ depart(10).mean10)p<10,10) seni(10),ecouri(2)
common/ucomz/ isubcap,nusssnnumcust tclear nstudy
common/ucoma/ mulindo(7)

c
iat=chi(D)

c
fGateq.)then

cdl schaK 1 sefvice, ab)
f (now g icled) serviiid)=sent(ich)+service
goto 10
enclt
C

f(jat.eq2)then
f Gsubcap ne D) then
nUMsUD=0

do 10 =3 nusssn+2
AUMSUD=NUMSUD-+HINQN+XT)
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100 ¥ (x(ah).gr0)then
ahib(2)=mow

cdl flem(ict.aho)
relum

eke
wail=(,
cdl coici{war ict)
m=mean(ict)

cdl nexiguy(iatnext)
C
Cttttttttttt‘#tttt#t#t‘*‘#t#‘ttt‘ttttt

c* COLLECT STATISTICS WHILE PARKED *
c* ATCPU .

Ctt“#.‘l“ttl“‘““‘.‘.“‘.t“t“t“

C
f (ct.eq3)then
muno(nexty=mutinofnest)+1
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ahio(b)=inext

senViCe=expon(m.2)

w(ict)=1

cal schak(2 sefvice,ab)

mnow.grdea) seni(ich=sentic+senvice

101 f tnow g iclean) then
depat(ic=depat(ict)+1
depaf(rum+3)-depaf(rmssn+3)+1
C
reflum
end
g*#t*tttttttt‘##*#ttt#tt**ttt#*#t‘t#tt#tttt#
C * Subrouline NEXTGUY *
C SRR EAEEXEEREEEEEEERE AR EEEREBRRARR G AR LR ERES SN
c
subroutine nextguy(ict.ine
common/ucom)/ depaf(mmecn(m)p(w 10).senvi(10).ecourt(2)

common/ucom?/ isubcap nusssh numcust fclear nstudy
c

cum=g.
u=unfim0.,1.2)

do 10 index=1.nusssn+2
cummcumH+HpXiat index)
¥ (ule.cum) then
next=index
goto 15
ese

continue

endf
10 confinue
C
15 refun

end
c
C SRS ESS NGRS SR SRR USSP O R SRS S S SR b b bbb EEd

C * Subroutine OTPUT .

C SESEE LSS S SRR SRS RS RSP EREELESEESEES SIS
C

C

subroutine olput
common/scom1/ ao100),da100),ddK 100}, dnow Lmfamstop ncir
IMJWanmeMlm),w(Iw)Mﬂwm(lm)
common/ucom1/ depart(10)mean(10) 4 10,10).senvi(10).ecount(2)
common/ucom?/ isubcap . nusssnnumcust fciear nstudy
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common/ucom3/ mulino(?)
common/ucom9/ levek 10)
red level

wite(15,*) ccav(1). Jevexi).i=1.nusssn+2)

wite(1,*nnun

wite(1,* Xecoun() i=12)
wite(1,* Xccavg(l).i=1,nusssr+2)
wite(1,* Xitava(l) =2 nusssn+-2)
wite{(1,*X J=1.7UssSN4+2)
wite(1,* X depart()) j=1nusssn+3)
isum=0

do 10i=17

10 cortirnue

wite(1,* Xmulino() i=1,7).isum

refun
end

80




W W W

GEN bauermodel no 15,6/5/86,20.nny.nn;
UM{T&?.SZCIJ: e
STAlL Lreponse X
STAT2 wak it 2;
STAL3 wai st 3;
STATAwal st 4;
STALS wak st §;
STAT6,wak sttt 6;
STAL7 wak sttt 7;
TIMST X4 1) fermindis;
TIMSTX042).cpu;
TIMSTXX(3).cisk 1;
TIMST.XX(4),clisk2;
TIMST XX(5),clisk3;
TIMST XX(6).cisk4;
TIMST.XX(7).ciskb;
INITIALIZE,0.,5000.;
MONTR,CLEAR,2000;
gﬁDs,mW(l);
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infie fact;

INPU Y X1 X2 X3 x4 X5 %6 X7.

X12=x1*%2;

X13=x1*%3;

X14=x1*x4;

X15=x1*x5;

X16=x1*%6;

X17=x1*%7;

K23=u2*%3;

K24mx2* nd;

X25=x2* %5,

X26mx2* %b;

X27=x2* %7

%34mxI*%4;

X35mx3*x5;

X36=x3*xb;

X37=x3*x7;

X =y l* x5,

Xb=xi* b,

xA7=x&*x7;

%56=x5* %6,

X57=x5*%7;

XO7=xb6*%7;

proc stepwise;

model y = x1 %2 x3 x4 %6 %6 x7 k1213 x14X16 x16 x17
X23 %24 %25 %26 27 %34 %35 %36 %37 %45 %46 x47
%06 %57 %67;
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Appendix 3. POSTFOR

C
C This takes a daa fie generated by M15.Fand
g comeu e:omddctecggrowakblesforrpurro
ILF. Speciicaty, this program uses summed
C setvice fimes, probabilties of franstioning from
gmdbehg palﬂiza andthe
' na ,
C actud number of custormers franstioning rom the CPU
C to a paticuicr node, and cacuites ssandardized
(é work and roufing variabies.

O00OOO0O00O0O

progam mkdata

parameter (nunreps=20)
ntegerdp

redl m(7),pK7) (7

redl r(13).w(7).e(8)

integer muk(8)

red wikv(7) mul?)

redl ym13),ymbx(13)

recl wk{7),wk2(7),wkio(7), wkv(7)
red i(7) 42(7) o7y (7)

c
C DATA FOR DESIGN POINT 1

¢ The folowing data are dtfributes of the modei.
C

datadp /1/

C m are the mean sefvice times by station
datamn /7 100.0.,1.2.2242.224.20.

C pi are the steady state franstion
data pi /.09..09,.45..16,.16,.02,.02/

C pt2 are the aclud probabiies rom CPU
ddcpa/zml:t &

C
C dpl.datis adatafie generated by MIG.F,
¢ the simuidtion of the modei.

c

open(uni=20 fle='dp1.dat’ statusa'old")
do 101

CRUN#
reac20,* 1

C Totdl event court, Event court from TCLEAR
reack20,* 2.3
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C RESPONSES
reack20.* Xr.i=1.7)
1eac 20, X i=8,13)

C SUMS of Service Tmes by Station
reack20,* Xw().b=1.7)

C TOTAL DEPARTURES by Station
read(20,* Xei).i=1.6)

C Totd Depcatures from CPUto Station |

reac(20,* Xmulkd(i).i=1.8)
do =17

C
¢ wikv(]) is the sfandardzed work variabie of node |
C

f(mD.ne 0. then _
mﬁ)'(wﬂ)-eﬂ)‘ mDY* (sa(eD)/(pKD* eBy* m(D))

c
¢ mul() is the routing variable of node |
c

fjeq2ojeqd)then
Ul(D=0.

eke
Uk Qe(MUSQ-MUKEY*PR(D)
& /sa(pR(*(1.-p@)*muik8))

20 continue
C

¢ ymdD isthe sum of resporse |
C

do 1,13
3 continue

c
¢ wk{D is the sum of work variabie |
¢ wik2(D is the sum of the squares of work variabile j
C () is the sum of routing variabie |
C 12Q) is the sum of the squares of routing variabie |
c

do D17
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wk(D=wkD+wikv(D

WK2(P=wi2(D-+wikv()**2

HQ=AD-+HMUKD

mR2Q=A2)+Hmul(y**2
40 cortinue

open{uni=X fle=regl da’ saus=new")
wite(30,* ¥(1).(9)X10).11)
&K12D.X13)

wite30,* ywikv(1), wikw(3), wikv(4)
& wikv(5). wikv(6).wikw(7)
wite(30,* Jmuli( 1).mul(4).mulk(s)
&mul6) ul(7)

10 cornfirue
C

¢ ymb{)) is the mean of response
c

do blj=1,13
yn‘b(j)-ym(])/(ﬂod(meps))

c
¢ wkbx()) is the mean of work variabie j
¢ i} s the mean of rouling variabie |
c wkv()) is the variance of work vaniabie j
c v s the variance of routing vaniabile |
C

do 60 =17

wloq)-wkol(ﬂod(nmeps»
0 ﬂb(D-'KD/(ﬂod(mmeps})

do70j=1.7
wkv(])-(wle /(/(ﬂod(urg)e)es-l))) - .2
W@*ﬂ?@/%(ﬂmb»
&(‘(:ﬂod(n.meps/(runeps-l)))"an)'

w&;&ﬂe— ‘post.ou’ staus="new")

885 formali(1x, WELCOME TO TAPE10 : SUMMARY OF POST PROCESSING'/)
wite(10560)cp

560 formar(1x, THIS IS DESIGN POINT ‘2, POST PROCESSING /)

wite(10,565)numreps
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566 fomnat(1x,'DP1has 'B,’ repicchions’/)
wiite(10,570)

570 formai(1x,'Below are the sample means of the responses’/)
write(10,*)
write{105

575 fomdi(1x,'Below are the means of the work varabies'/)
wiite{10,*)wkb
write(10,580)

580 fomali(1x, Below are the vaiances of the work variables'/)
wiite10,* ywkv
wrte(10,585)

585 famd(em *;:bBelow ae the means oﬁhe routing variables’/)
wite(10,590)

590 fomal(1x, Below are the vaiances of the routing variables’/)
wrte(10,* v
stop
end
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options inesize=78;
ddq;

infle regl;
nputtudud ub ub u? wl w3 wAwb wo w7 7;
proc stepwise;
modelt=wl w3 wd wd wo w7 rd b 16;

proc stepwise;
modelud=wiw3widwbwbwZr i,

proc s
rrmemwawdwﬁwbwmmsm

proc stepwise;

model ub = w1 w3 wi wb wo w711 415 16;
proc stepwise;

modelub =wl wlwldwd wow?r11dh;

proc stepwise;
model u7 = wl w3 wid wb wo w7 rlrd5 6;
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m:mamwmmmwwmmmnmsm
pcl pc2 pcd pcd peh peh:

proc stepwise;
modelpcl = w1 w3 wi wb wb w7 rlrdlr6;

proc stepwise;
model pc2 = w1 wd wa wb wb w7 1l riis 16;

proc stepwise;
modei pcl = wl wd wld wo wo w7 1N 45 16;

proc stepwise;
modelpcd = wlw3wiwb wb w?rrdimb;
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rpumuausmuml w3 wld wb wob w?rra5r6r?
pclpc2 pcl pcd peh peh;
proc factor data=non rofate=vaimax score oustal=save:;
vartudud ub ub u7;
proc gge Aala=NOoN sCOre=save Oul=scores;
proc
piof factor2*tactor;
Proc piot;
piot factord*factor!;
Proc piof:
piot factord*tactor;

| vafu?mtﬁwumwawwswowm 4151617
factor factor? factord factord:
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ep;
inputb U3b b LB UBb UTD;

proc factor data=con rofafe=vaimax score ousfat=save;

var i udb udb ubb ubb u?b;

ProC sCOre datQmCOoN sCOre=save OUl=sCores;

proc pict;

piot factor2*factorl;
proc piot;

pict factord*facton;

proc pio;
piot factorg*factorl;
proc prirt;
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