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Preface

The study is a follow on to a thesis by Leonard G.

Heavner who performed a preliminary investigation into the

application of dynamic programming to determine the optimal

controls to track a cruise missile by the Cruise Missile

Mission Control Aircraft (CMMCA).

As suggested by Heavner an improved definition of a

penalty function has been established. A different

technique for obtaining the optimal controls is investigated

to preclude the memory problems Heavner encountered using

dynamic programming.

I am deeply indebted to my co-advisors Lt Col T. F.

Schuppe and Lt Col W. P. Baker. Lt Col Schuppe gave me sage

advice and always reminded me to step back and look at the

big picture. Lt Col Baker unselfishly gave up countless

hours to help me along this difficult problem. I would also

like to thank Brian Jordan and Brian Kearns for making sure

I went to the gym and worked out my frustrations there and

not at home. Finally, I wish to thank my wife, Stacy, who

made sure I always kept a sense of humor and did not take

myself too seriously.

Antoine M. Garton
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Abstract

Air Launched Cruise Missiles (ALCM) are frequently

tested in live firings over the western United States.

These test flights require the use of several aircraft for

launch, tracking, and control of the test vehicles.

Tracking has historically been provided by a modified EC-135

aircraft. However, an EC-18 known as the Cruise Missile

Mission Control Aircraft (CMMCA) has been developed and will

be assuming the tracking mission.

The CMMCA will use a tracking radar rather than data

provided by the telemetry antenna on the EC-135 to track and

keep positive control of the cruise missile. The new radar

has decreased azimuth limits compared to the EC-135.

Because of a mission requirement to maintain constant radar

coverage of ALCM, the problem of tracking has become much

more difficult. A method has been developed to evaluate

various options for maintaining the ALCM within the limits

of the proposed radar. This method involves the use of

computer simulation to model the movement of both vehicles.

The modeling process is capable of employing various laws or

procedures for tracking the cruise missile.

vii



This paper describes the simulation developed for this

evaluation as well as other insights gained in the

evaluation process. This process should lead to a method

for mission planning for CMMCA flight crews which should

maximize the CMMCA's ability to provide continuous tracking

coverage of the ALCM.
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USING SIMULATION TO DETERMINE

A STRATEGY FOR POSITIVELY TRACKING

A CRUISE MISSILE BY CMMCA

I. Introduction

The 4950th Test Wing located at Wright-Patterson AFB

will soon own and operate two specially configured aircraft

called the Cruise Missile Mission Control Aircraft (CMMCA).

The mission of the CMMCA will be to track and to keep

positive control of a cruise missile during an operational

test flight. The term positive control includes making sure

the cruise missile maintains its scheduled flight path

during the test as well as ensuring other traffic is not

within collision range or on a collision course with the

missile. At present, the aircraft used in the CMMCA role do

not have a tracking radar at their disposal. What these

aircraft do have is equipment that uses the CMMCA's

telemetry antenna to indicate the heading and distance of

the cruise missile from the airplane. With this data crews

can chart the progress of the cruise missile and compare it

with the flight planned course. This procedure is not real

time and they caniiot maintain positive control of the

missile in any area. Because the crews do not have a radar



display of the cruise missile and surroundings, operational

testing requires many other aircraft to participate. Four

fighters fly close to the missile to ensure it is flying the

correct flight path at all times. In addition, an air

refueling tanker is required in order to provide the

fighters with refueling support for this very long mission.

Each tasked flying unit provides spares of each type of

aircraft so the entire mission does not have to be aborted

due to a broken primary aircraft. These aircraft are the

minimum required to perform a test. Depending on the

operational test, many more of the same type may be needed

in addition to other special aircraft like the Airborne

Warning and Control Aircraft System (AWACS).

Understandably, the testing agency would like to decrease

the number of aircraft involved for manpower and monetary

reasons.

In October of 1990, flight testing will begin on a

tracking radar system installed in two designated CMMCA's to

aid in cruise missile flight tests. Even though the radar

is a more powerful visual tool than the telemetry antenna

and equipment, it is more limited in operating range and

azimuth. With this radar however, the navigator will be

able to visually track the cruise missile in real time. The

radar can simultaneously show the position of the CMMCA, the

cruise missile (CM) location and the CM planned flight path,
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all on one screen. Because of the new radar system, the

question has arisen whether the capability will exist to fly

the mission with CMMCA only. A big advantage in this effort

is that the entire scheduled flying route the cruise missile

flies is known before an operational test. The CMMCA crews

flight plan with the cruise missile flight path in mind.

Tracking and keeping positive control are not difficult when

the cruise missile is flying a straight path from one

navigation point to the next. A problem occurs when the

cruise missile makes a quick direction change. One of the

most difficult maneuvers to track on radar is when the

cruise missile makes a 270 degree turn, flies straight for

two miles, and then does another 270 degree turn. The CMMCA

cannot make these turns as quickly since the cruise missile

and CMMCA have such different flight characteristics.

Another problem arises because the CMMCA flies at 28000

feet during the test and the cruise missile flies at

altitudes less than a 1000 feet. Winds at 28000 feet can be

quite different from those experienced at 1000 feet. To

compensate for the change in winds the CMMCA must fly a

different heading relative to the missile in order to follow

the same flight path.

Research Problem

As mentioned above, the telemetry information provided

for tracking is inadequate for use by the Test Wing. A

3



tracking radar can provide the test program a better

capability to monitor test flights with fewer aircraft.

With the acquisition of the new radar however comes a

deficiency in the knowledge base on how to best use the

radar. This particular radar has never been used in this

type aircraft. The simulation model proposed will help

decrease this lack of knowledge before flight testing

begins.

One obvious solution to the tracking problem is to

modify the test cruise missile with a homing device or

beacon. This eliminates the problem of tracking it by radar

and alleviates the radar azimuth and range limitations.

Positive control as defined earlier is not assured however.

Ground radar sites along the test path are also being

evaluated so a beacon transmitting the cruise missiles

position interferes with that portion of the test. Finally

the Air Force does not want to modify these operational

crr -e missiles just because they are being tested.

Research Oblective

The objective of this research is to develop an

effective guidance algorithm for the CMMCA to track a cruise

missile as it performs a series of worst case maneuvers in a

flight test scenario. A simulation model of the two

vehicles will be used to test and validate the algorithm.
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Scope, Limitations and Assumptions

1. The CMMCA and the cruise missile each maintain a

constant altitude during test flights.

2. A no wind condition will be assumed at the constant

cruise missile altitude.

3. The simulation model will use reasonable values for

aircraft flight parameters and characteristics.

4. The CMMCA can simultaneously turn and change velocity or

do either individually to keep the cruise missile within the

radar envelope.

Justification

At the moment, one cruise missile test flight requires

many supporting aircraft. Deriving a method requiring only

the CMMCA for cruise missile testing can save both time and

money.

Overview

Chapter 2 presents background on possible solution

techniques for solving the research objective. Control

theory, simulation and dynamic programming will be

discussed.

Chapter 3 expounds on the solution technique, a

combination of simulation and control theory. The results

of this research are presented in Chapter 4.
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Finally, Chapter 5 discusses some conclusions and

recommendations for future research in this tracking problem

area.
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II. Background

This chapter examines three possible approaches to the

CMMCA tracking problem. Control theory, dynamic

programming, and simulation were considered as alternative

techniques.

Control Theory

Classical control system design is frequently a trial-

and-error process using methods of analysis iteratively to

produce 'tolerable' system parameters. Today with the

advent of the digital computer, more complex systems can be

analyzed using the newer approach of optimal control theory.

Optimal control theory seeks to maximize or minimize the

operation of a physical process. The final objective of

optimal control theory is to determine the input signals

that will cause a process to minimize or maximize some

performance measure while staying within certain physical

constraints of the system (6:3). Kirk lists the following

steps in formulating an optimal control problem (6:4):

1. A mathematical description (or model) of the
process to be controlled.

2. A statement of the physical constraints.
3. Specification of a performance criterion.

A mathematical description of the process to be

controlled is no easy task. The first thing that must be

identified are the variables necessary to define the system
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and describe the motion, if it is a dynamic system. In

control theory these variables are called state variables.

The CMMCA problem has many variables associated with it

including true airspeed, position, heading, and bank angle.

Choosing which of these variables best describes the system

being modelled is an art in control theory. Someone else

with a different purpose or objective may model the same

system with quite different state variables. Kirk

recommends finding the simplest mathematical description

that satisfies the physical system being modelled for the

range of possible inputs (6:4). For example, the flight of

the CMMCA can be modelled by choosing true airspeed and bank

angle as control inputs and heading as a state variable.

Since flight follows well known physical laws, state

equations using the previously mentioned variables can be

derived to describe or model the CMMCA motion. The state

equations in ordinary differential form are:

d-X.TAS sin [HDG] +WV, (2.1)
dt

dy Z-TAS cos [NDG] +WVy (2.2)
dt

dHd g tan[a] (2.3)
dt TAS
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The first equation describes the velocity of the CMMCA in

the x direction (East) given the control input of true

airspeed (TAS) and the state variable heading (HDG). The

last term in Eq (2.1) is the wind velocity component in the

x direction. The second equation does the same except in

the y direction (North). The third differential equation

defines the rate of change of the CMMCA heading given the

two control inputs, bank angle (a) and true airspeed.

After the model has been selected, physical constraints

on the system must be addressed. One obvious constraint

from the example above is the operating airspeed limitations

for the CMMCA. Depending on the aircraft gross weight,

there is always an upper and lower limit on flying speeds.

Another constraint is the maximum bank angle the CMMCA can

fly. Once all the physical constraints have been identified

and included in the mathematical model the next step is to

select a performance criterion.

Kirk defines optimal control as "one that minimizes (or

maximizes) the performance measure" (6:10). In the CMMCA

problem a rather obvious performance measure is minimizing

the total amount of time during a flight maneuver the cruise

missile is not within the CMMCA radar cone. Heavner

expressed the performance measure as a penalty function with

range and azimuth as inputs. Using this penalty function,
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dynamic programming tried to minimize the time weighted

average deviations from a given nominal range and azimuth.

The optimal control problem needs to identify

admissible controls in the form of bank and airspeed that

will allow the CMMCA to follow an acceptable flight path

that minimizes some performance measure.

In an unpublished report, Baker suggests using control

theory to provide an optimal tracking algorithm. It is a

continuous approach requiring an objective function and

associated constraints. The entire flight path for the

CMMCA given this objective function could be optimized using

a mathematical technique called calculus of variations

(11:11).

Optimal control theory seems ideal for the cruise

missile tracking problem and a variation of Baker's

technique was used by Heavner in his dynamic programming

approach.

Dynamic ProgramminQ

Dynamic programming uses mathematical techniques to

solve interrelated decisions (4:266). In control theory

dynamic programming is used to maximize or minimize some

control function of the state variables. Hillier and

Lieberman describe the basic features which characterize

dynamic programming:
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1. The problem can be divided into stages, with a
policy decision required at each stage.

2. Each stage has a number of states associated with
it.

3. The effect of the policy decision at each stage is
to transform the current state into a state
associated with the next stage (possibly according
to a probability distribution).

4. Given the current state, an optimal policy for the
remaining stages is independent of the policy
adopted in previous stages.

5. The solution procedure begins by finding the
optimal policy for each state of the last stage.

6. A recursive relationship that identifies the
optimal policy for each state as stage n, given the
optimal policy for each state at stage (D + 1), is
available.

7. Using this recursive relationship, the solution
procedure moves backward stage by stage - each time
finding the optimal policy for each state of that
stage - until it finds the optimal policy when
starting at the initial stage. (4:270)

Heavner defined the state of the system as the position

and velocity of the CMMCA. The controls that determined the

state were bank angle and thrust. The equations of motion

of flight were used to determine the state of the system

given these two controls. The stages in this dynamic

programming problem were represented by time. At each time

increment a decision had to be made as to what controls

should be applied to determine the state of the system.

Heavner's performance criterion is a penalty function to be

minimized at each stage. The objective was to minimize the

time-weighted deviations from a desired location ahead of

the CMMCA. This desired location would be where the cruise

missile should be in the radar sweep. The two deviations

11



from desired location were defined as range in nautical

miles (nm) and azimuth in radians, both measured from the

CMMCA position.

The problem Heavner encountered was the high

dimensionality of the tracking problem requiring excessive

amounts of high speed memory to compute an optimal solution.

To alleviate the curse of dimensionality problem, Heavner

used a technique called state increment dynamic programming.

The procedure is fundamentally the same as regular dynamic

programming with the addition of two new concepts: the

block and the time over which a control is applied.

Problems arose on how to implement the CMMCA problem using

state increment dynamic programming. A more successful

application of conventional dynamic programming was used by

decreasing the state space and only looking at single turns

of the cruise missile during the simulation. The model was

written in FORTRAN code and run on a VAX under the VMS

operating system. Heavner recommends the model only be used

for insight into the controls that might be necessary for

the CMMCA to use during a cruise missile maneuver (3:1-38).

Simulation

Another possible solution technique is continuous

simulation. The technique was initially dismissed in

Heavner's thesis because dynamic programming could

theoretically achieve an optimal solution which continuous

12



simulation could not guarantee (3:36-37). Due to the

dilemma in the dynamic programming solution technique,

continuous simulation is being reconsidered.

Is continuous simulation a suitable technique for this

particular problem? An article by Bekey points out that the

"purpose of simulation is either to yield insight into the

behavior of the process being simulated or to make

predictions of performance" (2:57). Both results would be

of interest in the CMMCA problem. Bekey goes on to say that

a good measure of fit is if the simulation comes close to

the actual behavior of the process over some time period

(2:58). Since the equations of motion of flight follow well

known physical laws, it makes one confident that the

required flying portion of the CMMCA and cruise missile

simulation would closely represent the real world.

Simulation may not attain an optimal solution like the

dynamic programming technique tried earlier, but it could be

used to identify rules of thumb to follow in better tracking

a cruise missile during a flight test. Many systems that

are too hard to optimize are at least better understood

using simulation.

Tasks Necessary for Simulation. Pritsker says that two

tasks necessary for simulation are the collection of

equations and events that describe the particular process

being modeled and the evaluation of these equations and

13



events for different control inputs (9:484). A recent

article by Sheppard suggests more detailed steps in

simulation (12:14):

1. System definition (boundaries, restrictions, etc.)
2. Model formulation
3. Data preparation
4. Model translation to a machine executable form
5. Model validation
6. Design of experiments
7. Planning of computer runs
8. Model experimentation
9. Interpretation of model outputs

10. Implementation of model results
11. Documentation

All these processes are necessary to accomplish the

task of solving the CMMCA problem. The first two simulation

stages, system definition and model formulation, help in

deciding what equations to use in defining the simulation

model.

Eguations. As mentioned earlier, the equations of

motion of flight are well-defined physical laws. An article

by Stewart shows a rather comprehensive and all encompassing

derivation for the equations of flight. These equations

include control input forces (rudder, elevator, aileron) as

well as the aerodynamic forces (propulsion, drag, lift etc.)

and gravitational forces (13:237). The CMMCA problem does

not require some of these equations or certain variables.

For instance, the CMMCA will not be climbing or descending

while tracking the cruise missile so any motion along the

14



'altitude' axis will be zero. The cruise missile will be

flying low and at a reasonably constant altitude for

tracking, so its vertical axis motion will be assumed to be

zero also. Turns and changes in velocity are the only two

maneuvers allowed when tracking the cruise missile. Heavner

has an appendix of the needed equations well defined and

derived with the specific restrictions mentioned previously

incorporated (3:42).

The next big consideration is how to verify and

validate the answers the simulation is producing.

Validation and Verification. When simulation is used

for problem-solving, the modeler is concerned whether the

information or results taken from the model can be used with

confidence. Hopefully model validation and verification can

address this concern.

Sargent makes a clear distinction between validation

and verification in the following simplified version of the

modelling process and as shown in Figure 1.

Conceptual model validity is defined as determining
that the theories and assumptions underlying the
conceptual model are correct and that the model
representation of the problem entity is "reasonable"
for the intended use of the model. Computerized model
verification is defined as ensuring that the computer
programming and implementation of the conceptual model
is correct. Operational validity is defined as
determining that the model's output behavior has
sufficient accuracy for its intended purpose or use
over the domain of the model's intended application
(10:33).
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Figure 1. Modelling Process
(Reprinted from 8:34)

Sargent points out that no matter how many validation

techniques are used there is still no guarantee that the

model is absolutely valid over the entire range of possible

application. Some of the validation techniques discussed by

Sargent and deemed useful for this particular thesis effort

are:

1. Operational Graphics - Model's operational behavior
is graphed through time.

2. Comparison to other models - Heavner's model is
available as a comparison.

3. Face validity - People knowledgeable about the
system are asked if the output is reasonable.

4. Parameter variability - Values of parameters in the
model are varied to determine any effect on the
output (10:33-34).

ImDlementation. Schuppe has written a rudimentary

simulation that takes all these considerations into account

and tries to establish how well a CMMCA can track a cruise

16



missile (11:1). Both the CMMCA and cruise missile were

easily modelled using the equations of motion of flight.

Identification of a guidance algorithm the CMMCA could use

during the simulation to track the missile was a more

difficult problem. The simulation showed that just reacting

to missile maneuvers was not adequate enough to effectively

track the missile. Schuppe concluded that a guidance

algorithm needed to take into account the future position of

the missile so the CMMCA could alter its flight path before

the missile.

Conclusion

The review brought into focus some of the more

challenging aspects of trackig F cruise missile. It seems

an optimal guidance algorithm of some kind is needed to

determine what path the CMMCA should fly to best track the

cruise missile. Continuous simulation can be used to show

this flight path as well as evaluate the guidance algorithm

for effectiveness during different maneuvers. Heavner's

dynamic programming model can aid in validating any future

model developed. This research effort will explore the use

of a modified version of all three techniques to help solve

the problem.

17



III. Methodology

The methodology for obtaining an optimal tracking

algorithm took form by following steps recommended by Baker:

1. Identify a quantifiable objective
functional and associated constraints.

2. Treat problem in discrete time increments.
3. Optimize over the entire flight maneuver with

respect to chosen objective function.
4. Optimize using a modified gradient search

procedure.

The term functional used here and later on denotes a

function containing several functions. These functions and

what they represent will be discussed in the next section.

Baker had already identified an objective functional

that would take into consideration the future location of

the cruise missile as well as performance constraints for

the CMMCA (1:4). Discretizing the time increments was

necessary to simplify the objective functional so it could

be solved with known numerical techniques. Each cruise

missile maneuver is optimized separately to avoid problems

with excessive need for computer memory. This follows

closely how a flight crew would approach flight planning a

mission with many cruise missile maneuvers. A modified

gradient search method was required to solve for the CMMCA

control inputs, bank and airspeed.

18



Baker's Objective Functional

The objective functional is really a cost functional

that penalizes the CMMCA for current position error and

improper control inputs. The only control inputs allowed in

the objective functional are CMMCA airspeed and bank angle.

Only these two controls can be used to minimize how far away

the CMMCA is from some desired position from the CM.

Current Position Error. e0 and ro are the desired

nominal bearing and range to the missile. The nominal range

can vary from the closest distance the radar can view the

target to the maximum distance. The nominal bearing can

range from a -Rc degrees measured counterclockwise from the

nose of the aircraft to a positive 6¢ degrees measured

clockwise from the nose of the aircraft. An ro of eight

nm's and a 8, of zero degrees were selected to reflect where

a navigator would most likely try to keep the target while

tracking it.

.r ( t) e [.r, X2)

1)(0)e [-Oce • e• (3.1)

E(t) - (r(t) W-r) 2+ (e (t) -e,) 2

E(t) is the total error due to current CMMCA position. The

current position error is further defined by the equation

below where W, is a weight to be determined later during

experimentation.
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P(r,8) - [r( )-ro] 2 + w[(t)e)-0o] 2  (3.2)

2

Figure 2. Radar Cone

In an x-y axis system, where y denotes north and x

denotes east, range and azimuth from CMMCA to CM can be

defined as:

. (t) -I[ (XM(t) -x(t) ),+ (Y.(t) -y(t) )] 9",

S( 0 -t) 't - I X'm( t) -jx( t) ] - Hdg ( t( -y0 (3.3)

The x and y positions subscripted with m represent cruise

missile coordinates while the x and y variables with no

subscript represent CMMCA position. This study will not

take into account the slant range accrued from the CNNCA and

cruise missile flying at different altitudes.
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Control Input Penalties. Both airspeed and bank angle

have penalties associated with them in the cost functional.

The penalty function for airspeed is expressed as follows:

p. V(t_)- d4 (3.4)

Let Uo be the desired nominal true airspeed and mu an

allowable variance from the nominal. A desirable nominal

TAS would be a value somewhere in the middle of the CMMCA

performance envelope. Let V(t) represent the true airspeed

velocity at some time t. The highest and lowest true

airspeed the aircraft can fly at any time in a mission is

dependent on the airplanes gross weight at that time. This

study will assume a low TAS of 330 knots and a high of 480

knots for the CMMCA during a maneuver. A desirable nominal

TAS using these highs and lows is 400 knots, allowing ample

range for speed increases and decreases. The variable K3

represents an integer affecting the steepness of P, for

variations greater than mu as well as the flatness of the

parabola inside the mu boundaries. Mu is defined as half

the interval between high and low true airspeeds, or 75

knots. As demonstrated by Figure 3, the penalty for being

relatively close to the nominal airspeed is small versus the

penalty incurred for being past U, + p where the curve is

very steep.
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U0  U0 4÷L

Figure 3. Penalty Diagram

The bank angle penalty function behaves the same way

and is defined as:

P.-w (35)

Beta zero is defined as bank angle variance while K4 is an

integer influencing the function like the K3 constant in Eq

(3.4).

The total objective functional throughout the maneuver

will be given by:

tf

J-f[P(r(t),e(t))+P,(TAS(t))+P,(a(t))]dt (3.6)
t'

The time interval the integral is evaluated over is defined

as the time a cruise missile maneuver starts, usually zero,

up to the time the maneuver is completed. Due to the

extreme complexity of the objective functional, it would be
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difficult or impossible to solve explicitly. Instead of

working with a continuous time functional, Eq (3.6) was

discretized so it could be solved using numerical analysis

on a computer system. The discretized version of Eq (3.6)

follows.

N

J-0

TJ~- [r (ti) -Z.) +W, (a (ti~) 4a) 2-W2 (_ VJ(3.7)

This equation is defined for discrete time intervals t,, t1,

t 2 ,... t, = tf. At each of these time intervals V(ti) = Vi,

the velocity (nm/min) and a(ti) = ai, the bank angle

(radians). Wti represents some quadrature integration

weight which can be changed to better approximate Eq (3.7).

A trapezoidal rule will be used for the numerical analysis

approximation of the integral (7:146). The velocities and

bank angles are contained in vector form with each vector as

long as there are time increments in the maneuver. If the

maneuver takes 80 time units, there are 80 velocities, 80

bank angles and 80 weights that define J the objective

functional. The next step involves taking the partial of

the objective functional J in order to develop a method for

minimizing J.
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Gradient of J

Recall the discretized version of the objective

functional presented in Eq (3.7). This equation along with

a few others defined below will establish the equations

necessary to derive the gradient of J.

Range ri has been defined as the difference in distance

from the cruise missile to the CMMCA. The missiles

position, which is a given, is represented by the m

subscript. Pythagorean's theorem derives the magnitude for

the range.

1 -([_mXj -x,] 2 +[ym _y]2)1/2 (3.8)

Theta is defined as shown representing the angle

measured left (negative) or right (positive) of the CMMCA

heading. Theta can range from -180 degrees to +180 degrees.

e i-tan'- X-X] - Hdg1  (3.9)
[M Y1,Y•

The next three equations were derived in appendix A and

are needed here to derive the gradient J. Each equation
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exhibits how the left hand side changes with initial

condition, subscripted by a 0, and elapsed time.

Ixj-X,+T. V~sin (Hdgl) W.Z'-)At + WV,( ti- to) (3.1i0)

I
y'J-yG÷. VCOS [Hdg1 ] Wj')At + WV,(tj-tO) (3.11)

Hdg tan [a ] H)At (3.12)
Hd1-HdgoE g÷ W'g

R-0 V,

Since the objective functional is a function of both

velocity and bank angle at some time, the gradient of J

consists of two parts. The first part is the partial of J

with respect to each velocity k. The second part is the

partial of J with respect to each bank angle k. Eqs (3.13)

through (3.20) are the results of taking the partial of J

with respect to a velocity k of Eqs (3.7) through (3.12).

Eqs (3.13) and (3.14) are the partial of the first

portion of Eq (3.7) with respect to a velocity k. Each

component of the gradient of J is set to zero in order to

solve and find a minimum for the objective functional

equation.

-- 0a' -0 .(3.13)
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"( waJ(3.14)

The partial of J with respect to a velocity k of the second

part of Eq (3.7) is derived below.

Oj, - 2R( v(z o)-'l (3.15)a•-•,•-2r +2,Zo •-÷w,(e,-e.) + w2-L-•----

Eq (3.15) shows the need for the partial of r with respect

to Vk and the partial of ai with respect to Vk. Both are

derived from Eqs (3.8) and (3.9).

(x -1) ~X1  (yy 1)(3.16)

(y-y4 Xr% 8X1  + __D_~

"av " (X, -X1) 2 + (yA .-yI,) 2 --

The last three equations needed to complete taking the

partial of J with respect to Vk are the partials of Eqs

(3.10) through (3.12). The results are Eqs (3.18), (3.19),

and (3.20).
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O,k >1 Mx alldgj 0 < k:C (3.18)
s~ hi n (dg,,) W"t + V.10os(Hfgj) W1 A t .-j 2J

(o~k >i

y dg) .4 t V ,s .n (Hdgg) W"0)tL J ( 3.19 )

(o,k >1
aHdg1 .10,1-0 (3.20)

The same process as above must be accomplished for the

partial of J with respect to some alpha (bank angle) of k.

Eqs (3.21) through (3.28) are the results of these

derivations.

S0(3.21)
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ay+2W.(01 80) 2W.K -(g's~2 1 1 (3.23)

CK. F Xj ( aj 1  (3.24)

~~~ak all.7 Y) )-~8dg, (3.25)

±X- v~oUd~Wt alHdg1  (3.26)

aly 1  c Hdg1  (3.27)
.c± 1-0 a k

(O,k >1
alHdg. ,1 O.- 0 (3.28)
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Modified Gradient Search

The second partials of J with respect to velocity and

bank angle is deemed too complicated due to the size and

complexity of the first partial derivative. Because of this

complexity a modified gradient search method is needed in

order to solve for the minimum of the objective functional

without using the second partial derivative.

The gradient of J is determined by taking the partial

derivative of J with respect to each velocity and bank angle

in the maneuver vector. This has been accomplished in

general form in the previous section. The maneuver vector

will be defined to consist of all the velocities and bank

angles for each time step in a particular maneuver. The

gradient vector points in the direction of maximum increase

for a function. Lambda provides the step size in the

direction opposite the gradient vector. The old maneuver

vector is replaced by a new maneuver vector according to the

following calculation.

[~I -X.mn (3.29)

The gradient J is a vector containing the search direction

for each velocity and each bank angle in the maneuver

vector. This gradient vector multiplied by some lambda and
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subtracted from the old maneuver vector provides an improved

maneuver vector which produces a smaller J objective

functional value than the previous maneuver vector.

Since this is an iterative process a stopping criteria

needs to be implemented. At optimality the gradient J will

vanish. The step size lambda will also approach zero at

this point. Continuous checking of lambda and the gradient

J within some tolerable value close to zero during program

execution will provide the information necessary to decide

if optimality has occurred and terminate the program.

Because the second derivative was not available, a

technique needed to be established that will provide a step

size lambda for the search direction. It was first decided

to pick three lambda values; compute three separate new

maneuver vectors using each; compute the functional J from

these maneuver vectors; fit a parabola through the three

points; identify the lowest point on the curve and use it as

the best step size for that direction. Lambda optimal, as

it was referred to, was the step size used to compute a new

maneuver vector using Eq (3.29). One of the three lambda's

took on the value of zero to save on computation time while

the other two were picked based on results of

experimentation. The main reason for using this approach

was to avoid correcting in some direction using too small or

too large a step size. The parabola fitting can save
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iterations by calculating a better step size from the

lambda's given and proceed more judiciously in the direction

computed. Appendix C contains the derivations necessary to

fit the parabola to the three objective functional points

and compute an optimal lambda.

Implementation

A FORTRAN computer code was built to optimize the

objective functional discussed above using the modified

gradient search technique. The gradient search procedure

requires an initial maneuver vector to start the search. In

earlier studies of the CMMCA problem a basic SLAM II

simulation model was built to replicate the flight

characteristics of both the cruise missile and CMMCA. This

model provided the initial guess for a maneuver vector for

the FORTRAN optimization algorithm by outputting the banks

and speeds the cruise missile flies during a maneuver. The

initial guess assumes the CMMCA will fly the same flight

path as the cruise missile. The simulation was also

available to measure, in percentage of time, the performance

of the guidance algorithm in keeping the cruise missile

within the radar envelope once an optimal maneuver vector

had been calculated. The FORTRAN code for the modified

gradient search and the SLAM II simulation code are both

contained in Appendix B.
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Algorithm Example

As mentioned above, the algorithm requires an initial

guess to start a search for a better maneuver vector. Along

with the initial guess the algorithm also requires the

cruise missile x and y position for the entire maneuver.

Table 1 shows the required entries. The bank is entered in

radians and the speed in nm/min. These two columns

represent the initial guess of bank and speed the CMMCA

should fly to follow the CM. The first row represents the

initial conditions for the CMMCA and CM. Starting with zero

each row represents .1 minutes of elapsed time. This small

maneuver example lasts 1.2 minutes. The columns marked XCM

and YCM represent the CM x and y positions in nautical miles

for each time period. The CMMCA starting position is

currently hard wired in the program to be x=O, y=o. In this

case the CMMCA is in a twenty degree bank starting out 8 nm

behind the CM at a true airspeed of 6.667 nm/min. The

cruise missile is also going the same speed although flying

straight and level as inferred by the position columns.

Intermediate results as well as final results were

printed to show the sequence of events leading to a more

optimal bank and speed profile. Table 2 shows calculations

for one iteration while Table 3 shows the results achieved

after one iteration.
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Once the algorithm has the data it builds the maneuver

vector which in this example will consist of twelve speeds

and twelve banks. The initial conditions (i.e. initial

velocity and bank angle) cannot be altered so it will not be

included in the maneuver vector.

Table 1. Input Example

BANK SPEED XCM YCM

0.00 6.667 0.0 8.000

0.35 6.667 0.0 8.667

0.35 6.667 0.0 9.333

0.35 6.667 0.0 10.000

0.35 6.667 0.0 10.667

0.35 6.667 0.0 11.333

0.35 6.667 0.0 12.000

0.35 6.667 0.0 12.667

0.35 6.667 0.0 13.333

0.35 6.667 0.0 14.000

0.35 6.667 0.0 14.667

0.35 6.667 0.0 15.333

0.35 6.667 0.0 16.000

The maneuver vector is one column consisting of 24

numbers, the first 12 are the speeds, the second 12 the

banks. The algorithm proceeds to calculate a gradient

direction for each bank and speed in the maneuver vector as

shown in the Table 2 section called DELTJ. The first number

represents the direction to step in for the first velocity
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and so on until the 24th number which represents the

direction to step in for the last bank angle.

Table 2. Calculations After One Iteration

DELTJ JSTOP GLAMB LAMBDA OPT

-2.038080 59.751010 30.375850 .08333333

-1.903263 27.860455

-1.747402 25.345060

-1.569421

-1.367907

-1.142408

-. 08958371

-. 6375485

-. 3857875

-. 1695291

-. 0288455

.009263428

25.919670

24.997360

23.67988

21.973090

19.895210

17.484740

14.810160

11.979380

9.146695

6.514660

4.328537

1.689987
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Table 3. Results After One Iteration

TIME BANK SPEED RANGE THETA

.1 .35 6.7 8.0 -2.8

.2 .35 6.7 8.0 -8.5

.3 .35 6.7 8.0 -14.8

.4 .35 6.7 8.1 -21.5

.5 .35 6.7 8.1 -28.6

.6 .35 6.7 8.2 -36.2

.7 .35 6.7 8.4 -44.1

.8 .35 6.7 8.6 -52.3

.9 .35 6.7 8.9 -60.6

1.0 .35 6.7 9.2 -69.1

1.1 .35 6.7 9.7 -77.6

1.2 .35 6.7 10.2 -85.9

The next computation is JSTOP which is one of the

stopping criteria. JSTOP is computed by taking all

components of the gradient, squaring them, summing them

together and then taking the square root. As the gradient

diminishes in magnitude after each iteration so must the

JSTOP value. Once directions of objective functional

minimization have been established, the algorithm computes

the single best step size to proceed in. GLAMB computes

three objective functional values for three step sizes used

in the algorithm. The three step sizes are 0, .5 and 1.

Using Eq (3.29) a new maneuver vector is computed using each

of the three step sizes. Each new maneuver vector now has

different speeds and banks in it. Each set of changed banks
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and speeds are input into the objectiv e functional and a

value is computed. GLAMB will always have three values

since there are three step sizes. The first value of GLAME

in Table 2 represents the objective func1 ional value for a

step size of 0 in the directions of the previously computed

gradient. The second value of GLAMB is the objective

functional value for a step size of .5 in the same direction

and the last value a step size of 1. These three points are

fit to a parabola and a minimum is established. The minimum

value computed for this parabola is LAMBDA OPT, which is

shown in Table 2 also. This is the best step size to use to

derive a new maneuver vector. The final maneuver vector is

computed using Eq (3.29) and LAMBDA OPT. The new maneuver

vector is used to compute new direction gradients as well as

a new JSTOP. This is one iteration for the algorithm. If

LAMBDA OPT and JSTOP are small enough, the algorithm stops

and prints the results. If not the whole process continues

with computations of three new GLAMB's, a new LAMBDA OPT and

finally a new final maneuver vector. Calculation and

results for the example are shown after the first iteration,

the 15th iteration and the final 27th iteration. Bank is

output in radians, azimuth (theta) in degrees, speed in

nm/min, and range in nautical miles. The iterations show

how the CMMCA is gradually directed to take out the 20

degree bank and fly straight and level behind the CM.
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Table 4. Calculations After 15th Iteration

DELTJ JSTOP GLAMB LAMBDA OPT

-. 09804743 5.328728 6.364915 .08333333

-. 1028940 6.111893

-. 1088278 5.858871

-. 1154768

-. 1222782

-. 1280745

-. 1309998

-. 1286812

-. 1179303

-. 09494756

-. 05623874

-. 01307128

-. 9609199

-1.063918

-1.179684

-1.307672

-1.445859

-1.590090

-1.733149

-1.863540

-1.964104

-2.010684

-1.971537

-. 4676461
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Table 5. Results After 15th Iteration

TIME BANK SPEED RANGE THETA

.1 -. 0 6.7 8.0 .2

.2 -. 0 6.7 8.0 .7

.3 -. 0 6.7 8.0 1.4

.4 -. 0 6.7 8.0 2.2

.5 -.1 6.7 8.0 3.2

.6 -. 1 6.7 8.0 4.5

.7 -. 1 6.7 8.0 6.3

.8 -.1 6.7 8.0 8.5

.9 -. 1 6.7 8.0 11.3

1.0 -. 2 6.7 8.0 14.7

1.1 -. 2 6.7 8.1 18.9

1.2 -. 1 6.7 8.1 22.6

Conclusion

A relatively simple objective functional has been

defined for the CMMCA problem. A modified gradient search

procedure written in FORTRAN code will solve for the optimal

banks and airspeeds given a particular cruise missile

maneuver. An initial CMMCA starting search vector is being

provided by a previously written simulation model which

outputs cruise missile bank and airspeed throughout a

maneuver. The overall implementation process was discussed

tying all parts of the solution process and evaluation

together. Finally, an example of how the algorithm computes
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a more optimal bank and speed profile for the CMMCA given a

cruise missile flight path was discussed.

Table 6. Calculations After 27th Iteration

DELTJ JSTOP GLAMB LAMBDA OPT

.0117851 .05944142 5.049137 .02235206

.01140183 5.0623425

.0181835 5.075548

.01015037

.0093160

.0083281

.0072930

.00611111

.0047750

.003370386
.0017806

.000427

-. 0128183

-. 015597

-. 0179451

-. 0196714

-. 020569

-. 0204229

-. 0190244

-. 016200

-. 0118509

-. 0060088

-. 00110236

-. 00116237
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Table 7. Final Results 27th Iteration

TIME BANK SPEED RANGE THETA

.1 .0 6.7 8.0 .0

.2 .0 6.7 8.0 .0

.3 .0 6.7 8.0 .0

.4 .0 6.7 8.0 .1

.5 .0 6.7 8.0 .1

.6 .0 6.7 8.0 .1

.7 .0 6.7 8.0 .2

.8 .0 6.7 8.0 .2

.9 .0 6.7 8.0 .2

1.0 .0 6.7 8.0 .3

1.1 .0 6.7 8.0 .3

1.2 .0 6.7 8.0 .3
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IV, Results

A guidance algorithm was successfully built and tested

to help determine the optimal controls required to track a

cruise missile by CMMCA. Modifications of the model were

made along the way to make it faster, more efficient and

reliable. Memory requirements were kept to a minimum to

avoid problems encountered by Heavner. The next few

sections describe some of the algorithm problems and fixes,

operational validation efforts and actual turn results.

Problems

To ensure the methodology was feasible a smaller test

objective function with a known answer was run through the

optimization algorithm. As expected the test case ran

perfectly with only minor adjustments required to achieve

the accuracy desired.

The next step was to customize the objective functional

for the CMMCA problem into the optimization algorithm. A

small simple maneuver profile was used to verify and

validate the algorithm. One of the first test runs showed

the optimal true airspeeds were cycling back and forth with

variances as large as 20 knots. This was completely

unanticipated and unacceptable as an answer. The apparent

cause for the cycling was the integration weight

approximation scheme being used. Instead of using the
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simple trapezoidal rule as mentioned in the methodology

section a more sophisticated and accurate Simpson's rule was

applied (7:146). When the simpler trapezoidal rule was used

in place of the more complex Simpson's rule the cycling

disappeared.

The next problem occurred with the parabola fitting

technique used to compute the optimal step size. Every so

often a negative step size was computed stepping the

algorithm in the opposite direction of minimization. The

fix was to use a simpler more efficient technique for

fitting the parabola. Instead of using three points to fit

the parabola, two points and the slope at one of these

points was used. Just like the three point parabola fitting

case, one of the points is at the origin along with the

slope and the other is some step size away. The new curve

fitting procedure did not involve any extra computations and

actually saved one more step size computation. The slope

was already being computed through the gradient so it was

already available. Derivation of the new curve fitting

technique follows the three point procedure in Appendix C.

As confidence built in running the algorithm it was

noticed that the computed optimal step size was consistently

much smaller than the 1 and .5 initially input. There was

noticeable improvement in the objective functional using

step sizes much smaller than the guessed values. With
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analysis into Eq (3.29) it became obvious the initial

lambda's or step sizes were too large. Eq (3.29) shows how

a new more optimal maneuver vector is computed using the

gradient and step size. The maneuver vector has units of

nm/min for the speeds and radians for the bank. If the

gradient says to move one unit in the opposite direction

some length, this is subtracted from the old vector and

becomes the new more optimal vector. The original step

sizes were 1 and .5. This means moving 1 nm/min in speed

and 1 radian in bank. That equates to 60 knots in speed and

57 degrees of bank for the step size of 1 and half of this

for the .5 step size. These values are much too large to

move in one iteration. To alleviate the problem the

lambda's were scaled to represent 5 knots change in speed

and 5 degrees in bank. This equated to using a lambda of

approximately .08333. With the new curve fitting approach

the two lambda's required would be 0 and .08333. The

optimal step size computed from these initial two values was

now more consistent with the units being used for each

iteration.

Validation

After the major problems were alleviated small test

runs were accomplished to help validate the model. Two

small maneuver vectors, consisting of 12 banks and 12 speeds

for a total maneuver time of 1.2 minutes, were used to test
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the algorithm's responsiveness. The first profile had the

cruise missile flying straight and level while the CMMCA was

placed directly behind at the desired nominal location and.

speed; 8 miles range, 0 degrees azimuth, and 400 knots true

airspeed (TAS). The algorithm responded with a no change

policy leaving the original bank and speed vectors

untouched. The input information and results appear in

Tables 8 and 9 on the next page. The columns marked xcm and

ycm are the x and y position of the cruise missile.

The second small profile consisted of the same straight

and level course for the cruise missile while the CMMCA was

placed directly behind as before but with a 20 degree bank.

As was expected the optimal control was to take the bank

immediately out and continue flying straight and level

behind the CM. Tables 10 and 11 show the input and results

for this profile. These short profiles took a matter of

minutes to run, both on the PC and the VAX.

Longer more realistic maneuvers were chosen next to

further ensure model validity. The four selected profiles

tested the algorithm's reaction to a cruise missile flying

straight and level at a nominal speed of 400 knots TAS while

the CMMCA was placed at different locations and speeds. The

first location was 5 nm to the left of the cruise missile a

slant range distance of 9.5 nm behind at 400 knots TAS. The

algorithm results said to bank right approximately 30
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degrees decreasing as the azimuth to the cruise missile

diminished to zero. CMMCA speed was initially increased

until the 9.5 nm range was cut to 8 nm. Figure 4 depicts

the results graphically.

The next profile the CMMCA was located 5 nm to the

right of the cruise missile at 400 TAS and 9.3 nm slant

range. The optimal algorithm controls were similar to the

preceding profile but in the opposite direction. The CMMCA

banked left and sped up to align itself in the desired

position, directly behind at 8 nm. Figure 5 graphically

depicts this profile.

Table 8. Input Profile 1

TIME BANK SPEED XCM YCM

0.0 0.0 6.667 0.0 8.000

0.1 0.0 6.667 0.0 8.667

0.2 0.0 6.667 0.0 9.333

0.3 0.0 6.667 0.0 10.000

0.4 0.0 6.667 0.0 10.667

0.5 0.0 6.667 0.0 11.333

0.6 0.0 6.667 0.0 12.000

0.7 0.0 6.667 0.0 12.667

0.8 0.0 6.667 0.0 13.333

0.9 0.0 6.667 0.0 14.000

1.0 0.0 6.667 0.0 14.667

1.1 0.0 6.667 0.0 15.333

1.2 0.0 6.667 0.0 16.000
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Table 9. Results Profile 1

# ITERATIONS = 1

TIME BANK SPEED RANGE THETA

0.0 0.0 400.0 8.0 0.0

0.2 0.0 400.0 8.0 0.0

0.3 0.0 400.0 8.0 0.0

0.4 0.0 400.0 8.0 0.0

0.5 0.0 400.0 8.0 0.0

0.6 0.0 400.0 8.0 0.0

0.7 0.0 400.0 8.0 0.0

0.8 0.0 400.0 8.0 0.0

0.9 0.0 400.0 8.0 0.0

1.0 0.0 400.0 8.0 0.0

1.1 0.0 400.0 8.0 0.0

1.2 0.0 400.0 8.0 0.0

The third profile demonstrated the response if speeds

did not match. The CMMCA was to the left and behind the

cruise missile as before. This time however, the CMMCA was

flying a slower 360 knots TAS. The algorithm corrected the

offset error as before and sped up to match the cruise

missile speed of 400 knots TAS. Once it had reached the

desired location however it allowed the airspeed to start

drifting back to the original 360 knots. There may be

something within the objective functional driving the

algorithm optimal results to return to the initial

conditions at the end of a maneuver. Allowing 750
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iterations took the VAX system about one hour of CPU time

for each of the validation tests.

Table 10. Input Profile 2

TIME BANK SPEED XCM YCM

0.0 0.00 6.667 0.0 8.000

0.1 0.35 6.667 0.0 8.667

0.2 0.35 6.667 0.0 9.333

0.3 0.35 6.667 0.0 10.000

0.4 0.35 6.667 0.0 10.667

0.5 0.35 6.667 0.0 11.333

0.6 0.35 6.667 0.0 12.000

0.7 0.35 6.667 0.0 12.667

0.8 0.35 6.667 0.0 13.333

0.9 0.35 6.667 0.0 14.000

1.0 0.35 6.667 0.0 14.667

1.1 0.35 6.667 0.0 15.333

1.2 0.35 6.667 0.0 16.000

The last profile, depicted in Figure 6, put the CMMCA

in front of and to the right of the cruise missile. The

cruise missile was flying the same straight flight path as

before. The algorithm attempted to place the CMMCA in front

of the cruise missile at the 8 nm point. The gradient did

not come close to vanishing and cycled between two values

the entire 100 iterations. It makes sense that the gradient

value would remain large since the objective functional was
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still penalizing for the azimuth being so high. Appendix D

contains tabular output from these runs as well as the

remaining turn profiles.

Table 11. Results Profile 2

# ITERATIONS = 41

TIME BANK SPEED RANGE THETA

.1 .0 400.6 8.0 .0

.2 .0 400.6 8.0 .0

.3 .0 400.5 8.0 .0

.4 .0 400.5 8.0 .0

.5 .0 400.4 8.0 .0

.6 .0 400.3 8.0 .0

.7 .0 400.2 8.0 .0

.8 .0 400.1 8.0 .0

.9 .0 400.0 8.0 .0

1.0 .0 400.0 8.0 .0

1.1 .0 399.9 8.0 .0

1.2 1.0 399.9 8.0 -.1

Turns

Two true turn profiles were attempted to learn more

about the objective functional and ascertain any more

difficulties with the methodology besides the occasional

speed or bank parameter exceeding aircraft capabilities.

The first turn profile the cruise missile flew a 90 degree

right turn while in 20 degrees of bank. The CMMCA was

started at the desired position of 8 nm directly behind the
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missile at the matching speed of 400 knots TAS. The

algorithm had no problem allowing the CMMCA to track the CM

without exceeding any aircraft flight parameters. The

second cruise missile profile consisted of one 20 degree

bank, 270 degree turn at 400 knots TAS. The CMMCA started

in the desired location directly behind the cruise missile

at 8 nm at a speed of 400 knots. Figure 7 shows the

results. The algorithm allowed the CMMCA to exceed

tolerances in bank several times. This possibly could be

the best the algorithm could do to keep the cruise missile

within the radar cone limits.

Summary

Several runs were used to test the algorithm's

operational validity and verify the computer results. One

run demonstrated the algorithm's difficulty with the CMMCA

flying in a position ahead of the CM. As shown by the

turns, the algorithm responds fairly well in the types and

sizes of control inputs that are required to improve the

flight path of the CMMCA in a specific maneuver.
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V. Conclusions and Recommendations

Conclusions

Using CMMCA and its new radar system to track a cruise

missile is an extremely difficult and complex problem. The

primary purpose of this thesis was to identify an algorithm

that could solve for an optimal CMMCA flight path given a

cruise missile flight maneuver. The simplest formulation

for an objective functional was established taking into

account performance constraints as well as desired position

constraints.

Minimizing the objective functional without being able

to take the second derivative was one of the greatest

obstacles. In order for the algorithm to attain optimality

the gradient must vanish or come within some reasonable

criteria of zero.

The objective functional formulated has many variables

that can be manipulated and adjusted. None of these

adjustments have been properly analyzed for their overall

influence on the way the algorithm optimizes the CMMCA

flight path. It is believed that adjusting these weights

can help alleviate exceeding CMMCA flight parameters.

An advantage of the solution method is its continued

potential for use on a PC so crews can use it for mission

planning. Excessive memory storage is not required and
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keeping the profile down to a single maneuver should allow

for reasonable response times.

Recommendations

The technique used still appears a good possibility in

providing crews with valuable information on where to fly to

minimize deviations in tracking the cruise miss:Lle.

The optimization algorithm needs to be tested under

more conditions and situations that may be encountered. A

larger cross section of the possible cruise missile flight

paths should be tested against the algorithm to help detect

any problems. Multiple maneuvers as well as longer duration

maneuvers could be studied also.

Analysis should be done on the adjustable variables in

the objective functional equation. Examination of these

variables is important because they may have a dramatic

effect on what the algorithm computes as optimal for the

same maneuver.

Another important parameter needing further study is

the time increment between control inputs. Is the time

increment of a tenth of a minute used in the study

appropriate for the problem at hand? Heavnar found

different time intervals had quite an impact on the

effectiveness of his performance criteria. There is a good
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possibility the same will apply for the optimization

algorithm in this thesis.

Finally, if the guidance algorithm product is deemed

suitable for use, increased effort should be made to make

the algorithm as efficient, fast, and user friendly as

possible so it can be used with confidence by the crews who

so desperately need it to mission plan.
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Appendix A. Eauations of Motion

The equations of motion set forth here will apply to

the CMMCA only. The axis of reference for these equations

will be the x-axis representing east and the y-axis

representing north. Heading, Hdg, is defined as the angle

between the y-axis and the velocity vector measured in a

clockwise direction. Heading can range from 0 to 360

degrees. The rate of change for the x position, y position

and heading can now be derived.

State Equations

According to basic physics, the x-y components of the

velocity vector define the rate of change of the aircraft's

x and y position. When an aircraft is flying a heading,

Hdg in degrees, and a true airspeed, TAS in knots, the x-y

components can be written as:

V. -TAS sin [Hdg] (A.1)

VY -TAS cos [Hdg] (A.2)

The wind vector, which can also be written in its two x-y

components, can be added to the above equations using vector

algebra. With a notation change to include time the

following equations define the x and y position rate of

change for the CMMCA.

57



d x(t). .WV. + TAS tW sin [Hdg~t W IA3dt(

d y(t)..W A o Id (A. 4)dt -y AS(t) s[Hdg(t)]

In a level turn, the heading rate of change is defined as

d Hdg(t) M.9 tan [cc(t)] (A.5)

dt TAS(t)

where g is the magnitude of the acceleration due to gravity

in nm per minute squared and alpha is the particular bank

angle in radians the CMMCA is in at a particular time.

The initial conditions for CMMCA position and heading will

be needed in order to integrate Eqs (A.3), (A.4) and (A.5).

x( t 0 ) -x 0

Y( t 0 ) -Yo
Hdg( to) -Hdgo

Integrating the equations using the preceding initial

conditions yields:

x( ÷-xo fTAS(T)sin[Hdg(c)I J + WV,(t-to) (A.6)

S+ fTAS(c)cos[Hdg(:)]dr + WVx(t-t 0 ) (A.7)

to
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Hdg)-Hdgo + tatan[a(-)] dr (A.8)Hdgt)'dg°÷ gTAS(•

In order to use these equations in a computer code

utilizing numerical methods for solution one must discretize

the time points. Discretizing the above integrals adds a

term called an integration weight represented by W1. Each

integration weight helps approximate the integral that has

been replaced by a summation sign. The trapezoidal rule

will be used to supply the numerical weights for these three

integrations. The final form for the equations of motion

are:

xixO + TAS.sin [Hclg1 ] W'i)At + WVX(t- to) (A.9)
1-0

i
Vi'YVo + •TASCOS [Hdg1] w,')At + WVx(t-to) (A.10)

1-c

d d tan[a9 ] (
A-,+.0) TAS,

These equations completely describe the motion of the CMMCA

given an initial position and heading along with a bank

angle and true airspeed for each time increment under

consideration.
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Appendix B. Source Code

The source code for the FORTRAN program used to

implement the guidance algorithm follows. The code was

compiled and executed on a 386 PC using Microsoft's FORTRAN

77 compiler. The code was also compiled and executed on a

VAX running on the VMS operating system.

Following the guidance algorithm is a SLAM II

simulation code. SLAM was used to generate the cruise

missile's x-y position during a maneuver and to generate an

initial guess for CMMCA bank and speed as inputs in the

guidance algorithm.
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C**

C* TITLE: CMMCA Program to Track Cruise Missile Maneuvers*

C* AUTHOR: Capt Tony M. Carton*
C* DATE: 11 Feb 90*

C**

C* DESCRIPTION: This program implements an algorithm to track *

C*a cruise missile during a turning maneuver.*
C*The program is not user friendly but can easily *

C* be learned and used on any IBM PC that has a*

C* ~FORTRAN compiler available.*

PROGRAM CMMCA

INTEGER I ,LIM,ALL, ITER,K3 ,K4
PARAMETER (LIM-12 ,ALL-24)
REAL DELTJ(l:ALL),GLAMB(0:l),VLAMB(l:ALL,Q:l),

& BANK(0:LIM),SPEED(0:LIM),XGM(0:LIM),YCM(O:LIM),
& XPLANE(O:LIM),YPLANE(O:LIM),RANGE(l:LIM),THETA(l:LIM),
& HDG(O:LIM),WIND(1:2),IAMBDA(0:1),VECTOR(l:ALL),NEWV(l:ALL),
& QUADW(O:LIM),W(1:3),WK(0:LIM,1:LIM)

REAL LAMBOP,JSTOP,DT,RO,THETAO,M1J,U0,BO
COMMON BANK,SPEED,XCM,YCM,XPIANE,YPLANE,RANGE,THETA,HDG
COMMON /WEIGHT/ QUADW,W,WK,K3,K4
COMMON /PRELIM/ RO,THETAO,MU,UO,BQ

C Time increment in minutes for the algorithm
DT-.

CALL INPUT (VECTOR, LAMLBDA ,WIND ,DT)
CALL DELTAJ(DELTJ ,JSTOP,WIND,DT)

10 CALL VLAMDA(VECTOR,LAMBDA,VLAMB,DELTJ)
CALL GLAMDA(VLAMB,GLAMB,WIND,DT)
CALL OPT(IAMBDA,GLAMB,LAM-BOP,JSTOP)
CALL NEWPOS (VECTOR, LAMBOP ,DELTJ ,NEWV)

CALL DECOMP(NEWV)
CALL DELTAJ (DELTJJO,WIN, DT)

CALL CHECK(LAMBOP ,J3STOP, NEWV ,VECTOR)
GOTO 10
END
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C**
C* SUBROUTINE: INPUT *
C**
C* DESCRIPTION: Used to input necessary data for running the *
C* algorithm. *

SUBROUTINE INPUT(VECTOR,LAMBDA,WIND,DT)
INTEGER I,J,LIM,ALL,K3,K4
PARAMETER (LIM-12,ALL-24)
REAL DT,RO,THETAQ,MU,UO,BO
REAL VECTOR(l:ALL),LAMBDA(0:l),WIND(l:2),BANK(O:LIM),

& SPEED(O:LIM),XCM(O:LIM),YCM(O:LIM),XPLANE(0:LIM),
& YPLANE(O:LIM),RANGE(l:LIM),THETA(l:LIM),HDG(O:LIM),
& QUADW(O:LIM),W(l:3),WK(O:LIM,l:LIM)

COMMON BANK,SPEED,XCM,YCM,XPLANE,YPLANERANGE,THETA,HDG
COMMON /WEIGHT/ QUADW,W,WK,K3,K4
COMMON /PRELIM/ RO,THETAO,MU,UO,BO

C All speeds are in NM/MIN and all angles are in radians.
C Initial heading and x-y position for the CMMCA

HDG(0)-O
XPLANE(O)-O
YPLANE(0)-0

C Read in a vector containing the initial guess of bank and speed
C CMMCA should be in during the maneuver. Also read in x-y position
C for the cruise missile for each time increment of the maneuver.

OPEN(10,FILE-'INPUT.DAT',STATUS-'OLD')
DO 10 I-O,LIM

READ(lO,*) BANK(I),SPEED(I),XCM(I),YCM(I)
10 CONTINUE

CLOSE(10)

C Contains the step size for the gradient search

OPEN(ll,FILE-'LAMBDA.DAT',STATUS-'OLD')
READ(ll,*) (LAMBDA(I), I-0,1)
CLOSE(ll)

C Contains nominal values of range, azimuth, allowable speed variance,
C speed,and bank angle variance.

OPEN(12,FILE-'NOMINAL.DAT',STATUS-'OLD')
READ(12,*) RO,THETAO,MU,U0,BO
CLOSE(12)
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C Wind vector in its two x-y components.

OPEN(13,FILE-'WIND.DAT',STATUS-'OLD')
READ(13,*) (WIND(I), 1-1,2)
CLOSE(13)

C Adjustable objective function weights.

OPEN(14,FILE-'IWEIGHT.DAT',STATUS-'OLD')
READ(14,*) (W(I), 1-1,3)
CLOSE(14)

C Adjustable parabola weights.

OPEN(15,FILE-'K.DAT',STATUS-'OLD')
READ(15,*) K3,K4
CLOSE(15)

C Initialize integration weight matrix.

DO 30 I-0,LIM
DO 20 J-l,LIM

WK(I ,J)-O
20 CONTINUE
30 CONTINUE

C Read in starter integration weight matrix. Used the trapezoidal rule.

OPEN(16,FILE-'WK.DAT',STATUS-'OLD')
DO 40 1-0,3

READ(16,*) (WK(I,J), J-l,3)
40 CONTINUE

CLOSE(16)

DO 60 1-0,3
DO 50 J-1,3

WK(I,J)-WK(I ,J)*DT
50 CONTINUE
60 CONTINUE

C Generates the full integration weight matrix depending on how long
C the maneuver is.

CALL GEN(WK)

C Takes the last column of integration weight matrix and uses it for
C the quadrature objective function weights.

DO 70 I-0,LIM
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QUADW(I)-WK(I,LIM)/DT
70 CONTINUE

C Combines inputted speed and bank into one long vector for later
C use in the optimization routine.

DO 80 I-1,LIM
VECTOR(I)-SPEED(I)
VECTOR(LIM+I)-BANK(I)

80 CONTINUE
END

C**
C* SUBROUTINE: GEN *
C**
C* DESCRIPTION: Generates the full integration weight matrix *
C* from the inputted starter matrix. The size *
C* of the generated matrix depends on the *
C* maneuver length. *
C**

SUBROUTINE GEN(WK)

INTEGER LIM,ROW,COL,X,Y,I,COUNT
PARAMETER (LIM-12)
REAL WK(O:LIM,I:LIM)
X-2
Y-2
COUNT-0

DO 20 COL-4,LIM
I-I
DO 10 ROW-0,LIM

IF (ROW .LT. X) THEN
WK(ROW, COL)-WK(ROW,X)

ENDIF
IF (ROW .EQ. X) THEN

WK(ROW,COL)-WK(ROWX) + WK(O,Y)
ENDIF
IF (ROW .GT. X) THEN

WK(ROW,COL)-WK(IY)
I-I+1

ENDIF
10 CONTINUE

COUNT - COUNT + 1
IF (Y .EQ. 2) THEN

Y-3
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ELSE
Y-2

ENDIF
IF (COUNT .EQ. 2)THEN

X-X + 2
COUNT-O

ENDIF
20 CONTINUE

END

C*.
C* SUBROUTINE: DECOMP *
C* .
C* DESCRIPTION: Decomposes the maneuver vector back into its *
C* original bank and speed vectors. *
C*.

SUBROUTINE DECOMP(V)

INTEGER I,LIM,ALL
PARAMETER (LIM-12,ALL-24)
REAL V(I:ALL),BANK(O:LIM),SPEED(0:LIM)
COMMON BANK,SPEED,XCM,YCM,XPLANE,YPLANE,RANGE,THETA,HDG

DO 10 I-l,LIM
SPEED(I)-V(I)
BANK(1)-V(LIM+I)

10 CONTINUE
END

C*.
C* SUBROUTINE: COMP *
C* *

C* DESCRIPTION: Computes CMMCA position and heading given *
C* bank and speed vectors for the maneuver. *
C* Also computes range and azimuth from the *
C* CMMCA to the CM given the x and y position *
C* for the CM for the entire maneuver. *
C**

SUBROUTINE COMP(WIND,DT)

INTEGER I,LIM,S,K3,K4
REAL DT,SUM1,SUM2,SUM3,TWOPI,ALPHA
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PARAMETER (LIM-12)
REAL BANK(O:LIM),SPEED(0:LIM),XCiM(O:LIM),YCM(O:LIM),

& XPLANE(O:LIM),YPIANE(O:LIM),RANGE(l:LIM),THETA(l:LIM),
& HDG(O:LIM),QUADW(O:LIM),W(l:3),WK(0:LIM,1:LIM)
& WIND(l:2)

COMMON BANK, SPEED,XCM,YCM,XPLAN'E,YPIANE,RAN.GE,THETA, HDG
COMMON /WEIGHT/ QUADW,W,WK,K3,K4

TWOPI-2*(ACOS(-l.))
SUM 1-0
SUM2-O
SJM 3-0
DO 40 I-1,LIM

DO 10 5-0,1
SUMi-SUMI + 1Wfl(S,I)*19.05*TAN(BANK(S))/SPEED(S)

10 CONTINUE
HDG(I)-HDG(O) + SUM1

C Ensures heading lies between 0 and 2 pi.

20 IF (HDG(I) .GT. TWOPI)THEN
HDG(I)-HDG(I) -TWOPI
COTO 20

ENDIF
30 IF (HDG(I) .LT. *TWOPI)THEN

HDG(l)-HDC(I)+TWOPI

EDFGOTO 30

SUMl-0
40 CONTINUE

Do 60 I-l,LIM
DO 50 S-0,I

SUM2-SUM2 + SPEED(S)*SIN(HDG(S))*WK(S,I)
SUM3-SUM3 + SPEED(S)*COS(HDG(S))*WK(S,I)

50 CONTINUE
XPLANE(I)-XPLANE(O) + SUM2 + WIND(1)*DT*I
YPLANE(I)-YPLANE(0) + SUM3 + WIND(2)*DT*I
SUM2-0
SUM 3-0

60 CONTINUE
DO 70 I-l,LIM

RANGE(l)-SQRT((XCM(I)-XPLANE(I))**2 +
& (YCM(I)-YPLANE(I))**2)

C The angle ALPHA is a very important measure. The angle is
C measured from the North or y axis to the CM. Counterclockwise
C from the y axis is a negative ALPHA. Measuring clockwise from
C the y axis is a positive angle. Because of the TAN2 function
C ALPHA only ranges from pi to -pi.
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ALPHA- ATAN2(XCM(I)-XPLANE(I),YCM(I)-YPLANE(I))

THETA(I)- ALPHA - HDG(I)

C Ensures theta remains between -pi and pi,

IF (THETA(I) .LT. -TWJOPI/2) THETA(I)-THETA(I) + TWOPI
70 CONTINUE

END

C**

C* SUBROUTINE: DELTAJ*
C**

C* DESCRIPTION: Computes the gradient of J with respect to *
C*velocity and bank angle.*

C**

C**

SUBROUTINE DELTAJ(DELTJ ,JSTOPWIND,DT)

INTEGER I,K,K3,K4,KPL
PARAMETER (LIM-12 ,ALL-24)
REAL BANK(O:LIM),SPEED(O:LIM),XCM(O:LIM),YCM(O:LIM),

& XPLANE(O:LIM),YPLANE(O:LIM),RANGE(l:LIM),THETA(1:LIM),
& HDG(O:LIM),WIND(1:2),QUADW(O:LIM),W(1:3),WK(O:LIM,1:LIM)
& DELTJ (1:ALL)

REAL JSTOP,RO,THETAO,MU,UO,BO,DT,TEMP,A,B,C,L,M,
& N,O,P,Q,R,S,T,X,Y,Z,SUM,SUM1,SUM2 ,SUM3,SUM4

COMMON BANK, SPEED ,XCM ,YCM,XPLANE ,YPLANE,RANGE ITHETA, HDG

COMMON /PRELIM/ RO,THETAO,I{U,UO,BO
COMMON /WEIGHT/ QUADW,W,WK,K3,K4

SUM-O
SUM 1-0
SUM 2-0
SUM 3-0
SUM4-0
CALL COMP(WIND ,DT)

C Initializes gradient vector to zero.

DO 10 I-l,ALL
DELTJ (I)-O

10 CONTINUE
DO 40 K-1,LIM

KPL-K+LIM
DO 30 I-1,LIM
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M-(RANGE(I) -RO)
N-(THETACI) -THETAO)
S-(XCM(I) .XPLANE(I))
T-(YCM(I) -YPLANE(I))

IF (K I.E. I)THEN

IF (I .EQ. K)THEN
SUMl-(W(2)*2*K3/MU)*( ((SPEED(I) -UO)/MU)

& **(2*K3-1))
StJM2-(W(3)*2*K4/BO)*( (BANK(I)/BO)**(2*K4-1))

ENDIF
X--SIN(HDG (K) )*WK(K,I)
Y--19 .O5*TAN(BANK(K) )/(SPEED(K)**(2))
Z--COS(HDG(K) )*IJK(K, I)
A~-l9.O5*((l/COS(BANK(K)))**2)/SPEED(K)
DO 20 L-K,I

Q-~SPEED(L)*COS(HDG(L) )*WK(L, I)*WK(K,L)
R-SPEED(L)*SIN(HDG(L) )*IJK(L, I)*IJK(K, L)
SUM3- SUM3 + Q
SUM4- SXJM4 + R

20 CONTINUE
O=(S* ()X.(Y*SUM3)) )+(T*(Z+(Y*StTM4)))
P-C ((-S*(Z+(Y*SUM4) ))+Qj'*().(Y*SJM3) )) )/(S**2+T**2)) -(Y

& *WI((K,I))
S`UMi-SUMi + (2*M*O/RANGE(I)) + (2*W(1)*P)

B-(S*(A*SUM3) )+(T*(-A)*SUM4)
C-( ( (S*( (-A)*SUM4) )+(T*A*SUM3) )/(S**2+T**2) )4(A*WK(K, I))
SUM2-SUM2 + (2*M*B/RANGE(I)) + (2*W(1)*N*C)
ENDIF

C Sums the gradient vector for velocity.

DELTJ(K)-DELTJ(K) + QUADW(I)*SUMl

C Sums the gradient vector for bank angle.

DELTJ(KPL)-DELTJ(KPL) + QUADW(I)*SUM2
SUMl-O
SUM2-0
SUM 3-0
SUM4-0

30 CONTINUE
40 CONTINUE

C Computes the slope of the gradient for each time increment.

DO 50 I1-lALL
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TEMP-DELTJ(I)**2
SUM- SUM + TEMP

50 CONTINUE
JSTOP-SQRT(SUM)

C Computes the normalized gradient of J.

DO 60 I-l,ALL
DELTJ(I)-DELTJ(I)/JSTOP

60 CONTINUE
END

C**
C* SUBROUTINE: VLAMDA *
C* *
C* DESCRIPTION: Computes a new column of the maneuver vector *
C* for each of the two lambda step sizes. *
C* *
C**

SUBROUTINE VLAMDA(VECTOR,LAMBDA,VLAMBDELTJ)

INTEGER I,Q,ALL
PARAMETER (ALL-24)
REAL DELTJ(l:ALL),VLAMB(l:ALL,O:l),VECTOR(l:ALL),LAMBDA(O:l)
DO 20 Q-O,l

DO 10 I-l,ALL
VLAMB(I,Q)-VECTOR(I)-ItAMBDA(Q)*DELTJ(I)

10 CONTINUE
20 CONTINUE

END

C* *
C* SUBROUTINE: JCOMP *
C* *
C* DESCRIPTION: Computes a new objective function value *
C* given appropriate inputs. *
C**
C*********************************************************************

SUBROUTINE JCOMP(J)

INTEGER I,LIM,K3,K4
PARAMETER (LIM-12)
REAL SUM,R0,THETAO,UO,MU,B0,J
REAL QUADW(O:LIM),W(l:3),WK(O:LIM,I:LIM),BANK(O:LIM),
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& SPEED(O:LIM),XCM(O:LIM),YCM(O:LIM),XPLANE(O:LIM),
& YPLANE(O:LIM),RANGE(1:LIM),THETA(1:LIM),HDG(O:LIM)

COMMON BANK, SPEED ,XCM,YCM,XPLANE ,YPLANE ,RANGE ,THETA,HDG
COMMON /PRELIM/ RO,THETAO,UO,MU,BO
COMMON /WEIGHT/ QUADW,W,WK,K3,K4

J-0
DO 10 I-1,LIM

SUM-(RANGE(I)-RO)**2 + W(l)*(THETA(I)-THETAO)**2
& + W(2)*(((SPEED(I)-UO)/MU)**(2*K3))
& + W(3)*((BANK(I)/BO)**(2*K4))

J- J + QUADW(I)*SUM
10 CONTINUE

END

C**

0* SUBROUTINE: GLAMDA*
C**

C* DESCRIPTION: Computes two new objective function values *

C*for each of the new vectors generated in *

0* the VLAMDA subroutine. These two values *

C*are evaluated in the OPT subroutine.*
0**

SUBROUTINE GLAMDA(VLAI4B, GLAI4B,WIND, DT)

INTEGER I,ALL,LIM,Q,K3,K4
PARAMETER (LIM-12 ,ALL-24)
REAL WIND(1:2),V(l:ALL),BANK(O:LIM),SPEED(O:LIM),

& XCM(O:LIM),YCM(O:LIM),XPLANE(O:LIM),YPLANE(O:LIM),
& RANGE(1:LIM),THETA(1:LIM),HDG(O:LIM),QUADW(O:LIM),
& W(1:3),WK(O:LIM,1:LIM),GLAM.B(O:1),VLAM.B(1:ALL,O:l)

REAL J,DT,RO,THETAO,UO,M1J,BO
COMMON BAN,SPEED ,XCM,YCM ,XPLANE ,YPLANE ,RANGE ,THETA ,HDG
COMMON /PRELIM/ RO,THETAO,UO,MU,BO
COMMON /WEIGHT/ QUADW,W,WK,K3,K4

DO 20 Q-O,1
DO 10 I-1,ALL

V(I)-VLAMB(I,Q)
10 CONTINUE

CALL DECOMP(V)
CALL COMP (WIND, DT)
CALL JCOMP(J)
GLAMB(Q)'-J

20 CONTINUE
END
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C**
C* SUBROUTINE: OPT *
C* *
C* DESCRIPTION: Compares the two glamda values and computes *
C* the best step size to take to a new and *
C* better maneuver vector. *
C* *

SUBROUTINE OPT(LAMBDA,GLAMB,LAMBOP,JSTOP)

INTEGER LIM,ALL
PARAMETER (LIM-12,ALL-24)
REAL GLAMB(0:l),VLAMB(l:ALL,0:l),LAMBDA(0:1)
REAL JSTOP,LAMBOP,Y

Y-GLAMB(O) - JSTOP*LAMBDA(1)
IF (GLAMB(l) .LE. Y) THEN

LAMBOP-LAMBDA(1)

ELSE
LAMBOP-LAMBDA(1)*.5 + (.5*(GLAMB(l)-GLAMB(O))/(-JSTOP+

& ((GLAMB(O)-GLAMB(l))/LAMBDA(l))))
ENDIF
END

C* *
C* SUBROUTINE: NEWPOS *
C* *
C* DESCRIPTION: Cnmputes the new maneuver vector given the *
C* best step size determined in the previous *
C* subroutine. *
C* *

SUBROUTINE NEWPOS(VECTOR,LAMBOP,DELTJ,NEWV)

INTEGER IALL
PARAMETER (ALL-24)
REAL DELTJ(l:ALL),VECTOR(l:ALL),NEWV(l:ALL)
REAL LAMBOP
DO 10 I-I,ALL

NEWV(I)- VECTOR(I)-LAMBOP*DELTJ(I)
10 CONTINUE

END
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C**
C* SUBROUTINE: CHECK *
C**
C* DESCRIPTION: Checks to see if the stopping criteria have *
C* been met. If they have output is generated. *
C* *

SUBROUTINE CHECK(LAMBOP,JSTOP,NEWV,VECTOR)

INTEGER ITER,ALL,LIM,I
PARAMETER (LIM-12,ALL-24)
REAL JSTOP,LAMBOP
REAL NEWV(I:ALL),VECTOR(I:ALL),BANK(O:LIM),SPEED(O:LIM),

& XCM(O:LIM),YCM(O:LIM),XPLANE(0:LIM),YPLANE(O:LIM),
& RANGE(l:LIM),THETA(l:LIM),HDG(O:LIM)

COMMON BANK,SPEED,XCM,YCM,XPLANE,YPLANE,RANGE,THETA,HDG

IF ((ABS(LAMBOP) .LT. .I).AND.(JSTOP .LT. .1)) THEN
ITER-ITER + 1
CALL OUTPUT(ITER)

ELSE
IF (ITER .EQ. 50) THEN

CALL OUTPUT(ITER)
ENDIF
ITER-ITER + 1

C Updates the old maneuver to the new maneuver vector.

DO 10 I-1,ALL
VECTOR(I)-NEWV(I)

10 CONTINUE
ENDIF
END

C**
C* SUBROUTINE: OUTPUT *
C* *

C* DESCRIPTION: Changes values of radians and NM/min back to *
C* degrees and knots. Also outputs the final *
C* bank and speed vectors the CMMCA should fly. *

C* Another file is generated to help graphically *
C* look at the results. *
C* *
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SUBROUTINE OUTPUT (ITER)

INTEGER I ,ITER, LIM
PARAMETER (LIM-12)
REAL BANK(O:LIM),SPEED(O:LIM),XCM(O:LIM),YCM(O:LIM),

& XPLANE(O:LIM),YPLANE(O:LIM),RANGE(l:LIM),THETA(l:LIM),
& HDG(O:LIM)

REAL A,B,C,D,PI
COMMON BANK,SPEED,XCM,YCM,XPLA.NE,YPLANE,RANGE,THETA,HDG

PI-AGOS(-l.)

OPEN(21,FILE-'RESULTS.OUT' ,STATUS-'NEW')

OPEN(22,FILE-'PLOT.DAT' ,STATUS-'NEW')

WRITE(21,*) 'T BANK SPEED RANGE THETA'
DO 10 I-l,LIM

A-I*.l
B-BANK( I) *180/PT
C-SPEED(I)*60
D-THETA(I )*180/PI
WRITE(21,20) A,B,C,RANGE(I),D

10 CONTINUE
20 FORMAT(F3.l,4(3X,F6.l))

C File used by Harvard graphics to graphically display optimal
C CM.MCA flight path compared to cruise missile flight path.

DO 30 I-O,LIM
WRITE(22,40) XPIA,4NE(I),YPLANE(I),XCM(l),YCM(I)

30 CONTINUE
40 FORMAT(4(3X,F6.2))

STOP
END
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;* TITLE: Cruise Missile Flight profile generator *

;* DESCRIPTION: This SLAM II simulation program was *

originally designed to heuristically *

attempt to solve the CMMCA tracking *
problem. When a better approach than *
heuristics was designed this program *
was used primarily to output certain *
cruise missile flight paths as input *
into the flight path optimization *
routine. *

GEN,GARTON,THESIS,12/1/90,1,N,N,,N,N,72;
LIMITS,0,2,50;
TIMST,XX(15),PERCENT IN CONE;
INIT,0,6;
CONTINUOUS,8,12,0.01,0.01,0.1,.,.001,.001;

EQUIVALENCE/XX(1),ATASI/XX(2),ATH/XX(3),DCA/
XX(5),WSPEED/XX(6),WDIR/XX(7),CTAS/
SS(12),AGS/SS(l),CEPOS/SS(2),CNPOS/
SS(3),CTC/SS(4),AEPOS;

EQUIVALENCE/SS(5),ANPOS/SS(6),ATC/SS(7),ATAS/
SS(8),ABANGLE/SS(9),CBANGLE/DD(1),CEVEL/
DD(2),CNVEL/DD(3),CTCC/DD(4),AEVEL/
DD(5),ANVEL/DD(6),ATCC

RECORD,TNOW,MINUTES,20,T,0.1;
VAR,SS(9),,CBANGLE
VAR,XX(7),,CTAS
VAR,SS(1),,CEPOS;
VAR,SS(2),,CNPOS;

RECORD,TNOW,MINUTES,21,T,O.1;
VAR,SS(4),,AEPOS;
VAR,SS(5),,ANPOS;

DATA ENTRY CONVENTION

AIRSPEEDS IN KNOTS
TIMES IN MINUTES
ANGLES IN DEGREES
DISTANCES IN NAUTICAL MILES
HEADINGS REFERENCED TO NORTH AND INCREASE CLOCKWISE
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BANK ANGLES TO THE RIGHT ARE POSITIVE IN VALUE

VARIABLE DESCRIPTION

XX(l) - AIRCRAFT TAS INCREMENT
XX(2) - AIRCRAFT TRUE HEADING
XX(3) - DRIFT CORRECTION ANGLE (DCA)
XX(4) - ACCELERATION DUE TO GRAVITY in NM/MIN**2
XX(5) - WIND VELOCITY MAGNITUDE (FL280)
XX(6) - WIND DIRECTION (FL280)
XX(7) - CRUISE MISSILE TAS
XX(9) - CONVERT CM HEADING TO RANGE OF 0-360

XX(1O) - CONVERT CMMCA HEADING TO RANGE OF 0-360
XX(12) - INPUTED CMMCA ROLL RATE
XX(14) - IS CM INSIDE AZIMUTH
XX(15) - IS CM IN RADAR CONE
XX(16) - CM INSIDE RANGE

XX(17) - CMMCA MAX ROLL RATE (900. DEGREES/MINUTE)
XX(18) - INNER RANGE LIMIT
XX(19) - OUTER RANGE LIMIT
XX(20) - DESIRE'ý CMMCA BANK ANGLE

; XX(21) - SPEED MATCHING
XX(22) - POSITIVE REACTION AZIMUTH
XX(23) - NEGATIVE REACTION AZIMUTH

* SS(1) - CRUISE MISSILE EAST POSITION
; SS(2) - CRUISE MISSILE NORTH POSITION

SS(3) - CRUISE MISSILE TRUE COURSE
SS(4) - AIRCRAFT EAST POSITION
SS(5) - AIRCRAFT NORTH POSITION
SS(6) - AIRCRAFT TRUE COURSE
SS(7) - AIRCRAFT INITIAL TAS
SS(8) - AIRCRAFT BANK ANGLE
SS(9) - CRUISE MISSILE BANK ANGLE
SS(10) - AIRCRAFT/MISSILE SLANT RANGE

SS(11) - AIRCRAFT/MISSILE AZIMUTH ANGLE
SS(12) - AIRCRAFT GS

DD(1) - CRUISE MISSILE EAST VELOCITY
DD(2) - CRUISE MISSILE NORTH VELOCITY
SDD(l - CRUITSF MISSILE TRUE COURSE CHANGE RATE

; DD(- - AIRCRAFT EAST VELOCITY
DD(5) - AIRCRAFT NORTH VELOCITY
DD(6) - AIRCRAFT TRUE COURSE CHANGE RATE

DD(7) - ACCEL/DECEL RATE (A MAX OF .50/-.75 NM/MIN/MIN)

DD(8) - CMMCA ROLL RATE (15 DEGREES/SEC, MAX)

INTLC, ATASI-0.O,ABANGLE-O.O,XX(4)-19.05,CBANGLE-0.0;
INTLC, CTAS-400.,CEPOS-5.0,CNPOS-8.0;
INTLC, CTC-O.O,ATC-O.O,XX(14)-1,XX(15)-I;
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INTLC, XX(16)-1,XX(18)-2. ,XX(19)-1O.;

NETWORK;

CM FLIGHT PATH

CREATE;
ACT,6.O;
TERM, 1;

CMMCA SPEED LIMITS (320-480 KNOTS TAS)

DETECT,SS(7) ,XN,5.3333333, .0001;
ASSIGN,ATASI - O.,ATAS - 5.3333333;
TERM ;
DETECT,SS(7) ,XP,8 .. .0001;
ASSICN,ATASI - O.,ATAS - 8.;
TERM;

DETECT IF CM IS IN CMMCA RADAR CONE
XX(14), XX(15), XX(16) ARE FLAGS WHERE 1 MEANS CONDITION MET

AND 0 MEANS CONDITION NOT MET.

DETECT,SS(11) ,XP,60. '.2;
ASSIGN,XX(14) - O.,XX(15)-O.;
TERM;
DETECT,SS(11) ,XN,-60. '.2;
ASSIGN,XX(14)-O. ,XX(15)-O.;
TERM;
DETEGT,SS(10) ,XP,XX(19),.l;
ASSIGN,XX(16) - O.,XX(15) - 0.;
TERM;
DETECT,SS(10) ,XN,XX(18),.1;
ASSIGN,XX(16) - 0.,XX(15) - 0.;
TERM;
DETECT,SS(11),XN,60. '.2;
ASSIGN,XX(14) - 1.;
EVENT(1);
TERM;
DETECT,SS(11) ,XP, -60. '.2;
ASSIGN,XX(14)-l.;
EVENT(1);
TERM;
DETECT,SS(1O),XN,XX(19), .1;
ASSICN,XX(16)-l.;
EVENT (1);
TERM;
DETECT,SS(10) ,XP,XX(18),.1;
ASSIGN,XX(16) - 1.;
EVENT(l);
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TERM;

CMMCA FLIGHT PATH

AZIMUTH DEVIATION CONTROL LAW

DETECT,SS(11),XN,XX(23), .2;
EVENT(2);
TERM;
DETECT,SS(11) ,XP,XX(22),.2;
EVENT(2);
TERM;
DETECT,SS(11) ,XP,XX(23),.2;
EVENT(3);
TERM;
DETECT,SS(l1) ,XN,XX(22),.2;
EVENT(3);
TERM;

CMMGA REACHED APPROPRIATE BANK ANGLE

DETECT,SS(8) ,X,XX(20),.l;
EVENT (4 )
TERM;

RANGE DEVIATION CONTROL LAW

DETECT,SS(10) ,XN,XX(18),.1;
ASSIGN,ATASI-- .75,XX(21)-O..;
TERM;
DETECT,SS(1O) ,XP,XX(19),.l;
ASSIGN,ATASI-.5,XX(2l)-O.;
TERM;
DETECT, SS(1O) ,XP,XX(18),.l;
EVENT(S);
TERM;
DETECT,SS(10) ,XN,XX(19),.l;
EVENT(S);
TERM;
DETECT,SS(12) ,X,CTAS, .1;
EVENT(6);
TERM;

ENDNETWORK;
FIN;
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,* DESCRIPTION: The FORTRAN part of the SLAM II*
simulation follows. The only part *

used for this thesis was the portion *

providing x-y position for the cruise*
missile at certain time intervals. *

PROGRAM MAIN
DIMENSION NSET(10000)
COMMON/SCOM1/ATRIB(100) ,DD(lOO) ,DDL(lOO) ,DTNOW,II,MFA,MSTOP,NCLNR
1 ,NCRDR,NPRNT,NNRUN,NNSET,NTAPE, 55(100) ,SSL(lOO) ,TNEXT,TNOW,XX(100)
COMMON QSET(lOOOO)
EQUIVALENCE(NSET(1) ,QSET(l))
NNSET-10000
NCRDR-5
NPRNT-6
NTAPE-7
NPLOT-2
OPEN(lO,FILE-'INPUT.DAT' ,STATUS-'NEW')
OPEN(ll,FILE-'CMMCA.OUT' ,STATUS-'NEW')
OPEN(12,FILE-'CONE.OUT' ,STATUS-'NEW')

C OPEN(14,FILE-'DESIGN2.DAT' ,STATUS-'OLD')
CALL SLAM
STOP
END

C
C
C

SUBROUTINE EVENT (I)
COMMON/SCOMl/ATRIB(lOO) ,DD(lOO) ,DDL(lOO) ,DTNOW,II,MFA,MSTOP,NCLNR

1,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(1OO),SSL(100),TNEXT,TNOW,XX(1O0)
EQUIVALENCE (XX(l),ATASI),(XX(2),ATH),(XX(3),DCA),

& (XX(5),WSPEED),(XX(6),WDIR),(XX(7),CTAS),
& (SS(12),AGS),
& (SS(l),CEPOS),(SS(2),CNPOS),(SS(3),CTC),
& (SS(4),AEPOS),(SS(5),ANPOS),(SS(6),ATC),
& (SS(7),ATAS),(SS(8),ABANGLE),(SS(9),CBANGLE),
& (DD(1),CEVEL),(DD(2),CNVEL).(DD(3),CTCC),
& (DD(4),AEVEL),(DD(5),ANVEL),(DD(6).ATCC)
GOTO(l,2,3,4,5,6) ,I

1IF (XX(14) *EQ. 1 .AND. XX(16) *EQ. 1) XX(15) -1
RETURN

2 XX(20)-SIGN(30. .SS(ll))
XX(17)-SICN(XX(12) ,XX(20))
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RETURN

3 IF (CBANGLE .EQ. 0) THEN
XX(20)-O.
XX (17) -0.
ENDIF
RETURN

4 XX(17)-O.
RETURN

5 IF((SS(12) - CTAS).GT. .1) THEN
ATASI-- .75
XX( 21) -1.

ENDIF
IF ((SS(12) - CTAS).LT.-.1) THEN

ATASI-.5
XX (21)-i

END IF
RETURN

6 IF (XX(21) .EQ. 1) THEN
ATASI-0.
XX(21)-O.

ENDIF
RETURN

END

SUBROUTINE INTLC
COM2MON/SCOM1/ATRIB(100) ,DD(100) ,DDL(100) ,DTNOW,II,MFA,MSTOP,NCLNR

1,NCRDR,NPRNT,NNRUN,NNSETNTAPE,SS(100),SSL(100),TNEXT,TNOW,XX(1
0 0)

EQUIVALENCE (XX(l),ATASI),(XX(2),ATH),(XX(3),DCA),
& (XX(5),WSPEED)I,(XX(6),IJDIR),(XX(7),CTAS),
& (SS(12),AGS),
& (SS(l),CEPOS),(SS(2),CNPOS),('SS(3),CTC),
& (SS(4),AEPOS),(SS(5),ANPOS),(SS(6),ATC),
& (SS(7),ATAS),(SS(8),ABANGLE),(SS(9),CBANGLE),
& (DD(l),CEVEL),(DD(2),CNVEL),(DD(3),CTCG),
& (DD(4),AEVEL),(DD(5),ANVEL),CDD(6),ATCC)

REAL COSD
EXTERNAL COSD
REAL SIND
EXTERNAL SIND
PI - ACOS(-1.)

C***READ IN DESIGN POINTS

C READ(14,*) XX(96), XX(97), XX(98), XX(99), XX(100)
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C***** SET THE FACTOR LEVELS

C WDIR - 90*XXJ(96) + 180
C WSPEED - 25*XX(97) + 50
C XX(12) - 300*XX(98) + 600
C XX(22) - 5*XX(99) + 10
C XX(23) - -XX(22)
C AEPOS -2*XX(100)

WDIR -0.0

WSPEED - 0.0
XX(12) - 900.0
XX(22) - 15.0
XX(23) - -XX(22)
AEPOS -0.0

C***** CONVERT NAUTICAL MILES/HR TO NAUTICAL MILES/MINUTE

WSPEED - WSPEED/60.
CTAS - CTAS/60.

C***** SET CMMCA GROUND SPEED BASED ON INITIAL WIND & CM SPEED

DCA - (ASIN( (WSPEED/CTAS)*SIND(WDIR-ATC) ))*180/PI
ATH - ATC + DCA
AGS - CTAS*COSD(ATH.ATC) - WSPEED*COSD(WDIR-ATC)
ATAS - (OTAS + WSPEED*COSD(WDIR - ATC))/COSD(ATH - AIC)

RETURN
END

C
C
C

SUBROUTINE STATE
COMMON/SCOMl/ATRIB(100) ,DD(100) ,DDL(100) ,DTNOW,II,MFA,MSTOP,NCLNR

1,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100),SSL(100),TNEXT,TNOW,XX(100)
EQUIVALENCE (XX(1),ATA-Il),(XX(2),ATH),(XX(3),DCA),

& (XX(5),WSPEED),(XX(6),WDIR),(XX(7),CTAS),
& (SS(12),AGS),
& (SS(1),CEPOS),(SS(2),CNPOS),(SS(3),CTC),
& (SS(4),AEPOS),(SS(5),ANPOS),(SS(6),ATC),
& (SýS(7),ATAS),(SS(8),ABANGLE),(SS(9),CBANGLE),
& (DD(1),CEVEL),(DD(2),CNVEL),(DD(3),CTCC),
& (DD(4) ,AEVEL) ,(DD(5) ,ANVEL) ,(DD(6) ,ATCC)

REAL SIND
EXTERNAL SIND)
REAL COSD
EXTERNAL COSD
REAL TAN])
EXTERNAL TAND
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REAL ATAN2D
EXTERNAL ATAN2D
REAL PI,DCA,X,Y,Z
INTEGER N,M
PI - ACOS(-I.)

C CRUISE MISSILE VARIABLES

C DUE TO NO WIND ASSUMPTION FOR CRUISE MISSILE ALTITUDE
C MISSILE TAS - MISSILE GS AND MISSILE TRUE COURSE (MTC) EQUALS
C MISSILE TRUE HEADING.

CEVEL - CTAS * SIND(CTC)
CNVEL - CTAS * COSD(CTC)
CTCC - (180. * XX(4) * TAND(CBANGLE))/(PI*CTAS)
N -
XX(II)-CTC
IF ((CTC .GT. 720) .OR. (CTC .LT. -360)) THEN

N - INT(ABS(CTC/360)) + 1
ENDIF
IF (CTC .GT. 360.) XX(Ii)- CTC - N * 360.
IF (CTC .LT. 0.) XX(II)- CTC + N * 360.

C CMMCA VARIABLES

DD(7) - XX(l)
DD(8) - XX(17)

C WIND EFFECTS ON CMMCA TRUE HEADING AND TAS

DCA - (ASIN((WSPEED/ATAS)*SIND(WDIR - ATC)))*180/PI
ATH - ATC + DCA
AGS - ATAS*COSD(ATH - ATC) - WSPEED*COSD(WDIR - ATC)

AEVEL - AGS * SIND(ATC)
ANVEL - AGS * COSD(ATC)
ATCC - (180. * XX(4) * TAND(ABANGLE))/(PI*AGS)
M-i

IF ((ATC .GT. 720) .OR. (ATC .LT. -360)) THEN
M - IN- BS(ATC/360)) + I

ENDIF
IF (ATC .GT. 360.) ATC - ATC - M * 360.
IF (ATC .LT. 0.) ATC - ATC + M * 360.

SS(1O)-SQRT((CEPOS-AEPOS)**2 + (CNPOS-ANPOS)**2 +
& (28000/6076)**2 )

SS(Il)- ATAN2D((CEPOS-AEPOS),(CNPOS-ANPOS)) - ATH
IF (SS(11) .LT. -180) SS(1I)-SS(II) + 360.
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C OUTPUT DATA TO FILES CM.OUT AND CMMCA.OUT

X - TNOW + .000004
Y - AMOD(X, .1)
IF ((Y .LE. .001) .AND. (TNOW .GT. Z)) THEN

CBANGLE-CBANGLE*PI/180
WRITE (10,100) CBANGLE, OTAS ,CEPOS ,CNPOS
Z - TNOW

ENDI F
100 FORMAT (3(5X,F9.4))

RETURN
END

SUBROUTINE OTFUT
COMMON/SCOM1./ATRIB(100) ,DD(100) ,DDL(100) ,DTNOW,II ,MFA,MSTOP,NCLNR
1 ,NCRDR,NPRNT,NNRUN,NNSET,NTAPE, SS(100), SSL(100) ,TNEXT,TNOW,XX(100)

EQUIVALENCE (XX(1),ATASI),(XX(2),ATH),(XX(3),DCA),
& (XX(5),WSPEED),(XX(6),WDIR),(XX(7),CTAS),
& (SS(12),AGS),
& (SS(1),CEPOS),(SS(2),CNPOS),(SS(3),CTC),
& (SS(4),AEPOS),(SS(5),ANPOS),(SS(6),ATC),
& (SS(7),ATAS),(SS(8),ABANGL.E),(SS(9),CBANGLE),
& (DD(1),CEVEL),(DD(2),CNVEL),(DD(3),CTCC),
& (DD(4),AEVEL),(DD(5),ANVEL),(DD(6),ATCC)

WRITE(12,110) TTAVG(1)
110 FORMAT (4X,F9.4)

RETURN
END

REAL FUNCTION SIND(X)
REAL X, PI
INTRINSIC SIN
PI - ACOS(-1.)

SIND - SIN(X*PI/180)
END

REAL FUNCTION COSD(X)
REAL X, PI
INTRINSIC COS
PI - ACOS(-1.)

COSD - COS(X*PI/180)
END

REAL FUNCTION TAND(X)
REAL X, PI
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INTRINSIC TAN
PI - ACOS(-1.)

TAND - TAN(X*PI/180)
END

REAL FUNCTION ATAN2D(Y,X)
REAL X, PI, Y
INTRINSIC ATAN2
PI - ACOS(-1.)

ATAN2D - ATAN2(Y,X)*180/PI
END
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Appendix C. Curve FittinQ

These are the calculations for deriving the

optimization algorithm's three point parabola curve fit.

Eqs (C.1), (C.2) and (C.3) define the three points that will

fit the curve. The first point will be where the step size

is zero, in other words the maneuver vector with no change.

The objective functional value will be computed for this

step size of zero using Eqs (3.29) and (3.7). The next two

points represented by lambda one and lambda two will use

step sizes of different value. Again each of these step

sizes will be used to compute a new objective functional

value.

g 0-J(x(O)) (C.1)

g2-J(,K(12)) (C.3)

84



The equation for a parabola follows with the initial

condition that go equals c at lambda equals zero.

g'wa%2 +bX+c go-C (C.4)

It follows from algebra that,

g 1-go-aX(+bc.5)

and

g2-go0 -aX2 +b%2  (C.6)

Given

gi-go (C.7)xi
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it follows that

Using matrix multiplication yields

R X2X_ 2 (C.9'

To find the optimal lambda from the fitted parabola requires

taking the first derivative of Eq (C.4).

-b (C10
g (.X) w2aX+b=O -4 ° -b (c.1o)
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After a few algebraic manipulations a final form is derived

that can be used in the optimization algorithm.

IO~t -1f1+1f2' (C.11)

x°•' I -2 f-- f
1 2 -aA

1 1 (g 2 g90)- X g~o
-- 2  1 (C.12)

2 (g1-g 0) _ (g 2-g 0 )
A 12

1 (92_____ _ )__12_(__1 ___) (C.13)

2 12 (g91 g 0 ) - 11 (g 2 -g 0 )
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This is the derivation of the modified parabola fit

using the gradient or slope, JSTOP and an additional point

Al. The slope is derived at the first point X0 which is

equal to zero.

g(X) -a)2+bX+go (C.14)

g(1) -2aX +b

g9'(0) - b - go--JSTOP

= g(X) .aX2+go),+go (C.15)

g(X) -a 2+g6 o 1+go0-g
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006. a(C. 16)

,X0pt:- MX -2aX+g0/-O

-9 / 1/ C 7

2 (g0,X+g 0 -g1 )

xi +(g 1 -g0 ) I,
2 2 (90X I+ go -g)
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Appendix D. Turn Results

The results for six test runs are presented here.

Tables present five columns of information. The first

column depicts the time. The second and third columns

describe the bank (in degrees) and the speed (in knots TAS)

the CMMCA should use to follow the cruise missile. Negative

banks are left turns and positive banks right turns. The

last two columns, range (in nm's) and azimuth (in degrees)

are measured from the CMMCA to the CM. Azimuth is an angle

measured from the nose of the CMMCA to the position of the

CM. Negative azimuths represent angles to the left while

positive values represent angles to the right.

In the first four test runs the cruise missile is

flying straight and level at 400 knots TAS. The first table

displays the results when the CMMCA starts to the left of

the CM, 9.5 miles slant range behind at 400 knots TAS. The

second table displays the results when the CMMCA is

positioned to the right at the same distance and speed. The

third table depicts the result of the CMMCA to the right and

in front of the CM. In the fourth table the CMMCA is

started to the left and at a slower speed of 360 k'.ots TAS.

The fifth table depicts the result for a 90 degree turn

performed by the cruise missile. The last table shows

results for a 270 degree turn.
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JSTOP= 4.514542

# ITERATIONS =750

TIME BANK SPEED RANGE THETA

.1 32.4 240.5 9.5 22.8

.2 9.1 351.6 9.6 11.4

.3 4.1 434.0 9.6 8.1

.4 1.9 450.0 9.4 5.9
.5 0.7 453.1 9.3 4.2

.6 0.0 453.1 9.1 2.6

.7 -0.5 451.6 9.0 1.1

.8 -0.8 449.6 8.8 -0.3

.9 -1.0 447.2 8.7 -1.7

1.0 -1.2 444.6 8.6 -3.1

1.1 -1.4 442.1 8.5 -4.4

1.2 -1.6 439.5 8.4 -5.7

1.3 -1.8 437.1 8.3 -6.9

1.4 -2.1 434.8 8.3 -8.1

1.5 -2.4 432.6 8.2 -9.1

1.6 -2.7 430.5 8.2 -10.0

1.7 -3.0 428.5 8.1 -10.7

1.8 -3.3 426.6 8.1 -11.4

1.9 -3.6 424.7 8.0 -11.8

2.0 -3.9 422.8 8.0 -12.1

2.1 -4.1 421.0 8.0 -12.3

2.2 -4.2 419.2 8.0 -12.3

2.3 -4.3 417.3 8.0 -12.2

2.4 -4.4 415.5 8.0 -11.9

2.5 -4.3 413.7 7.9 -11.5
2.6 -4.3 411.9 7.9 -11.1

2.7 -4.1 410.2 7.9 -10.5

2.8 -4.0 408.5 7.9 -9.9

2.9 -3.7 406.9 7.9 -9.3

3.0 -3.5 405.4 7.9 -8.6

3.1 -3.2 404.0 7.9 -7.9

3.2 -2.9 402.7 7.9 -7.2

3.3 -2.6 401.5 7.9 -6.5

3.4 -2.3 400.5 7.9 -5.8

3.5 -2.0 399.6 7.9 -5.2

3.6 -1.7 398.8 7.9 -4.6

3.7 -1.5 398.2 7.9 -4.0

3.8 -1.2 397.6 7.9 -3.5

3.9 -1.0 397.2 7.9 -3.0

4.0 -0.7 396.9 7.9 -2.6

4.1 -0.5 396.7 7.9 -2.2

4.2 -0.4 396.5 7.9 -1.8

4.3 -0.2 396.5 7.9 -1.5

4.4 -0.1 396.5 7.9 -1.2
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4.5 0.0 396.5 7.9 -0.9
4.6 0.1 396.7 7.9 -0.7
4.7 0.2 396.8 7.9 -0.5
4.8 0.2 397.0 7.9 -0.3
4.9 0.3 397.2 7.9 -0.1
5.0 0.3 397.4 7.9 0.0
5.1 0.3 397.6 8.0 0.1
5.2 0.3 397.9 8.0 0.3
5.3 0.3 398.1 8.0 0.4
5.4 0.3 398.4 8.0 0.5
5.5 0.2 398.7 8.0 0.6
5.6 0.2 398.9 8.0 0.7
5.7 0.2 399.2 8.0 0.9
5.8 0.1 399.5 8.0 1.0
5.9 0.1 399.7 8.0 1.1
6.0 0.0 399.9 8.0 1.3
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JSTOP= 0.2893718

# ITERATIONS =750

TIME BANK SPEED RANGE THETA

.1 -31.1 503.2 9.3 -28.2

.2 -15.7 484.5 9.2 -22.4

.3 -9.3 473.3 9.0 -18.9

.4 -5.5 463.8 8.8 -16.4

.5 -3.0 455.4 8.6 -14.4

.6 -1.4 447.4 8.5 -12.8

.7 -0.3 439.2 8.4 -11.5
.8 0.4 428.0 8.2 -10.4
.9 0.9 411.0 8.2 -9.3
1.0 1.3 394.5 8.1 -8.4
1.1 1.5 384.6 8.1 -7.5
1.2 1.7 379.7 8.0 -6.8
1.3 1.8 377.7 8.0 -6.1
1.4 1.9 377.2 8.0 -5.5
1.5 1.9 377.7 8.0 -4.9
1.6 1.9 378.7 8.1 -4.5
1.7 1.9 380.1 8.1 -4.0
1.8 1.9 381.8 8.1 -3.6
1.9 1.9 383.7 8.1 -3.2
2.0 1.8 385.6 8.1 -2.9
2.1 1.8 387.6 8.1 -2.6
2.2 1.7 389.5 8.1 -2.3
2.3 1.7 391.3 8.1 -2.0
2.4 1.6 393.0 8.1 -1.8
2.5 1.6 394.5 8.1 -1.5
2.6 1.5 395.9 8.1 -1.4
2.7 1.4 397.1 8.1 -1.2
2.8 1.4 398.1 8.1 -1.0
2.9 1.3 399.0 8.1 -0.9
3.0 1.3 399.7 8.1 -0.7
3.1 1.2 400.3 8.1 -0.6
3.2 1.2 400.8 8.1 -0.5
3.3 1.1 401.2 8.1 -0.4
3.4 1.1 401.5 8.1 -0.3
3.5 1.0 401.7 8.1 -0.2
3.6 1.0 401.8 8.1 -0.2
3.7 0.9 401.9 8.1 -0.1
3.8 0.9 402.0 8.1 -0.1
3.9 0.8 402.0 8.0 0.0
4.0 0.8 402.0 8.0 0.0

4.1 0.7 402.0 8.0 0.0

4.2 0.7 401.9 8.0 0.1

4.3 0.7 401.8 8.0 0.1

4.4 0.6 401.8 8.0 0.1
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4.5 0.6 401.7 8.0 0.1
4.6 0.5 401.6 8.0 0.1
4.7 0.5 401.5 8.0 0.1
4.8 0.5 401.4 8.0 0.1
4.9 0.4 401.3 8.0 0.2
5.0 0.4 401.2 8.0 0.2
5.1 0.3 401.0 8.0 0.2
5.2 0.3 400.9 8.0 0.2
5.3 0.3 400.8 8.0 0.2
5.4 0.2 400.7 8.0 0.2
5.5 0.2 400.6 8.0 0.3
5.6 0.2 400.5 8.0 0.3
5.7 0.1 400.4 8.0 0.3
5.8 0.1 400.3 8.0 0.4
5.9 0.0 400.1 8.0 0.5
6.0 0.0 400.0 8.0 0.5
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JSTOP= 80.99321
# ITERATIONS =750

TIME BANK SPEED RANGE THETA

.1 -11.7 343.1 8.6 -142.4

.2 -9.9 351.0 8.5 -138.6

.3 -6.9 360.5 8.4 -136.0

.4 -3.1 370.1 8.2 -134.7

.5 0.9 378.9 8.1 -134.8

.6 4.8 386.1 8.0 -136.1

.7 8.2 391.3 8.0 -138.4
.8 11.0 394.5 7.9 -141.6
.9 12.8 395.8 7.9 -145.3
1.0 13.6 395.3 7.9 -149.1
1.1 13.1 393.5 7.9 -152.6
1.2 11.6 390.8 8.0 -155.6
1.3 9.3 387.6 8.0 -157.8
1.4 6.3 384.5 8.1 -159.0
1.5 3.1 381.7 8.1 -159.2
1.6 -0.1 379.5 8.2 -158.3
1.7 -3.1 378.0 8.3 -156.5
1.8 -5.6 377.4 8.3 -154.0
1.9 -7.6 377.6 8.4 -150.9
2.0 -8.8 378.5 8.5 -147.5
2.1 -9.4 379.9 8.5 -144.0
2.2 -9.2 381.9 8.5 -140.6
2.3 -8.5 384.0 8.6 -137.6
2.4 -7.3 386.3 8.6 -135.0
2.5 -5.9 388.5 8.5 -133.0
2.6 -4.4 390.5 8.5 -131.5
2.7 -2.9 392.3 8.5 -130.5
2.8 -1.5 394.0 8.4 -130.1
2.9 -0.2 395.4 8.4 -130.0
3.0 0.7 396.6 8.3 -130.3
3.1 1.5 397.7 8.3 -130.8
3.2 2.0 398.7 8.3 -131.5
3.3 2.2 399.6 8.2 -132.3
3.4 2.3 400.4 8.2 -133.1
3.5 2.2 401.3 8.2 -133.9
3.6 2.0 402.2 8.2 -134.6
3.7 1.7 403.1 8.2 -135.2
3.8 1.3 404.1 8.2 -135.7
3.9 0.9 405.1 8.2 -136.1
4.0 0.5 406.2 8.2 -136.3
4.1 0.1 407.4 8.2 -136.4
4.2 -0.4 408.7 8.2 -136.4
4.3 -0.8 409.9 8.2 -136.3
4.4 -1.3 411.3 8.2 -136.1
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4.5 -1.9 412.6 8.2 -135.8
4.6 -2.4 413.9 8.2 -135.4
4.7 -3.1 415.2 8.3 -134.8
4.8 -3.9 416.4 8.2 -134.1
4.9 -4.9 417.4 8.2 -133.3
5.0 -5.9 418.2 8.2 -132.2
5.1 -7.2 418.7 8.2 -131.0
5.2 -8.6 418.8 8.1 -129.4
5.3 -10.1 418.3 8.1 -127.7
5.4 -11.5 417.2 8.0 -125.6
5.5 -12.8 415.4 7.8 -123.4
5.6 -13.4 413.0 7.7 -121.0
5.7 -12.9 410.0 7.5 -118.9
5.8 -10.7 406.7 7.2 -117.3
5.9 -6.3 403.4 7.0 -116.8
6.0 -2.9 400.9 6.7 -117.7
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JSTOP= 2.400061

# ITERATIONS =750

TIME BANK SPEED RANGE THETA

.1 32.8 239.3 9.6 22.5

.2 8.7 380.8 9.6 11.1

.3 4.1 439.4 9.5 8.0

.4 1.9 450.2 9.4 5.9

.5 0.6 452.5 9.2 4.1

.6 -0.1 452.1 9.1 2.5
.7 -0.6 450.6 9.0 1.1
.8 -1.0 448.4 8.8 -0.3
.9 -1.2 446.0 8.7 -1.7
1.0 -1.4 443.5 8.6 -3.0
1.1 -1.7 441.0 8.5 -4.2
1.2 -1.9 438.5 8.4 -5.4
1.3 -2.1 436.1 8.3 -6.5
1.4 -2.4 433.7 8.3 -7.5
1.5 -2.7 431.5 8.2 -8.4
1.6 -3.0 429.3 8.1 -9.1
1.7 -3.3 427.3 8.1 -9.8
1.8 -3.5 425.2 8.1 -10.2
1.9 -3.7 423.2 8.0 -10.6
2.0 -3.9 421.3 8.0 -10.8
2.1 -4.0 419.4 8.0 -10.9
2.2 -4.1 417.5 8.0 -10.8
2.3 -4.1 415.7 8.0 -10.7
2.4 -4.1 414.0 7.9 -10.4
2.5 -4.0 412.3 7.9 -10.1
2.6 -3.9 410.8 7.9 -9.7
2.7 -3.7 409.3 7.9 -9.2
2.8 -3.5 407.9 7.9 -8.7
2.9 -3.3 406.6 7.9 -8.2
3.0 -3.0 405.5 7.9 -7.6
3.1 -2.8 404.4 7.9 -7.0
3.2 -2.5 403.4 7.9 -6.5
3.3 -2.2 402.6 7.9 -6.0
3.4 -2.0 401.8 7.9 -5.4
3.5 -1.7 401.1 7.9 -4.9
3.6 -1.5 400.4 7.9 -4.5
3.7 -1.3 399.8 7.9 -4.0
3.8 -1.0 399.3 7.9 -3.6
3.9 -0.9 398.7 7.9 -3.2
4.0 -0.7 398.2 7.9 -2.9
4.1 -0.5 397.6 7.9 -2.5
4.2 -0.4 397.0 7.9 -2.3
4.3 -0.3 396.4 7.9 -2.0
4.4 -0.2 395.8 7.9 -1.7
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4.5 -0.1 395.0 7.9 -1.5
4.6 0.0 394.2 7.9 -1.3
4.7 0.0 393.3 7.9 -1.1
4.8 0.1 392.3 7.9 -1.0
4.9 0.1 391.2 7.9 -0.8
5.0 0.1 390.0 8.0 -0.7
5.1 0.2 388.6 8.0 -0.6
5.2 0.2 387.2 8.0 -0.4
5.3 0.2 385.6 8.0 -0.3
5.4 0.2 383.8 8.0 -0.2
5.5 0.1 381.9 8.1 -0.1
5.6 0.1 379.9 8.1 0.0
5.7 0.1 377.8 8.1 0.1
5.8 0.1 375.5 8.2 0.3
5.9 0.0 373.2 8.2 0.4
6.0 0.0 367.4 8.3 0.5
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JSTOP= 9. 1502592E-02

# ITERATIONS =429

TIME BANK SPEED RANGE THETA

.1 -3.7 424.2 8.0 0.5

.2 -2.9 417.6 7.9 1.5
.3 k-2.3 409.6 7.9 2.4
.4 -1.8 401.7 7.9 3.2
.5 -1.3 395.3 7.9 3.8
.6 -0.8 390.6 7.9 4.4
.7 -0.4 387.0 8.0 4.9
.8 0.0 384.1 8.0 5.2
.9 0.4 381.4 8.0 5.4
1.0 0.8 378.7 8.0 5.5
1.1 1.3 374.9 8.1 5.7
1.2 1.9 372.5 8.1 6.1
1.3 2.4 370.1 8.2 6.8
1.4 3.1 367.8 8.2 7.7
1.5 3.8 365.5 8.2 8.8
1.6 4.6 363.4 8.2 9.9
1.7 5.5 361.5 8.2 11.1
1.8 6.5 359.8 8.2 12.3
1.9 7.6 358.3 8.2 13.4
2.0 8.7 357.0 8.2 14.4
2.1 9.8 356.0 8.2 15.3
2.2 10.8 355.4 8.1 16.0
2.3 11.8 355.1 8.1 16.6
2.4 12.5 355.4 8.0 17.0
2.5 12.8 356.2 7.9 17.5
2.6 12.7 357.8 7.8 17.9
2.7 12.1 359.9 7.8 18.3

3 11.2 362.7 7.8 18.8
Z.9 9.8 366.1 7.8 19.4
3.0 8.2 370.2 7.8 20.3
3.1 6.3 376.1 7.8 21.6
3.2 4.3 384.4 7.9 23.3
3.3 2.2 393.5 7.9 25.7
3.4 1.1 398.8 8.0 28.4
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JSTOP=1.0 1152
# ITERATIONS =500

TIME BANK SPEED RANGE THETA

.1 12.3 390.6 8.0 -1.9

.2 10.0 396.0 8.0 -5.5
.3 8.2 400.1 8.0 -8.6
.4 6.9 403.3 8.0 -11.5
.5 5.9 405.7 8.0 -14.2
.6 5.3 407.6 8.1 -16.9
.7 5.0 408.9 8.1 -19.5
.8 4.9 410.0 8.1 -22.1
.9 5.0 410.7 8.1 -24.9
1.0 5.2 411.2 8.2 -27.8
1.1 9.3 390.1 8.3 -31.1
1.2 10.2 392.5 8.3 -34.9
1.3 11.4 394.3 8.4 -38.8
1.4 12.9 395.8 8.5 -42.8
1.5 14.5 397.1 8.5 -47.1
1.6 16.1 398.3 8.6 -51.8
1.7 17.6 399.6 8.6 -56.9
1.8 18.9 400.9 8.6 -62.4
1.9 19.9 402.4 8.6 -68.2
2.0 20.4 404.0 8.6 -74.3
2.1 20.5 405.9 8.7 -80.4
2.2 20.0 407.9 8.7 -86.4
2.3 19.0 410.0 8.7 -92.2
2.4 17.5 412.3 8.7 -97.6
2.5 15.7 414.7 8.7 -102.4
2.6 13.5 417.2 8.7 -106.7
2.7 11.1 419.6 8.7 -110.4
2.8 8.4 422.0 8.6 -113.5
2.9 5.6 424.2 8.5 -116.1
3.0 2.6 426.0 8.4 -118.1
3.1 -0.5 427.5 8.3 -119.6
3.2 -3.7 428.5 8.1 -120.8
3.3 -6.7 428.8 7.8 -121.7
3.4 -9.2 428.4 7.6 -122.6
3.5 -11.0 427.2 7.3 -123.8
3.6 -11.3 425.4 7.0 -125.7
3.7 -9.4 422.9 6.8 -128.9
3.8 -4.6 419.7 6.7 -134.0
3.9 4.0 415.9 6.7 -141.6
4.0 21.0 410.5 6.9 -152.9
4.1 77.2 399.0 7.2 162.6
4.2 39.0 395.4 7.5 117.9
4.3 35.3 391.3 7.7 104.9
4.4 31.9 389.0 7.8 93.5
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4.5 28.5 388.0 7.8 83.5
4.6 25.5 387.9 7.8 74.8
4.7 23.1 388.1 7.8 67.0
4.8 21.1 388.5 7.8 59.9
4.9 19.4 389.1 7.8 53.4
5.0 17.8 389.7 7.8 47.4
5.1 16.4 390.5 7.8 42.0
5.2 15.0 391.3 7.8 37.1
5.3 13.6 392.3 7.8 32.7
5.4 12.1 393.3 7.8 29.0
5.5 10.7 394.4 7.8 25.9
5.6 5.8 396.4 7.8 23.9
5.7 4.4 397.3 7.9 22.8
5.8 3.0 398.2 7.9 22.0
5.9 1.5 399.1 7.9 21.5
6.0 0.6 399.8 7.9 21.3
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