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PREFACE

The purpose of this thesis was three-fold. The first purpose was
to revise and extend the capabilities of existing software for selecting
the significant control variables of a simulation model, based on a
newly developed selection criterion. The second purpose was to compare
the results obtained using the revised software employing two different
selection procedures. And the third purpose was then Lo vaiidate the
effectiveness of the new gelection criterion by comparison to results
derived using other common selection criteria.

After extensive revision, the software, now renamed the Variable
Subset Selection Program (VSSP), was ready for use. The VSSP was then
used to evaluate data with known characteristics and data derived from
an untested simulation model. The results obtained from this effort
served to demonstrate the usefulness of the VSSP and the validity of the
the new selection criterion. It is highly recommended that the work be
continued, as further benefitg are yet to be realized and may be of
substantial significance.

The execution and preparation of t'. . thegis would not have been
pogsible without the help of others. I a: eeply indebted to my faculty
advigor, Major Kenneth Bauer, Jr., for his extensive time, patience, and
assistance. I also wish to thank my thesis reader, Lt Colonel Thomas
Schuppe, for pointing out my numerous writing errors and ensuring the
final product was understandable. Finally, I wish to thank my family
and friends for their continuous support and encouragement when the
going got rough.

James A, Gigliotti
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ABSTRACT

7 The purpose of this thesis was three-fold. The first purpose was
to revise and extend the capabilities of existing software for selecting
the significant control variables of a simulation model, based on a
newly developed selection criterion. The second purpose was to compare
the results obtained using the revised software employing two different
selection procedures. And the third purpose was then to validate the
effectiveness of the new selection criterion by comparison to results
derived uging other common selection criteria.

Extensive revision of the existing software was necessary to
prepare it for use. Initially, the software was revised to extend its
adaptability to evaluating new data and to increase user friendliness.
Next, a new procedure was added to the software to permit it to evaluate
data using a Stepwise (Forward Selection) procedure. Previously, the
goftware only performed analygis of the data through an Enumerated
Subsets approach. After revision of the software was complete, it was
renamed the Variable Subset Selection Program (VSSP).

Once the VSSP was ready, it was used to evaluate two types of data.
The first type of data was created using a known stochastic structure.
Three sets of this data was used, each set using a different covariance
structure between the responses and control variables. The second type
of data was created from an untested simulation model.-~This gagg )
provided a means of validating the program and the selection criterion
incorporated into it. In addition, the data derived from the untested
simulation model was algo evaluated using a commercially available

statistical software package employing several common selection
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criterions. These results were then compared to those obtained using
the VSSP.

Overall, this study found that as the amount of data evaluated by
the VSSP increased, any differences between the control variables
selected as sgignificant, by either the Enumerated Subsets or Stepwise
procedure, disappeared. In fact, a point was apparently reached where
additional data caused no change in the results obtained. Also, when
the covariances between the control variables are known, this only makes
any difference when a minimal amount of data is available. And finally,
comparison of the results obtained by the VSSP and the commercial
software package showed the new criterion to be comparable to those
commonly in use. The new criterion also had the advantage of not
requiring a subjectively determined stopping criteria for selecting the
significant control variables, unlike some of the other criterion in use
today.

The recommendations made from this study involved further work on
the V3SP and additional experimentation which can be performed to extend
the usefulness of the new criterion. Several suggestions for
enhancements to the VSSP, primarily in regards to adding additional
evaluation procedures and increasing program efficiency, were noted.
There is also much work remaining in regards to the new selection
criterion. One pogsibility mentioned, would be to see if the point
where further data provides no additional benefit to the evaluation,

could be analytically determined.

viii




COMPARISON OF SELECTION PROCEDURES
AND VALIDATION OF CRITERION USED IN
SELECTION OF SIGNIFICANT CONTROL VARIATES
OF A SIMULATION MODEL

Background

When dealing with computer simulations it is typically desiratle to
have a general understanding of how the simulation inputs will affect
the final results. It is also desirable to be able to accurately
estimate the expected simulation response. Furthermore, if the
estimation of the response can be achieved with a subset of the
gsimulation inputs (variables), a variance reduction on the estimator of
the mean can also be realized. One way of achieving these goals is
through the identification of a good subset of control variates.
Control variates, also known as control variables, are variables which
have a significant covariance with the response of interest.

The development of a quick and easy method for identifying the
subset of significant control variates in a simulation model would
greatly decrease the time and effort required to gain insights into the
simulation. Jdentifying the significant control variates for a
simulation model can also enhance the process of preparing and
implementing an experimental design. It would eliminate the guesswork
in determining which variables to concentrate on in a subsequent
experimental design. This could algo gave computer time by identifying
a subset of the available control variates to work with, gince the
standard experimental design requires 2k simulation runs to acquire

data, where k ig the number of variables being tested.




The need for research into this problem and several methods for
approaching it have been identified in current literature, but little
gubstantial work has yet been accomplished (Bauer, 1987:2).
Furthermore, Pritsker (1986:748) notes that even though theoretical
development of control variates has proceeded, little practical

application has been reported.

Specific Problem

The purpose of this thesis was to compare selection procedures for
gelecting the significant control variates of a gimulation model and to
validate the selection criterion used.

The scope of this thesis was confined to revising and adding new
procedures tc previously written software for identifying the
significant control variates of a simulation model and applying the
software to selected data sets. The data was also evaluated using
commercial software and additional selection criteria. The results were
then used to compare the selection procedures employed and to validate

the selection criterion.

Sub-objectives

In order to solve the specific problem the following sub-objectives
or steps were accomplished. The first sub-objective was to revise and
incorporate new procedures into existing software for evaluating
gimulation output and identifying tae significant control variates.

The second sub-objective was to test the revised software on
several getg of gimulation model output with known responges,

gignificant control variates, and covariances between the control




variates. This output is referred to as the control data/output in
later text.

The third sub-objective was to compare the sets of sigrificant
control variates identified by the revised software with each other and
with those known for the control data/output.

The fourth sub-objective was to use the revised software to
identify the significant control variates of an untested simulation
model. This simulation model is referred to as the test model or data
generation model in later text.

And the fifth sub-objective was to compare the selected control
variates with variable subsets selected using commercially available

software and various other selection criteria.

General Methodology

For each of the sub-objectives outlined above, there were
associated sets of methods and equipment required to accomplish them.
Accomplishment of the first sub-objective, to revise and incorporate new
procedures into the existing software for evaluating simulation output
and identifying the significant control variates, necessitated a two-
fold approach. The first approach involved revising existing software
previously developed by Bauer (1989B). The basis for the software was
an evaluation of all possible com"‘nations (enumerated subsets) of the
control variates involved. To successfully perform this task required a
thorough understanding of the underlying logic and statistical concepts
on which the software was based. The next step was the actual revision
of the existing software with the goals of increasing generality and

uger-friendlinecgs of the software.




The second approach to meeting this sub-objective dealt with adding
a new routine to the revised software based on a stepwise evaluation
procedure and the same statistical accept/reject criterion ag the
enumerated subset routine. Again, study was necessary to understand the
stepwise procedure and construct the logic for implementation. When
that step was completed, the actual stepwise procedure goftware was
written, debugged, and incorporated into the overall revised program.
The resulting software product is referred to as the Variable Subset
Selection Program (VSSP) in later text.

The second sub-objective, test the Variable Subset Selection
Program on several sets of simulation model output with known responses,
gignificant control variates, and covariances between the control
variates, was completed as follows. The first step was to obtain
data/output with these characteristics. Next, this data/output was
evaluated using the Variable Subset Selection Program. The data/output
was evaluated using both the enumerated subsets and stepwise procedures
incorporated into the program. The end result of this sub-objective was
a gingle subset of control variables derived using each of the sgelection
procedures,

The third sub-objective, compare the sets of significant control
variates identified by the Variable Subset Selection Program with each
other and with those known for the control data/output, was
straightforward and involved answering a series of questions. Were
there any differences in the number of control variates identified as
gignificant? Were there any differences in the gpecific control

variates identified as gsignificant?




The fourth sub-objective, ugse the Variable Subset Selection Program
to identify the significant control variates of an untested simulation
model, was completed as follows. The first step was to obtain a
gimulation model for evaluation. Next, the simulation model was run on
the AFIT VMS computer system to create the output data to use as input
data for the Variable Subset Selection Program. And finally, the
Variable Subset Selection Program evaluated the model output and a
subset of the significant control variates was selected. The difference
between the data/output derived from this model and the data/output used
in sub-objective two is that the significant control variates had not
been previously determined.

The fifth and final sub-objective, compare the selected control
variates with variable subsets selected using commercially available
software and various other selection criteria, was accomplished as
follows. First, the SAS statistical package, installed on the AFIT VMS
system, wae gelected as representative of commercially available
software. Next, the SAS procedures for Enumerated Subsets, and Stepwise
(using Forward Selection, Backward Selection, and R2 Maximization {MAXR]
options) evaluation was applied to the data/output of the unteszted
gimulation model. And finally, the results obtained using SAS were
compared to those obtained uging the Variable Subset Selection Program.
The primary purpose of this sub-objective was to validate the criterion

used by the VSSP and demonstrate it will provide comparable results.

Thegis Organization and Development

A review of literature relevant to this thesgis is presented in




Chapter II. The literature review covers the topic of control variates
and their theoretical development. Also reviewed are the common
selection criteria and selection procedures in use today, and the
theoretical development of a new gelection criterion.

In Chapter III the detailed methodology used in approaching and
completing this thesis is covered. Then, the results of the research
are presented and discussed in Chapter IV. And finally, the conclusgions
and recommendations reached, after evaluating the data, are given in

Chapter V.




II. LITERATURE REVIEW

The following discussion ig a review of the literature that has

relevance to this thesis topic.

Variance Reduction Techniques

The need for some form of Variance Reduction Technique becomes
apparent when it is understood that simulation is an experimental
technique, for analyzing systems which usually involve the use of
stochastic processes (Tomick,1988:1.7). Since stochastic processesg are
‘a collection of random variables’ (Ross, 1985:72), then the output from
a simulation experiment is also a random variable. Thus, the response
of interest is only an estimate of the true value. From Pritsker
(1986:742), “"the variance of the sample mean is a derived measure of the
reliability that can be predicted if a simulation experiment is
repeatedly performed’. Pritsker also states that "Variance Reduction
Techniques (VRTs) are methods that attempt to reduce the estimated
values of variance through the setting of special conditions or through
the use of prior information.’

In a survey of Variance Reduction Techniques (VRTs), performed by
Wilson (1984:280), VRTs are divided into two categories: correlation
methodg, and importance methods. His paper discusses three correlation
methods (common random numbers, antithetic variates, and control
variateg) and four importance methods (importance sampling, conditional
Monte Carlo, stratified sampling, and systematic sampling).

The basic difference between the two categorieg is the underlying




principle of the methods. The correlation methods increase the
efficiency of the simulation by exploiting linear correlations among the
simulation responses and input variables. The importance methods
achieve variance reduction by concentrating on prior knowledge of the
input domain.

O0f the VRT methods discussed by Wilson, this thesis concentrates on
the use of control variates. The rationale for this decision were two-
fold. First, this is a promising technique which can provide valuable
ingights into the problem, if even to identify a lack of correlation
between the inputs (i.e. control variates) and responses. And second,
even though theoretical development has been proceeding, not much has
been done in the way of practical applications. Further information on

this method follows.

Control Variates

The method of control variaées. also known as control variables, is
one of the correlation methods mentioned previously. Basically, °.. the
control variates technique uses regression methods to exploit any
inherent correlation between an output and a selected random variable
vector with known mean that is observed on each run” (Wilson, 1984:280).

The remainder of the discussion on control variates will cover the
types of control variates, the theory behind the concept of control
variatesz, and a summary of recent work accomplished on this topic.

Types of Control Variates. Law and Kelton (1982:359) define two
types of control variates. The two types are internal, or concomitant,
control variates, and external control variates. The first type of

control variate addressed is the internal control variate. Internal




control variates may be selected from among any of the input random
variables, or simple functions of them, since their means are known.
This view is further endorsed by Bauer (1989A:0-63), when he states "any
input random variable is a candidate for a control variate.’ In
addition, analysis of the simulation's use of the input random variables
should identify at least the gign of the correlation with the output
random variable. An advantage of internal control variates is they must
typically be generated anyway during a simulation and therefore add
essentially nothing to the cost of running the simulation.

The second type of control variates, external control variates,
require the gimultaneous gimulation of a similar, but analytically
tractable, system using common random numbers. The corresponding output
from this similar simulation is then used ag the control variate. By
analytically tractable, it is meant that the expected value of the
output variable can be calculated exactly. It is then hoped that the
gimilar nature of the tractable simulation will induce a correlation
between the two outputs, which can then be exploited. The major
disadvantage of this type of control variate is that it requires a
gsecond simulation model and additional simulation runsg, sgo it is not
costless.

Theory of Control Variates. To restate, “the concept associated

with control variates is the identification of a variable, say X, that
hasg a positive covariance with the variable of interest, say Y’
(Pritgker, 1986:748).

Unlegs noted otherwige, the following theory is based on a class

handout provided by Bauer (1989A4).




Univariate Simulation Response with a Single Control. Assume

that Y is an unbiased estimator of the response of interest ©; that is,
E(Y) = 0, where E(Y) is the expected value of Y. Let X be an input
random variable, selected as the control variate. It is further assumed
that X has a known expected value of u, and is highly correlated with Y.
Then, for any constant b (known as the control coefficient), the

controlled estimator Y(b), given by Eq (1), is unbiased for 0.
Y(b) = ¥ - b(X - uy) (1)
Then the variance of Y(b) is
Var(Y(b)] = Var(¥) + bVar(X) - 2bCov(Y,X) (2)

From review of Eq (2), it is readily apparent that a variance reduction
can be achieved if

2bCov(Y,X) > b2Var (X) (3)

So, if the condition of Eq (3) is met, then the controlled estimator
will have a smaller variance then the uncontrolled estimator. It is
also apparent that if the variables X and Y are independent, in which
case Cov(Y,X) = 0, then no improvement over the uncontrolled estimator
is possible. Next, with the application of gsome calculus to Eq (2), the
optimal control coefficient, 8, for which the variance of Y(b) is a

minimum, ig given by
g8 = Cov(Y,X)/Var(X) (4)

Substituting Eq (4) into Eq (1) leads to Eq (5) which gives the optimal

10




controlled estimator Y(R)
Y(8) = Y - [Cov(Y,X)/Var(X)] * (X - u,) (5)

And substituting Eq (4) into Eq (2) yields the corresponding minimum

variance for Y(8) of

Var(¥(8)] = (1 - pyy2) * Var(¥) (6)

where pyy is the correlation coefficient between X and Y. Therefore as
the absolute value of pyy tends to its maximum value of one, the
variance of Y(f) decreases.

For the next step, let © be denoted by uy. Then the average of the
controlled observations Y;, for § = 1 to K, is an unbiased point
estimator of uy. This estimator is represented by Eq (7).

- K
Y(8) = (1/K) K Y;(8) (7)
1=1

where K is the sample size and
Yi(B) = Y5 - B8(Xy - uy) (8)

Typically, the optimal value 8 is unknown and must be estimated.

However, 8 can be estimated as follows:

An intuitive estimate of 8 replaces the right-hand side of Eq (4)
with the appropriate sample quantities. This solution turng out to
be the least squares solution for 8. When the assumption of joint
normality between Y and X is made, then the leagt squares solution
is algso the maximum likelihood sgolution. (Bauer, 1987:6)

So the following equation provides an estimate of 8.
K

. K
B= 2 (Y, -Nexy -0/2 (X, - 1
i=1 i=1

2 (9)

11




where

K
Y= 2 Y/K (10)
i=1
and
. X
X= X X/K (11)
i=1
The point estimate of uy is
Y(8) = ¥ - 8(X - uy) (12)

Then, the variance of the point estimator is given by
Var[¥(8)) = Var[Y(8) /K (13)
where
Var{Y(8)] = (1-pyy2) ¥Var(¥) (14)

Bauer (1987:68) provides the derivation of the interval estimate
through the application of regression theory and assuming that Y and X
are jointly normal random variables. The resulting 100(1-a)% confidence

interval is given by

Y(R) + tx-g(l-a/Z)!(Var[?(ﬁ)]*811)1/2 (15)
where
K 2 X =2
8] = )X (X = uy) /KX (X4 - X) (16)
i=1 i=]

tk-q is the Student’s t-distribuiion with K-2 degrees of freedom, and

12




‘a’ is the desired significance level.

Since 8 is estimated, the variance reduction achieved is smaller
then could have been obtained had the optimal control coefficient been
known. This loss of variance reduction is quantified as the Loss Factor
(LF). The loss factor is defined as “the ratio of the variance of the
estimator of uy when the optimal control coefficient is not known to the
variance of the estimator when the coefficient is known™ (Bauer,
1987:9). Bauer (1987:10) provides the derivation of the loss factor,

which reduces to

LF = (K-2)/(K-Q-2) (17)
where
Q = the number of controls
K = the number of independent replications

Furthermore, the “loss factor acts as a multiplier to the minimum

variance ratio (MVR)" (Bauer, 1987:10), which ig given by

MVR = Var[Y(8)1/Var(Y) (18)

The MVR represents the possible variance reduction when the optimal
control coefficient ig known. Multiplying Eq (17) and Eq (18) together
leads to the variance ratio (VR). The VR represents the possible

variance reduction when 8 is estimated.

VR = LF & MVR (18)

Univariate Simulation Response with Multiple Controls.

Kleijnen (1974:151) addresses the extension of theory to multiple

control variates. Also, Bauer provides a summary of "the development

13




presented by Lavenberg and Welch (1981) for simulation output analysis
based on independent replications, batch means, and regenerative
analysig® (Bauer, 1887: 11).

Let Y be the univariate response with variance vy2, i be the Qxl

~

vector of controls, vy, be the Qx] vector of covariances between Y and

X, and Ey be the QxQ covariance matrix of the controls. Then rewriting

Eq (12) with multiple controls leads to

a ~

T(8) = ¥ - 87 (X - uy) (20)

~

where 8, i, and uy, are Qx1 vectors. The vector of optimal control

coefficients is given by
8 = Ey Vxy (21)

Since the covariance matrices are usually unknown, 8 can be estimated by
substituting the sample values of Ey and vyy into Eq (21). This leads

to the following equation:

1

= Sy Syy (22)

©» R

where gx-l is the inverse of the QxQ sample covariance matrix of the
controls. and gxy is the Qx]1 vector of sample covariances between the
univariate response and the vector of controls.

Asgsuming that Y and i have a joint multivariate normal

distribution, then

o}

- R4

(23)
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Congequently, Y(8) is unbiased for u, and an exact 100(1-a)% confidence

interval ig given by

Y(8) ¢+ tg-q-1(1-a/2)DeSyy (24)

where
p2 = k7l e k-0 & - w78, HX - uy) (25)
Syxo = (K-a-1D 1R-D (5,2 - 5,758,787 5, (26)

tg-Q-1 is the Student’s t-distribution with (K-Q-1) degrees of freedom,
and Sy2 is the sample variance of Y (Bauer et al, 1988:3).

Multiple Simulation Responses with Multiple Controls. Bauer,

Venkatraman, and Wilson (1887:334) provide the necessgary theoretical

gtructure for handling the case of P responge variables and Q control
variates. When dealing with multiple variables, Y is a Pxl vector of

~

regponge variables, 8 is a PxQ matrix of control coefficients, and S is

the sample covariance matrix of the response vector. Assuming that Y

and X have a joint multivariate normal distribution, then

~

Uy

Uy

E, E,y
v (27)

¥

, Y

l T Nqe)

- R

Consequently, Y(8) is an unbiased estimator of uy and an exact 100(1-

a/2)% confidence ellipsoid for uy is given by

-~ ~
~ A~ ~ 1 ~ A ~
-

[7(8-uy 17y, 1T(8) -uy) ¢ P(K-Q-1) (K-P-Q) “'DF(1-a;P,K-P-Q)  (28)

where

p2 = k7w DT & - upTs, MK - oy (29)

15




~ g ~ o~

-1 ~ ~
Syx. = (K=Q-1)" (K1) (Sy - SyySy  Syy) (30)

and F(l-a;n),ng) is the F-distribution with n; and ny degrees of freedom
(Bauer et al, 1987:335).

"The advantage of the above approach over selecting separate
controls for each response is the capability to form a joint confidence
region for the response vector, rather than being limited to univariate

confidence intervals®" (Tomick, 1988:2.10).

Selection of Significant Control Variates

Neter states that “One of the most difficult problems in regression
analysis often is the selection of the set of independent variables to
be employed in the model® (1983:417). Regardless of the problem
involved, there are several reasons to restrict the number of variables
ugsed in a model: (1) A model with a large number of variables can be
expensive to maintain, (2) Models with a limited number of variables are
easier to analyze and understand, and (3) The presence of many highly
intercorrelated variables may add little to the predictive power of the
model, detracting from the model’s descriptive abilities and increasing
the problem of roundoff error (Neter, et al; 1983:418).

The selection of the gignificant control variates depends2 primarily
on the selection criteria and selection procedure used. The selection
criteria determines the relative significance of a regression variable
(control variate) and this may vary as the criteria vairies. The type of
selection procedure has an effect on whether the subset(s) of control
variates chosen is the "best’ subset or iz a “near-best’ subset.

Selection Criteria. The most common selection criteria in use

16




today and which are reviewed here, are Rg, Rz. and Cp. In addition, a
new selection criteria, BCp, is also presented. Any of these selection
criteria can be used for selecting one or more variable subsets.

In the discusgion of each criteria, the following notation is used.

P is the number of potential parameters. The intercept term, 8., counts

o ’
as one parameter, so there are P-1 potential X variables (X;,...,Xp-}).
p is the number of parameters present in a subset, go any subset
regression model contains p-1 X variables. And n is the number of

observations.

The Ri Criteria. Rg is based on the coefficient of multiple

determination Rz, for a subset of size p, and is defined as:

2
Rp =1 - (SSEp / 8STO) (31)
where
SSE, = Error sum of squares for a parameter subset of size p.
SSTB = Total sum of squares for y.

SSTO ig equivalent to SSE, which is the regression model with only an
intercept term. SSTO remains constant for each subset evaluated, so as
P increases, R: increases. This occurs sgince SSEp can not increase as
additional variables are added to the model. Consequently, Rg reaches a
maximum when all P-1 variableg enter the regression model. Therefore
the intent ig not to maximize R%, but to find a point where adding
additional variables to the model does not increase Bg gignificantly.
"Clearly, the determination of where diminishing returns sets in ig a

judgmental one” {(Neter, et al; 1983:422).

The BE Criteria. The adjusted coefficient of multiple

determination, RZ. is very similar to Rg. and ig defined as:
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=1 - ((n-l/n-p)i(SSEp/SSTO)) (32)
However, unlike Rg. thig criterion “takeg the number of parameters in
the model into account through the degrees of freedom” (Neter, et al;
1983:424). Therefore, while seeking the maximum value of RZ, it is
possible for this value to decrease asg p increases if the reduction in
SSEp is too small to offset the loss of a degree of freedom.

The C, _Criteria. The Cp criteria is based on minimizing the

total mean squared error of the n fitted values for each of the various

subset regression models. Cp is defined as:
Cp = (SSEp / MSE(Xj,...,Xp-1)) - (n - 2xp) (33)

where

MSE(X;,..,Xp-}) = mean squared error of the model with all P
parameters.

The above equation agsumes that the model which includes all P
parameters provides an unbiased estimate of the variance. In the event
the model used has substantial bias, it may be best to expand the set of
potential variables to eliminate the bias.

In uging the Cp criterion, identification of an appropriate subset
of X variables is based on: (1) A small value of Cp, and (2) A Cp value
near p. When plotting Cp ve. p, models with little bias will fall near
the line Cp = p, and models with significant bias will be substantially
above the line.

The BC, Criteria. The BCp, or Best Controls, criteria is a

new criteria developed by Bauer and Wilson (1990). Unless otherwise
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noted, the following discussgion ig based on their paper.

Development of the selection criteria is presented for two cases.
The first case is where the covariance matrix, of variables and
regponses, is estimated. The second case is where the covariance matrix
is known.

Before proceeding, the "best’ subset of variables is defined as
that subset which produces a confidence region of minimum expected
volume. Consequently, the selection criteria is designed to identify

which gsubset of variables will produce this result.

Nomenclature. Let Y = (er'-'va)' denote a column

vector of p responses generated on a single run of a simulation model

whoge mean response uy = E(Y) ig2 to be egstimated. Furthermore, let C =
(Cl,...,Cq)' denote a column vector of q concomitant control variates

with known mean u, = E(C) and let b denote a fixed (p x q) matrix of

control coefficients, then the controlled response

Y(b) = Y - b(C - ugp) (34)

is an unbiased estimator of uy whose dispersion can be minimized by the

~

appropriate choice of b. Let Ey, E,, and Eyc regpectively denote the

covariance matrices of Y, C, and between Y and C; then

Ey = Cov(Y) = E[(Y - uy)(Y - uy)']. (35)

Eqo = Cov(C) = E[(C - ug)(C - uy)'], (36)
and ~ ~ ~

Eyc = Cov(Y,C) = E[(Y - uy)(C - ul)'l. (37)

And then, in terms of these quantities, the conditional covariance

matrix of Y given C = ¢ is
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Egie = Cov(YiC = ¢) = Ey - Eyo - EycEc Eje (38)
for every c which is an element of RY (i.e. cerY).
Rubinstein and Marcus (1985) showed that the generalized variance of

Y(b) is minimized by the optimal matrix of control coefficients

~ ~

8 = EgoEg (39)

~

Typically, Eyc is unknown 80 8 must be estimated. Let k denote the
number of independent replications of the simulation to be performed;
and for j = 1,...,k, let (Yj.cj) denote the results observed on the jth

run. Then, in terms of the statisties

k
Y= (/p Xy, (40)
i=1
k - -
Sy = (1/(k-1) 2 (¥y - DYy -1’ (41)
i=1
_ k
C = (1/k) X Cy, (42)
j=1
k - -
Se = (1/(k-D) X (Cy - CV(Cy - O, (43)
j=1
and
k - -
Sye * (1/(k-1));§l(vj -y -0’ (44)
the sample analogue of £ is
; = 8,85} (45)
yose

- -~
~

Thus the jth controlled response is estimated as Y;(8) = Yy - 8(Cj - up)

~

for § = 1,...,k; and the overall controlled point estimator of uy ie
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W6 - 1/ L Y =T - 86 - ue) (46)
i=1
Bauer and Wilson (1990:4) also state that "In large scale
simulation experiments, frequently the responses and the controls are
jointly normal because these statistics are simultaneougsly accumulated
over the duration of each run and thus are gubject to a central-limit

effect;... Thus it is reasonable to assume that Y and C jointly possess

a multivariate normal distribution.® Thus,

~

Uy

Ue

E, Eyq
- N v (47

P*q

with det(Ey) # 0 and det(E,) # 0, where uy is known but Ey, Eyc- and

possibly E, are unknown. Applying the basic results of Rao (1967) in this

-~

gituation, Bauver and Wilson then compute a confidence ellipsoid for Uy

ag follows. Let

2w = (F(8)-u)' (d'dEyc)  IT(B) -u) (48)

~

for every u which ig an element of Rp, where

(¢, - c)’
M = : L od = (/0 - MW THE - ug), (49)
(cy - &)
3 L
Eyre = (k-1 / k-q-1) (Sy - SycSe'Syc). (50)

and let 1y denote a k-dimensional column vector of ones. Conditioned on
the valueg of the controls {Cj:J z 1,...,k) observed across all k runs,

T2(uy) has Hotelling's T2-distribution with k-q-1 degrees of freedom;
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therfore an exact unconditional 100(1-a)% confidence ellipsoid for uy is

M(q;k,p,a) = (uﬁkp:(Tz(U) / k-q-1) * (k-q-p / p)

$ Fl.a(p,k-q-p)}, (51)

where F).,(p,k-q-p) is the quantile of order l-a for an F-distribution
with p and k-q-p degrees of freedom.

Selection Criteria for Estimated Covariance Matrix.

Given the replication count k, the p-dimengional estimand ;yv and the
confidence coefficient "a®, the goal ig to select a subszet of controls
from a set of q control-variate candidates such that the resulting
controlled confidence-region estimator for ;y analogous to Eq (51) is,
in some sense, as °"small’ and as ‘stable’ as posasible. Bauer and Wilson
formulate such an estimator with some additional notation. Given a
nonnegative integer r representing the number of control-variate
candidates currently under consideration, let ulq,r) = q!/{r!(q-r)!] be
the number of distinct control-variate subsets of gize r. Then, for r =
0,...,qand h = 1,...,u{(q,r) let I(h,r) denote the hth distinct subset
of size r from the get {1,...,q). Furthermore, on the jth run of the

gimulation model, let Cj(h.r) denote the r-dimensgional vector of

controls corresponding to the index-set I(h,r)
Cj(h,r) = [CGiyd),....Clipi)]", (52)

where i} ¢ ... ( i, and {i},...,ip) = I(h,r).

> W

Similarly, let Ey:o(h,r), 8(h,r), Y(8(h,r)], d(h,r), and Eyic(h,r)
regspectively denote the analogues of Eqs (38), (45), (46), (48), and

(50) when the control vector C(h,r) defined by I(h,r) is used to compute
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the controlled estimator of uy . Corresponding to Eq (48), Bauer and

Wilson then derive

-

2 (un,m) = (FI8B,M] - WA (h,Mdh,MEy;ch,m 1"

(?[E(h,r)] - u); (53)

and the exact 100(1-a)% confidence ellipsoid for uy analogous to Eq (51)
as
M(h,r;k,p,a) = (utRP: (T2(u,h,r) / k-r-1) * (k-r-p / p)

{ Fl-a(p,k-r=p)}. (54)

Then the size of the confidence region is calculated by

1/2

V(h,rik,p,8) = ([Egicth,m (27 (pr21ap/2))

{({d’ (h,r)d(h,r) ) (pi*p%(k-r-1 / k-r-p) *

p/2

Fi-a(p,k-r-p)} (55)

where G, for this and following equations, denotes the Gamma function.

Also the mean volume of the confidence region, Eq (54), is given by

ELV(h,r;k,p,a)] = w(h,r;k,p,a) ([G(k/2)1772 / GL(k-p)/21),  (56)
where
wih,r;k,p,a) = ([|Eyiq(h,m) |8(k/2)112 7 (pr2)6(p/2))

{2%pisp*F)_,(p,k-r-p) / k(k-r-p)]plz. (57)
And the mean square volume of the confidence region, Eq (54), is
2 2
E{V'(h,r;k,p,a)] = (w (h,r;k,p,a) / G[(k-2p)/2]) »

P
[T [ (k-r-i)/(k-r-2i)]. (58)
i=1
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Although alternative expressions are available for the mean volume and
mean gquare volume, Bauer and Wilson believe their equations (56) and
(58) are easier to use from both a mathematical and computational
standpoint.

In the case of a univariate response, Nelson (1989) and Schmeiser
(1982) define the standard measures of confidence-interval stability as
the standard deviation (SD) and coefficient of variation (CV) of the
confidence-interval half-length; and in the case of a multivariate
response, the corresponding stability measures, based on the confidence-

region volume of Eq (55), are

sD[V(h,r;k,p,a)] = w(h,r;k,p,a) ((1 7 G[(k-2p)/2]) *

P . 2 172

JT Uk-r=i)/ (k-1=21) ) - (G(k/2) / G[(k-p)/21)} (59)

i=1

and

CVIV(h,r;k,p,a)] = ((G2[(k-p)/2] / G(k/2)G[(k-2p)/2]) *
4 172
7 Lk-r-i)/ (k-r-21) 1 - 1312, (60)
{=1

Similar to Schmeiger’'s (1982) conclusions about the performance of
univariate confidence intervals, Bauer and Wilson (1990) obgerved that a
confidence-region estimator M(h,r;k,p,a) with large values of (59) or
(60) will give false gignals about the intrinsgic precision of the
asgociated point estimator ?[Z(h,r)] in a large percentage of
applications. Bauer and Wilson then went on to state

Thus it seems reasonable to select a control vector C(h,r) that

yields a gmall value for (59) or (60). However, it would be

undesirable to base a control-variate selection criterion
exclusively on the principle of minimizing (59) or (80) -- this
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principle fails to exclude confidence-region estimators that

achieve smaller values of the standard deviation or coefficient of

variation of the volume gimply by increasing the mean volume. On
the other hand, it is also undesirable to base a control-variate
selection criterion exclusively on the principle of minimizing the
mean volume without attempting simultaneously to reduce or at least
bound the standard deviation or coefficient of variation of the

volume. (1990:6)

Bauer and Wilson wanted to ensure that the delivered confidence-
region estimator Eq (54) is both small and stable, 20 they proposed a
control-variate selection criterion based on the principle of minimizing
the mean square volume given by Eq (58). Since E[Vz(h,r;k,p,a)] 2
E2[V(h.r;k,p.a)] 2 0, it i8 clear that their melection criterion will
tend to reduce the mean volume at least indirectly; and in comparison to
a selection criterion based on minimization of the mean volume, Eq (56),
the selection criterion will yield smaller values of the standard
deviation Eq (59) and the coefficient of variation Eq (60) of the
confidence-interval volume; unless both procedures select exactly the
same control variates with probability one. In the event both
procedures do select the same control variates, the two selection
criteria yield identical results. Therefore their strategy of basing
the criterion on minimizing the mean square volume of the delivered
confidence-region estimator offers many of the advantages of selection
criteria based on minimizing the mean, standard deviation, or
coefficient of variation of the delivered volume without some of the
potential disadvantages of these latter gelection criteria.

To implement the proposed selection criterion in practice, it is
necegsary to minimize the mean square volume E[Vz(h,r;k,p,a)] as a

function of h and r, where r = 0,...,q and h = 1,...,ulq,r). Since

:Ey;c(h.r): is generally unknown, this quantity is rcplaced by the
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unbiased estimator

2 P
lEy;c(h,r)IIY [(k-r-1)/(k-r-1i)] (61)
i=1
to obtain the expression that must be minimized in gelecting the final

subset of control variates

-~

MIN ((lEy;c(h,r)iG(kIZ) / [(p/2)G(p/2)]26[(k-2p)/2])

* [((2%pixpF_,(p,k-r-p) / k(k-r-p)]p

P
2 JT [(k-r-1)/(k-r-i) ]} (62)

i=1

subject to the constraints of 0{r{(q and 1<h(u(q,r). Let r* and h*
denote the optimal values of r and h in Eq (62). The delivered point
and confidence-region estimators of ;y are given by ?[E(h*.r')] and
M(h’,r*;k,p.a), regpectively. Thus Eq (62) gives the selection criteria

for the case where the covariance matrix is unknown.

Selection Criteria for Known Covariance Matrix. Often,

situations arise in discrete event simulation where the covariance
matrix of some set of control variates ig known analytically or can be
readily evaluated by numerical methods. In this situation an
alternative to the estimator Z, for the unknown covariance matrix case,

for the optimal control coefficient vector 8 can be obtained by

replacing S,, in Eq (45), with E;, to obtain

x ~-1
8 = SycEc’. (63)

~

In thig case the controlled point estimator of uy hag the form

~

2
Y(8) = Y - 8(C - ug). (64)
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Under the agsumption of joint normality, Bauer (19887) proved that Y(R)

18 an unbiaged estimator of uy with covariance matrix

E = CoviT(8)] = (k-2 / k(k-1)Eyc + (q#1 / k(k-1)Ey. (65)

~

To derive an approximate 100(1-a)X confidence region for uy
2 2
centered at Y(8), Bauer and Wilson began with an unbiased estimator of E
obtained by replacing the unknown covariances on the right-hand side of

Eq (65) with the corresponding sample covariances

~ a

§ = (k-2 / k(k-1))Ey:c + (q+1 / k(k-1))Ey. (66)

Provided that k >> q, Eq (66) implies that S is approximately

2
independent of Y(8) and possesses the p-dimensional central Wishart
distribution with k-q-1 degrees of freedom on the covariance matrix

Eyic. Then

~ ~

.2 ~ - z .-1 - z
T7(w) = (Y(R) - ul'S "[Y(R) - u] (67)

~

for every u which ig an element of R?. Thus for large k, %z(ﬁy) has
an approximate Hotelling's Tz-distribution with k-q-1 degrees of freedom;
and in this case an approximate 100(1-a)¥% confidence ellipsoid for ;y is
given by

i(q;k,p,a) = (;tnp:(%z(;) / k-q-1) (k-q-p / p)

£ Fy-alp,k-q-p)}. (68)

Progress to this point parallels the development of equations (54)
through (82) that apply to the gituation where the covariance matrix is

unknown. Bauer and Wilson then sought a control vector C(h,r) which
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minimized the mean sqaure volume of the confidence ellipsoid. For r =
0,...,qand h = 1,...,ulq,r), let E(h.r). ?[E(h,r)], E(h.r). and é(h.r)
respectively denote the analogues of Eqs (63), (64), (65), and (66) when
the control vector C(h,r) defined by the index-set I(h,r) is used to

~

compute the controlled estimator of uy . Equation (67), then becomes

on ~ _l ~ . _-‘ ~
2 (u,b,r) = (¥[8(h,r)] - w}'[S(h,) ) M(FI8(h, M ] - W) (69)
for every u which is an element of Rp; and the approximate 100(l-a)%

~

confidence ellipsoid for uy analogous to Eq (68) is

M(h,r;k,p,a) = (utRP: (T2(u,h,r) / k-r-1) (k-r-p / p)

{ Fr-a(p,k-r-p)}. (70)
Now the confidence region ot Eq (70) has volume

V(h,r;k,p,a) = (1S(h,m) /2 / (p/2)G(pr2)) *

p/2

[pi*p*(k-r-1) / k-r-p)F}.4(p,k-r-p)] (1)

Then, assuming S(h,r) approximately possesses the p-dimensional Wishart
distribution with k-r-1 degrees of freedom on the covariance matrix

2

E(h,r), Bauer and Wilson derived the following approximate expression

for the mean square volume
) x 2
E{V°(h,r;k,p,a) = ({E(h,p)| / [(p/2)G(p/2)1°) *
P
{pixp / k-r-p)Fl-a(p.k-r-p)]p17 (k-r-1). (72)
i=1

To implement their proposed selection criterion for this new linear

control-variates estimation procedure, it isg necegsary to minimize Eq
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(72) as a function of h and r in a manner gimilar to that for Eq (62).
Since iS(h,r)! is generally unknown, this quantity is replaced by the
unbiased estimator
. P
Isth,e)| JT [(k-r-1)/(k-r-i)] (73)
i=1
as in Eq (61) to obtain the expression that must be minimized in

gelecting the final subset of control variates

MIN ((JS(h,») | / [(p/2)G{p/2)1%) »

[pi*p#(k-r-1)#F|_g(p,k-r-p) / k-r-p1P) (74)

subject to the constraints of 0{(r¢(q and 1<¢h<u(q,r). If r" and h"
denote the optimal) values of r and h in Eq (74) then the delivered point

2

and confidence-region estimators of uy are ?[B(h*'

,r")] and

VR 2 O I

M(h ,r ;k,p,a), respectively. Thus Eq (74) gives the selection
criteria for the case where the covariance matrix is unknown.

Selection Procedures. There are a variety of procedures available

for selection of the best or near-best subset(s) of variables. The
procedures pregented here are: enumerated subsets, stepwise regression,
forward selection and backward elimination, and regression by leaps and
bounds.

Each procedure has its own advantages and disadvantages. However,
the primary rationale for using selection procedures other than an
enumerated subsets, or all-posgible subsets, approach ig to reduce the
amount of computations required. Even for a moderate number of
variables the number of subsets to evaluate becomes 2P - 1, where P is

the number of variables being conzidered for the model. In addition,
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only the enumerated subsets approach will assure that the ‘best’
subset(s) of variables will be selected, based on the selection criteria

used.

Enumerated Subsets. The enumerated subsets, or all-possible

subsets, approach is based on the following algorithm.

1) A regression model with no X variables (i.e. Y; = 8, + e;) is
evaluated using the selected criteria.

2) A series of regression models including each variable, individually,
are evaluated using the selected criteria.

3) A series of regression models including each possible pair of
variables are evaluated. This process continues, increaging the
number of variables in the model one at a time, until a model
incorporating all variables is reached. Again, each model isg
evaluated using the selected criteria.

4) Based on the criteria employed (i.e. Rg, BE, Cp, BCp, etc.), the
best, or k best, subset(s) are selected.

Stepwise Regression. The stepwise regregsion procedure is the

most common search method used when the number of variables involved
make an enumerated subsets approach infeasible.
Essentially, this search method develops a gequence of regression
modelg, at each step adding or deleting an X variable. The
criterion for adding or deleting an X variable can be stated
equivalently in terms of error sum of squares reduction,
coefficient of partial correlation, or F sgtatistic. (Neter, et al;
1983:430)
For the search algorithm which follows, the P gtatisgtic 18 used
for illustration of the concepts involved.

1) A regression model is fitted for each of the X variables. For each

regregssion model the F* statistic ia obtained as follows:
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2)

3)

Fp = MSR(X,) / MSE(X;) (75)

The X variable with the largest F' value is selected to enter the
model. Provided the F* value exceeds a predetermined level required
to enter the model. 1If all of the F* values are below the thresghold
level, the gsearch ends.

If an X variable, say X;, enters the model, then all regression
models with two variables are fitted; where X; is one of each pair.
For each regression model, the partial F test statistic (Neter, et

al; 1983:289) is obtained.
Fp = MSR(XiX;) / MSE(X{.X) = (by / s(b))> (76)

Where by and s(by) are the estimated regression coefficient of
variable k and the estimated variance of the estimated regression
coefficient of variable k, respectively. Again, the X variable with
the largest F' value enters the model, if it exceeds the threshold
level. Otherwise the procedure ends.

When more then one variable enters the model, it is then determined
if any of the variables in the model should be dropped. The F'

values are derived as follows:
Fi = MSR(XgiX;,...,X;) / MSE(Xy ,X;,...,X;) ()

Where X, is the variable being tested for possible eliminaticn from
the model and Xi,....Xj are the other variables in the model. The X
variable with the smallest F‘ value i8 selected to exit the mcdel.

Provided the F' value fallg below a predetermined level required to
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exit the model. If all of the F" values are above the threshold
level, all variables remain in the model.

4) Steps (2) and (3) are repeated until no further X variables can meet
the threshold levels to enter or exit the model. It should be noted
that as the number of variables in the model increases, the size of
the subsets evaluated in step (2) increases. Where each subset
evaluated includes the variables currently in the model, plus one of
the variables not in the model.

Forward Selection and Backward Elimination. Both forward

gelection and backward elimination procedures are simplified variations
of the stepwise regression procedure. The forward selection procedure
differs from the stepwise regression procedure by not testing a
variable, once it has entered the model, for possible elimination from
the model.

The backward elimination procedure is the opposite of the forward
selection procedure. This procedure begins with the model containing
all the X variables. Then the F* value for each variable is calculated
and the variable with the smallest value identified. 1If this value is
legs than the threshold level, it is dropped from the model. This
procegs continues until no further variables can be dropped from the
model .

From this overview of control variates theory and methods for
selecting significant variables, a methodology was developed for
proceeding with the work involved. This methodology is presented in the

following chapter,
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I1I. METHODOLOGY

The overall objective of this thesis was to develop software to
agsist in identifying the significant control variables in a simulation
model. The goftware was to incorporate a newly developed selection
criteria in conjunction with several common gelection procedures. After
this was accomplished, the objective moved to applying the software to a

simulation model and evaluating the results.

Selection and Preparation of Computer Code

The first step in proceeding was to select and prepare the
necessary computer code/software. The software specifically is the
Variable Subset Selection Program, the simulation model which provided
data to test it on, and software for processing the data collected from
the simulation model.

Variable Subset Selection Program. The Variable Subset Selection

Program was developed from a previously written program. Before the
gsoftware was ready for use, externsive revision and expansion of the code
was performed. The primary goals achieved in reviging the goftware
dealt with increasing the ease of use of the software, and permitting
either manual or external file data entry. Prior to these revisions,
the program data had to be coded directly into the software before it
could be compiled and executed.

Expangion of the software dealt with the addition of a capability
to perform a stepwige regression procedure in conjunction with the new

selection criteria. This was in addition to the enumerated subsgets
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procedure originally incorporated.

Data Generation Model. Additionally, a simulation model was

selected to generate data for testing the variable subset selection
software. It was decided to select a model which simulates the
operation of a Local Area Network (LAN) and the interaction of the
system peripherals. The network model, on which thig simulation is
based, is commonly found in gimulation journals and serves asg a
practical benchmark for testing purposes.

The LAN simulation model consists of seven nodes and is illustrated
in Figure 3.1. Node 1 represents the terminals connected to the LAN
gsystem. Commands to the LAN system are generated according to an
exponential distribution. The commands are received at node 2, which
serves a8 a delay buffer and simulates the possibility of all system
peripherals being bugy and unable to accept new commands. Next the
commands move to node 3, which routes the command to a system
peripheral. The routing of a command from a node to any other node in
the system is based on probabilities contained in a probability matrix.
A command routed {rom node 3 can go to node 1, 4, 5, 6, or 7. The queue
capacity of nodes 4, 5, 6, and 7 is infinite and the queue discipline is
Firgt-In-First-Out (FIFO). At nodes 4, 5, 6, and 7 the gervice times
are distributed exponentially. Once a command is through being serviced
by a peripheral unit, it returns to node 3, where it is routed to
another peripheral for further processing or gent to node 1. When a
command returng to node 1, the time it took to get through the system is
noted and the command terminated. The SLAM and asgsociated FORTRAN code

for this simulation model, along with the following post-procesgsing

34




NJOMI3N [aPOY UOIRe[NWIG NY ]

L'E 8unsy 4

sfedaydidagd

DOOEC

Jajing
pPuewWWO)

(&>

NndJ

F
O

NHU1 o1
pPa3dauuo)
sjeurwJdal

35




code, are provided in Appendix C.

The data collected using this model was related to the number of
commands through the system, average utilization and total service time
at each system node, number of departures from a node, and number of
departures from node 3 to the other gystem nodes. This data was then
processed for use by the Variable Subset Selection Program.

Data Post-Procegging Software. After collection of output data

from the Data Generation Model, data post-processing was performed. The
purpose of thisg post-processing was to convert the control variate data
into the form of work and routing variables. These types of variables
are desirable because of the characteristics they possess. The desired
characteristics are a sample mean of zero and sample variance of one.
The post-processing software performed this conversion according to

the following equations

. -1/2 f(k,t)
X (t) = (f(k,t) / w (1(8))) jzi (Uy (k) - uy) / sy - (78)
where
f(k,t) = number of gervice times that are finished at node k
during time period (0,t)
w, = relative frequency with which a customer visits node k
Uk (3) = the j-th service time at node k
ug = E[Ug(§)]
gx = Var[Ug(j)]
and
N(t) -1/2
Xy = 2 LUy - Pk(%)) /7 (N(t) (1 - py(®))py(#)) ] (79)
J=1

for § = 1,...,5S and N(t) > 0
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where

Px(*) = probability of transition from node 3 to node k
Ug(j) = flag whethcr or not transition j was to node k. If so,
then Uy (j)=1, otherwige it equals zero.
N(t) = total number of transitions from node 3 up to time t
S = total number of nodes in the LAN model.

Equation (78) applied to the work variables and Eq (79) to the routing
variables. Additional information on work variables can be found in
Lavenberg, et al (1982), and more information concerning routing

variables in Bauer (1887).

The Response Variables

Next, a response vector was chosen for the analysis. The response
chosen to form the response vector was the time it takes a command to
pass through the LAN system. The time through the system begins when
the command is issued at a terminal and ends when a command returns to

node 1, informing it that the command has been executed.

The Control Variables

Next, the control variables were chosen, to provide a pool of
variables for the Variable Subset Selection Program to select from.
The control variables chosen were the total service times accumulated at
nodes 1, 3, 4, 5, 6, and 7; and the number of departures from the CPU
{node 3) to nodes 1, 4, 5, 6, and 7 respectively. This provided a pool
of eleven variables.

The variables analogous to total service time at node 2, and number
of departures from the CPU to node 2 and node 3 were not used. These
variables were infeasible since their corresponding values were always

zero. This resulted from the probability matrix associated with moving
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from one node to another.

Tue selection of these variables also prov:ded a mix of work and
routing variables for the Variable Subset Selection Program to sgelect
from. The service time variables became work variables, and the

departure variables became routing variables.

The Experimental Procedure

There were two distinct phases to the experimental procedure
employed in this thesis effort. The first phase involved testing the
Variable Subset Selection Program using data generated with known
covariances between the control variables and known gignificant control
variables. The second phase dealt with testing the Variable Subset
Selection Program on output from an untested simulation model and
evaluating this data/output using the VSSP and SAS software on the AFIT

VAX system.

Evaluation Using Known Data. The known data was previously derived
by Bauer and Wilson (1990) in testing of the original versgion of the
selection software. A series of Monte Carlo experiments were performed
to derive the data. Bauer and Wilson chooge to use five control variate
candidates and two responses. Two of the five control variates were
congtructed to be uncorrelated to the responses; therefore these control
variates acted as decoys. Bauer and Wilson extended Eq (47) by
partitioning the vector of control variates ag C =[X' W']), where X' =
(C;, Cq, C3) consists of the three effective control variates and W' =
[Cq, Cg5) consists of the decoy control variates. This resulted in the

overall stochastic structure of
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where 0 is an appropriately dimenszioned matrix of zeros. Three versions
of the covariance gtructure in Eq (78) were constructed. 1In all three
cases

1.0 0.3

, Ey = , and E = (81)

1
0
0

O - O

0
0
1

0.3 1.0

The crosg-correlation matrix between the responses and effective control
variates was of the form

a 0 ¢

yx ° (82)

0 b ¢

The choices of a, b, and ¢ for each casgse are summarized in Table 3.1.

Table 3.1 Cross-correlationsg in Eq (82)

: i Case i
\ Parameter ! I | II ! III !
: a 1 0.8 0.5 0.2
H b i1 0.5 0.51 0.2
: c 1 0.5 1 0.5 0.2
t=z=s==zza==!==z=s=|sse=z)===2z

Bauer and Wilson (1990)

One thousand sets of data were then derived from the normal
distribution, Eq(80) for each case. Bauer and Wilson then evaluated the
regultant data gets at k = number of replicationg = 10 and m = number

of meta-experiments = 100, and k = 20 and m = 50 to obtain coverage and
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volume reduction percentages for the delivered confidence regions.

Once the Variable Subset Selection Program was ready and the
data sets obtained, evaluation was performed. Each data set was
evaluated for the same k and m values, used by Bauer and Wilson, using
both the enumerated subsets and stepwise procedures. In addition, for
this thesis, further evaluation of the original data was performed at k
= 50 and m = 20, and k = 1000 and m = 1. Again, evaluation was
performed using both enumerated subsets and stepwise procedures.

Evaluation Using Untested Simulation Model. This section outlines

the steps followed in generating the data, using the untested simulation
model, for this thesis project. In generating the data/output from the
untested simulation model, 1000 runs with different seeds for the random
number generators were performed. The data generated from each run of
the simulation was placed into an output file called "DGM.QP°. The
simulation model was run on the AFIT VAX system.

After the data/output was collected from the simulation model, the
data was converted into the appropriate work and routing variables using
the data post-processing software. As the work and routing variable
data was created, it was placed in an output file called "VSSP1.IN".
Also, a datafile called °VSSPO.IN' was prepared which contained any
other information required by the Variable Subset Selection Program.
"VSSPO.IN" and °‘VSSP1.IN" then became data input files for the Variable
Subset Selection Program.

Next, the Variable Subset Selection Program wasg run uging data
contained in the data input files "VSSPO.IN® and °"VSSP1.IN'. The output

of the software was then placed in a file called "VSSP.OUT" and
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contained the selected subset(s) of the control variables, deemed to be

significant. After this point, the data evaluation phase occurred.

Data Evaluation Procedure

After the data had been generated and collected it then had to be
evaluated. For the regults obtained using the known data, the
evaluation primarily congisted of comparing the results originally
derived by Bauer and Wilson were compared to those derived using the
VSSP. 1In addition, for results obtained from data runs beyond those
performed by Bauer and Wilson, the results were examined to see what
would happen to the results and if any noticeable trends would develop.

In regards to results obtained using the untested gimulation model.
The primary evaluation was based on comparison of the subsets sgelected
as a result of each gelection procedure employed, the BCp criterion
value for each resulting variable subset, and the estimated coverage and
variance reduction associated with the control variables selected.

In addition, further comparison was performed against results
derived using the SAS enumerated subsets and stepwige regression
procedures. This primarily served the purpose of validating the results
derived with the BCp criterion.

The results derived from all thesze procedures are gsummarized and

diascussed in the following chapter.
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IV. RESULTS AND DISCUSSION

The results obtained from this effort are presented and discussed
according to phase of the experimental procedure in which they were
derived. The phases dealt with evaluation of the data/output with known
characteristics, and evaluation of data/output from the untested

simulation model.

Results From Known Data

The results of the Variable Subset Selection Program runs, using
the data/output with known characteristics, are presented in Tables 4.1,
4.2, 4.3, and 4.4 for the various combinations of k and m tested.

Examination of the results, using the data originally derived by
Bauer and Wilson (1990), reveals several items of interest. First, as
the number of replications increased, this had significant effects on
the results. The percentage coverage and percentage confidence volume
reduction figures stabilized as the number of replications increased.
Also, for each data case, these figures become uniform, regardless of
the evaluation method used and whether the covariances between the
control variables was estimated or known. Apparently, some asymptotic
point was reached where increasing the number of replications per meta-
experiment ceased to make a difference.

It was also noted that for the initial results, for k=10 and m=100,
the evaluations using the known covariance matrix had better coverage.
However, this advantage quickly disappeared as the number of

replications increased.
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Table 4.1 VSSP results for k = 10, m = 100, and a = 0.10

% Coverage % Vol Reduction

i Evaluation | Selection ! For Case H For Case

H Method { Criterion ¢ I ¢+ II Vv III 4+ I + II ¢+ III
i Enumerated ! Eq (62) | 78 ! 76 ! 69 { 96 i 83 ! T4 !
i Subsets e ik ERR R f===-- i-==-- 1m--e- fmm=-- 1m-e-- :
: i Eq (74) {+ 94 : 88 : 81 i 83 ) 75 T2
H ! Eq (62) + 774+t 719 71 % 961 83 % T4
i Stepwise et 1o---- i----- fm==-- i-e--- Pmmee- imome- :
H i Eq (74) 1 93 : 88 : 81 ! 83 : 75! 71 .

Table 4.2 VSSP results for k = 20, m = 50, and a = 0.10

%4 Coverage % Vol Reduction

i Evaluation ! Selection | For Case | For Case i
q Method { Criterion ¢+ 1 ¢ I@I V III ¢+ I ¢+ II { III
' Enumerated | Eq (62) 84 1 80} 82 85! 76 ! 65
! Subsets toommmmeooa- R to---- toooo- R R R :
: i Eq (74) ' 82 ! B84 i 84 881! 74! 64
! i Eq (62) : 84 % 80 : 82! 95 76 : 65
i Stepwise R EEE T T lemm-- lmmme- LT T jm==-- RS e H
; i Eq (74) 1 82 ¢ 84 B84 : 88 T4 ! 64 :

- g ue e

SS2SSESssss =252

- -
s====

——— -
sS===

Next it was noticed that for the first two sets of results (k=10 &
m=100, and k=20 & m=50), the results between the known and estimated
covariance runs, appears to be converging. When the estimated
covariances were used, coverage started out low and vice versa when the
known covariances were used. However, later gsets of results rebuked
this observation. It is not yet understood why this occurred.

Finally, it was found that the volume reduction achieved was
greater for data cases with greater covariances between the control
variablegs and responsesg. This becomes more pronounced as the number of

replications increase, but iz gtill readily apparent even for a low

43




number of replications. Conversgely, the covariance gtructure of the
data/output had little, if any, impact on the coverage figures. Thisg
result makes intuitive sense since as covariances increase, the
data/output becomes more tightly grouped; thus more data would fall

within the calculated confidence volume.

Table 4.3 VSSP results for k = 50, m = 20, and a = 0.10

% Coverage % Vol Reduction

i Evaluation | Selection ! For Case ! For Case i
' Method i Criterion { I ¢+ II ¢ III ¢ I ¢ II + III ¢
i Enumerated | Eq (62) ! 75 . 175 ¢ 75 ¢ 95 i 716 i 61 !
i Subsets R e T e S Rt toem=- HER LT lmeem- f==--- '
! i\ Eq (74) + 75 % 70 75! 92 i 74 ! 60 |
' i Eq (62) + 75 4% 75 % 751 95 . 76t 61 |
i Stepwise fmsmmmomee-- jmm=-- fmm-- pmm——- jme--- i==--- fmm=--- '
' i 75y 707 715 % 92 %1 74 1 60 !

=
L0

~3

o

Table 4.4 VSSP results for k = 1000, m =1, and a = 0.10

% Coverage % Vol Reduction

i Evaluation | Selection ! For Case : For Case :
H Method i Criterion ¢ I ¢+ IXI ¢ III ¢+ 1 + II ¢ III
i Enumerated ! Eq (62) ! 100 ! 100 ! 100 : 85 ¢ 76 | 659 i
! Subsets R R R feemo- R tommeon fom-e- :
' i Eq (74) i 100 ! 100 ! 100 ! 95 : 76 i 659 !
H i Eq (62) {100 ; 100 ¢ 100 ¢ ©5 ! 76 ! 659 !
i Stepwise jo===sosooo- f====-- fmmm=- jom—-- joom-- jmo=-- pm==-- i
: ¢t Eq (74) 1 100 ! 100 ! 100 ¢! ©5 % 76 ! 659 !

e Em e -- =
=S=S=SsS==z====

- =
2====

Additionally, the variable subsets selected by each evaluation
method were compared for the various combinations of k and m tested.
The purpose of thig wag to identify if any trends developed. The

regults are presented in Table 4.5.
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Table 4.5 Percentage Number of Different Variable Subsets
Selected; Comparison Between Enumerated Subsets and
Stepwise Procedures

! ! k=10, m=100 | k=20, m=50 H
H Evaluation : : :
H Method | Casge H Case H
H 1 v 1Ty rrry oy IT Y IILG
{ Enum. Subsets ¢ S5 ¢+ 7 + 4 {+ 0 1+ 2 {+ 0
i Stepwise 3 0 3 4 7 0 2 2
' ' k=50, m=20 ' k=1000, m=1 H
H Evaluation : H '
: Method ' Case ' Case :
H HE GRS & GRS & © SEE R G EE § SR § § S
! Enum, Subsets { ©¢ { O I+ O I+ O 4+ O 1}V 0
! Stepwise i 0 ¢+ 0 ¢+ 0 ¢+ 0 4 0 &t 0

=====

===

From review of the results, it was obvious that as the number of
replications per meta-experiment increased, both evaluation methods
selected the same subsets. Thig tends to validate the results found
earlier by reviewing the coverage and volume reduction figures. It is
reasonable to find that as the coverage and volume reduction figures
converge, the greater the similarity between the variable gsubsets

gselected.

Regults From Untested Simulation Model Data

The results derived from evaluating the data/output from the
untested sgimulation model are presented in Table 4.6. From comparing
the variable subsets selected by VSSP and SAS, geveral items were noted.
The most gsignificant observation wag that regardless of sgelection

criterion ugsed, almosat all variable subgets were identical. It should
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Table 4.6 Effects of various gelection gsoftware and criterion on

selection of variable subsgets

Variable Subset

Selection | Criterion

i Evaluation !
Criterion

Software

Selected

Value '

Method

Wl W5 W6 R1 R4 R5 R6

R7

i Eq (62) | 3.15651]

Enumerated

Wl W5 W6 R1 R4 R5 R6

Eq (62) | 3.156511 !
: i R7

]
)
]
t

- -

Wl W5 W6 Rl R4 R5 R6

R7

i 0.306733

Wl W5 W6 Rl R4 RS R6

R7

0.301137

Enumerated
Subsets

t
+

W3 W4 WS W6 Rl R4 RS

R6 R7

9.011377

[]
[l
4
3

- .-

i W1 W5 W6 Rl R4 R5 R6
i R7

i 1.196549

Wl WS W6 Rl R4 RS R6

R7

[)
L]
1]
+
[}
'

0.306733

R7

W1 W5 W6 Rl R4 RS R6
R7
Wl W5 W6 Rl R4 R5 R6

T7.062709
0.306733

4
'
]
[}
[}
)
4
[}
1
L]
1)
]

Wl W5 W6 Rl R4 R5 R6

R7

i 7.062709

Selection) !
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W(i) is Work variable i, and R(i) is Routing variab

#x = Using a 90% level of significance (i.e.
#ax = Using the standard SAS default significance criterions

alpha = 0.10
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also be noted that of all the other selection criterion used in this
comparison, Sp is the most closely related to BCp and selected the same
variable gsubset. Also, the RZ criterion selected the same variable
subset.

Other selection criterion used also provided comparable results.
The Bg criterion selected the same or nearly same variable subset
depending on the point at which further improvement was discarded. It
improvement required to be significant wag set to > 0.001 then the zame
variable subset was selected. However, if it was set to ) 0.0] then a
gsubset without variable Rl, was selected. As noted in the literature
review, Chapter II, the level of significant improvement is highly
subjective.

For the Cp criterion, only with the enumerated subsets procedure
was the best variable gubset found. In other procedures, where this
selection criterion was available, a near-best variable subset was
selected. Regardless of these differences, each variable subset
gelected contained one more variable than that selected using BCp, and
differed only slightly.

There are two final comments on the SAS derived results. First,
not all selection criterion were available for all of the SAS procedures
employed. And second, the variable subset selected by any procedure, may
depend on the level of gsignificance used. The default valuesg for the
SAS procedures, used in thig evaluation, were not all set to the same
level as used in the VSSP. This may account for the minor differences
noted.

The conclugions drawn from these results are summarized in the
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following chapter. This chapter also outlines any recommendations for

further study and research in thig area.
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V. CONCLUSIONS AND RECOMMENDATIONS

From the work entailed in this thesis, the following conclusions

and recommendations were derived.

Conclusions

From review and evaluation of the results, the following
conclusions were drawn in regards to the Variable Subget Selection
Program and the performance of the BCp againgst other common criterion.
The selection procedures and criterion incorporated into the Variable
Subset Selection Program performed as well as expected. The results
obtained by either selection procedure, enumerated subsets or stepwisze
(forward selection), are comparable and contain minimal variations, even
when applied to a small number of replications. In addition, any
differences between the results derived by either selection procedure
decreases, ag the number of replications increase, until there is no
difference. It was also concluded that the known covariances between
the controls only has a gignificant effect on the coverage and volume
reduction figures when applied to a small number of replications.
However, this advantage rapidly disappears as the number of replications
increase.

In regards to the performance of the BCp criterion in comparison to
other criterion in common use today; the BCp criterion provides
reasonable and comparable resultg. Thus the Variable Subset Selection
Program appears to be a reasonable substitute for use by organizations
requiring limited evaluation of this sort, where use of a commercial

package may be infeasible. This infeasibility may take several forms,
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notably expense or cost-effectiveness, limited accegg to existing

goftware, or time involved in learning to use the software effectively.

Recommendations

The recommendations derived from this gtudy fall into two
categoriesg; 1) further improvements to the VSSP, and 2) further
study/experimentation involving the BCp criterion. There are numerous
improvements which can be made to the VSSP. First and foremost is to
implement a more efficient stepwise (forward selection) procedure.
Primarily this entails developing a satisfactory scheme for saving prior
pivots of the A’ matrix so subsequent pivots are performed on the
correct matrix. The current implementation performs a true stepwisge
(forward selection) search, but reverts to performing all pivots on each
subset evaluated. This is inefficient and slows down program execution.
The main benefit to be derived from this recommendation would be
increased speed of evaluation.

Next, would be the implementation of additional gelection
procedures, notably a true stepwisze procedure would be desirable. Other
gelection procedures as outlined in the Literature Review (Chapter 2)
are also viable candidates.

Another recommendation ig to revise the VSSP into a more modular
and efficient form. This can be accomplished by breaking up the main
program into subroutines. Each selection procedure implemented could be
made a separate subroutine called by the main program when needed.

Algso, eliminate duplicate variables where possible without affecting
program execution. And finally, arrays and matrices shared by other

program subroutineg could be incorporated into common blocks. This will
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eliminate creation of duplicate constructs and cut down on the amount of
memory required to run the program.
Additionally, there are several recommendations regarding further

study, analysis, and research using the VSSP and the BC, criterion. One

P
recommendation is to evaluate output of a gsimulation model, using the
VSSP, to obtain the single best variable subset. Thig could be done
using both the enumerated and stepwise procedures to check for
consistency in the results. Next, run two experimental designs, one
using the variables selected by the VSSP and the second uging all
variables in the original full set. Then evaluate the experimental
design results using similar selection procedures but based on other
selection criterion (i.e. Cp, R2, RZ, etc.). Compare the final results
and evaluate the differences, if any. Does the variable subset gselected
by the VSSP provide a good starting point for an experimental desgign?

Another recommendation is to evaluate a set of data while
increasing the number of replications, but holding the number of mete.-
experiments steady. How does this affect the overall coverage and
volume reduction figures? Can any consistent trends be identified? The
VSSP does not require the use of all data in a datafile to be used in
execution.

And finally, experiment with data/output with known characteristice
(i.e. meang of controls and responses, and covarianceg between controls
and responseg), to find the point where the results converge across all
combinations of selection procedures and whether the covariances are

egstimated or known. Then determine if this point can be arrived at

analytically. If go, this type of knowledge could prevent gathering
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more data than necessary for an optimal evaluation. This could also
help contain costs associated with gathering data. Additionally, this
may provide a means of assesgsing reliability of results, depending on

the amount of data available for the evaluation.
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APPENDIX A: FORTRAN Listing of Variable Subset Selection Program

PROGRAM SELECT (INPUT,OUTPUT,TAPE7,TAPES=INPUT,TAPE6=0UTPUT)

JE 060 0 3 3 3 96 3 36 96 9 3 06 3 3 3 3 9 9 3 3 3 3t 06 I I I I W W I I I H KK KNI I I I I I I I N NI NRR

% Ak W ok ok W Wk ok I Wl X A Ak Nk

W o M O kX Ok xR ok K ok 3k K 3k ok Mk ok W o ok W ok ok M W Ak ok Ok X

This program provides both an ‘all possible regressions’
(i.e. enumerated subsets) and a stepwise (forward selection)
approach to selecting the best subset of controls from a
given candidate set. It asgumes that a certain number of
meta-experiments have been performed, each with the game
number of replications. Once the optimal subset has been
identified, a confidence region is constructed about the mean
vector for the responses. The corresponding coverage and

volume reduction are then tallyed and subsequently summarized.

This program can be run in two modes. The user can either
estimate the covariance matrix of controls or incorporate
it directly. The program variable "iknow" dictates which
option is in effect (see code below).

The program can algo be run in the “best m" regressions mode.

{ Currently only configured for estimated covariance matrix
of controls)

In other words it will compute the best m gubsets of each

possible subset size. This can be of interest if a single set

of data is used.

PROGRAM PARAMETERS:

Z21 = Max #% of candidate controls allowed
22 = Max % of responses allowed
23 = 21 + 22
24 = Max # of best regressions which may be kept
(m in "m best” ag above)
25 = 2x8Z]
26 = Max & replications per meta experiment allowed
27 = Max % of meta experiments allowed
28 = (23%(23+1))/2
MAX = Maximum number of storage locations in array A

for matrices created by Subroutine GAUSS.

CORRESPONDING PRIMARY VARIABLES, INITIALIZED BY USER:

NX = & of candidate controls

NY = # of responsges

NVAR = NX + NY

KEEPERS = # of best regressions to be kept

(m in "m best” ag above)
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KNX = 2##NX
NUMREPS = # replications per meta experiment
META = % of meta experiments

NOTE:

IN SUBROUTINE COVER : Z1 AND Z2 IN THE PARAMETER
STATEMENT, MUST BE SET TO
Z1 AND Z2, RESPECTIVELY, OF
THE MAIN PROGRAM PARAMETER
STATEMENT

PROGRAM SELECT

22 22X 2 222X R SRS SRS S22 E 22222222222 2222222222 ]

* PROGRAM PARAMETERS AND VARIABLE INITIALIZATION
AN IR RN R RN RN R RN RN RN R RN R R AR RRRRRNN

INTEGER 21, 22, 23, 24, 25, 26, 27, Z8, MAX

PARAMETER (21=8, 22=8, Z3=Z1+Z2, Z4=6, Z5=2%xZ71)
PARAMETER (26=50, Z7=100, 28=((Z3%{23+1)}/2))
PARAMETER (MAX=50)

COMMON /BLK1l/ SIG, KK, IQQ, IP

CHARACTER TITLE*25, RESPONS(22)#%25, CONTROL(Z1)#*25
CHARACTER INFILEx*25, OUTFILE»25, COVFILE*25
CHARACTER ANSWER, XFILE#*25

INTEGER NK(23), MODELS(25,Z21), IBUFF(Zl), IX, KK, IP
INTEGER IH(23), ICOVER(4), ICTOT(4), NBR(6), IIN, IQQ
INTEGER NX, NY, NVAR, KEEPERS, KNX, NUMREPS, META
INTEGER IKNOW, IWRITE, METHOD, I}, 12, IZ, KP, K
INTEGER TMV, IND1(Z1+1), IND2(Z21+1), TIND(Z1+1)

REAL COVCV(Z1,Z1), VECMUC(Z1), CBAR(Z1), VECCBAR(Z1)
REAL FF(0:21), WKAREA(22), RSS(Z22,22), DUM(22)

REAL TARGET(Z2,22), VECYBAR(Z2), VECMUY(Z2), YBAR(Z2)
REAL A(MAX,Z23,23), VCV(28), FULL(23,23)

REAL REGR(Z24,21,2), BUFF(Z4), BUFF2(Z4)

REAL VR(2) ,VOLRED(2) ,COVERAG(4), X(26,23), TEMP(Z3)
REAL XM(23), SUMDEV(2), SUMVU(2), SiG

#*

22 e SRR R X R R R SRS RS SRS S22 22222 2220 2 X222

*
#*

BRIEF PROGRAM INTRODUCTION AND INITIAL DATA INPUT/OUTPUT
ROUTINE

]
#*

(222222 2SS SRS RSS2 SRR3R 222X R RRX22 X222}
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* PROGRAM INTRODUCTION *
RN R RN R RN R R RN R AR RN RN RN RRNK

PRINT
PRINT
PRINT
PRINT

%, "THIS IS THE VARIABLE SUBSET SELECTION PROGRAM®

. e

*

*
PRINT &

*

*

*

x

» = THIS PROGRAM IS DESIGNED TO EVALUATE OUTPUT"
» 'FROM A SIMULATION MODEL AND DETERMINE THE OPTIMAL®
, 'SUBSET OF VARIABLES, BASED ON THE °"BEST CONTROLS""°®
PRINT »,
PRINT =,
PRINT =,
PRINT #,

"CRITERION. YOU MAY CHOOSE EITHER AN ENUMERATED®
"SUBSETS OR STEPWISE (FORWARD SELECTION) APPROACH.-

HNMRANN R E AR AR RN AR N RN RN A RR RN RN N NN
* DATA INPUT *
AR RN RN RN AR R R RN NN RN R RN NN R RN NN R

10 PRINT #, "DO YOU WISH TO ENTER PROGRAM DATA MANUALLY OR BY’
PRINT », °DATAFILE? ENTER M OR D:°
READ #, ANSWER
IF ({ANSWER.EQ.'D’').OR. (ANSWER.EQ.'d’')) THEN
PRINT #, "ENTER NAME OF THE INPUT DATAFILE:
READ *, INFILE
OPEN(UNIT=10, FILE=INFILE, STATUS='OLD’)
READ(10,#) NX, NY, KEEPERS, NUMREPS, META
READ(10,%) IKNOW, IWRITE, METHOD
READ(10,%) SIG
READ(10,#) (VECMUC(I),I=1,NX)
READ(10,») (VECCBAR(I),I=1,NX)
READ(10,%) (VECMUY(I),I=1,NY)
READ(10,#) (VECYBAR(I),I=1,NY)
READ(10,»*) TITLE
READ(10,%) (CONTROL(I),I=1,NX)
READ(10,%) (RESPONS(I),I=1,NY)
IF (IKNOW.EQ.1l) THEN
READ(10,%) COVFILE
IF (COVFILE.NE.INFILE) THEN
OPEN(UNIT=15, FILE=COVFILE, STATUS='OLD')
DO 15 I=]1,NX
READ(15,%) (COVCV(I1,J),J=1,NX)
15 CONTINUE
CLOSE(195)
ELSE
DO 20 I=1,NX
READ(10,#) (COVCV(I,J),J=1,NX)
20 CONTINUE
ENDIF
ENDIF
READ(10,#) XFILE
OPEN(UNIT=20, FILE=XFILE, STATUS='0LD’)
ELSE
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25

30

35

IF ((ANSWER.NE.'M').AND. (ANSWER.NE.'m’)) THEN
PRINT #, °INVALID INPUT, TRY AGAIN.®

PRINT #,
GOTO 10
ENDIF
PRINT %, "ENTER THE FOLLOWING VARIABLE VALUES:"
PRINT », °°
PRINT #, INPUT ®# OF CANDIDATE CONTROLS (PROGRAM *
PRINT +, LIMIT = *,21,%):"
READ », NX
PRINT », ° INPUT ¢ OF RESPONSES (PROGRAM LIMIT = *,22,%):
READ », NY
PRINT », ° INPUT # OF BEST REGRESSIONS TO KEEP®
PRINT #, ° (PROGRAM LIMIT = °,24,°): °
READ *, KEEPERS
PRINT *, ° INPUT # OF REPLICATIONS PER META EXPERIMENT"
PRINT #, ° (PROGRAM LIMIT = °,26,"): °
READ #, NUMREPS
PRINT #, ° INPUT # OF META EXPERIMENTS DESIRED °
PRINT *, ° (PROGRAM LIMIT = ",27,7): °
READ », META
PRINT #, ° INPUT WHETHER COVARIANCE MATRIX OF CONTROLS IS’
PRINT #, ° ESTIMATED (0), OR KNOWN (1): °
READ #, IKNOW
PRINT #, ° INPUT WHETHER YOU WANT THE META EXPERIMENT MODE °
PRINT #, ° (0), OR THE BEST M REGRESSIONS MODE (1):

READ *, IWRITE

PRINT #, "INPUT WHETHER YOU WANT TO USE ENUMERATED SUBSETS®
PRINT %, "(0), OR STEPWISE [FORWARD SELECTION] (1) METHOD:
READ #, METHOD

PRINT #, ° INPUT LEVEL OF SIGNIFICANCE OF TEST (e.g.

PRINT *, ° 60% = 0.90):

READ #, SIG
PRINT #, * IN2 T THE KNOWN MEAN FOR EACH CONTROL:
PRINT », °°
DO 25 I=1,NX
PRINT #*, ° VECMUC(®,I,") = °
READ », VECMUC(I)
CONTINUE
PRINT #, ° INPUT AVERAGE OF INPUTS FOR EACH CONTROL:
PRINT », *°
DO 30 I=1,NX
PRINT #*, ° VECCBAR(",I,") = °
READ #, VECCBAR(I)
CONTINUE
PRINT #, ° INPUT ESTIMATED MEAN FOR EACH RESPONSE:
PRINT #, °°
DO 35 I=1,NY
PRINT », ° VECMUY(",I,") = °
READ #, VECMUY(I)
CONTINUE
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40

45

50

55

60

65

70

PRINT *, ° INPUT AVERAGE OF CONTROLLED OBSERVATIONS FOR °

PRINT %, ° EACH RESPONSE:
PRINT », °°
DO 40 I=1,NY
PRINT *, ° VECYBAR(™,I,") = °
READ », VECYBAR(I)
CONTINUE
PRINT », ° INPUT ANALYSIS TITLE:
READ *, TITLE
PRINT *, ° INPUT NAMES OF CANDIDATE CONTROLS:
PRINT », *°
DO 45 I=1,NX
PRINT «, ° CONTROL(",I,7) = °
READ *, CONTROL(I)
CONTINUE
PRINT », ° [INPUT NAMES OF RESPONSES:
PRINT »,
DO 50 I=1,NY
PRINT #, °© RESPONSE(",I,") = °
READ *, RESPONS(I)
CONTINUE

IF (IKNOW.EQ.1) THEN
PRINT *, “WILL YOU ENTER KNOWN COVARIANCE MATRIX, OF °
PRINT #, "CONTROLS, MANUALLY OR BY DATAFILE (M or D):
READ #, ANSWER
IF ((ANSWER.EQ.D").OR. (ANSWER.EQ."d")) THEN

PRINT %, "ENTER NAME OF DATAFILE CONTAINING KNOWN °

PRINT #, "COVARIANCE MATRIX OF CONTROLS:

READ ®», COVFILE

OPEN(UNIT=15, FILE=COVFILE, STATUS='OLD')

DO 60 I=1,NX
READ(15,#) (covCv(I,J),J=1,NX)

CONTINUE

CLOSE(15)

ELSE

IF ((ANSWER.NE."M").AND. (ANSWER.NE. 'm")) THEN
PRINT #, "INVALID RESPONJE, TRY AGAIN.°
GOTO S5

ENDIF

PRINT #, INPUT THE REQUESTED VALUES:

PRINT *, *°

DO 65 I=1,NX
DO 65 J=1,NX

PRINT », ° covev(-,1,",",J,7) = °
READ », COVCV(I,J)
CONTINUE
ENDIF
ENDIF
PRINT #, "WILL YOU ENTER THE [CONTROLS:RESPONSES] DATA °

PRINT #, "MANUALLY OR BY DATAFILE (M or D):
READ *, ANSWER
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IF ((ANSWER.EQ.'D").OR. (ANSWER.EQ."d")) THEN
PRINT #, °ENTER NAME OF [CONTROLS:RESPONSES] DATAFILE:
READ #, XFILE
OPEN(UNIT=20, FILE=XFILE, STATUS='OLD')
ELSE
IF ((ANSWER.NE.'M") .AND. (ANSWER.NE. 'm")) THEN
PRINT *, "INVALID RESPONSE, TRY AGAIN."

GOTO 70
ENDIF
PRINT %, ° MATRIX VALUES WILL BE REQUESTED AS REQUIRED®
ENDIF
75 PRINT #, "DO YOU WANT YOUR INPUTS SENT TO A DATAFILE FOR °

PRINT », “FUTURE USE (Y/N): ~°
READ », ANSWER
IF ((ANSWER.EQ. Y').OR. (ANSWER.EQ."y")) THEN
PRINT #, °  ENTER NAME OF INPUT DATAFILE TO CREATE:
READ », OUTFILE
OPEN(UNIT=25, FILE=OUTFILE)
WRITE (25,*) NX,NY,KEEPERS,NUMREPS,META
WRITE (25,%) IKNOW,IWRITE,METHOD
WRITE(25,#) SIG
WRITE (25,%) (VECMUC(I),I=1,NX)
WRITE (25,#) (VECCBAR(I),I=1,NX)
WRITE(25,#) (VECMUY(I),I=1,NY)
WRITE(25,%) (VECYBAR(I),I=1,NY)
WRITE(25,%) TITLE
WRITE(25,») (CONTROL(I),I=1,NX)
WRITE(25,*%) (RESPONS(I),I=1,NY)
IF (IKNOW.EQ.1l) THEN
WRITE(25,%) COVFILE
IF (COVFILE.EQ.OUTFILE) THEN
DO 80 I=I1,NX
WRITE (25,*%) (COVCV(I,J),Jd=1,NX)
80 CONTINUE
ENDIF
ENDIF
WRITE(25,#) XFILE
CLOSE (25)
ELSE
IF ((ANSWER.NE.°N") .AND. (ANSWER.NE. 'n")) THEN
PRINT %, ° INVALID INPUT, TRY AGAIN.°
GOTO 75
ENDIF
ENDIF
ENDIF

NVAR = NX + NY
KNX = 2#=NX

» TEST PRIMARY VARIABLES INPUT *

c
C REERIRRARRRRURRRRARRRRRR AR RAERERRRARRRRP RN
C
C RuBsumutnmnen et unn e n et e et n et ennnnnn
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*
*
#

aaOaaa

90

95

1=0

PRINT *,

IF (NX.GT.Z1) THEN
PRINT 1575, Zi1
I=1+1

ENDIF

IF (NY.GT.22) THEN
PRINT 1580, 22
I=1+1

ENDIF

IF (KEEPERS.GT.Z4) THEN
PRINT 1585
PRINT 1586, Z4
1=1+1

ENDIF

IF (NUMREPS.GT.Z26) THEN
PRINT 1590
PRINT 1591, Z6
I=1+1

ENDIF

IF (META.GT.27) THEN
PRINT 1595, 27
I=1+1

ENDIF

IF (I.GT.0) THEN
PRINT 1600, I
STOP

ENDIF

L EZ X222 SRS S22 2222 XSRS RS2SRRSR 2SR

INITIAL DATA OUTPUT *
BN NN RN RN R RN RN R RERAR

PRINT #, "ENTER NAME OF FILE FOR PROGRAM OUTPUT:
READ #, OUTFILE
PRINT «,
OPEN(UNIT=30, FILE=OUTFILE, STATUS='NEW')
WRITE(30,1500) TITLE,META,NUMREPS,META*NUMREPS
WRITE (30,1515)
WRITE(30,1505) META*NUMREPS
DO 90 I=i,NY

WRITE(30,1510) I,RESPONS(I),VECYBAR(I),6 VECMUY(I)
CONTINUE
WRITE (30,1515)
WRITE (30,1520) META*NUMREPS
DO 95 I=1,NX

WRITE(30,1510) 1,CONTROL(I),VECCBAR(I),6VECMUC(I)
CONTINUE
WRITE(30,1515)
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QA OO0

s NeRsNeNeNel

s NeNrNoNe N

OO0 QaGQaan

ERRRRRHNR R AR NN RN NN R AR R AR RN R RN NN
% DECLARE IF COVARIANCE MATRIX

* OF CONTROLS IS KNOWN OR ESTIMATED
*

#  IKNOW = 0, COV MATRIX ESTIMATED

¥ IKNOW = 1, KNOWN COV MATRIX USED
R RR R RN A RN ERRRA RN RN RARRRRRRRN

® k & XK &

IF (IKNOW.EQ.0) THEN
WRITE (30,1525)
ELSE
WRITE(30,1530)
ENDIF
WRITE(30,1515)

RN R RN R RN AR RRE RN RN R RRRNRA R RN RN RN
# PROVIDE HEADING FOR REMAINDER OF

*  PROGRAM OUTPUT *
ERRER R ER RN RN RR RN RN RN RRR RN RN NN

WRITE (30,1515)
WRITE (30,1535)
WRITE(30,1515)

R RERRERE NN RN R RN RN R RN NN AR RERNR
¥ DEFINE INPUT VECTOR FOR IMSL

% SUBROUTINE °“BECOVM® *
ERRRRRARAAAARARERRNRERRRNNRRN NN NN

NBR(1)=23
NBR(2) =NUMREPS
NBR(3) =NUMREPS
NBR(4)=1
NBR(S)=1
NBR(6)=0

IX=2Z6

000000036 3E 3 0 00 02 3000 3 0 08 0 0 03 3 0 3 0 3 3 O 36 3 36 3 0 3 UE 3 3 O 0 3 5 3 3 U U I AU U UMM MNMNNNNYE

% BEGIN MAIN PROGRAM *
B RN R R RN NN RN RN RN RN NN NER RN

32222 EESE RS SR ESSSEEESSRRSRSZRSXERSRR S 8

* MAKE THE F TABLE x
EEERRRRRR R RN R R R RN R RN RN RN NA NN NN R

IP=NY

KK=NUMREPS

CALL FTABL(FF,NX,Z1)

PRINT #,'F TABLE:', (FF(I),I=0,NX)
PRINT &,
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C o MRBNERFRRRRNRNRNN NI NI NI IR RN RN
C » INITIALIZE COVERAGE AND VOLUME %
C » REDUCTION ACCUMULATORS *
C MEARRNRRANRRERNREEIINN I NN NN NN NN RN
c
DO 100 IZ=],4
ICTOT(12) =0
100 CONTINUE
c
DO 105 1Z2=1,2
SUMDEV(1Z)=0.
SUMVU(12)=0.
VR(IZ)=0.
105 CONTINUE

3RS R 2 RS2 S R R R R RS RSS2SR 2]

* THIS IS THE META EXPERIMENT LOOP *
RN RER RN AR R AR AR AT AR R AR N AR A AN R R RAERRRRRRRERA RN

e ReNeNe Nl

DO 1000 MM=1,META

22 EEEEZRESEESSESSERSRSERS RS RS L]

» INITIALIZE ARRAYS *
AR RN RN ENARR AN NN RRRRNENN

e RPN NS NP

NUMREG=0
DO 110 IZ=1,KEEPERS
DO 110 JZ=1,NX
DO 110 Kz=1,2
REGR(IZ,JZ,KZ)=0.
110 CONTINUE

DO 115 IZ2=1,KNX
DO 115 JZ=1,NX
MODELS (12,JZ) =0
115 CONTINUE

DO 120 IZ=]1,NVAR
DO 120 JZ=1,NVAR
DO 120 KZ=1,NVAR
A(12,J2,K2)=0.
120 CONTINUE

DO 125 IZ=1,KEEPERS
BUFF (12) =0
BUFF2(12)=0
125 CONTINUE

DO 130 I12=1,NX

IBUFF (12) =0
130 CONTINUE

61




RN RN N NN NN NNRRNENRRRNNNNR
% READ THE DATA

% (EACH RECORD =)> [CONTROLS:RESPONSES])

* COMPUTE THE COVARIANCE MATRIX

*

[t NerErNesRsRe NN

132
131

135

140

145

150

155

BOUND THE GENERALIZED VARIANCE

*
*
*
% SAVE SAMPLE MEANS »
*
BUERERARR RN RN R AR RRR AR AR R R RN RRRERE R RN NN NN

IF ((ANSWER.EQ.'M’).OR. (ANSWER.EQ.'m')) THEN

PRINT », "ENTER ELEMENTS OF [CONTROL:RESPONSE) MATRIX®

PRINT #, °°
DO 131 I=1,NUMREPS
DO 132 J=1,NVAR
PRINT #, ° X(',1,7,",J,7) = °
READ », X(I,J)
CONTINUE
CONTINUE
ELSE
DO 135 I=1,NUMREPS
READ (20,#) (X(I,J),J=1,NVAR)
CONTINUE
ENDIF

CALL BECOVM(X,IX,NBR,TEMP,XM,VCV,6IER)

DO 140 I=1,NX
CBAR(I)=XM(I)
CONTINUE

DO 145 I=NX+1,NVAR
YBAR(I-NX)=XM(I)
CONTINUE

CALL VCVTSF(VCV,Z3,FULL,Z3)

DO 150 I=1,NVAR
DO 150 J=1,NVAR
A(1,I,J)=FULL(I,J)
CONTINUE

IS=1
DO 155 II=],NY
DO 155 JJ=1,NY
IF (JJ.GE.II) THEN
RSS(II,JJ)=A(IS NX+II NX+JJ)
RSS(JJ,I1)=RSS(I1,dJ)
ENDIF
CONTINUE

CALL LINV3F(RSS,DUM,4,NY,22,D1,D2,WKAREA, IER)

IF (IER.NE.O) PRINT »,°1 DIED BELOW 155 (MAIN)"
DET=D1#2#2D2
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BIG=(FLOAT (NUMREPS-1) /FLOAT (NUMREPS-NX-2) ) #&NY
TWO=2#BIGxD]1%2%2D2

IR RRRER R RN R R R R AR RN RN R R RN RN R RRRRRRRRARRRRR
* STUFF THE BOOKKEEPING ARRAY WITH THE *
* BOUND *

(2222 XS R R R RS RS2SRSS SRS L

e NoNesNeNeNy]

DO 160 1I=1,KEEPERS
DO 160 JJ=1,NX
REGR(II,JJ,1)=TWO
160 CONTINUE

c
C oMM R R RN R RN R R RN NN AR RN RN RR RN RN NN
C » THE FOLLOWING SECTION IS PERFORMED IF THE #
C » METHOD OF ENUMERATED SUBSETS IS SELECTED *
C#» (i.e. METHOD = 0) *
C o HRENRRNRRE RN RN RERNE AN A RN AR NN NN R AN RRARNARNRRE
c
IF (METHOD.EQ.0) THEN
c
C MMM RN NN NN NN RN NN AR RRRNS
C »= CONDUCT BINARY SEARCH OF THE x
C » REGRESSION TREE: x
C FURNIVAL AND WILSON (1974) *
C RN RN RN RN RN RN R RN ERNRR R AR RRRNE
c
K=NX
c
DO 165 L=1,K
NK(L)=0
165 CONTINUE
c
NK(K+1)=1
L=1
170 NK (L) =}
c
DO 175 M=L X
IF (NK(M+1).EQ.1) GOTO 180
175 CONTINUE
¥
180 IB=K-M+1
IS=K-L+2
IP=K-L+1
KP=NVAR
CALL GAUSS(IB,IS,IP,A,KP,MAX,Z3)
c
C oMM annn RN RN RN RN R RN R RN RN R AR NENR RN
C # CALCULATION OF THE GENERALIZED RESIDUAL #
C » COVARIANCE *
C o MuERN NN RN NN RN RN RN RN R RN RRRRRRRRNRY
c
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DO 185 II=1,NY
DO 185 JJ=1,NY
IF (JJ.GE.II) THEN
RSS(II,JJ)=A(IS,NX+II NX+JJ)
RSS(JJ,I1)=RSS(11,JJ)
ENDIF
185 CONTINUE

IF (IKNOW.EQ.0) THEN
CALL LINV3F (RSS,DUM,4,NY,22,D],D2,WKAREA, IER)
IF (IER.NE.O) PRINT #,"I DIED BELOW 185°
DET=D1#2#2D2

ENDIF

RN RN NN NN NN A R RN AR NI NN RN AN AY
s BOOKKEEPING LOGIC TO SAVE M=KEEPERS *

* BEST REGRESSIONS OF ALL J SUBSETS SIZES »
RENRREERRRRR R RRRR RN RN R RN RRRRNER

aaaQaQa

MV=0
DO 190 N=1,NX
MV=MV+NK (N)
190 CONTINUE

IF (IKNOW.EQ.0) THEN
CONST= (FLOAT (NUMREPS-1) /FLOAT (NUMREPS-MV-1))
DET=DET#CONST#xNY
ELSE
CALL COVKNOW(RSS,NY,22,FULL,NVAR,Z3,TARGET,DUM,
& NUMREPS ,MV,DET)
ENDIF

DO 195 J=1,KEEPERS
IF (DET.LT.REGR(J,MV,1)) THEN

NUMREG=NUMREG+1

DO 200 JJ=J,KEEPERS-1
BUFF(JJ+1)=REGR(JJ,MV, 1)
BUFF2(JJ+1)=REGR(JJ,MV,2)

200 CONTINUE

REGR(J,MV, 1) =DET

REGR(J ,MV, 2) =NUMREG

DO 205 JJ=J+1,KEEPERS
REGR(JJ ,MV, 1) =BUFF (JJ)
REGR(JJ ,MV,2) =BUFF2(JJ)

205 CONTINUE
CALL KEEPIT(NUMREG,NK,NX,MODELS,Z21,23,25)
@GoTO 210
ENDIF
195 CONTINUE
210 CONTINUE
c
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DO 215 L=1,K
IF (NK(L).EQ.0) GOTO 170
NK(L)=0
215 CONTINUE
ENDIF

RN R RN RN NN RN R RRR RN R RN RN R NNN
* ENUMERATED SUBSETS CODE ENDS ON ABOVE LINE #

222222222 RS X 2 SR S22 SRR RSS2SR

R R RN RN RN RN RN NN AR RRRARR RN
* THE FOLLOWING SECTION IS PERFORMED IF THE «
* STEPWISE PROCEDURE [FORWARD SELECTION] IS =
* SELECTED (i.e. METHOD = 1) *

22 X2 Z RS2SRRSR 2222222222222 2222222222 ]

e NrNeNsEr RN RN N Ne

IF (METHOD.EQ.l) THEN

EERRNRRRARARRR RN RN A NN AR RN NNRARRREERR
CONDUCT STEPWISE (FORWARD SELECTION) *
SEARCH OF THE REGRESSION TREE. *
THIS IS A MODIFIED VERSION OF THE *
NATURAL SEARCH PROCEDURE WRITTEN BY: %

a

FURNIVAL AND WILSON (1974)
RN AR RN NN RN RN RN RN AR AR RN RN RERRRR

e NeoNsNrNeNsrNeNoNe]
W W O M m

K=NX

(g

DO 220 L=} ,K+]
IND1(L)=0
IND2(L) =0
TIND(L)=0
220 CONTINUE

M=K
IB=0
IS=]
T™MV=1

225 IB=MOD (IB,MAX) +1
DO 230 L=M,K
IF (IND2(L).LT.L) GOTO 230
IND2(L-1)=IND2(L-1)+]
IND2 (L) =IND2(L-1)
230 CONTINUE

235 IND2(K)=IND2(K) +1
IS=MOD (1S,MAX) +1

MV=0
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DO 240 I1=1,K
IF (IND2(I1).GT.0) MV=MV+l

240 CONTINUE

IF (MV.GT.TMV) THEN
TMV=TMV+1]
DO 245 I1=1,K
INDI(I1)=TIND(ID)

245 CONTINUE

ENDIF
IF (MV.EQ.1l) GOTO 260

DO 250 Il=1,K
FLAG=0
DO 255 I2=1,K+1
IF (IND2(I2).EQ.IND1(Il)) FLAG=1

255 CONTINUE

IF (FLAG.EQ.0) GOTO 295

250 CONTINUE

260 CONTINUE

(s NeNrNeRe Nl

IP=IND2(K)
KP=NVAR
1B2=1
182=2
IF (MV.GT.2) THEN
DO 261 Il=1,NX
IF (IND2(I1).GT.0) THEN
IF (152.EQ.2) THEN
152=3
ELSE
I1S2=2
ENDIF
IP=IND2(I1)
CALL GAUSS(IB2,152,IP,A,KP,MAX,Z3)
IB2=152
ENDIF
261 CONTINUE
ELSE
CALL GAUSS(IB,IS,IP,A,KP,MAX,Z23)
182=18
ENDIF

ERRARRRRAERRRR R RN R RN NN RN AR RAAARRRRRRRRR
# CALCULATION OF THE GENERALIZED RESIDUAL #

% COVARIANCE *
RRREBRRRARRR RN RRRRNR RN RN R AR RN RN NN
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DO 265 II=1,NY
DO 265 JJ=1,NY
IF (JJ.GE.II) THEN
RSS(II,JJ)=A(IS2,NX+II NX+JJ)
RSS(JJ,I1)=RSS(II,JJ)
ENDIF
265 CONTINUE

IF (IKNOW.EQ.O0) THEN
CALL LINV3F(RSS,DUM,4,NY,Z2,D1,D2,WKAREA,IER)
IF (IER.NE.O) PRINT #,°I DIED BELOW 265°
DET=D1#2#»D2

ENDIF

RERRRRRRERRRRRRRRR RN NN R RN RRRRAARR RN R
% BOOKKEEPING LOGIC TO SAVE M=KEEPERS x

* BEST REGRESSIONS OF ALL J SUBSETS SIZES »
ERRENEERRERN AR R R R RN NN AR RN ERARRRRRRRR

QAQOO0

IF (IKNOW.EQ.0) THEN
CONST=(FLOAT (NUMREPS-1) /FLOAT (NUMREPS-MV-1))
DET=DET*CONST#*#NY

ELSE
CALL COVKNOW(RSS,NY,Z2,FULL,NVAR,Z3,TARGET,DUM,

& NUMREPS ,MV,DET)

ENDIF

DO 266 Il=],NX
NK(I1)=0
266 CONTINUE
NK(NX+1)=1

DO 270 J=1,KEEPERS
IF (DET.LT.REGR(J,MV,1)) THEN

NUMREG=NUMREG+ ]

DO 275 JJ=J ,KEEPERS-1
BUFF(JJ+1)=REGR(JJ ,MV, 1)
BUFF2(JJ+1)=REGR(JJ ,MV,2)

275 CONTINUE

REGR(J ,MV, 1) =DET

REGR(J, MV, 2) =NUMREG

DO 280 JJ=J+1,KEEPERS
REGR(JJ ,MV, 1) =BUFF (JJ)
REGR(JJ ,MV,2) =BUFF2 (JJ)

280 CONTINUE

DO 285 Ii=],NX

TIND(I1)=IND2(Il)
IF (IND2(Il).GT.0) THEN
NK(NX+1-IND2(I1))=1
ENDIF
285 CONTINUE
CALL KEEPIT(NUMREG,NK,NX,KMODELS,21,23,25)
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GOTO 290
ENDIF
270 CONTINUE

290 CONTINUE

295 CONTINUE
IF (IND2(K) .LT.K) GOTO 235
I1S=Is8-1
IF (IND2(M) .EQ.M) M=M-1
IF (M.GT.0) GOTO 225
ENDIF

ERRERRRRRER AR R RERERRE R RN RN NN R AR AR R AN RN
* STEPWISE (FORWARD SELECTION) CODE ENDS ON #

¥ ABOVE LINE *
ERRERNRRRRNRR BRI RN NN U I I NN NN RN N

BRI RE RN RN IR RN NN AR R NN NNNNR
» THIS BLOCK IS FOR BEST M SUBSETS MODE  «

* OF OPERATION *
TR RN R N RN AR AR RN RN RN NN RN NN NN N AR

QOO0

IF (IWRITE.EQ.1) THEN
DO 300 I=1,NX
WRITE(30,1540) KEEPERS,I
DO 300 J=1,KEEPERS
IVAR=0
I1IN=0
DO 305 II=NX,1,-1
IVAR=IVAR+]
IF (IFIX(REGR(J,1,2)+.0001).EQ.0) GOTO 300
IF (MODELS(IFIX(REGR(J,I,2)+.0001),11).EQ.1) THEN
IIN=TIN+1
IBUFF (IIN)=1VAR
ENDIF
305 CONTINUE
RDET=REGR(J,1,1)
WRITE(30,1545) MM,RDET, (IBUFF(1J),1J=1,IIN)
300 CONTINUE
ENDIF

c
C NuENURRNRN RN RRRRRRRRERERRRNRR RN AR RN NN NN
C » FOR EACH SUBSET COMPUTE THE CRITERION *
C » AND SAVE THE MINIMUM *
C o Frmu RN NN RN RN R RN R NN R NNRRNNN
c
IF (IWRITE.EQ.0) THEN
IP=NY
KK=NUMREPS

DO 310 IQ=1,NX
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IF (IKNOW.EQ.0) THEN
REGR(1,IQ,1)=REGR(1,IQ,1)*C3(KK,IQ,IP)+*
& CFRONT (KK, 1Q,IP) #FF (IQ) *C5 (KK, IQ,IP)
ELSE
REGR(1,IQ,1)=REGR(1,1Q,1)#C4(KK,IQ,IP)«*
& CFRONT (KK, I1Q,IP) #FF (IQ)*C5(KK,IQ,IP)
ENDIF
IF (IQ.EQ.1) RMIN=REGR(1,I1Q,1)+1000.
310 CONTINUE
DO 315 IQ=1,NX
IF (REGR(1,1Q,1).LT.RMIN) THEN
RMIN=REGR(1,1Q,1)
IAT= REGR(1,IQ,2)
ENDIF
318 CONTINUE
IVAR=0
IIN=0
DO 320 II=NX,!1,-1
IVAR=IVAR+1]
IF (MODELS(IAT,II).EQ.1) THEN
TIN=IIN+1
IBUFF(IIN)=IVAR
ENDIF
320 CONTINUE
SP=RMIN
WRITE(30,1545) MM,SP, (IBUFF(1J),I1J=1,IIN)

R R AR R R RN RN N RN RR AR AN RN AR R RRRNNRD
* FIND THE VOLUME REDUCTION AND INDICATE &

% COVERAGE %
BRI NN NN 0000000

s NeErNeNeNe!

CALL COVER(VCV,MODELS ,KNX,NX, NVAR,IAT,IIN,YBAR,CBAR,
& VECMUC,NY, VECMUY , NUMREPS ,FF, IH,ICOVER, VOLRED,
& VECYBAR, IKNOW,COVCV,VU,DIFF)

22 XX RS2SRSS RSS2SR 22}

% COVERAGE AND VOLUME REDUCTION TALLYS *
BB RRR R AN RN RN ER AR RN RRRRRANRR RN RN

oo a

DO 325 IC=1,4
ICTOT(IC)=ICTOT(IC)+ICOVER(IC)
325 CONTINUE
DO 330 IC=1,2
SUMDEV(IC)=SUMDEV(IC)+DIFF
SUMVU(IC)=SUMVU(IC) +VU
330 CONTINUE
ENDIF
PRINT #, THIS IS META-EXPERIMENT ¢° ,MM, ICOVER °,ICOVER
1000 CONTINUE
c
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C MR RIS RE RN NNRERRERRRNRRERN RN

C » META EXPERIMENT LOOP ENDS ON ABOVE LINE *
C O MMREERRN R NN RN RN RN RN R RN RN R AN ERNNNRRNRN
c

DO 1005 12=1,2
SUMDEV(1Z)=SUMDEV(1Z) /FLOAT (META)
SUMVU (1Z)=SUMVU(IZ) /FLOAT (META)
VR(IZ)=SUMDEV(12) /SUMVU(I2Z)
1005 CONTINUE

DO 1010 I12=1,4
COVERAG(IZ)=FLOAT (ICTOT(1Z))/FLOAT (META)
1010 CONTINUE

c
WRITE(30,1515)
WRITE (30,1550) COVERAG(1)
WRITE (30,1551) VR(1)
WRITE(30,1555) COVERAG(2)
WRITE(30,1515)
WRITE(30,1560) COVERAG(3)
WRITE(30,1561) VR(1)
WRITE(30,1565) COVERAG(4)
c
CLOSE(5)
CLOSE(10)
CLOSE (30)
STOP
c
CoMMrE N RN RN RN RN RN NN NN NN AR NAR AR
C » FORMAT STATEMENTS (MAIN PROGRAM) *
C o REXRRRENNARNRRENRRRRNNARRR RN NARRRRERRRERN
c
1500 FORMAT(1X,A25,'META = ',13,’, NUMREPS = ',I3,’', TOTAL REPS = ',

&14)
1505 FORMAT(1X,'THE RESPONSE ARE',13X,'MEAN ',I4,' REPS’, 2X,
&'STEADY STATE MEAN'/)
1510 FORMAT(2X,I?2,1X,A25,F12.5,4X,F12.5)
1515 FORMAT(' ")
1520 FORMAT(1X,'THE CANDIDATE CONTROLS ARE’,3X,'MEAN ',I4,' REPS’,
&2X,'STEADY STATE MEAN'/)
1525 FORMAT(/,1X, 'COVARIANCE MATRIX OF CONTROLS WAS ESTIMATED’)
1530 FORMAT(/,1X,'KNOWN COVARIANCE MATRIX OF CONTROLS WAS USED’)
1535 FORMAT(1X,'META#' ,3X,' CRITERION ’,10X, 'VARIABLE SUBSET')
1540 FORMAT(10X,'BEST ',I2,' REGRESSIONS WITH ',12,’' VARIABLES'//)
1545 FORMAT(1X,I4,2X,E16.8,10X,30(I12,1X))
1550 FORMAT (1X,'CONTRLD COVERAGE ON STEADY STATE MEANS =’ ,F12.8)
1551 FORMAT(1X,’ AND VOLUME REDUCTION ',E16.8)
1555 FORMAT(1X, 'UNCONTRLD COVERAGE ON STEADY STATE MEANS =',Fl12.8)
1560 FORMAT(1X,'CONTRLD COVERAGE ON SAMPLE MEAN OF 1000 REPS =',Fl12.8)
1561 FORMAT(1X,' AND VOLUME REDUCTION =',E16.8)
1565 FORMAT(1X,'UNCONTRLD COVERAGE ON SAMPLE MEAN OF 1000 REPS=',F12.8)
1575 FORMAT(1X,'# OF CANDIDATE CONTROLS EXCEED PROGRAM LIMIT OF',I3)
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1580 FORMAT(1X,'# OF RESPONSES EXCEED PROGRAM LIMIT OF’,I3)
1585 FORMAT(1X,'# OF BEST REGRESSIONS TO KEEP EXCEED PROGRAM')
1586 FORMAT(1X,'LIMIT OF',I13)

1590 FORMAT(1X,'# OF REPLICATIONS PER META EXPERIMENT EXCEED')
1591 FORMAT (1X, 'PROGRAM LIMIT OF',13)

1595 FORMAT(1X,'# OF META EXPERIMENTS EXCEED PROGRAM LIMIT OF',KI4)
1600 FORMAT(1X,'PROGRAM LIMITS EXCEEDED BY ',I1,' PRIMARY INPUTS’')
END
BN R R RN RN RN RN RN NN AR RN N AR RN RN RRR AN NNRRRRRNRN
%* END MAIN PROGRAM *
BN RN RN R RN RN NN RN R NN R AN RN NN RR
BRI NN NN NN RN RN RN NN RN RRRRRN N NN
% SUBROUTINES *
ERRR RN R R RN RN RN RN NN NN NN RN RN NN AR R AR R RN NN RN RNANNR
ERRRRERARR R RE R RN R RN 00 NI NN NN NN
% SUBROUTINF COVER *
* *
* THIS SUBROUTINE DOES THE COVERAGE AND VOLUME *
* REDUCTION CALCULATIONS FOR THE OPTIMAL CONTROL
» SUBSET *
RN AR E RN R AR AR RN R RN R RN AR RN AR R R N RN NR

rErNsErsErErErErsEsErs RN NeRrEe Ne Nl

SUBROUTINE COVER(VCV,MODELS,KNX,NX ,NVAR,IAT,IIN,YBAR,CBAR
&,VECMUC ,NY,VECMUY ,NUMREPS ,FF ,IH,ICOVER, VOLRED, VECYBAR, IKNOW
&,COVCV,VU,DIFF)

INTEGER 21, 22, 23, Z5, 28
REAL P!

PARAMETER (Z1=8, Z22=8, 23=21+422, 25=2x%Z]1, 28=((23%(23+1))/2))
PARAMETER (PI=3.1415927)

REAL VCV(Z8),YBAR(Z2) ,CBAR(Z1),VECMUC(Z1) ,VECMUY(Z2)
&,FF(0:21) ,VECYBAR(Z2) ,VOLRED(2) ,COVCV(Z1,Z1)

INTEGER MODELS(25,21),IH(Z3) ,ICOVER(4),IIN

REAL SCBAR(Z1),SVECMU(Z1) ,SUBV(Z8) ,SUBVF(23,23) ,B(Z3)

& ,WKAREA (2#23) ,BUFF1(23,23) ,BUFF2(22,21) ,BETA(22,2Z1)
&,CDEV1(1,21) ,CDEV2(21,1) ,EXPL(22,Z2) ,DEV(Z2,1) ,YBHAT(22)
&,BUFF3(21,22) ,BUFF4(22,22) ,SYDOTC(22,22) ,HPH(1,1),T1(1,Z1)
&,YMD1(1,22) ,YMD2(22,1),T2(1,22),0BS(1,1) ,BUFFS(22,22)

& ,BUFF6(22,22) ,YMD3(1,22) ,YMD4(22,1) ,0BS2(1,1)

&,SYMCOVC ((Z1#(Z1+1))/2) ,SUBCOVC((Z1%(21+1))/2)
&,FULCOVC(21,21) ,GAMM(22,Z1) ,EHAT (22,22) ,BUFF8(22,22)

& ,CANCORR(22,22) ,REIGS(Z22) ,EIGS(2#Z2) ,DUMMY (22,22)

&,WK(22)
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INTEGER IH2(Z1)
COMPLEX CEIGS(22)
EQUIVALENCE (EIGS(1),CEIGS(1))

(222 E R SRR RS2 222222222222

» INITIALIZE COVERAGE AND VOLUME *
» REDUCTION VECTORS *
222X 222X 2 RSS2 S XSS SRS RSXRSEZSSR RSS2 R
DO 10 I=1,4
ICOVER(I)=0

10 CONTINUE

DO 15 I=1,2
VOLRED(I)=0.
15 CONTINUE

ERERA RN R R R R R AR RN RN RN RN RN RRRRRRRNN
* FIND THE SUBMATRIX FOR THE SELECTED *

% MODEL *
EREREE AR ER AR AR RRRERRRRER RN NN RN RN NN RRNRN

DO 20 I=1,NVAR
IF (I.LE.NX) THEN
IH(1) =0
IH2(I)=0
ELSE
IH(I) =1
ENDIF
20 CONTINUE

IVAR=0
DO 25 1I=NX,1,-1
IVAR=IVAR¢+]
IF (MODELS(IAT,II).EQ.1) THEN
IH(IVAR) =1
IH2 (IVAR) =1
ENDIF
25 CONTINUE

M1=23
CALL RLSUBM(VCV,Mi1,IH,SUBV,M2)

I X2 2 XS RS SRR X222 222222 2]

# FIND THE SUBVECTOR (POPULATION AND *
# SAMPLE) OF THE CONTROL MEANS »
RN R RN RN RN RN R RN AR RN NN

INDEX=0

T2




s NoNeNoNeNe

QOO Q0O

QOO0

OOQQaAa

DO 30 II=1,NX
IF (IH(II).EQ.1) THEN
INDEX=INDEX+1
SCBAR(INDEX) =CBAR(11I)
SVECMU (INDEX) =VECMUC(II)
ENDIF
30 CONTINUE

AR AR RRAR AR ER RN R AR R A RN RN NI NN
* BUFFER THE COVARIANCE MATRIX OF *

% SELECTED CONTROLS AND RESPONSES *
RN R R RN N RN R RN RN RN R AR NARARRRRRRNRRN

CALL VCVTSF (SUBV,M2,SUBVF,23)

DO 35 I=1,M2
DO 35 J=1,M2
BUFF1(1,J)=SUBVF(I,J)
35 CONTINUE

R R RN RN RN RN NN R RN RN AR RN R RN RN NN
* INVERT THE COVARIANCE SUBMATRIX OF *

*» CONTROLS *
EARUEERRR AR RN R RR RN R R RRR R RN R RN R RN RN ERR

CALL LINV3F(SUBVF,B,1,I1IN,23,D1,D2,WKAREA,IER)
IF (IER.NE.O) PRINT #,'I DIED BELOW 35 (SUBROUTINE COVER) "’

RN RN R R RN NN AR R RN R RN RN R R AR RN R ERANRRRE
» BUFFER THE CR0SS-COVARIANCE SUBMATRICES «
* OF SELECTED CONTROLS WITH RESPONSES *

(S22 XE XSRS R RS S X ]

DO 40 I=IIN+1,6M2
DO 40 J=1,IIN
BUFF2(I-1IN,J)=BUFF1(I,J)
BUFF3(J,I-1IN)=BUFF1(I,J)
40 CONTINUE

[ XSS EXE RS RS R XSRS AR RRSERRZRESXEERX 2]

% BUFFER THE COVARIANCE SUBMATRIX OF x
» RESPCONSES »

|22 SRR R RS RS E SR ZR XSRS RS SREER R R ]

DO 45 I=TIN+1,M2
DO 45 J=IIN+1 ,M2
BUFF4(I-1IN,J-IIN)=BUFFI(I,J)
BUFF6(I-IIN,J-I1IN)=BUFF1(I,J)
45 CONTINUE
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RN RN E AR AR AR RN AR IR RN RRNER R RN RN RN NN NERR
¥ FIND THE BETA HAT MATRIX ( CONTROL *

# COZFFICIENTS ) OR THE GAMMA HAT MATRIX »
EREAER RN RN R RN R RN RSN RN RN RN RNRARRN

IF (IKNOW.EQ.0) THEN
CALL VMULFF (BUFF2,SUBVF,NY,IIN,IIN,Z2,23,BETA,22,1ER)
ELSE
CALL VMULFF(BUFF2,SUBVF,NY,IIN,IIN,22,23,BETA,Z22,IER)
CALL VCVTFS(COVCV,NX,Z1,SYMCOVC)
CALL RLSUBM(SYMCOVC,NX,IH2,SUBCOVC,IORDER)
CALL VCVTSF (SUBCOVC, IORDER,FULCOVC,Z1)
CALL LINV3F(FULCOVC,B,1,1IN,Z21,D1,D2,WKAREA,IER)
IF (IER.NE.O) PRINT #,°1 DIED BELOW 45 (SUBROUTINE COVER)°®
CALL VMULFF (BUFF2,FULCOVC,NY,1IN,IIN,22,21,GAMM,22,1IER)

ENDIF
BERRRURRER RN R RRRNER RN RN R NN RN RN RN
* FIND THE VECTOR OF CORRECTIONS TO *
* CONTROL Y BAR *

I ZXZEEEXERXZEESSSSSES RS RRERSSSSRRSRR R R 222

DO 50 I=1,IIN
CDEV1(1,1)=SCBAR(I)-SVECMU(I)
CDEV2(I,1)=CDEV1(}l,I)

50 CONTINUE

IF (IKNOW.EQ.0) THEN

CALL VMULFF(BETA,CDEV2,NY,IIN,1,22,2),DEV,22,1ER)
ELSE

CALL VMULFF (GAMM,CDEV2,NY,IIN,1,22,21,DEV,22,IER)
ENDIF

I EEEEE 222 RS R RS REERSSSX2ZE2S2 2SR RR R

# FIND THE CONTROLLED ESTIMATOR OF THC *
* MEAN *
EERRA NN RN RN RN RN E RN RN AN N RN AR RRR R RN

DO 55 I=1,NY
YBHAT (1) =YBAR(I)-DEV(I,1)
55 CONTINUE

R RN RN NN RN R RN AN RN R RN RN AR R RRRR RN
# FIND THE MATRIX OF EXPLAINED COVARIANCE ¢«

» DUE TO CONTROL *
AR R RN RN RN RN RN RN R RN AN RN RRE RN

CALL VMULFF (BETA,BUFF3,NY,IIN NY,Z22,Z]1 ,EXPL,22,1ER)
LN R IR N R R R TR R TR YTy

# FIND THE RESIDUAL COVARIANCE *

RERRRERRRRBBRRRRRERRERRRRRBRPERBARRRERRERRN
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Cl=(FLOAT (NUMREPS-1)/FLOAT (NUMREPS-IIN-1))

DO 60 I=1,NY
DO 60 J=1,NY
SYDOTC(I,J)=(BUFF4(I,J)-EXPL(I,J))#*Cl
BUFFS5(1,J) =SYDOTC(I,J)
60 CONTINUE
EER R AR RN RN RN RN RN RN R NN RN N RN R RRNRRR
% FIND THE ESTIMATOR SIGMA TILDE HAT *
ERARRRRRR N RN AR AR RRR RN RR NN RN AR RN RERNRR
IF (IKNOW.EQ.1) THEN
CONST1=(FLOAT (NUMREPS-2) )/ (FLOAT (NUMREPS* (NUMREPS-1)))
CONST2=(FLCAT(IIN+1))/ (FLOAT (NUMREPS* (NUMREPS-1)))
DO 65 I=1,NY
DO 65 J=1,NY
EHAT(I,J)=(CONST1#SYDOTC(I,J))+ (CONST2*BUFF4(I,J))
BUFF9 (I,J)=EHAT(I,J)
65 CONTINUE
ENDIF
R R AR RN NNRRERR
» FIND THE INVERSE RESIDUAL COVARIANCE *
* MATRIX *
ERERRRRR N R RN R AR AR AR NN RN RN RRRNRRRRAR N RN NN
IF (IKNOW.EQ.0) THEN
CALL LINV3F(SYDOTC,B,1,NY,22,D1,D2,WKAREA,IER)
IF (IER.NE.O) PRINT »,°I DIED BELOW 65 (1] (SUBR COVER)"®
ELSE
CALL LINV3IF(EHAT,B,1,NY,22,D1,D2,WKAREA, IER)
IF (1IER.NE.O) PRINT #,°1 DIED BELOW 65 [1] (SUBR COVER) "
ENDIF
EER R R RN R RN RN R RN RN R R RN RN R RN RN NN NN
* COMPUTE THE DEVIATIONS FROM THE *
% STEADY-STATE RESPONSE VECTOR *
# (BOTH CASES: CONTROLLED/UNCONTROLLED) »
AR RN RN RN RN RN RN RN RN RNANRRRRRR
b0 70 I=1,NY
YMD1(1,I)=YBHAT(I)-VECMUY(I)
YMD2(I,1)=YMD1(1,I)
YMD3(1,1)=YBAR(I)-VECMUY(I)
YMD4 (I,1)=YMD3(1,1)
70 CONTINUE
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R R SRR e RS R RS2 AR REXSESSERS2RSL]

% COMPUTE H'H *
*# (NOTATION AS PER VENXATRAMAN AND %
* WILSON 1986) *

12222 EEZ S SRR SRS RS EESSESZSSSESE RS

IF (IKNOW.EQ.O) THEN

CALL VMULFF(CDEV},SUBVF,},IIN,IIN,1,23,T},1.1ER)

CALL VMULFF(T},CDEV2,1,IIN,1,1,21,HPH,1,IER)
ENDIF

IF (IKNOW.EQ.0) THEN

X=(1./FLOAT (NUMREPS) )+ (1./FLOAT (NUMREPS-1)) #HPH(1,1)

ELSE
X=1.

ENDIF
ERNAERRRRRERRERRRER RN NI I NN NN
* COMPUTE THE RIGHT HAND SIDE FOR THE *
®* CONFIDENCE REGION AS PER RAO (1967) *

22 XX SR SRR RS R R RS SRS S

C2=(FLOAT ( (NUMREPS-IIN-1)#NY)/FLOAT (NUMREPS-IIN-NY))

F=EXP((1./FLOAT(NY)) #ALOG(FF(IIN)))
RHS=Xx%C2xF

IR I R Ty Ry R R R F T Y]
* COMPUTE THE T#»2 STATISTIC FOR THE CASE
* WHERE CONTROLS ARE USED (STEADY STATE
% ASSUMED) #
AR ERRERRR R AR RN R R RN AR R RN RN AR RRERRERNNN

IF (IKNOW.EQ.0) THEN
CALL VMULFF(YMD1,SYDOTC,1,NY,NY,1,22,T2,1,IER)
CALL VMULFF(T2,YMD2,1,NY,1,1,22,0BS,1,IER)
ELSE
CALL VMULFF(YMD], EHAT,1,NY,NY,1,22,72,1,1ER)
CALL VMULFF(T2,YMD2,1,NY,1,1,22,0BS,1,IER)
ENDIF

RRRERRR AR RN R R RN RN RN RAN RN E NN AR N RN
# INDICATE COVERAGE FOR THE CASE WHERE *

®* CONTROLS ARE USED (STEADY STATE ASSUMED)#
ERRRAR AR RN RN RN NN RN R RN N NA RN RRR RN N RN

IF (OBS(1,1).LE.RHS) THEN
TCOVER(1) =1

ELSE
ICOVER(1)=0

ENDIF
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32222322222 R R E RS RS SRR RERESSXSEE SN )

% COMPUTE THE VOLUME REDUCTION *

(22 2222 R R 22222 SRR RS 2RR2RXRRZRSS RS

IF (IKNOW.EQ.0) THEN

CALL LINV3F(BUFF4,B,4,NY,22,D1,D2,WKAREA,IER)
IF (IER.NE.O) PRINT #,°I DIED BELOW 70 (1] (SUBR COVER) "’

UCDET=D1%2#%xD2

CALL LINV3F(BUFF5,B,4,NY,22,D1,D2,WKAREA, IER)
IF (IER.NE.O) PRINT #,°1 DIED BELOW 70 [2) (SUBR COVER) "

CDET=D1#2#xD2
ELSE

CALL LINV3F(BUFF4,B,4,NY,22,D1,D2,WKAREA, IER)
IF (IER.NE.O) PRINT *,°I DIED BELOW 70 [3) (SUBR COVER)°®

UCDET=D1#2%x%D2

CALL LINV3F(BUFF9,B,4,NY,22,D1,D2,WKAREA, IER)
IF (IER.NE.O) PRINT *,°1 DIED BELOW 70 [4] (SUBR COVER)’

CDET=D1%2%x%D2
ENDIF

TERM1=(CDET/UCDET) #% (.5) xX»x (FLOAT (NY) /2.)

C3=FLOAT ( (NUMREPS-IIN-1) * (NUMREPS) # (NUMREPS-NY) )

C4=FLOAT ( (NUMREPS-TIN-NY) * (NUMREPS-1))
TERM2=(C3/C4) »» (FLOAT(NY)/2.)
F2=EXP((1./FLOAT(NY))*ALOG(FF(0)))
TERM3= (F/F2) »» (FLOAT (NY) /2.)

VOLRED (1) =(1.-(TERM1*TERM2*TERM3) ) #100.

ERREERRRRRERRR RN ARA AR RN RN ERERRRR RS
% COMPUTE THE ACTUAL VOLUME OF THE *
* CONTROLLED ELLIPSOID *

[ 2 XS Z SRR EE RS S S RS REEEESSRRZSZE SRS SR

POVER2=FLOAT (NY) /2.

CCl=1./FLOAT (NY)
CC2=(2.#PI»%POVER2) /GAMMA (POVER2)
CC3=FLOAT (NY* (NUMREPS-IIN-1))

CC4=FLOAT (NUMREPS-IIN-NY)

CC3=(CC3/CC4) »»POVER2

CC4=SQRT(FF(IIN))
VC=CC1#CC22CC3I#CC4SQRT (CDET) # (X**POVER2)

RRREERRRR RN RN AR RERE RN I NN NN
* COMPUTE THE ACTUAL VOLUME OF THE ]
# UNCONTROLLED ELLIPSOID %

2 2RSSR RSS2SR

CC3=FLOAT (NY* (NUMREPS-1))

CC4=FLOAT (NUMREPS» (NUMREPS-NY))

CC3=CC3/CC4
VU=CC1#CC2#SQRT (UCDET) # (CC3#FF (IIN)) x*POVER2
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% COMPUTE THE DIFFERENCE (DIFF) *

R AR RN RN R R RN RN R RN NN RN R RN NN
DIFF=VU-VC

R RN RN RN RN RN RN R RN RN RNRRRNN
% COMPUTE THE T#*2 STATISTIC FOR THE CASE *

*» WHERE NO CONTROLS ARE USED x
ERERERRRENRERR R RN NN RN RN NN RN RN RN RN R NN

CALL LINV3F(BUFF6,B,1,NY,Z22,D1,D2,WKAREA,IER)

IF (IER.NE.O) PRINT #,°I DIED BELOW 70 [5) (SUBR COVER) "
CALL VMULFF(YMD3,BUFF6,1,NY,NY,1,22,T72,1,IER)

CALL VMULFF(T2,YMD4,1,NY,1,1,22,0BS2,1,1IER)

s NeNeNsNeNe!

aaoaoaoonn

rEsNesRrEsNsNsNErNoRe R

ERREE B RR NN AR R RN RN R RN N RN N NN RRRR
* COMPUTE THE RIGHT HAND SIDE FOR THE *

% CONFIDENCE REGION *
RN R R RN RN NN NN RN R RN AN RN A RN RN RRRRRRRNDE

C5= (FLOAT ( (NUMREPS-1) #NY) /FLOAT ( (NUMREPS-NY) *NUMREPS) )

RHS2=EXP((1./FLOAT (NY) ) *ALOG (FF (0))) *CS

ERERERRREANNRRE NN R RN NN NN R R NN
* INDICATE COVERAGE FOR THE CASE WHERE *
* NO CONTROLS ARE USED (STEADY STATE *
* ASSUMED) *

X R RSS2SR RS RS2SRRSR 2222222

IF (0BS2(1,1) .LE.RHS2) THEN
ICOVER(2)=1

ELSE
ICOVER(2)=0

ENDIF

ERREARERR R R RN R RN RN RR RN N AN RN NNNNNY
* THE REMAINING ANALYSIS DUPLICATES THE
* ABOVE, EXCEPT THAT THE GRAND MEAN OF *

% 1000 RESPONSES IS USED *
BIEIEIIEN NIRRT

[ ZEZREEXEESEEE RS RSS2 RERRRS RS2SR X222 SR 22 X

% RECOMPUTE DEVIATIONS *

(22 RS EZERXERSRSE2R22RRRRRRR22R222222X22 2228 ]

DO 75 I=1,NY
YMD1(1,1)=YBHAT (I)-VECYBAR(I)
YMD2(I,1)=YMD1(1,])
YMD3(1,1)=YBAR(I)-VECYBAR(I)
YMD4 (I, 1)=YMD3(1,I)
75 CONTINUE
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* COMPUTE THE T#»2 STATISTIC FOR THE *
% CACE WHERE CONTRCLS ARE USED *
* (GRAND MEAN USED) *

(32 X R s R R X R R R R R SR R RS2 S2YY ]

IF (IKNOW.EQ.O0) THEN
CALL VMULFF(YMDI,SYDOTC,!,NY,NY,1,22,T72,1,1ER)
CALL VMULFF(T2,YMD2,1,NY,1,1,22,0BS,1,IER)
ELSE
CALL VMULFF(YMD1,EHAT,1,NY,NY,1,22,T2,1,1ER)
CALL VMULFF(T2,YMD2,1,NY,1,1,22,0BS,1,IER)
ENDIF

RREREREERERRRERRRRRRRRR NN RN RN N RN NN
* INDICATE COVERAGE FOR THE CASE WHERE *

% CONTROLS ARE USED *
AR AR AR RN R R RN R RN R RN RARR RN RNRRRNRAND

IF (oBS(1,1).LE.RHS) THEN
ICOVER(3)=1

ELSE
ICOVER(3)=0
ENDIF
R R R RN AR RN NA R R RN RN NA AR ANNNNNNERNN
% COMPUTE THE T#»2 STATISTIC, FOR THE *
# CASE WHERE NO CONTROLS ARE USED *
* (GRAND MEAN USED) *

(e X R X RS R S SRR S R R RS R ARZSEEEZESSZSS RS

CALL VMULFF(YMD3,BUFF6,1,NY,(NY,1,22,T72,1,IER)
CALL VMULFF(T2,YMD4,1,NY,1,1,22,0BS2,1,IER)

I s E X R R R 2 X RS R RS RS EEESEESRERZR ]

* INDICATE COVERAGE, FOR THE CASE WHERE »
* NO CONTROLS ARE USED »
RN R RN R R RN NN AR RN RN RN RN R RN RN RN RN NN AR R RN

IF (0BS2(1,1).LE.RHS2) THEN
ICOVER(4) =1

ELSE
ICOVER(4) =0

ENDIF
RN RN R RN RN RN RN RN RN R R RN NN RN RN RN
% THIS SECTION COMPUTES THE CANONICAL *
* CORRELATIONS FOR THE SUBSET MODELS AND «
+ THE FEASIBILTY BOUND FOR USING THE *
% KNOWN COVARIANCE MATRIX OF CONTROLS *

[ XX R RS XSRS RS EEEESSSSERSSREESE RS S )
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IF (IKNOW.EQ.1) THEN
CALL VMULFF (BUFF6 ,EXPL,NY,NY,NY,22,Z22,CANCORR,Z22,1ER)
CALL EIGRF(CANCORR,NY,Z22,0,EIGS,DUMMY,Z2,WK,IER)

ICOUNT=0
DO 80 I=1,NY
DO 80 J=1,2
ICOUNT=ICOUNT+1
IF (J.EQ.1) REIGS(I)=SQRT(EIGS(ICOUNT))
80 CONTINUE
CTOP=FLOAT ( (NUMREPS+I1IN-1) # (NUMREPS-IIN-2))/
& FLOAT ( (NUMREPS-1) # (NUMREPS-2))
CBOT=CTOP# (FLOAT (NUMREPS-2) /FLOAT (NUMREPS+IIN-1))
BOUND=SQRT((CTOP-1.)/(CBOT-1.))
PRINT #, CANONICAL CORRELATIONS ° ,REIGS," BOUND °,BOUND
PRINT #*,EIGS
ENDIF
RETURN
END
R R R RN RN R RN R RN NN RN RN RN N AR R RRRRNNRRE
* SUBROUTINE COVKNOW *
* *
* THIS SUBROUTINE RETURNS THE GENERALIZED VARIANCE »
# OF SIGMA TILDE HAT x
BN RN NN RN RN NN R RN R RN AN RNS AR NN

SUBROUTINE COVKNOW(RSS,NY,22,FULL,NVAR,Z3,TARGET,DUM, NUMREPS ,MV
& ,DET)

INTEGER 22,23 ,NY,NVAR,NUMREPS
REAL RSS(Z2,Z2) ,FULL(23,23) ,TARGET(22,22) ,DUM(Z22)

Cl=(FLOAT (NUMREPS-2) s FLOAT (NUMREPS* (NUMREPS-MV-1)))
C2=(FLOAT (MV+1) /FLOAT (NUMREPS#* (NUMREPS-1)))
NX=NVAR-NY

DO 10 I=}), NY
DO 10 J=1,NY
TARGET(I,J)=(C1*RSS(I,J)) +(C2#FULL (NX+I NX+J))
10 CONTINUE

CALL LINV3F(TARGET,DUM,4 ,NY,22,D1,D2,WKAREA, IER)
IF (IER.NE.O) PRINT #,"I DIED BELOW 10 (SUBR COVKNOW)®
DET=D1#2#2D2

RETURN
END
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C =

C =«

C »

C » THIS SUBROUTINE COMPUTES AN F TABLE *
C »

C =

c

c

c

RN N R R R RN RN RN RN RN RN NN RN NN RN AN
SUBROUTINE FTABL x
x

(TO THE POWER P) *
R RN RN R R R NN RN AN RN RN RN NN RARRRNRNR

SUBROUTINE FTABL(FF,NX,Z1)

COMMON /BLK1/ SIG,KK,IQQ,IP

INTEGER Z1,KK,IQQ,IP,NSIG,NROOT, ITMAX
REAL ROOT(1) ,LAST,FF(0:21) ,EPS,FP
EXTERNAL F

EPS=.001
NSIG=5
NROOT=1
ITMAX=1000
LAST=3.

DO 10 IQQ=0,NX
ROOT (1) =LAST
15 CALL ZREAL2(F,EPS,EPS,EPS,NSIG,NROOT,ROOT, I1TMAX, IER)
IF (IER.EQ.33) THEN
ROOT (1) =LAST+1.
IER=0
WRITE(6,1535)
WRITE (6, %)
GOTO 15
ENDIF
LAST=ROOT (1)
FP=ROOT (1) ##IP
FF(IQQ)=FP
10 CONTINUE

RETURN

1535 FORMAT(1X,'IGNORE LAST IER=33 WARNING --- REINITIALIZING')

s NN NrsErNoNsNeNe]

(]

END

ERERRRE R R RN RA RN RA RN NN AR NN NN NN R RN RN RN RR RN R RRRRNRE
SUBROUTINE GAUSS

*

¥

# THIS SUBROUTINE PERFORMS THE PIVOTS FOR VARIABLE
& INTRODUCTION INTO REGRESSION MODELS:
»
*

o Ok X &k W

FURNIVAL AND WILSON 1974
ERARREE AR R R R RN R RN RRARRRRRERAERR NN NN

SUBROUTINE GAUSS(IB,IS,IP,A,KP,MAX,Z3)
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x & X & & N

INTEGER IB,IS,IP,KP,MAX,Z3
REAL A(MAX,Z3,23)

SRS R 222 RS ER RS2SRRSR S R

* TOLERANCE CHECX ON PIVOTS *
RN R AR RN R RN NN RN NARRRRRRNNAA NN

LB=IP+1
IF (A(IB,IP,IP).LT..01) THEN
DO 10 L=LB,KP
A(IS,IP,L)=A(IB,IP,L)
DO 10 M=L,KP
A(IS,L,M)=A(IB,L.M)
10 CONTINUE
ELSE
DO 15 L=LB,KP
A(IS,IP,L)=A(IB,IP,L)/A(IB,IP,IP)
DO 15 M=L, KP
A(IS,L,M)=A(IB,L,M)-A(IB,IP M)=%A(IS,IP,L)
15 CONTINUE

ENDIF

RETURN

END
BRF RN RN RN NN NN NN RN
% SUBROUTINE KEEPIT *
* %
* THIS SUBROUTINE FINDS THE MODEL OF A CANDIDATE #
* REGRESSION *

BRI RN NN NN RN RN RN NN NN R NN RY
SUBROUTINE KEEPIT(NUMREG,NX,NX,6MODELS,Z21,23,25)

INTEGER 21,Z3,25,NX,NUMREG
INTEGER NK(Z3) ,MODELS(Z5,Z1)

DO 10 I=1,NX
MODELS (NUMREG, I) =NK(I)
10 CONTINUE

RETURN
END

RRR RN R R R R RN RN RN AR R RN R RN N R R RN RN NN N AR R RN RNNEN
THE FOLLOWING SUBROUTINES, USED IN THIS
PROGRAM, ARE IMSL ROUTINES:

- BECOVM
COMPUTES MEANS AND VARIANCE-COVARIANCE
MATRIX

W M Wk W
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* - EIGRF *
* COMPUTES EIGENVALUES AND (OPTIONALLY) *
* EIGENVECTORS FOR A REAL GENERAL MATRIX «
* IN FULL STORAGE MODE x
* - LINV3F »
* COMPUTES IN-PLACE INVERSE, EQUATION *
* SOLUTION, AND/OR DETERMINANT EVALUATION =
* IN FULL STORAGE MODE ¥
x - MDFD *
* COMPUTES F PROBABILITY DISTRIBUTION ]
* FUNCTION *
* - RLSUBM *
x PERFORMS RETRIEVAL OF A SYMMETRIC *
* SUBMATRIX FROM A MATRIX STORED IN x
* SYMMETRIC MODE *
* - VCVTFS *
x PERFORMS STORAGE MODE CONVERSION OF *
* MATRICES (FULL TO SYMMETRIC) *
" - VCVTSF %
4 PERFORMS STORAGE MODE CONVERSION OF *
* MATRICES (SYMMETRIC TO FULL) *
* - VMULFF .
* PERFORMS MATRIX MULTIPLICATION (FULL ¥
* STORAGE MODE) ®
* - ZREAL2 %
* COMPUTES THE REAL ZEROS OF A REAL *
* FUNCTION - TO BE USED WHEN INITIAL %
* GUESSES ARE GOOD %
R R R RN RN E R RN RN NN N RN RN RN AR RRR RN RR RN

22 E X EE RS RSS2 X S R R R RS RS SS SRS RSS2 22222

* THE FOLLOWING FUNCTIONS ARE USED TO COMPUTE THE *
* SELECTION CRITERION *

RS S SR R R R AR RS R RS2SR 2 RRZR2 SRR 2SR 2R2 2]

JE 030003 06 36 36 06 36 06 3 0 3 U O O 0 O 3 3 3 B 0 3 3 3 I 3 3 I3 W I WX KX NN

* FUNCTION Cl *
ERARERRE RN R RN RARRRR R RN RN ARRRR RN RN ERE NN

REAL FUNCTION C1(K,IQ,IP)

PROD=1.

DO 10 I=1,IP
ITOP=(K-IQ-I)
IBOT=(K-1Q-1)*K
TERM=FLOAT (ITOP) /FLOAT (IBOT)
PROD=PROD*TERM

10 CONTINUE

C1=PROD

RETYURN

END
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¢« FUNCTION C2 x
RERERRREEARRRE RN N R RN NN RN AN R RN

REAL FUNCTION C2(K,IQ,IP)
SUM=0.

Pl=1.

P2=1.

DO 10 J=0,IP

ILEFT=JCOMB(IP,J)

IF (J.NE.O) THEN
Pl=P1* (IQ+2%(J-1))
P2=P2x(K-IQ-(2x#J))
RNEXT=P1/P2

ELSE
RNEXT=1.

ENDIF

TERM=FLOAT (ILEFT) *RNEXT

SUM=SUM+TERM

10 CONTINUE
C2=SUM
RETURN
END

222 X2 SRR 2SR SRR SRS EEEERSRSSESSEEE SRS SRS

* FUNCTION C3 *
RN AR R R RN RN RN R R RN NN RN R R RN RN RN RN

REAL FUNCTION C3(X,IQ,IP)
C3=C1(K,IQ,IP)*C2(X,IQ,IP)
RETURN

END

L E22Z2RE2SES 2SR S2SXR2SRRRSRR R R

*  FUNCTION C4 *
ERARERR AR REARARRR N AR NN RRAAR RN

REAL FUNCTION C4(K,IQ.IP)

PROD=1.

DO 10 I=1,IP
TOP=FLOAT (K-IQ-1I)
BOT=FLOAT(K-IQ-1)
PROD=PROD#* (TOP/BOT)

10 CONTINUE

C4=PROD

RETURN

END

22X EX SRS RSS2SR XSRS 2R Z]

* FUNCTION C5 *
AR RN R R R AR AR NN NN NN NN NN NN AR AR
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REAL FUNCTION C5(XKK,IQ,IP)

PROD=1.

DO 10 I=1,IP

PROD=PROD# (FLOAT (KK-1Q-1) /FLOAT (KK-1Q-1))

10 CONTINUE

C5=PROD

RETURN

END

T30 3 36 08 38 3 3 303 0 06 3 06 3 3 3 3 0 3 3 B 3 U UK KW NN NN RN

#  FUNCTION CFRONT *
AR NN RN AR AR A R AR AR AR R AR NN RN N RN R RN R NN

REAL FUNCTICN CFRONT(K,IQ,IP)
TOP=FLOAT(X-1Q-1)

BOT=FLOAT (K-1Q-IP)
CFRONT=(TOP/BOT) ##IP

RETURN

END

2 X2 SRR 2RSSR R RSS2 RS

* FUNCTION F *
ERERNNE RN RER R RN RN R RN E RN RRNRRRRRRR RN TN NN

REAL FUNCTION F(2)

COMMON /BLK1l/ SIG,KK,IQQ,IP
N1=IP

N2=KK-IQQ-IP

CALL MDFD(Z,N},N2,P,IER)
F=SIG-P

RETURN

END

L2 RSS2 SRR EE SRS X ]

* FUNCTION JCOMB *
EEERER AR R AR AR RN IR RN NN RN RN R RN RN

INTEGER FUNCTION JCOMB(N,M)
ITOP=NFACT (N)
IBOT=NFACT (N-M) *NFACT (M)
JCOMB=ITOP/IBOT

RETURN

END

[ XXX EEE RS R2R R R RSS2 222222 X2 R

*# FUNCTION NFACT *
ERRAR R R RN RRRE RN RN RN RN AR RN AR R RRRRN

INTEGER FUNCTION NFACT (M)
IF (M.EQ.0) THEN

NFACT=1

RETURN
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ENDIF

I1P=M

ILOOP=M-1

DO 10 I=ILOOP,2,-1
IP=1P*1

CONTINUE

NFACT=1IP

RETURN

END
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APPENDIX B: Documentation for Selection Program

USER’S GUIDE
FOR
VARIABLE SUBSET SELECTION PROGRAM

(VSSP)

Prepared By
Captain James A. Gigliotti

GOR-90M

16 March 1990
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I. INTRODUCTION

Background And Purpose

When dealing with ;omputer simulations it is typically desirable to
have a general understanding of how the gimulation inputa will affect
the final results. It is also desirable to be able to accurately
estimate the expected simulation responge. Furthermore, if the
estimation of the response can be achieved with a gubset of the
gimulation inputs (variables), a variance reduction on the estimator of
the mean can also be realized. One way of achieving these goals is
through the identification of a good subset of control variates.
Control variates, also known as control variablesg, are variables which
have a gignificant covariance with the response(s) of interest.

The development of a quick and easy method for identifying the
subset of significant control variates in a simulation model would
greatly decrease the time and effort required to gain ingights into the
gimulation. Identifying the significant control variates for a
gimulation model can also enhance the process of preparing and
implementing an experimental design. It would eliminate the guesswork
in determining which variables to concentrate on in a subsequent
experimental desgign. This could also save computer time by identifying
a gsubset of the available control variatesz to work with, since the
standard experimental design requires 2k gimulation runs to acquire
data, where k is the number of variables being tested.

The corresponding purpose of the Variable Subget Selection Program
(VSSP) i8 to provide a means to identify the significant control

variables, of a gimulation, by evaluating the simulation output.
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Program Description

The Variable Subset Selection Program (VSSP) identifies the
gignificant control variables using the "Best Controls” (i.e. BCp)
criterion developed by Bauer and Wilson (1990). Initially, the best or
near-best subset of variables, depending on the evaluation procedure
desired, is selected for each subset gize from 1 to NX (the total number
of control variables in the full set). The initial selection among
subsets of the same size is based on the RSS (Residual Sums of Squares)
of each subset.

When these subsets are selected, the corresponding BCp criterion
value is calculated and the subset with the best criterion value is
selected. The major advantage of using the BCp criterion is that it
takes the number of variables in the subset into account in détermining
the criterion value. Unlike other more common selection criterions, the
BCp criterion does not automatically select the subset with the most
variables.

Upon selection of the "best” variable subset, the corresponding
coverage and volume reduction of the confidence regi>r iz determined.
The values are summed up over each meta-experiment and averaged at the
conclugion of the program rum. These values along with the “best’
criterion value and variable subset for each meta-experiment are written
to an output file.

As mentioned earlier, the resulting variable subget may be the best
or near-best one possible, depending on the selection procedure desired.
The uger may choose from two selection procedures: 1) Enumerated

Subsets, or 2) Stepwise (Forward Selection). The enumerated subsets
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procedure evaluates all posgible combinationsz of variables, for each
subset size. This ensures that the best subset will be selected, based
on the BCp criterion.

The stepwise (forward selection) procedure does not evaluate all
possible subsets, except for the one-variable subset case. Initially,
it evaluates all one-veriable subsets then selects the best one. After
selecting the best single variable the procedure then evaluatesg only
those two-variable subsets containing that one variable; selecting the
best of thesge two-variable subsets. Then the procedure only evaluates
the three-variable subsets containing the variables of the best two-
variable subset; selecting the best out of those. This process
continues, building on the last subset selected, until all variables are
in the model. The disadvantage of this procedure is it ignores all
subsets which do not include the previously selected variables; so
better variable subsets may be missed. However, the advantage of this
procedure is that an efficient implementation will select the near-best
variable subset in much less time than the enumerated subsets procedure.

In addition, the VSSP provides the user with several more options.
The user may gpecify the following:

- Whether the covariance matrix of control variables should be
estimated, based on the data, or provide the covariance matrix,
if known.

- Whether the program should provide the single best variable
subset or the "M° best X-variable subsets (X = 1,2,...,NX) for
each meta-experiment.

- Whether or not program input will be provided by datafile or
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input manually.

Brief Overview Of Contents

Following sections of this manual are designed to help the user
understand the operation and constructs used in the VSSP. Section II
provides information on how to run the VSSP and the options available.
Section III lists all the variables used in the program and explains
the purpose of each. Section IV provides the parameters associated
with each program variable (i.e. variable type, precision (single or
double), whether or not it is an array and corresponding gize) and any
applicable comments. Section V provides a listing of all the
subroutines used in the program and a brief description of each. And,
Section VI provides a listing of all the functions used in the program
and a brief description of each. In addition, several appendixes are
provided to supplement the information contained in the various manual

sections.
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II. HOW TO USE THE PROGRAM AND INTERPRET THE OUTPUT

Program Operation And Required Data

When running the Variable Subset Selection Program (VSSP) the user
will be prompted for the following data and information. The minimum
required data is a file containing simulation output corresponding to
the control variables and responses to be evaluated by the program. The
data must be arranged with the variable output values before the
regponse values. Other data which the user may input to the program, if
known, is the covariance matrix between the control variables.

The other information, required by the program to operate, isg
identified in the following list:

- Whether program data and information will be input by datafile or
manually. 1If the datafile option is chosen, the user will be
prompted for the datafile name so program data and information
can be read in by the program. Regardless, the following
information ig still required.

- Number of control variables.

- Number of regponses.

- Number of best regressions to keep. Input a one (1) if only the
best variable subset is desired.

- Number of data replications per meta-experiment.

- Number of meta-experiments.

- Whether or not the covarijiance matrix of controls is known or is
to be estimated from the the data.

-~ Which evaluation procedure you degire, enumerated subsets or

stepwise.
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- Level of significance to use in deriving F-values.

- Known or estimated means of the control variables.

- Sample means of the control variables.

- Estimated means of the responses.

- Sample means of the responses.

- A title to write to the program summary file. For this and any
other input where character data is necessary, use an underscore

instead of sgpaces. Also, the input must begin with a

character, not a number.

A name for each control variable.

- A name for each response.

- A name for the program summary datafile.

If the covariance matrix of controls is known and is to be
provided, the program will ask if this informatior will be entered by
datafile or manually. If the datafile option is selected, then the user
will be prompted to provide the name of the datafile where this
information is contained. When the covariance matrix is to be provided
and the program input is by datafile then the covariance data may be
provided by a separate datafile or contained in the initial datafile
(See Appendix B for further detail on datafile format).

Finally, there are two items to remember in executing the program
or it may not work properly. First, the number of replications per
meta-experiment must be greater than the number of control variables
plus two (i.e. NX+2). And second, the datafile containing the control
and response data must contain, as a minimum, a number of data szetis

equal to the total replications (i.e. “Number of meta-experiments’ times
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"Number of replications per meta-experiment).

Interpreting The OQutput

After the program has completed evaluation of the data, all results

are output to a summary file. The summary file will provide the

following information (starting at top-left of file and moving to the

right):

Evaluation title, input by user during program data input phase.
Number of meta-experiments performed.

Number of data replications per meta-experiment.

Total number of data replications evaluated by the program. This
is equal t~ "Number of meta-experiments”™ times °Number of
replications per meta-experiment’.

Summary of response data including response number, name
designation of response, response mean over total number of
replications, and estimated steady state mean. This information
is provided by user.

Summary of control variable data. Covers same information as for
responges. This information is provided by the user.

A statement whether the covariance matrix of controls was
estimated or known.

The meta-experiment number, best BCp criterion value found for
the meta-experiment, and the corresponding °"begt’ variable
gubsget.

Two sets of coverage and volume reduction data averaged over all

the meta-experiments. The first set ig based on the steady state
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means and the second set is based on the sample means.

The following should be noted in regards to the coverage and volume
reduction summary data. First, if the steady state and sample means
input to the program are the same, there will be no difference in the
values of either set. Also, each set of coverage and volume reduction
will contain two values for coverage. The primary value of interest is
the controlled coverage. This corresponds to data coverage achieved by

using the selected variable subsets.
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ANSWER
BETA
BIG
BOT
BOUND
BUFF
BUFF1
BUFF2
BUFF3
BUFF4
BUFF5
BUFF6

BUFF9
Cl

C2

C3

C4

CS

CANCORR

CBAR
CBOT

cC1

cc2

[ ]

W N nonon N

11}

"

II1. VARIABLE DICTIONARY

Storage for full covariance matrix and subsequent pivots.
Character variable used to input answers to initial data
input questions.

Dummy array for IMSL Subroutine LINV3F. -1
Equivalent to BUFF2 » SUBV = 8§ = S, .*S..

Equivalent to [(NUMREPS—I)/(NUMREPg-NX-2)]!*NY; partial value
used in computing TWO.

Denominater portion of a value used to compute C4 and CFRONT,
in their respective functions.

Feasibility bound when using known covariance matrix of
controls. Used in Subroutine COVER.

Buffer used in book keeping of REGR.

Buffer for § (Full Covariance Matrix), [See Note 1].

Buffer for S,., (See Note 1].

Buffer for Scy: {See Nnte 1].

Buffer for S,,, [See Note 11].

Buffer of SYK%TC.

Buffer of Sy , [See Note 1].

Buffer of Sigma Tilde Hat.

Equivalent to (NUMREPS-2)/(NUMREPS-IIN-1); partial value of
residual covariance. Used in Subroutine COVER. Also used in
Subroutine COVKNOW to find generalized variance of Sigma
Tilde Hat.

Equivalent tc (MV+l)/(NUMREPS (NUMREPS-1)); partial value of
generalized variance of Sigma Tilde Hat. Used in Subroutine
COVKNOW. Also used in Subroutine COVER in computing the
right hand side of confidence region when controls are used.
Equivalent to (NUMREPS-IIN-1)#(NUMREPS-NY); partial value
used in computing volume reduction in Subroutine COVER.
Equivalent to (NUMREPS-IIN-NY)#*(NUMREPS-1); partial value
uged in computing volume reduction in Subroutine COVER.
Equivalent to (NY(NUMREPS-1))/(NUMREPS (NUMREPS-NY)); partial
value ugsed in computing right hand side for the confidence
region where no controls are used. Used in Subroutine COVER.
Canonical Correlations for variable gubset models when using
a known covariance matrix of controls. Used in Subroutine
COVER.

Sample mean vector for controls.

Denominator of equation used in calcula.ing bound when the
covariance matrix of controlsg is known. Used in MAIN
program.

Partial value, used to compute actual volume of the
controlled and uncontrolled ellipsoids. Used in Subroutine
COVER.

Partial value, ugsed to compute actual volume of the
controlled and uncontrolled ellipsoids. Used in Subroutine
COVER.
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CC3

CC4

CDET

CDEV]
CDEV2
CEIGS
CONST

CONSTI

CONST2

CONTROL

covev
COVFILE

COVERAG

CTOP
D1}

D2

DET
DEV
DIFF
DUM

DUMMY

EHAT
EIGS

EPS
EXPL

" n

Partial value, used to compute actual volume of the
controlled and uncontrolled ellipsoids. Used in Subroutine
COVER.

Partial value, used to compute actual volume of the

controlled and uncontrolled ellipsoids. Used in Subroutine

COVER.

Determinant used in computing volume reduction and actual

volume of ellipsoid for case where controls are ured and

steady state is assumed. Used in Subrcutine COVER.

Equivalent to (CBAR - VECMUC)' = (C - _u.)’.

Equivalent to (CBAR - VECMUC) = (C - ug).

Complex variable counterpart of EIGS.

Equivalent to (NUMREPS-1)/(NUMREPS-MV-1); partial value used

in calculatiag determinants (DET) in m 'best’ regressions

mode. Used in MAIN program.

Equivalent to (NUMREPS-2)/(NUMREPS (NUMREPS-1)); partial value

used in computing the estimator Sigma Tilde Hat. Used in

Subroutine COVER.

Equivalent to (IIN+1)/(NUMREPS (NUMREPS-1)); partial value

used in computing the estimator Sigma Tilde Hat. Used in

Subroutine COVER.

Character vector which contains names of controls used in the

evaluation.

Array containing covariince matrix of controls.

Name of datafile containing covariance matrix, if it is

known.

Array containing estimated confidence volume coverage.
COVERAG(1l): Controlled coverage on steady state means,
COVERAG(2) : Uncontrclled coverage on gteady state means,
COVERAG(3): Controlled coverage on gample mean, and
COVERAG(4): Uncontrolled coverage on sample mean.

Numerator counterpart of CBOT.

Output of IMSL Subroutine LINV3F. DIl is one of two

components of the determininant of the matrix input into

LINV3F.

Output of IMSL Subroutine LINV3F. D2 is one of two

components of the determininant of the matrix input into

LINV3F.

Determinant of an applicable matrix. Equivalent to Dix2##D2.

Equivalent to BETA*BUFF3 = 8(C - u,).

Equivalent to VC - VU.

Dummy array for use in IMSL subroutine calls, when output of

that type is not required. Usged in MAIN program and

Subroutine COVKNOW.

Dummy matrix for usge in IMSL subroutine calls, when output of

that type is not required. Usged in Subroutine COVER.

Matrix containing values for estimator Sigma Tilde Hat.

Vector variable used in Subroutine Cover to contain

eigenvalues derived from IMSL subroutine.

Covergence criterion used ag input to IMSL Subroutine ZREAL2.

Equivalent to BETA¥BUVF3 = a-scy.
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F

F2

FF
FP

FULL
FULCOVC

GAMM
GAMMA

HPH

1

11

I2
IAT
IB
I1B2
IBOT
IBUFF

IC
ICOUNT

ICOVER

ICTOT

IER

IH

IH2

11
IIN

H

Used in computing right hand side of confidence region, in
Subroutine COVER.

Used in computing right hand side of volume reduction, in
Subroutine COVER.

Contains FP table.

Equivalent to ROOT(1)*»IP, Used in Subroutine FTAEL to hold
F-value until it is added to array FF.

Full storage mode version of VCV.

Full covariance matrix of all controls and responses.

Gamma Hat matrix, used in Subroutine COVER.

Used to compute actual volume of controlled ellipsoid, in
Subroutine COVER.

Equivalent to TI*CDEV2 = (§ - ug)'#Sy “#(8 - ug).

Counting variable used in DO loops. Also used to count
number of primary variable inputs which exceed program
parameters, if any.

DO loop counting variable, used in Stepwise section of MAIN
program.

DO loop counting variable, used in Stepwise section of MAIN
program.

Tracks which regression model is currently being evaluated.
Index of source block. Used in Subroutine GAUSS.

Provides same function as IB. Used in Stepwise procedure of
MAIN program.

Denominator for values computed in Functiong Cl and JCOMB.
Array containing control variables in ’'best’ regresgsion model
gelected. Identifies variables by number, not model
coefficients.

Counting variable used in DO loops.

Acts as reference value, in Subroutine COVER, in computing
canonical correlations when covariance matrix of controls is
known.

Indicator array of coverage for a particular model; 0=No,
1=Yes.

ICOVER(1) = 0,1 (Controls present, steady state assumed)
ICOVER(2) = 0,1 (No controls, steady state assumed)
ICOVER(3) = 0,1 (Controls present, Y(1000))

ICOVER(4) = 0,1 (No controls, Y(1000))

Keeps coverage total as each meta-experiment is performed.
Used in MAIN program in computing average coverage over all
meta-experiments; COVERAG(I)=ICTOT(I)/META.

Error condition, output from IMSL subroutines if an error
condition is encountered.

Inclusion array, of both controls and responsesz, for input to
IMSL Subroutine RLSUBM. Used in MAIN program and Subroutine
COVER.

Inclusion array, of controls only, for submatrix of gelected
model used as input to IMSL Subroutine RLSUBM. Used in
Subroutine COVER.

= Counting variable used in DO loops.
= Number of variables in current model.
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IKNOW
ILEFT
ILOOP
INDI
IND2
INDEX
INFILE
IORDER
IP

1Q

IQQ

IS

182
ITMAX

ITOP
IVAR

IWRITE

IX
12

J
JJ
Jz

K
KEEPERS
KK

KNX

KP

K2

L
LAST

LB
M
Ml

Flag designating whether the covariance matrix ig egtimated
(IKNOW=0) , or known (IKNOW=1).

Number of pivots left to procesg in computing Function C2;
ILEFT = NFACT(IP)/(NFACT(IP-J)*NFACT(J)).

Equivalent to M-1 in Function NFACT. Used as starting point
for loop which computes the factorial of M.

Array for keeping °“best” evaluated subset of size J=1...NX.
Used in Stepwise procedure of MAIN program.

Array for maintaining latest subset created for evaluation
within the Stepwise procedure section of MAIN orogram.

Index variable for SCBAR and SVECMU when computing subvector
of the control meang in Subroutine COVER.

Character variable used in initial data input routine.
INFILE takes name of input file if datafile option is chosen.
Order (number of rows) of input or output matrix. Used in
several IMSL Subroutines.

Index of the pivot row and column, used in Subroutine GAUSS.
Counting variable used in DO loops.

Counting variable used in DO loops.

Index of the storage block, used in Subroutine GAUSS.
Provides same function ag IS. Used in Stepwise procedure of
MAIN program.

Input to IMSL Subroutine ZREAL2, defines the maximum number
of iterations to use in finding a root.

Numerator for values computed in Functions Cl1 and JCOMB.
Integer value associated with the individual control
variables (i.e. 1=X1, 2=X2, etc.).

Flag designating whether the meta experiment mode (IWRITE=0)
or best 'm° regressiong mode (IWRITE=1) ig to be used.
Equivalent to Z6, used as input to IMSL Subroutine BECOVM.
Counting variable used in DO loops. Used in initializing
arrays and matrices in meta loop of MAIN program.

Counting variable used in DO loops.

Counting variable used in DO loops.

Counting variable used in DO loops. Used in initializing
arrays and matrices in meta loop of MAIN program.

See NX.

Number of °“best” regressjions to keep (See M).

See NUMREPS.

Equivalent to 2x#NX.

Equivalent to k+1, where k is number of control variates.
Used in Subroutine GAUSS.

Counting variable used in DO loops. Used in initializing
matrices in meta loop of MAIN program.

= Counting variable used in DO loops.
= Variable used as input to IMSL Subroutine ZREAL2, containsg

initial guess of root for defined function.

Equivalent to IP+]1, used in Subroutine GAUSS.

Counting variable used in DO loops.

Variable used ag input to IMSL Subroutine RLSUBM, contains
order of symmetric matrix stored in symmetric mode.
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M2

MAX

META
METHOD

MODELS

NBR
NK

NROOT

NSIG

NUMREG

NUMREPS

NVAR
NX

NY

0BS
0BS2

OUTFILE

P1

P2

PI

H non

H non

i

Order of symmetric matrix SUBV. Obtained ag output of IMSL
Subroutine RLSUBM, and used as input to IMSL Subroutine
VCVTSF. Used in Subroutine COVER.

Maximum number of storage matrices in Array A, for storage of
matrices created by calls to Subroutine GAUSS. Used in
Stepwise section of MAIN program.

Number of meta experiments. This is required input data.
Flag designating whether enumerated subsets (METHOD=0) or
gtepwise [forward selection] (METHOD=1) method is to be used
in the evaluation. This is required input data.

Used as DO loopnﬁounting variable for META loop.

Saves all the 27" enumerated zubset models.

Counts number of control variables contained in a model as
defined by NK. Used in MAIN program and Subroutine COVKNOW.
Counting variable used in DO loops.

Vector of inputs to IMSL Subroutine BECOVM.

An identification array, NK is a binary counter with a list
of zeros and ones which indicate the presence or absence of
the independent variableg (i.e. controls). Also note that
indexing of the independent variables is reversed.

Input to IMSL Subroutine ZREAL2, defines number of roots to
be found.

Convergence criterion input to IMSL Subroutine ZREAL2. A
root is accepted if two successive approximations to a given
root agree in the first NSIG digits.

Tracks the number of °"best” regressions, when that mode is
used.

Number of replications per meta experiment. This is required
input data.

Total number of variables (i.e. NVAR = NX + NY).

Number of candidate control variates. This is required data
input.

Number of responges. Thisg ig required input data.
Equivalent to T2xYMD2.

Output of IMSL Subroutine VMULFF, contains product of the
firgt two matrices provided as input to the subroutine. Also
used in determining coverage when no controls are uged and
steady state is agsumed. Used in Subroutine COVER.
Character variable used input name of an input datafile
created during manual data input, if desired. Also usged to
input name for file to contain program output.

Output probability, of IMSL Subroutine MDFD, that a random
variable following the F-Distribution with degrees of freedom
Nl and N2 will be legs than or equal to input Z. Used in
Functior F. This value gupports calculation of F-table in
Subroutine FTABL.

Product 1, numerator used in computing RNEXT, in Function C2.
P1 = [PROD(J=0,IP) (IQ+(2%(J+1)))],

Product 2, denominator used in computing RNEXT, in Function
€2. P2 = [PROD(J=0,IP) (K-IQ-(2#J))].

Parameter in Subroutine Cover which contains value of pi.
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POVER2

PROD

RDET

REGR

REIGS

RESPONS

RHS

RHS2

RMIN

RNEXT
ROOT

RSS
SCBAR

SIG
SP

SUBCOVC
SuBvV
SUBVF
SUM
SUMDEV

SUMVU

SVECMU

SYDOTC
SYMCOVC

T1
T2
TARGET

W n oy ou

W "

LU L ]

Equivalent to NY/2. Usged in Subroutine COVER to compute
actual volume of controlled and uncontrolled ellipsoid.
Keeps cumulative product of terms, for Functions Cl, C4, and
CS.
Array of determinants of matrices associated with the
gpecific regression models.
Bookkeeping array for best M regressions to keep. For array
of format REGR(i,j,k); A) j = subset size, B) k=1, stores
generalized matrix; and k=2, stores pointer to model.
Equivalent to Sqrt(EIGS(ICOUNT)), used in computing the
canonical correlations and feasibility bound when the
covariance matrix of controls is known. Used in Subroutine
COVER.
Character vector used to contain names of responses used in
the evaluation.
Right Hand Side of the confidence region, where controls are
used, per Rao (1967). Used in Subroutine COVER.
Right Hand Side of the confidence region, when no controls
are used and steady state assumed. Used in Subroutine COVER.
Holds minimum Residual Sums of Squares (RSS) values. RSS
values used in determining the m 'best’' regressions, when
that mode is selected.
Equivalent to P1/P2 in Function C2. Used in computing TERM.
Used as input/output to IMSL Subroutine ZREAL2, in Subroutine
FTABL. As input, contains initial guess of root. As output,
contains computed root.
Buffer for conditional covariance matrix.
Subvector of CBAR, used to find vector of corrections to
control Y (variables CDEV! and CDEV2). Used in Subroutine
COVER.
Level of Significance associated with selection criteria.
Equivalent to RMIN, used in write statement to program output
file.
Submatrix of full covariance matrix FULCOVC.
Submodel covariance matrix iglsymmetric storage.
Full storage version of SUBV .
Keeps sum of TERMs in Function C2.
Keepg sum of DIFFs for each meta-experiment.

SUMDEV(1): For steady state means.

SUMDEV(2): For sample means.
Keeps sum of VUs for each meta-experiment.

SUMVU(1): For steady state means.

SUMVU(2): For sample means.
Subvector of VECMUC, used to find vector of corrections to
control Y. Used in Subroutine COVER.
Equivalent to BUFF4-EXP = C2(Sy - B8#S.y).
Symmetric storage version of ma{rix FULXOVC.

1

Equivalent to CDEVI#*SUBVF = (C - ug,)'#S,
Equivalent to YMD1#SYDOTC.

Matrix used in computing generalized variance of Sigma Tilde
Hat (i.e. responses).
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TEMP

TERM

TERM1

TERM2

TERM3

TIND

TITLE

T™V

TOP

TWO

UCDET

ve
vev

VECCBAR
VECMUC
VECMUY
VECYBAR
VOLRED
VR

vu
WK

WKAREA

XFILE

n

([ [}

W o6 o6 o

Input vector of length NBR(1), uged in IMSL Subroutine
BECOVM. 1If NBR(5)=0, then TEMP must contain the temporary
means when NBR(4)=1. Otherwise, temp is work storage.
Generic variable, used in Functions Cl and C2 to save results
of divisiong and products, respectively.

Partial value used in computing volume reduction where
controls are used and steady state assumed. Used in
Subroutine COVER.

Partial value used in computing volume reduction where
controls are used and steady state assumed. Used in
Subroutine COVER.

Partial value used in computing volume reduction where
controls are used and steady state assumed. Used in
Subroutine COVER.

Array for keeping current/temporary “best” variable subset
model as all models are created for evaluation in Stepwise
gection of MAIN program. When all models of size J=1,...,NX
have been evaluated, the model maintained in TIND is copied
to IND1, as the "best’ subset of gize J.

Analysis title, input during initial data input routine and
written to output file.

Tracks number of variables in last variable subset evaluated
in the Stepwise procedure section of MAIN program. Acts as a
flag to trigger save of best subset of a certain size.
Numerator portion of a value used to compute C4, in Function
C4.

Modified version of matrix determinant, equivalent to
2%BIG#DET. Used as determinant bound and ag original values
for elements of bookkeeping array REGR.

Determinant used in computing the volume reduction where
controls are used and steady state assumed, and the actual
volume of the uncontrolled ellipsoid. Used in subroutine
COVER.

Volume of controlled ellipsoid, used in Subroutine COVER.
Covariance matrix in symmetric storage of all controls and
responses. This is an output of IMSL Subroutine BECOVM.
Vector of average of inputs of controls.

Vector of theoretical means of the controls.

Vector of steady state means of the responses.

Vector of sample means of the responses.

VOLRED(1) is volume reduction due to controls; VOLRED(2) is
not usged.

Array of Variance Reduction valueg, derived from calulating
gelection criterion for each regression model.

= Volume of uncontrolled ellipsoid, used in Subroutine COVER.

Array used by IMSL Subroutines EIGRF. Provides work area for
subroutine to use in performing its function.

Array used by IMSL Subroutine LINV3F. Provides same function
as WK.

Data matrix for a gingle meta-experiment.

Datafile containing (controlsiresponsel] data.
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XM

YBAR
YBHAT

YMD1
YMD2

YMD3
YMD4

Z1

22

23

Z24

25

6

27

Z8

NOTES:

Output vector, of length NBR(1l}), of IMSL Subroutine BECOVM.
This vector contains the variable means.

Sample mean vector. for controls..

Equivalent to Y - 8(C - ugy) = Y(8).

= Equivalent to (Y - uy)'.

(1) 8§ =

Equivalent to (Y(8) - uy)'. -
Equivalent to (YBAR VECMUY)' = (Y -u
Equivalent to (YBAR - VECMUY) = (Y - u ¥.
Input constant, to IMSL Subroutine MDFK. to which integration
is performed. Z must be greater than or equal to zero. Used
in Function F.

Program parameter defining maximum number of Control
Variables (See NX) the program is set to handle. This
parameter is also used in Subroutine Cover.
Program parameter defining maximum number of Control
Responses (See NY) the program is set to handle. This
parameter is also used in Subroutine Cover.

Program parameter equivalent to Z1+22. This parameter is
algo used in Subroutine Cover.

Program parameter defining maximum number of ‘best’
regressions which may be kept.

Program parameter equivalent to 2#%Z]. This parameter alsgo
used in Subroutine Cover.

Program parameter defining maximum number of replications per
meta-experiment allowed.

Program parameter defining maximum number of meta experiments
allowed.

Program parameter equivalent to (Z3%(Z3+1))/2. This
parameter also used in Subroutine Cover.
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IV. VARIABLE PARAMETERS MATRIX

Precision

Variable Type

+CHAR

iSize/Comments
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INT
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1Size/Comments!

D

Precision
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{Continued)
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COM

VARIABLE PARAMETERS MATRIX

Variable Type
'REAL !CHAR

INT

VARIABLE

-

CCl

C:25 A:2}
22x22
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cC2

cc3

CC4
CDET
CDEV!
CDEV2
CEIGS
CONST
CONST]
CONST2
CONTROL
covev
COVFILE
COVERAG
cTOP

D1

D2

DET
DEV
DIFF
DUM
DUMMY




VARIABLE PARAMETERS MATRIX

(Continued)
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VARIABLE PARAMETERS MATRIX

(Continued)

13
L
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Variable Type
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LOGIC!ARRAY
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‘REAL (CHAR !

INT

VARIABLE

1CTOT

IER

) ] ] [} [} 1 ] ] ’
J e I P e T T R R R A L R R
1 ) ] ] ) ) ' ) )

[
¥

- - - -

IH

—--—-'-——-—'-— -—'--- —'— ---l--—-—'-—--—'—---—l
1 ’ - ' T=aT- ' ' ] '

1
)

IH2

) 1] ) 1] 1] ] () ] ] '
e e e R L N e e e e et Tttt ettt
¥ ) ) ) ] 1 1 ¥ 1 )

II

IIN

TXNCW

ILEFT

ILOOP

-—————— -

INDI

IND2

INDEX

X

INFILE
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IORDER
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IQQ
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IWRITE
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VARIABLE PARAMETERS MATRIX
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