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PREFACE

The purpose of this thesis was three-fold. The first purpose was

to revise and extend the capabilities of existing software for selecting

the significant control variables of a simulation model, based on a

newly developed selection criterion. The second purpose was to compare

the results obtained using the revised software employing two different

seleotion procedures. And the third purpose was then to vaiidate the

effectiveness of the new selection criterion by comparison to results

derived using other common selection criteria.

After extensive revision, the software, now renamed the Variable

Subset Selection Program (VSSP), was ready for use. The VSSP was then

used to evaluate data with known characteristics and data derived from

an untested simulation model. The results obtained from this effort

served to demonstrate the usefulness of the VSSP and the validity of the

the new selection criterion. It is highly recommended that the work be

continued, as further benefits are yet to be realized and may be of

substantial significance.

The execution and preparation of t'. - thesis would not have been

possible without the help of others. I a. eeply indebted to my faculty

advisor, Major Kenneth Bauer, Jr., for his extensive time, patience, and

assistance. I also wish to thank my thesis reader, Lt Colonel Thomas

Schuppe, for pointing out my numerous writing errors and ensuring the

final product was understandable. Finally, I wish to thank my family

and friends for their continuous support and encouragement when the

going got rough.

James A. Gigliotti
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ABSTRACT

I/The purpose of this thesis was three-fold. The first purpose was

to revise and extend the capabilities of existing software for selecting

the significant control variables of a simulation model, based on a

newly developed selection criterion. The second purpose was to compare

the results obtained using the revised software employing two different

selection procedures. And the third purpose was then to validate the

effectiveness of the new selection criterion by comparison to results

derived using other common selection criteria.

Extensive revision of the existing software was necessary to

prepare it for use. Initially, the software was revised to extend its

adaptability to evaluating new data and to increase user friendliness.

Next, a new procedure was added to the software to permit it to evaluate

data using a Stepwise (Forward Selection) procedure. Previously, the

software only performed analysis of the data through an Enumerated

Subsets approach. After revision of the software was complete, it was

renamed the Variable Subset Selection Program (VSSP).

Once the VSSP was ready, it was used to evaluate two types of data.

The first type of data was created using a known stochastic structure.

Three sets of this data was used, each set using a different covariance

structure between the responses and control variables. The second type

of data was created from an untested simulation model.--'This data

provided a means of validating the program and the selection criterion

incorporated into it. In addition, the data derived from the untested

simulation model was also evaluated using a commercially available

statistical software package employing several common selection
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criterions. These results were then compared to those obtained using

the VSSP.

Overall, this study found that as the amount of data evaluated by

the VSSP increased, any differences between the control variables

selected as significant, by either the Enumerated Subsets or Stepwise

procedure, disappeared. In fact, a point was apparently reached where

additional data caused no change in the results obtained. Also, when

the covariances between the control variables are known, this only makes

any difference when a minimal amount of data is available. And finally,

comparison of the results obtained by the VSSP and the commercial

software package showed the new criterion to be comparable to those

commonly in use. The new criterion also had the advantage of not

requiring a subjectively determined stopping criteria for selecting the

significant control variables, unlike some of the other criterion in use

today.

The recommendations made from this study involved further work on

the VSSP and additional experimentation which can be performed to extend

the usefulness of the new criterion. Several suggestions for

enhancements to the VSSP, primarily in regards to adding additional

evaluation procedures and increasing program efficiency, were noted.

There is also much work remaining in regards to the new selection

criterion. One possibility mentioned, would be to see if the point

where further data provides no additional benefit to the evaluation,

could be analytically determined.
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COMPARISON OF SELECTION PROCEDURES
AND VALIDATION OF CRITERION USED IN

SELECTION OF SIGNIFICANT CONTROL VARIATES
OF A SIMULATION MODEL

Background

When dealing with computer simulations it is typically desirable to

have a general understanding of how the simulation inputs will affect

the final results. It is also desirable to be able to accurately

estimate the expected simulation response. Furthermore, if the

estimation of the response can be achieved with a subset of the

simulation inputs (variables), a variance reduction on the estimator of

the mean can also be realized. One way of achieving these goals is

through the identification of a good subset of control variates.

Control variates, also known as control variables, are variables which

have a significant covariance with the response of interest.

The development of a quick and easy method for identifying the

subset of significant control variates in a simulation model would

greatly decrease the time and effort required to gain insights into the

simulation. Identifying the significant control variates for a

simulation model can also enhance the process of preparing and

implementing an experimental design. It would eliminate the guesswork

in determining which variables to concentrate on in a subsequent

experimental design. This could also save computer time by identifying

a subset of the available control variates to work with, since the

standard experimental design requires 2k simulation runs to acquire

data, where k is the number of variables being tested.
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The need for research into this problem and several methods for

approaching it have been identified in current literature, but little

substantial work has yet been accomplished (Bauer, 1987:2).

Furthermore, Pritsker (1986:748) notes that even though theoretical

development of control variates has proceeded, little practical

application has been reported.

Specific Problem

The purpose of this thesis was to compare selection procedures for

selecting the significant control variates of a simulation model and to

validate the selection criterion used.

The scope of this thesis was confined to revising and adding new

procedures to previously written software for identifying the

significant control variates of a simulation model and applying the

software to selected data sets. The data was also evaluated using

commercial software and additional selection criteria. The results were

then used to compare the selection procedures employed and to validate

the selection criterion.

Sub-objectives

In order to solve the specific problem the following sub-objectives

or steps were accomplished. The first sub-objective was to revise and

incorporate new procedures into existing software for evaluating

simulation output and identifying the significant control variates.

The second sub-objective was to test the revised software on

several sets of simulation model output with known responses,

significant control variates, and covariances between the control
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variates. This output is referred to as the control data,'output in

later text.

The third sub-objective was to compare the sets of sigrnificant

control variates identified by the revised software with each other and

with those known for the control data/output.

The fourth sub-objective was to use the revised software to

identify the significant control variates of an untested simulation

model. This simulation model is referred to as the test model or data

generation model in later text.

And the fifth sub-objective was to compare the selected control

variates with variable subsets selected using commercially available

software and various other selection criteria.

General Methodology

For each of the sub-objectives outlined above, there were

associated sets of methods and equipment required to accomplish them.

Accomplishment of the first sub-objective, to revise and incorporate new

procedures into the existing software for evaluating simulation output

and identifying the significant control variates, necessitated a two-

fold approach. The first approach involved revising existing software

previously developed by Bauer (1989B). The basis for the software was

an evaluation of all possible com'!nations (enumerated subsets) of the

control variates involved. To successfully perform this task required a

thorough understanding of the underlying logic and statistical concepts

on which the software was based. The next step was the actual revision

of the existing software with the goals of increasing generality and

user-friendliness of the software.
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The second approach to meeting this sub-objective dealt with adding

a new routine to the revised software based on a stepwise evaluation

procedure and the same statistical accept/reject criterion as the

enumerated subset routine. Again, study was necessary to understand the

stepwise procedure and construct the logic for implementation. When

that step was completed, the actual stepwise ?rocedure software was

written, debugged, and incorporated into the overall revised program.

The resulting software product is referred to as the Variable Subset

Selection Program (VSSP) in later text.

The second sub-objective, test the Variable Subset Selection

Program on several sets of simulation model output with known responses,

significant control variates, and covariances between the control

variates, was completed as follows. The first step was to obtain

data/output with these characteristics. Next, this data/output was

evaluated using the Variable Subset Selection Program. The data/output

was evaluated using both the enumerated subsets and stepwise procedures

incorporated into the program. The end result of this sub-objective was

a single subset of control variables derived using each of the selection

procedures.

The third sub-objective, compare the sets of significant control

variates identified by the Variable Subset Selection Program with each

other and with those known for the control data/output, was

straightforward and involved answering a series of questions. Were

there any differences in the number of control variates identified as

significant? Were there any differences in the specific control

variates identified as significant?
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The fourth sub-objective, use the Variable Subset Selection Program

to identify the significant control variates of an untested simulation

model, was completed as follows. The first step was to obtain a

simulation model for evaluation. Next, the simulation model was run on

the AFIT VMS computer system to create the output data to use as input

data for the Variable Subset Selection Program. And finally, the

Variable Subset Selection Program evaluated the model output and a

subset of the significant control variates was selected. The difference

between the data/output derived from this model and the data/output used

in sub-objective two is that the significant control variates had not

been previously determined.

The fifth and final sub-objective, compare the selected control

variates with variable subsets selected using commercially available

software and various other selection criteria, was accomplished as

follows. First, the SAS statistical package, installed on the AFIT VMS

system, was selected as representative of commercially available

software. Next, the SAS procedures for Enumerated Subsets, and Stepwise

(using Forward Selection, Backward Selection, and R2 Maximization [MAXR]

options) evaluation was applied to the data/output of the untested

simulation model. And finally, the results obtained using SAS were

compared to those obtained using the Variable Subset Selection Program.

The primary purpose of this sub-objective was to validate the criterion

used by the VSSP and demonstrate It will provide comparable results.

Thesis Organization and Development

A review of literature relevant to this thesis is presented in
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Chapter II. The literature review covers the topic of control variates

and their theoretical development. Also reviewed are the common

selection criteria and selection procedures in use today, and the

theoretical development of a new selection criterion.

In Chapter III the detailed methodology used in approaching and

completing this thesis is covered. Then, the results of the research

are presented and discussed in Chapter IV. And finally, the conclusions

and recommendations reached, after evaluating the data, are given in

Chapter V.
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II. LITERATURE REVIEW

The following discussion is a review of the literature that has

relevance to this thesis topic.

Variance Reduction Techniques

The need for some form of Variance Reduction Technique becomes

apparent when it is understood that simulation is an experimental

technique, for analyzing systems which usually involve the use of

stochastic processes (Tomick,1988:1.7). Since stochastic processes are

*a collection of random variables' (Ross, 1985:72), then the output from

a simulation experiment is also a random variable. Thus, the response

of interest is only an estimate of the true value. From Pritsker

(1986:742), *the variance of the sample mean is a derived measure of the

reliability that can be predicted if a simulation experiment is

repeatedly performed'. Pritsker also states that "Variance Reduction

Techniques (VRTs) are methods that attempt to reduce the estimated

values of variance through the setting of special conditions or through

the use of prior information.'

In a survey of Variance Reduction Techniques (VRTs), performed by

Wilson (1984:280), VRTs are divided into two categories: correlation

methods, and importance methods. His paper discusses three correlation

methods (common random numbers, antithetic variates, and control

variates) and four importance methods (importance sampling, conditional

Monte Carlo, stratified sampling, and systematic sampling).

The basic difference between the two categories is the underlying
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principle of the methods. The correlation methods increase the

efficiency of the simulation by exploiting linear correlations among the

simulation responses and input variables. The importance methods

achieve variance reduction by concentrating on prior knowledge of the

input domain.

Of the VRT methods discussed by Wilson, this thesis concentrates on

the use of control variates. The rationale for this decision were two-

fold. First, this is a promising technique which can provide valuable

insights into the problem, if even to identify a lack of correlation

between the inputs (i.e. control variates) and responses. And second,

even though theoretical development has been proceeding, not much has

been done in the way of practical applications. Further information on

this method follows.

Control Variates

The method of control variates, also known as control variables, is

one of the correlation methods mentioned previously. Basically, *.. the

control variates technique uses regression methods to exploit any

inherent correlation between an output and a selected random variable

vector with known mean that is observed on each run* (Wilson, 1984:280).

The remainder of the discussion on control variates will cover the

types of control variates, the theory behind the concept of control

variates, and a summary of recent work accomplished on this topic.

Types of Control Variates. Law and Kelton (1982:359) define two

types of control variates. The two types are internal, or concomitant,

control variates, and external control variates. The first type of

control variate addressed is the internal control variate. Internal
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control variates may be selected from among any of the input random

variables, or simple functions of them, since their means are known.

This view is further endorsed by Bauer (1989A:0-63), when he states 'any

input random variable is a candidate for a control variate." In

addition, analysis of the simulation's use of the input random variables

should identify at least the sign of the correlation with the output

random variable. An advantage of internal control variates is they must

typically be generated anyway during a simulation and therefore add

essentially nothing to the cost of running the simulation.

The second type of control variates, external control variates,

require the simultaneous simulation of a similar, but analytically

tractable, system using common random numbers. The corresponding output

from this similar simulation is then used as the control variate. By

analytically tractable, it is meant that the expected value of the

output variable can be calculated exactly. It is then hoped that the

similar nature of the tractable simulation will induce a correlation

between the two outputs, which can then be exploited. The major

disadvantage of this type of control variate is that it requires a

second simulation model and additional simulation runs, so it is not

costless.

Theory of Control Variates. To restate, 'the concept associated

with control variates is the identification of a variable, say X, that

has a positive covariance with the variable of interest, say Y

(Pritaker, 1986:748).

Unless noted otherwise, the following theory is based on a class

handout provided by Bauer (1989A).



Univariate Simulation Response with a Single Control. Assume

that Y is an unbiased estimator of the response of interest 0; that is,

E(Y) = e, where E(Y) is the expected value of Y. Let X be an input

random variable, selected as the control variate. It is further assumed

that X has a known expected value of ux and is highly correlated with Y.

Then, for any constant b (known as the control coefficient), the

controlled estimator Y(b), given by Eq (1), is unbiased for 0.

Y(b) = Y - b(X - ux) (1)

Then the variance of Y(b) is

Var[Y(b)] = Var(Y) + b2Var( - 2bCov(Y,X) (2)

From review of Eq (2), it is readily apparent that a variance reduction

can be achieved if

2bCov(Y,X) > b2Var(X) (3)

So, if the condition of Eq (3) is met, then the controlled estimator

will have a smaller variance then the uncontrolled estimator. It is

also apparent that if the variables X and Y are independent, in which

case Cov(Y,X) = 0, then no improvement over the uncontrolled estimator

is possible. Next, with the application of some calculus to Eq (2), the

optimal control coefficient, Z, for which the variance of Y(b) is a

minimum, is given by

A= Cov(Y,X)/Var(X) (4)

Substituting Eq (4) into Eq (1) leads to Eq (5) which gives the optimal

10



controlled estimator Y(B)

Y(A) = Y - [Cov(Y,X)/Var(X)] * (X - ux )  (5)

And substituting Eq (4) into Eq (2) yields the corresponding minimum

variance for Y(2) of

Var[Y(2)] = (- pxy ) 2 Var(Y) (6)

where PXy is the correlation coefficient between X and Y. Therefore as

the absolute value of pXy tends to its maximum value of one, the

variance of Y(2) decreases.

For the next step, let e be denoted by uy. Then the average of the

controlled observations Y1 , for I = 1 to K, is an unbiased point

estimator of uy. This estimator is represented by Eq (7).

K
Y(() = (/K) ,T Yi(e) (7)

1=1

where K is the sample size and

Yi- ) 8(Yi -{Xi - ux) (8)

Typically, the optimal value 2 is unknown and must be estimated.

However, 8 can be estimated as follows:

An intuitive estimate of 9 replaces the right-hand side of Eq (4)
with the appropriate sample quantities. This solution turns out to
be the least squares solution for S. When the assumption of joint
normality between Y and X is made, then the least squares solution
is also the maximum likelihood solution. (Bauer, 1987:6)

So the following equation provides an estimate of 8.

K K
a £ (Yi - )*(X i - X )/  (Xi - X)2  (9)

11



where

K

Y Z Yi/K (10)
i=l

and

K: Xi/K (11)
i~l

The point estimate of uy is

Y(c) Y - 8(X - ux) (12)

Then, the variance of the point estimator is given by

Var[Y(B)] = Var[Y(B)J/K (13)

where

2Var[Y(a)] = (1-pXy )*Var(Y) (14)

Bauer (1987:6) provides the derivation of the interval estimate

through the application of regression theory and assuming that Y and X

are jointly normal random variables. The resulting 100(1-a)Z confidence

interval is given by

Y(O) ± tK-2(1-a/2)*(Var[Y(3)]*sll) (15)

where

K 2
ilI = Z (Xi - Ux) 2/KZ (Xi _ i)2 (16)

icl iml

tX2 is the Student's t-distribution with K-2 degrees of freedom, and

12



a* is the desired significance level.

Since A is estimated, the variance reduction achieved is smaller

then could have been obtained had the optimal control coefficient been

known. This loss of variance reduction is quantified as the Loss Factor

(LF). The loss factor is defined as 'the ratio of the variance of the

estimator of uy when the optimal control coefficient is not known to the

variance of the estimator when the coefficient is known* (Bauer,

1987:9). Bauer (1987:10) provides the derivation of the loss factor,

which reduces to

LF = (K-2)/(K-Q-2) (17)

where

Q = the number of controls

K = the number of independent replications

Furthermore, the 'loss factor acts as a multiplier to the minimum

variance ratio (MVR)" (Bauer, 1987:10), which is given by

MVR = Var[Y(A)J/Var(Y) (18)

The MVR represents the possible variance reduction when the optimal

control coefficient is known. Multiplying Eq (17) and Eq (18) together

leads to the variance ratio (VR). The VR represents the possible

variance reduction when A is estimated.

VR = LF * MVR (19)

Univariate Simulation Response with Multiple Controls.

Kleiinen (1974:151) addresses the extension of theory to multiple

control variates. Also, Bauer provides a summary of 'the development

13



presented by Lavenberg and Welch (1981) for simulation output analysis

based on independent replications, batch means, and regenerative

analysis' (Bauer, 1987: 11).

2 ~
Let Y be the univariate response with variance vy , X be the Qxl

vector of controls, vxy be the Qxl vector of covariances between Y and

X, and Ex be the QxQ covariance matrix of the controls. Then rewriting

Eq (12) with multiple controls leads to

S (X - u,) (20)

where 9, X, and ux are Qxl vectors. The vector of optimal control

coefficients is given by

= Ex vxy (21)

Since the covariance matrices are usually unknown, A can be estimated by

substituting the sample values of E. and vxy into Eq (21). This leads

to the following equation:

A = Sx Sxy (22)

where Sx  is the inverse of the QxQ sample covariance matrix of the

controls, and Sxy is the Qxl vector of sample covarlances between the

univariate response and the vector of controls.

Assuming that Y and X have a Joint multivariate normal

distribution, then

- 2

)IQ+, ~ (23)
I X ux  Vxy E

14



Consequently, Y(i) is unbiased for uy and an exact 100(1-a)% confidence

interval is given by

Y(A) - tK-Q-1(1-a/2)D*Syx (24)

where

D ) - + (K-I)-(X - ux)TS x X -u x ) (25)

2 -1 2 _;T- -1--i;Syx (K-Q-1) (K-l)(Sy x -y S S Sxy) (26)

tK-Q-1 is the Student's t-distribution with (K-Q-1) degrees of freedom,

2
and S.y is the sample variance of Y (Bauer et al, 1988:3).

Multiple Simulation Responses with Multiple Controls. Bauer,

Venkatraman, and Wilson (1987:334) provide the necessary theoretical

structure for handling the case of P response variables and Q control

variates. When dealing with multiple variables, Y is a Pxl vector of

response variables, ; is a PxQ matrix of control coefficients, and S is

the sample covariance matrix of the response vector. Assuming that Y

and X have a joint multivariate normal distribution, then

Y NQ 11u y E' y Eyx
+ . . . .(27)
XUx Exy Ex

Consequently, Y(A) is an unbiased estimator of uy and an exact 100(1-

a/2)% confidence ellipsoid for Uy is given by

[(Y y] [Y()-Uyl P(K-Q-l)(K-P-Q)' DF(1-a;P,K-P-Q) (28)

where

2 -1-1 - IF1D K- + (K-1) (X - u,) x-(X - ux) (29)

15



Syx  = (K-Q-I) (K-l)(Sy YxSx Sxy )  (30)

and F(l-a;nl,n 2) is the F-distribution with n, and n2 degrees of freedom

(Bauer et al, 1987:335).

'The advantage of the above approach over selecting separate

controls for each response is the capability to form a joint confidence

region for the response vector, rather than being limited to univariate

confidence intervals' (Tomick, 1988:2.10).

Selection of Significant Control Variates

Neter states that *One of the most difficult problems in regression

analysis often is the selection of the set of independent variables to

be employed in the model* (1983:417). Regardless of the problem

involved, there are several reasons to restrict the number of variables

used in a model: (I) A model with a large number of variables can be

expensive to maintain, (2) Models with a limited number of variables are

easier to analyze and understand, arid (3) The presence of many highly

intercorrelated variables may add little to the predictive power of the

model, detracting from the model's descriptive abilities and increasing

the problem of roundoff error (Neter, et al; 1983:418).

The selection of the significant control variates depends primarily

on the selection criteria and selection procedure uzed. The selection

criteria determines the relative significance of a regression variable

(control variate) and this may vary as the criteria varies. The type of

selection procedure has an effect on whether the subset(s) of control

variates chosen is the *best* subset or is a "near-best" subset.

Selection Criteria. The most common selection criteria in use

16



2 2today and which are reviewed here, are Rp, Ra , and Cp. In addition, a

new selection criteria, BCp, is also presented. Any of these selection

criteria can be used for selecting one or more variable subsets.

In the discussion of each criteria, the following notation is used.

P is the number of potential parameters. The intercept term, got counts

as one parameter, so there are P-1 potential X variables (Xl,... ,Xp-l).

p is the number of parameters present in a subset, so any subset

regression model contains p-i X variables. And n is the number of

observations.

The R2 Criteria. R2 is based on the coefficient of multiple

determination R2 , for a subset of size p, and is defined as:

2

Rp = 1 - (SSEp / SSTO) (31)

where

SSE = Error sum of squares for a parameter subset of size p.
SST8 = Total sum of squares for y.

SSTO is equivalent to SSE, which is the regression model with only an

intercept term. SSTO remains constant for each subset evaluated, so as

2
p increases, R2 increases. This occurs since SSEp can not increase as

2

additional variables are added to the model. Consequently, Rp reaches a

maximum when all P-i variables enter the regression model. Therefore

2
the intent is not to maximize Rp, but to find a point where adding

2
additional variables to the model does not increase Rp significantly.

'Clearly, the determination of where diminishing returns sets in is a

judgmental one* (Neter, et al; 1983:422).

The R Criteria. The adjusted coefficient of multiple

2 2determination, Ra, is very similar to Ep, and is defined as:
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2
Ra = I - ((n-1/n-p)*(SSEp/SSTO)) (32)

2However, unlike R , this criterion 'takes the number of parameters in

the model into account through the degrees of freedom' (Neter, et al;

2
1983:424). Therefore, while seeking the maximum value of Ra , it is

possible for this value to decrease as p increases if the reduction in

SSEp is too small to offset the loss of a degree of freedom.

The C Criteria. The C criteria is based on minimizing the

total mean squared error of the n fitted values for each of the various

subset regression models. C is defined as:

Cp = (SSEp / MSE(X1 ,... ,Xp-l)) - (n - 2 *p) (33)

where

MSE(X 1, .. ,Xp_1) = mean squared error of the model with all P
parameters.

The above equation assumes that the model which includes all P

parameters provides an unbiased estimate of the variance. In the event

the model used has substantial bias, it may be best to expand the set of

potential variables to eliminate the bias.

In using the Cp criterion, identification of an appropriate subset

of X variables is based on: (1) A small value of Cp, and (2) A Cp value

near p. When plotting C p vs. p, models with little bias will fall near

the line Cp = p, and models with significant bias will be substantially

above the line.

The BCp Criteria. The BCp, or Best Controls, criteria is a

new criteria developed by Bauer and Wilson (1990). Unless otherwise
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noted, the following discussion is based on their paper.

Development of the selection criteria is presented for two cases.

The first case is where the covariance matrix, of variables and

responses, is estimated. The second case is where the covariance matrix

is known.

Before proceeding, the *best' subset of variables is defined as

that subset which produces a confidence region of minimum expected

volume. Consequently, the selection criteria is designed to identify

which subset of variables will produce this result.

Nomenclature. Let Y = (YI .... ,Yp)' denote a column

vector of p responses generated on a single run of a simulation model

whose mean response uy = E(Y) is to be estimated. Furthermore, let C =

(C1,... Cq)' denote a column vector of q concomitant control variates

with known mean uc = E(C) and let b denote a fixed (p x q) matrix of

control coefficients, then the controlled response

Y(b) = Y - b(C - uc) (34)

is an unbiased estimator of uy whose dispersion can be minimized by the

appropriate choice of b. Let Ey, Ec, and Eyc respectively denote the

covariance matrices of Y, C, and between Y and C; then

Ey = Cov(Y) = E[(Y - Uy)(Y - uy)'], (35)

Ec = Cov(C) = E[(C - uc)(C - uc)'], (36)
and Eyc = Cov(Y,C) = E[(Y - Uy)(C - uc)']. (37)

And then, in terms of these quantities, the conditional covariance

matrix of Y given C = c is
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Ey:c 2 Cov(Y:C = c) = Ey- Eyc - EycEc yEc (38)

for every c which is an element of Rq (i.e. ctRq).

Rubinstein and Marcus (1985) showed that the generalized variance of

Y(b) is minimized by the optimal matrix of control coefficients

- - c-1(9
A = EycE (39)

Typically, Eyc is unknown so A must be estimated. Let k denote the

number of independent replications of the simulation to be performed;

and for J = 1,...,k, let (Yj,Cj) denote the results observed on the Jth

run. Then, in terms of the statistics

k
: (1/k) Z Yj, (40)

j=1

k
Sy = (1/(k-l)) Z (Yj - Y)(YJ Y)', (41)

j=1

k
= (1/k) Z Cj, (42)

J=l

k
Sc = (1/(k-1)) Z (Cj - C)(Cj - C)', (43)

J1l

and
k

Syc  (1/(k-l)) Z (Yj - Y)(CJ - C)'; (44)
1=1

the sample analogue of B is

a SycSc (45)

t h Z ~
Thus the J controlled response is estimated as Yj(8) Yj- A(Cj - uc)

for J = 1,...,k; and the overall controlled point estimator of Uy is
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Sk z z
Y () = (1/k) E Yj(8) = Y - 8(a - uc) (46)

j=l

Bauer and Wilson (1990:4) also state that "In large scale

simulation experiments, frequently the responses and the controls are

jointly normal because these statistics are simultaneously accumulated

over the duration of each run and thus are subject to a central-limit

effect;... Thus it is reasonable to assume that Y and C jointly possess

a multivariate normal distribution.' Thus,

Np+q ,Ey 1y)

C1 uc  Ecy Ec

with det(EY) 0 0 and det(Ec) 0 0, where uc is known but Ey, Eyc, and

possibly Ec are unknown. Applying the basic results of Rao (1967) in this

situation, Bauer and Wilson then compute a confidence ellipsoid for uy

as follows. Let

T (u) = [Yi()-uJ'[d'dEy:cJ [Y(a)-u] (48)

for every u which is an element of Rp , where

(C -C)'

M = d = (l/k)lk - M(M'M) -(C - tz), (49)

(Ck C)'

Ey:c = (k- / k-q-1)(Sy - SycS Sc, (50)

and let lk denote a k-dimensional column vector of ones. Conditioned on

the values of the controls (Cj:J = 1... ,k) observed across all k runs,

2 2T (uy) has Hotelling's T -distribution with k-q-1 degrees of freedom;
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therfore an exact unconditional 100(l-a)Z confidence ellipsoid for uy is

M(q;k,p,a) = ( RP:(T2(u) / k-q-1) * (k-q-p / p)

j Fl-a(P,k-q-p)), (51)

where Fl.a(P,k-q-p) is the quantile of order 1-a for an F-distribution

with p and k-q-p degrees of freedom.

Selection Criteria for Estimated Covariance Matrix.

Given the replication count k, the p-dimensional estimand uy, and the

confidence coefficient 'a*, the goal is to select a subset of controls

from a set of q control-variate candidates such that the resulting

controlled confidence-region estimator for uy analogous to Eq (51) is,

in some sense, as 'small' and as 'stable' as possible. Bauer and Wilson

formulate such an estimator with some additional notation. Given a

nonnegative integer r representing the number of control-variate

candidates currently under consideration, let u(q,r) = q!/[r!(q-r)l] be

the number of distinct control-variate subsets of size r. Then, for r =

0,...,q and h = 1,...,u(q,r) let I(h,r) denote the h distinct subset

of size r from the set (1,...,q). Furthermore, on the jth run of the

simulation model, let Cj(h,r) denote the r-dimensional vector of

controls corresponding to the index-set I(h,r)

Cj(h,r) = [C(ilj) ,... ,C(irj)]', (52)

where iI ( ... < ir and (11,... ir ) = I(h,r).

Similarly, let Ey:c(hr), A(h,r), Y([(h,r)], d(h,r), and Ey:c(h,r)

respectively denote the analogues of Eqs (38), (45), (46), (49), and

(50) when the control vector C(h,r) defined by I(h,r) is used to compute
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the controlled estimator of u y. Corresponding to Eq (48) , Bauer and

Wilson then derive

T (u,h,r) =(iYEi(h,r)) -u)'Ed'(h,r)d(h 1r)Ey~c(h,r)J *

(ifg(h,r)] -u); (53)

and the exact 100(1-a)% confidence ellipsoid for U. analogous to Eq (51)

as

M(h,r;k,p,a) = fut:EP:(T (u,h,r) / k-r-l) * (k-r-p /p)

Then the size of the confidence region is calculated by

Z 1/2
V(h,r;k,p,a) =(tEy:,(h,r)l / (p/2)0(p/2))*

([d'(h,r)d(h,r)]Bpi*p*(k-r-l / k-r-p)

Fi-a(p,k-rp)) p/2 (55)

where 0, for this and following equations, denotes the Gamma function.

Also the mean volume of the confidence region, Eq (54), is given by

E[V(h,r;k,p,a)] = w(h,r;k,p,a) ([G(k/2)3 / / G[(k-p)/2]), (56)

where

w(h,r;k,p~a) = 1/2 /~hr)0k/) (p/2)G(p/2))

((I~y~~h~r)I~kp/2

(2*pl*p*Fi..a(p,krp)/ k(k-r-p)J] 2  (57)

And the mean square volume of the confidence region, Eq (54), is

EIV 2(h,r;k,p,a)J = (w 2(h,r;k,p,a) / G[(k-2p)/2J)

p
17 [ (k-r-i) /(k-r-2i) 1. (58)
i=1
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Although alternative expressions are available for the mean volume and

mean square volume, Bauer and Wilson believe their equations (56) and

(58) are easier to use from both a mathematical and computational

standpoint.

In the case of a univariate response, Nelson (1989) and Schmeiser

(1982) define the standard measures of confidence-interval stability as

the standard deviation (SD) and coefficient of variation (CV) of the

confidence-interval half-length; and in the case of a multivariate

response, the corresponding stability measures, based on the confidence-

region volume of Eq (55), are

SD[V(h,r;k,p,a)] = w(h,r;k,p,a) ((1 / G[(k-2p)/2]) *

p 21/
]7 [ (k-r-i) / (k-r-2i) j - (G(k/2) / G E (k-p) /2]) (59)
i=l

and

CV(V(h,r;k,p,a)] = ((G2 [(k-p)12] / G(k/2)G[(k-2p)/2]) *

p 1/2
17 ((k-r-i) / (k-r-2i) I - 1) (60)
i=l

Similar to Schmeiser's (1982) conclusions about the performance of

univariate confidence intervals, Bauer and Wilson (1990) observed that a

confidence-region estimator M(h,r;k,p,a) with large values of (59) or

(60) will give false signals about the intrinsic precision of the

associated point estimator Y(i(h,r)] in a large percentage of

applications. Bauer and Wilson then went on to state

Thus it seems reasonable to select a control vector C(h,r) that
yields a small value for (59) or (60). However, it would be
undesirable to base a control-variate selection criterion
eaclusively on the principle of minimizing (59) or (60) -- this
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principle fails to exclude confidence-region estimators that
achieve smaller values of the standard deviation or coefficient of
variation of the volume simply by increasing the mean volume. On
the other hand, it is also undesirable to base a control-variate
selection criterion exclusively on the principle of minimizing the
mean volume without attempting simultaneously to reduce or at least
bound the standard deviation or coefficient of variation of the
volume. (1990:6)

Bauer and Wilson wanted to ensure that the delivered confidence-

region estimator Eq (54) is both small and stable, so they proposed a

control-variate selection criterion based on the principle of minimizing

the mean square volume given by Eq (58). Since E[V 2(h,r;k,p,a)] )

E 2[V(h,r;k,p,a)] ) 0, it is clear that their selection criterion will

tend to reduce the mean volume at least indirectly; and in comparison to

a selection criterion based on minimization of the mean volume, Eq (56),

the selection criterion will yield smaller values of the standard

deviation Eq (59) and the coefficient of variation Eq (60) of the

confidence-interval volume; unless both procedures select exactly the

same control variates with probability one. In the event both

procedures do select the same control variates, the two selection

criteria yield identical results. Therefore their strategy of basing

the criterion on minimizing the mean square volume of the delivered

confidence-region estimator offers many of the advantages of selection

criteria based on minimizing the mean, standard deviation, or

coefficient of variation of the delivered volume without some of the

potential disadvantages of these latter selection criteria.

To implement the proposed selection criterion in practice, it is

necessary to minimize the mean square volume E[V 2(h,r;k,p,a)] as a

function of h and r, where r = 0,..., q and h = 1,...,u(q,r). Since

:Ey:c(h,r): is generally unknown, this quantity is replaced by the
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unbiased estimator

-~ p
{Ey:c(hr) J7 [(k-r-l)/(k-r-i)] (61)

i=l

to obtain the expression that must be minimized in selecting the final

subset of control variates

Z 2
MIN ((IEy:c(h,r)IG(k/2) / [(p/2)G(p/2)] G[(k-2p)/2])

* [(2*pi*p*Fla(P,k-r-p) / k(k-r-p)]P

P
* ]7 [(k-r-l)/(k-r-i)]) (62)

i~1

* *

subject to the constraints of O~r<q and 1(h~u(q,r). Let r and h

denote the optimal values of r and h in Eq (62). The delivered point

and confidence-region estimators of Uy are given by Y[B(h ,r )] and

* *
M(h ,r ;k,p,a), respectively. Thus Eq (62) gives the selection criteria

for the case where the covariance matrix is unknown.

Selection Criteria for Known Covariance Matrix. Often,

situations arise in discrete event simulation where the covariance

matrix of some set of control variates is known analytically or can be

readily evaluated by numerical methods. In this situation an
A

alternative to the estimator 2, for the unknown covariance matrix case,

for the optimal control coefficient vector 2 can be obtained by

replacing Sc , in Eq (45), with Ec to obtain

= Syc Ec (63)

In this case the controlled point estimator of uy has the form

Y(A) Z Y - S(0 uc). (64)
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Under the assumption of joint normality, Bauer (1987) proved that Y(a)

is an unbiased estimator of uy with covariance matrix

11 0

E = CovfY(f)]= (k-2 / k(k-l))Ey:c + (q+l / k(k-1))Ey. (65)

To derive an approximate 100(l-a)% confidence region for Uy

centered at Y(A), Bauer and Wilson began with an unbiased estimator of E

obtained by replacing the unknown covariances on the right-hand side of

Eq (65) with the corresponding sample covariances

(k-2 / k(k-l))Eyfc + (q+l / k(k-1))Ey. (66)

Provided that k >> q, Eq (66) implies that S is approximately

independent of Y(A) and possesses the p-dimensional central Wishart

distribution with k-q-1 degrees of freedom on the covariance matrix

Ey'c. Then

T u) = (Y(B) u)' (Y( a uJ (67)

an approximate Hotelling's T -_distribution with k-q-l degrees of freedom;

and in this case an approximate lO0(1-a)% confidence ellipsoid for uy is

given by

M(q;k,p,a) = (u RP:(2 (u) / k-q-l)(k-q-p / p)

j Fl-a(P,k-q-p)). (68)

Progress to this point parallels the development of equations (54)

through (62) that apply to the situation where the covariance matrix is

unknown. Bauer and Wilson then sought a control vector C(h,r) which

27



minimized the mean sqaure volume of the confidence ellipsoid. For r

0,...,q and h = 1,...,u(q,r), let i(h,r), Y[A(h,r)], E(h,r), and S(h,r)

respectively denote the analogues of Eqs 63), (64), (65), and (66) when

the control vector C(h,r) defined by the index-set I(h,r) is used to

compute the controlled estimator of U Y. Equation (67), then becomes

£ - -1£ -
T (u,h,r) = ([(h,r)] - u 1'[S(h,r)] (Y[2(b,r)] - u) (69)

for every u which is an element of RP; and the approximate 100(l-a)%

confidence ellipsoid for uy analogous to Eq (68) is

M(h,r;k,p,a) = (u*RP:(T (u,h,r) / k-r-l)(k-r-p / p)

< Fl-a(p,k-r-p)). (70)

Now the confidence region of Eq (70) has volume

V(h,r;k,p,a) = (IS(h,r)tI/' / (p/2)0(p/2))

[piup*(k-r-1) / k-r-p)FI.a(P,k-r-p) ] p / 2  (71)

Then, assuming S(h,r) approximately possesses the p-dimensional Wishart

distribution with k-r-1 degrees of freedom on the covariance matrix
A

E(h,r), Bauer and Wilson derived the following approximate expression

for the mean square volume

E[V2(h,r;k,p,a) - (IE(h,r)l / [(p/2)(lp/2)] )

p
(pi*p / k-r-p)FI-a(P,k-r-p)]Pj 7 (k-r-i). (72)

i=

To implement their proposed selection criterion for this new linear

control-variates estimation procedure, it is necessary to minimize Eq
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(72) as a function of h and r in a manner similar to that for Eq (62).

Since :S(h,r): is generally unknown, this quantity is replaced by the

unbiased estimator

p
IS(h,r) 1l [ (k-r-1)/(k-r-i)] (73)

I=I

as in Eq (61) to obtain the expression that must be minimized in

selecting the final subset of control variates

MIN ((IS(hr)I / [(p/2)G(p/2)] 2 )

(pil*p*(k-r-l)*Fl-a(P,k-r-p) / k-r-p]p} (74)

subject to the constraints of Or~q and 1<h~u(q,r). If r and h

denote the optimal values of r and h in Eq (74) then the delivered point
- £

and confidence-region estimators of uy are Y[B(h**,r )] and

(h ,r ;k,p,a), respectively. Thus Eq (74) gives the selection

criteria for the case where the covariance matrix is unknown.

Selection Procedures. There are a variety of procedures available

for selection of the best or near-best subset(s) of variables. The

procedures presented here are: enumerated subsets, stepwise regression,

forward selection and backward elimination, and regression by leaps and

bounds.

Each procedure has its own advantages and disadvantages. However,

the primary rationale for using selection procedures other than an

enumerated subsets, or all-possible subsets, approach is to reduce the

amount of computations required. Even for a moderate number of

variables the number of subsets to evaluate becomes 2P - 1, where P is

the number of variables being considered for the model. In addition,
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only the enumerated subsets approach will assure that the 'best'

subset(s) of variables will be selected, based on the selection criteria

used.

Enumerated Subsets. The enumerated subsets, or all-possible

subsets, approach is based on the following algorithm.

1) A regression model with no X variables (i.e. Yi = Bo + ei) is

evaluated using the selected criteria.

2) A series of regression models including each variable, individually,

are evaluated using the selected criteria.

3) A series of regression models including each possible pair of

variables are evaluated. This process continues, increasing the

number of variables in the model one at a time, until a model

incorporating all variables is reached. Again, each model is

evaluated using the selected criteria.

2 2
4) Based on the criteria employed (i.e. Rp, Ra, Cp, BCp, etc.), the

best, or k best, subset(s) are selected.

Stepwise Regression. The stepwise regression procedure is the

most common search method used when the number of variables involved

make an enumerated subsets approach infeasible.

Essentially, this search method develops a sequence of regression
models, at each step adding or deleting an X variable. The

criterion for adding or deleting an X variable can be stated

equivalently in terms of error sum of squares reduction,
coefficient of partial correlation, or F statistic. (Neter, et al;

1983:430)

For the search algorithm which follows, the F* statistic is used

for illustration of the concepts involved.

1) A regression model is fitted for each of the X variables. For each

I
regression model the F statistic is obtained as follows:
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Fk = MSR(Xk) / MSE(Xk) (75)

The X variable with the largest F value is selected to enter the

model. Provided the F* value exceeds a predetermined level required

to enter the model. If all of the F values are below the threshold

level, the search ends.

2) If an X variable, say X1 , enters the model, then all regression

models with two variables are fitted; where Xi is one of each pair.

For each regression model, the partial F test statistic (Neter, et

al; 1983:289) is obtained.

F; = MSR(Xk:X i) / MSE(Xi,X k) = (bk / S(bk) 
2  (76)

Where bk and s(bk) are the estimated regression coefficient of

variable k and the estimated variance of the estimated regression

coefficient of variable k, respectively. Again, the X variable with

the largest F* value enters the model, if it exceeds the threshold

level. Otherwise the procedure ends.

3) When more then one variable enters the model, it is then determined

if any of the variables in the model should be dropped. The F

values are derived as follows:

Fk = MSR(Xk:X i,.... ,Xj) / USE(Xk,Xi,... ,Xj) (77)

Where Xk is the variable being tested for possible elimination from

the model and Xi,... ,Xj are the other variables in the model. The X

variable with the smallest F* value is selected to exit the molel.

Provided the F* value falls below a predetermined level required to
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exit the model. If all of the F* values are above the threshold

level, all variables remain in the model.

4) Steps (2) and (3) are repeated until no further X variables can meet

the threshold levels to enter or exit the model. It should be noted

that as the number of variables in the model increases, the size of

the subsets evaluated in step (2) increases. Where each subset

evaluated includes the variables currently in the model, plus one of

the variables not in the model.

Forward Selection and Backward Elimination. Both forward

selection and backward elimination procedures are simplified variations

of the stepwise regression procedure. The forward selection procedure

differs from the stepwise regression procedure by not testing a

variable, once it has entered the model, for possible elimination from

the model.

The backward elimination procedure is the opposite of the forward

selection procedure. This procedure begins with the model containing

all the X variables. Then the F* value for each variable is calculated

and the variable with the smallest value identified. If this value is

less than the threshold level, it is dropped from the model. This

process continues until no further variables can be dropped from the

model.

From this overview of control variates theory and methods for

selecting significant variables, a methodology was developed for

proceeding with the work involved. This methodology is presented in the

following chapter.
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III. METHODOLOGY

The overall objective of this thesis was to develop software to

assist in identifying the significant control variables in a simulation

model. The software was to incorporate a newly developed selection

criteria in conjunction with several common selection procedures. After

this was accomplished, the objective moved to applying the software to a

simulation model and evaluating the results.

Selection and Preparation of Computer Code

The first step in proceeding was to select and prepare the

necessary computer code/software. The software specifically is the

Variable Subset Selection Program, the simulation model which provided

data to test it on, and software for processing the data collected from

the simulation model.

Variable Subset Selection Program. The Variable Subset Selection

Program was developed from a previously written program. Before the

software was ready for use, extensive revision and expansion of the code

was performed. The primary goals achieved in revising the software

dealt with increasing the ease of use of the software, and permitting

either manual or external file data entry. Prior to these revisions,

the program data had to be coded directly into the software before it

could be compiled and executed.

Expansion of the software dealt with the addition of a capability

to perform a stepwise regression procedure in conjunction with the new

selection criteria. This was in addition to the enumerated subsets
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procedure originally incorporated.

Data Generation Model. Additionally, a simulation model was

selected to generate data for testing the variable subset selection

software. It was decided to select a model which simulates the

operation of a Local Area Network (LAN) and the interaction of the

system peripherals. The network model, on which this simulation is

based, is commonly found in simulation journals and serves as a

practical benchmark for testing purposes.

The LAN simulation model consists of seven nodes and is illustrated

in Figure 3.1. Node 1 represents the terminals connected to the LAN

system. Commands to the LAN system are generated according to an

exponential distribution. The commands are received at node 2, which

serves as a delay buffer and simulates the possibility of all system

peripherals being busy and unable to accept new commands. Next the

commands move to node 3, which routes the command to a system

peripheral. The routing of a command from a node to any other node in

the system is based on probabilities contained in a probability matrix.

A command routed from node 3 can go to node 1, 4, 5, 6, or 7. The queue

capacity of nodes 4, 5, 6, and 7 is infinite and the queue discipline is

First-In-First-Out (FIFO). At nodes 4, 5, 6, and 7 the service times

are distributed exponentially. Once a command is through being serviced

by a peripheral unit, it returns to node 3, where it is routed to

another peripheral for further processing or sent to node 1. When a

command returns to node 1, the time it took to get through the system is

noted and the command terminated. The SLAM and associated FORTRAN code

for this simulation model, along with the following post-processing
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code, are provided in Appendix C.

The data collected using this model was related to the number of

commands through the system, average utilization and total service time

at each system node, number of departures from a node, and number of

departures from node 3 to the other system nodes. This data was then

processed for use by the Variable Subset Selection Program.

Data Post-Processing Software. After collection of output data

from the Data Generation Model, data post-processing was performed. The

purpose of this post-processing was to convert the control variate data

into the form of work and routing variables. These types of variables

are desirable because of the characteristics they possess. The desired

characteristics are a sample mean of zero and sample variance of one.

The post-processing software performed this conversion according to

the following equations

1/2 f(k,t)
Xk(t) = (f(k,t) / wk(f(t))) Z (Uj(k) - uk) / 9k  (78)

j~l

where

f(k,t) = number of service times that are finished at node k
during time period (O,t)

wk = relative frequency with which a customer visits node k
Uk(J) = the j-th service time at node k

uk = E[Uk(J)]

Sk = Var[Uk(J)]

and

N(t) -1/2
Xk Z £ [(Uk(J) - Pk(*)) / (N(t)(1 - Pk(M))Pk()) 1 ] (79)

j=l

for J= 1,...,S and N(t) > 0
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where

Pk(*) = probability of transition from node 3 to node k
Uk(j) = flag whethir or not transition j was to node k. If so,

then Uk(J)=l, otherwise it equals zero.
N(t) = total number of transitions from node 3 up to time t

S = total number of nodes in the LAN model.

Equation (78) applied to the work variables and Eq (79) to the routing

variables. Additional information on work variables can be found in

Lavenberg, et al (1982), and more information concerning routing

variables in Bauer (1987).

The Response Variables

Next, a response vector was chosen for the analysis. The response

chosen to form the response vector was the time it takes a command to

pass through the LAN system. The time through the system begins when

the command is issued at a terminal and ends when a command returns to

node 1, informing it that the command has been executed.

The Control Variables

Next, the control variables were chosen, to provide a pool of

variables for the Variable Subset Selection Program to select from.

The control variables chosen were the total service times accumulated at

nodes 1, 3, 4, 5, 6, and 7; and the number of departures from the CPU

(node 3) to nodes 1, 4, 5, 6, and 7 respectively. This provided a pool

of eleven variables.

The variables analogous to total service time at node 2, and number

of departures from the CPU to node 2 and node 3 were not used. These

variables were infeasible since their corresponding values were always

zero. This resulted from the probability matrix associated with moving
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from one node to another.

7L. selection of these variables also prov:ded a mix of work and

routing variables for the Variable Subset Selection Program to select

from. The service time variables became work variables, and the

departure variables became routing variables.

The Experimental Procedure

There were two distinct phases to the experimental procedure

employed in this thesis effort. The first phase involved testing the

Variable Subset Selection Program using data generated with known

covariances between the control variables and known significant control

variables. The second phase dealt with testing the Variable Subset

Selection Program on output from an untested simulation model and

evaluating this data/output using the VSSP and SAS software on the AFIT

VAX system.

Evaluation Using Known Data. The known data was previously derived

by Bauer and Wilson (1990) in testing of the original version of the

selection software. A series of Monte Carlo experiments were performed

to derive the data. Bauer and Wilson choose to use five control variate

candidates and two responses. Two of the five control variates were

constructed to be uncorrelated to the responses; therefore these control

variates acted as decoys. Bauer and Wilson extended Eq (47) by

partitioning the vector of control variates as C =[X' W'], where X' =

[C1 , C2 , C3] consists of the three effective control variates and W' 2

[C4 , C5] consists of the decoy control variates. This resulted in the

overall stochastic structure of
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Y Uy Ey Eyx  0

X N2+3+2  ux , Exy Ex  0 (80)

W Uw 0 0 Ew

where 0 is an appropriately dimensioned matrix of zeros. Three versions

of the covariance structure in Eq (78) were constructed. In all three

cases

1.0 0.3 1 0 0 1 an E. 101 (1
Ey=,E x = 0 1 0 , and (w = 81)

0.3 1.0 0 0 1 0 1

The cross-correlation matrix between the responses and effective control

variates was of the form

10oEYX 1 82)

The choices of a, b, and c for each case are summarized in Table 3.1.

Table 3.1 Cross-correlations in Eq (82)

I Case
Parameter I II III

a : 0.8 0.5 : 0.2

b 0.5 0.5 0.2
-----------

c 0.5 0.5 : 0.2

Bauer and Wilson (1990)

One thousand gets of data were then derived from the normal

distribution, Eq(80) for each case. Bauer and Wilson then evaluated the

resultant data sets at k = number of replications = 10 and m = number

of meta-experiments = 100, and k = 20 and m = 50 to obtain coverage and
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volume reduction percentages for the delivered confidence regions.

Once the Variable Subset Selection Program was ready and the

data sets obtained, evaluation was performed. Each data set was

evaluated for the same k and m values, used by Bauer and Wilson, using

both the enumerated subsets and stepwise procedures. In addition, for

this thesis, further evaluation of the original data was performed at k

= 50 and m = 20, and k = 1000 and m = 1. Again, evaluation was

performed using both enumerated subsets and stepwise procedures.

Evaluation Using Untested Simulation Model. This section outlines

the steps followed in generating the data, using the untested simulation

model, for this thesis project. In generating the data/output from the

untested simulation model, 1000 runs with different seeds for the random

number generators were performed. The data generated from each run of

the simulation was placed into an output file called "DGM.OP'. The

simulation model was run on the AFIT VAX system.

After the data/output was collected from the simulation model, the

data was converted into the appropriate work and routing variables using

the data post-processing software. As the work and routing variable

data was created, it was placed in an output file called *VSSPl.IN'.

Also, a datafile called "VSSPO.IN" was prepared which contained any

other information required by the Variable Subset Selection Program.

"VSSPO.IN" and "VSSPl.IN" then became data input files for the Variable

Subset Selection Program.

Next, the Variable Subset Selection Program was run using data

contained in the data input files "VSSPO.IN" and "VSSPI.IN'. The output

of the software was then placed in a file called "VSSP.OUT" and
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contained the selected subset(s) of the control variables, deemed to be

significant. After this point, the data evaluation phase occurred.

Data Evaluation Procedure

After the data had been generated and collected it then had to be

evaluated. For the results obtained using the known data, the

evaluation primarily consisted of comparing the results originally

derived by Bauer and Wilson were compared to those derived using the

VSSP. In addition, for results obtained from data runs beyond those

performed by Bauer and Wilson, the results were examined to see what

would happen to the results and if any noticeable trends would develop.

In regards to results obtained using the untested simulation model.

The primary evaluation was based on comparison of the subsets selected

as a result of each selection procedure employed, the BCp criterion

value for each resulting variable subset, and the estimated coverage and

variance reduction associated with the control variables selected.

In addition, further comparison was performed against results

derived using the SAS enumerated subsets and stepwise regression

procedures. This primarily served the purpose of validating the results

derived with the BCp criterion.

The results derived from all these procedures are summarized and

discussed in the following chapter.
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IV. RESULTS AND DISCUSSION

The results obtained from this effort are presented and discussed

according to phase of the experimental procedure in which they were

derived. The phases dealt with evaluation of the data/output with known

characteristics, and evaluation of data/output from the untested

simulation model.

Results From Known Data

The results of the Variable Subset Selection Program runs, using

the data/output with known characteristics, are presented in Tables 4.1,

4.2, 4.3, and 4.4 for the various combinations of k and m tested.

Examination of the results, using the data originally derived by

Bauer and Wilson (1990), reveals several items of interest. First, as

the number of replications increased, this had significant effects on

the results. The percentage coverage and percentage confidence volume

reduction figures stabilized as the number of replications increased.

Also, for each data case, these figures become uniform, regardless of

the evaluation method used and whether the covariances between the

control variables was estimated or known. Apparently, some asymptotic

point was reached where increasing the number of replications per meta-

experiment ceased to make a difference.

It was also noted that for the initial results, for k=lO and m=lO0,

the evaluations using the known covariance matrix had better coverage.

However, this advantage quickly disappeared as the number of

replications increased.
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Table 4.1 VSSP results for k = 10, m = 100, and a = 0.10

Z Coverage : z Vol Reduction
Evaluation Selection For Case i For Case

Method Criterion I 11 1I11 :1 11 111

Enumerated Eq (62) 1 78 76 1 69 1 96 1 83 74
Subsets -- - -

Eq (74) 94 88 1 81 83 75 72
*--------p------p--p-----I- ---- P

Eq (62) 77 79 71 1 96 83 74
Stepwise -- : - -

Eq (74) 9 93 88 1 81 1 83 75 71

Table 4.2 VSSP results for k = 20, m = 50, arid a = 0.10

% Coverage % % Vol Reduction
Evaluation Selection For Case I For Case

Method Criterion I II : III 1 I II I II

Enumerated Eq (62) 84 1 80 1 82 : 95 76 65
Subsets --- -- p---p

Eq (74) 82 84 :84 88 74 64:

Eq (62) 84 80 : 82 1 95 76 65
Stepwise ----------- ----- ----- ----- ----- ----- -----p:Stepwise p p -:p

Eq (74) 82 84 :84 :88 74 64

Next it was noticed that for the first two sets of results (k=10 &

m=100, and k=20 & m=50), the results between the known and estimated

covariance runs, appears to be converging. When the estimated

covariances were used, coverage started out low and vice versa when the

known covariances were used. However, later sets of results rebuked

this observation. It is not yet understood why this occurred.

Finally, it was found that the volume reduction achieved was

greater for data cases with greater covariances between the control

variables and responses. This becomes more pronounced as the number of

replications increase, but is still readily apparent even for a low
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number of replications. Conversely, the covariance structure of the

data/output had little, if any, impact on the coverage figures. This

result makes intuitive sense since as covariances increase, the

data/output becomes more tightly grouped; thus more data would fail

within the calculated confidence volume.

Table 4.3 VSSP results for k = 50, m = 20, and a = 0.10

% Coverage % Vol Reduction
Evaluation Selection For Case For Case

Method Criterion I :II III I : II III

Enumerated Eq (62) 75 75 75 95 76 61
Subsets

Eq (74) 75 70 75 92 74 60

Eq (62) 75 75 75 95 76 61
Stepwise -----------

Eq (74) 75 70 75 92 74 60
* - - -- - -SC - - - ---- - I---~ - I

Table 4.4 VSSP results for k 1000, m = 1, and a = 0.10

% Coverage % Vol Reduction
Evaluation Selection For Case For Case

Method Criterion I : II III I : II III

Enumerated Eq (62) 100 100 100 95 1 76 59
:Subsets -: -

Eq (74) 100 100 100 95 :76 59

Eq (62) 100 100 100 95 :76 59
Stepwise : - -

Eq (74) 100 100 : 100 : 95 76 59

Additionally, the variable subsets selected by each evaluation

method were compared for the various combinations of k and m tested.

The purpose of this was to identify if any trends developed. The

results are presented in Table 4.5.
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Table 4.5 Percentage Number of Different Variable Subsets
Selected; Comparison Between Enumerated Subsets and
Stepwise Procedures

k=10, m=100 k=20, m=50
Evaluation

Method Case Case

Enum. Subsets 5 : 7 4 0 2 0

Stepwise 3 : 3 4 0 2 2

k=50, m=20 k=1000, m=l
Evaluation

Method Case Case
I :1 II1: II1 I1:1 II 1II

- - -- - - ----- ---- -- -

Enum. Subsets 0 0 0 0 0 0

Stepwise 0 0 0 0 : 0 0

From review of the results, it was obvious that as the number of

replications per meta-experiment increased, both evaluation methods

selected the same subsets. This tends to validate the results found

earlier by reviewing the coverage and volume reduction figures. It is

reasonable to find that as the coverage and volume reduction figures

converge, the greater the similarity between the variable subsets

selected.

Results From Untested Simulation Model Data

The results derived from evaluating the data/output from the

untested simulation model are presented in Table 4.6. From comparing

the variable subsets selected by VSSP and SAS, several items were noted.

The most significant observation was that regardless of selection

criterion used, almost all variable subsets were identical. It should
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Table 4.6 Effects of various selection software and criterion on
selection of variable subsets

Software Evaluation : Selection : Criterion Variable Subset*
Package Method 1 Criterion Value Selected

Enumerated Eq (62) : 3.156511 Wl W5 W6 R1 R4 R5 R6

Subsets : R7
VSSP :--------4------4---

Stepwise Eq (62) : 3.156511 W1 W5 W6 RI R4 R5 R6
R7

R 2 0.306733 WI W5 W6 RI R4 R5 R6
R7

a 0.301137 Wl W5 W6 R1 R4 R5 R6
Enumerated R7
Subsets

C p : 9.011377 W3 W4 W5 W6 R1 R4 R5
R6 F7

S p 1.196549 Wi W5 W6 R1 R4 R5 R6
~R7

2 I0.306733 Wi W5 W6 R1 R4 R5 R6Rp
* : R7

Stepwise - -
7.062709 Wl W5 W6 RI R4 R5 R6: 

R7
SAS * -------.......

------ 2 0.306733 WI W5 W6 Ri R4 R5 R6

Stepwise P R7
(Forward
Selection) : p 7.062709 Wi W5 W6 R1 R4 R5 R6

R7
* I- - - - -I- - - - -.-- - - -I

R 2 0.306769 1 Wi W3 W4 W5 Ri R4 R5
Stepwise R6R7
(Backward - -
Selection) Cp 9.011541 WI W3 W4 W5 R1 R4 R5

R6 R7

R 2 0.306733 WI W5 We Ri R4 R5 R6
p

Stepwise R7
(MAXR) -------- - -

Cp 9.011541 1 WI W4 W5 We RI R4 R5
R6 R7

= W(i) is Work variable i, and R(i) is Routing variable i

** =Using a 90% level of significance (i.e. alpha = 0.10)
Using the standard SAS default significance criterions
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also be noted that of all the other selection criterion used in this

comparison, Sp is the most closely related to BCp and selected the same

2
variable subset. Also, the Ra criterion selected the same variable

subset.

Other selection criterion used also provided comparable results.

2
The R criterion selected the same or nearly same variable subset

depending on the point at which further improvement was discarded. If

improvement required to be significant was set to ) 0.001 then the same

variable subset was selected. However, if it was set to ) 0.01 then a

subset without variable Ri, was selected. As noted in the literature

review, Chapter II, the level of significant improvement is highly

subjective.

For the Cp criterion, only with the enumerated subsets procedure

was the best variable subset found. In other procedures, where this

selection criterion was available, a near-best variable subset was

selected. Regardless of these differences, each variable subset

selected contained one more variable than that selected using BCp, and

differed only slightly.

There are two final comments on the SAS derived results. First,

not all selection criterion were available for all of the SAS procedures

employed. And second, the variable subset selected by any procedure, may

depend on the level of significance used. The default values for the

SAS procedures, used in this evaluation, were not all met to the same

level as used in the VSSP. This may account for the minor differences

noted.

The conclusions drawn from these results are summarized in the
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following chapter. This chapter also outlines any recommendations for

further study and research in this area.
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V. CONCLUSIONS AND RECOMMENDATIONS

From the work entailed in this thesis, the following conclusions

and recommendations were derived.

Conclusions

From review and evaluation of the results, the following

conclusions were drawn in regards to the Variable Subset Selection

Program and the performance of the BCp against other common criterion.

The selection procedures and criterion incorporated into the Variable

Subset Selection Program performed as well as expected. The results

obtained by either selection procedure, enumerated subsets or stepwise

(forward selection), are comparable and contain minimal variations, even

when applied to a small number of replications. In addition, any

differences between the results derived by either selection procedure

decreases, as the number of replications increase, until there is no

difference. It was also concluded that the known covariances between

the controls only has a significant effect on the coverage and volume

reduction figures when applied to a small number of replications.

However, this advantage rapidly disappears as the number of replications

increase.

In regards to the performance of the BCp criterion in comparison to

other criterion in common use today; the BCp criterion provides

reasonable and comparable results. Thus the Variable Subset Selection

Program appears to be a reasonable substitute for use by organizations

requiring limited evaluation of this sort, where use of a commercial

package may be infeasible. This infeasibility may take several forms,
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notably expense or cost-effectiveness, limited access to existing

software, or time involved in learning to use the software effectively.

Recommendations

The recommendations derived from this study fall into two

categories; 1) further improvements to the VSSP, and 2) further

study/experimentation involving the BCp criterion. There are numerous

improvements which can be made to the VSSP. First and foremost is to

implement a more efficient stepwise (forward selection) procedure.

Primarily this entails developing a satisfactory scheme for saving prior

pivots of the 'A' matrix so subsequent pivots are performed on the

correct matrix. The current implementation performs a true stepwise

(forward selection) search, but reverts to performing all pivots on each

subset evaluated. This is inefficient and slows down program execution.

The main benefit to be derived from this recommendation would be

increased speed of evaluation.

Next, would be the implementation of additional selection

procedures, notably a true stepwise procedure would be desirable. Other

selection procedures as outlined in the Literature Review (Chapter 2)

are also viable candidates.

Another recommendation is to revise the VSSP into a more modular

and efficient form. This can be accomplished by breaking up the main

program into subroutines. Each selection procedure implemented could be

made a separate subroutine called by the main program when needed.

Also, eliminate duplicate variables where possible without affecting

program execution. And finally, arrays and matrices shared by other

program subroutines could be incorporated into common blocks. This will
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eliminate creation of duplicate constructs and cut down on the amount of

memory required to run the program.

Additionally, there are several recommendations regarding further

study, analysis, and research using the VSSP and the BCp criterion. One

recommendation is to evaluate output of a simulation model, using the

VSSP, to obtain the single best variable subset. This could be done

using both the enumerated and stepwise procedures to check for

consistency in the results. Next, run two experimental designs, one

using the variables selected by the VSSP and the second using all

variables in the original full set. Then evaluate the experimental

design results using similar selection procedures but based on other

2 2
selection criterion (i.e. Cp, R , Ra, etc.). Compare the final results

and evaluate the differences, if any. Does the variable subset selected

by the VSSP provide a good starting point for an experimental design?

Another recommendation is to evaluate a set of data while

increasing the number of replications, but holding the number of mete-

experiments steady. How does this affect the overall coverage and

volume reduction figures? Can any consistent trends be identified? The

VSSP does not require the use of all data in a datafile to be used in

execution.

And finally, experiment with data/output with known characteristics

(i.e. means of controls and responses, and covariances between controls

and responses), to find the point where the results converge across all

combinations of selection procedures and whether the covariances are

estimated or known. Then determine if this point can be arrived at

analytically. If so, this type of knowledge could prevent gathering
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more data than necessary for an optimal evaluation. This could also

help contain costs associated with gathering data. Additionally, this

may provide a means of assessing reliability of results, depending on

the amount of data available for the evaluation.
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APPENDIX A: FORTRAN Listing of Variable Subset Selection Program

C PROGRAM SELECT(INPUT,OUTPUT,TAPE7,TAPE5=INPUT,TAPE6=OUTPUT)

Ce

Cf
C * This program provides both an 'all possible regressions* f

C * (i.e. enumerated subsets) and a stepwise (forward selection)
C * approach to selecting the best subset of controls from a f

C * given candidate set. It assumes that a certain number of f

C * meta-experiments have been performed, each with the same f

C * number of replications. Once the optimal subset has been
C * identified, a confidence region is constructed about the mean f

C * vector for the responses. The corresponding coverage and f

C * volume reduction are then tallyed and subsequently summarized.
Ci *
C * This program can be run in two modes. The user can either f

C * estimate the covariance matrix of controls or incorporate
C * it directly. The program variable 'iknow" dictates which
C * option is in effect (see code below).
Ci *
C * The program can also be run in the 'best m" regressions mode.
C * ( Currently only configured for estimated covariance matrix f

C * of controls)
C * In other words it will compute the best m subsets of each f

C * possible subset size. This can be of interest if a single set f

C * of data is used.
Ci
Ci
C i PROGRAM PARAMETERS:
Cm

C i Z= Max # of candidate controls allowed
C f Z2 = Max * of responses allowed
C Z3 = Z1 + Z2 f

C f Z4 = Max # of best regressions which may be kept
C f (m in 'm best' as above)
Ci Z5 = 2*Zl
C f Z6 = Max # replications per meta experiment allowed f

C Z7 = Max • of meta experiments allowed
C Z8 = (Z3*(Z3+I))/2
C f MAX = Maximum number of storage locations in array A
C f for matrices created by Subroutine GAUSS.
Cf
C f CORRESPONDING PRIMARY VARIABLES, INITIALIZED BY USER:
Ci
C N MX = of candidate controls
C f NY = 0 of responses
Ci NVAR = NX + NY
C f KEEPERS = S of best regressions to be kept
C f (m in "m best" as above)
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C * KNX = 2**NX *

C * NUMREPS = * replications per meta experiment *

C * META = # of meta experiments *

Ci *
C * NOTE: *

C* U

C * IN SUBROUTINE COVER ZI AND Z2 IN THE PARAMETER *

Ci STATEMENT, MUST BE SET TO f

Ci ZI AND Z2, RESPECTIVELY, OF
Ci THE MAIN PROGRAM PARAMETER
Ci STATEMENT
Ci
C

PROGRAM SELECT
C
C
C i PROGRAM PARAMETERS AND VARIABLE INITIALIZATION
C
C

INTEGER ZI, Z2, Z3, Z4, Z5, Z6, Z7, Z8, MAX
C

PARAMETER (ZI=8, Z2=8, Z3=ZI+Z2, Z4=6, Z5=2*ZI)
PARAMETER (Z6=50, Z7=100, Z8=((Z3*(Z3+1)1/2))
PARAMETER (MAX=50)

C
COMMON /BLKI/ SIG, KK, IQQ, IP

C
CHARACTER TITLE*25, RESPONS(Z2)*25, CONTROL(Zl)*25
CHARACTER INFILE*25, OUTFILE*25, COVFILE*25
CHARACTER ANSWER, XFILE*25

C
INTEGER NK(Z3), MODELS(Z5,ZI), IBUFF(ZI), IX, KK, IP
INTEGER IH(Z3), ICOVER(4), ICTOT(4), NBR(6), IIN, IQQ
INTEGER NX, NY, NVAR, KEEPERS, XNX, NUMREPS, META
INTEGER IKNOW, IWRITE, METHOD, Il, 12, IZ, KP, K
INTEGER TMV, INDI(Z1+l), IND2(Zl+i), TIND(Z1+1)

C
REAL COVCV(ZI,Z1), VECMUC(Zl), CBAR(Z1), VECCBAR(ZI)
REAL FF(O:ZI), WXAREA(Z2), RSS(Z2,Z2), DUM(Z2)
REAL TARGET(Z2,Z2), VECYBAR(Z2), VECUY(Z2), YBAR(Z2)
REAL A(MAX,Z3,Z3), VCV(Z8), FULL(Z3,Z3)
REAL REGR(Z4,Zl,2), BUFF(Z4), BUFF2(Z4)
REAL VR(2),VOLRED(2),COVERAG(4), X(Z6,Z3), TEMP(Z3)
REAL XM(Z3), SUMDEV(2), SUMVU(2), 6-G

C
C
C * BRIEF PROGRAM INTRODUCTION AND INITIAL DATA INPUT/OUTPUT *

C * ROUTINE
C
C
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C m
C * PROGRAM INTRODUCTION
C *********I******************************

C
PRINT *, THIS IS THE VARIABLE SUBSET SELECTION PROGRAM'
PRINT *"
PRINT , THIS PROGRAM IS DESIGNED TO EVALUATE OUTPUT'
PRINT * FROM A SIMULATION MODEL AND DETERMINE THE OPTIMAL*
PRINT * SUBSET OF VARIABLES, BASED ON THE "BEST CONTROLS"'
PRINT ' CRITERION. YOU MAY CHOOSE EITHER AN ENUMERATED'
PRINT ' SUBSETS OR STEPWISE (FORWARD SELECTION) APPROACH.*
PRINT *"
PRINT '"

C
C u*******mi*********umi*******Nui******
C * DATA INPUT *
C **N**.*I*f*******

C
10 PRINT , *DO YOU WISH TO ENTER PROGRAM DATA MANUALLY OR BY"

PRINT , DATAFILE? ENTER M OR D:"
READ , ANSWER
IF (ANSWER.EQ.'D').OR.(ANSWER.EQ.'d')) THEN

PRINT , "ENTER NAME OF THE INPUT DATAFILE:
READ I, INFILE
OPEN(UNIT=1O, FILE=INFILE, STATUS='OLD')
READ(1O,*) NX, NY, KEEPERS, NUMREPS, META
READ(10,) IKNOW, IWBITE, METHOD
READ(1O,*) SIG
READ(10,*) (VECMUC(I),I=I,NX)
READ(0,.) (VECCBAR(I),I=1,NX)
READ(1O,*) (VECMUY(I),I=1,NY)
READ(10,) (VECYBAR(I),I=1,NY)
READ(10,*) TITLE
READ(1O,*) (CONTROL(I),I=1,NX)
READ(1O,*) (RESPONS(I),I=I,NY)
IF (IKNOW.EQ.1) THEN

READ(1O,*) COVFILE
IF (COVFILE.NE.INFILE) THEN

OPEN(UNIT=15, FILE=COVFILE, STATUS='OLD')
DO 15 I=1,NX

READ(15,) (COVCV(IJ),J=1,NX)
15 CONTINUE

CLOSE(15)
ELSE

DO 20 I=I,NX
READ(1O,*) (COVCV(I,J),J=I,NX)

20 CONTINUE
ENDIF

ENDIF
READ(1O,w) XFILE
OPEN(UNIT=20, FILE=XFILE, STATUS='OLD')

ELSE
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IF ((ANSWER.NE.'M').AND.(ANSWER.NE.'m')) THEN
PRINT , 'INVALID INPUT, TRY AGAIN.'
PRINT *,

GOTO 10
ENDIF
PRINT , *ENTER THE FOLLOWING VARIABLE VALUES:*
PRINT *,

PRINT *, INPUT I OF CANDIDATE CONTROLS (PROGRAM
PRINT *, LIMIT =,ZI,'):
READ *, NX
PRINT *, INPUT I OF RESPONSES (PROGRAM LIMIT = ",Z2,'):
READ ', NY
PRINT ', INPUT * OF BEST REGRESSIONS TO KEEP*
PRINT ', (PROGRAM LIMIT z ,Z4,'):
READ * KEEPERS
PRINT *, INPUT * OF REPLICATIONS PER META EXPERIMENT"
PRINT , (PROGRAM LIMIT = ,Z6,'):
READ , NUMREPS
PRINT *, INPUT * OF META EXPERIMENTS DESIRED
PRINT *, (PROGRAM LIMIT = ,Z7,'):
READ * META
PRINT *, INPUT WHETHER COVARIANCE MATRIX OF CONTROLS IS*
PRINT *, ESTIMATED (0), OR KNOWN (1):
READ , IKNOW
PRINT *, INPUT WHETHER YOU WANT THE META EXPERIMENT MODE
PRINT *, (0), OR THE BEST M REGRESSIONS MODE (1):
READ , IWRITE
PRINT *, INPUT WHETHER YOU WANT TO USE ENUMERATED SUBSETS*
PRINT *, (0), OR STEPWISE [FORWARD SELECTION] (1) METHOD:
READ , METHOD
PRINT *, INPUT LEVEL OF SIGNIFICANCE OF TEST (e.g.
PRINT ', 90% = 0.90):
READ * SIG
PRINT I, Ik;T THE KNOWN MEAN FOR EACH CONTROL:
PRINT *,
DO 25 I=1,NX

PRINT ', VECMUC(*,I,) =
READ U, VECMUC(I)

25 CONTINUE
PRINT *, INPUT AVERAGE OF INPUTS FOR EACH CONTROL:
PRINT ',

DO 30 I=I,NX
PRINT U, VECCBAR(,I,) =
READ *, VECCBAR(I)

30 CONTINUE
PRINT *, INPUT ESTIMATED MEAN FOR EACH RESPONSE:
PRINT U,

DO 35 I=1,NY
PRINT ', VECMUY(,I,) =
READ U, VECMUY(I)

35 CONTINUE
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PRINT , INPUT AVERAGE OF CONTROLLED OBSERVATIONS FOR
PRINT , EACH RESPONSE:
PRINT *,
DO 40 I=I,NY

PRINT f, VECYBAR(',I,) =
READ *, VECYBAR(I)

40 CONTINUE
PRINT , INPUT ANALYSIS TITLE:
READ , TITLE
PRINT f, INPUT NAMES OF CANDIDATE CONTROLS:
PRINT f,.

DO 45 I=1,NX
PRINT 1, CONTROL(•,I,) =
READ ,, CONTROL(I)

45 CONTINUE
PRINT 1, INPUT NAMES OF RESPONSES:
PRINT f,"

DO 50 I=1,NY
PRINT *, RESPONSE(',I,') =
READ 1, RESPONS(I)

50 CONTINUE
IF (IKNOW.EQ.1) THEN

55 PRINT ', WILL YOU ENTER KNOWN COVARIANCE MATRIX, OF
PRINT ', 'CONTROLS, MANUALLY OR BY DATAFILE (M or D):
READ f, ANSWER
IF ((ANSWER.EQ.•D').OR.(ANSWER.EQ.'d')) THEN

PRINT , 'ENTER NAME OF DATAFILE CONTAINING KNOWN
PRINT 1, "COVARIANCE MATRIX OF CONTROLS:
READ COVFILE
OPEN(UNIT=15, FILE=COVFILE, STATUS='OLD')
DO 60 I=I,NX

READ(15,*) (COVCV(I,J),J=1,NX)
60 CONTINUE

CLOSE(15)
ELSE

IF ((ANSWER.NE.•M•).AND.(ANSWER.NE.'m')) THEN
PRINT f, 'INVALID RESPONSE, TRY AGAIN."
GOTO 55

ENDIF
PRINT f, INPUT THE REQUESTED VALUES:
PRINT ft•

DO 65 Izl,NX
DO 65 J=1,NX

PRINT ft COVCV( ,I, , ,J, )
READf, COVCV(I,J)

65 CONTINUE
ENDIF

ENDIF
70 PRINT , WILL YOU ENTER THE [CONTROLS:RESPONSES] DATA

PRINT , MANUALLY OR BY DATAFILE (M or D):
READ ft ANSWER
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IF ((ANSWER.EQ.D).OR.(ANSWER.EQ.*d)) THEN
PRINT ',ENTER NAME OF (CONTROLS RESPONSES] DATAFILE:
READ *,XFILE
OPEN(UNIT=20, FILE=XFILE, STATUS='OLD')

ELSE
IF ((AKSWER.NE2M').AND.(ANSWER.NE.'mi) THEN

PRINT *, 'INVALID RESPONSE, TRY AGAIN."
GOTO 70

ENDIF
PRINT *,MATRIX VALUES WILL BE REQUESTED AS REQUIRED'

ENDIF
75 PRINT *,DO YOU WANT YOUR INPUTS SENT TO A DATAFILE FOR

PRINT ",FUTURE USE (YIN):
READ ',ANSWER
IF ((ANSWER.EQJY*).OR.(ANSWER.EQ*yi) THEN

PRINT *, * ENTER NAME OF INPUT DATAFILE TO CREATE:-
READ *, OUTFILE
OPEN(UNIT=25, FILE=OUTFILE)
WRITE(25,*) NX,NY,KEEPERS,NUMREPS,META
WRITE(25,*) IKNOW,IWRITE,METHOD
WRITE(25,*) SIG
WRITE(25.*) (VECMUC(I),I=1,NX)
WRITE(25.*) (VECCBAR(I),I=1,NX)
WRITE(25,*) (VECMUY(I) ,I=l,NY)
WRITE(25..) (VECYBAR(I),I=1,NY)
WRITE(25,*) TITLE
WRITE(25,*) (CONTROL(I),I=1,NX)
WRITE(25,*) (RESPONS(I),I=l,NY)
IF (IKNOW.EQ.I) THEN

WRITE(25,*) COVFILE
IF (COVFILE.EQ.OUTFILE) THEN

DO 80 I=1,NX
WRITE(25,*) (COVCV(I,J) ,J=1,NX)

80 CONTINUE
END IF

END IF
WRITE(25,*) XFILE
CLOSE (25)

ELSE
IF ((ANSWER.NE.'N).AND.(ANSWER.NE.'n')) THEN

PRINT *, * INVALID INPUT, TRY AGAIN.-
GOTO 75

ENDIF
ENDIF

ENDIF
C

NVAR NX +i M Y
KXX= 2'eNX

C
C I**NNN#U**********I**

C wTEST PRIMARY VARIABLES INPUT
C

58



C
I=0
PRINT *

IF (NX.GT.Z1) THEN
PRINT 1575, Zi
1=I+1

ENDIF
IF (NY.GT.Z2) THEN

PRINT 1580, Z2
1=I+1

ENDIF
IF (KEEPERS.GT.Z4) THEN

PRINT 1585
PRINT 1586, Z4
I=1+1

END IF
IF (NUMREPS.GT.Z6) THEN

PRINT 1590
PRINT 1591, Z6
I=I+1

END IF
IF (META.GT.Z7) THEN

PRINT 1595, Z7
I=I+1

ENDIF
IF (I.GT.O) THEN

PRINT 1600, I
STOP

ENDIF
C
C IN*****I****i****N***

C INITIAL DATA OUTPUT
C
C

PRINT 'ENTER NAME OF FILE FOR PROGRAM OUTPUT:
READ *,OUTFILE
PRINT *
OPEN(UNIT=30, FILE=OUTFILE, STATUS='NEW')
WRITE(30,1500) TITLE,META,KJEMREPS,META*KUMREPS
WRITE(30, 1515)
WRITE(30, 1505) META*NUMREPS
DO 90 I=i,NY

WRITE(30,1510) I,RESPONS(I),VECYBAR(I),VECMUY(I)
90 CONTINUE

WRITE(30, 1515)
WRITE(30, 1520) META*NUMREPS
DO 95 I=1,NX

WRITE(30,1510) I,CONTROL(I),VECCBAR(I),VECIJC(I)
95 CONTINUE

WRITE(30, 1515)
C
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C
C * DECLARE IF COVARIANCE MATRIX
C * OF CONTROLS IS KNOWN OR ESTIMATED N

C *
C * IKNOW = 0, COV MATRIX ESTIMATED *

C * IKNOW = 1, KNOWN COV MATRIX USED *

C
C

IF (IKNOW.EQ.0) THEN
WRITE(30,1525)

ELSE
WRITE(30,1530)

ENDIF
WRITE(30,1515)

C
C
C * PROVIDE HEADING FOR REMAINDER OF
C * PROGRAM OUTPUT N

C
C

WRITE (30,1515)
WRITE(30,1535)
WRITE(30, 1515)

C
C
C * DEFINE INPUT VECTOR FOR IMSL *
C * SUBROUTINE "BECOVM"
C
C

NBR(1)=Z3
NBR(2)=NUMREPS
NBR(3)=NUMREPS
NBR(4)=I
NBR(5)=1
NBR(6)=0
IX=Z6

C
C
C N BEGIN MAIN PROGRAM
C
C
C
C * MAKE THE F TABLE
C
C

IP=NY
KK=NUMREPS
CALL FTABL(FF,NX,Z1)
PRINT *,'F TABLE:',(FF(I),I=O,NX)
PRINT N,

C
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C ******I***M***m***I********e*I****N I**

C * INITIALIZE COVERAGE AND VOLUME
C * REDUCTION ACCUMULATORS
C *********w******************************
C

DO 100 IZ=1,4
ICTOT(IZ)=O

100 CONTINUE
C

DO 105 IZ=1,2
SUMDEV(IZ) =0.
SUMVU(IZ) =0.
VR(IZ)=O.

105 CONTINUE
C
C **************u********************

C * THIS IS THE META EXPERIMENT LOOP
C
C

DO 1000 MM=1,META
C

C * INITIALIZE ARRAYS

C
C

NUMREG=0
DO 110 IZ=I,KEEPERS

DO 110 JZ=1,NX
DO 110 KZ=1,2

REGR(IZ,JZ,KZ)=O.
110 CONTINUE

C
DO 115 IZ=I,KNX

DO 115 JZ=I,NX
MODELS(IZJZ)=0

115 CONTINUE
C

DO 120 IZ=I,NVAR

DO 120 JZ=1,NVAR
DO 120 KZ=1,NVAR

A(IZJZ,KZ)=0.
120 CONTINUE

C
DO 125 IZ=1,XEEPERS

BUFF(IZ)=0
BUFF2(IZ)=0

125 CONTINUE
C

DO 130 IZ=I,NX
IBUFF(IZ)=0

130 CONTINUE
C



C tttttttt*ttffftttfftttttttftffffttttf

C * READ THE DATA*
C * (EACH RECORD =) [CONTROLS IRESPONSES)
C *t COMPUTE THE COVARIANCE MATRIX
C *t SAVE SAMPLE MEANS
C *t BOUND THE GENERALIZED VARIANCE
C ff~ttttttttttttttttttttttff*ffffffff~tff
C

IF ((ANSWER.EQ.2M').OR.(ANSWER.EQ.'m')) THEN
PRINT 'ENTER ELEMENTS OF (CONTROL:RESPONSEJ MATRIX*
PRINTft
DO 131 I~1,NUMREPS

DO 132 J=1,NVAR
PRINT f. XU*,I,'.,J,')=
READ f.X(I,J)

132 CONTINUE
131 CONTINUE

ELSE
DO 135 I=1,NUMREPS

READ(20,t) (X(I,J) ,J=1,NVAR)
135 CONTINUE

ENDIF
C

CALL BECOVM(X,IX,NBR,TEMP,XM,VCVIER)
C

DO 140 I=1,NX
CBAR(I)=XM(I)

140 CONTINUE
C

DO 145 I=NX+1,NVAR
YBAR(I-NX) =XM(I)

145 CONTINUE
C

CALL VCVTSF (VCV ,Z3 ,FULL ,Z3)
C

DO 150 I=1,NVAR
DO 150 J=1,NVAR

A(1 .1,J)=FULL(I ,J)
150 CONTINUE

C
I1c1
DO 155 II=1,NY

DO 155 JJ=l,NY
IF (JJ.GE.II) THEN

RSS(II ,JJ)=A(IS,NX.II ,NX.JJ)
RSS(JJ,II)=RSS(II ,JJ)

ENDIF
155 CONTINUE

C
CALL LINV3F(RSS,DUM,4.NY,Z2,DlD2,WXAREA,IER)
IF (IER.NE.O) PRINT *,-I DIED BELOW 155 (MAIN)'
DET=D1 f2*tfD2
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BIG=(FLOAT(NUMREPS-I)/FLOAT(NUMREPS-NX-2)) *NY
TWO=2*BIG*Dlt2*D2

C
C ffffffffffffffffffffttttttttttttttttttttt
C * STUFF THE BOOKKEEPING ARRAY WITH THE ,
C * BOUND
C fttttttttttttttfffffffffffff**tttttttttttff
C

DO 160 II=I,KEEPERS
DO 160 JJ=1,NX

REGR(II,JJ,1)=TWO
160 CONTINUE

C
C fffffffffttttttfttffftftttffffffffffttftttttt
C * THE FOLLOWING SECTION IS PERFORMED IF THE f

C * METHOD OF ENUMERATED SUBSETS IS SELECTED f

C * (i.e. METHOD = 0) f

C
C

IF (METHOD.EQ.0) THEN
C

C * CONDUCT BINARY SEARCH OF THE
C * REGRESSION TREE: f

C * FURNIVAL AND WILSON (1974)
C
C

K=NX
C

DO 165 L=I,K
NK (L) =0

165 CONTINUE
C

NK(K+1)=
L=1

170 NK(L)=J
C

DO 175 M=L,
IF (NK(M+I).EQ.1) GOTO 180

175 CONTINUE
C
180 IB=K-M+I

IS=K-L+2
IP=X-L+1
KP=NVAR
CALL GAUSS(IB,IS,IP,A,KP,MAX,Z3)

C

C * CALCULATION OF THE GENERALIZED RESIDUAL
C * COVARIANCE
C
C
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DO 185 II=1,NY
DO 185 JJzl,NY

IF (JJ.GE.II) THEN
RSS(II ,JJ)=A(IS,NX+II ,NX+JJ)
RSS(JJII)=RSS(II ,JJ)

ENDIF
185 CONTINUE

IF (IKNOW.EQ.O) THEN
CALL LINV3F(RSS,DUM,4,NY,Z2,D11 D2,WKAREA,IER)
IF (IER.NE.O) PRINT *,'I DIED BELOW 185'
DET=D1U2**D2

ENDIF
C
C
C B OOKKEEPING LOGIC TO SAVE M=KEEPERS
C *BEST REGRESSIONS OF ALL J SUBSETS SIZES
C **************N**I***

C
MV= 0
DO 190 N=1,NX

MVMkV4NK (N)
190 CONTINUE

C
IF (IKNOW.EQ.O) THEN

CONST= (FLOAT(NUMREPS-1) /FLOAT(NUMREPS-MV-1))
DET=DET*CONST**NY

ELSE
CALL COVXNOW(RSS ,NYIIZ2 ,FULL,NVAR,Z3 ,TARGETI.DUM,

& NUMREPS,M(V,DET)
END IF

C
DO 195 J=1,KEEPERS

IF (DET.LT.REGR(J,M(V,1)) THEN
NUMREG-NUMREG+ 1
DO 200 JJ=J,KEEPERS-1

BUFF(JJ.1):REGE(JJ,M(V, 1)
BUFF2 (JJ+1) =REOR(JJ,MV,2)

200 CONTINUE
RtEGR(JMV, 1) =DET
REGR(J,MV,2) =NUMEEG
DO 205 JJ=J,1,.KEEPERS

REGR(JJMV, 1)zBUFF(JJ)
REGB (JJ, MV, 2) =BUFF 2 (JJ)

205 CONTINUE
CALL KEEPIT(NUMREG,NK,NX,MODELSZ1,Z3,Z5)
GOTO 210

ENDIF
195 CONTINUE
210 CONTINUE
C
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DO 215 L=I,K
IF (NK(L).EQ.O) GOTO 170
NK(L)=O

215 CONTINUE
ENDIF

C
C
C * ENUMERATED SUBSETS CODE ENDS ON ABOVE LINE *

C
C

C * THE FOLLOWING SECTION IS PERFORMED IF THE
C * STEPWISE PROCEDURE [FORWARD SELECTION] IS
C * SELECTED (i.e. METHOD = 1)
C
C

IF (METHOD.EQ.1) THEN
C

C . CONDUCT STEPWISE (FORWARD SELECTION)
C ' SEARCH OF THE REGRESSION TREE.
C * THIS IS A MODIFIED VERSION OF THE
C * NATURAL SEARCH PROCEDURE WRITTEN BY:
C * FURNIVAL AND WILSON (1974)
C
C

K=NX
C

DO 220 L=1,K+i
INDL(L)=O
IND2(L)=O
TIND(L)=0

220 CONTINUE
C

M=K
IB=O
IS=I
TMV=l

C
225 IB=OD(IB,MAX)+1

C
DO 230 L=M,K

IF (IND2(L).LT.L) GOTO 230
IND2(L-I)=IND2(L-1)+1
IND2 (L) =IND2 (L- 1)

230 CONTINUE
C
235 IND2(K)=IND2(K)+l

IS=MOD(IS,MAX) +1
C

MV=O
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DO 240 Ii~1,K
IF (IND2(I1l)GT.O) MV=MV+1

240 CONTINUE
C

IF (M(V.GT.TMV) THEN
TMV=TMV+ 1
DO 245 I1=l,K

INDI (Il)=TIND(II)
245 CONTINUE

ENDI F
C

IF (MV.EQ.1) GOTO 280
C

DO 250 Il=l,X
FLAG=O
DO 255 12=1,Ksl

IF (IND2(12).EQ.INDI(I1)) FLAG=l
255 CONTINUE

IF (FLAG.EQ.O) GOTO 295
250 CONTINUE

260 CONTINUE
IP=IND2 (K)
KP= NVAR
IB2=1
IS2=2
IF (hMV.GT.2) THEN

DO 261 Il=1,NX
IF (IND2(I1).GT.O) THEN

IF (1S2.EQ.2) THEN
IS2=3

ELSE
IS2 =2

ENDIF
IP=IND2 (II)
CALL GAUSS(IB2,IS2,IP,A,KP,MAXZ3)

END IF
261 CONTINUE

ELSE
CALL GAUSS(IB,IS,IP,A,KP,MtAX,Z3)
IS2=IS

END IF
C
C u****u**u*.**.******u
C * CALCULATION OF THE GENERALIZED RESIDUAL
C * COVARIANCE
C uw****u**************
C
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DO 285 II:1,NY
DO 285 JJ=1,NY

IF (JJ.GE.II) THEN
RSS(II ,JJ)=A(IS2,NX4II ,NX+JJ)
RSS(JJ, II) =RSS(II,JJ)

ENDIF
265 CONTINUE

C
IF (IKNOW.EQ.O) THEN

CALL LINV3F(RSSDUMS4,NY,Z2,D1,D2,WKAREA,IER)
IF (IER.NE.O) PRINT *,*I DIED BELOW 265"
DET=DI *2**D2

END IF
C
C ****I**I*N***********

C * BOOKKEEPING LOGIC TO SAVE M=KEEPERS
C * BEST REGRESSIONS OF ALL J SUBSETS SIZES
C
C

IF (IKNOW.EQ.O) THEN
CONST= (FLOAT(NUMREPS-1) /FLOAT(NUMREPS-MV-1))
DET=DET*CONST* *NY

ELSE
CALL COVKNOW(RSS,NY,Z2,FULL,NVAR,Z3,TARGET,DUM,

& NUMREPS,MV,DET)
ENDIF

C
DO 266 Il=1.NX

NK(I1)=O
286 CONTINUE

NK(NX+1)=l
C

DO 270 J=1,KEEPERS
IF (DET.LT.REGR(J,kMV,1)) THEN

NUMREG=NUMREG+ 1
DO 275 JJ=J,KEEPERS-1

BUFF(JJ+1)=REGR(JJ,MV, 1)
BUFF2(JJ+1) =REGR(JJ,kMV,2)

275 CONTINUE
REGR(J,M(V, 1)=DET
REGR(J,MfV,2)-NUMdREG
DO 280 JJ=J+1,KEEPERS

REGR(JJ,k(V, 1)=BUFF(JJ)
REGR(JJ ,MV,2) =BUFF2 (JJ)

280 CONTINUE
DO 285 Il:1,NX

TIID(Il)=IND2(Il)
IF (IND2(I1).GT.0) THEN

NK(NX+1-IND2(I1) )=1
ENDIF

285 CONTINUE
CALL XEEPIT(NUMREG,NX,NX,MODELSPZl,Z3,Z5)
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GOTO 290
ENDIF

270 CONTINUE
C
290 CONTINUE
C
295 CONTINUE

IF (IND2(K).LT.K) GOTO 235
IS=IS-1
IF (IND2(M).EQ.M) Id=M-1
IF (M.GT.0) GOTO 225

ENDIF
C
C
C * STEPWISE (FORWARD SELECTION) CODE ENDS ON
C * ABOVE LINE
C
C
C
C * THIS BLOCK IS FOR BEST M SUBSETS MODE
C * OF OPERATION
C
C

IF (IWRITE.EQ.1) THEN
DO 300 I=1,NX

WRITE(30,1540) XEEPERSPI
DO 300 J=1,XEEPERS

IVAR=0
IIN~0
DO 305 II=NX,1,-l

IVAR=IVAR+ 1
IF (IFIX(REGR(J,I,2)+.0001).EQ.0) GOTO 300
IF (MODELS(IFIX(REGR(J,I,2)+.0001),II).EQ.1) THEN

IIN=IIN+l
IBUFF(IIN) =IVAR

ENDIF
305 CONTINUE

RDET=REGR(J, , 1)
WRITE(30,1545) MM,RDET,(IBUFF(IJ),IJ=1.IIN)

300 CONTINUE
ENDIF

C
C
C * FOR EACH SUBSET COMPUTE THE CRITERION
C * AND SAVE THE MINIMUM
C a********,*I*u*******

C
IF (IWRITE.EQ.0) THEN

IP=NY
KX=NUbMEPS
DO 310 IQ=1,NX
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IF (IKNOW.EQ.0) THEN
REGR(1, IQ,1) =REGR(1, IQ, 1) C3 (KKIQ, IP) *

& CFRONT(KK,IQ,IP)*FF(IQ)*C5(KK,IQ,IP)
ELSE

REGR(1, IQ,1) =REGR(1, IQ, 1) C4 (KK IQ, IP)*
& CFRONT(KK,IQ,IP) *FF(IQ)*C5(KK,IQ,IP)

END IF
IF (IQ.EQ.1) RMIN=REGR(1,IQ,1).1000.

310 CONTINUE
DO 315 IQ=1,NX

IF (REGR(1,IQ,1).LT.RMIN) THEN
RMIN:REGR(1 ,IQ, 1)
IATz REGR(1,IQ,2)

ENDIF
315 CONTINUE

IVAR=0
IIN=O
DO 320 II=NX,1,-1

IVAR=IVAR+ 1
IF (MODELS(IAT,II).EQ.1) THEN

IIN=IIN. 1
IBUFF(IIN) =IVAR

ENDIF
320 CONTINUE

SP=RMIN
WRITE(30,1545) MM,SP,(IBUFF(IJ),IJ=1,IIN)

C
C
C * FIND THE VOLUME REDUCTION AND INDICATE
C *COVERAGE
C
C

CALL COVER(VCV,MODELS,KNX,NX,NVAR,IAT,IIN,YBAR,CBAR,
& VECMUC ,NY,VECMUYNUMREPS,FF, IH, ICOVER,VOLRED,
& VECYBAR,IKNOW,COVCV,VU,DIFF)

C
C
C *COVERAGE AND VOLUME REDUCTION TALLYS
C
C

DO 325 IC=1,4
ICTOT(IC) =ICTOT(IC) .ICOVER(IC)

325 CONTINUE
DO 330 IC=1,2

SUMDEV(IC) :SUMDEV(IC) +DIFF
SUMVU(IC) =SUMVU(IC) +VU

330 CONTINUE
END IF
PRINT *,"THIS IS META-EXPERIMENT #*,MMl,ICOVER *,ICOVER

1000 CONTINUE
C
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C N
C * META EXPERIMENT LOOP ENDS ON ABOVE LINE
C W
C

DO 1005 IZ=1,2
SUMDEV(IZ) =SUMDEV(IZ)/FLOAT(META)
SUMVU(IZ) =SUMVU(IZ)/FLOAT(META)
VR(IZ) =SUMDEV(IZ) /SUMVU(IZ)

1005 CONTINUE
C

DO 1010 IZ=1,4
COVERAG(IZ)=FLOAT(ICTOT(IZ))/FLOAT(META)

1010 CONTINUE
C

WRITE(30, 1515)
WRITE(30,1550) COVERAG(1)
WRITE(30.1551) VR(1)
WRITE(30, 1555) COVERAG(2)
WRITE(30, 1515)
WRITE(30, 1560) COVERAG(3)
WRITE(30,1561) VR(1)
WRITE(30,1565) COVERAG(4)

C
CLOSE(5)
CLOSE(10)
CLOSE(30)
STOP

C
C **U*W*#**********WU*J****I**N*IU

C * FORMAT STATEMENTS (MAIN PROGRAM)
C
C
1500 FORMAT(1X,A25,'META = ',13,', NUMREPS = ',13,', TOTAL REPS

&4)
1505 FORMAT(1X,'THE RESPONSE ARE',13X,'MEAN ',14,' REPS',2X,

&'STEADY STATE MEAN'/)
1510 FORMAT(2X,I2,1X,A25,F12.5,4X,F12.5)
1515 FORMAT(' ')
1520 FORMAT(IX,'THE CANDIDATE CONTROLS ARE',3X,'MEAN ',14,' REPS',

&2X,'STEADY STATE MEAN'/)
1525 FORMAT(/,IX,'COVARIANCE MATRIX OF CONTROLS WAS ESTIMATED')
1530 FORMAT(/,1X,'KNOWN COVARIANCE MATRIX OF CONTROLS WAS USED')
1535 FORMAT(1X,'META*',3X,' CRITERION ',10X,'VARIABLE SUBSET')
1540 FORMAT(0X,'BEST ',12,' REGRESSIONS WITH ',12,' VARIABLES'//)
1545 FORMAT(IX,I4,2X,E16.8,1OX,30(I2,1X))
1550 FORMAT(IX,'CONTRLD COVERAGE ON STEADY STATE MEANS =',F12.8)
1551 FORMAT(IX' AND VOLUME REDUCTION =',E16.8)
1555 FORMAT(1X,'UNCONTRLD COVERAGE ON STEADY STATE MEANS =',F12.8)
1560 FORMAT(IX1 'CONTRLD COVERAGE ON SAMPLE MEAN OF 1000 REPS =',F12.8)
1561 FORMAT(1X,' AND VOLUME REDUCTION =',E16.8)
1565 FORMAT(1X,'UNCONTRLD COVERAGE ON SAMPLE MEAN OF 1000 REPS=',F12.8)
1575 FORMAT(IX,'* OF CANDIDATE CONTROLS EXCEED PROGRAM LIMIT OF',I3)
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1580 FORMAT(1X,"* OF RESPONSES EXCEED PROGRAM LIMIT OF',13)
1585 FORMAT(1X,'6 OF BEST REGRESSIONS TO KEEP EXCEED PROGRAM')
1586 FORMAT(1X,'LIMIT OF',13)
1590 FORMAT(1X,"* OF REPLICATIONS PER META EXPERIMENT EXCEED')
1591 FORMAT(1X,'PROGRAM LIMIT OF',I3)
1595 FORMAT(1X,'# OF META EXPERIMENTS EXCEED PROGRAM LIMIT OF',14)
1600 FORMAT(lX,'PROGRAM LIMITS EXCEEDED BY ',Il,' PRIMARY INPUTS')

END
C
C
C *END MAIN PROGRAM
C
C
C
C *SUBROUTINES
C
C
C
C *SUBROUTINF COVER
C.
C * THIS SUBROUTINE DOES THE COVERAGE AND VOLUME
C * REDUCTION CALCULATIONS FOR THE OPTIMAL CONTROL *

C * SUBSET
C
C

SUBROUTINE COVER(VCV,MODELSPKNX,NX,NVAR,IAT,IIN,YBAR,CBAR
& ,VECMUC ,Y, VECMUY ,NUMREPS ,FF, IH, ICOVER ,VOLBED ,VECYBAR, IKNOW
&.COVCV,VU,DIFF)

C
INTEGER Zi, Z2, Z3, Z5, Z8
REAL P!

C
PARAMETER (Z1=8, Z2=8, Z3=Z1.Z2, Z5=2**Zl, ZB=((Z3*(Z341))/2))
PARAMETER (PI=3.1415927)

C
REAL VCV(Z8) ,YBAR(Z2) ,CBAR(Z1) ,VECMUC(Z1) ,VECM4UY(Z2)

&,FF(O:Zl) ,VECYBAR(Z2) ,VOLRED(2) ,COVCV(Z1,Z1)
C

INTEGER MODELS(Z5,Z1),IH(Z3) ,ICOVER(4) ,IIN
C

REAL SCBAR(ZI) ,SVECM(U(Z1) .SUBV(Z8) ,SUBVF(Z3.Z3) ,B(Z3)
&,WKAREA(2*Z3) ,BUFF1(Z3,Z3) ,BUFF2(Z2,Z1) ,BETA(Z2,Zl)
&,CDEV1(1,Zl),CDEV2(Z1,l),EXPL(Z2,Z2),DEV(Z2,1LYBHAT(Z2)
&,DUFF3(Z1,Z2),BUFF4(Z2,Z2),SYDOTC(Z2,Z2),HPH(1,1),T1(l.Zl)
&,YMD1(1,Z2),YMD2(Z2,I),T2(1,Z2),OBS(1,l),BUFF5(Z2,Z2)
&,BUFF8(Z2,Z2),YMD3(1,Z2),YMD4(Z2,1),0BS2(l,1)
&,SYMCOVC((Z1*(Z1+l))/2),SUBCOVC((Z1*(Zl+1))/2)
&,FULCOVC(Zl,Zl),GAMM(Z2,Z1),EHAT(Z2,Z2),BUFF9(Z2,Z2)
&,CANCORR(Z2,Z2) ,REIGS(Z2) ,EIGS(2*Z2) ,DUMMY(Z2,Z2)
&,WK (Z 2)

C
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INTEGER IH2(ZI)
C

COMPLEX CEIGS(Z2)
C

EQUIVALENCE (EIGS(1),CEIGS(1))
C
C ue #i*I wii*.u*********i************

C * INITIALIZE COVERAGE AND VOLUME *

C * REDUCTION VECTORS
C **a*****§u*********************i**u********
C

DO 10 I=1,4
ICOVER(I)=0

10 CONTINUE
C

DO 15 I=1,2
VOLRED(I)=0.

15 CONTINUE
C
C **************i ***************
C * FIND THE SUBMATRIX FOR THE SELECTED
C * MODEL
C **************************
C

DO 20 I=1,NVAR
IF (I.LE.NX) THEN

IH(I)=O
IH2(I)=0

ELSE
IH(I)=1

ENDIF
20 CONTINUE

C
IVAR=O
DO 25 II=NX,I,-1

IVAR=IVAR+1
IF (MODELS(IAT,II).EQ.1) THEN

IH(IVAR)=1
IH2(IVAR)=1

ENDIF
25 CONTINUE

C
MI=Z3
CALL RLSUBM(VCV,MI,IH,SUBV,M2)

C

C * FIND THE SUBVECTOR (POPULATION AND
C * SAMPLE) OF THE CONTROL MEANS
c
C

INDEX=0
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DO 30 II=1,NX
IF (IH(II).EQ.1) THEN

INDEX=INDEX+1
SCBAR(INDEX)=CBAR(II)
SVECMU(INDEX)=VECMUC(II)

ENDIF
30 CONTINUE

C
C Nft fft fI* ftI ft*** Iftftfftftfttftf
C * BUFFER THE COVARIANCE MATRIX OF
C * SELECTED CONTROLS AND RESPONSES
C ftft* * *fttttf ut*fff~f ,*fmf nffttttffffttff
C

CALL VCVTSF(SUBV,M2,SUBVF,Z3)
C

DO 35 II,M2
DO 35 J:1,M2

BUFFI(I,J):SUBVF(I,J)
35 CONTINUE

C
C ** ******

C * INVERT THE COVARIANCE SUBMATRIX OF
C * CONTROLS
C
C

CALL LINV3F(SUBVF,B,1,IIN,Z3,DI,D2,WKAREA,IER)
IF (IER.NE.0) PRINT *,'I DIED BELOW 35 (SUBROUTINE COVER)*

C
C ********** t***f* * ftttfff* tt** ff****** ftft
C * BUFFER THE CROSS-COVARIANCE SUBMATRICES *
C * OF SELECTED CONTROLS WITH RESPONSES
C **f*f*** ft*t*f*** f* tt*t***** tff** f** ****
C

DO 40 I=IIN+I,M2
DO 40 J=1,IIN

BUFF2(I-IIN,J)=BUFF1(I,J)
BUFF3(J,I-IIN)=BUFF1(I,J)

40 CONTINUE

C
C ftttf* ftf* ftftt**ftffttftf**Wftfftfftfttfttftfftfft**ft

C * BUFFER THE COVARIANCE SUBMATRIX OF
C * RESPONSES
C "*It**ft*ftfI*fttttf*fttf*ft*f*ftf*ft*f
C

DO 45 I=IIN+1,M2
DO 45 J=IIN+I,M2

BUFF4(I-IIN,J-IIN)=BUFFI(I,J)
BTJFF6(1-IYN,J-IIN)=BUFFI(I,J)

45 CONTINUE
C
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C ttffffffffffttttttttttttttttttttfffffffff

C * FIND THE BETA HAT MATRIX ( CONTROL f

C * COZFFIC.ENTS ) OR THE GAMMA HAT MATRIX
C *tttttttttttttttttttf*~M**ttf~ttttff

C
IF (IKNOW.EQ.O) THEN

CALL VMULFF(BUFF2,SUBVF,NY,IIN, IIN,Z2 ,Z3,BETA,Z2,IER)
ELSE

CALL VMULFF(BUFF2,SUBVFNY,IIN,IIN,Z2,Z3,BETA,Z2,IER)
CALL VCVTFS(COVCV,NX,ZI ,SYMCOVC)
CALL RLSUBM(SYMCOVC,NX,IH2,SUBCOVC,IORDER)
CALL VCVTSF(SUBCOVC ,IORDER,FULCOVC,Z,i
CALL LIPV3F(FULCOVC,B,1,IIN,ZI,Dl,D2,WXAREA,IER)
IF (IER.NE.O) PRINT *,*I DIED BELOW 45 (SUBROUTINE COVER)*
CALL VMULFF(BUFF2,FULCOVC,NY,IIN,IINIZ2,Z1 ,GAMM,Z2,IER)

END IF
C
C fffffffffttttffffffffffffffffffffffffffff

C * FIND THE VECTOR OF CORRECTIONS TO
C * CONTROL Y BAR
C f*f~ttttttff*fffff~ttttt*ttfffffffffff
C

DO 50 I=1,IIN
CDEV1 (1 ,I)=SCBAR(I)-SVECMFU(I)
CDEV2(I , )=CDEV1 (1,1)

50 CONTINUE
C

IF (IXNOW.EQ.O) THEN
CALL VMULFF(BETA,CDEV2,NY,IIN,11 Z2,Z1PDEV,Z2,IER)

ELSE
CALL VMULFF(GAMJM,CDEV2,NY,IIN.Z2,Z1.DEV,Z2,IER)

ENDIF
C
C **ttffffffffffffff~tttttttttttttttffffff
C * FIND THE CONTROLLED ESTIMATOR OF TH" *

C * MEAN
C *ufwtttt*ff**ff~tttf~ttItff~tffN

C
DO 55 IziNY

YBHAT(I) :YBAR(I) -DEV(I, 1)
55 CONTINUE

C
C *fffutttutttttfwtttttfffwfwfff*ffff

C *t FIND THE MATRIX OF EXPLAINED COVARIANCE f

C * DUE TO CONTROL f

C ffffff~ttt*tf~ttttffff~t*ttttf~tf* ff

C
CALL VM(ULFF(BETA,BUFF3,NY,IIN,NY,Z2,Z1,EXPL,Z2,IER)

C
C ff*f~lttttt~tf*Uttttffffffffffff**f

C # FIND THE RESIDUAL COVARIANCE f

C f**ffE*Ot***ttttf*f9ff0*~tt*f
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C
Cl=(FLOAT(NUNREPS-1),FLOAT(NUMREPS-IIN-1))

C
DO 60 I=l,NY

DO 60 J=1,NY
SYDOTC(I ,J)=(BUFF4(I ,J)-EXPL(I ,J) )*CI
BUFF5(I,J) =SYDOTC(I,J)

60 CONTINUE
C
C
C ftFIND THE ESTIM4ATOR SIGMA TILDE HAT
C
C

IF (IXNOW.EQ.1) THEN
CONST1= (FLOAT (NUMREPS-2) )/ (FLOAT (NUMREPS' (NUMREPS- 1)))
CONST2= (FLOAT (I IN+ 1)) /(FLOAT (NtUhREPS*t(NUMwREPS- 1)))
DO 65 I=1,NY

DO 65 J=1,NY
EHAT(I ,J)=(CONSTI*SYDOTO (I ,J) ) +(CONST2*BUFF4 (I ,J))
BUFFQ(I .J) =EHAT(I ,J)

65 CONTINUE
END IF

C
C
C * FIND THE INVERSE RESIDUAL COVARIANCE
C *t MATRIX f

C
C

IF (IXNOW.EQ.0) THEN
CALL LINV3F(SYDOTC,B,1.NY,Z2,DlD2IWKAREA,IER)
IF (IER.NE.O) PRINT *,*I DIED BELOW 65 [1) (SUER COVER)*

ELSE
CALL LINV3F(EHAT,B,1,NY,Z2,Dl,D2,WXAREA,IER)
IF (IER.NE.O) PRINT *,*I DIED BELOW 65 Ell (SUER COVER)*

ENDIF
C
C
C ft COMPUTE THE DEVIATIONS FROM THE f

C *t STEADY-STATE RESPONSE VECTOR f

C * (BOTH CASES: CONTROLLED/UNCONTROLLED) f

C
C

DO 70 I=I,NY
YMD1 (1,I)=YEHAT(I)-VECM(UY(I)
YMD2(I, 1)=YMD1 (1,I)

YMD4(I , 1)YMD3(1 .1)
70 CONTINUE

C
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C
C *t COMPUTE H'H f

C * (NOTATION AS PER VENXATRAMAN AND*
C *t WILSON 1986) f

C
C

IF (IXNOW.EQ.O) THEN
CALL VMULFF(CDEV1,SUBVF,1,IIN,IIN,1,Z3,Tl,1.IER)
CALL VMULFF(T1,CDEV2,1 ,IIN,1, 1,ZI ,HPH.1 ,IER)

END IF
C

IF (IXNOW.EQ.O) THEN
X=(l./FLOAT(NUMREPS))+(l./FLOAT(NUMREPS-1))*HPH(l,1)

ELSE
x~1.

ENDIF
C
C
C *t COMPUTE THE RIGHT HAND SIDE FOR THE f

C *t CONFIDENCE REGION AS PER RAO (1967) f

C
C

C2=(FLOAT( (NUMREPS-IIN-1)*NY)/FLOAT(NUMREPS-IIN-NY))
F=EXP( (1./FLOAT(JY) )*fALOG(FF(IIN)))
RHS=X*fC 2 fF

C
C
C *t COMPUTE THE T**f2 STATISTIC FOR THE CASE *t
C *t WHERE CONTROLS ARE USED (STEADY STATE *t
C * ASSUMED)
C
C

IF (IXNOW.EQ.O) THEN
CALL VM[ULFF(YMD1,SYDOTC,1,NY,NY,1,Z2,T2,1,IER)
CALL VMULFF(T2,YMD2, 1,NY,1 ,i,Z2.OBS,1 1IER)

ELSE
CALL VMULFF(YMD1,EHAT,1,NY,NY1I,Z2,T2,1,IER)
CALL VMULFF (T2 ,YM2, 1,NY, 1,1 ,Z2 ,OBS, 1, IER)

ENDIF
C
C
C * INDICATE COVERAGE FOR THE CASE WHERE f

C *t CONTROLS ARE USED (STEADY STATE ASSUMED)*
C
C

IF (OBS(1,1).LE.RHS) THEN

ELSE
ICOVER( )=0

END IF
C
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C fffffffffffffffffffffffffffffffffffffffffff

C ftCOMPUTE THE VOLUME REDUCTION f

C ffff~tttttttttttttttttttttttttttttttttffff

C
IF (IKNOW.EQ.0) THEN

CALL LINV3F(BUFF4,B,4,NY,Z21 D1,D2,WKAREA,IER)
IF (IER.NE.0) PRINT *,'I DIED BELOW 70 (1] (SUER COVER)'
UCDET=Dlft2**D2
CALL LINV3F(BUFF5,B,4,NY,Z2,DI,D2,WXAREA,IER)
IF (IER.NE.O) PRINT *,*I DIED BELOW 70 (2) (SUER COVER)*
CDET=D'2**fD2

ELSE
CALL LINV3F(BUFF4,B,4,NY,Z2,D1,D2,WKAREA,IER)
IF (IER.NE.O) PRINT *,'I DIED BELOW 70 [3] (SUER COVER)'
UCDET=Dlt2**fD2
CALL LINV3F(BUFFQ,B,4,NY,Z2,Dl,D2,WKAREA,IER)
IF (IER.NE.O) PRINT *,*I DIED BELOW 70 (4] (SUER COVER)'
CDET=Dlft2**fD2

ENDIF
C

TERM1= (CDET/UCDET)**ft(.5)*fXftft(FLOAT (NY) /2.)
C3=FLOAT( (NUMREPS-IIN-1) ft(NUMdREPS) ft(NUMREPS-NY))
C4=FLOAT(C(NUMREPS- IIN-NY) ft(NUMREPS- 1))
TERM42= (C3/C4)**ft(FLOAT (NY) /2.)
F2=EXP((1./FLOAT(NY))ftALOG(FF(o)))
TERM3= (F/F2) f#t(FLOAT(NY) /2.)
VOLRED(1)=(1.-(TERMIftTERM2ftTERM3))*I00.

C
C fffffffffffffff~tttttttttttttttttttttttfff

C *t COMPUTE THE ACTUAL VOLUME OF THE f

C *t CONTROLLED ELLIPSOID f

C fffffffffffffffffffffffffffffffffffffffffff

C
POVER2=FLOAT (NY) /2.
CC1=1 ./FLOAT (NY)
CC2= (2.ftPI*tfPOVER2)/GAMMA(POVER2)
CC3=FLOAT(NY*t(NUMREPS-IIN-1))
CC4=FLOAT (NUMREPS-IIN-NY)
CC3= (CC3/CC4)**tPOVER2
CC4=SQRT(FF(IIN))
VC=CC1ftCC2ftCC3ftCC4ftSQRT(CDET) ft(X**fPOVER2)

C
C fffffffffffffffffffffffffffffffffffffffffff

C *t COMPUTE THE ACTUAL VOLUME OF THE f

C *t UNCONTROLLED ELLIPSOID f

C ttftttttttttttttttttttttttttttttttffffffff

C
CC3=FLOAT(NY*t(NUMREPS-1))
CC4=FLOAT (NUMREPSft(NUMREPS-NY))
CC3=CC3/CC4
VU=CCIftCC2ftSQRT(UCDET) ft(CC3*FF(IIN) ) *fPOVER2

C
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C fttttff Nfffffttttttffffffttttt* tfttfftttff

C ' COMPUTE THE DIFFERENCE (DIFF)
C *uNftmft***ftftNfttftftmftt ftft*LftftftfINNtm*t*
C

DIFF=VU-VC
C

C * COMPUTE THE T**2 STATISTIC FOR THE CASE *

C * WHERE NO CONTROLS ARE USED
C **************~ftfttftft****ft**iNft****ft****
C

CALL LINV3F(BUFF6,B,1,NY,Z2,Dl,D2,WXAREA,IER)
IF (IER.NE.0) PRINT *,'I DIED BELOW 70 [5] (SUBR COVER)*
CALL VMULFF(YMD3,BUFF6,1,NY,NY,1,Z2,T2,1,IER)
CALL VMULFF(T2,YMD4,1,NY,1,1,Z2,0BS2,1,IER)

C

C f COMPUTE THE RIGHT HAND SIDE FOR THE
C f CONFIDENCE REGION
C
C

C5= (FLOAT( (NUMREPS-1 ) *NY)/FLOAT((NUMREPS-NY) *NUMREPS))
RHS2=EXP (( ./FLOAT (NY)) *ALOG (FF (0)) ) *C5

C

C * INDICATE COVERAGE FOR THE CASE WHERE
C * NO CONTROLS ARE USED (STEADY STATE
C f ASSUMED)
C
C

IF (OBS2(I,l).LE.RHS2) THEN
ICOVER(2)=I

ELSE
ICOVER(2)=0

ENDIF
C

C * THE REMAINING ANALYSIS DUPLICATES THE f

C * ABOVE, EXCEPT THAT THE GRAND MEAN OF
C * 1000 RESPONSES IS USED
C
C

C f RECOMPUTE DEVIATIONS

C
DO 75 I=I,NY

YMD1 (1 ,I)=YBHAT(I)-VECYBAR(I)
YMD2(I,I)=YMD1 (1,I)
YMD3(1 ,I) =YBAR(I) -VECYBAR(I)
YMD4(I , 1) =YMD3(1 ,I)

75 CONTINUE
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C
C ftttttttttttttttttttfftttttttttttttttffffff

C * COMPUTE THE T**2 STATISTIC FOR THE *
C * CASE WHE3E CONTROLS ARE USED
C * (GRAND MEAN USED)
C * f f f f f f fftftftftftftftftftftftftftftftft

C
IF (IKNOW.EQ.0) THEN

CALL VMULFF(YMD1,SYDOTC,1,NY,NY,1,Z2,T2,1,IER)
CALL VMULFF(T2,YMD2,1,NY,I,I,Z2,OBS,I,IER)

ELSE
CALL VMULFF(YMD1,EHAT,1,NY,NY,1,Z2,T2,1,IER)
CALL VMULFF(T2,YMD2,1,NY,I,I,Z2,OBS,1,IER)

ENDIF
C
C ftftftftf ftftftftt f tftftfttt ft

C * INDICATE COVERAGE FOR THE CASE WHERE
C * CONTROLS ARE USED

C
IF (OBS(1,1).LE.RHS) THEN

ICOVER(3)=l
ELSE

ICOVER(3)=0
ENDIF

C

C * COMPUTE THE T**2 STATISTIC, FOR THE
C * CASE WHERE NO CONTROLS ARE USED
C * (GRAND MEAN USED)
C * ftff* ftttttttfffffff* ftft*** * fttfffttff
C

CALL VMULFF(YMD3,BUFF6,1,NY,NY,1,Z2,T2,1,IER)
CALL VMULFF(T2,YMD4,1,NY,1,1,Z2,OBS2,1,IER)

C

C * INDICATE COVERAGE, FOR THE CASE WHERE f

C * NO CONTROLS ARE USED

C
IF (OBS2(II).LE.RHS2) THEN

ICOVER(4)=1
ELSE

ICOVER(4)=0
ENDIF

C

C * THIS SECTION COMPUTES THE CANONICAL f

C * CORRELATIONS FOR THE SUBSET MODELS AND •
C * THE FEASIBILTY BOUND FOR USING THE
C * KNOWN COVARIANCE MATRIX OF CONTROLS
C fftfttftfftftfftfttftftfftfftft
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C
IF (IXNOW.EQ.1) THEN

CALL VMULFF(BUFF6,EXPL,NY,NY,NY,Z2,Z2,CANCORR,Z2,IER)
CALL EIGRF(CANCORR,NY,Z2,O,EIGSDUMMtY,Z2,WK,IER)

C
I COUNTS 0
DO 80 I=1,NY

DO 80 J=1,2
ICOUNT: ICOUNT+ 1
IF (J.EQ.1) REIGS(I)=SQRT(EIGS(ICOUNT))

80 CONTINUE
C

CTOP=FLOAT( (NUMREPS+IIN-1) *(NUMREPS-IIN-2)) /
& FLOAT ((NUMREPS- 1)'(NUMEEPS-2))

CBOT=CTOPu (FLOAT(NUMREPS-2)/FLOAT(NUMREPS+IIN-1))
BOUND=SQRT( (CTOP-1.)/ (CBOT-1.))
PRINT *,CANONICAL CORRELATIONS *,REIGS,' BOUND *,BOUND
PRINT *,EIGS

ENDIF
C

RETURN
END

C
C *****t*****w**********i***

C *SUBROUTINE COVXNOW

C *THIS SUBROUTINE RETURNS THE GENERALIZED VARIANCE
C *OF SIGMA TILDE HAT

C
SUBROUTINE COVKNOW(RSS ,NY,Z2 ,FULL ,IVAR,Z3 ,TARGETDUM,KUMIREPSMV
& ,DET)

C
INTEGER Z2 ,Z3 ,NY,NVAR,NUMREPS
REAL RSS(Z2,Z2) ,FULL(Z31 Z3) ,TARGET(Z2,Z2) ,DUM(Z2)

C
Cl=(FLOAT(NUMdIEPS-2)FLOAT(NUMREPS*(NUMREPS-MV-l)
C2= (FLOAT (MV+ 1)/FLOAT (NUMREPS* (NUMEEPS- 1)))
NX=NVAR-NY

C
DO 10 I=1,NY

DO 10 J=1.NY
TARGET(IJ)=(CI*BSS(I,J))+(C2*FULL(NX+I,NX+J))

10 CONTINUE
C

CALL LINV3F(TARGET,DUM,4,NY,Z2,D1,D2,WXAREA,IER)
IF (IER.NE.0) PRINT *,'I DIED BELOW 10 (SUER COVKNOW)*
DET=Dl*2**D2

C
RETURN
END

C
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C ft*f*f*Itffffffftttttttttftfffftfffffffffttffff
C * SUBROUTINE FTABL f

Cmf

C * THIS SUBROUTINE COMPUTES AN F TABLE f

C f (TO THE POWER P) *
C *ftmft*******ft ft******f***ftfftIftmfftftifftft**ft***f~ft**f

C
SUBROUTINE FTABL(FF,NX,Z1)

C
COMMON /BLX1/ SIG,KK,IQQ,IP

C
INTEGER ZI,KK,IQQ,IP,NSIG,NROOT,ITMAX

C
REAL ROOT(1),LAST,FF(O:Z1),EPSFP

C
EXTERNAL F

C
EPS=.001
NSIG=5
NROOT=1
ITMAX=1000
LAST=3.

C
DO 10 IQQ=O,NX

ROOT(1)=LAST
15 CALL ZREAL2(F,EPS,EPS,EPS,NSIGNROOT.ROOTITMAX,IER)

IF (IER.EQ.33) THEN
ROOT(1) =LAST+1.
IER=0
WRITE(6,1535)
WRITE(6,*)
GOTO 15

ENDIF
LAST=ROOT(1)
FP=ROOT(1)**IP
FF(IQQ)=FP

10 CONTINUE
C

RETURN
1535 FORMAT(IX,'IGNORE LAST IER=33 WARNING --- REINITIALIZING')

END
C
C
C f SUBROUTINE GAUSS
Cf
C * THIS SUBROUTINE PERFORMS THE PIVOTS FOR VARIABLE
C f INTRODUCTION INTO REGRESSION MODELS:
C f FURNIVAL AND WILSON 1974
C
C

SUBROUTINE GAUSS(IB,IS,IP,A,KP,MAX,Z3)
C
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INTEGER IBIS,IP,KP,MAX,Z3
C

REAL A(MAX,Z3,Z3)
C
C w
C , TOLERANCE CHECK ON PIVOTS
C m
C

LB=IP+I
IF (A(IB,IPIP).LT..OI) THEN

DO 10 L=LB,KP
A(IS,IP,L)=A(IB,IP,L)

DO 10 M=L,KP
A(IS,L,M)=A(IB,L,M)

10 CONTINUE
ELSE

DO 15 L=LB,KP
A(IS,IP,L)=A(IB,IP,L)/A(IB,IP,IP)

DO 15 M:L,KP
A(ISL,M)=A(IB,LM)-A(IB,IP,M)*A(IS,IP,L)

15 CONTINUE
ENDIF

C
RETURN
END

C
C m
C * SUBROUTINE KEEPIT
C*
C * THIS SUBROUTINE FINDS THE MODEL OF A CANDIDATE
C * REGRESSION *
C
C

SUBROUTINE KEEPIT(NUMREG,NK,NX,MODELS,ZI,Z3,Z5)
C

INTEGER ZI,Z3,Z5,NXNUMREG
INTEGER NK(Z3).MODELS(Z5,Z1)

C
DO 10 I=1,NX

MODELS(NUMREG,I)=NX(I)
10 CONTINUE

C
RETURN
END

C

C * THE FOLLOWING SUBROUTINES, USED IN THIS
C * PROGRAM, ARE IMSL ROUTINES:
CI
C- BECOVM
C * COMPUTES MEANS AND VARIANCE-COVARIANCE
C * MATRIX
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C * - EIGRF
C * COMPUTES EIGENVALUES AND (OPTIONALLY) *

C * EIGENVECTORS FOR A REAL GENERAL MATRIX
C * IN FULL STORAGE MODE f

C * - LINV3F
C * COMPUTES IN-PLACE INVERSE, EQUATION
C * SOLUTION, AND/OR DETERMINANT EVALUATION
C * IN FULL STORAGE MODE f

C * - MDFD
C * COMPUTES F PROBABILITY DISTRIBUTION
C * FUNCTION
C * - RLSUBM *
C * PERFORMS RETRIEVAL OF A SYMMETRIC
C * SUBMATRIX FROM A MATRIX STORED IN
C * SYMMETRIC MODE
C * - VCVTFS *

C * PERFORMS STORAGE MODE CONVERSION OF *

C * MATRICES (FULL TO SYMMETRIC)
C * - VCVTSF
C * PERFORMS STORAGE MODE CONVERSION OF
C * MATRICES (SYMMETRIC TO FULL)
C * - VMULFF f

C * PERFORMS MATRIX MULTIPLICATION (FULL f

C * STORAGE MODE) f

C * - ZREAL2 f

C * COMPUTES THE REAL ZEROS OF A REAL f

C * FUNCTION - TO BE USED WHEN INITIAL f

C * GUESSES ARE GOOD

C

C * THE FOLLOWING FUNCTIONS ARE USED TO COMPUTE THE
C * SELECTION CRITERION

C

C f FUNCTION Cl

C

REAL FUNCTION CI(K,IQ,IP)
PROD=l.
DO 10 I=l,IP

ITOP=(K-IQ-I)
IBOT=(K-IQ-I)*K
TERM=FLOAT(ITOP)/FLOAT(IBOT)
PROD=PROD*TERM

10 CONTINUE
Cl:PROD
RETURN
END

C
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C
C FUNCTION C2
C
C

REAL FUNCTION C2(K,IQ,IP)
SUM= 0.
P1=1.
P2=1.
DO 10 J=0,IP

ILEFT=JCObIB(IP,J)
IF (J.NE.0) THEN

P1=Pl*(IQ+2* (J-1))
P2=:P2* (K-IQ- (2*J))
RNEXT=P1/P2

ELSE
RNEXT=l.

ENDIF
TERM=FLOAT (ILEFT) *RNEXT
SUM S UM+ TERM

10 CONTINUE
02: SUM
RETURN
END

C
C
C' FUNCTION C3
C
C

REAL FUNCTION C3(K,IQ,IP)
C3=CI (K,IQ,IP)*C2(K,IQ,IP)
RETURN
END

C
C
C *FUNCTION C4
C
C

REAL FUNCTION C4(KIQIP)
PROD:1.
DO 10 I=1.IP

TOP=FLOAT (K- IQ-I)
BOT=FLOAT (K- IQ- 1)
PROD=PRODI (TOP/BOT)

10 CONTINUE
C4=PROD
RETURN
END

C
C
C * FUNCTION C5
C
C
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REAL FUNCTION C5(KK,IQIP)
PROD: 1.
DO 10 I=1,IP

PROD=PROD*(FLOAT(KK-IQ-1)/FLOAT(KK-IQ-I))
10 CONTINUE

C5=PROD
RETURN
END

C
C **iii*******w*i** ****

C FUNCTION CFRONT
C ****N**I*****f********

C
REAL FUNCTION CFRONT(K,IQIP)
TOP=FLOAT (K-IQ- 1)
FjOT=FLOAT(K-IQ-IP)
OFRONT: (TOP/HOT) **lP
RETURN
END

C
C *****.*****~*i***~***

C *FUNCTION F
C ii**************** ***

C
REAL FUNCTION F(Z)
COMMON /BLKI/ SIG,XK,IQQ,IP
N1:IP
N2=KK-IQQ-IP
CALL MDFD(Z,N1,N2,P,IER)
F=SIG-P
RETURN
END

C
C *I********I*N***t**i*

C * FUNCTION JCOMB
C *****e*i**iNu* et***i*

C
INTEGER FUNCTION JCOMB(N,M)
ITOP=NFACT (N)
IBOT=NFACT (N-M) *NFACT (N)
JCOMB=ITOP/ IBOT
RETURN
END

C
C i**NawI.******u*** **N

C *FUNCTION NFACT
C **.u**.u.*I**u***I*.*

C
INTEGER FUNCTION NFACT(M)
IF (N.EQ.O) THEN

NFACT 1
RETURN
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ENDIF
IP=M
ILOOP=M- 1
DO 10 I=ILOOP,2,-l

IP=IP*I
10 CONTINUE

NFACT= IP
RETURN
END
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APPENDIX B: Documentation for Selection Program

USER'S GUIDE

FOR

VARIABLE SUBSET SELECTION PROGRAM

(VSSP)

Prepared By

Captain James A. Gigliotti

GOR-90M

16 March 1990
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I. INTRODUCTION

Background And Purpose

When dealing with computer simulations it is typically desirable to

have a general understanding of how the simulation inputs will affect

the final results. It is also desirable to be able to accurately

estimate the expected simulation response. Furthermore, if the

estimation of the response can be achieved with a subset of the

simulation inputs (variables), a variance reduction on the estimator of

the mean can also be realized. One way of achieving these goals is

through the identification of a good subset of control variates.

Control variates, also known as control variables, are variables which

have a significant covariance with the response(s) of interest.

The development of a quick and easy method for identifying the

subset of significant control variates in a simulation model would

greatly decrease the time and effort required to gain insights into the

simulation. Identifying the significant control variates for a

simulation model can also enhance the process of preparing and

implementing an experimental design. It would eliminate the guesswork

in determining which variables to concentrate on in a subsequent

experimental design. This could also save computer time by identifying

a subset of the available control variates to work with, since the

standard experimental design requires 2k simulation runs to acquire

data, where k is the number of variables being tested.

The corresponding purpose of the Variable Subset Selection Program

(VSSP) is to provide a means to identify the significant control

variables, of a simulation, by evaluating the simulation output.
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Program Description

The Variable Subset Selection Program (VSSP) identifies the

significant control variables using the 'Best Controls' (i.e. BCp)

criterion developed by Bauer and Wilson (1990). Initially, the best or

near-best subset of variables, depending on the evaluation procedure

desired, is selected for each subset size from 1 to MX (the total number

of control variables in the full set). The initial selection among

subsets of the same size is based on the RSS (Residual Sums of Squares)

of each subset.

When these subsets are selected, the corresponding BCp criterion

value is calculated and the subset with the best criterion value is

selected. The major advantage of using the BCp criterion is that it

takes the number of variables in the subset into account in determining

the criterion value. Unlike other more common selection criterions, the

BCp criterion does not automatically select the subset with the most

variables.

Upon selection of the *best' variable subset, the corresponding

coverage and volume reduction of the confidence regin ie determined.

The values are summed up over each meta-experiment and averaged at the

conclusion of the program rum. These values along with the 'best'

criterion value and variable subset for each meta-experiment are written

to an output file.

As mentioned earlier, the resulting variable subset may be the best

or near-best one possible, depending on the selection procedure desired.

The user may choose from two selection procedures: 1) Enumerated

Subsets, or 2) Stepwise (Forward Selection). The enumerated subsets
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procedure evaluates all possible combinations of variables, for each

subset size. This ensures that the best subset will be selected, based

on the BCp criterion.

The stepwise (forward selection) procedure does not evaluate all

possible subsets, except for the one-variable subset case. Initially,

it evaluates all one-v'riable subsets then selects the best one. After

selecting the best single variable the procedure then evaluates only

those two-variable subsets containing that one variable; selecting the

best of these two-variable subsets. Then the procedure only evaluates

the three-variable subsets containing the variables of the best two-

variable subset; selecting the best out of those. This process

continues, building on the last subset selected, until all variables are

in the modql. The disadvantage of this procedure is it ignores all

subsets which do not include the previously selected variables; so

better variable subsets may be missed. However, the advantage of this

procedure is that an efficient implementation will select the near-best

variable subset in much less time than the enumerated subsets procedure.

In addition, the VSSP provides the user with several more options.

The user may specify the following:

- Whether the covariance matrix of control variables should be

estimated, based on the data, or provide the covariance matrix,

if known.

- Whether the program should provide the single best variable

subset or the 'M' best X-variable subsets (X = 1,2,... ,NX) for

each meta-experiment.

- Whether or not program input will be provided by datafile or
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input manually.

Brief Overview Of Contents

Following sections of this manual are designed to help the user

understand the operation and constructs used in the VSSP. Section II

provides information on how to run the VSSP and the options available.

Section III lists all the variables used in the program and explains

the purpose of each. Section IV provides the parameters associated

with each program variable (i.e. variable type, precision (single or

double), whether or not it is an array and corresponding size) and any

applicable comments. Section V provides a listing of all the

subroutines used in the program and a brief description of each. And,

Section VI provides a listing of all the functions used in the program

and a brief description of each. In addition, several appendixes are

provided to supplement the information contained in the various manual

sections.
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II. HOW TO USE THE PROGRAM AND INTERPRET THE OUTPUT

Program Operation And Required Data

When running the Variable Subset Selection Program (VSSP) the user

will be prompted for the following data and information. The minimum

required data is a file containing simulation output corresponding to

the control variables and responses to be evaluated by the program. The

data must be arranged with the variable output values before the

response values. Other data which the user may input to the program, if

known, is the covariance matrix between the control variables.

The other information, required by the program to operate, is

identified in the following list:

- Whether program data and information will be input by datafile or

manually. If the datafile option is chosen, the user will be

prompted for the datafile name so program data and information

can be read in by the program. Regardless, the following

information is still required.

- Number of control variables.

- Number of responses.

- Number of best regressions to keep. Input a one (1) if only the

best variable subset is desired.

- Number of data replications per meta-experiment.

- Number of meta-experiments.

- Whether or not the covarlance matrix of controls is known or is

to be estimated from the the data.

- Which evaluation procedure you desire, enumerated subsets or

stepwise.
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- Level of significance to use in deriving F-values.

- Known or estimated means of the control variables.

- Sample means of the control variables.

- Estimated means of the responses.

- Sample means of the responses.

- A title to write to the program summary file. For this and any

other input where character data is necessary, use an underscore

-. instead of spaces. Also, the input must begin with a

character, not a number.

- A name for each control variable.

- A name for each response.

- A name for the program summary datafile.

If the covariance matrix of controls is known and is to be

provided, the program will ask if this information will be entered by

datafile or manually. If the datafile option is selected, then the user

will be prompted to provide the name of the datafile where this

information is contained. When the covariance matrix is to be provided

and the program input is by datafile then the covariance data may be

provided by a separate datafile or contained in the initial datafile

(See Appendix B for further detail on datafile format).

Finally, there are two items to remember in executing the program

or it may not work properly. First, the number of replications per

meta-experiment must be greater than the number of control variables

plus two (i.e. NX.2). And second, the datafile containing the control

and response data must contain, as a minimum, a number of data sets

equal to the total replications (i.e. *Number of meta-experiments' times
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'Number of replications per meta-experiment).

Interpreting The Output

After the program has completed evaluation of the data, all results

are output to a summary file. The summary file will provide the

following information (starting at top-left of file and moving to the

right):

- Evaluation title, input by user during program data input phase.

- Number of meta-experiments performed.

- Number of data replications per meta-experiment.

- Total number of data replications evaluated by the program. This

is equal tn "Number of meta-experiments' times *Number of

replications per meta-experiment*.

- Summary of response data including response number, name

designation of response, response mean over total number of

replications, and estimated steady state mean. This information

is provided by user.

- Summary of control variable data. Covers same information as for

responses. This information is provided by the user.

- A statement whether the covariance matrix of controls was

estimated or known.

- The meta-experiment number, best BCp criterion value found for

the meta-experiment, and the corresponding 'best* variable

subset.

- Two sets of coverage and volume reduction data averaged over all

the meta-experiments. The first set is based on the steady state
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means and the second set is based on the sample means.

The following should be noted in regards to the coverage and volume

reduction summary data. First, if the steady state and sample means

input to the program are the same, there will be no difference in the

values of either set. Also, each set of coverage and volume reduction

will contain two values for coverage. The primary value of interest is

the controlled coverage. This corresponds to data coverage achieved by

using the selected variable subsets.
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III. VARIABLE DICTIONARY

A = Storage for full covariance matrix and subsequent pivots.
ANSWER = Character variable used to input answers to initial data

input questions.
B = Dummy array for IMSL Subroutine LINV3F.
BETA = Equivalent to BUFF2 * SUBV = 9 = S c*Scc
BIG = Equivalent to [(NUMREPS-1)/(NUMREPS-NX-2)]**NY; partial value

used in computing TWO.
BOT = Denominater portion of a value used to compute C4 and CFRONT,

in their respective functions.
BOUND = Feasibility bound when using known covariance matrix of

controls. Used in Subroutine COVER.
BUFF = Buffer used in book keeping of REGR.
BUFF1 = Buffer for S (Full Covariance Matrix), [See Note 1).
BUFF2 = Buffer for Syc, (See Note 1].
BUFF3 Buffer for Scy , (See Nnte 11.
BUFF4 = Buffer for Sy, (See Note 1].
BUFF5 = Buffer of SYDTC.
BUFF6 = Buffer of Sv v_[See Note 13.
BUFFQ = Buffer of Sigma Tilde Hat.
Cl = Equivalent to (NUMREPS-2)/(NUMREPS-IIN-1); partial value of

residual covariance. Used in Subroutine COVER. Also used in
Subroutine COVKNOW to find generalized variance of Sigma
Tilde Hat.

C2 = Equivalent tc (MV+1)/(NUMREPS(NUMREPS-1)); partial value of
generalized variance of Sigma Tilde Hat. Used in Subroutine
COVXNOW. Also used in Subroutine COVER in computing the
right hand side of confidence region when controls are used.

C3 = Equivalent to (NUMREPS-IIN-I)*(NUMREPS-NY); partial value
used in computing volume reduction in Subroutine COVER.

C4 = Equivalent to (NUMREPS-IIN-NY)*(NUMREPS-l); partial value
used in computing volume reduction in Subroutine COVER.

C5 = Equivalent to (NY(NUMREPS-I))/(NUMREPS(NUMREPS-NY)); partial
value used in computing right hand side for the confidence
region where no controls are used. Used in Subroutine COVER.

CANCORR = Canonical Correlations for variable subset models when using
a known covariance matrix of controls. Used in Subroutine
COVER.

CBAR a Sample mean vector for controls.
CBOT = Denominator of equation used in calculating bound when the

covariance matrix of controls is known. Used in MAIN
program.

CCl a Partial value, used to compute actual volume of the
controlled and uncontrolled ellipsoids. Used in Subroutine
COVER.

CC2 = Partial value, used to compute actual volume of the
controlled and uncontrolled ellipsoids. Used in Subroutine
COVER.
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CC3 = Partial value, used to compute actual volume of the
controlled and uncontrolled ellipsoids. Used in Subroutine
COVER.

CC4 = Partial value, used to compute actual volume of the
controlled and uncontrolled ellipsoids. Used in Subroutine
COVER.

CDET = Determinant used in computing volume reduction and actual
volume of ellipsoid for case where controls are ured and
steady state is assumed. Used in Subrcutine COVER.

CDEVi = Equivalent to (CBAR - VECMUC)' (C -_uc)'.
CDEV2 = Equivalent to (CBAR - VECTJC) (C - Uc).
CEIGS = Complex variable counterpart of EIGS.
CONST = Equivalent to (NUMREPS-l)/(NUMREPS-MV-1); partial value used

in calculating determinants (DET) in m 'best' regressions
mode. Used in MAIN program.

CONSTI = Equivalent to (NUMREPS-2)/(NUMREPS(NUMREPS-)); partial valut.
used in computing the estimator Sigma Tilde Hat. Used in
Subroutine COVER.

CONST2 = Equivalent to (IIN+l)/(NUMREPS(NUMREPS-l)); partial value
used in computing the estimator Sigma Tilde Hat. Used in
Subroutine COVER.

CONTROL = Character vector which contains names of controls used in the
evaluation.

COVCV = Array containing civa"rince matrix of controls.
COVFILE = Name of datafile containing covariance matrix, if it is

known.
COVERAG = Array containing estimated confidence volume coverage.

COVERAG(l): Controlled coverage on steady state means,
COVERAG(2): Uncontrolled coverage on steady state means,
COVERAG(3): Controlled coverage on sample mean, and
COVERAG(4): Uncontrolled coverage on sample mean.

CTOP = Numerator counterpart of CBOT.
DI = Output of IMSL Subroutine LINV3F. DI is one of two

components of the determininant of the matrix input into
LINV3F.

D2 = Output of IMSL Subroutine LINV3F. D2 is one of two
components of the determininant of the matrix input into
LINV3F.

DET = Determinant of an applicable matrix. Equivalent to DI*2**D2.
DEV = Equivalent to BETA*BUFF3 = B(C - uc).
DIFF = Equivalent to VC - VU.
DUM = Dummy array for use in IMSL subroutine calls, when output of

that type is not required. Used in MAIN program and
Subroutine COVKNOW.

DUMMY = Dummy matrix for use in IMSL subroutine calls, when output of
that type is not required. Used in Subroutine COVER.

EHAT = Matrix containing values for estimator Sigma Tilde Hat.
EIGS = Vector variable used in Subroutine Cover to contain

eigenvalues derived from IMSL subroutine.

EPS = Covergence criterion used as input to IMSL Subroutine ZREAL2
EXPL = Equivalent to BETA*BUFF3 = A*Scy.
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F = Used in computing right hand side of confidence region, in
Subroutine COVER.

F2 = Used in computing right hand side of volume reduction, in
Subroutine COVER.

FF a Contains FP table.
FP a Equivalent to ROOT(l)**IP. Used in Subroutine FTABL to hold

F-value until it is added to array FF.
FULL = Full storage mode version of VCV.
FULCOVC = Full covariance matrix of all controls and responses.
GAMM = Gamma Hat matrix, used in Subroutine COVER.
GAMMA = Used to compute actual volume of controlled ellipsoid, in

Subroutine COVER.

HPH = Equivalent to Tl*CDEV2 = (C - uc)'*Sc *(C - uc).
I = Counting variable used in DO loops. Also used to count

number of primary variable inputs which exceed program
parameters, if any.

I1 = DO loop counting variable, used in Stepwise section of MAIN

program.
12 = DO loop counting variable, used in Stepwise section of MAIN

program.
IAT = Tracks which regression model is currently being evaluated.
IB = Index of source block. Used in Subroutine GAUSS.
IB2 = Provides same function as IB. Used in Stepwise procedure of

MAIN program.
IBOT = Denominator for values computed in Functions Cl and JCOMB.
IBUFF = Array containing control variables in 'best' regression model

selected. Identifies variables by number, not model
coefficients.

IC = Counting variable used in DO loops.
ICOUNT = Acts as reference value, in Subroutine COVER, in computing

canonical correlations when covariance matrix of controls is
known.

ICOVER = Indicator array of coverage for a particular model; O=No,
lzYes.

ICOVER(1) = 0,1 (Controls present, steady state assumed)
ICOVER(2) = 0,1 (No controls, steady state assumed)
ICOVER(3) = 0,1 (Controls present, Y(1000))
ICOVER(4) = 0,1 (No controls, Y(1000))

ICTOT = Keeps coverage total as each meta-experiment is performed.
Used in MAIN program in computing average coverage over all
meta-experiments; COVERAG(I)=ICTOT(I)/META.

IER = Error condition, output from IMSL subroutines if an error
condition is encountered.

IH = Inclusion array, of both controls and responses, for input to
IMSL Subroutine RLSUBM. Used in MAIN program and Subroutine
COVER.

IH2 = Inclusion array, of controls only, for submatrix of selected
model used as input to IMSL Subroutine RLSUBM. Used in
Subroutine COVER.

II = Counting variable used in DO loops.
IIN c Number of variables in current model.
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IKNOW = Flag designating whether the covariance matrix is estimated
(IKNOW=O), or known (IKNOW=1).

ILEFT = Number of pivots left to process in computing Function C2;
ILEFT = NFACT(IP)/(NFACT(IP-J)*NFACT(J)).

ILOOP = Equivalent to M-1 in Function NFACT. Used as starting point
for loop which computes the factorial of M.

INDI = Array for keeping 'best* evaluated subset of size J=... NX.
Used in Stepwise procedure of MAIN program.

IND2 = Array for maintaining latest subset created for evaluation
within the Stepwise procedure section of MAIN Drogram.

INDEX = Index variable for SCBAR and SVECMU when computing subvector
of the control means in Subroutine COVER.

INFILE = Character variable used in initial data input routine.
INFILE takes name of input file if datafile option is chosen.

IORDER = Order (number of rows) of input or output matrix. Used in
several IMSL Subroutines.

IP = Index of the pivot row and column, used in Subroutine GAUSS.
IQ = Counting variable used in DO loops.
IQQ = Counting variable used in DO loops.
IS = Index of the storage block, used in Subrouitine GAUSS.
IS2 = Provides same function as IS. Used in Stepwise procedure of

MAIN program.
ITMAX = Input to IMSL Subroutine ZREAL2, defines the maximum number

of iterations to use in finding a root.
ITOP = Numerator for values computed in Functions Cl and JCOMB.
IVAR = Integer value associated with the individual control

variables (i.e. 1=Xl, 2=X2, etc.).
IWRITE = Flag designating whether the meta experiment mode (IWRITE=O)

or best "m" regressions mode (IWRITE=I) is to be used.
IX = Equivalent to Z6, used as input to IMSL Subroutine BECOVM.
IZ = Counting variable used in DO loops. Used in initializing

arrays and matrices in meta loop of MAIN program.
J = Counting variable used in DO loops.
JJ = Counting variable used in DO loops.
JZ = Counting variable used in DO loops. Used in initializing

arrays and matrices in meta loop of MAIN program.
K = See NX.
KEEPERS = Number of *best' regressions to keep (See M).
KK = See NUMREPS.
KNX = Equivalent to 2**NX.
KP = Equivalent to k+l, where k is number of control variates.

Used in Subroutine GAUSS.
KZ = Counting variable used in DO loops. Used in initializing

matrices in meta loop of MAIN program.
L = Counting variable used in DO loops.
LAST = Variable used as input to IMSL Subroutine ZREAL2, contains

initial guess of root for defined function.
LB = Equivalent to IP+I, used in Subroutine GAUSS.
M = Counting variable used in DO loops.
Ml = Variable used as input to IMSL Subroutine RLSUBM, contains

order of symmetric matrix stored in symmetric mode.
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M2 = Order of symmetric matrix SUBV. Obtained as output of IMSL
Subroutine RLSUBM, and used as input to IMSL Subroutine
VCVTSF. Used in Subroutine COVER.

MAX = Maximum number of storage matrices in Array A, for storage of
matrices created by calls to Subroutine GAUSS. Used in
Stepwise section of MAIN program.

META a Number of meta experiments. This is required input data.
METHOD = Flag designating whether enumerated subsets (METHOD=O) or

stepwise [forward selection] (METHOD=1) method is to be used
in the evaluation. This is required input data.

MM = Used as DO loopNRounting variable for META loop.
MODELS Saves all the 2 enumerated subset models.
MV = Counts number of control variables contained in a model as

defined by NK. Used in MAIN program and Subroutine COVKNOW.
N = Counting variable used in DO loops.
NBR = Vector of inputs to IMSL Subroutine BECOVM.
NK = An identification array, NK is a binary counter with a list

of zeros and ones which indicate the presence or absence of
the independent variables (i.e. controls). Also note that
indexing of the independent variables is reversed.

NROOT = Input to IMSL Subroutine ZREAL2, defines number of roots to
be found.

NSIG = Convergence criterion input to IMSL Subroutine ZREAL2. A
root is accepted if two successive approximations to a given
root agree in the first NSIG digits.

NUMREG = Tracks the number of 'best* regressions, when that mode is
used.

NUMREPS = Number of replications per meta experiment. This is required
input data.

NVAR = Total number of variables (i.e. NVAR = NX + NY).
NX = Number of candidate control variates. This is required data

input.
NY = Number of responses. This is required input data.
OBS = Equivalent to T2*YMD2.
OBS2 = Output of IMSL Subroutine VMULFF, contains product of the

first two matrices provided as input to the subroutine. Also
used in determining coverage when no controls are used and
steady state is assumed. Used in Subroutine COVER.

OUTFILE = Character variable used input name of an input datafile
created during manual data input, if desired. Also used to
input name for file to contain program output.

P = Output probability, of IMSL Subroutine MOFD, that a random
variable following the F-Distribution with degrees of freedom
Ni and N2 will be less than or equal to input Z. Used in
Function F. This value supports calculation of F-table in
Subroutine FTABL.

Pi = Product 1, numerator used in computing RNEXT, in Function C2.
P1 = [PROD(J=O,IP) (IQ+(2*(J+l)))].

P2 = Product 2, denominator used in computing RNEXT, in Function
C2. P2 = [PROD(J=O,IP) (K-IQ-(2*J))].

PI = Parameter in Subroutine Cover which contains value of pi.

101



POVER2 = Equivalent to NY/2. Used in Subroutine COVER to compute
actual volume of controlled and uncontrolled ellipsoid.

PROD = Keeps cumulative product of terms, for Functions Cl, C4, and
C5.

RDET = Array of determinants of matrices associated with the
specific regression models.

REGR = Bookkeeping array for best M regressions to keep. For array
of format REGR(i,j,k); A) j = subset size, B) k=l, stores
generalized matrix; and k=2, stores pointer to model.

REIGS = Equivalent to Sqrt(EIGS(ICOUNT)), used in computing the
canonical correlations and feasibility bound when the
covariance matrix of controls is known. Used in Subroutine
COVER.

RESPONS = Character vector used to contain names of responses used in
the evaluation.

RHS = Right Hand Side of the confidence region, where controls are
used, per Rao (1967). Used in Subroutine COVER.

RHS2 = Right Hand Side of the confidence region, when no controls
are used and steady state assumed. Used in Subroutine COVER.

RMIN = Holds minimum Residual Sums of Squares (RSS) values. RSS
values used in determining the m 'best' regressions, when
that mode is selected.

RNEXT = Equivalent to Pl/P2 in Function C2. Used in computing TERM.
ROOT = Used as input/output to IMSL Subroutine ZREAL2, in Subroutine

FTABL. As input, contains initial guess of root. As output,
contains computed root.

RSS = Buffer for conditional covariance matrix.
SCBAR = Subvector of CBAR, used to find vector of corrections to

control Y (variables CDEVI and CDEV2). Used in Subroutine
COVER.

SIG = Level of Significance associated with selection criteria.
SP = Equivalent to RMIN, used in write statement to program output

file.
SUBCOVC = Submatrix of full covariance matrix FULCOVC.
SUBV = Submodel covariance matrix inlsymmetric storage.
SUBVF = Full storage version of SUBV .
SUM = Keeps sum of TERMs in Function C2.
SUMDEV = Keeps sum of DIFFs for each meta-experiment.

SUMDEV(1): For steady state means.
SUMDEV(2): For sample means.

SUMVU = Keeps sum of VUs for each meta-experiment.
SUMVU(1): For steady state means.
SUMVU(2): For sample means.

SVECMU = Subvector of VECMUC, used to find vector of corrections to
control Y. Used in Subroutine COVER.

SYDOTC = Equivalent to BUFF4-EXP = C2(S - *Scy).
SYMCOVC = Symmetric storage version of matrix FUL OVC.

TI = Equivalent to CDEVl*SUBVF = (C - uc)'*Sc-
T2 = Equivalent to YMDISYDOTC.
TARGET = Matrix used in computing generalized variance of Sigma Tilde

Hat (i.e. responses).
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TEMP = Input vector of length NBR(1), used in IMSL Subroutine
BECOVM. If NBR(5)=0, then TEMP must contain the temporary
means when NBR(4)=l. Otherwise, temp is work storage.

TERM = Generic variable, used in Functions Cl and C2 to save results
of divisions and products, respectively.

TERMI = Partial value used in computing volume reduction where
controls are used and steady state assumed. Used in
Subroutine COVER.

TERM2 = Partial value used in computing volume reduction where
controls are used and steady state assumed. Used in
Subroutine COVER.

TERM3 = Partial value used in computing volume reduction where
controls are used and steady state assumed. Used in
Subroutine COVER.

TIND = Array for keeping current/temporary 'best* variable subset
model as all models are created for evaluation in Stepwise
section of MAIN program. When all models of size J=1, .. ,NX
have been evaluated, the model maintained in TIND is copied
to INDl, as the 'best* subset of size J.

TITLE = Analysis title, input during initial data input routine and
written to output file.

TMV = Tracks number of variables in last variable subset evaluated
in the Stepwise procedure section of MAIN program. Acts as a
flag to trigger save of best subset of a certain size.

TOP = Numerator portion of a value used to compute C4, in Function
C4.

TWO % Modified version of matrix determinant, equivalent to
2*BIG*DET. Used as determinant bound and as original values
for elements of bookkeeping array REGR.

UCDET = Determinant used in computing the volume reduction where
controls are used and steady state assumed, and the actual
volume of the uncontrolled ellipsoid. Used in subroutine
COVER.

VC = Volume of controlled ellipsoid, used in Subroutine COVER.
VCV = Covariance matrix in symmetric storage of all controls and

responses. This is an output of IMSL Subroutine BECOVM.
VECCBAR = Vector of average of inputs of controls.
VECM UC = Vector of theoretical means of the controls.
VECMUY = Vector of steady state means of the responses.
VECYBAR = Vector of sample means of the responses.
VOLRED = VOLRED(l) is volume reduction due to controls; VOLRED(2) is

not used.
VR = Array of Variance Reduction values, derived from calulating

selection criterion for each regression model.
VU = Volume of uncontrolled ellipsoid, used in Subroutine COVER.
WK = Array used by IMSL Subroutines EIGRF. Provides work area for

subroutine to use in performing its function.
WKAREA = Array used by IMSL Subroutine LINV3F. Provides same function

as WK.
X = Data matrix for a single meta-experiment.
XFILE = Datafile containing (controls:response] data.
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XM = Output vector, of length NBR(l), of IMSL Subroutine BECOVM.
This vector contains the variable means.

YBAR = Sample mean vector.for controls..
YBHAT = Equivalent to Y - A(C - uc ) Z Y(A).

YMD1 = Equivalent to (Y() - Uy)'.

YMD2 = Equivalent to (Y() - U ,
YMD3 = Equivalent to (YAR - VECMUY)= (Y - uy)'.
YMD4 = Equivalent to (YEAR - VECMUY) = (Y - U
Z = Input constant, to IMSL Subroutine MDFD, to which integration

is performed. Z must be greater than or equal to zero. Used
in Function F.

Zi = Program parameter defining maximum number of Control
Variables (See NX) the program is set to handle. This
parameter is also used in Subroutine Cover.

Z2 = Program parameter defining maximum number of Control
Responses (See NY) the program is set to handle. This
parameter is also used in Subroutine Cover.

Z3 = Program parameter equivalent to ZI+Z2. This parameter is
also used in Subroutine Cover.

Z4 = Program parameter defining maximum number of 'best'
regressions which may be kept.

Z5 = Program parameter equivalent to 2*'Zl. This parameter also
used in Subroutine Cover.

Z6 = Program parameter defining maximum number of replications per
meta-experiment allowed.

Z7 = Program parameter defining maximum number of meta experiments
allowed.

Z8 = Program parameter equivalent to (Z3*(Z3+1))/2. This
parameter also used in Subroutine Cover.

/\

NOTES: (1) S = Scc Scy

Syc : yy
/
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IV. VARIABLE PARAMETERS MATRIX

Variable Type : Precision
VARIABLE INT :REAL :CHAR COM :LOGIC:ARRAY: S D :Size/Comments

A x : X : x :MAXxZ3xZ3
- --- --- --.. : - - - - - - --- -- - -- -

ANSWER X : :

B X X : X I Z3

BETA X : X X Z2xZl
..... : ----.. ...- -_ _--

BIG X : : X
-: : .....- ------ -

BOT X X

BOUND X : X

BUFF X : X X i Z4

BUFFI X : X X Z3xZ3
- - - - -- -- - : - -~-- - !- - - - - - - - - - - -

BUFF2 x : X X Z4 (MAIN)
: Z2xZI (COVER)

BUFF3 X a aX X ZlxZ2

BUFF4 X X X Z2xZ2

BUFFS X X X Z2xZ2

BUFF6 X X X Z2xZ2

BUFF6 X a aX X Z2xZ2

c1 X X

C2 X X

C3 X X

C4 X x

CANCORR : x :X: X : Z2xZ2

CBAR X X X Zl

CBOT X X

: ..... :- -:-- _- -.. ..- -. _--

105

i at a a



VARIABLE PARAMETERS MATRIX
(Continued)

Variable Type Precision
VARIABLE INT :REAL :CHAR COM :LOGIC:ARRAY: S D :Size/Comments:

~ a a - --- ~ ~ ~ ~ a -~ - -- -- -- - - - -

CC2 X : x

CC3 x i x

CC4 x X

CDET X :X

CDEVI X a X X lxZla

CDEV2 X a a X X aZixi

CEIGS aX a a xa Z2a

CONSTI X a a aX a a

CONST2 X a a aX a

CONTRO K a a:2 a K a

COTROLE a X a a KaC25AZ

COVCVG X a X: X a4~Z

- -- - - a - - - a- -a- -a- -a- -a- -a

D2 X Xa

CTOP x X X X a a l

Dl : X : a aZ2K a

- -- - - a a- - a- -a- -a- -a- -a- -a

aUM' a a a a a a

- - -- --a-
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VARIABLE PARAMETERS MATRIX
(Continued)

Variable Type Precision
VARIABLE INT :REAL :CHAR COM :LOGIC:ARRAY: S D :Size/Comments:

......... ..... .. . . .. = == : = = a= = .. .= = = = == = = - -

EHAT X X x Z2xZ2

EIGS X X X 2*Z2

EPS x : x

EXPL a X X X Z2xZ2

F X X

F2 X : X
------------

FF X X X O:Zl

FP X X

FULL X X X Z3xZ3
: .....- --------

FULCOVC X X X: ZlxZl
- -- -----------

GAMM X X X Z2xZl

HPH X X X lxl

I X

I! X

12 X

IAT X : :

IB X

IB2 X a

-- - : -- -: -- --- : -- -t- - - - - - -
IBOT : X :

IBUFF X: x Zl

IC X :

I COUNT X : a

ICOER : a
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VARIABLE PARAMETERS MATRIX
(Continued)

Variable Type Precision
VARIABLE INT :REAL :CHAR COM :LOGICIARRAY: S D :Size/Comments:

ICTOT : X : x :4

IH a X I Z3

IH2 :X : X :zi

II : X : :
- - - - - - - - - -

aI a X

- - - - - - - - - - - -

Yu NO : X : aa a aaa

a a a-a- --a-a-a-a

aL F a

a- - --a-a-a-a

xLO X
--- -- -- --

aN D a a a aa aa
a a a-a-a-a-a-a- -

aD a X a a a
ILEFT x----a-a-a-a-a-

IN E a
a a a-a-a-a-a-a-a

a a a aXa2a

- --- --- ; -- - a- - a- -a- - --a-a

aODE aX
a a a- --a-a-a-a-a

aP a

IN~i : K a-a-a-X--------

IQ a
a a a-a-a-a-a-a-a

aQ a
IND2 : : : a--a----------

as a
a a a-a-a-a-a-a-a

aS a

INDEX : K----a-a-a-a-a-
aT A a

IWRDE X a
a- -a-a-a-a-a-a

a a aa a aa1a8



VARIABLE PARAMETERS MATRIX
(Continued)

Variable Type Precision 1
VARIABLE fINT REAL !CHAR 1 COM :LOGIC:ARRAY S 1 D !Size/Comments:

Ix x--

J Z : X a a a a

KE P R I X S a I S I

KK : X : :

J P x :

JZ XKi X

KEEPERS: X :

MI I X I I

2 X : :

KNX X

------------

KZ x :

L x X a x

LAST :X X
a a a- - - - - - - - - - - -

LB X

V - - --a- - - - - - - -

X a x
a a - - --a-a-a-a-a

al a

MAX X Praaoagraam

MET Xa aa aaaa

MAX x : :a a a :oa
a a-a-a- --a-a-a

MOEL a a a a a armee
a a - -a-a-a- - - --a
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VARIABLE PARAMETERS MATRIX
(Coni.inued)

Variable Type Precision

VARIABLE INT :REAL !CHAP COM LOGICARRAY S D :Size/Comments

a a a ~a ~ a-------------

N X

NBR X X 6

NX X X Z3

NROOT X

NSIG x

NUMREG X

WUMREPS X

NVAR X

NX X a

NY X

-- -- - -- -

OBS X x X X xl

OBS2 x X x 1 X1

OUTFILE X 25

P x x

-- -: - -: -- -- - -- -

P2 X :X : *X

PI x X X

PROD x X X

RDET K a a a a X

REOR x X X X Z4xZlx2

NEIGS x x X Z2

RESPONS x X X C:25 A:Z2

a-a-a-a-a-a-a-

a a aa a aa1a0



VARIABLE PARAMETERS MATRIX
(Continued)

Variable Type Precision
VARIABLE :INT :REAL :CHAR CON !LOGIC:ARRAY: S D :Size/Comments:

RHS X iX

RHS2 :X a X

RMIN X X

RNEXT : X Ux

ROOT :X :X x X :1

ESS : : X X: X : Z2xZ2

SCBAR XX Xz

SIG X a a a X

SP : : X a a a a X

aUCV a X X (Z1(Z1+1)/'

SUBCVO X X a a8

-- -a a - - :z- - - -- - -

SUBDV x a X a X 2
a a a-a-a-a-a-a-a

au v a a X a2

-- - : a---- :z ~ Z -- - - - - -
SUV~FU X a a z

a a a-a-a-a-a- - - -

aYOT a a a a a a

T2~E X I X IX l2 a

TENU I X I X IX Z3

TEM X a aX X Iia
a a a-a-a-a-a-a-a-



VARIABLE PARAMETERS MATRIX
(Continued)

Variable Type Precision 1
VAP in1 INT REAL :CHAR : COM :LCGIC:ARRAY S D :Size/Comments

. . .. .. .. .. .. . a= .... .. .. :

TERM1 X : X

TERM2 X : X x

TERM3 X : X

TIND X * X ZI+1

TITLE x: :25

TOP X : X

TWO X : : X

UCDET X : :X 

VC X ;X
-- : - -: -- -- - -- --..

VCV : X : X : X : :(Z3(Z3+2))/2;
- --- :- - - --- :- - :- - - - - - -

VECCBAR X X X Z

VECMUC X X X : Zi

VECMUY X X x : Z2

VECYBAR : X X :Z2
---- --- ---

VOLRED X x : x :2

VR X X X 2

VU X X

WK : X : x x : :Z2

WKAREA X X X Z2

X :X X X Z6xZ3

XFILE X 25

XM : X :X X Z3

YBAR : X : : X : X : Z2
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VARIABLE PARAMETERS MATRIX

(Continued)

I Variable Type Precision
VARIABLE INT :REAL CHAR COM LOGIC:ARRAY: S D Size/Comments

YBHAT X a X X Z2

fMD1 x X X lxZ2

YMD2 : X : X X Z2xl

YMD3 X x X lxZ2

YMD4 X x X Z2xl
i - - - . . . . . . . . . . . . . . . .

z x x
ZI X Program

i Parameter

Z2 X Program
*, Parameter

Z X Program
Parameter

.. . . ..- --------
Z4 X Program

: Parameter

Z3 5x Program

: : Parameter
- -- -- - - - -

Z6 X x Program

: Parameter

Z7 X Program
~Parameter

Z8 X Program
aParameter
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V. SUBROUTINE LISTING AND DESCRIPTION

BECOVM = An IMSL subroutine which computes means and variance-
covariance matrix.

COVER = This subroutine does the coverage and volume reduction
calculations for the optimal control subset.

COVKNOW = This subroutine returns the generalized variance of sigma
tilde hat.

EIGRF = An IMSL subroutine which computes eigenvalues and
(optionally) eigenvectors of a real general matrix in full
storage mode.

FTABL = This subroutine computes an F table, to the power P.

GAMMA = An implicit FORTRAN function which provided Gamma Function
value.

GAUSS = This subroutine performs the pivots for variable
introduction into regression models. (Furnival and Wilson
1974)

KEEPIT = This subroutine finds the model of a candidate regression.

LINV3F = An IMSL subroutine which computes in-place inverse,
equation solution, and/or determinant evaluation, uses
full storage mode.

MDFD An IMSL subroutine which computes the F probability
distribution function.

RLSUBM = An IMSL subroutine which performs retrieval of a symmetric
submatrix from a matrix stored in symmetric mode by RLSTP.

VCVTFS An IMSL subroutine which performs storage mode conversion
of matrixes (full to symmetric).

VCVTSF Z An IMSL subroutine which performs storage mode conversion
of matrixes (symmetric to full).

VMULFF = An IMSL subroutine which performs matrix multiplication
(full storage mode).

ZREAL2 = An IMSL subroutine which computes the real zeros of a real
function - to be used when initial guesses are good.

114



Note: The following subroutine is not used in program, but is
referenced in description of subroutine RLSUBM. In addition, complete
IMSL subroutine usage descriptions are provided in Attachment D.

[RLSTP] An IMSL subroutine which performs regression model
selection using a forward stepwise algorithim, with results
available after each step.
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VI. FUNCTION LISTING AND DESCRIPTION

C= Equivalent to [PROD(I=I,IP) ((X-IQ-I)/(X(X-IQ-1))].
Partial value used in computing selection criterion for a
model, when the covariance matrix of controls is estimated.
Used in Function C3.

C2 = Equivalent to (1 + [SUM(J=I,P) JCOMB(P,J)*(Q(Q+2)...(Q+
2(J-l))) / ((K-Q-2)...(K-Q-2J))]). Partial value used in
computing the selection criterion when the covariance
matrix is estimated. Used in Function C3.

C3 Equivalent to Cl * C2. Partial value used in computing
selection criterion for a model, when covariance matrix of
controls is estimated. This provides a loss factor for the
measure of efficiency of control variables as defined by
Rubenstein and Marcus (1985). Used in MAIN program.

C4 = Equivalent to (PROD(I=I,IP) ((K-IQ-I)/(K-IQ-l))]. Partial
value used in computing selection criterion for a model,
when covariance matrix of controls is known. Used in MAIN
program.

C5 = Equivalent to [PROD(I=I,IP) ((KX-IQ-I)/(KK-IQ-1))].
Partial value used in computing selection criterion for a
model, regardless of whether covariance matrix is known or
estimated. Used in MAIN program.

CFRONT = Equivalent to I*[(K-IQ-1)/(K-IQ-IP)]. This value is used
in calculating the 1O0(1-a)% confidence ellipsoid about the
responses as defined by Rao (1967). Used in MAIN program.

F = A single-arguement real function subprogram used by IMSL
Subroutine ZREAL2. F defines the function for which the
roots are to be found.

JCOMB = Equivalent to [NFACT(N)/(NFACT(N-M)*NFACT(M))], which is
the number of possible combinations of N items taken M at a
time.

NFACT = Computes factorial of X (i.e. X! = X*(X-l)*(X-2)*... W.
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ATTACHMENT A: VARIABLE SUBSET SELECTION PROGRAM CODE (FORTRAN)

This program listing is already provided as Appendix A to the
thesis.
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ATTACHMENT B: FORMAT FOR DATA INPUT FILES

In the event that program data will be input through the use of a
datafile, the following format is required. It should be noted that the
data can be placed as shown or on seperate lines for each value see
examples 1 and 2, respectively), the order remains as shown. In
addition, a combination of these two formats may be used, if desired.

NX NY KEEPERS NUMREPS META
IKNOW IWRITE METHOD
SIG
VECMUC (NX)
VECCBAR (NX)
VECMUY (NY)
VECYBAR (NY)
TITLE
CONTROL (NX)
RESPONS (NY)
<COVFILE; IF IKNOW=l>
(COVCV (NXxNX); IF COVFILE=INFILE AND IKNOW=I>
XFILE

NOTES:
[1] VARIABLE NAME = SPECIFIC DATA TO PLACE AT THAT POINT.
[2] (XI) = XI ROWS, OR TOTAL OF Xl ELEMENTS, EXPECTED.
[3) (XIxX2) = Xl ROWS BY X2 COLUMNS, OR TOTAL OF XlxX2 ELEMENTS,

EXPECTED.
[4] <X;Y> = COMMENTS ON OPTIONAL FILE DATA. X IS REQUIRED DATA IF

CONDITION Y IS MET, OTHERWISE DO NOT INSERT THIS DATA INTO THE
DATAFILE.

[5) DO NOT PLACE COMMAS BETWEEN DATA VALUES.

DATAFILE FORMAT EXAMPLES:

Example 1:

5 2 1 10 100
0 0 0
0.90
0 0 0 0 0
0 0 0 0 0
0 0
0 0
EXAMPLE_ 1
Cl C2 C3 C4 C5
RI R2
SUMAYEX# 1

118



Example 2:

5
2
1
10
100
0
0
0
0.90
0
0
0
0
0
0
0
0
0
0
0
0
0
0
EXAMPLE.-2
Cl
C2
C3
C4
C5

R2
SUMMARY..EX* 2
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ATTACHMENT C: PROGRAM FLOW DIAGRAMS
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ATTACHMENT D: IMSL SUBROUTINE USAGE DESCRIPTIONS
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IMSL ROUTINE NAME - BECOVM

PURPOSE - Meens and Variance-Covariance matrix

USAGE - CALL BECOVM(X,IX,NBR,TEMP,XM,VCV,IER)

ARGUEMENTS X - ON INPUT: X is an NBR(3) by NBR(1) submatrix of the
matrix (call it XX) of data for which means,
variances and covariances, or corrected sums of
squares and cross products are desired. The
last submatrix in XX may have fewer than NBR(3)
rows.

ON OUTPUT: The rows of X have been adjusted by the
temporary means.

IX - Input, row dimension of X exactly as specified in
the dimension statement in the calling program.

NBR - Input vector of length 6. NBR(1) contains, when
I=1, Number of variables.
I=2, Number of observations per variable in XX.
I=3, Number of observations per variable in each

submatrix X, not including the last submatrix
where the number may be less than or equal to
NBR(3). However, NBR(3) should be the same
for all calls.

I=4, The number of the submatrix stored in X.
I=5, The temporary mean indicator. If NBR(5)=O,

the user supplies temporary means in TEMP.
Otherwise, the first row of XX (or first row
of X when NBR(4)=l) is utilized.

I=6, The VCV option. If NBR(6)=0, VCV contains
the Variance-Covariance matrix. Otherwise,
VCV contains the corrected cross sums of
squares and cross-products matrix.

TEMP - Input vector of length NBR(l). If NBR(5)=O, TEMP
must contain the temporary means when NBR(4)=l.
Otherwise, TEMP is work storage.

XM - Output vector of length NBR(l) containing the
variable means.

VCV - Output NBR(1) by NBRCI) matrix stored in symmetric
storage mode requiring (NBR(l)*(NBR(I)+I))/2
storage locations. VCV contains the Variance-

Covariance matrix or the corrected sums of
gquares and cross-products matrix, as controlled
by the VCV option, NBR(6).
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IER - Error parameter. (Output)
Terminal Error:

IER=129, Indicates that NBR(4) is less than 1 or
NBR(3)*(NBR(4)-l) exceeds NBR(2).

IER=130, Indicates that NBR(1) is less than 1 or

NBR(2) is less than 2 or NBR(3) exceeds
NBR(2).

PRECISION/HARDWARE - Single and Double/H32

- Single/H36,H48,H00

REQD IMSL ROUTINES - UERTST, UGETIO

NOTATION - Information on special notation and conventions is
available in the manual or through IMSL routine
UHELP.
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IMSL ROUTINE NAME - EIGRF

PURPOSE - Eigenvalues and (optionally) eigenvectors of a real
general matrix in full storage mode.

USAGE - CALL EIGRF(A,N,IA,IJOB,W,Z,IZ,WX,IER)

ARGUEMENTS A - The input real general matrix of order N whose
eigenvalues and eigenvectors are to b ecomputed.
Input A is destroyed if IJOB is equal to 0 or 1.

N - The input order of the matrix A.

IA - The input row dimension of matrix A exactly as
specified in the dimension statement in the
calling program.

IJOB - The input option parameter. When

IJOB=O, Compute eigenvalues only.
IJOB=I, Compute eigenvalues and eigenvectors.
IJOB=2, Compute eigenvalues, eigenvectors, and

performance index.
IJOB=3, Compute performance index only. If the

performance index is computed, it is returned
in WK(). The routines have performed (Well,
Satisfactorily, Poorly) if WK(l) is (Less
than 1, Between 1 and 100, greater than 100).

W - The output complex vector of length N, containing
the eigenvalues of A.

Z - The output N by N complex matrix containing the
eigenvectors of A. The eigenvector in column J

of Z corresponds to the eigenvalue W(J). If
IJOB=O, Z is not used.

IZ - The input row dimension of matrix Z exactly as
specified in the dimension statement in the

calling program. IZ must be greater than or
equal to N if IJOB is not equal to zero.

WK - Work area, the length of WK depends on the value of

IJOB, when
IJOB=O, The length of WK( is at least N.
IJOB=l, The length of WK is at least 2N.
IJOB=2, The length of WK is at least (2+N)N.
IJOB=3, The length of Wk is at least 1.

127



IER - Error parameter. (Output)
Terminal Error:

IER=128+J, Indicates that EQRH3F failed to
converge on eigenvalue J. Eigenvalues J+l,
J+2, ..., N have been computed correctly.
Eigenvalues 1.... ,J are set to zero.

IER=l or 2, Eigenvectors are set to zero. The
performance index is set to 1000.

Warning Error (with fix)
IER=66, Indicates IJOB is less than 0 or IJOB is

greater than 3. IJOB set to 1.

IER=67, Indicates IJOB is not equal to zero, and
IZ is less than the order of matrix A. IJOB
is set to zero.

PRECISION/HARDWARE - Single and Double/H32
- Single/H36,H48,H60

REQD IMSL ROUTINES - EBALAF, EBBCKF, EHBCKF, EHESSF, EQRH3F, UERTST,
UGETIO

NOTATION - Information on special notation and conventions is
available in the manual introduction or through
IMSL routine UHELP.
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IMSL ROUTINE NAME - LINV3F

PURPOSE - In place inverse, equation solution, and/or
determinant evaluation - full storage mode.

USAGE - CALL LINV3F(AB,IJOB,N,IA,DI,D2,WXAREA,IER)

ARGUEMENTS A - Input/output matrix of dimension N by N. See
parameter IJOB.

B - Input/output vector of length N when IJOB=2 or 3.
Otherwise, B is not used.

On input: B contains the right hand side of the
equation AX = B.

On output: The solution X replaces B.

IJOB - Input option parameter. IJOB=I implies:
I=i, Invert matrix A. A is replaced by its

inverse.
I=2, Solve the equation AX=B. A is replaced by

the LU decomposition of a rowwise permutation
of A, where U is upper triangular and L is
lower triangular with unit diagonal. The
unit diagonal of L is not stored.

I=3, Solve AX=B and invert matrix A.
I=4, Compute the determinant of A. A is

replaced by the LU decomposition of a rowwise
permutation of A.

N - Order of A. (Input)

IA - Row dimension of matrix A exactly as specified in
the dimension statement in the calling program.
(Input)

DI - Input/Output. If the Dl and D2 components of
D2 determinant(A) = DI*2((D2 are desired, input

Dl.GE.O. Otherwise, input DI.LT.O. D2 is never
input.

WXAREA - Work area of length at least 2*N for IJOB=l or 3.
Work area of length at least N for IJOB=2 or 4.

IER - Error parameter. (Output)
Terminal Error:

IER=130, Indicates that matrix A is
algorithmically singular.

Warning With Fix:

IER=65, Indicates that IJOB was less than 1 or
greater than 4. IJOB is assumed to be 4.
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PRECISION/HARDWARE - Single and Double/H32

- Single/H36,H48,H60

REQD IMSL ROUTINES - LUDATN, LtTEL1MN, UERTST, UGETIO

NOTATION - Information on special notation and conventions in
available in the manual introduction or through
IMSL routine UHELP.
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IMSL ROUTINE NAME - MDFD

PURPOSE - F probability distribution function

USAGE - CALL MDFD(F,N1,N2,P,IER)

ARGUEMENTS F - Input constant to which integration is performed.
F must be greater than or equal to zero.

NI - Input first degree of freedom. A positive integer.

N2 - Input second degree of freedom. A positive
integer.

P - Output probability that a random variable following
the F distribution with degrees of freedom Ni and
N2 will be less than or equal to input F.

IER - Error parameter. (Output)
Terminal Error:

IER=129, Indicates either NI or N2 is less than
one or NI+N2 is greater than 20,000. P is
set to positive machine infinity.

IER=130, Indicates F is less than zero. P is
set to positive machine infinity.

PRECISION/HARDWARE - Single/All

REQD IMSL ROUTINES - MERRC=ERFC, UERTST, UGETIO

NOTATION - Information on special notation and conventions is
available in the manual introduction or through
IMSL routine UHELP.
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IMSL ROUTINE NAME - RLSUBM

PURPOSE - Retrieval of a symmetric submatrix from a matrix
stored in symmetric storage mode by RLSTP.

USAGE - CALL RLSUBM(A,M,IH,S,N)

ARGUEMENTS A - M by M symmetric matrix stored in symmetric mode.

(Input) A is a vector of length M*(M1)/2.

M - Order of the matrix A. (Input)

IH - Vector of length M. (Input)
If IH(I)=IH(J)=1 where J and I=1,2,... ,M, the

(I,J)-th element of A will be included in the
submatrix S.

Otherwise, the (I,J)-th element of A will not be in
the submatrix S on output.

S - Symmetric submatrix of matrix A. (Output)
S is a vector of length N*(N+1)/2. A and S may
share the same storage if it is not necessary to
retain the original matrix. See remarks for
RLSTP.

N - Order of the submatrix S. (Output)

PRECISION/HARDWARE - Single and Double/H32
- Single/H36,H48,H60

REQD IMSL ROUTINES - None required.

NOTATION - Information on special notation and conventions is
available in the manual introduction or through
IMSL routine UHELP.
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IMSL ROUTINE NAME - VCVTFS

PURPOSE - Storage mode conversion of matrices (Full to
Symmetric)

USAGE - CALL VCVTFS(A,NIA,B)

ARGUEMENTS A - Input matrix of dimension N by N. A contains a
symmetric matrix stored in full mode.

N - Order of matrix A. (Input)

IA - Row dimension of matrix A exactly as specified in
the dimension statement in the calling program.
(Input)

B - Output vector of dimension N*(N+1)/2 containing
matrix A in symmetric storage mode.

PRECISION/HARDWARE - Single and Double/H32

- Single/H36,H48,H60

REQD IMSL ROUTINES - None required.

NOTATION - Information on special notation and conventions is
available in the manual introduction or through
IMSL routine UHELP.
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IMSL ROUTINE NAME - VCVTSF

PURPOSE - Storage mode conversion of matrices (Symmetric to
Full)

USAGE - CALL VCVTSF(AN,B,IB)

ARGUEMENTS A - Input vector of length N*(N41)/2 containing an N by
N symmetric matric stored in symmetric storage
mode.

N - Order of matrix A. (Input)

B - Output matrix of dimension N by N containing matrix
A in full storage mode.

IB - Row dimension of matrix B exactly as specified in
the dimension statement in the calling program.
(Input)

PRECISION/HARDWARE - Single and Double/H32
- Single/H36,H48,H60

REQD IMSL ROUTINES - None required.

NOTATION - Information on special notation and conventions is
available in the manual introduction or through
IMSL routine UHELP.
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IMSL ROUTINE NAME - VMULFF

PURPOSE - Matrix multiplication (Full storage mode)

USAGE - CALL VMULFF(A,B,L,M,N,IAIB,CIC,IER)

ARGUEMENTS A - L by M matrix stored in full storage mode. (Input)

B - M by N matrix stored in full storage mode. (Input)

L - Number of rows in A. (Input)

M - Number of columns in A (same as number of rows in
B). (Input)

N - Number of column in B. (Input)

IA - Row dimension of matrix A exactly as specified in
the dimension statement in the calling program.
(Input)

IB - Row dimension of matrix B exactly as specified in
the dimension statement in the calling program.
(Input)

C - L by N matrix containing the product C = AeB.
(Output)

IC - Row dimension of matrix C exactly as specified in
the dimension statement in the calling program.
(Input)

IER - Error parameter. (Output)
Terminal Error:

IER=129, Indicates A, B, or C was dimensioned
incorrectly.

PRECISION/HARDWARE - Single and Double/H32
- Single/H36,H48,H6O

REQD IMSL ROUTINES - UERTST, UGETIO

NOTATION - Information on special notation and conventions is
available in the manual introduction or through
IMSL routine UHELP.
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IMSL ROUTINE NAME - ZREAL2

PURPOSE - Determine the real zeros of a real function - to be
used when initial guesses are good.

USAGE - CALL ZREAL2(F,EPS,EPS2,ETA,NSIG,N,X,ITMAX,IER)

ARGUEMENTS F - A single-arguement real function subprogram
supplied by the user. (Input)

EPS - Convergence criterion. (Input)
A root, X(I), is accepted if ABS(X(I)).LE.EPS.

EPS2 - Spread criteria for multiple roots. (Input)
ETA If the root X(I) has been computed and it is

found that ABS(X(I)-X(J)).LT.EPS2, where X(J) is
a previously computed, then the computation is
restarted with a guess equal to X(I)+ETA.

NSIG - Convergence criterion. (Input)
A root is accepted if two successive
approximations to a given root agree in the
first NSIG digits.

N - The number of roots to be found. (Input)

X - Vector of length N. (Input/Output)
On input: X contains the initial guesses for the

roots.
On output: X contains the computed roots.

ITMAX - Iteration indicator. (Input/Output)
On input: ITMAX is the maximum number of

iterations to be taken per root.
On output: ITMAX is the number of iteration used

in finding the last root.

IER - Error parameter. (Output)
Warning With Fix:

IER=33, Indicates that for one root, convergence
was not obtained within ITMAX iterations.
That root is set to 111111.

IER=34, Indicates that for one root, the
derivative of the function at that root was
too small. That root is set to 222222.

IER=35, Indicates that the error conditions
described for IER=33 and IER=34 above.
occurred more than once. The roots fIr which
the error occurred are set to 111111 or
222222, depending on the type of error.
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PRECISION/HARDWARE - Single and Double/H32

- Single/H36,H48,H60

REQD IMSL ROUTINES - UERTST, UGETIO

NOTATION - Information on special notation and conventions is
available in the manual introduction or through
IMSL routine UHELP.

REMARKS 1. ZREAL2 assumes that there exist N distinct real roots for
the function F and that the initial guesses supplied by the
user are sufficiently close to roots to obtain convergence
by Newtons method. The routine is designed so that
convergence to any single root cannot be obtained from two
different initial guesses. This routine is intended
primarily for the refinement of N known rough
approximations of the roots of F.

2. Scaling the X vector in the function F may be required if
any of the roots are known to be less than one.
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APPENDIX C: Data Generation Software

SLAM Code for Simulation Model

5 5 25 2000. 1
100.0 0.0 1.0 2.78 2.78 25.0 25.0
0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00
0.20 0.00 0.00 0.36 0.36 0.04 0.04

0.00 0.00 1.00 0.00 0.00 0.00 0.00
0.00 0.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00
0.00 0.00 1.00 0.00 0.00 0.00 0.00

GEN,BAUER,DATA GENERATION MODEL,06/05/86,l000,N,N.Y,N,N;
LIMITS,7,5,200;
STAT,1 ,RESPONSE TIME;
STAT,2,WAIT STAT 2;
STAT,3,WAIT STAT 3;
STAT,4,WAIT STAT 4;
STAT,5,WAIT STAT 5;
STAT,6,WAIT STAT 6;
STAT,7,WAIT STAT 7;
TIMSTXX(1) ,TERMINALS;
TIMSTXX(2) ,CPU;
TIMSTXX(3),DISK1;
TIMSTXX(4),DISX2;
TIMSTXX(5) ,DISX3;
TIMSTXX(6),DISK4;
TIMSTXX(7),DISK5;
INITIALIZE,O. ,5000.;
MONTR,CLEAR,2000;
SEEDS,34444866917(1);
FIN;
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FORTRAN Code for Simulation Model

C PROGRAM MAIN(INPUT,OUTPUT,TAPE5=INPUT ,TAPE6=OUTPUT,TAPE7 ,TAPEI,
C &TAPE2 ,TAPE3,TAPE4)
C
C *********I****I*****

C *MAIN PROGRAM
C IiaN*****************

C
PROGRAM MAIN
DIMENSION NSET(5000)
COMMON QSET(5000)
COMMON/SCOMl/ ATRIB(100) ,DD(100) ,DDL(100) ,DTNOW,II,MFA,MSTOP,NCLNR
1,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SSC100) ,SSL(lOO) ,TNEXTITNOW,XX(100)
COMMON/UCOMI! DEPART(I0) ,RMEAN(IO) ,P(10,10),SERVT(lO) IECOUNT(2)
COMMON/UCOM2/ ISUBCAP,NUSSSN ,NUMOUST ,TCLEAR, NSTUDY
EQUIVALENCE (NSET(1) ,QSET(1))
NNSET= 5000
NCRDR=5
NPRNT=6
NTAPE=7

READ (NCRDR,*) ISUBCAP,NUSSSN,NUMCUST,TCLEAR,NSTUDY
READ (NCRDR,*) (RMEAN(I) ,I=l,NUSSSN+2)

DO 10 I=1,NUSSSN42
READ (NCRDR,*) (P(I,J) ,J=1,NUSSSN+2)

10 CONTINUE

OPEN (UNIT=1O,FILE:'DGM.OP' ,STATUS='NEW')

CALL SLAM

CLOSE( 0)

STOP
END

C
C **fI*****************

C *SUBROUTINE EVENT
C I**** u*.u..***u******

C
SUBROUTINE EVENT (I)
COMMON/SCOM1/ ATRIB(100) ,DD(100) ,DDL(100) ,DTNOW,II,MFA,MSTOP,NCLNR
1 ,NCRDR,NPRNT,NNRUN,NNSET,NTAPEISS(100) ,SSL(lOO) ,TNEXT,TNOW,XX(100)
COMMON/UCOM1/ DEPART(IO),RMEAN(1O),P(10,1O),SEBVT(1O),ECOUNT(2)
COMMON/UCOM2/ ISUECAP ,NUSSSN ,NUMCUST ,TCLEAR, NSTUDY

ECOUNT(1)=ECOUNT(1)+l
IF (TNOW.GT.TCLEAR) ECOUNT(2)=ECOUNT(2)+l

142



GOTO (1,2),1

1 CALL ARSS
RETURN

2 CALL ENDSS
RETURN

END
C
C
C *SUBROUTINE INTLC
C ********w*********

C
SUBROUTINE INTLC
COMMON/SCOM1/ ATRIB(100) ,DD(100) ,DDL(100) ,DTNOW,II,MFAMSTOP,NCLNR
1,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100) ,SSL(100) ,TNEXT,TNOW.XX(100)
COMMwON/UCOM1/ DEPART(1O),RMEAN(I0),P(10,10),SERVT(10),ECOUNT(2)
COMMON/UCOM2/ ISUBCAP ,NUSSSN ,NUMCUST ,TCLEAR ,NSTUDY
COMMON/GCOM5/ IISED(1O) ,JJBEG,JJCLR,MMNIT,MMON,NNAME(5) ,NNCFI,

&NNDAY,NNPT,NNPRJ(5) ,NNRNS,NNSTR,NNYR,SSEED(10) ,LSEED(IO)
COMMON/UCOM3/ MULTINO(7
INTEGER ISEED(2000)

IF (NNRUN.EQ.1) THEN
DO 10 I=1,2000

ISEED(I)=(l.E412)*DRAND(1)
10 CONTINUE

ENDIF
IISED(2) =ISEED(NNRUN)
X:DRAND (-2)

DO 15 I=1,7
MULTINO(I)=0

15 CONTINUE

DO 20 I=1,2
ECOUNT (I) =0.

20 CONTINUE --

DO 25 I=1,NUSSSN.3
DEPART(I)=0.

25 CONTINUE

DO 30 I:1,NUSSSN42
SERVT (I) =0.

30 CONTINUE

DO 35 I=1,NUMCUST
ETIME=EXPON(RMEAN(1) ,2)
ATRIB(1)=ETIME
ATEIB(3) =1
ATRIB(4)=1
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ATRIB (5) =2
CALL SCHDL(1 ,ETIME,ATRIB)

35 CONTINUE

DO 40 Iml,NUSSSN.2
XX (I)= 0.

40 CONTINUE

WRITE (6, 100) NNRUN,NSTUDY
100 FORMAT(lX,'SIMULATION STUDY IN PROGRESS RUN ',14, 'OF

&'14,' RUNS-)
RETURN
END

C
C ffff~fff~t~tffff**fff~ttfu*f~tttff

C *SUBROUTINE ENDSS
C fff~tttt*ff*ffiff~~t*****t*t*f

C
SUBROUTINE ENDSS
COMMON/SCOM1/ ATRIB(100) ,DDC100) ,DDL(100) ,DTNOW.IIMFA,MSTOP,NCLNR
1 ,NCRDR,NPRNTPNNRUN,NNSET,NTAPE,SS (100) ,SSL(100) ,TNEXT,TNOWXX(100)
COMMON/UCOMI/ DEPART(I0) ,RMEAN(10) ,P(10,10) ,SERVT(10) ,ECOUNT(2)
COMMON/UCOM2/ ISUBCAP,NUSSSN,NUMCUST,TCLEAR,NSTUDY
COMMON/UCOM3/ MULTINO (7

CALL SCHDL(1,O. ,ATRIB)
MYQ=ATRIB (4)

IF (NNQ(MYQ).NE.O) THEN
CALL RMOVE(1IMYQ,ATRIB)
WAIT=TNOW-ATRIB (2)
CALL COLCT(WAIT,MYQ)
RM=RMEAN (MYQ)
SERVICE=EXPON (EM, 2)
ATRIB(4) =ATRIB (5)
IAT=ATRIB (4) +.00001
CALL NEXTGUY (IAT, INEXT)

C
C *f~~ttttttttf~ttff~ttffff~f

C * COLLECT STATISTICS WHILE
C *t PARKED AT CPU f

C ffftttttttfffftfffffffffff*ff

C
IF (IAT.EQ.3) THEN

M(ULTINO(INEXT) =MULTINO(INEXT) +1
ENDIF

ATRIB(5)INEXT
CALL SCHDL(2 ,SERVICEATRIB)
IF (TNOW.GT.TCLEAR) THEN

SERYT (MYQ) =SERVT (MYQ) .SERVICE
DEPART (MYQ) =DEPART (MYQ) .1
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DEPART (NUSSSN+3) =DEPART (NUSSSN+3)+ 1
END IF

ELSE
XX (MYQ)= 0.

END IF

IF ((MYQ.EQ.3).AND.(NNQ(2).GT.0).AND.(ISUBCAP.NE.O).AND.
&(INEXT.EQ.1).AND.(NNQ(MYQ).NE.0)) THEN

CALL RMOVE(1 ,2,ATRIB)
SERVICE=O.
ATRIB(4)=ATRIB(5)
ATRIB (5) =3
CALL SCHDL(1 ISERVICEATRIB)

END IF

RETURN
END

C
C
C SUBROUTINE AESS
C *i**.*'.****'*****.**

C
SUBROUTINE AESS
COMMON/SCOM1/ ATRIB(100) ,DD(100) ,DDL(100) SDTNOW,II,MFA,MSTOP,NICLNR
1 ,NCRDR,NPRNT,NNRUN,NNSET,NTAPESS(1OO) ,SSL(100) ,TNEXT,TNOW,XX(100)
COMMON/UCOM1/ DEPART(I0) ,RMEAN(IO) ,P(1O,1O) ,SERVT(1O) ,ECOUNT(2)
COMMON/UCOM2/ ISUECAP ,NUSSSN, NUMCUST ,TCLEAR ,NSTUDY
COMMON/UCOM3/ MULTINO (7

IAT=ATRIB (5)

IF (IAT.EQ.1) THEN
RESP=TNOW-ATRIB (1)
CALL COLCT(RESP, 1)
RM=RMEAN(l)
SERVICE=EXPON (RM, 2)
ATRIB (1) =TNOW4 SERVICE
ATRIB(4) =1
ATRIB(5) =2
CALL SCHDL(1 ,SERVICEATRIB)
IF (TNOW.GT.TCLEAR) SERVT(IAT) =SERVT(IAT) .SERVICE
00 TO 101

ENDIF

IF (IAT.EQ.2) THEN
IF (ISUBCAP.NE.O) THEN

NUMSUD= 0
DO 10 1=3,NUSSSN+2

NUMSUB=NUKSUB.NNQ(I) eXX(I)
10 CONTINUE

IF (EUMSUB.LT.ISUBCAP) THEN
IF (INQ(2).EQ.0) THEN
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WAIT=0.
CALL COLCT(WAIT,2)
SERVICE=O.
ATRIB(4)=2
ATRIB(5)=3
CALL SCHDL(1 ,SERVICE,ATRIB)
0O TO 101

ELSE
ATRIB(2) =TNOW
CALL FILEM(2,ATRIB)
CALL RMOVE(1 ,2,ATRIB)
WAIT=TNOW-ATRIB (2)
CALL COLCT(WAIT,2)
ATRIB(4) =2
ATRIB(5) =3
SERVICE=O.
CALL SCHDL(1 ,SERVICE.ATRIB)
0O TO 101

ENDIF
ELSE

ATRIB(2) =TNOW
CALL FILEM(2,ATRIB)
RETURN

ENDIF
END IF

END IF

100 IF (%XX(IAT).GT.0.) THEN
ATRIB (2) =TNOW
CALL FILEM(IAT,ATRIB)
RETURN

ELSE
WAIT=O.
CALL COLCT(WAIT,IAT)
RM=RMEAN (IAT)
ATRIB(4) =IAT
CALL NEXTGUY(IAT ,INEXT)

C
C ***u*u*N********

C * COLLECT STATISTICS WHILE
C * PARXED AT CPU
C ****************

C
IF (IAT.EQ.3) THEN

MULTINO(INEKT) =MULTINO(INEKT) +1
ENDIF
ATRIB(5) =INEXT
SERVICE=EXPON (RM,2)
XX(IAT)=1
CALL SCHDL(2,SERVICE,ATRIB)
IF (TNOW.GT.TCLEAR) SERVT(IAT) =SERVT(IAT) .SERVICE

END! F
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101 IF (TNOW.GT.TCLEAR) THEN
DEPART (IAT) =DEPART (IAT)+ 1
DEPART (NUSSSN+3) =DEPART (NUSSSN+3)+ 1

END IF

RETURN
END

C
C ****I**ff***f***f***Nf**

C *SUBROUTINE NEXTGUY
C t************ti*******

C
SUBROUTINE NEXTGUY (IAT, INEXT)
COMMON/UCOM1/ DEPART(10) ,RMEAN(10) ,P(10,10) ,SERVT(1O) ,ECOUNT(2)
COMMON/UCOM2/ ISUBCAP ,NUSSSN,NUMCUST ,TCLEAR, NSTUDY

CUM=O.
U=UNFRM(O. ,1.,2)

DO 10 INDEX=1,NUSSSN+2
CUM=CUM+P (IAT, INDEX)
IF (U.LE.CUM) THEN

INEXT: INDEX
GOTO 15

ELSE
CONTINUE

ENDIF
10 CONTINUE

15 RETURN
END

C
C *********f*****t*N****

C *SUBROUTINE OTPUT
C w*******ft***I***t*.**

C
SUBROUTINE OTPUT
COMMON/SCOM1/ ATRIB(100) ,DD(100) ,DDL(100) ,DTNOW,II.,MFA,MSTOP,NCLNR
1 ,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100) ,SSL(100) ,TNEXT,TNOW,X[X(100)
COMMON/UCOI1/ DEPART(I0) ,RMEAN(10) ,P(1,10) ,SERVT(I0) ,ECOUNT(2)
COMMON/UCOM2/ ISUBCAP, NUSSSN ,NUMCUST, TCLEAR ,NSTUDY
COMbION/UCOM3/ MULTINO(7

WRITE(10,a) NNRUN
WRITE(10,*) (ECOUNT(I) .1:1,2)
WRITE(10,*) (CCAVG(I),I=1,NUSSSN+2)
WRITE(10,*) (TTAVG(I) ,I=2,NUSSSN+2)
WRITE(10,') (SERVT(I),I=1,NUSSSN+2)
WRITE(10,*) (DEPART(I) ,Im1,NUSSSN+3)
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I SUM= 0
DO 10 1=1,7

ISUM=ISUM+MULTINO (I)
10 CONTINUE

WRITE(1O,*) (AMULTINO(I),I=1,7),ISUM

RETURN
END
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FORTRAN Code for Data Post-Processing

PROGRAM MKDATA
C
C ttttttttttftftttttfttttttttttttttttttttttttttttttttttf* * f
C * THIS PROGRAM TAKES THE VARIABLE OUTPUTS FROM THE DATA GENERATION *

C * MODEL AND COVERTS THEM TO WORK/ROUTING VARIABLES AND RESPONSES. '

C * THESE VARIABLES POSSESS THE DESIREABLE QUALITIES OF A MEAN OF f

C * ZERO AND VARIANCE OF ONE. THIS 'CONVERTED' DATA IS THEN USED AS *

C * INPUT TO THE VARIABLE SUBSET SELECTION PROGRAM. *

C
C

PARAMETER (NUMREPS= 1000)
C

REAL R(13) ,W(7) E(8)
REAL WRKV(7)
REAL RM(7) ,PI(7) ,YM(13)
REAL VEC(4) ,RMULT(7) ,PI2(7)
REAL WK(7),WK2(7)
INTEGER MULT(8),DP

C

C * DATA STATEMENTS
C*

C f VEC = VECTOR OF STEADY STATE RESPONSE MEANS
C f RM = VECTOR OF MEAN SERVICE TIMES, BY STATION
C i PI = VECTOR OF STEADY STATE TRANSITION PROBABILITIES
C * (DERIVED ANALYTICALLY)
C f P12 = VECTOR OF ACTUAL BRANCHING PROBABILITIES FROM CPU
C f (AS SUPPLIED TO THE SLAM PROGRAM)
C
C

DATA VEC /30.72, 1.047, 1.458, 13.09/
DATA RM /100.0, 0.0, 1.0, 2.78, 2.78, 25.0, 25.0/
DATA PI /0.00, 0.09, 0.45, 0.16, 0.16, 0.02, 0.02/
DATA P12 /0.2, 0.0, 0.0, 0.36, 0.36, 0.04, 0.04/

C

C f OPEN INPUT AND OUTPUT FILES

C
C

OPEN (UNIT=10, FILE='DGM.OP', STATUS='OLD')
OPEN (UNIT=20, FILE='VSSPI.IN', STATUS='NEW')
OPEN (UNIT-30, FILEz'SUMMARY', STATUS='NEW')

C

C f READ DATA FROM FILES AND CONVERT TO WORK AND ROUTING VARIABLES f

Cf f

C f DATA:
C Rl a RUN f

C R 2 a EVENT COUNT
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C * R3 a EVENT COUNT FROM TCLEAR
C * R = VECTOR OF RESPONSES
C * W= VECTOR OF SUMS OF SERVICE TIMES, BY STATION
C * E = VECTOR OF TOTAL DEPARTURES, BY STATION*
C * MULT(J) = VECTOR OF TOTAL DEPARTURES FROM CPU TO STATION J
CI
C *OUTPUT:
C ' WRKV(J) = WORK VARIABLE J
C ' RMULT(J= ROUTING VARIABLE J
C *********************I**********N*

C
DO 10 I=1,NUMffEPS

C
READ(10,*) RI
READ(1O,*) R2,R3
READ(1O,*) (R(Il),II=1,7)
READ(1O,.) (R(II),II=8,13)
READ(10,') (W(II) ,II=1,7)
READ(1O,*) (E(II),II=1,8)
READ(1O,*) (MULT(II) ,II=1,8)

C
DO 15 J=1,7

C
IF (RM(J).NE.O.)THEN

WRXV(J)=(W(J) -E(J)*RM(J))*(SQRT(E(J))
& /(PI(J)*E(8)*RM(J)))

END IF
C

IF ((J.EQ.2).OR.(J.EQ.3)) THEN
RMULT(J)=O.

ELSE
RMTLT(J)=(MULT(J)-MULT(8)*PI2(J))

& /SQRT(P12(J)*(l.-PI2(J) )*MULT(8))
END IF

C
15 CONTINUE
C

DO 20 J=1,13
YM(J) =YM(J) +R(J)

20 CONTINUE
C

DO 25 J-1,7
WK(J) =WK(J) 4WRXV(J)
WX2 (J) =WK2 (J) .WRKV(J) **2

25 CONTINUE
C
C WRITE(2O,*) RMULT(1),RJIULT(4),RMULT(5),RMIULT(tu),RMULT(7)

WRITE(20,*) WRXV(1) ,WRXV(4) ,WRKV(5) ,WRXV(8) ,WRXV(7),
& R(l) ,R(9) ,R(I0) ,R(11) ,R(12) ,R(13)

C
10 CONTINUE
C
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C ***1*****,**.***w*1**ua*********N**w****u********I*******1******
C * CALCULATE THE MEANS OF THE RESPONSES (YM), AND THE MEANS (WK) *
C * AND VARIANCES (WK2) OF THE WORK VARIABLES. THEN PRINT SUMMARY '

C * INFORMATION TO A SUMMARY FILE.
C **I************************I I****I***m***I**************I******
C

DO 30 J=1,13
YM(J)=YM(J)/(FLOAT(NUMREPS))

30 CONTINUE
C

DO 35 J=1,7
WK (J) =WK (J) I (FLOAT (NUMEEPS))
WK2 (J) =WK2 (J) / (FLOAT (NUMREPS))

35 CONTINUE
C

DO 40 J=l,7
WX2(J)=WK2(J)-WK(J)**2

40 CONTINUE
C

WRITE(301555)
WRITE(30,556) NUMREPS
WRITE(30 557)
WRITE(30,) VEC
WRITE(30,558)
WRITE(30,*) YM
WRITE(30,559)
WRITE(30,*) WK
WRITE(30,560)
WRITE(30',) WK2

C
555 FORMAT(IX,'SUMMARY FILE OF DGM.OP DATA POST PROCESSING'/)
556 FORMAT(IX,'VSSPI.IN HAS A TOTAL OF ',15,' REPLICATIONS'/)
557 FORMAT(IX,'BELOW ARE THE POPULATION MEANS OF THE RESPONSES'/)
558 FORMAT(IXI'BELOW ARE THE SAMPLE MEANS OF THE RESPONSES'/)
559 FORMAT(IX,'BELOW ARE THE MEANS OF THE WORK VARIABLES'/)
560 FORMAT(IXI'BELOW ARE THE VARIANCES OF THE WORK VARIABLES'/)
C

CLOSE(10)
CLOSE(20)
CLOSE(30)

C
STOP
END
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