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ESTIMATION OF NOISE FIELD DIRECTIONALITY;
COMPARISON WITH FOURIER SERIES METHOD

INTRODUCTION

The possibility of estimating the directionality of a

stationary homogeneous noise field, directly from the element

outputs of a line array, was investigated in (1,2,3] and found

feasible only for small array sizes, due to ill-conditioning of

the solutions of the fundamental least-squares equations relating

the observed discrete spatial correlations to the impingent

field. In addition, the possibility of incorporating a priori

information about the field directionality and allowing for

additive uncorrelated noises at the elements were considered in

[2].

Recently, the ill-conditioning associated with these

approaches was circumvented in (4] by employing a Fourier series

method for the unknown field. However, this method requires

numerous Bessel function evaluations and can have inaccurate low-

order expansion coefficients, leading to bias in the estimated

field directionality. Here, we will eliminate both of these

drawbacks.

1/2
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NOISE FIELD CHARACTERIZATION

Consider a (wide-sense) stationary homogeneous noise field

characterized by directionality N(f,e, ) that measures the power

density spectrum at temporal-frequency f, due to noise arrivals

from direction (e,%). See figure 1. This characterization

presumes that noise arrivals from different directions are

uncorrelated and thereby precludes multipath arrivals, for

example.

z

0T < *) < J

y

- -- - - -- - - - y'J

Figure 1. Angular Geometry

Suppose a collection of M receiving elements with arbitrary,

but known, locations is immersed in this field. The largest

amount of second-order information that can be extracted from

these element outputs is the set of joint probability density

functions between elements. However, in so far as estimating

N(f,e,+) is concerned, there is no need to retain anything more

about the element outputs than the (Hermitian) matrix G(f) of

their cross-spectral functions Gkj(f), 1 < k,j < M.

3
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In order to relate Gkj(f) to noise field directionality

N(f,e,+), consider the power density spectrum of the elemental

contribution due to solid angle de d+ sine centered at (e,+),

namely
de d+ sine N(f,e,+). (1)

In addition, let Tk(e,+) be the time taken for a noise arrival

from direction (9,+) to reach sensor k of a receiving array.

Consequently, the transfer function applied to this arrival in

reaching the k-th sensor is

exp[-i2nfrk(e,+)] a Hk(f,e,+). (2)

Then the cross-spectrum of the outputs of omnidirectional sensors

k and j, owing to the elemental contribution (1), is

de d+ sine N(f,e,+) Hk(f,e,) Hj(f,e,) -

Sded sine N(f,e,#) exp[-i2nfTk(e,.)-Tj(9,)}]. (3)

Assuming that the noise arrivals from different directions

are uncorrelated, the cross-spectrum Gkj(f) of the outputs of

sensors k and j is given by the sum of components (3) over all

angular space:

n! n

Gkj(f) - f de j d+ sine N(f,e,f) exp(-i 2nff-rk(,)-cj(e,f)}]. (4)

0 -n

This result holds for 1 < k,j < M, where M is the number of

sensors in the receiving array. N(f,e,+) is called the noise

field directionality at temporal-frequency f. The product

4
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sine N(f,e,+) could be called the plane-wave density.

Equation (4), for all k,j, constitutes the totality of infor-

mation about N(f,e,$) from the available elements. The problem

is to estimate N(f,e,+) from measurements of {Gkj(f) ) . It should

be noted that not all [Gkj(f)) contain independent information.

Thus, Gkk(f) - Gll(f) for all k, and Gkj(f) - G*k(f) for all k,j.

Also, for example, if elements 1,2 and 3,4 have Tl-T2 - 3 --r4 for

all e,+, (4) indicates that G1 2 (f) - G3 4 (f); this is due to the

homogeneity of the noise field.

Array processing techniques, whether they are standard delay

and add, weighted, or optimum (adaptive), result in a preprocess-

ing of noise field directionality N(f,e,+). Attempts to then

estimate N(f,e,+) from these processed quantities must, in some

sense, undo what the array processing has already done. But why

should array processing be used on the elements at all, when we

are interested in estimating the noise field directionality? An

"optimum" estimation technique should accept matrix G(f) as its

input and emit an estimate of N(f,e,t) as its output. This is

the goal of this investigation.

5/6
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LINE ARRAY

In this report, we will address only the case where the re-

ceiving array lies entirely on a single line in space. In figure

1, let e be measured with respect to the location of the line.

That is, let the line array lie along the e = 0 axis, namely the

z-axis. See figure 2. Then if dk is the distance (measured down-

ward) of the k-th element from some reference point on the line,

we have delay

dk
Sk(L) - cose for 1 < k < M. (5)

The values 9 - 0 and n correspond to endfire of the line array,

and c is the speed of propagation.

z

d k

I k

Figure 2. Geometry of Line Array

7
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INTEGRATED DIRECTIONALITY FUNCTION

It follows from (4) and (5) that cross-spectrum

n d d
Gkj(f) j de f d+ sine N(f,9,O) exp[-i2nf c cose - (6)

0 -n

It d- - d
- de sine exp -i2nf c cose] N(f,e) for 1 < k,j M, (7)

0

where we define integrated (or collapsed or averaged) noise

directionality

N(f,e) - dt N(f,e,+). (8)

Notice that N(f,O, ) is defined in terms of a coordinate system

centered on the line. According to (7), the only quantity that

can be estimated about the noise field directionality is the

integrated function N(f,e) in (8); this is a manifestation of the

inherent conical symmetry of a line array response. The problem

is to invert the measurements [Gkj(f)} in (7) and solve for the

quantity N(f,e), if possible.

8
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EQUISPACED LINE ARRAY

For an equispaced line array, figure 2 can be specialized to

dk = k d for 1 < k < M, (9)

where d is the element spacing. Then, (7) becomes

n

Gkj(f) f de sine exp[-ie(k-j) cose] R(f,8) -

0

f du exp[-im(k-j)u] N(f, acos(u)), (10)
-i

where acos is the principal value inverse cosine function and

f c
fOO' fo " - ' u - cose. (11)

The quantity f is the (design) frequency at which spacing d

would be a half-wavelength:

- o 2 d. (12)
0 f0

Also, u - 0 corresponds to broadside of the line array.

At this point, a change of notation is very convenient. We

suppress the explicit appearance of frequency f (it still appears

through x in (11)) and express (10) as a spatial correlation

1

C(k-j) du exp(-i%(k-j)u) B(u), (13)

-1
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where we recognize that the only dependence on k,j is through

their difference and define the noise directionality function

B N(f, acos(u)) for -1 < u < 1
B(u) M f 0 for lul > 1 (14)

Finally, we modify spatial correlation (13) to

1

C(p)- du exp(-iapu) B(u). (15)
-1

This can be considered as an integral equation for noise field

directionality B(u), where a is known, and spatial correlation

C(p) - C (-p) is available only for integer p satisfying I~I < M;

this was the approach considered in [1; section 2.3].

10
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FOURIER INTEGRAL METHOD

Suppose that spatial correlation C(p) in (15) were available

for all continuous p, not just the integers Ipj < M. Then multi-

plying (15) by exp(iapu') and integrating over all p, we have,

using (11),

dp exp(ixpu') C(p) - dp exp(ipu) du exp(-ipu) B(u)dp exp(-~iu)puu))

1 ( ) (UU' 2 O 1
I2f 20 - B(u') if -1 < u' < 1

....du B(u) - Uu-u (16)
-1 

0 otherwise

That is,
+0

B(u) - 2 dp exp(liup) C(p) for -1 < u < 1. (17)
2f0

This is an explicit integral relationship for the (integrated)

noise field directionality B(u) at bearing u, in terms of spatial

correlation C(p) at separation p. We will call this the Fourier

integral method for the determination of the noise field direc-

tionality.

As an example, if the field is composed of a single plane-

wave arrival,

B(u) - (u-u ), lu < 1, (18)

then (15) gives spatial correlation

11
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C(p) - exp(-iepu0 ) for all p, (19)

and (17) restores directionality (18). We should also note that

the highest rate of variation of spatial correlation C(p) is

exp(±ixp), obtained when u0 ±1. If we insert a higher variation

for C(p) into solution (17), such as (19) with luo 0 > 1, we get

nonzero values for directionality B(u) outside the allowed (-1,1')

range of u, namely 6(u-u0 ). Since this is disallowed according

to (14), noisy estimates of spatial correlation C(p) require some

preprocessing prior to insertion into (17); alternatively, non-

zero values of B(u) for lul > 1 might be ignored, but this is not

an attractive approach.

12
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INFINITELY-LONG DISCRETE ARRAY

Equation (17) gives the impression that spatial correlation

C(p) is required for all continuous p. But since (13) indicates

that C(p) will only be available for integer p, we consider that

case first; in fact, we consider spatial correlation C(p) to be

known for all integer p, which corresponds physically to an

infinitely-long equispaced line array. The corresponding

trapezoidal approximation to integral (17) for the noise field

directionality is denoted as

+C0

Bb (u) exp(imun) C(n) for all u. (20)Bb(U 2f T.
n=-

But this can be developed according to

+0 +

Bb(u) - 4 dp exp(iaup) C(p) Z (p-n) =

-n=-

+0 +0

B(u) Z6(u- n B B~u - n 2n .

n -c n -c

+0

= B u n 2 for all u, (21)

where 0 denotes convolution, and we used (11). Function Bb(u)

has period 2f0/f in u; if we define X - c/f, this period is X/d,

where we used (12).

13
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B (U)

aliasing
B~u1 lobe

l u
2f0  2f 2ff 2f

Sff -f0

Figure 3. Approximation Bb(u)

The plot of approximation Bb(u) to the noise field direction-

ality in figure 3 reveals aliasing lobes separated by 2f0/f on

the u-axis. If f < f0, that is, if the array is being used below

its design frequency, then these lobes do not overlap, and we

have
Bb(u) - B(u) for -1 < u < 1. (22)

Thus, exact recovery of the noise field directionality B(u) is

possible from knowledge of spatial correlation C(p) at integer p,

provided that

f < f of that is, d < X/2; (23)

here, we used X - c/f and (12). The element spacing must be less

than a half-wavelength at the temporal-frequency f of interest in

order to avoid aliasing. The discrete nature of the array does

not, in itself, prevent recovery of the field; it is the finite

length of a physical array that causes problems.

14
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If spatial correlation C(p) contains a component with too

high a rate of variation, as, for example, (19) again with

u0 1 > 1, we get B(u) - 6(u-u0 ) as before. However, a plot of

the corresponding Bb(u) in figure 4 (for u0 > 1) reveals an

aliased component within the fundamental range (-1,1). We would

be led to believe that the noise field directionality has a

component

U - u - lu u0 .f I  (24)

which is incorrect. Thus, the discrete nature of an array can be

a problem if the measured spatial correlation C(p) contains dis-

allowed components, which show up as aliased components inside

the fundamental range (-1,1) of u. This problem exists even if

the array has infinite length.

B Bb(u)

II I

I u 0 I , u
-1 u1 1 u 0 u2

2f0  2f

u1 -u o  u2 -u +

Figure 4. Aliasing of Disallowed Component

15
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FINITE-LENGTH DISCRETE ARRAY

The approximate noise field directionality for a finite array

of M elements is a modification of (20):

+M

B (U) exp(iaun) C(n) w for all u, (25)BclU 2f -. n

where weights

wn = 0 for Inl > M. (26)

We consider that weights (w n ) are samples of a continuous

function w(p); that is,

wn - w(n), (27)

where function w satisfies

w(p) - 0 for IPl > M. (28)

See figure 5. It then follows immediately from (25) and (20)

that

p
-M 0 A

Figure 5. Weighting Function w(p)

16
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Bc (u) - Bb(u) @ W(u), (29)

where window

+aD

W(u) - n dp exp(iaup) w(p). (30)
0

(For the case of no weighting, that is, w(p) - 1 for all p, then

W(u) - S(u), and (29) reduces to (21).) The window W(u) has

12f
effective width 1 f in u. (31)

(For flat weighting, that is, w(p) - 1 for IPI < M, the effective

width is half of (31); however, the sidelobes of W(u) are then

significant.)

Although the aliasing of Bb(u) in figure 3 can be controlled

through satisfaction of (23), the convolution result in (29)

reveals that the true noise field directionality B(u) will be

smeared by window W(u). This is a result of the finite length,

(26), of the array. Also, (29) and (31) reveal that approxima-

tion Bc (u) has no superresolution capabilities; in fact, the

smaller that f is chosen below design frequency f0 , the more

smeared Bc (u) becomes. Thus, there is good reason to operate

near the design frequency, that is, maximize f/f , in order to

minimize the width in (31); however, there is the conflicting

requirement depicted in figure 3 and (29), which points to

smaller values of f/f0 . A compromise is in order.

17
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If spatial correlation C(p) contains a disallowed component

such as (19) with Iuo 0 > 1, (29) and figure 4 indicate the

presence of a smeared and aliased component within the funda-

mental range (-1,1). Thus, such disallowed components should be

preprocessed out of spatial correlation C(p) before submission

into approximation (25).

APPROXIMATE FIELD

The approximate noise field directionality that we will

consider at length, here, is obtained by setting wn - 1 for

Inl < M in (25):

M-1

B ( . exp(iceun) C(n) for -1 < u < 1. (32)
a(u) - 2f n

0 n-i-ti

This is a sampled box-car approximation to the exact integral

result for B(u) in (17). B a(u) has period 2f0/f in u. If IC(n)I

for Inl > M is substantially smaller than C(O), (32) could give a

good approximation to B(u). If not, then one of the super-

resolution techniques, such as maximum entropy, could be used to

effectively extrapolate spatial correlation C(n) out to n = ±

and the transform carried out analytically in closed form.

Approximations (32) and (25) have the same form as [1; (41)

and (42)), if weighting 0(f,u) there is independent of u. Also,

if f - foi (32) reduces identically to [1; (47) or (51)].

18
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However, we do not solve any ill-conditioned equations here, when

f < fo; on the other hand, we have not minimized any error

measure either.

The actual numerical evaluation of approximation Ba (u) is

best done by specializing to the particular argument values

M-1

B( f~ A exp(i2nkn/K) C(n)Ba( f 2f 0

I n-l-M

which can be accomplished by a discrete Fourier transform. The

K values of k, that are swept out, cover an interval of length

2f0/f in u, which is broader than the length 2 interval required,

when f < f . See figure 3.

The exp(ix) function in (32) is being sampled at increment

f
- a u - n - u (34)x f

0

So, if f < f0 and lul < 1, then Ix I < n, meaning that exp(ix)

has at least two samples per period. This is well known to be

the requirement for avoidance of overlapped aliasing lobes and is

corroborated by figure 3. This sampling rate interpretation will

be very important later when we discuss the Fourier series method

(4].

19
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Similarly, the spatial correlation C(p) in (17) is being

sampled at increment Ap - 1. But since the sampling increment of

exp(-ix) in (19), for basic elemental example (18), is

fAx =" U0 M - uo 0 (35)
f0

we again have Ax I < R if f < f0 and juo 0 < 1. Thus, at least two

samples per period are taken of spatial correlation C(p), as

well, even if values of u0 near ±1 occur.

DISCUSSION

It can be seen from (34) and (35) that the most troublesome

cases will be when frequency f is near f0 and u0 is near ±1, that

is, when the array is employed at its design frequency and when

arrivals come in near endfire. Since arrivals come in of their

own accord, no control is had of u0 , except to turn the line

array. And although one could choose f < f in order to

alleviate aliasing, losses in resolution will then occur, as (31)

indicates. Thus, a trade-off is in order in regards to choice of

f/f0 ; perhaps, values somewhat less than 1 are a reasonable

compromise, as was done in [1; figures 3,4,5]. Of course, a

larger number of elements, M, always helps in improving

resolution, as shown by (31); this is now a viable alternative,

since there is no ill-conditioning as there was in [1].

20
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The reason that we have been able to circumvent the ill-

conditioning is that we have deferred the inherent sampling of

(15), with increment A = 1, until after we solved the integralp

equation for noise field directionality B(u) in explicit form

(17). So, instead of facing up to the discrete issue, as

explicitly posed in (13), we have put it off as long as possible,

and have then addressed it in the various forms (20), (25), and

(32), which are reasonable approximations to the ideal continuous

result (17). This procedure of temporarily ignoring the discrete

sampling associated with a line array was first presented in

[4; section 3] in connection with a cosine series expansion for

the field distribution; this latter procedure is fully developed

in the next section.

21/22
Reverse Blank



TR 8599

FOURIER SERIES METHOD

In order to derive this method, we return to a combination of

(14) and (15):

1

C(p) =f du exp(-iapu) N(f, acos(u)) =

-i

f d9 exp(-imp cose) sine N(f,e) . (36)

0

This equation relates the measured spatial correlation C(p), at

integer separations p, to the integrated noise field directional-

ity N(f,e) (see(8)). We again suppress the f dependence and

define plane-wave density

A(e) = sine N(f,e) for 0 < 9 < n , (37)

to obtain

n

C(p) f de exp(-iap cose) A(9) (38)

0

As in (15) et seq., spatial correlation C(p) is known only for

integer p satisfying IPI < M. Function A(9) is the unknown field

function that must be estimated. It is related to the B function

of the preceding section according to

A(e) - sine B(cose) for 0 < E < n (39)

See (31) and (14).
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FOURIER SERIES EXPANSION

We expand A(e) in a cosine series according to

+ C

A(9) = T aq cos(qe) for 0 < e < (40)

q=0

This basis is a complete set on interval (0,n). See [5; page 921.

If we substitute (40) into (38), and interchange operations, we

get

C(p) = aq f d9 exp(-ixp cose) cos(qG) -

q-0 0

+ C

- nr aq (i) q Jq(ap) (41)
q- 0

where we used (6; 9.1.21]. As a special case,

C(0) - n a , (42)

which allows explicit determination of ao -

Equation (41) constitutes an infinite set of complex

simultaneous linear equations for ccefficients (aqJ0 " If we

split this equation into its real and imaginary parts, we have
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+M + C

1 (P a (_i qJ (a ) - - k t)( 3n r q a a2 k (2k-1)
q-0 k-0
q even

C (p) a (-i)q+l J k 2aa 2k-i (-1) 2k-l ap)

q=1 k-i
q odd (44)

We now have two infinite sets of real simultaneous linear

equations, one for the even coefficients, the other for the odd

coefficients, in cosine expansion (40).

Since spatial correlation C(p) in (38) is only known for a

finite number of discrete p values, namely integer IjP < M, there

is no hope of solving for the infinite number of unknowns a q) in

(43) and (44). What we shall do, for the time being, is to

ignore this limitation and pretend that C(p) is known for all

continuous p > 0. (Of course, C(p) is then also known for p < 0,

according to C(-p) - C (p) from (15), since field B(u) is real.)

This procedure was first propounded for the line array in (4].

We multiply both sides of (43) by J2m(ctp)/p and integrate

over p, to obtain

+" i 2 ((ZJ)m(XP)

1 J dp P r - a2 k (-i)k f dp 32k 'CLP -n ( kp J2k a )

0 k-0 0

a2m (-)
a 2(2m) for m > 1 ; (45)
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here, we used (6; 11.4.6]. In a similar fashion, from (44),

1 j dp 2m C(p) a 2 k l -i)k I dp (CEP)n k1p 2k-1
o k-i 0

(ima 2m-i -1a 2(2m-1) for m > 1 . (46)

Combining (42), (45), and (46), we have

1 C(0) 1  r(0)

+m _______

a -- (-l)m 2m dp Cr (p)

0
for m > 1. (47)

2 C.+lD+ 2m - ((p E)
a2 m 1  n (2m-1) f dp p C (p)

0

Convergence of the first integral at p - 0 is guaranteed since

J2m (p)/p + 0 as p 40, because 2m > 2. The second integral also

converges at p - 0, since J2m-l(Xp) Ci(p)/p + 0 as p 4 0, because

2m-1 > 1 and Ci(0) - 0. Thus, both integrands in (47) approach

zero at the origin.

We now have explicit integral relations for the coefficients

[a q in the cosine series expansion of A(9) in (40). They are

exact results for a q), presuming that spatial correlation C(p)

is available for all continuous p > 0. They agree with

(4; (13)-(15)].
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EXAMPLE

Consider the same single plane-wave arrival given in (18):

B(u) - 6(u - u ) , luo I < 1. (48)

Then (39) yields

A(e) - sine 6(cos9 - uo ) - 6(9 - e0) for 0 < e < n , (49)

where e0 - acos(u0 ), 0 < o < n. Substitution in (38) gives

spatial correlation

C(p) - exp(-iap cose0 ) - exp(-impu0 ) , (50)

as in (19). When this result is used in (47), the coefficients

are found to be (see appendix A)

1
a o 'W ,

2
a 2 cos(q Go) for q 1 , (51)

independent of o. Then the summation on the right-hand side of

(40) becomes (appendix A)

+

R(9) - [(e- e0 - m2n) + S(e + 90 - m2n)] for all e. (52)

The plot of this function in figure 6 reveals that the only

impulse component lying in the allowed range of e, namely (0,n),

is that at e - eo. Therefore,
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A(e) - 6(e - 9 ) for 0 < e < n , (53)0

as desired. Thus, the use of all the exact coefficients (a q in

(51) restores field distribution A(e) precisely.

R(e)

I I I
I I 1
jgl iI Ie

-2n eo-2n -n -eo  0 0 2n-e 0  2n

Figure 6. Summation R(9) in (40)

DISALLOWED COMPONENT

The highest rate of variation of spatial correlation C(p) in

(50) is exp(±iap), just as in (19) et seq. If we insert a higher

variation for C(p) into integral solution (47) for the coeffi-

cients, namely

C(p) - exp(-impu0 ) , u0 > 1 , (54)

we obtain (7; 6.693 1&2]

28



TR 8599

1aO

a -Qq for q > 1 (55a)q n

where

Q 1 -u O - u2 - 1 (55b)

u + -u2  0

0 0

independent of c. Use of these coefficients in summation (40)

gives reconstructed field (right-hand side of (40))

i U2 - i

R(8) - (56)nu o - cose

A plot of this function in figure 7 reveals that it is spread out

over the entire 40,n) interval; this is in contrast to the

Fourier integral method in (19) which correctly restored a zero

field in the fundamental interval, namely

B(u) = 6(u- uo ) , u0 >-1 , (57)

nR(e)

r 
u +lN

r
_ _ _e
Jr

Figure 7. Reconstructed Field R(9) for uo > 1
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for this example. Thus, the Fourier series method gives nonzero

field values for 0 < e < m, even when all the coefficients (a q

are determined exactly by the integrals in (47). The use of

noisy estimates for C(p) in (47) is therefore more debilitating

for the Fourier series method than for the Fourier integral

method, and some preprocessing (that is, low-pass filtering) of

the available spatial correlation C(p) values is required prior

to insertion into (47). If this is not done, a spurious back-

ground will be yielded from the Fourier series method in the

fundamental range 0 < e < n, due to "spillover" from disallowed

components of C(p).

Substitution of the reconstructed field R(9) of (56) and

figure 7 into the right-hand side of (38) does not restore the

spatial correlation (54) for thiz example with u0 > 1. -his is

expected, since the coefficients a q} in (55) decay with q,

preventing summation (40) for A(e) from retaining the arbitrarily

narrow behavior required versus e, namely the delta function in

(49).
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DISCRETE ARRAY

For an equispaced line array of M elements, (13) indicates

that spatial correlation C(p) will be available only for integer

IPI < M. We therefore adopt, as approximations to the exact

integral results in (47), the forms

2 (-1)m 2m 2m C (n)
2mmn , n r

n-1
for m > 1

2 M-1 J2m-1 (an )
S 2 (l) (2m-l) n C (n)a2m-l " (-) (m1 n i

n-i (58)

along with go = ao " Cr(0)/n; see [4; (16)-(18)]. These are

explicit finite sums for the approximate coefficients &q ), to be

used in the cosine series (40) in place of the exact, but

unknown, (a q. (The terms for n - 0Qin the summands of (58) are

zero by virtue of the discussion under (47).)

Several potential problems exist with approximations (58).

First, the increment in the Jk(x) Bessel functions in (58) is

f
- - . (59)

fo

For the design frequency f - for (that is, d - X/2), this incre-

ment is n, which is rather large. The plots of Jk(x) in figure

8, for 0 < x < 20n and selected k values between 1 and 35, reveal

that the low-order Bessel functions are very poorly sampled at

values xn - nn, especially for small n. For example, the peaks
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X 2Oir

Figur 8. Bese fuNton f JkN f)
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of Jl(x) at x near .6n and 1.7n are badly represented by samples

at x - n and 2n. (The curves in figure 8 are scaled relative to

the largest value of J1 (x) at x near .6.)

Of more relevance are the plots of weighted functions Jk(X)/x

in figure 9, because this is the actual integrand in (47). (The

curves in figure 9 are scaled individually for plotting appear-

ances, so that each has the same peak value.) We again observe

that the low-order weighted functions are poorly represented by

samples taken at xn = nn.

For larger arguments x, the "period" P1 of J1 (x), indicated

on figure 8, is approximately 2n; thus, we are getting just 2

samples per period at ax " n, which is barely adequate for J1 (x)

at large argument values. For the higher-order weighted Bessel

functions, the initial peaks (near x = k+2) are well represented

by samples at Ax = n. In addition, the period P2 in figures 8

and 9 is greater than 2n, for larger arguments; thus, we are

getting more than 2 samples per period of the higher-order Bessel

functions. Of course, eventually, for large enough x, all the

Jk(X) have period 2n. (See [6; 9.2.1].)

These sampling considerations indicate that the low-order

coefficients 5q will likely be inaccurate, especially when f is

near f0, while the higher-order coefficients will not be badly

affected by this particular feature. A numerical investigation

of these effects is undertaken in appendix B. In particular,

coefficients 5 a1 a1 0 are computed for a variety of values of
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u0 (coseo), 0 (nf/fo), M, and compared with the exact values

al, a2 , a1 0 . The results quantitatively confirm the above

expectations.

The second problem with approximations (58) is that the

increment in the samples of spatial correlation C(p) is A M 1.p

The discussion surrounding (35) is directly relevant again and

should be reviewed. Arrivals near endfire, o - 0 or n, will be

most severely affected.

A third problem with (58) is that M is not infinite; there-

fore, the summands may not have decayed sufficiently to terminate

the summation at M-l, with negligible error. As seen earlier,

for plane-wave arrival (48)-(50), spatial correlation C(p) does

not decay at all with p, and since [6; 9.2.1]

Jk(x) as x 4 +, (60)

x x 3/ 2

the integrands of (47) can decay very slowly with p.

Furthermore, if a in (11) is less than n, J2 m(an) and

J2m-1(an) in (58) may not yet have even reached their substantial

range of values by the time n reaches M-1. To develop this

point, observe from figure 8 that

Jk(x) = 0 for Ixl < k - 2n. (61)

Therefore

J2m(an) = 0 for 2m > an + 2n. (62)
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So, for example, if M - 64 and f = fo, then a - n, max n - M-1

63, and (62) indicates that the Bessel function is essentially

zero for 2m > 204. Thus, approximate coefficients 5q, determined

from (58), will be substantially zero for q > 200; this is the

limit that was unknown in [4; under (5b) and bottom of page

1651].

As another example, if M = 64 and f - f /2, then (62)

indicates that the approximate coefficients a q for q > 105 will

be substantially zero; this is verified by [4; figure 3]. Thus,

figures 8 and 9, with (62), give a quantitative indication of

when the Fourier series method will collapse, in terms of the

loss of the higher-order coefficients and the attendant degraded

resolution.
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RESOLUTION CAPABILITY

The general situation is as follows: approximate coefficient

Aq in (58) involves Jq (n) for n - 1 to M-1. Reference to (61)

therefore indicates that if

q > a nmax + 2n -=(M-1) + 2n a q', (63)

then aq = 0. Thus, summation (40) for field A(e) will have zero

terms for q > q'. For the same plane-wave example considered in

(48)-(53), this would result in a resolution capability of the

order of (appendix A, especially (A-9) and (A-10))

n x 
- - - (64)

q'+ r(M-l) 2d(M-l) 2L

at broadside, where we used (63), (11), and defined L as the

length of the line array. However, the coefficients { q)

deteriorate before q reaches q', typically for q > q'3/4. This

results in a resolution of the order of

4 X 2Xa e  _ - - .(65)
3 2L 3 L

This is somewhat sharper than the standard quoted result of X/L,

but not significantly so. Thus, the Fourier series method has

slightly better resolution than standard beamforming, which

corroborates several of the results in (4].
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DISCUSSION

It was demonstrated in (51)-(53), that for the plane-wave

arrival of (48)-(50), use of all the exact coefficients (a I inq

the Fourier series method restored the field A(9) precisely for

all e. However, when we discretize the array and must resort to

approximations { } in (58), this restoration capability is lost,
q

even if the array is infinitely long; see the tabular results in

appendix B for M - 100, 1000, 10000, 100000. This result for the

Fourier series method is distinctly different from that for the

Fourier integral method, as a review of (21) and figure 3

reveals. In both methods, we are presuming that f < fof that is,

that the array is used at or below its design frequency. Thus,

sampling (in space) is more detrimental to the Fourier series

method than to the Fourier integral method; this is related to

the fact that the latter employs a (single) Fourier transform in

(17), whereas the former uses (numerous) Bessel transforms in

(47).

The summation on q in (40) for field A(8) cannot be carried

out to -. However, when employed with approximate coefficients

[q} , it should be carried out at least to the limit q' given in

(63), after which (aq) are essentially zero; this will maximally

preserve the resolution capability of the Fourier series method.

This procedure was not employed in (4; figures 1,4,6]; thus, some

inherent resolution of the Fourier series method was lost in

those examples.
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GRAPHICAL RESULTS

We shall re-do the examples given in (4], where the Fourier

series method was introduced, but now using more coefficients and

comparing the results with the Fourier integral method presented

here. The first example is that of five plane-waves with arrival

angles 540,570,600,630,66*, as given in [4; figures 1 and 2].

(Angle 90* corresponds to broadside of the line array.) The two

arrivals at 570 and 630 each have twice the common power of the

other three arrivals. The exact cosine series coefficients {a q

for 0 < q < 250 are plotted in figure 10A, and are listed

numerically in table 1for 0 < q 30. We have normalized the

total power so that the origin value of the spatial correlation

is C(0) - n; then ao -o = 1.

For a line array with M - 64 elements, employed at its design

frequency, f - f0 ' the approximate coefficients {q 1, as

determined via (58), are given in figure 10B and table 1. A

comparison of the numerical results in table 1 shows a very large

discrepancy between a1 and al and between a2 and a2* However,

this discrepancy decreases to about 5% for q - 3 and 4, and is

much smaller for q > 4. Comparison of the plots in figure 10

reveals that 5q is substantially zero for q > 205, in agreement

with (62) et seq., and that 5q and aq are very similar for

2 < q < 175.

This figure is not in complete agreement with [4; figure 2].
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Table 1. Cosine Series Coefficients

q aq aq

0 1.0000 1.0000
1 .9977 .4837
2 -.9906 -.4407
3 -1.9580 -2.0569
4 -.9628 -.9130
5 .9423 .9265
6 1.8349 1.8428
7 .8887 .8868
8 -.8561 -.8535
9 -1.6399 -1.6395

10 -.7806 -.7784
11 .7383 .7390
12 1.3869 1.3895
13 .6463 .6471
14 -.5974 -.5942
15 -1.0938 -1.0933
16 -.4954 -.4916
17 .4431 .4433
18 .7809 .7852
19 .3379 .3376
20 -.2857 -.2810
21 -.4687 -.4697
22 -.1841 -.1793
23 .1353 .1335
24 .1766 .1811
25 .0433 .0406
26 -.0007 .0031
27 .0790 .0754
28 .0769 .0794
29 -.1114 -.1157
30 -.2857 -.2851

For these same parameter values, the reconstructed field

distribution, via the Fourier integral method of (32), is depict-

ed in figure 11A, while that for the Fourier series method of

(58), (40), and (63), using approximate coefficients (5 q, is

displayed in figure lIB. This latter figure is an improvement

over [4; figure 1] for two reasons: 250 coefficients 5q I were

used instead of 140, and the angular sampling increment was
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previously insufficient to track the detailed behavior of the

field distribution. The two parts of figure 11 are very similar,

except for the drift in the Fourier series method near e - n, due

mainly to inaccurate low-order coefficients a and 2"

Both plots yield some negative values for the reconstructed

field distribution, due to sidelobes from the plane-wave compo-

nents. These can be suppressed at the cost of decreased resolu-

tion. See (25)-(31) for the Fourier integral method. As for the

Fourier series method, if approximations (58) (to exact results

(47)) used a taper, instead of box-car weighting out to p - M-1,

a similar control of sidelobes is achievable.

If all the parameter values above are kept unchanged, except

that the arrival angles are squeezed closer together, namely

560,580,600,620,640, we then have the example considered in

[4; figures 4 and 5]. The exact and approximate cosine series

coefficients are given in figures 12A and 12B, respectively. The

field distribution for the Fourier integral method is plotted in

figure 13A, while that for the Fourier series method is plotted

in figure 13B. All five plane-waves are resolved by both

procedures; in fact, the only essential difference is the slight

drift in figure 13B near e - , due to poor values of 5 and a2"

Figure 13B is a significant improvement over [4; figure 4], again

due to additional coefficients and finer angular sampling in 9.

The third example of the Fourier series method, from

(4; figure 6], corresponds to three plane-waves with arrivals

closer to endfire, namely 270,300,330. The power level of the
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330 arrival is one-half of the common power level of the other

two arrivals; all other parameters are unchanged. The exact and

approximate coefficients are given in the two parts of figure 14;

the approximation appears to deteriorate for q > 100. The field

distribution for the Fourier integral method is depicted in

figure 15A, while that for the Fourier series method is plotted

in figure 15B. The major discrepancy is again the drift in the

latter plot near 9 - n; this is in spite of the seemingly poor

results for coefficients {5 } in figure 14B.q

The final example considered here is that given in

(1; page 15], namely

0 for -l < u<0

B(u) - 2 (66)
2u for 0 < u <1

However, those earlier results were limited to M < 12 due to

ill-conditioning. The spatial correlation follows from (15) as

C(p) - [exp(-imp) (1 + i1p) - (67)

The reconstructed field distribution via the Fourier integral

method, for M - 64 elements, is presented in figures 16A and 16B

for flat weighting (32), with f/fo = 1 and .5, respectively. The

corresponding plots for Hann weighting, (25) and figure 5, are

depicted in figure 17. The familiar tradeoff between resolution

and sidelobes is quite evident. Perhaps a plot of both results,

with and without weighting, would yield important information not

available from either plot alone.
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2

5"DC 100 i~0 200 S60

Figure 10A. Coefficients a

Aq

50~ 100 15-0 zoo ZSbO

Figure 10B. Coefficients 5q

Figure 10. Coefficients for Five Separated Arrivals
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60

20

-20

Figure 11A. Fourier Integral Method

40

40 
-V 

-- -- -

-20

0 42 -i-

Figure 11B. Fourier Series Method

Figure 11. Directionality for Five Separated Arrivals
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2

0 so 100 16-0 200IS

Figure 12A. Coefficients aq

2. _ _ _ _ _

IP

0 50 100 150 200 25O0

Figure 12B. Coefficients S

Figure 12. Coefficients for Five Close Arrivals
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Figure 13A. Fourier Integral Method

40

20
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-20

Figure 13B. Fourier Series Method

Figure 13. Directionality for Five Close Arrivals
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* 0

0 S'O 16 $ 1 O 200 25,0
Figure 14A. Coefficients aq

2

A

50o 100 ISO 200o 25F0

Figure 14B. Coefficients S

Figure 14. Coefficients for Three Arrivals
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24

Figure 15A. Fourier Integral Method

24

0 M-2 T

Figure 15B. Fourier Series Method

Figure 15. Directionality for Three Arrivals
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Figure 16A. f/f - 1

tII

00

Figure 16B. f/f - .5

Figure 16. Directionality for Flat Weighting
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00

Figure 17B. f/f = .5
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SUMMARY

The Fourier integral method and the Fourier series method

have very similar performance; the major difference is the slow

drift in the background level of the noise field directionality

for the Fourier series method due to inaccurate low-order cosine

series expansion coefficients. There is a rather large differ-

ence, however, in terms of the amount of computation, since the

Fourier integral method can employ a fast Fourier transform to

good advantage, while the Fourier series method requires numerous

Bessel function evaluations.

Use of the array somewhat below its design frequency eases

the aliasing problems associated with both methods; but there is

a tradeoff connected with this approach, namely, a loss of reso-

lution. Similarly, weighting can be used to suppress sidelobes,

but again, only at the expense of resolution.

It has been presumed throughout this report that the spatial

correlation is known exactly, for all required argument values,

without any random error. In practice, the spatial correlation

must be estimated from a finite observation time on random

processes. This limitation will further degrade the performance

of both techniques considered here; which one will suffer most,

and by how much, is unknown.
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APPENDIX A. EXAMPLE OF FOURIER SERIES METHOD

The single plane-wave arrival was given in (48); it yields

spatial correlation (50):

C(p) - exp(-ixp cose0 ); 0 < eo < n. (A-i)

Substitution in (47) yields coefficients [7; 6.693 2&1]

-2 (-l)m cos(2m)
for m > 1 , (A-2)

a l ! r-i sin[(2m-l)0]

where

0 " asin(cos ) - o (A-3)

Although spatial correlation C(p) depends on =, coefficients (aq}

do not. Also, observe that

cos(2mO) - cos(mn-2mG0 ) - (-1) m cos(2mo ),

sin[(2m-l)0] - sin[(2m-l)(1 - 90)] - (-i) m- i cos[(2m-l) 0 , (A-4)

giving
2

aq - cos(q 90) for q i. (A-5)
q nt 0

When these coefficients, along with ao - /n, are substituted

in the right-hand side of (40), we obtain (letting 8 be

arbitrary)
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R(e) + 2 cos(qe ) cos(qe) -

q-1

+W

+ tcos(q(-0)) + cos(q(e+0))]. (A-6)
q-1

But [8; page 281

+0 +0 +0

os+ c COS(qt) - 1 O(t-m2n) , (A-7)

q=1 q=-= mM--

giving

+C

R(9) - . [6(8 - o - m2n) + 6(9 + e - m2n)] for all 9. (A-8)

This function is discussed in (52) et seq.

For future reference, if the sum in (A-7) were terminated at

q', we have

-1 1. M 1 sin((2q'+l)t/21 (A-9)-F + - cos(qt) - (A-9)n~/2
2u n 2n sin(t,'2)

q-1

The first zero crossing of this function is at

t r (A-10)

This is approximately the resolution of waveform (A-9).
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APPENDIX B. NUMERICAL INVESTIGATION OF (58)

For the single plane-wave arrival given in (48)-(50), the

spatial correlation is

C(p) - exp(-impu0 ) , W nf/f 0  1U0 1 < 1. (B-I)

Substitution in (58) gives approximate coefficients

n ~M-1 (n
.4 Jl( n)

a1 - n sin( nu0 )

n-1

M-1. J 2 ( n)

-a 2 - -2T. n cos(anuO )

n-i

T J10(0n)

n-1

The exact coefficients are given by (51) as

aq - cos(qeo ) - cos(q acos(uo)) for q > 1 , (B-3)

and are independent of a.

Numerical values of approximations (B-2) are given in tables

B-1, B-2, B-3, respectively, for several values of uo , a, and for

M - 100, 1000, 10000, 100000. The exact values, from (B-3), are

listed in the right-most column for comparison purposes.

Several observations can be made from these tables. Except

for uo - 1, the sums in (B-2) for M - 100 are not too different

from what they would have been for M - *. Part of this is due to

the fact that M - 100 is considerably larger than the biggest

coefficient order, 10, that we considered here.
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The values of the approximate coefficients S and a2 are poor

for e - n, that is, for frequency f equal to design frequency f0o

even for a large number of elements M, independent of arrival

angle uo. However, if = is decreased, so that f is well below

the design frequency f0, d < X/2, then 5 and a2 are rather close

to a1 and a2, respectively. However, the loss in resolution is

unlikely to be tolerable in this case.

By contrast, the values of A10 in table B-3 are good

approximations to a1 0 , with two exceptions:

u- , = n, all M;

u0 - 1, all a, M - 100. (B-4)

That is, endfire arrivals will cause the most problems, as is

expected physically.
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Table B-1. Values of 2 1

a1 for:

u ( M-100 M-1000 M-10000 M-100000 a,

0 all 0 0 0 0 0

.25 n .129232 .129164 .129166 .129166 .25

.25 .75n .187050 .187166 .187169 .187169 .25

.25 .5n .223371 .223390 .223387 .223387 .25

.25 .25n .244032 .243504 .243520 .243520 .25

.5 n .243202 .243356 .243361 .243361 .5

.5 .75n .371340 .371278 .371273 .371273 .5

.5 .5n .446531 .446295 .446302 .446302 .5

.5 .25n .487704 .487032 .487014 .487014 .5

.75 i .312112 .311716 .311728 .311728 .75

.75 .75n .548651 .548352 .548355 .548355 .75

.75 .5n .668571 .668247 .668229 .668230 .75

.75 .25n .730345 .730503 .730458 .730456 .75

1 n 0 0 0 0 1
1 .75n .675038 .700277 .708228 .710741 1
1 .5n .843507 .874322 .884057 .887135 1
1 .25n .910216 .953689 .967453 .971806 1
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Table B-2. Values of i a2

a2 for:

u°  M=100 M-1000 M-10000 M-100000 a
0~2 2

0 n -.774782 -.774469 -.774460 -.774459 -1
0 .75n -.877975 -.878516 -.878500 -.878500 -1
0 .5n -.948405 -.947527 -.947499 -.947498 -1
0 .25n -.984898 -.987151 -.987084 -.987082 -1

.25 n -.638731 -.639064 -.639054 -.639054 -.875

.25 .75n -.751196 -.750903 -.750906 -.750907 -.875

.25 .5n -.822242 -.822027 -.822058 -.822057 -.875

.25 .25n -.860117 -.862071 -.862055 -.862057 -.875

.5 n -.226752 -.226437 -.226428 -.226427 -.5

.5 .75n -.367826 -.367496 -.367515 -.367515 -.5

.5 .5n -.444596 -.445729 -.445695 -.445694 -.5

.5 .25n -.485886 -.486894 -.486983 -.486980 -.5

.75 n .497761 .497414 .497424 .497425 .125

.75 .75n .275027 .273883 .273906 .273905 .125

.75 .5n .182765 .181761 .181708 .181709 .125

.75 .25n .136903 .138239 .138154 .138149 .125

1 n 1.992866 2.080480 2.108031 2.116738 1
1 .75n 1.105007 1.155646 1.171553 1.1.76580 1
1 .5n .969535 1.031886 1.051378 1.057535 1
1 .25n .884033 .973009 1.000600 1.009308 1
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Table B-3. Values of R a2 10

S . for:

u 0 M-100 M-1000 M-10000 M-100000 alO

0 n -1.001835 -1.000047 -.999998 -.999996 -1
0 .75n -.997211 -1.000083 -1.000002 -1.000000 -1
0 .5n -1.004328 -1.000142 -1.000004 -1.000000 -1
0 .25n -.993657 -1.000337 -1.000013 -1.000003 -1

.25 n .818745 .816853 .816903 .816904 .816895

.25 .75n .815431 .816916 .816897 .816895 .816895

.25 .5n .815723 .817043 .816890 .816894 .816895

.25 .25n .823767 .816816 .816904 .816892 .816895

.5 n -.501787 -.499985 -.499935 -.499934 -.5

.5 .75n -.501841 -.499903 -.500002 -.499999 -.5

.5 .5n -.495030 -.500171 -.500005 -.500000 -.5

.5 .25n -.492036 -.499587 -.500016 -.500003 -.5

.75 n .589326 .587351 .587401 .587402 .586426

.75 .75n .592357 .586315 .586433 .586429 .586426

.75 .5n .593192 .586680 .586418 .586426 .586426

.75 .25n .593387 .586898 .586445 .586423 .586426

1 n 1.329489 1.797572 1.936303 1.979867 1
1 .75n .606719 .882941 .963235 .988393 1
1 .5n .504084 .856082 .954934 .985763 1
1 .25n .252087 .794347 .936197 .979862 1
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