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Preface

The state of the art in real-time Al systems lags far behind the needs of the applications requiring
this technology. Current researchers view this technology as being at least one generation
behind the expectations for real-time applications, the computational requirements of which are
increasing in complexity faster than the speed of today's processors. Current problem-solving
technology does not meet the expected stringent requirements fC,L predictable and high quality
results achieved in a timely marine: in the presence of excessive demands for resources, where
response time and computing resources are limited and varying, focus of attention shifts
frequently, large amounts of information must be managed under severe time constraints, data
and knowledge uncertainties exist, and goals conflict.

Many current and proposed programs throughout DoD and the Air Force will require Intelligent
Real-Time Problem Solving (IRYPS) capabilities. As a consequence, the Air Force needs to
increase the national focus on IRTPS throughout the computer science community, including
those segments involved with AI approaches to problem solving, software engineering for
traditional real-time systems, decision analysis, and control theory.

Scientists and engineers at Wright Rtsearch and Development Center (WRDC), at Rome Air
Development Center (RADC), and at institutions supported by grants and contracts from the Air
Force Office of Scientific Research (AFOSR) are seeking and developing technological
advances needed to help Air Force commanders cope with the ever increasing complexities of
military conflict. To support air crews, res.-arch and development efforts are underway at
WRDC to automate many mission functions, such as mission planning and replanning, tactics
planning, target detection and identification, terrain following and avoidance, navigation, threat
avoidance, sensor fusion, and situation assessment. To support Air Force CLNC's in their battle
management, research and development activities are underway at RADC, including crisis
management tasks across the full spectrum of command, control, communications, and
intelligence functions.

In addition to these efforts, AFOSR, RADC, and WRDC have set aside sufficient resurces for
the following four phases of planned activity.

1. Define terms and issues.

2. Define paradigmatic IRTPS problems.

3. Generate approaches and solutions, and conduct experiments.

4. Compare solutions and approaches, and disseminate results.

Phase I resulted in a survey and analysis of the many manifestations of IRTPS and the
circumscription of a central class of IRTPS issues.

Phase 2 is represented by this document. It contains a concise definition of the terms and issues
that adequately describe IRTPS as a domain of fundamental scientific inquiry. This will serve as
a focus of research for subsequent phases of this program and beyond.

Phase 3, which is to follow the dissemination of this report, will include the competitive
identification of three to ten research teams, each of which will be charged with an eighteen
month development of research ideas and techniques to solve IRTPS test problem(s). The result



of Phase 3 will be a final technical report documenting each team's approach to IRTPS and the
progress made, and running protorypt systems that embody those techniques.

Phase 4 will consist of a second scientific workshop, attended mainly by representatives of each
research team from Phase 3. Results from Phase 3 will be "flown off' against each other, and
individual and panel discussions will focus on IRTPS fundamental research results achieved
during Phase 3. An assessment of the remaining obstacles and directions for future IRTPS
research will be a major topic for consideration.

Phase 4 will be documented by a short, quickly appearing research article describing the
workshop results and a larger, more significant in-depth scientific report suitable for scholarly
publication that will provide critical technical assessment of and prognosis for IRTPS. It will
also serve as the primary initial scientific reference for future IRTPS research activities.

Abe Waksman (AFOSR)
Bill Baker (WRDC)
Nort Fowler (RADC)
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1. Introduction

A workshop on intelligent Real-Time Problem Solving (IRTPS) was held in Santa Cruz,
California, November 6 and 7, 1989. The workshop was sponsored by AFOSR (Air Force
Office of Scientific Research), RADC (AF Rome Air Development center), and WRDC (AF
Wright Research and Development Center) as part of an initiative to stimulate the development
of a national basic research focus on IRTPS. This report summarizes the results of that
workshop and the work leading up to it.

1.1 Scientific and Technical Context

Despite continuing progress in research and applications of knowledge systems, current
technology does not meet the stringent requirements for predictable, high-quality results
achieved in a timely maner in the presence of excessive demands for problem-solving
resources. Recently, research has begun to extend knowledge systems technology to include
real-time interactions with ongoing processes. This requires capabilities in several dimensions
not addressed by current knowledge systems technology. These include

* ensuring that the application w-U produce relevant output in a time appropriate for
the environment,

* execuring the functionalities continuously,
* adapting the reasoning process and its guiding strategies to changes in the

environment that invalidate previous input or modify the available problem-solving
resources,

* interacting asynchronously, and gracefully, with the environnment,
* interrupting ,:ugoing reasoning procosses and redirecting their attention to more

important or more urgent environmental conditions, and
* reasoning efficiently and effectively about temporal processes, including the

reasoning process itself.

1.2 Pre-Workshop Activities

In the first phase of this initiative, the Air Force provided seed funds for three teams, from
Stanford University, University of Massachusetts, and Teleos Research, to begin laying out the
issues and to help guil¢ subsequent directions. The Air Force also chartered Cimflex
Teknowledge to coordinate this effort and to organize a workshop to expose these results to a
wider community and garner feedback. The overall goal was to provide a clear direction for
subsequent research.

The individuals involved had all been working on IRTPS-related projects of various kinds. Now
these teams, working independently and together over a period of about four months, studied
IRTPS as a research domain and established preliminary ideas and amnwers to questions an
several areas, including:

Terms and Issues:
What technical questions should be included in IRTPS ind, conversely, which
questions should be excluded from consideration? What kinds of issues should be
focused upon?

I ..
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Experimental Methodology:
How should experiments be conducted and evaluated?

Common Experimental Problem:
What would be a pragmatically viable and effective common testbed for the IRTPS
research community?

At ,he same time, the plans for the workshop were clarified: It would be two days, with the first
day devoted to presenting and discussing the ideas and positions of the funded teams, and the
second day spent in small working groups on particular topics. The workshop would be limited
to a maximum of fifty attendees, and would cover as broad a range as possible of the
experienced IRTPS community. Those applying to attend would submit an abstract describing
their relevant experience.

The pre-workshop teams produced six reports. These were distributed to all workshop
participants beforehand. Two of the attendee abstracts provided particularly astute overviews
and were also distr.buted. An additional relevant paper was also distributed. Those nine reports
(or, in some cases, revisions of them) appear as Appendices 11 to X to this document. Section
1.3 provides an overview of these pre-workshop papers.1

1.3 Overview of the Pre-Workshop Papers

Stan Rosenschein, Barbara Hayes-Roth, and Lee Erman formed an ad hoc working group and
produced the paper "Notes on Methodologies for Evaluating IRTPS Systems" (Appendix 11).
They present a model of embedded dynamic systems and introduced neutral terminolgy. In
particular, they separate the system, S, from the environment, E, but allow the S-E boundary to
vary to allow investigating various kinds of IRTPSs. One measures a system by defming
functions on time sequences of physical states; one also designates a subset of the measurements
as utilities for evaluating the behavior of the S. This approach, and especially the S-E
terminology, was adopted throughout the workshop and provided useful commonality of
terminology and concepts.

In "Report on Issues, Testbed, and Methodology for the IRTPS Research Program" (Appendix
III), Yoav Shoham and Barbara Hayes-Roth, the Stanford team, expand on the model of
Rosenschein, Hayes-Roth and Erman, modeling the system as a time-delayed automaton wired
to and interacting with its environment -- an informatic pair. They provide definitions of some
usually intuitive concepts, such as timeliness, recency, unpredictability, uncertainty, and
robustness, in terms of the environment-machine model. They include a discussion and set of
recommendations on testbeds for IRTPS, with emphasis on a variety of applications. They also
discuss issues of real-time intelligent agents, and expand on those issues individually: Shoham's
work (Appendix VI) emphasizes a formal model of an agent, its knowledge, and its interaction
with other agents -- an approach he calls agent-oriented programming. Hayes-Roth's research
program (Appendix VII), which she chaacterizes as aimed at adaptive intelligent systems,
concentrates on real-time requirements and heuristics, architectures, and experimental evolution.

tThis report includes several other sections. Appendix I provides bn,. descriptions of a number of
systems and architectures being used for IRTP -related work. Ap.ntx XI provides post-workshop
thoughts from two of the parucipants. Finally, the annotated bibliography is a compilation of items
submitted after the workshop by various participants.
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Tom Dean's abstract "Intelligent Real-Time Problem Solving Workshop" (Appendix IV)
provides a neat description of his IRTPS perspective in relation to research on planning. In
"Real-Time Problem Solving: Preliminary Thoughts" (Appendix V), N.S. Sridharan and Raj
Dodhiawala also present a general overview of IRTPS, but from an engineering and architectural
perspective.

In their "IRTPS Workshop Interim Team Report" (Appendix VIII), the Teleos-organized team
of Stan Rosenschein, Michael Fehling, Matt Ginsberg, Eric Horvitz, and Bruce D'Ambrosio lay
out the IRTPS problem. They break down the research programmatic issues into historical/
interdisciplinary, research on resource-bounded reasoning, and experimental validation. They
discuss each of these succinctly.

Paul Cohen, Adele Howe, and David Hart present the University of Massachusetts team report in
"Intelligent Real-Time Problem Solving: Issues and Examples" (Appendix IX) -- a revised and
augmented version of their pre-workshop paper. Based on their ongoing research on a
fire-fighting simulation called Phoenix, they offer a comprehensive vision, starting with their
"behavioral ecology" view. This view is based on three interacting components: the agent's
architecture and knowledge, the agent's behavior, and the environment structure and dynamics.
They compare and contrast this to the S-E model presented in Appendix I and argue that many
issues can be handled only by understanding the agent's architecture -- a point compatible with
the informatic pair of Shoham and Hayes-Roth (Appendix MI). They present their Phoenix agent
architecture. They introduce the notion of "envelopes" -- spaces through which agents move
that can be abstracted and used for plan development, monitoring, and agent performance
evaluation. They also describe the Phoenix testbed.

In Appendix X, Ed Durfee and Thomas Montgomery describe the testbed they are building at the
University of Michigan in "MICE: A Flexible Testbed for Intelligent Coordination
Experiments." Although developed in the context of distributed Al, the testbed is relevant for
IRTPS. The Phoenix and MICE testbeds provided the workshop testbed working group two
concrete examples for description and analysis. (See Section 5.)

1.4 The Workshop

The workshop was scheduled in a somewhat remote location, to encourage and enhance a
concentrated group experience. 1 After some introductions by Abe Waksman (AFOSR) and Lee
Erman (Cimflex Teknowledge), the workshop opened with a short overview of application
requirements. The person scheduled to make this presentation had to cancel at the last minute,
and Armen Gabrielian graciously and bravely stepped in with less than an hour's notice for that.

tThe workshop was scheduled to be held at the Inn at Pasatiempo, a motel in the mountains on route 17
northeast of Santa Cruz, California. On October 17, less than three weeks before the workshop, the San
Fransisco Bay area was rocked by a 7.1 earthquake (the "Pretty Big One"), with ep-icenter -t a few
miles south of Santa Cruz. Although the inn suffered only superficial damage, access to the area was
severely restricted because of major landslides and damage to route 17. Wit some trepidation about
access problems, and a great deal of real-time problem-solving consideration, we stayed with the planned
location. Fortunately, most people did not have undue difficulties. We did experience two consequences
of the quake: The facilities were crowded because of the many insurance agents handling claims in the
area, f6rcing some participants to stay at nearby motels, and we experienced several after-shocks,
including a severe jolt during one of our sessions.
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Team
UMass: Presenter: Paul Cohen

Discussants: Ed Durfee, Les Gasser
Teleos: Presenter: Stan Rosenschein

Discussants: Stuart RusseUl, Kurt Konolige
Stanford: Presenters: Yoav Shoham, Barbara Hayes-Roth

Discussants: Tom Dean, Ted Linden
general discussion: N. S. Sridharan

Table 1.1: Team presenters and discussants

Each of the three teams presented a brief overview of their position. All participants had been
requested to read the reports before the workshop, and the workshop agenda was predicated on
that, avoiding the necessity to spend time presenting those materials. Thus, in these 45-minute
presentations, each team could concentrate on an overview, emphasizing the parts they felt most
important. Following each team presentation, two pre-assigned discussants took ten minutes
each to respond to the team's position or otherwise present their views on IRTPS. Subsequently,
they led the workshop attendees in 25 minutes of open discussion. (Actually, there was much
interactive discussion during all segments of the workshop.) The presenters and discussants are
listed in Table I-1.

The participants split into foux working groups for the second day, as shown in Table 1-2. The
working groups met for two and one-half hours in the morning followed by 15-minute
presentations each to all the workshop attendees. The groups met again in the afternoon, for
about one and one-half hours, and then each presented their results for 15 minutes. Following
the workshop, the group leaders wrote up the results of those meetings; those write-ups make up
Sections 2 through 5 of this report. These reports attempt to capture both the substance of the
discussions and the inclinations of the participants, including the reactions to the pre-workshop
reports.

The workshop concluded with remarks by Nort Fowler (RADC). Nort emphasized that although
the workshop and the proposed initiative are sponsored by the Air Force, that it is "your
workshop, and your science," and that the participants and other researchers are ultimately
responsible for setting fruitful directions.

1.5 Comments

Based on informal comments from many of the participants, the workshop proved very
worthwhile. Distributing the preliminary reports ahead of time and strongly encouraging the
particiants to read them had the intended effects of rnrvdin ra a g m cnin. b.iea , .

reducing the time spent on formal and background presentations. We also succeeded in
gathering a diverse group of people; one participant noted and all agreed that it was a collection
of researchers who rarely talk to one another. Yet there was continuous, intense, and highly
interactive discussion among all the attendees.
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Terminology and Criteria
Planned Output: A description/definition of an IRTPS system and a listing of

criteria/utilities along which IRTPS systems should be measured.
Examples of criteria include responsiveness, interruptibility, and
graceful degradation.

Leaders/Editors: Barbara Hayes-Roth and Yoav Shoham
Participants: Thomas Dean, Tony Fountain, Dan Miranker, N.S. Sridharan, Mike

Wellman, Bob Whitehair

Research Areas
Planned Output: A listing of research areas important within IRTPS. For each area, a

list of questions, annotated with estimates for value and difficulty, and
a research agenda of questions. Also, a listing of related issues and
areas that should not be addressed in a near-term IRTPS research
program.

Leaders/Editors: Michael Fehling, Matt Ginsberg, and Stan Rosenschein
Participants: Franz Barachini, Mark Drummond, Bob Filman, Armen Gabrielian,

Don Geddis, Pete Halverson, Tomasz Imielinksi, Leslie Kaelbling,
Kurt Konolige, Donald McKay, Stuart Russell, Marcel Schoppers, Josh
Tenenberg, John Yen

Architectures
Planned Output: Descriptive characteristics which differentiate various IRTPS

architectures. Examples of existing or proposed architectures which
exhibit the various characteristics.

Leaders/Editors: Paul Cohen and Paul Rosenbloom
Participants: Raj Dodhiawala, Bill Erikson, Les Gasser, Ted Linden, Henry

Mendenhall

Testbeds and Common Experimental Problem
Planned Output: Desirable characteristics for an IRTPS testbed and for a common

experimental problem. Analysis of Phoenix (U. Mass.) and MICE (U.
Michigan) as candidates.

Leaders/Editors: Bruce D'Ambrosio and Lee Erman
Participants: Bradley Allen, Bill Baker, Ed Durfee, Adele Howe, John Jtnspn, Perry

McCarty, David Toms

Table 1-2: Working-group organization for day two

We had hoped to produce more concrete proposals for a research program. In restrospect, that
may have been overly optimistic, primarily because of the relative youth of the topic and also
because it appears to be quite broad. Most participants were loathe to restrict the range of
research efforts of the field, even if they could dictate those restrictions.
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2. Terms and Operational Criteria

Leaders/editors: Barbara Hayes-Roth, Yoav Shoham
Participants: Thomas Dean, Tony Fountain, Dan Miranker,

N.S. Sridharan, Mike Welman, Bob Whitehair

The goal of this working group was to identify, define operationally, and provide examples of
key terms and evaluation criteria for intelligent real-time prob'!em-solving systems.

We defined an intelligent real time problem-solving system (IRTPS) as: an intelligent system
that is sensitive to real-time constraints on the utility of its behavior. By the term "intelligent,"
we imply the relevance of concepts of knowledge, beliefs, goals, capabilities, reasoning, and so
forth to describe and explain the system's behavior (see [Shoham & Hayes-Roth 90] (Appendix
IlI here). By the phrase "real-time constraints," we refer to the impact of temporal factors on
the value of behavior that is otherwise correct, particularly where those temporal factors are
determined by dynamic processes outside of the system's control. We assume that a system
constrained to real-time performance may have to behave differently than one not so constrained
and, conversely, that the system can use its intelligence in order to adapt to its real-time
environment (see [Dean 90] (Appendix IV here), and [Hayes-Roth 90a] (Appendix VII here)).

2.1 The S-E Framework

To define performance criteria for IRTPSs, we adopted the neutral language of the S-E
framework proposed by [Rosenschein, Hayes-Roth & Erman 90] (Appendix II here) (see
also [Shoham & Hayes-Roth 901, Appendix II here). Briefly, the overall system is modeled as
an embedded dynamic system and described as a time series of physical states, with mappings
from instants of time to a state space of values that model the physical features of interest.
Events are defined as changes in state values. Measurements on the system are defined as
functions on state values or events, or series of state values or events. The overall system is
partitioned into sub-systems corresponding to the IRTPS, S, and the environment, E, each of
which has a dynamic local state that varies, in part, as a function of signals received from the
other. The placement of the S-E boundary is variable to allow investigation of IRTPSs of
variable scope, for example a "complete intelligent agent" versus an intelligent perception
system. However, placement of the boundary determines the distinctive roles of particular
measurements within the investigation. Measurements on E can be functions on internally
generated features of the environment or features of the environment influenced by S. The
former can be used to assess the degree of difficulty or other qualitative features of the task
facing an IRTPS. The latter can be used to assess the degree of an IRTPS's success or other
qualitative features of its behavior in the environment. These measurements assume the
introduction of utilities into otherwise descriptive functions. Measurements on S also can be
functions on independently generated features of the IRTPS or features influenced by E. The
former can be used to explain how it is that the IRTPS produced the observed behavior. The
latter can be used to explain its sensitivity to particular kinds of environmental variability.
Although measurements on both S and E are necessary for a thorough investigation, we focused
on measurements on E during the limited time available for group discussion.

We assumed that the ultimate performance criterion for an IRTPS is to maximize a



comprehensive utility function over time. Presumably, this utility function could be defined in
the terms of the above framework. Because this function is likely to vary across applications or
even across different contexts within an application, we did not attempt to define a global utility
function. However, we assumed that there exist a number of subordinate criteria that, if met,
would promote global utility maximization in a variety of circumstances. As candidate
subordinate criteria, we reviewed the criteria defined informally in [Hayes-Roth 90a] (Appendix
VII here): asynchrony, timeliness, selectivity, coherence, flexibility, responsivity, robustness
(see also [Sridharan & Dodhiawala 90] (Appendix V here). The remainder of this review gives
our definitions of those criteria we considered most important. (Se also a similar effort to
operationalize performance criteria in (Shoham & Hayes-Roth 90] (Appendix II here) and
[Hayes-Roth 90a] (Appendix VII here).)

2.2 Specific Criteria

We defined timeliness, the minimal performance criterion, in terms of event-response pairs.
Following the literature, we defined hard real-time constraints as restrictions on the time, interval
during which a logically correct response would have the desired effects. Hard constraints can
be absolute, for example: "Save your files before the system is brought down at 5:00pm." Or
they can be relative, for example: "Prepare your weapons within thirty seconds of detecting an
unknown vehicle." By contrast, soft real-time constraints restrict the time intervals during
which a logically correct response would have different degrees of desired effects, for example:
"The sooner you finish this paper the better." In both cases, it is not when the agent initiates an
action that counts, but when those actions produce their results in the environment. In the terms
of our framework, hard and soft real-time constraints can be expressed as utility measurements
on the occurrence of particular S-response events in E during particular absolute or relative time
periods.

Several of the other criteria discussed below seem to be special cases of timeliness or heuristic
approaches to achieving timeliness.

Defining some of the other criteria requires a characterization of important features of the
environment. We identified several important features intrinsic to E: frequency, diversity,
predictability, and periodicity. Each of these can be expressed as measurements on events in E.
For example:

" "Blood gases are measured once every hour."

" "A cold post-operative patient will warm to normal body temperature in about eight
hours."

" "Each of one hundred physiological variables are measures once per second."
We also identified some features related to the interaction between S and E. For example, we
defined overload as a condition in which the rate of events produced in E and sampled by S
exceeds the rate at which S can produce responses. We believe a taxonomy of features should be

We defined selectivity as a timely response to an appropriate subset of events in E under
conditions of overload. Other things being equal, the probability of a timely response to an event
should be positively correlated with the importance of the event, where importance is an attribute
assigned with;-a an application. For example, while an intensive-care patient monitoring system
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is in the process of predicting the potential consequences of a minor irregularity in the patient's
condition, it should give minimal attention to other sensed patient data that are in expected
ranges. However, it should immediately redirect all of its attention to diagnosing and correcting
any critical (e.g., life-threatening) problems that occur even if doing so interrupts its ongoing
prediction activities.

We defined coherence as a condition in which a sequence of response3 by S over time matches
some criterial pattern. For example, an intensive-care patient monitoring system would be said
to be coherent if it completed those diagnosis, prediction, and other tasks it began, within a
specified period of time, with minimal distortions resulting from extraneous activity.

We defined flexibility as a condition in which S could interrupt a sequence of responses in order
to react appropriately to important non-task-relevant responses. For example, a patient
monitoring system would be said to be flexible if it interrupted an ongoing prediction task to
respond to a critical patient condition.

We defined robustness as the insensitivity of a real-time performance measure (e.g., timeliness
and selectivity) to variations in some environmental attribute (e.g., event density and diversity).
For example, a patient monitor would be said to be robust if it maintained a criterial level of
timeliness on critical events over broad variations in non-critical event frequency. There exists a
family of robustness measures corresponding to each combination of performance and
environmental parameters.

Although the working group did not have time to consider all potentially interesting terms and
criteria or to consider those above in the depth we would have preferred, we felt that the exercise
had been productive in two ways. First, it produced an initial set of definitions of key terms.
More importantly, it confirmed the feasibility of developing operational definitions of key terms
within a neutral framework. Because this is a critical foundation for any comparison of
alternative approaches to intelligent real time problem-solving systems, we recommend more
systematic efforts to define a comprehensive set of terms and criteria.
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3. Research Issues

Leaders/editors: Michael Fehling, Mart Ginsberg, Stan Rosenschein
Participants: Franz Barachini, Mark Drummond, Bob Filman, Armen Gabrielian,

Don Geddis, Pete Halverson, Tomasz Imielinksi, Leslie Kaelbling,
Kart Konolige, Donald McKay, Stuart Russell, Marcel Schoppers,
Josh Tenenberg, John Yen

3.1 Introduction

The working group on research issues was given the following set of tasks:
1. Propose IRTPS-related research areas.

2. Consider specific research topics relevant to IRTPS within each area.

3. Estimate each topic's potential value to IRTPS and its difficulty.

4. Identify research areas and topics less suitable for important, near-term IRTPS
research.

Our deliberation was to include non-A! research areas, and we were asked to list research areas
in other discipline. ",oth within and outside of computer science) that are important to IP.TPS
and suggest the most important IRTPS-ielated research topics within these non-A! areas.

We began by considering the following four-stage model of how research on a major problem
like IRTPS might progress:

1. Paradigms (initially termed "models")

2. Theoretical questions
3. Algorithm development
4. Technology base (tools and design principles)

Although the discussants generally felt that all of these stages are important to IRTPS, the
discussion focu. d primarily on the first two and the relationships between them.

The discussion of this model of scientific progress produced the following:

" Instead of "paradigms" the term "models" was originally used for the first stage.
However, subsequent discussion revealed that we had a more general range of
activities in mind than the descriptive activity of modeling. Paradigms entail broad
commitments to (a) prioritization of issues to be addressed, (b) a general vocabulary
and set of constraints on its use in describing the phenomena of interest, and (c)
preferred methodology for assessing alternative descriptions (predictions) and
techniques produced within (i.e., consistent with) the paradigm. Therefore,
commitment to a paradigm constrains its user both conceptually and
methodologically in explorations of some set of phenomena. Initial activity at this
stage centers around very informal distinctions and constructs. For quite some time
there may be many, equally plausible, candidate paradigms. As a field matures the
predominant paradigms are likely to yield formalized theory languages within which
detailed models can be specified. Prioritization of research issues is significantly
sharpened, and the methodology for measuring progress is also formalized.

" The role of "theoretical questions" was less clear. Some participants emphasized
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how paradigms enable the formulation arid examination of theoretical questions. In
this sense, maturation of a paradigm logically precedes the theoretical examination
used to refine that paradigm. Other participants emphasized the many important
theoretical questions that must be asked and answered in order to formulate a
paradigm, in the first place. Such theoretical questions may be "pre-paradigmatic,"
or even "non-paradigmatic." In this alternative sense, examination of certain
theoretical questions logically precedes articulation of a paradigm.

* Both of these views are valid. They provide complementary accounts of the
relationship of theory development to analysis and experimentation. By combining
these accounts one comes to see scientific progress as a complex, evolutionary
process rather than a simple sequential ordering of stages.

The theoretical questions that may be asked at the pre-paradigmatic stage are more
likely to focus on broad issues and to be only informally stated. However, these
informal questions play a very important role in the early evolution of a scientific
discipline by helping to articulate and prioritize the concepts and methodology on
which some more formal paradigm will stand.

For computationally-oriented topics such as IRTPS, algorithm development (stage
3) and technology creation (stage 4) play an essential role as conclusive analytic and
empirical tests, respectively, of the concepts and methods produced by a paradigm.

This broad dis-,:ussion of scientific progress provided us a useful context within which to focus
more specifically on the IRTPS initiative:

" IRTPS research is at an early stage of evolution. Consequently, it is important to
support careful, though informal, examination of concepts and issues that may point
the way toward choosing among competing paradigms or creating a new, more
appropriate paradigm. There are many candidates for the role as a dominant IRTPS
paradigm. These need to be better understood and evaluated.

* IRTPS researchers would benefit greatly from the existence of "paradigm
problems" -- simplified problem instances whose features exemplify critical and
broadly occurring features of the full range of IRTPS problems. For example, the
well-known Sussman anomaly within the MIT 'blocks worlds" serves as a
paradigm problem that has stimulated much work within Al on reasoning about
action. IRTPS needs its own stock of paradigm problems. However, it is not likely
that one may successfully set out to formulate a paradigm problem. A problem
achieves this status only if it becomes a widely studied problem, whose
interpretation is generally agreed to.

In keeping with our discussion of the evolution of research, we attempted to generate plausible
paradigms (models) around which IRTPS research could be organized. The next section
presents the results of this analysis. We then exploited our knowledge of these paradigms to
generate candidate research areas upon which effort might be focused in the IRTPS initiative, to
refine topics within these these research areas, and evaluate their significance for IRTPS.
Section 3.3 summ-arirzes thA discussion.
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3.2 Candidate IRTPS Paradigms

Challenging concepts underlie the idea of an IRTPS system. Scientists are far from agreeing on
:he meaning of the concept of an "intelligent system" (whether computational or not). Nor are
they ready to t:omnit to a common understanding of what "roblem solving" entails. Even the
term "real-time" tends to generate vigorous debate. A nunt>er of disciplines suggest alternative
perspectives and approaches to the development of IRTPS systems. Some of the more
prominent candidates i-iclude the following:

Planning

This paradigm represents the Al mainstream. Problem solving is conceived as goal-oriented
reasoning about action, planning, and "meta-planning." Advocates of this paradigm expect that
further research will enable them to extend its basic concepts and techniques so that these
methods exhibit real-time performance.

Logics

This paradigm is popular at Stanford's Center for the Study of Language and Information,
among other places. It proposes to use special extensions of classical first-order predicate
calculus to formally describe problem-solving, and now IRTPS, in terms of the interactions of an
agent's beliefs, desires, and intentions. One set of logic-based approaches involves extending
classical logic with modal operators, axioms, and inference rules intended to capture the "logic"
of reasoning with beliefs, desires, etc. Another approach involves adding mechanisms for
so-called "non-monotonic reasoning" that allow inference with assertions that may be retracted
under some circumstances.

Algebraic Techniques

This paradigm was suggested by one participant as an alternative to logic-based approaches. The
same goals hold but, in this paradigm, one uses and "extends such formal constructs as universal
algebra and similar formal systems. These algebraic techniques, rather than predicate logic,
provide the underlying formal system.

Decision Theory

This paradigm views problem-solving as choice among alternative actions on the basis of
preference. In this view, problem-solving is represented as choosing those actions that maximize
a problem-solver's subjective utility. It puts forward the principle of maximizing (subjective)
expected utility as a "gold standard" for chararcterizing ideal rational action. Advocates of this
paradigm suggest that real-time problem-solving involves making rational choices h-,e also
taking into account the costs of thinking (i.e., computation) and of missing deadlines. IRTPS is
thus conceived of as entailing a process to manage scarce problem-solving resources such as
time and information. Decision theory is sufficiently mature as a paradigm to have well-tested
mathematical methods for explicating its view. The formal methods of decision theory enable
the explicit modeling of the problem-solver's probabilistic uncertainty, its preferences, and its
attitude towards risk.
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Control Theory

This paradigm has culminated in a mature academic discipline that has produced a large amount
of practical technology for ouilding real-time systems. Modem control systems manage complex
distributed physical processes, and often do so while meeting real-time performance constraints.
Control theory has also produced practical technology for building simple learning systems.
Modem control theorists often conceive of an advanced control system as a non-trivial
embodiment of intelligent (or at least intelligently created) problem-solving processes. Control
theory and decision theory are closely related. Indeed, the theoretical language of decision
theory can be used to describe many of control theory's concepts and formal constructs.
However these paradigms differ in some important ways. In particular, applications of
control-theoretic methods often model a "closed loop" relationship between the actions of a
controlling system and the controlled system that it manages. By contrast, the formal methods of
decision theory make it difficult to model feedback. Secondly, advanced control theories have
been developed that emphasize specifying a control response by analyzing the feedback and
other observations of the "plant" (the controlled system) in terms of a reference model available
to the controlling system. Model-reference methods can emphasize qualitative issues that have
received less attention in decision theory. Examples include use of a reference model that only
approximately models the actual dynamics of the plant and methods for replacing a state-based
model with one that has fewer states but which can still be used to meet the original control
criterion (i.e., so-called state-aggregation methods). In sum, although control theory and
decision theory are closely related paradigms, they provide significantly different emphases and
may even turn out to be formally incompatible.

State-Based Automata Methods

One discussant proposed state-based automata methods as an alternative paradigm. The
principal distinction of this paradigm seems to lie in its use of the mathematics of automata
theory for formal modeling and analysis. There may also be some increased emphasis upon the
control of non-linear systems in this approach, although this difference from standard control
theory has diminished in recent years. In fact, many state-based methods are well-known to
control theorists, and many of the standard problems defined within the state-based paradigm are
similar or identical to the standard problems emphasized by control theorists, e.g., reachability,
ide,.ifiability, stability, convergence, and controllability.

No-Paradigm

Several of the participants pointed out that IRTPS (and Al in general) is arguably at a very early,
pre-paiadigmatic stage. No existing paradigm obviously provides explicit coverage of all IRTPS
issues. In particular, no existing approach can readily claim to have been formulated explicitly
with IRTPS in mind. So, we should not attach ourselves to one of these existing paradigms with
the illusion that it provides a suitable basis for investigating IRTPS. Given that this is the case,
there are at least three alternative courses of action:

Do something to develop a new paradigm from scratch. Unfortunately, it is difficult
to imagine how to guide this process, or even to suggest how work of this type could
be evaluated or supported. Most likely, one can judge the value of a new paradigm
only in retrospect.
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Compare alternative existing paradigms and then adopt the best ideas from the
closest or some combination. This variant probably describes the approach of many
Al researchers in the history of that field. The paradigm labeled "Logics" above
may exermplify this to a certain extent.

* Look for some deeper, more foundational paradigm within which IRTPS is a
"special case." This alternative is strongly reductionist and presumes that one has a
coherent sense of the dimension of reduction and a convincing argument for the
acceptability of the chosen paradigm for the underlying level. As an example, some
Al researchers have attempted to rely upon work at the foundation of mathematics
as a deeper conceptual and formal basis for their approach to Al problems. Prima
facie, this stracegy may be problematic for IRTPS because of foundational
difficulties in modeling notions of process and time.

3.3 Toward an IRTPS Research Agenda

Our discussion group contained advocates of all the candidate paradigms discussed above. We
exploited these diverse perspectives in generating a set of candidate IRTPS research areas.

After some discussion and re-organization, we agreed on a rough outline of the areas and
sub-areas within which we expect to find research problems critical to IRTPS. We distinguished
these areas as being either issues of resource-constrained reasoning or problems of modeling a
real-time environment. The subsequent discussion of topics focused on only the former (with
some rearrangement.)

The following outlines critical IRTPS-reLated research areas:
1. Problem-solving under resource constraints

a. Limited resource reasoning
i. Controlling focus of attention

ii. Hierarchy of reflection

iii. Temporal reasoning

iv. "Anytime" reasoning

b. Managing varying resources at "runtime"

c. Managing competing objectives

d. Reasoning about resources

2. Modeling features of a complex, dynamic environment
a. Uncertainty and unpredictability

b. Time-dependent events and action outcomes
-,.After-, onr,AUs prelirnary categorization of tTPS research issues, our afternoon session

focused on two subsidiary goals: First, we attempted to identify fairly specific research
questions within each of the broad areas that had been discussed in the morning and second, we
attempted to evaluate each of these research questions with regard to three properties:

1. How likely was it that progress would be made in this specific area in the next two
years?
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2. How important to the IRTPS venture would this progress Lce?

3. How "easy" was the problem? This term was not defined further, but seemed to
measure the group's collective confidence that progress predicted in (1) would in
fact b, achieved.

Of course, all ,f the decisionas made about these questions were entirely subjective and should be
taken princ:;p.ly as reflecting the opinions and biases of the research issues working group.

3.3.1 Short-Term, Important Issues

The following research problems were felt to be important ones on which progress could be
expected in the near term:

1. Compilation. The problems here are those of preprocessing information so that it
can be accessed more quickly when it is needed, or transforming one representation
of a process to another, more efficient, representation. The techniques mentioned
included inductive methods, the synthesis of causal theories, case-basod reasoning,
and neural networks. This is such an active research area already that it was felt
certain that progress would indeed be made over the next two years, and
compilation was therefore labeled "easy."

2. Resource representation and monitoring. What problems are involved in
representing the fact that IRTPS systems can be expected to encounter resource
limitations? What needs to be done to make it practical for these systems to
monitor their resource consumption and needs? The first of these was felt to be
easy; the second, less so.

3. Time-dependent utility. How can an agent expect the utility of achieving certain
goals to vary over time? Not easy.

4. Metareasoning applied to planning and to search. Applying some sort of metalevel
reasoning to control search, to determine when replanning is needed, or to weigh
competing subgoals. Easy.

5. Sensory planning. Planning to acquire new information through the use of sensors.
Easy.

6. Plan monitoring. Given that a plan has been constructed to achieve some real-time
goal, how can progress be monitored as the plan is executed? Not easy.

7. Anytime reasoning. Here, we identified a variety of subprobims that could be
lumped under the title of "anytime inference:"

a. Redefining inference in a way that allows the inference process to be
interrupted, and constructing algorithms that capture this new defirition.

b. Constructing measures on the value of an incomplete answer to a query.

c. Defming a notion of an "appr ,,iate" a nswerto a q ery. ,t

short-term.)

d. Progressive planning, by which we mean the development of planning
systems that work by progressively improving/refining partial plans.

None of th.ese pro!iems was felt to be easy.
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8. The application of decision theory to the problem of focusing attention. What
should the agent concentrpte; on next? Which of its sensors should be polled at any
particular time? Not easy.

9. Finally, we included in this group of problems that of investigating the foundations
of intelligent, real-time problem solving. It was felt that progress would inevitably
be made here.

3.3.2 Important Issues, But Not Short-Term

These problems were generally felt to be harder than those in the previous section:
1. Resource planning. Planning to obtain more resources.

2. Process representation. Understanding and representing the time-dependent
processes with which IRTPS systems will need to interact.

3. Utility of metareasoning and learning. Given that we reason about our own
problem-solving activity and that we learn, under what circumstances are these
mental activities useful ones?

4. Understanding and being able to deal with competing goals.

5. Understanding dynamic focus of attention. How should an agent's focus of
attention change from time to time?

6. Understanding partial or incomplete plans; debugging incorrect plarts.

3.3.3 Not Currently Viewed as Important

Finally, several research areas were identiffed that were feit to be of lesser importance to the
IRTPS effort. In some cases, this was because these problems were not felt to lie within the
IRTPS domain specifically; in others, the problems simply failed to generate any enthusiasm
within the research issues working group.

1. Learning metalevel information by induction.
2. Caching. By this we mean the study of data structures and mechanisms that could

be used to save previously computed results.

3. Metalevel reasoning applied to scheduling, to situation undeistanding, and to
probabilistic computation.

4. The application of operating systems concepts (interrupts, priorities, etc.) to the
problem of focusing attention.

5. Defining the concept of a plan.

6. Planning for goals that are partially satisfiable or temporally scoped (such as that of
maitainiag some external condition). This and the previous topic were felt to be
the domain of the planning community proper and outside the scope of IRTPS per
se.
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3.4 Concluding Remarks

The working group was aware that the background and interests of its members may not have
been fuly representative of the IRTPS community as a whole and may have introduced certain
biases into its conclusions. For example, the lack of representation of more researchers with
strong applications experience probably limited our ability to generate a comprehensive list of
the "right" questions. We were also restricted in our ability to propose paradigms because
important, non-AI disciplines were under-represented. The "Al planning" contingent, on the
other hand, was proportionately over-represented, and as a result, our discussion of research
topics tended to be biased towards issues within that paradigm. These observations about the
composition of the group are offered not to diminish the validity of our conclusions, but rather to
place them in their appropriate context.



19

4. Architectures

Leaders/editors: Paul R. Cohen, Paul Rosenbloom
Participants: Raj Dodhiawala, Bill Erikson, Les Gasser

Ted Linden, Henry Mendenhal

4.1 Introduction

The working group began with a summary by Paul Rosenbloom of some prior discussions with
Cohen and Gasser, and with three discussion questions:

1. What is an Al architecture, and specifically, an IRTPS architecture (hereafter
AIRTPS)?

2. What should be the output of research on AIRTPS?

3. Which aspects of AIRTPS need more work/are most ripe?

Each was discussed at some length, but with different degrees of consensus.

4.2 Al Architectures

We started with a discussion of what a computational architecture is, and then attempted to
specialize the definition to be an architecture for IRTPS. Rosenbloom offered four possible
definitions or senses of architecture.

I. Architecture as programming language

2. Architecture as a theory or a model

3. Architecture as a commitment to a set of design decisions

The last one is close to what we want, but does not carry the idea that an architecture must be
"complete" in some way. Thus, Rosenbloom proposed (and achieved consensus with):

4. An architecture is a "fixed structure," that provides a "flexible part" that can be
programmed.

The fixed part is immutable (if you change it, you have a different architecture) and
characteristic to the extent that it has been designed for particular kinds of tasks. (There was
anticipated disagreement on the question of whether architectures are designed for particular
tasks or are general to many tasks; see below.)

The flexible part is where task- and problem-specific knowledge resides. It is put there by
programmers, knowledge engineers, and automatic knowledge acquisition or learning
components. It includes both substantive knowledge (e.g., facts and heuristics) and control
knowledge (e.g., skeletal plans and chunks).

By definition, the fixed part of an architecture is changed only as a last resort. If you want to
change the behavior of an agent, you change its flexible part or construct it to change its own
flexible part. The key question for an AIRTPS is what should be fixed and what should be
flexible. If capabilities are in the fixed part, they are guaranteed---the architecture will always
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behave that way. This is both an asset and a liability, because these capabilities are then difficult
to modify. In contrast the flexible part allows arbitrary knowledge and methods to be used to
enable and control behavior. This leads to an inherent difficulty in predicting behavior, but
allows easy adaptation to new situations. The main time issue in the fixed part is time
boundedness of the architectural components -- without the ability to use arbitrary knowledge,
combinatorics in the the fixed part would kill you -- while the main time issue in the flexible part
is the control of combinatorics. Real-time algorithms tor different situations probably go in the
flexible part; whereas mechanisms for handling communications, interrupts, and low-level
scheduling probably go in the fixed part.

For another view of the question, "What goes in the fixed part," we asked what is the basic set
of questions that, once answered, give the specifications for an architecture. One path to this is
to start with a set of abstract criteria -- such as universality (in the Turing sense), autonomy, etc.
-- that must be achieved by any architecture. A second path is to try to get a sense of what more
detailed capabilities/mechanisms must be incorporated into a "complete" Al architecture:
memories for the storage of knowledge; capabilities for adding new information to memory
(learning) and accessing it in a timely way: perceptual and motor mechanisms for interacting
with the environment; selective mechanisms for attention, decision making, etc.; mechanisms
that enable goal-oriented behavior, exponential search, and planning (and the control of such
behavior); and mechanisms that enable the use of language. It seems worthwhile to complete
this list, especially in light of the list of requirements for AIRTPSs discussed below. This list
switches back and forth between "mechanisms for..." and "mechanisms that enable..."
because, in general, the architecture need not directly provide an entire capability. Minimally, it
must provide a set of fixed mechanisms that can be completed by the addition of appropriate
structures in the flexible part. How much of any capability is directly supported by the
architecture, versus being defined as knowledge and programs in the flexible structure, is one of
the major variations across architectures.

As architects, we should be designing the fixed parts of AIRTPSs, but, because of the ways
capabilities can be split between the fixed and flexible parts, we cannot do that without thinking
about the knowledge we expect to have in the flexible part. For example, we probably do not
want to spend all our time designing anytime algorithms, but we do want to design architectures
that will support anytime algorithms.

Having achieved a degree of consensus on the fixed/flexible view of architectures, we addressed
a few remaining general issues in architecture design and then turned to questions that were
specific to IRTPS. We noted that architectures are frequently layered, and identified three
layering topologies:

1. Layering by time constants (levels of implementation). Rosenbloom noted
(based on observations by Newell) that successive layers of SOAR have cycle
times increasing by roughly one order of magnitude. In SOAR, this layering
occurs because units of behavior at higher levels are composed from -- that is,
i m p l e m e n t e d b y _ _ m u l t i p l e b e h a v i o r s a t t h e l e v e ,l o I .,,w , . n u s. .. ..a .%

proportionately longer. Phoenix has a similar decomposition by time constants,
though it is not viewed as being layered, because there is no comparable
implementation relationship between them; Phoenix has two distinct
action-generation components, one fast and reactive, and one slower and more
contemplative. For more on layering, time constants, and the idea of time scales in
the environment, see Section 4.4.
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2. Vertical decomposition. In this, the mest common layering, the layers contain
modules that are successive in the direction of information flow from the
environment.

3. Horizontal decomposition. At each level we find complete capabilities of
increasing sophistication. The lowest levels contain the simplest sensory
processing, motor schemes, reflexes, and so on. Higher levels contain more
symbolic abilities, such as planning. Brooks, when he introduced this kind of
decomposition, called it a subsumption architecture.

An AIRTPS must make some guarantees about timeliness in its fixed part. Only the layering by
time constants addresses this explicitly, although we expect that the subsumption architecture
probably has de facto layering by time constants. What is not clear, in the subsumption
architecture, is which parts are fixed and which flexible. Whereas the lower levels of the vertical
decomposition are more basic in the sense that higher levels depend on their outputs (and thus
the timeliness guarantees), the lower levels of the subsumption architecture produce behavior
that is gated, not consumed, by the higher levels. It may be that the timeliness of each level of
competence in the subsumption architecture has to be guaranteed separately.

4.2.1 Architectures for IRTPS

The first question we considered was whether an AIRTPS needs to be a geric,._, Al architecture.
This question had many interpretations, so the authors offer these post hoc clarifications and
opinions.

Does an AIRTPS have to be general, in the sense of "built for lots of different environments,"
or specific to particular environments. Here we found no consensus. One view takes its
inspiration from the array of environments in which humans can behave effectively. The view is
that an appropriately constructed adaptive system can learn to behave well - though not
necessarily optimally -- in a wide variety of environments. The other view takes its inspiration
from biology, where the environments in which humans, or any other animal, exist are just a
fraction of the totality of all environments. The view is that some architectures are significantly
better than others in particular environments. And while it is true that humans are marvelously
well adapted to a remarkable range of environments, it is also true that humans are less well
adapted to most of those environments than their other inhabitants. Thus, if we view the Al
enterprise as building something like a human, then we try to build a general architecture. But if
we view Al as design, then we want to know how the subtle differences in environments produce
subtle differences in designs, and we eschew the search for a general design that does moderately
well despite the differences.

Another interpretation of the question was, does an AIRTPS architecture have to be complete in
the sense of displaying the range of behaviors we expect of intelligent agents, including
perception, learning, planning, and so on. Here, we seemed to have consensus that an AIRTPS
must support jese activities, although there was se ie debate about whether learning had to take
place in real time. An alternative was to have real-time performance but off-line learning.

Given what we agreed upon, that an AIRTPS should support many or all of the activities that we
find in Al architectures, the next question concerned how we, as designers, should develop
AIRTPSs. Four strategies were suggested:
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1. Modify known A[ architectures for RTPS.

2. Design AIRTPS architectures from scratch.

3. Modify known RT architectures (operating systems and languages) to be more
intelligent.

4. Combine known AI and RT architectures.

The extreme interpretations of the first two approaches are ideological poles. During the
Workshop we heard, on a several occasions, that you cannot modify Al architectures for real
time by "adding a real-time box" (Sridharan's phrase). None of us (so far as we know)
interpreted the first approach as simply adding a real-time box. Rather it would involve some
mixture, as necessary, of modifying existing mechanisms -- for example, modifying SOAR's
production matcher to eliminate the possibility of exponential match times -- and the addition of
new mechanisms. For well-developed Al architectures that are not too far from the demands of
real-time behavior, this can be a cost-effective strategy for creating an AIRTPS. The second
approach, though apparently expensive, was the most attractive to some of us, and is not
necessarily expensive in the long run. Those of us who view Al as design see, in real time
environments, new constraints on design, and new opportunities to understand how the design is
influenced by the environment. The third approach seemed promising and interesting, so we
were surprised when the "Basic Research" working group panned it. Admittedly,
understanding real-time operating systems is only scholarship, and applying RTOS concepts to
Al is just engineering, but this humble approach actually has an advantage: If you do not insist
on inventing real-time methods yourself, but are content to adopt and adapt them, then you can
spend your time building real-time systems, and testing, analyzing, and explaining why the
methods work or do not work in particular environments. The fourth approach attempts to build
as little new structure as possible, by combining a bounded, but limited, real-time architecture
with an unbounded, but general, Al architecture. Control would pass between the systems, as
determined by the demands and resources that were available.

We left the generad topic of AIRTPSs with a question that would concern us again later: How do
we decide on a set of AIR IIS capabilities? Having voiced the question we turned to our second
topic of the day.

4.3 Projected AIRTPS Research Outputs

Four products of AIRTPS seemed attainable and worthwhile:
1. Architectures for real-time problem solving

2. Evaluations of architectures for real-time problem solving

3. Methodologies for designing new AIRTPS, and for selecting among existing ones,
for given environments

Ar. Drorra-uim di

4. Pr.graTrig methodologies for specific architectures

We achieved consensus that AIRTPS research would move faster if we had some AIRTPSs to
work with, and, thus, their development was a priority. Beyond that, opinions about priorities
diverged, although the disagreements were minor and most agreed that evaluation is important.
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Les Gasser cautioned against extremism in evaluation, saying that in AI, concepts often turn out
to be useful for unforeseen reasons. Someone else said that because architectures are supposed
to cut across a lot of domains, it might be difficult to prescribe evaluation methods.

We began to enumerate evaluation criteria. These included the quality or performance of the
AIRTPS, whether the AIRTPS addresses the key real-time issues, how easy is it to use, and
whether it is an integrated architecture or a set of kludges. Many of the criteria mirrored the
"quality attributes" discussed by Sridharan: modularity, extensibility, elegance, evaluability,
real-time per'rmance. All these seem innocuous but weak criteria, and the question of how to
evaluate an architecture remains open. Moreover, the answers depend on how one views the Al
enterprise, as we mentioned earlier. Architectures are, variously, theories or models of general
cognitive mechanisms, designed artifacts for specific tasks and environments, and engineering
tools for expediting system building. One's view of Al colors one's opinions about the role of
architectures and, thus, how to evaluate them.

In sum, we agreed in general about the output of AIRTPS, but disagreed on the details. Rather
than arguing about the details, we started a broad, nonideological search for research
opportunities within IRTPS.

4.4 Research Needs and Opportunities

Like the "Basic Research" working group, we quickly generated a long list of research
opportunities. Constrained (or rather, focused) by our emphasis on architectures. We got as far
as the following incomplete list:

i. anytime algorithms

2. approximate processing

3. support for tracking the correspondence between processes (one of which is time)

4. support for rapid shifting of focus of attention

5. adaptation (short-term tuning)

6. support for computations that are known to be bounded in time, so you do not have
to reason about the time a process takes (also call,4 "design-time" engineering).

But at this point, methodological concerns took over. A word on methodology: Most of us
would rather be doing Al research than thinking about how to do it (some participants said so
explicitly), but lately we have needed to do both. Certainly, we could have generated a long,
long list of AIRTPS research and engineering projects, but the sentiment seemed to be that
completing the projects on the list would not necessarily guarantee that we understood real-time
problem solving well enough to implement it in any environment. Someone asked whether we
could exploit what we already know about Al architecture design, and this led us to ask whether
wP ruldvclu'i the ietakes thA"at had ,. .led tU architeciuw research in the past. Cohen
pressed his view that architecture design must be constrained by the environment---that different
environments necessitate different architectures. Gasser or Rosenbloom (or perhaps both) said
Cohen's was a coercive view, that an effective approach for designing general architectures was
to start the architectural design process with generalized knowledge gleaned from past
experience with a range of environments and mechanisms, and then to challenge the resulting
architecture with new environments (leading possibly to tuning of the architecture).
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With no fundamental resolution of the argument in sight, we decided to move on, and examine
an environmentally-driven strategy, consisting of: (1) generating environmental characteristics
critical to domains requiring IRTPS; (2) evaluating the state of the art, as expressed in existing
architectures, with respect to handling these characteristics; and then (3) focusing on the
characteristics where research effort would most productively be spent.

When we started generating critical environmental characteristics, something notable happened:
The first two entries were "near-instantaneous response," and "intelligent reactivity---the
system should be able to tune its reactions." Henry Mendenhall was the first to notice that these
are not characteristics of environments at all, but are characteristics of architectures, or systems
built within architectures. To at least some of us, this slip seemed paradigmatic: when asked to
describe a problem, we instead describe the solution. Chastened, we set to the task of listing
characteristics of environments that either defined or exacerbated real-time problems:

" lots of data

" low-signal-to noise ratio

" unpredictable rates at which data arrive (varying quantity of data)
* hard and soft deadlines
" time-dependent value of knowledge and actions

" spectrum of environmental predictability
" incompleteness in environmental characterization

" multiple time scales (orders of magnitude) at which responses are necessary
" combinatoric possibilities to filtered through

Most of these are self-explanatory. We did have a brief discussion of the idea of time scales.
Cohen proposed it for the list but Gasser argued strongly that time scales cannot be defined
independent of an agent, and thus scale is not strictly a characteristic of an environment. We
agreed on this definition for time scale: the average time between causal event cycles that have
value for the agent. Some cycles are very short (e.g., the time between moving into a fire and
getting burned) and some are much longer (e.g., the time between a wind shift and the
recognition of failure of a fire-fighting plan). We also suggested that, as a design strategy, it is
sometimes better to have two or more parallel components for events that happen on very
different time scales (similar to the idea of layering by time constants, above) than to have one
component that must respond to events on all the time scales.

Upon examination, Gasser's observation that time scale is not independent of architecture
applies to several other entries on the list, too. Consider predictability. When we say an event is
unpredictable, do we mean unpredictable for any conceivable agent or unpredictable for
particular agents? Typically, we mean the latter. Similarly, deadlines are not inherent in
environments, but instead are interpretations, in terms of changes in value to the agent, of events
(and coincidences of events) in an environment. Apparently, many "characteristics of
environments" are not really inherent, but are instead shorthand descriptions of problems that
particular agents face in environments.

Some people wondered why, if our concern was real time, we were bothering with issues such as
signal-to-noise ratio, unpredictable amounts of data, uncertainty of various kinds, and other
things that had no apparent relationship to IRTPS. Acknowledging this point, many of us felt
that these problems were common in IRTPS tasks and should be included in the list.
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Given the list of environmental characteristics, the next step was to list the existing architectures
that seem to offer something to IRTPS. The ones we came up with were:

" SOAR [Laird, Newell & Rosenbloom 87, Laird, Rosenbloom & Newell 86] For
architecture/system, see 1.12.

• Phoenix [Cohen er al 89, Howe, Hart & Cohen 90] For architecture/system, see 1.9.
" BB I [Hayes-Roth 85, Hayes-Roth 90b]
" RT- I [Dodhiawala et al 89] For architecture/system, see 1. 11.
" ALV [Payton 861

" Subsumption Architecture [Brooks 86]
" GAPPS [Kaelbling 88] For architecture/system, see 1.4.
" PRS [Georgeff & Lansky 87, Georgeff & Ingrand 89a] For architecture/system, see

1.10.
" DVMT [Durfee & Lesser 88, Durfee 88, Lesser & Corkill 83] For architecture/

system, see 1.2.
.RUM [Bonissone 87a]

" G2 [Wolfe 87]
" ABE/RT [Lark et a1 90] For architecture/system, see 1. 1.

We also made a list of additional architectures that were interesting and instructive, though their
relationship to IRTPS was not yet as clear as for the ones in the first list:

* THEO [Mitchell et a1 89]
* PRODIGY [Minton et at 87, Minton et at 89]

ICARUS [Langley et a! 89]

* CYC (Lenat, Prakash & Shepherd 86]

ISIS [Fox & Smith 84]
* ACT* [Anderson 88]

We then began the process of trying to analyze the architectures, with respect to how they dealt
with the environmental characteristics. We constructed a table for ABEiRT (which, for arbitrary
reasons, was the first architecture in our list) and asked how it dealt with a subset of the
environmental characteristics:

* exp -- combinatoric possibilities to be filtered through

• low s/n -- low signal-to-noise ratio

" incompletely char.env. -- the agent doca not know all the relevant information about
an environment

" S-E match (deadlines) -- the agent must monitor processes in the environment
(including the passage of time) and coordinate its activities to those processes.

* multiple scales -- some events in the environment happen "quickly" and some
"slowly" for the agent.

To each of these questions, we gave one of four answers, with two possible qualifications:
1. n -- the architecture does not support the capability.
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2. f -- there is provision for the capability in the architecture (the fixed part). f+
means it exists and is implemented, f- means it is under design.

3. v -- there is provision in the knowledge and methods encoded on top of the
architecture (the flexible part). v+ means it exists and is implemented (although
knowledge engineering may be continuing); v- means it is under design.

4. f&v -- both the fixed and flexible parts are involved.

SOAR:
exp f+v+ f: makes decisions, generates subgoals, and learns new knowledge;

v: contains knowledge of options (defines exponential), knowledge about
what decision to make (controls exponential), and knowledge on which
learning is based

low s/n n
incompletely

char.env. f+v+ uncertainty leads to subgoals in which processing (e.g., search) can be
performed to reduce the uncertainty. Also acquires more accurate
models of environment by learning from success and failure

S-E match
deadlines f-v- f: working on bounding architectural components;

v: working on time-sensitive problem solving methods
multiple scales f+ f: Starting from the bottom there is recognition, decision making,

cognitive steps, and goals. Recognition is quick and automatic
(associative, reactive, reflexive, etc.) with speed decreasing, and
deliberation increasing with height in the hierarchy.

Phoenix:
exp f+v+ skeletal planning to handle combinatorial spaces, approximate processing

to do as much search as there is time
low s/n n
incompletely

char.env. f+v+ Error recovery, handled in the same way as other actions, changes plans
and actions when the environment changes unexpectedly or is not as
expected. Reflexes handle very short term adjustments.

S-E match
deadlines f+v+ Envelopes and the timeline handle coordination.

multiple scales f+v+ Multiple components (cognitive and reflexive) for generating action at
different time scales

Table 4.1: Characterization of SOAR and Phoenix, as examples

We did not try to evaluate the quality or extent of the solution provided by the architecture, only
whether there was one, and what the specific mechanisms were that provided it. Though we
started with ABE/RT, we did not know it as well as others of the architectures, so we soon
moved on to SOAR and Phoenix, as described in Table 4-1.

Unfortunately, we ran out of time before we could continue the comparisons with other systems
and deternine which issues deserve the most research attention. However, the general strategy
seems worth pursuing. When it became apparent near the end of the day that we would not be
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able to examine more that a handful of architectures, we shifted to a strategy of listing major
classes of mechanisms that appear in some form in multiple of the existing architectures and
which appear to help with numerous of the critical environmental characteristics. The list is by
no means exhaustive, gi, en the time available, but it did contain:

Open decision cycle
At some time scale there is a cyclic decision process that is potentially open
to: (1) all of the system's goals; (2) all of the system's knowledge (including
knowledge about what to do); and (3) the input from the environment. Such
a decision process is what allows the systems to be goal-directed,
knowledge-intensive, and reactive (to both time and environmental
contingencies), as appropriate for the situation. This contrasts with more
rigid approaches in which decisions are driven primarily by plans and/or
programs, and which therefore have only limited ability to respond to
run-time contingencies. There may be more than one of these decision
cycles, especially for organizations of agents.

Error recovery Neither events nor the timing of events in the future are predictable, so
AIRTPSs must make provisions for error recovery. It is not clear whether
error recovery should be permitted if there are hard deadlines.

Prediction What will happen, and when it will happen. Although uncertain, predictions
are still necessary in IRTPS if there is to be any advanced planning. Indeed,
if we accept that the "real-time problem" is that value functions are not
monotonic over time, then predicting the maxima of these functions is
essential to successful IRTPS. Predictions can be made by projection or can
be compiled into reflexes.

Reflexes These are relatively fast sense-act loops with bounded (and closed)
computation. Given the need of an open decision cycle to bring to bear a
range of knowledge and input, such deliberative decisions are inherently
slower than fixed reactions. Reflexes enable system performance at time
scales smaller than the time required to make an open decision. Reflexes
may be engineered into a real-time system or acquired during problem
solving, either from an expert (e.g., Gruber's ASK system) or learned, as in
SOAR.

Compilation The idea here is to automatically replace unbounded computation with
functionally equivalent bounded sense-act reflexes. Chunking in SOAR is
an example. Any agent that interacts with its environment and does not do
this is wasting an opportunity, so we would expect to see it in all ARTPSs
in future.

Control reasoning Ordinarily control means "doing the right thing," but in IRTPS it means
"doing the right thing at the right time."

In addition, there was a brief discussion of meta-reasoning, but everyone seemed to mean
sorme'hig d ffen by the term (i.e., we had a representative sample of Al researchers in the
group).
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4.5 Conclusion

The architecture working group discussed a wide range of issues. Some were very pragmatic;
for example, where should we concentrate research effort in the near term, and what results can
we expect. Others went to the heart of the Al enterprise and illuminated differences in our goals
and methodologies. Although we did not agree on everything, we surely agreed that real-time
problem solving is a fundamental problem for Al because it challenges us at every level:
pragmatic, technical, theoretical and methodological. We also agreed that these discussions lay
the groundwork for a more thorough study of the space of architectures for IRTPS, including
in-depth studies of existing and novel architectures, and the relationship of these architectures to
the key isssues and environmental considerations of IRTPS.
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5. Testbeds

Leaders/edizors: Bruce D'Ambrosio, Lee Erman
Participants: Bradley Allen, Bill Baker, Ed Durfee,

Adele Howe. John Jensen, Perry McCarty, David Toms

Our working group was charged with discussing and recommending the role of a "testbed" in
IRTPS research. We began with the following questions:

1. What is a testbed?

2. Why would we want one?

3. How should we use one?

4. Is there one available which might suit our needs?

It rapidly became clear that the answers to these questions were interrelated. We all agreed that
a testbed was some kind of software platform for performing controlled, repeatable,
instrumented experiments in IRTPS. That is, we acknowledged the possibility of, but did not
spend significant time discussing, either "softer" (e.g., a paper problem definition) or "harder"
conceptions of a testbed (e.g., a physical testbed like the autonomous land vehicle).

Subsequent sections of this report will discuss each of the four items above in turn. In this
discussion we adopt the S-E (system/environment) terminology of [Rosenschein, Hayes-Roth &
Erman 90] (Appendix I1 here); this terminology is summarized in Section 2.1 of this report.

5.1 A Testbed Framework

We attempted to elucidate a framework for describing, constructing, and sharing experimental
setup (testbed) components. We identified the following components of a testbed, listed in
approximate order from lower-level to higher-level:

Platform The computing environment, including hardware, operating system, and
programming system. Presumably one would not produce a new platform
for a testbed, but the availability and familiarity of particular ones surely
influence the choice. In addition to the usual desires that accompany most
experimental AI, IRTPS work has a unique need: the ability to monitor and
manipulate finely the temporal aspects of process scheduling.

Utilities A set of basic functions useful for constructing IRTPS testbeds. We
identified at least three categories of these:

* Execution utilities -- These directly support the running of
simulations. Most notable here is a discrete event simulator.

l Experimental interface utilities -- There are three interfaces of
concern: experimenter-testbed interface, system-testbed
interface, and envir - mn-testt - .nt cx :L1LV-11
interface utilities include facilities for initiating, controlling, and
observing simulation runs. System and environment utilities
include handling test cases, logging, display support, etc.

*Analysis utilities -- Post-run support utilities for producing
summaries and analyses of logged data.
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S-E language This is a language for defining systems and environments. This language
might exist as a paper specification, providing a way to describe and
compare systems, or exist as an implementation capable of accepting such
descriptions and executing them.

Problem An environment and a set of system tasks within that environment. This
might be either a paper description or an implementation. Sample scenarios
or test cases are useful parts of this component.

Base System Knowledge
A description of the knowledge available to a system for accomplishing the
tasks described in the problem statement. It is desirable that this be as high
level as pos;ible, so as not to prejudice system design.

Behavior-Metric Mapping
This is a definition of evaluation criteria for system performance. The
behavior-metric mapping defines a relationship between system behaviors,
describable in the S-E language, and utility.

5.2 Motivation

There are really two questions buried here. The first is whether or not, and if so why, we think
an experimental methodology is appropriate. The second is whether and why we might want to
share one or more testbed components among research groups.

There was general agreement that an experimental methodology was essential: The kinds of
systems involved in IRTPS, and the measures on quality of result, are too complex to allow for
analytic derivation of many of the interesting behavioral properties of whole systems. This
immediately raises a question regarding the generalizability of experimental results. 'We believe
that careful selection of an experimental domain, and careful experiment design, can yield results
with broad applicability. Some dangers and safeguards are discussed in the section on
experimental methodology (Section 5.3).

Second, once an experimental method is adopted, sharing seems important, although sharing
might mean several things:

1. We need to share results, and this must include descriptions of the experimental
setup under which the results were obtained.

2. Researchers new to the field may wish to use existing testbed components to avoid
the expensive investment in constructing a custom experimental setup.

3. Researchers at diverse locations might wish to replicate experimental conditions
varying only certain parameters in order to obtain comparable results. One way to
do this is to use the same software.

The first motivation requires only an agreement on the communal methodology and terminology,
so that we can a1 -crie u i m 14-4 compara.le terms. The second motivation
requires a body of portable code which can be made accessible to the general community. This
body of code should be modularized in such a way that interested users can use those
components which they find useful, and ignore others. For example, a researcher investigating a
new domain might want just a utilities layer, and might wish to implement his/her own system
and environment simulations using that. An implemented S-E language on top of the utilities
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layer might enable such a researcher to define and construct new problem domains and IRTPS
systems more rapidly, and might be attractive to a researcher if the modeling language seemed
sufficiently expressive and concise. Finally, the third motivation above is best served by a
shared implementation, at least up to the problem layer.

5.3 Experimental Methodology

We refer the reader to the included report from the working group on experimental methodology.
Only a few additional comments will be made here. First, we noted earlier that there is a
potential difficulty in obtaining significant results from experiments. Experiments in a simulated
domain are of research interest only if:

1. the domain is intrinsically of interest to some community, or
2. strong arguments can be made that the domain is isomorphic to or a generalization

of a large class of real world problems, or
3. we admit that we know so little that any bit of exploration is worth doing.

Domains of the first type are likely to be of interest only to a small segment of the potential
IRTPS research community. On the other hand, it may be difficult to establish that a domain is
of type two, given our current lack of knowledge about IRTPS in general. A testbed, however,
might be helpful in validating such an hypothesis.

The consensus of the working group was that the ideal was a problem domain with as wide a
"coverage" of IRTPS issues as possible. Further, the domain simulation should permit the
researcher to adjust the "knobs" on the simulation to vary the complexity or stress along a
variety of axes to meet current experimental needs. However, most felt that it was premature to
claim that a single domain, however abstracted and generalized, could offer sufficient breadth of
coverage, achieve widespread acceptance at this stage of IRTPS research, and avoid the danger
of overlooking important issues.

There was general agreement that it would be a mistake to attempt to impose a single testbed or
domain on the field. Rather, sharable code should be made available, and researchers should be
permitted to chose from the available components, or construct their own experimental setups, as
they choose. We did feel, however, that it would be appropriate to encourage at least some
proposals in the next phase of the IRTPS initiative which included one or more of the following
elements:

* Making existing software available for distribution.

* Adopting existing testbed software from another site, and incorporating that
software into an IRTPS research program.

* Performing comparison studies within a single testbed.
We felt that these experiences would permit us to reconsider appropriate testbed methodology in
the phase four workshop.

5.4 Analysis of Two Candidates

In this section we briefly review aspects of the Phoenix ( [Cohen, Howe & Hat 90] (Appendix
IX here)) and MICE ( [Durfee & Montgomery 90] (Appendix X here)) testbeds. We chose these
two because they were presented in readings to all the participants and because our group
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included representatives from the groups developing them (Durfee for MICE and Howe for
Phoenix). We made, and make, no attempt to evaluate either of these systems. The discussion
below is organized around the testbed components identified earlier: platforms, utilities, S-E
language, problem, knowledge, and behavior-metric mapping.

Platform

We discussed platform choices generally. There seemed near universal agreement that Common
Lisp is the preferred implementation base. This bias certainly reflects the experience and
familiarity of the participants. In particular, the unspoken assumption was that we are dealing
with protoytype systems and there is a great need to build and evolve quickly, with little or no
concern for actual fielding of systems.

CLOS (Common Lisp Object System) got a clear vote as the preferred object system for new
implementations (although few people have used it as yet) and X seeming to be preferred as the
host windowing system -- both of these because they are becoming standards and hence would
support greater portability. No clear choice emerged for the Common Lisp interface to the
windowing system, probably because -there is no standard is yet emerging.

It also became clear that the lack of standardized multitasking facilities within Common Lisp
would continue to be a serious impediment to sharing code. This is particularly problematic
since the core of most testbeds seem to be some kind of discrete event simulator. The easiest and
most efficient way to implement this is using multitasking, but multitasking primitives vary
across Common Lisp and operating system implementations. However, this makes porting to
other platforms difficult, and it does not readily allow for experimenting with systems whose
target hardware architecture is different than that supported in the testbed, since the
compute-time mapping may not be linear or even functional.

There seems to be a mix of SymbolicsMI' and Unix hardware in the community. Most seemed to
feel that porting code between Symbolics and TI would not present major obstacles in most
cases, but between SymbolicsTl and Unix would be much more difficult. Phoenix was
developed on the TI Explorer. MICE development was begun on the Apollo and later moved to
TI Explorer.

Phoenix and DICE are both implemented in Common Lisp, both make minimal use of Flavors,
and each uses its machine's native windowing environment. Phoenix uses the TI multitasking
facility and makes extensive use of hooks into the scheduler to monitor and control resource
allocation and simulate the temporal aspects. (See [Lark et al 90] for another example of such a
simulation facility.) MICE does not use the TI multitasking facilities, but rather calls individual
agent programs as functions, and expects them to report the amount of time spent
problem-solving. This makes the MICE testbed itself simpler and quite portable, and also allows
for the experimenter to impose whatever accounting policies he or she wants; but it leaves to the
experimenter the chore of implermenting those accounting ,nd synchro"ization facilities and
adding the various reporting information within all the system agents, most likely with a higher
performance overhead.



33

Utilities

Both Phoenix and MICE are based on discrete event simulators (DESs). As described above, the
Phoenix simulator relies heavily on TI Explorer multitasking and directly monitors cpu time used
by a system as its measure of "cognitive time" of the system. MICE implements multitasking
explicitly, and relies on the system to report time spent. The Phoenix DES is quite separable
from the rest of Phoenix.

Both Phoenix and MICE provide some experimenter and system interface utilities. It is not clear
to what extent these facilities are generic and extractable from the domains for which Phoenix
and MICE are intended. Phoenix provides some automated logging facilities as well. Again, it
is not clear how useful these are outside the firefighting domain.

Language

With regard to the language for describing the system, both Phoenix and MICE provide only a
thin layer, not clearly distinct from the problem (see next). Each provides primitives for a spatial
environment and expects the system to function in it. For example, each requires a notion of the
location of each agent.

To configure an experiment in Phoenix, the developer defines which agents are present and
selects their capabilities. The definition of capabilities (sensors, effectors, reflexes, and the
cognitive components) is expressed at a lower level. Defining these is currently an art form, and
the language used for this, which includes methods, mixins, Lisp code, and other declarations, is
constantly evolving. This language is currently implemented within their custom-built frame
language, but could be reimplemented easily in CLOS or other suitable. tools, if desired.

For MICE, the developer defines the behavior of agents in "free form," providing operations to
implement concepts such as location, orientation, sensors, movement, "linking," and coliding.

Both MICE and Phoenix "embed" the system in the environment, rather than modeling a totally
symmetric hLteraction in which the environment would also be implemented as one or more
agents. The feasibility and desirability of a symmetric representation and implementation are
open questions. In both testbeds, then, the system interface provides access to both the utilities
and the environment.

Problem

Phoenix presumes the firefighting problem. Specific scenarios within this problem domain are
available and others can be defined by the experimenter.

MICE makes no explicit commitment to a specific problem. But it does assume that two
dimensionality is an important aspect of the environment, which mediates interactions between
the system and the environment.

The Phoenix firefighting problem and the generic MICE pursuit problems are similar in that they
deal with two-dimensional simulated worlds and they treat time rather discretely. One
participant has looked at applying a discrete event sumulator working in a mapped environment



34

to process monitoring tasks, and found difficulties. In particular, he found the need to replace
the map by some data-oriented structures.

Both of these problems are also relatively simple, as contrasted, say, with the Pilot's Associate
problem [Smith & Broadwell 88]. A worthy goal would be to have an e. coli problem -- one
which has enough complexity to test the important ideas, but simple enough to permit relatively
easy experimentation. We do not know enough yet to characterize such a problem for LRTPS,
and indeed both the Phoenix and MICE efforts are attempting to evolve their problem domains in
response to better understanding of those characteristics. See Section 3 for more discussion of
related issues.

Kno ,ledge

Much of the Phoenix agent knowledge was drawn from a text on firefighting policy. Phoenix
represents some of this knowledge explicitly in the declarative plan libraries which the agents
use.

MICE does not as yet have extensive development of any one specific problem domain, so
discussion of available knowledge is inappropriate. Any such knowledge currently is
implemented as straight Common Lisp code.

Behavior-Metric Mapping

Little has yet been done in either Phoenix or MICE to map from behavior to utility criteria. The
Phoenix effort is just beginning to address this.

5.5 Summary

In summary, we came to the following conclusions:

" An experimental methodology is both desirable and possible for IRTPS.

" Establishing a common framework for discussing and sharing testbed components is
important, for result sharing, reducing new research group startup costs, and
enabling "distributed experimentation."

" An attempt to impose a single common testbed would be both inappropriate and
doomed to failure. Rather, researchers should see the desirability of making use of
common methodologies, tools, and problems. However, funders should directly
support the creation of some testbed software, and should encourage its off-site
reuse. This encouragement could take the form of evaluating more positively
proposals which include offers to share testbed components as well as those which
propose to adopt existing components.
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raise the probability that an appropriate order of strategies will be applied to a problem instance.

(Baum et al 89] Kaiser, K. L. Baum, D. Blevins & V. Jagannathan. Adapting the Blackboard Model for Cockpit
Information Management. Blackboard Architectures and Applications. Academic Press, 1989, pages 481-500,
Chapter 2 1note="ThispaperdescribesthePilot/Vehicleinterfaceissuesincombataircraft.

(Baum, Jagannathan & Dodhiawala 891
Baum, L. S., V. Jagannathan & R. T. Dodhiawala. The Erasmus System. Blackboard

Architectures and Applications. Academic Press, 1989. pages 347-370. This chapter describes the Erasmus
blackboard architecture and discusses the advantages of configurability.

[Boddy & Dean 891
Boddy, M. & T. Dean. Solving Time-Dependent Planning Problems. In Proc. Inter. Joint Conf.

on Artificial Intelligence. Detroit, MI, August, 1989. A discussion of limitations in classic Al planning techniques
and of the application of flexible reasoning strategies, called "anytime algorithms," to the problem of planning under
limitations in resources. Article also includes a description about a research direction focused on the application of
decision theory to control reasoning.

[Bonissone 87a] Bonissone, P. P. Summarizing and Propagating Uncertain Information with Triangular Norms.
Inter. Journal of Approximate Reasoning 1:77-101, 1987. Describes methods used in the RUM system, developed
at GE's Corporate R&D center.

(Bonissone 87b] Bonissone, P. & K. Decker. RUM: A Layered Architecture for Reasoning with Uncertainty. In
Proc. Inter. Joint Conf. on Artificial Intelligence. 1987.

(Bratman 87] Bratman, M. Intention, Plans, and Practical Reason. Harvard Univ. Press, 1987.

[Bratman, Israel & Pollack 88]
Bratman, M. E., D. J. Israel & M. E. Pollack. Plans and Resource-Bounded Practical Reasoning.

Computational Intelligence 4(4):349-355, 1988. This paper presents a high-level specification of the practical-
reasoning component of an architecture for a resource-bounded agent. This architecture allows for means-end
reasoning, for the weighing of competing alternatives, and for interactions between these two forms of reasoning --
and it does so in a way that addresses the problem of resource boundedness. A major role of the agent's plans in this
architecture is to constrain the amount of further practical reasoning needed.

[Brooks 86] Brooks, R. A. A Robust Layered Control System for a Mobile Robot. IEEEJournal of Robotics
and Automation RA-2(l):14-23, 1986.

[Brooks 87] Brooks, R. Planning Is Just a Way of Avoiding Figuring Out What to Do Next. Technical Report
Working Paper 303, M.I.T. Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1987. A
discussion of the fundamental goals of planning. Discussion directs research beyond complex deliberative
machinery, and towards more tractable reactive reasoning systems.

(Browne et a 90] Browne, J. C., E. A. Emerson, M. Gouda, D. Miranker, A. K. Mok & L. Rosier. Bounded-Time
Fault-Tolerant Rule-Based Systems. In Goddard Conf. on Space Applications of Artificial Intelligence. 1990. (to
appear).

(Browne, Chenk & Mok 90]
Browne, J. C., A. Cheng & A. K. Mok. Computer-Aided Design of Real-Time Rule-Based

Decision Systems. In IEEE Trans. on Software Engineering. 1990. (to appear).

[Chavez & Cooper 88]
Chavez, R. M. & G. F. Cooper. A Fully-Polynomial Randomized Approximation Scheme for the

Bayesian Inferencing Problem. Knowledge Systems Laboratory Technical Report 88-72, October, 1988. A
discussion of work on the analysis of a simulation approach to performing the probabilistic inference problem. The
method gives a worse-case analysis of inference as a function of a variety of parameters from the probability modeL

(Chen 851 Chen, D. Shallow Planning and Recovery Planning Based on the Vertical Decomposition of the
Flight Domain. In Proc. Inter. Joint Conf. on Artificial Intelligence, pages 1064-1066. 1985. Design for a
hierarchical aircraft controller, with horizontal layers for route planning, approach planning, and flight.
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[Cohen 89] Cohen, P. R. Discovering Functional Relationships that Model Al Programs. 1989. This paper
presents a view of Al that supports prediction, generalization, and evaluation of hypotheses; and task analysis and
design. This view characterizes Al systems in terms of their architectures, environments, and behaviors: and seeks
general rules that justify and explain why agents should be designed one way rather than another, given the
environments in which they operate. These rules call upon functional relationships to justify architectural decisions.
In overview, we begin with five methodological problems that necessitate a change in the way we do Al research.
One conclusion is that we build systems without clearly understanding why they work (or don't work). I sketch a
solution to this problem in Section 3, in which I propose to analyze intelligent agents in terms of their architectures,
behaviors, and environments. A pervasive theme of this document is that we can discover functional relationships
between agents' architectures and their behaviors, which allow us to systematically design agents to behave as
desired i particular environments. This is in sharp contrast to the current practice of designing Al systems "as best
we can," without any analysis of why they work or don't work. Section 4 is a brief survey of how other behavioral
sciences predict and explain behavior and introduces some familiar examples of functional relationships. Section 5
shows how functional relationships facilitate the design and analysis of Al systems. One example shows how we
can apply the theory of signal detection to the task of designing a plan-selection mechanism.

(Cohen & Day 88]P. R. Cohen & D. S. Day. The Centrality of Autonomous Agents in Theories of Action Under
Uncertainty. Inter Journal for Approximate Reasoning, 1988. In this paper we discuss a class of tasks in which to
study planning under uncertainty. We analyze the interaction between autonomous agents and uncertain
environments, and review the Artificial Intelligence literature on planning from this perspective. Case studies from
our own research on medicine and controlling simulated forest fires are presented to illustrate issues in planning
under uncertainty, and methods for studying these issues.

[Cohen & Howe 881
P. R. Cohen & A. E. Howe. How Evaluation Guides (Al Research. I Al Magazine 9(4):35-43,

1988. Evaluation should be a mechanism of progress both within and across Al research projects. For the
individual, evaluation can tell us how and why our methods and programs work, and so tell us how our research
should proceed. For the community, evaluation expedites understanding of available methods and so their
integration into further research. In this paper, we present a five stage model of Al research and describe guidelines
for evaluation that are appropriate for each stage. These guidelines, in the form of evaluation criteria and
techrques, suggest how to perform evaluation. We conclude with a set of recommendations that suggest how to
encourage evaluation of Al research.

[Cohen & Howe 89]
P. R. Cohen & A. Howe. Toward Al Research Methodology: Three Case Studies in Evaluation.

IEEE Trans. on Systems, Man and Cybernetics 19(3):634-646, May/June, 1989. We describe the roles of evaluation
in empirical Al research -- in an idealized cyclic model -- and in the context of three case studies. The case studies
illustrate pitfalls in evaluation and the contributions of evaluation at all stages of the research cycle. We contrast
evaluation methods with those of the behavioral sciences and conclude that Al must define and refine its own
methods. To this end we describe several experiment "schemas" and many specific evaluation criteria; and we
offer recommendations that we hope will encourage the development and practice of evaluation methods in Al.

[Cohen et al 891 P. R. Cohen. M. L. Greenberg, D. M. Hart & A. E. Howe. Trial by Fire: Understa.ding the
Design Requirements for Agents in Complex Environments. AlMagazine 10(3):34-48, Fall, 1989. For
architecture/system, see 1.9. This article describes the underlying methodology and illustrates the architecture and
behavior of Phoenix.

[Cohen, DeLisio & Hart 89]
P. R. Cohen, J. L. DeUsio & D. M. Hart. A Declarative Representation of Control Knowledge.

IEEE Trans. on Systems, Man and Cybernetics 19(3):546-557, May/June, 1989. We describe an explicit
representation of control called strategy frames. The control of several well-known expert systems can be described
in terms of strategy frames, although their control is actually encoded in an interpreter. One advantage of strategy
frames is that complex control strategies emerge from their interaction, so complex interpreters are not necessary.
We illustrate this idea in the context of a process control problem.

(Cohen, 14o-e & Ha.t 90]
Cohen, P. R., A. E. Howe & D. M. Hart. Intelligent Real-Time Problem Solving: Issues and

Examples. In Intelligent Real-Time Problem Solving- Workshop Report. Cimflex Teknowledge Corp., January,
1990.
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(Cooper, Horvitz & Heckerman 88]
Cooper, G. F., E. J. Horvitz & D. E. Heckerman. A Modelfor Temporal Probabilistic Reasoning.

Technical Report KSL-88-30, Stanford University, Knowledge Systems Laboratory, Stanford, CA, April, 1988. A
discussion of the problem of temporal reasoning under uncertainty. First the general problem of uncertain reasoning
through time is introduced. After, assumptions that reduce the complexity of the analysis are presented. The notion
of general and stereotypical temporal functions are introduced. Following the exposition of a theory for combining
uncertain beliefs over time, the paper presents work on an implementation of the techniques. System output is
included in the discussion.

[D'Ambrosio 88] D'Ambrosio, B. Process, Structure, and Modularity in Reasoning with Uncertainty. In
Proceedings of Fourth Workshop on Uncertainty in Artificial Intelligence. AAAI. Minneapolis, MN, July, 1988. A
discussion of the importance of considering details of the structure and use of the probabilistic model in reasoning
under uncertainty.

[Dean 89] Dean, T. On the Value of Goals. In Tennenberg, J., J. Weber & J. Allen (editors), Proceedings
from the Rochester Planning Workshop: From Formal Systems to Practical Systems, pages 129-140. AAAI,
Rochester, 1989. An interesting discussion of the application of decision theory to planning. Discussion examines
the assignment of utility to goals in planning systems.

[Dean 90] Dean, T. Intelligent Real-Time Problem Solving Workshop. In Intelligent Real-Time Problem
Solving: Workshop Report. Cimflex Teknowledge Corp., January, 1990.

[Dodhiawala 891 Dodhiawala, R. T. Foreword to section on Blackboard Systems in Real-Time Problem-Solving.
Blackboard Architectures and Applications. Academic Press, Boston. 1989. This article discusses ways in which a
blackboard architecture may be extended to-respond to real-time problem-solving. It discusses essential aspects of
related work.

[Dodhiawala er al 891
Dodhiawala, R. T., N. S. Sridharan, P. Raulefs. & C. Pickering. Real-Time Al Systems: A

Definition and an Architecture. In Proc. Inter. Joint Conf. on Artificial Intelligence, pages 256-261. Detroit, MI,
1989. This paper gives a definition of real-Lime in terms of four aspects: speed of proccssing, responsiveness to
incoming events, timeliness in meeting deadlines, and graceful adaptation to adapt to changing workload. A
knowledge processing architecture, RT-1, is presented. RT-I has features that address the real-time aspects along
with performance metrics and measures to evaluate the architecture. Related work is discussed.

(Dodhiawala, Sridharan & Pickering 89]
Dodhiawala, R. T., Sridharan, N. S., Pickering, C. A Real-Time Blackboard Architecture.

Blackboard Architectures and Applications. Academic Press, Boston, 1989, Chapter 10. This is an extension of
[Dodhiawala et al 89]. The added portions include a section on hardware-software studies which led the authors to
derive several solution candidates. These call for a knowledge-processing approach to complex real-time systems.

[Doyle 88] Doyle, J. Artificial Intelligence and Rational Self-Government. Technical Report CS-88-124,
Carnegie Mellon University, 1988. A discussion of a distributed approach to rationality based on the fair,
democratic interaction among independent processes. Paper describes a language for reasoning about important
predicates and functions in a distributed rational system.

(Drummond 85] Drummond, M. Refining and Extending the Procedural Net. In Proc. Inter. Joint Conf. on
Artificial Intelligence. 1985. A definition of a plan structure and temporal projection mechanism that can describe
iteration with non-deterministic termination. The representation is a generalization of previous work on partially
ordered plans, drawing on work in Petri net theory.

[Drummond 861 Drummond, M. A Representation of Action and Belief for Automatic Planning Systems.
Reasoning About Actions and Plans. Morgan Kauffinan, 1986, pages 189-211. A representation and analysis
mechanism is given for iterative and disjunctive plans. The definition of operator application that is given as part of
the analysis mechanism is the first reported in the literature that uses the "consistency maintenance" approach
(since popularized by Ginsberg and Smith). There are some relationships between temporal projection and truth
maintenance system "groundedness" (in te e.-- of Doyle) tat are mentoned in this paper, the details are worked
out in one of the references.
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[Drunnimond 89] M. Drummond. Situated Control Rules. In Proceedings of Conf. on Principles of Knowledge
Representation and Reasoning. Toronto, 1989. Systems based on classical planning wisdom must produce a plan
before they can take action. The execution component of such a system behaves like a CPU executing a progam: a
CPU needs a program before it can do anything: similarly, the execution component of a system based on classical
planning needs a plan in order to take action. This paper liberates the execution component of a system from
dependence on a plan by interpreting the set of operators given to a system in two different ways: first, as a
non-deterministic control program to run: and second, as a "causal theory" to push through temporal projection.
The output from temporal projection informs the execution component. As a result, action can be taken when
planning hasn't been done. Increased planning simply provides increased behavioral robustness.

[Durfee 88] Durfee, E. H. Coordination of Distributed Problem Solvers. Kluwer Academic Publishers, 1988.
Describes an approach for coordinating multiple problem solvers, where the problem solvers must reason about the
timing of their interactons. Includes details of the incremental planning approach and how blackboard-based
problem solvers can use this approach to solve problems and share results in a timely fashion.

[Durfee & Lesser 87]
Durfee, E. H. & V. R. Lesser. Planning to Meet Deadlines in a Blackboard-based Problem

Solver. In Stankovic, J. & K. Ramamntham (editor), Tutorial on Hard Real-Time Systems. pages 595-608. IEEE
Computer Society Press, 1987. Overview of techniques for making predictions in a blackboard system that is
performing repetitive problem solving, and for using these predictions to meet deadlines. Implementation and
evaluation in the DVMT simulator for monitoring vehicle movements.

[Durfee & Lesser 881
Durfee, E. H. & V. R. Lesser. Incremental Planning to Control a Time-Constrained, Blackboard-

Based Problem Solver. IEEE Trans. on Aerospace and Electronic Systems 24(5):647-662, September, 1988.
Describes incremental planning techniques for blackboard control and shows how they have been extended to
incorporate rough predictions about the time needed to generate a solution. Describes how the planner uses these
predictions to develop lower quality solutions within time constraints, where the user supplies preferences about
how to trade qualty for time.

[Durfee & Montgomery 90]
Durfee, D. H. & T. A. Montgomery. MICE: A Flexible Testbed for Intelligent*Coordination

Experiments. In Intelligent Real-Time Problem Solving: Workshop Report. Cimflex Teknowledge Corp., January,
1990.

[Fehling 881 Fehling, M. R. & J. S. Breese. A Computational Modelfor the Decision-Theoretic Control of
Problem Solving under Uncertainty. Technical Report Rockwell Technical Report 837-88-5, Rockwell
International Science Center, April, 1988. An example analysis of the decision.theoretic control of robot planning
that considers base-level as well as meta-level considerations. The article considers issues of decision making under
limitations in knowledge and computational time.

[Fehling, Altman & Wilber 89]
Fehling, M. R., A. M. Altman & B. M. Wilber. The Heuristic Control Virtual Machine: An

Implementation of the Schemer Computational Model of Reflective, Real-Time Problem-Solving. Blackboard
Architectures and Applications. Academic Press, Boston, 1989, Chapter 9. This paper presents real-time issues
related to resource-bounded problem-solving, emphasizing the need for control reasoning to balance the constant
tension between achieving goals and increasing belief in information. A computational model is discussed, along
with the Schemer architecture. Several incarnations of Schemer exist -- Heuristic Control Virtual Machine and
Schemer-a1.

[Firby 87] Firby, R. J. An Investigation into Reactive Planning in Complex Domains. In Proc. National
Conf. on Artificial Intelligence, pages 202ff. 1987.

[Firby 891 Firby, R. J. Adaptive Execution in Complex Dynamic Worlds. Ph.D. thesis RR-672, Dept of
Computer Science, Yale University, 1989.

[Fox & Smith 84] Fox, M. S. & S. F. Smith. ISIS -- A Knowledge-Based System for Factory, Schedulg. rp-."
Sysrems 1(2):25-49, 1984. Developed at CMU's Robotics Institute.

[Franklin & Gabrielian 89]
Franklin, M. K. & A. Gabrielian. A Transformational Method for Verifying Safety Properties in

Real-Time Systems. In IEEE 10th Real-Time Systems Symposium. Santa Monica, CA,.December, 1989. Provides a
transformational approach for verifying that an Hierarichal State Machine (HMS) specification of a real-time system
does not violate logical or temporal safety conditions. IMS machines, introduced in [Gabnelian & Franklin 881,
provides a formal approach for specifying causal models of real-time systems.
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[Gabnelian & Franklin 881
Gabrielian, A. & M. K. Franklin. State-Based Specification of Complex Real-Time Systems, In

IEEE 9th Real-Time Systems Symposium, pages 2-11. Hunstville, AL, December, 1988. Introduces the notion of
Flierarchical Multi-State (HMS) abstract machine as a formal mechanism for defining real-time systems. HMS
machines can be used for causal modeling and planning for dynamic environments, where deadlines have been
imposed on objectives. Main benefits of HMS machines are (1) orders of magnitude reduction in the number of
states, (2) formal verification methods and (3) reusability of models as requirements change.

[Gabrielian & Franklin 90]
Gabrielian. A. & M. K. Franklin. Multi-Level Specification and Verification of Real-Time

Software. In 12th Inter. Conf on Software Engineering. Nice, France, March, 1990. Presents a fundamentally new
approach to multi-level specification of real-tine systems using HMS machines [Gabnelian & Franklin 88] that
offers a significant degree of reusability and modularity of specifications. As a demonstration of the application of
H-v-S machines to scheduling with deadlines, this paper provides a method for automatically denying schedules for
plans to meet a complex set of logical and temporal constraints.

[Gabrielian & Suckney 87]
Gabnelian. A. & M. E. Stickney. Hierarchical Representation of Causal Knowledge. In Proc.

WESTEX-87 IEEE Elrpert Systems Conf. pages 82-89. June, 1987. Presents an early formalization of specification
methods of [Gabrielian & Franklin 88, Franklin & Gabrielian 89, Gabnelian & Franklin 90] for causal modeling of
systems with temporal constraints. Discusses preliminary approaches for application of such causal models to
planning and situation understanding.

[Gallanti et a! 85] Gallanti. M., G. Guida, L. Spampinato & A. Stefinini. Representing Procedural Knowledge in
Expert Systems: An Application to Process Control. In Proc. Inter. Joint Conf. on Artificial Intelligence, pages
3,15ff. 1985.

(Georgeff 88] Georgeff, M. P. An Embedded Reasoning and Planning System. In Advanced Proceedings from
the Rochester Planning Workshop, pages 79-101. University of Rochester Computer Science Dept., Rochester, NY,
October, 1988. The paper describes the need for embedded systems that can reason and plan in real-tnie. The
author presents Procedural Feasorung System (PRS) as a candidate architecture to meet this need. PRS consists of a
database of current beliefs, outstanding goals, knowledge areas which embody plans, intention structure which
points to active knowledge areas, and an inference mechanism which manipulates these structures. Meta-level
knowledge areas support goal management as well as guaranteeing reactivity. These and other features of PRS are
described in the context of a diagnostics application caled Reaction Control System.

[Georgeff & Ingrand 89a]
Georgeff. M. P. and F. F. Ingrand. Monitoring and Control of Spacecraft Systems Using

Procedural Reasoning. In Proceedings of the Space Operations-Automation and Robotics Workshop. Houston.
Texas, 1989 This paper examines the application of SRI's Procedural Reasoning system (PRS) to the handling of
malfunctions in the Reaction Control System (RCS) of NASA's space shuttle. Using various RCS malfunctions as
examples -- such as sensor faults, leaking components, multiple alarms, and regulator and jet failures -- it is shown
how PRS manages to combine both goal-directed reasoning and the ability to react rapidly to unanticipated changes
in its environments.

[Georgeff & Ingrand 89bJ
Georgef, M. P. and F. F. Ingrand. Decision-Making in an Embedded Reasoning System. In

Proc Inter Joint Conf. on Artificial Intelligence. Detroit, Michigan, 1989. This paper describes some of the
features of the Procedural Reasoning System (PRS) that enable it to operate efficiently in continuously changing
environments. PRS is able both to perform goal-directed reasoning and to react rapidly to unanticipated changes in
its environment. It includes meta-level reasoning capabilities, which can be tailored by the user, employing the
same language used to describe domain-level reasoning. It has been applied to various tasks, including malfunction
handling on the NASA space shuttle, threat assessment, and the control of an autonomous robot.

(Georgeff & Lansky 87]
Georgeff, M. P. & A. L. Lansky. Reactive Reasoning and Planning. In Proc. National Conf. on

Artificial intelligence, pages 677-682. Seattle, WA, 1987.

(Ginsberg 88] Ginsberg, M. Multivalued Logics: A Uniform Approach to Inference in Al. Computational
Intelligence 4:265-316, 1988.

[Ginsberg 89] Ginsberg, M. The Computational Value of Nonmonotonic Reasoning. December,
1989. Unpublished Stanford memo, available from the author.



(Ginsberg 90a] Ginsberg, M. Bilattices and Modal Operators. In 3rd Conf. on Theoretical Aspects of Reasoning
about Knowledge. Asilomar, CA, Spring (to appear), 1990. This paper presents a formalization of modal operators
that appears to admit an anytime implementation. The implementation is not continuous or monotonic in the sense
discussed at the IRTPS workshop, but does converge to the correct answer in the large runtime limit. The paper
depends on previous work in [Ginsberg 88]. For architecture/system, see 1.7..

[Ginsberg 90b] Ginsberg, M. Negative Subgoals with Free Variables. Journal of Logic Programming . (in
preparation -- preprints available from the author), 1990. This and [Ginsberg 89] suggest that the real use of
nonmonotonic reasoning is to focus the inference process in a way that allows an agent to "jump" to a conclusion
and modify it later if need be. The other paper paper is informal; this one is formal.

[Giralt, Chatila & Vaisset 84]
Giralt, G., R. Chatila, & M. Vaisset. An Integrated Navigation and Motion Control System for

Autonomous Multisensory Mobile Robots. In Robotics Research, the First Inter. Symposium, pages 191-214. MIT
Press, 1984.

[Griesmer et al 841
Griesmer, J. et al. YES/MVS: A Continuous Real Time Expert System. In Proc. National Conf.

on Artificial Intelligence. pages 130ff. 1984.

[Hall et al 89] Hall, D., A. M. Agogino, W. Greiman, D. Olson, R. Paasch, A. Padagonkar & E. Schroeder. A
Fault Location System for a Time of Flight Detector Array. Technical Report 2748 2, Lawrence Berkeley Lab.,
1989. To appear in Computing in High Energy Physics, 1989. Describes diagnostic reasoning system for a 10,000
sensor array for the LBL fast particle physics lab. Important real-time problem solving issues are addressed. The
application is particulary difficult because of the complexity and sensory input involved.

[Hanson & Mayer 881
Hansson, D. & A. Mayer. The Optimality of Satisficing Solutions. In Proceedings of Fourth

Workshop on Uncertainty in Artificial Intelligence. AAAI, Minneapolis, MN, July, 1988. An early discussion of
the control of search with decision theory. The discussion highlights tradeoffs in the problem of search. The
8-puzzle is used as an example to elucidate the possibility of controlling search with decision theory. Empirical
results of work on different dimensions of search are included.

[Harel et al 88] Harel, D. et al. STATEMATE: A Working Environment for the Development of Complex
Reactive Systems, In Proc. 10th IEEE Conf on Software Engineenng. 1988.

[Hartman & Tenenberg 87]
Hartman, L. & J. Tenenberg. Performance in Practical Problem Solving. In Proc. Inter. Joint

Conf, on Artificial Intelligence. 1987. Defines a cost metric that allows the comparison of alternative problem
solving strategies under different assumptions about the statistical properties of the problem domain.

[Hayes-Roth 85] Hayes-Roth, B. A Blackboard Architecture for Control. Artificial Intelligence 26(2):251-321,
July, 1985. Describes the BBI architecture.

[Hayes-Roth 89] Hayes-Roth, B. Intelligent Monitoring and Control. In Proc. Inter. Joint Conf on Artificial
Intelligence, pages 243-249. Detroit, MI, 1989. This paper describes how perception, cognition, and action must be
integrated for reasoning about complex, real-time systems. The ideas are explored by extending the BBI control
architecture, and using the new architecture for a surgical intensive care patient monitoring system called Guardian.
The primary extension to BBI architecture is to introduce multiprocessing capability so as to perform sensing and
perception/cognition tasks in parallel.

[Hayes-Roth 90a] Hayes-Roth B. Research on Intelligent Agents. In Intelligent Real-Time Problem Solving:
Workshop Report. Cimflex Teknowledge Corp., January, 1990.

[Hayes-Roth 90b] Hayes-Roth, B. Architectural Foundations for Real-Time Performance in Intelligent Agents.
Real-Time Systems 2(1/2), May, 1990. (in press). This includes a description of an architecture for IRTPS based on
the BBI/BB* blackboard architecture.

[Heckerman & Horvitz 87]
Heckerman, D. E. & E. J. Horvitz. On the expressiveness of rule-based systems for reasoning

under uncertainty. In Proc. National Conf, on Artificial Intelligence, pages 121-126. Seattle, Washington, July,
1987. An analysis of pragmatic issues surrounding the efficiency of the production-rule versus the belief-network
representation approaches for the problem of performing diagnosis under the general situation of uncertainty. The
production-rule representation is shown to be limited in its ability to express efficiently important independencies
and patterns of independence among distinctions in a knowledge base.
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[Heckerman, Breese & Horvitz 891
Heckerman, D. E., J. S. Breese & E. J. Horvitz. The Compilation of Decision Models. In

Proceedings of Fifth Workshop on Uncertainty in Artificial Intelligence. AAAI, Windsor, Canada, August, 1989. A
discussion of the optimal compilation of a decision problem, given (I) the stakes of a decision problem, (2) the cost
incurred with computational delay, (3) a characterization of possible observations by a distribution over evidence
weights, and (4) the cost of memory. The foundations of decision-theoretic compilation are introduced.
Design-time selection rules for configuring optimal sets of rules are described. Analyses for different prototypical
distributions of evidence weights are presented. Finally, the paper discusses issues surrounding the relaxation of
assumptions. and highlights the usefulness of developing mixed compiled-compute strategies.

[Heckerman, Horvitz & Nathwani 891
Heckerman, D. E.. E. J. Horvitz & B.N. Nathwani. Toward Normative Expert Systems: The

Pathfinder Project. Computers and Biomedical Research , (in press), 1989. A detailed review of the Pathfinder
project to construct large probabilistic knowledge bases that contain generalizea dependencies, and to perform
inference tractably within these large models. A highlight of this work centers on the use of probabilistic similarity
networks, a theoretically sound representation for focusing the attention of knowledge representation.

(Heckerman, Ng & Nathwani 89]
Horvitz, E. J.. D. E. Heckerman, K. C. Ng & B. N. Nathwani. Heuristic Abstraction in the

Decision-Theoretic (Pathfinder) System. In Proceedings of the 13th Symposium on Computer Applications in
Medical Care, pages 178-182. Baltimore, MD, October, 1989. Describes the graceful modulation of abstraction as
a useful class of partial computation. Abstraction of decision model is used to gain clarity and greater tractability.
A difficult decision problem is decomposed into a hierarchy of goals at successively greater detail. In particular, the
paper reviews the complexity of complete value-of-information analyses in the Pathfinder reasoning system, and
show how the the evidence-gathering formalism can be applied to abstractions. The use of multiple abstraction
hierarchies to control the focus of attention of a decision-theoretic analysis is introduced. Alternative hierarchies
allow a problem to be probed and solved from different perspectives. Details on the implementation and interface
associated with abstraction modulation in the Pathfinder system are presented.

[Hendler & Sanborn 87]
Hendler, J. & J. Sanborn. A Model of Reaction for Planning in Dynamic Environments. In Proc

DARPA Knowledge-Based Planning Workshop, Austin, TX, pages 24.1-24.10. 1987.

tHerman & Albus 87)
Herman, M. & J. Albus. Real-Time Hierarchical Planning for Multiple Mobile Robots. In Proc

DARPA Knowledge Based Planning Workshop, Austin TX, pages 22-1ff. 1987.

[Hewett & Hayes-Roth 88]
Hewett, M. & B. Hayes-Roth. Real-Time I/O in Knowledge-Based Systems. In Proceedings of

the Second Blackboard Workshop, pages 107-118. AAAI, St. Paul, MN, August, 1988. Also published in
Blackboard Architectures and Applications, Chapter 12, Eds. V. Jagannathan, R. T. Dodhiawala, & L. Baum,
Academic Press. 1989. The authors present alternative extensions for asynchronous communication in the BBI
architecture. Each potential extension is evaluated in terms of several parameters. The implementation, along with
a performance evaluation of the selected approach is presented.

[Horvitz 86a] Horvitz, E. 1. Toward a Science of Expert Systems. In T. J. Boardman (editor), Proceedings of
the 18th Symposium on the Interface of Computer Science and Statistics, pages 45-52. American Statistical
Association, Ft. Collins, Colorado, March, 1986. Also available as Technical Report KSL-86-75, Knowledge
Systems Laboratory: Stanford University, March 1986. Examines the promise of reasoning about computational
and engineering tradeoffs to optimize the value of reasoning systems. The paper highlights the value of
approximations for representations and computation that exhibit graceful degradation of performance, with
decreasing allocation of engineering or reasoning resources. Formal research on the graceful degradation of
value-of-information computation for use in the Pathfinder expert system is presented. This approach is based on
reformulating information theory to handle group of diseases, versus single diseases, under consideration in a
medical expert system.

[Horvitz 86b] Horvitz, E.J. Reasoning about Inference Tradeoffs in a World of Bounded Resources. Technical
Report KSL-86-55, Stanford University, Knowledge Systems Laboratory, Stanford, CA, September, 1986. An early
description of the use of multiattribute decision theory to control partial-computation strategies. The extensions of
decision theory to include metareasoning about base-level inference are highlighted. A set of bounded-resource
desiderata are enumerated for stategies that are used to solve problems under situations of varying or uncertain
resource constraints.
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(Horvitz 87aJ E.J. Horvitz. Reasoning about Beliefs and Actions under Computational Resource Constraints.
In Proceedings of Third Workshop on Uncertainty in Artificial Intelligence. AAAI, Seattle, Washington, July, 1987.
Also in L. Kanal, T. Levitt & J. Lemmer, (ed.) Uncertainty in Artificial Intelligence 3, Elsevier, pps. 301-324. Early
discussion of problems with traditonal conception of rationality from decision science, as well as with heuristic
solutions in Al research. Both naive decision-theoretc approaches and heuristic, satisficing approaches are viewed
as suboptimal and costly. The paper introduces the decision-theoretic control of problem solving as a general
framework for attacking the problem of ideal bounded rationality. Several problems, such as ideal compilation and
metareasoning tractability are discussedz relevant literature from the decision sciences is highlighted. Concept of
"bounded optimality," the optimization of the expected value of a reasoner, under constraints in its reasoning
resources and constitution, is presented. Finally, properties desired of partial-computation strategies for reasoning
under bounded resources are outlined. Properties of flexible computation include continuity, monotorucity, and
convergence. These properties of flexibility are implicit in strategies that later came to be called "anytime
algorithms.".

(Horvitz 87b] Horvitz, E. J. PRoblem-Solving Design: Reasoning about Computational Value, Tradeoffs, and
Resources. In Proceedings of the NASA Artificial Intelligence Forum, pages 26-43. National Aeronautics and
Space Administration, November. 1987. Also available as Technical Report KSL-87-64, Knowledge Systems
Laboratory, Stanford University, October 1987. Discussion of the decision-theoretic design of problem solving
versus real-time decision-theoretic control. Control reasoning is divided up into "strategic" and "structural" control;
control based on determining a best order to apply well-defined computational policies or "strategies," is
distinguished from control centering on the manipulation of the microstructure of an algorithm, to optimize its
performance in some context. Finally, the paper discusses the feasibility of developing a formal science of liuted
rationality, by developing tools for design and control of computation within the framework of decision theory.
Problems in reasomng under complexity and constraints of medicine are described.

(Horvitz 88] Horvitz. E.J. Reasoning Under Varying and Uncertain Resource Constraints. In Proc. National
Conf. on Artificial Intelligence, pages 111-116. Minneapolis, MN, August, 1988. Formalizatir 'oartial
computation under bounded resources. The paper introduces a multiattnbute-utility approac ... ial results for
the control of fundamental computer-science problems, such as searching and sorting, and describes computational
trajectories through multidimensional approximation spaces. A mathematical exposition highlights the value of
strategies that exhibit monotonic refinement with the computation, for reasoning under varying and uncertain
resource constraints. Includes an expected-utility analysis of flexible reasoning strategies under different classes of
resource constraints. Resource classes include the situations of urgency, deadline, uncertain deadline, and
urgent-deadline (a combination of the urgency and deadline situations). Beyond theoretical work, the paper
describes empirical results from the performance of the Protos/Algo system, on the decision-theoretic control of
fundamental computation tasks.

(Horvitz 89a] Horvitz, E. J. Rational Metareasoning and Compilation for Optimizing Decisions Under
Bounded Resources. In Proceedings of Computational Intelligence 89. Associaton for Computing Machinery,
Milan. September, 1989. A discussion of the relationship between decision-theoretic control of reasoning and the
compilation of reasoning. The paper reviews the challenging issues surrounding construction of integrated reasoning
systems that allow for the compilation of portions of deliberative processes at the base-level and meta-levels.
Assumes a basic metareasoning architecture and allows for the introduction of several classes of compiled
knowledge. Finally, the paper presents a view of learning as an agent's attempt to optimize its reasoning in a
specialized environment, through local and long-term compilation.

[Horvitz 89bJ Horvitz, E. J. Some Fundamental Problems and Opportunities from the Standpoint of Rational
Agency. Technical Report KSL-89-28, Stanford University, March, 1989. A review of some challenging problems
and research opportunities in the pursuit of "bounded-optimal" agents under resource constraints, presented at the
AAAI Spring Symposium on Limited Rationality at Stanford, March, 1989. Issues discussed include problems at
the foundations of preference regarding the optimization of long-term versus myopic utility, difficulties with
evaluating the relative performance of different agents, problems associated with analytic regress, difficulties with
the ideal integration of compiled and deliberative machinery, and problems with the analysis and validation of
optimal partial-computation strategies.

[Horvitz, Breese & Henrion 88]
Horvitz, E.J., J. S. Breese & M. Henrion. Decision Theory in Expert Systems and Artificial

Intelligence. Inter Journal of Approximate Reasoning 2 Special Issue on Uncertain Reasoning:247-302, 1988. A
detailed review article, designed for the Al researcher, on past efforts, current studies, and the future promise of
decision-theoretic principles for solving difficult Al problems. This article first presents mathematical principles
and philosophical foundations of probability and decision theory. After the discussion of foundations, the paper
provides a detailed review of applications of decision theory in Al. This includes both a historical study of problems
and successes incurred in the past, and current research areas. Finally the article examines problems and diections
for future research. The application of decision theory for controlling problem solving under bounded resources and
for the optimization of plan optimization is highlighted.
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[Horvitz, Cooper & Heckerman 891
iorvitz, E. J., G. F. Cooper & D. E. Heckerman. Reflection and Action Under Scarce Resources:

Theoretical Princ:ples and Empirical Study. In Proc. Inter. Joint Con. on Artificial Intelligence, pages 1121-1127.
Detroit, MI, August, 1989. Introduces a formal model of rationality, based on the control of complex base-level
inference by relatively tractable decision-theoretic metareasoning. The paper addresses the question, "How long
should an agent deliberate about a problem before acting in the world?" The authors show that the answer to this
question depends on (1) the stakes of the situation at hand, (2) the costs of deliberation, and (3) metaknowledge
about the expected value of continuing to reason. In the general case, there may be uncertainty about all of these
factors. Theorencal principles of belief and action under bounded resources are presented, and results of
experiments with a complex decision problem, under resource constraints, are described.

[Horvitz, Heckerman & Langlotz 86]
Horvitz, E. J., D. E. Hecl.erman & C. P. Langlotz. A Framework for Comparing Alternative

Formalisms for Plausible Reasoning. In r"oc. National Conf. on Artificial Intelligence, pages 210-214.
Philadelphia, Pennsylvania, August, 19V . A description of the relevance of uncertain reasoning to real-world
problem solving. Fundamental properties of measures of beLie5 are reviewed and are used to analyze alternative
formalisms and approximations to probabilistic reasoning for pragmatic application in situations of limited
information and computational resources. The relationships between probability theory and (1) the Mycin
certainty-factor model, (2) fuzzy-set theory, (3) Dempster-Shafer theory, and (4) Endorsements are discussed.

Horvitz, Suermondt & Cooper 89]
Horvitz, E. J., H. J. Suermondt & G. F. Cooper. Bounded Conditioning: Flexible Inference For

Decisions Under Scarce Resources. In Proceedings of Fifth Workshop on Uncertainty in Artificial Intelligence.
A.AAI, Windsor, Canada, August, 1989. A description of a new flexible (or "anytime") algorithm for probabilistic
inference called "bounded conditioning." The general probabilistic-inference problem is NP-Hard. This approach
provides upper and lower bounds on a probability of interest: the bounds are tightened incrementally with
computation, converging on a point probability with sufficient computation. The method is based on the
decomposition of a difficult problem into a set of subproblems, by conditioning the problem on the truth of a
spectrum of plausible contexts. The subproblems are solved in an order that guarantees that the most important
aspects of the problem will be addressed first. The paper contains an analysis of why a great portion of the complete
exponential problem is solved when only a fraction of the complete problem has been analyzed. In addition to the
theoretical analyses, empirical study of the performance of the algorithm are described.

[Howe. Hart & Cohen 90]
Howe, A. E., D. M. Hart & P. R. Cohen. Addressing Real-Time Constraints in the Design of

Autonomous Agents. Real-Time Systems 2(1/2), May, 1990. (in press). The Phoenix project is an experiment in
the design of autonomous agents for a complex environment. The project consists of a simulator of the
environment, a basic agent architecture, and specific implementation of agents based on real-time techniques; the
first two parts have been constructed, the third is on-going. The facets of Phoenix that facilitate real-time research
are: a simulator parameterized for varying environmental conditions and instrumented to record behaviors, an agent
architecture designed to support adaptable planning and scheduling, and methods for reasoning about real-time
constraints.

(Jagannathan, Dodhiawala & Baum 88]
Jagannathan, V., R. T. Dodhiawala & L. S. Baum. Boeing Blackboard System: The Erasmus

Version. Inter. Journal of Intelligent Systems, 1988. Describes the Erasmus blackboard architecture, a configurable
blackboard architecture derived from the BBI architecture.

(Kaelbling 87a] Kaelbling, L. P. An Architecture for Intelligent Reactive Systems. Reasoning About Actions and
Plans. Morgan Kaufmxann, 1987, pages 395-410. Any intelligent agent that operates in a moderately complex or
unpredictable environment must be reactive -- that is, it must respond dynamically to changes in its environment. A
robot that blindly follows a program or plan without verifying that its operations are having their intended effects is
not reactive. For simple tasks in carefully engineered domains, non-reactive behavior is acceptable; for more
intelligent agents in unconstrained domains, it is not. This paper presents the outline of an architecture for
intelligent reactive systems. Much of the discussion relates to t.. problem of designing an autonon.'ous mobile
robot, but the ideas are independent of the particular system. The architecture is motivated by the desires for
modularity, awareness, and robustness.
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(Kaelbling 87b] Kaelbling, L. P. Rex: A Symbolic Language for the Design and Parallel Implementation of
Embedded Systems. In Proceedings of the AIAA Conf. of Computers in Aerospace. Wakefield, Massachusetts,
1987. A language for implementing embedded systems should facilitate the development of real-time programs,
have clear formal semantics, allow both numeric and symbolic programming, and be easy to implement on parallel
hardware. Rex, a Lisp-based language that has been used to implement a variety of mobile-robot control programs,
satisfies these criteria and is a viable alternative for the implementation of embedded systems. Because Rex uses
sequential circuits as its model of computation, it is easily adapted to run on parallel hardware, and may also be used
to design custom chips.

[Kaelbling 88] Kaelbling, L. P. Goals as Parallel Program Specifications. In Proc. National Conf. on Artificial
Intelligence, pages 60-65. 1988.

(Kaelbling & Rosenschein 89]
Kaelbling, L. P. & S. J. Rosenschein. Action and Planning in Embedded Agents. New

Architectures for Autonomous Agents (tentative title). Elsevier Science Publishers, 1989. Embedded agents are
computer systems that sense and act on their environments, monitorng complex dynamic conditions and affecting
the environment in goal-directed ways. Systems of this kind are extremely difficult to design and build, and without
clear conceptual models and powerful programming tools, the complexities of the real world can quickly become
overwhelming. In certain special cases, designs can be based on well-understood mathematical paradigms such as
classical control theory. More typically, however, tractable models of this type are not available and alternative
approaches must be used. One such alternative is the situated-automata framework, which models the relationship
between embedded control systems and the external world in qualitative terms and provides a family of
programming abstractions to aid the designer. This paper briefly reviews the situated automata approach and then
explores in greater detail one aspect of the approach, namely the design of the action-generating component of
embedded agents.

(Kaelbling & Wilson 88]
Kaelbling, L. P. & N. J. Wilson. Rer Programmer's Manual. Technical Note 38 IR, Artificial

Intelligence Center, SRI Inter.,, Menlo Park, CA., 1988.

(Kaernmerer & Allard 87]
Kaemmerer, W. & J. Allard. An Automated Reasoning Technique for Providing Moment-by-

Moment Advice Concerning the Operation of a Process. In Proc. National Conf. on Artificial Intelligence, pages
809ff. 1987.

[L.affey et al 88a] Laffey, T., P. Cox, J. Schmidt, S. Kao & J. Read. Real-Time Knowledge-Based Systems. Al
Maga:ine Spring:27ff, 1988. This paper presents an overview of the issues in real-time Al systems. A definition of
real-time is presented: the ability of the system to guarantee a response after a fixed time has elapsed. The paper
then presents a good summary of various real-time Al applications and architectures, ranging from process control,
aerospace, communications, medical, and robotics. The paper concludes with a set of theoretical issues in real-time
knowledge-based systems.

[Laffey et al 88b] Laffey, T., S. Weitzenkamp, J. Read, S. Kao & J. Schmidt. Intelligent Real-Time Monitoring. In
Proc. National Conf on Artificial Intelligence, pages 73ff. 1988.

[Laird et a! 89a] Laird, 3. E., Swedlow, K. R., Alitann, E. & Congdon, C. B. SOAR User's Manual: Version 5.0
1989. In preparation. Manual for the latest version of SOAR.

(Lard et al 89b] Laird, J. E., Yager, E. S., Tuck, C. M. & Hucka, M. Learning in Tele-Autonomous Systems
Using SOAR. In Proceedings of the NASA C',nf. on Space Telerobotics. Pasadena, CA, 1989. En press. Using
SOAR to control a hand-eye system (and to learn in the situation).

(Laird, Newell & Rosenbloom 87]
Laird, J. E., Newel, A. & Rosenbloom, P. S. SOAR: An architecture for general intelligence.

Artificial Intelligence 33:1-64, 1987. Basic article on the SOAR architecture, which combines knowledge,
reactivity, general problem solving, and learning.

[Laird, Rosenbloom & Newell 86]
Laird, J. E., P. S. Rosenbloom & A. Newell. Chunking in SOAR: The Anatomy of a General

Learning Mechanism. Machine Learning 1:11-46, 1986.

[Langley et a 89] Langley, P., Thompson, K., Iba, W., Gennari, J. H. & Allen, 1. A. An Integrated Cognitive
Architecturefor Autonomous Agents. Technical Report 89-28, Department of Information & Computer Science,
University of California, Irvine, September, 1989.
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[Lark et a 901 Lark, J. S., L. D. Erman, S. Forrest, K. P. Gostelow, F. Hayes-Roth, & D. M. Smith. Concepts,
Methods, and Languages for Building Timely Intelligent Systems. Real-Time Systems 2(1/2), May, 1990. (in
press). Describes the ABE/RT Toolkit -- a set of design, development, and experimentation tools for building
time-stressed intelligent systems. The toolkit contains a set of languages for specifying the structure and behavior of
timely systems, together with tools to simulate those models, log and analyze data collected during simulation runs,
predict an application's performance on a specified target hardware architecture, and deploy the application on the
target architecture. For architecture/system, see 1.1..

(Lenat. Prakash & Shepherd 86]
Lenat, D. B., M. Prakash & M. Shepherd. CYC: Using Common Sense Knowledge to Overcome

Brittleness and Knowledge Acquisition Bottlenecks. AlMaga-ine 6:65-85, 1986. Being developed at MCC.

[Lesser & Corkill 831
Lesser, V. R. & D. D. Corkill. The Distributed Vehicle Monitoring Testbed: A Tool for

Investigating Distributed Problem Solving Networks. Al Magazine 4(3):15-33, Fall, 1983.

(Lesser, Pavlin & Durfee 881
Lesser, V. R., J. Pavlin & E. H. Durfee. Approximate Processing in Real-Time Problem Solving.

Al Magazine 9(1 ):49-61, Spring, 1988. Also published in Blackboard Architectures and Applications, Chapter 11,
Eds. V. Jagannathan, R. T. Dodhiawala. & L. Baum, Academic Press, 1989. The paper discusses three essential
compromises a real-time problem-solver may make: certainty, precision, and completeness of the solutions.
Approximations in solutions may be captured via data approximations (data abstraction) knowledge approximations
(use partial knowledge) or approximate search strategies (reduce search space). The main thrust is to produce timely
and satisficing solutions. The authors present various cases of these approximations in the Distributed Vehicle
Monitoring System blackboard architecture, along with some experimental results.

[Long & Russ 83] Long, W. & T. Russ. A Control Structure for Time Dependent Reasoning. In Proc. Inter. Joint
Conf. on Artificial Intelligence, pages 230ff. 1983.

[Marsh & Greenwood 861
Marsh, J. & J. Greenwood. Real-Time AI: Software Architecture Issues. In National Aerospace

and Electronics Conf.. pages 67-77. IEEE, Washington, D. C., 1986. This paper presents issues in real-time Al
systems, but mainly from an 'implementation' perspective: memory management in Lisp, inefficiency due to
interpretive languages for Al, poor software engineering, and so on. The authors define real time as 'predictably fast
enough'. Issues in handling hard and soft deadlines are presented. But the main thrust of this paper is to push Ada
over Lisp as a language for building real-time Al systems.

[Martin, Brown & Allen 881
Martin, N., C. Brown & J. Allen. ARMTRAK: A Domain for the Unified Study of Natural

Language. Planning, and Robotics. Technical Report, University of Rochster, 1988. ARMTRAK is a micro-world,
based on the real-time control of model trains, designed to integrate work in natural language, planning, vision and
robotics.

[Masui, McDermott & Sobel 831
Masui, S., J. McDermott & A. Sobel. Decision Making in Time-Critical Situations. In Proc.

Inter. Joint Conf. on Artificial Intelligence, pages 233-235. 1983.

[McCalla & Schneider 791
McCalla, G. & P. Schneider. The Execution of Plans in an Independent Dynamic Microworld. In

Proc. Inter. Joint Conf. on Artificial Intelligence, pages 553ff. 1979.

[McCalla & Schneider 82]
McCalla, G. & P. Schneider. Planning in a Dynamic Microworld. In Proc. 4th CSCSI Conf,

pages 248ff. 1982.

(Mccalla et a! 781 Mccalla, G., P. Schneider, R. Cohen, & H. Levesque. Investigations into Planning and Executing
in an Independent and Continuously Changing Microworld. Al Memo 78-2, Deparanent of Computer Science.
,Unversity of Toronto, Toronto, Ontario, CANADA M5S 1A7, 1978. A taxi driver navigating through a simulated
city with traffic & traffic fights -- simulated perception.

[McCala, Reid & Schneider 821
Mccalla, G., L. Reid & P. F. Schneider. Plan Creation, Plan Execution and Knowledge

Acquisition in a Dynamic Microword. fnt'lJournal of Man-Machine Studies 16:89ff, 1982.

(Minton et a! 87] Minton, S., J. G. Carbonell, D. Etzioni, C. A. Knoblock & D. R. Kuokka. Acquiring Effective
Search Control Rules: Explanation-Based Learning in the PRODIGY System. In P. Langley (editor), Proceedings
of the Fourth Inter. Workshop on Machine Learning, pages 122-133. Irvine, CA, 1987.
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(Minton et al 891 Minton, S., J. G. Carbonell, C. A. Knoblock & D. R. Kuokka. The PRODIGY System: An
Integrated Architecture for Planning and Analytical Learning. In K. VanLehn (editor), Architectures for
Intelligence. Erlbaum, Hillsdale, NJ, 1989. In preparation.

(Miranker & Brant 901
Miranker, D. P. & D. A. Brant. An Algorithmic Basis for Integrating Production Systems and

Database Systems. In Proceedings Sixth Inter. Conf. on Data Engineering. February, 1990. Describes a lazy
incremental match algorithm that folds the selection criteria of a forward-chaining production system into the search
for satisfied rules such that only the winning instantiation is computed without exhaustively enumerating all the
satsfied rules. Part way to an anytime algorithm for the incremental match problem.

(Mitchell et a 89] Mitchell, T. M., J. Allen. P. Chalasani, J. Cheng, 0. Etzioni, M. Ringuette &." ,. Schlimmer.
Theo: A Framework for Self-Improving Systems. In K. VanLehn (editor), Architectures for Intelligence. Erlbaum,
Hillsdale, NJ, 1989. In press.

[Mitchell, Payton & Keirsey 87]
Mitchell. J., D. Payton, & D. Keirsey. Planning and Reasoning for Autonomous Vehicle Control.

Inter. Journal of Intelligent Systems ll:129ff, 1987.

(Newell, Rosenbloom & Laird 89]
Newell, A., Rosenbloom, P. S. & Laird, '. E. Symbolic architectures for cognition. In

M. I. Posner (editor), Foundations of Cognitive Science, chapter 3. Bradford Books/MIT Press, Cambridge, MA,
1989. In press.

[O'Reilly & Cromarty 85]
O'Redly, C. A., & A. S. Cromarty. 'Fast' is not 'Real-Time' in Designing Effective Real-Time

Al Systems. In Applications of Artificial Intelligence II, pages 249-257. Int. Soc. of Optical Engineering,
Bellingham, Washington, 1985. The authors motivate the need for real-time Al to handle the complexities and
sophistication of the emerging applications in defense and industry. Real-time is defined as 'perceptually fast
enough', to be comparable to human information processing capability. A formal definition of real-time is also
given. Several optimization, scheduling, and search techniques are evaluated in terms of their real-time
performance. Parallelism and metaplanning (or control reasoning) are suggested as solutions to build real-time Al
systems.

(Pardee & Hayes-Roth 87]
Pardee, W. J. & B. Hayes-Roth. Intelligent Real-Time Control of Material Processing.

Technical Report Technical Report #1, Rockwell International Science Center, 1987. This paper describes a
material processing application using the BB I architecture.

[Payton 86] Payton, D. An Architecture for Reflexive Autonomous Vehicle Control. In IEEE Inter. Confon
Robotics and Automaton, pages 1838ff. 1986. Design for the ALV software, including a discussion of the
assimilation/immediacy conflict as motivation for horizontal software layering.

[Payton 87) Payton, D. Autonomous Cross-Country Navigation with the ALV. In Proc DARPA Knowledge
Based Planning Workshop, Austin, TX, pages 20-hft. 1987.

(Pollack 89] Pollack, M. E. Plan Recognition Beyond STRIPS. In IJCAI Workshop on Plan Recognition.
Detroit, MI, 1989. This short paper argues for integrating theories of real-time problem solving into models of plan
recognition. In particular, it shows how the architecture for resource-bounded practical reasoning developed by
Bratman, Pollack, and Isrdel (Computational Intelligence, 4:4), can lead to better systems for plan recognition.

(Powell & Cohen 891
Powell, G. M. & P. R. Cohen. Operational Planning, Plan Monitoring and the PHOENIX

System. In under review for IEEE Annual Al Systems in Government Conf.. George Washington University,
Washington, D.C., May, 1989. Until recently computational models of planning have emphasized the generation of
plans. Little attention was given to the processes of plan execution, monitoring and replanning. Clearly, when
planning in unpredictable and dynamic environments, there is a sianificant reqiemen for effective pan "onitorng

and replanning capabdities. Operational planning is an exemplar of this class of problems. However, to our
knowledge very little of the doctrinal or training literature addresses the problems and processes of plan monitoring
and replanning. Consequently, the development of a model of operational planning presents a considerable
challenge to our current computational understanding of planning. This paper presents a model of an AI planner for
real-time control of fires forest, called PHOENIX which generates plans, monitors them during execution, and
revises them during execution when they go amiss. The paper focuses primarily on data structures called envelopes,
which are critical to the activities of monitoring plans and projecting their progress. The utility of envelopes is
illustrated in several examples from the PHOENIX environment and a hypothetical operational planning problem.
We consider in detail the claim that the PHOENIX architecture is a good first attempt at an architecture for
operational planning.
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(Ramamntham & Stankovic 84]
Ramamntham, K. & J. A. Stankovic. Dynamic Task Scheduling in Distributed Hard Real-Time

Systems. IEEE Software 1(3):65-75, 1984. An algorithm for scheduling tasks with bard deadlines is presented. It
takes time to do the scheduling as well as resource constraints into account.

[Ramamurthi & Agogino 881
Ramamurthi, K. & A. M. Agogino. Real Time Expert System for Fault Tolerant Supervisory

Control. In Proc. of ASME Inter. Computers in Engineering Conf., pages 333-340. 1988. Simulation study of a
meta-controller for the supervisory control of a robotic manipulator. A real-time influence diagram architecture is
used.

[Raulefs 891 Raulefs, P. Toward a Blackboard Architecture for Real-Time Interactions with Dynamic
Systems. Blackboard Architectures and Applications. Academic Press, Boston, 1989, Chapter 13. This paper
presents extensions to the blackboard architecture for improved reactivity. The author models each step of the
typical top level control cycle as a set of concurrent processes, with emphasis on interrupubdity.

[Raulefs & Thomdyke 87]
Raulefs, P. & P. W. Thorndyke. An Architecture for Heuristic Control of Real-Time Processes.

In Proc. NASAIJPL Workshop on Space and Telerobotics. NASA/JPL, January, 1987. This paper describe the
HCVM architecture in the context of process planning and control application.

(Raulefs et al 87] Raulefs, P., B. D'Ambrosio, M. R. Fehling & S. Forrest. Real-Time Process Management for
Materials Compositions in Chemical Manufacturing. In IEEE Conf. on Applictions ofArtificial Intelligence, pages
120-125. 1987. This paper describes the real-time issues in chemical process management. The HCVM blackboard
architecture is described along with the Hueristic Process Control (HPC) layer on top of HCVM. The HPC
framework captures aspects of the domain problem-solving. The Phosphorus Burden Advisor application is
discussed.

[Rege & Agogino 86]
Rege, A. & A. M. Agogino. Sensor-Integrated Expert System for Manufacturing and Process

Diagnostics. Knowledge-Based Erpert Systems for Manufacturing. ASME PED, 1986, pages 67-83. A pump
diagnostic application is developed in which real-time issues are addressed. Although not described in the paper,
simulation software is available for testing IRTPS concepts like "time as a consumable resource" and "multiple
failure modes".

[Rege & Agogino 881
Rege, A. & A. M. Agogino. Topological Framework for Representing and Solving Probabilistic

Inference Problems in Expert Systems. IEEE Trans. on Systems. Man and Cybernetics 18(3):402-414, 1988.
Introduces the Berkeley IDES - Influence Diagram Based Expert System- arctutecture. Several IRTPS issues are
addressed, including the ability to estimate accurately the computational time required to respond to any query
through the "simul" module.".

(Retelle & Kaul 86]
LTC Retelle, J. P., Jr. & M. Kaul. The Pilot's Associate - Aerospace Application of Artificial

intelligence. Signal :100-105, June, 1986. A technical description of the Pilot's Associate program is presented,
along with reference to the approaches taken by the two prime contractors: Lockheed and McDonnell Douglas.

(Rosenbloom et al 89]
Rosenbloom, P. S., J. E. Laird, A. Newell & R. McCarl. A preliminary analysis of the

foundations of the SOAR architecture as a basis for general intelligence. In D. Kirsh & C. Hewitt (editors),
Foundations of Artificial Intelligence. MIT Press, Cambridge, MA, 1989. In press. Analysis of SOAR with respect
to several aspects of general intelligence.

(Rosenschein 85] Rosenschein, S. J. Formal Theories of Knowledge in AT and Robotics. New Generation
Computing 3(4, special issue on Knowledge Representation), 1985. Although the concept of knowledge plays a
central role in artificial intelligence, the theoretical foundations of knowledge representation currently rest on a very
limited conception of what it means for a machin o knOw a proposidto,. in thre curreni view, the machine is
regarded as knowing a fact if its state either explicitly encodes the fact as a sentence of an interpreted formal
language or if such a sentence can be derived from other encoded sentences according to the rules of an appropriate
logical system. We contrast this conception, the interpreted-symbolic-structure approach, with another, the
situated-automata approach, which seeks to analyze knowledge in terms of relations between the state of a machine
and the state of its environment over time using logic as a metalanguage in which the analysis is carried out.
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[Rosenschein 89] Rosenschein, S. J Synthesizing Information-Tracking Automata from Environment
Descriptions. In Proceedings of Conf. on Principles of Knowledge Representation and Reasoning. Toronto,
Canada, 1989. This paper explores the synthesis of finite automata that dynamically track conditions in their
environment. We propose an approach in which a description of the automaton is derived automatically from a
high-level declarative specification of the automaton's environment and the conditions to be tracked. The output of
the synthesis process is the description of a sequential circuit that at each clock cycle updates the automaton's
internal state in constant time, preserving as an invariant the correspondence between the state of the machine and
conditions in the environment. The proposed approach allows much of the expressive power of declarative
programming to be retained while insuring the reactivity of the run-time system.

(Rosenschein & Kaelbling 86]
Rosenschein, S. J. & L. P. Kaelbling. The Synthesis of Digital Machines with Provable

Epistemic Properties. In Proceedings of the Conf on the Theoretical Aspects of Reasoning About Knowledge, pages
83-98. AAAI Asilomar, California. 1986. Researchers using epistemic logic as a formal framework for studying
knowledge properties of artificial-intelligence (Al) systems often interpret the knowledge formula K(.,) to mean
that machine x encodes 0 in its state as a syntactic formula or can derive it inferentially. If K(x,o) is defined instead
in terms of the correlation between the state of the machine and that of its environment, the formal properties of
modal system S5 can be satisfied without having to store representations of formulas as data structures. In this
paper, we apply the correlational definition of knowledge to machines with composite structure and describe the
semantics of knowledge representations in terms of correlation-based denotation functions. In particular, we
describe how epistemic properties of synchronous digital machines can be analyzed, starting at the level of gates and
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I. Architectures and Systems

Presented here are brief descriptions of several architectures and implemented systems structures
being used for IRTPS. This list, compiled from submissions by workshop attendees, while
representative is certainly not comprehensive. The descriptions were, generally, supplied by
individuals associated with the development of the respective architectures.

1.1 ABE/RT

The ABE/RT Toolkit is a set of design, development, and experimentation tools for building
timely systems: time-stressed intelligent systems. The term timely systems is used to refer to
systems with hard real-time requirements for interacting with a human operator or other agents
with similar time-scales. The ABE/RT methodology is based on a philosophy of "rigorous
engineering design" in which the application developer works to guarantee the system's
timeliness by identifying the various events which require timely responses, determining the
worst case frequencies of these events and the deadlines and durations of the tasks that respond
to the events, and then verifying that the run-time system has enough processing resources to
complete all mandatory tasks by their deadlines. The ABE/RT developers believe this is the
only way in the near-term to build complex real-time intelligent systems reliable enough for
critical applications with demanding users.

The ABE/RT Toolkit is being developed at Cimflex Teknowledge Corp. It contains a set of
languages for specifying the structure and behavior of timely systems, together with tools to
simulate those models, log and analyze data collected during simulation runs, predict an
application's performance on a specified target hardware architecture, and deploy the application
on the target architecture. [Lark et at 90] describes ABE/RT and its use for the Lockheed Pilot's
Associate application.

1.2 DVMT

The Distributed Vehicle Monitoring Testbed has been developed at the University of
Massachusetts since 1978. Its blackboard architecture has been extended with incremental
planning control. This architecture extends traditional blackboard systems by incorporating a
sophisticated planner to control the problem-solving activity. The planner uses approximate
processing techniques to hypothesize possible solutions to pursue/refute, and plans knowledge
source actions to efficiently perform this pursuit/refutation. This planning can incorporate time
constraints by replacing time-consuming actions with less time-consuming (or no) actions, to
achieve problem-solving deadlines at the price of reduced solution quality. The control
mechanisms are built on top of the GBB (Generic Blackboard) shell, available from the
University of Massachusetts. See [Lesser & Corkill 83, Durfee 88, Durfee & Lesser 87, Durfee
& Lesser 88, Lesser, Pavlin & Durfee 88].

1.3 ERASMUS

Erasmus is a configurable blackboard architecture developed at Boeing's Advanced Technology
Center, derived from the BB I architecture [Hayes-Roth 85]. The Boeing group is using it for
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our research in intelligent real-time systems. See [Jagannathan, Dodhiawala & Baum 88, Baum
et at 89, Baum, Jagannathan & Dodhiawala 891.

1.4 The Situated-Automata Approach: GAPPS and REX

The major difficulty in programming intelligent real-time systems arises from the inherent
tension between being "intelligent" (having the ability to recognize and respond appropriately to
a wide range of situations) and being "real-time" (carrying out computations at the rate at which
events are unfolding in the environment.) These two requirements are difficult to satisfy
simultaneously, and current programming techniques usually achieve one at the expense of the
other. Over the past several years, S. J. Rosenschein, L. P. Kaelbling, and other members of the
situated-automata group at SRI International have been carrying out a program of research aimed
at developing new techniques that combine the flexibility of symbolic reasoning systems with
the performance of real-time control systems. By identifying and encapsulating certain
abstractions relevant to the design of intelligent real-time systems, they hope to raise the
conceptual level at which such systems are programmed and improve the efficiency of the
programmer, as well as the capabilities of the target system. The situated-automata approach is
not an "architecture" in the sense of a skeleton system with hooks for modules with defined
semantic properties; it is a theoretical framework and an associated set of programming tools for
facilitating the design process.

Theory: Situated automata research began by examining the foundations of Al knowledge
representation systems to see whether symbolic reasoning, with its clear propositional semantics,
could be theoretically reconciled with the demands of real-time performance. It was concluded
that for applications in which systems interact with an external environment, it is not the
symbolic expressions and their formal derivations, per se, that are of semantic significance, but
rather the fact that these expressions are semantically interpretable by human designers and that
they are objectively correlated with external reality. This viewpoint is elaborated in a
mathematical framework called situated-automata theory [Rosenschein 85, Rosenschein &
Kaelbling 86, Rosenschein 89]. In this framework, the concepts of mathematical logic are used
to describe the external conditions with which machine states are correlated, but the theory does
not require that the machine itself be modeled as an "inference engine." By liberating knowledge
representation from the burden of run-time logical inference, the mathematical theory shows how
machines can incorporate sophisticated semantic content and still operate in real time.

Programming Tools: A mathematical construction reconciling semantic complexity and
real-time performance does not in itself enable intelligent real-time systems to be built in
practice. Indeed, the practical problems in synthesizing systems for a particular task domain can
often be quite daunting. Therefore a programming methodology and a set of software tools were
developed that would ease the programmer's task while still producing provably real-time
systems. As a concrete computational model, finite state machines were found to be convenient,
particully in their realiation as sequential circuits; the principles of situated-automata theory
give a compositional account of the semantic content of complex machine states in terms of their
components, and the finite depth of the update and output circuitry place a hard bound on system
response time.

Rather than asking the programmer to define this circuitry directly, however, symbolic



1-3

programming tools were developed that would indirectly define these functions in a way more
readily interpretable by the programmer. The first of these tools was Rex (Kaelbling87b,
KaelblingW88), a Lisp-based language in which the programmer could define symbolic
programs that evaluated to circuits for extremely complex real-time perception and action
systems. Although it was far easier to use Rex than it was to describe the circuit explicitly, Rex
was still a low-level language in many ways, because the Rex programmer was more focused on
the circuit itself than on the characteristics of the task domain. In an effort to raise the level of
abstraction, a second tool was developed, Gapps (Kaelbling88), which allowed the programmer
to write goal reduction rules and have them translated automatically to a provably real-time
action-selection circuit.

1.5 HMS

Hierarchical Multi-State (HIMS) machines, being developed at Thomson-CSF, are high-level
automata that can be used for defining causal models of real-time systems. HMS machines can
describe both real-time domains and problem solving strategies. Since temporal constraints can
be defined and verified formally in [MS machines, they are particularly suitable for specifying
IRTPS problems. HMS machines provide orders of magnitude reduction in number of states
compared to traditional state-based representation methods and offer a promising approach to
reusability and modularity of causal models. A number of applications of HMS machines,
including hierarchical robot route planning, manufacturing scheduling and resource allocation in
a dynamic environment with priorities have been considered so far. HMS machines are
described in [Gabrielian & Stickney 87, Gabrielian & Franklin 88], FranklinG89,
GabrielianF90]. Distributable software is not available at this time.

1.6 IRMA

The Intelligent Real-Time Machine Architecture (IRMA) is an architecture for the real-time
practical-reasoning component of a resource-bounded agent (Bratman, Israel & Pollack 88]. It
builds on a well-developed analysis of the role of an agent's plans in its further reasoning, first
described in [Bratman 87]. More specifically, IRMA provides a framework in which an agent's
plans help to constrain the amount of further practical reasoning the agent must perform, by
focusing its subsequent means-end reasoning and by filtering out options that are incompatible
with its existing plans. Implementation of agents embodying IRMA is currently in progress at
SRI, being done by M. Pollack and M. Ringuette.

1.7 MVL

MVL implements the multi-valued logic work described in [Ginsberg 88, Ginsberg 90a]. The
formalization of modal operators appears to admit an anytime implementation. The
implementation is not continuous or monotonic in the sense discussed at the worlshop, but it
does converge to the correct answer in the large runtime limit. MVL is implemented in Common
Lisp and is known to run on MacIntosh II and NeXT machines running Allegro Common Lisp,
and Symbolics machines.
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1.8 PAMELA

[Barachini & Theuretzbacher 88, Barachini 88] describe features of the PAMELA (PAttern
Matching Expertsystem LAnguage) language. PAMELA includes a graphic development
system for building "real-time" expert systems. The RETE-Algorithm is enhanced so that
interrupts may be served at any time. Thus it is more sensitive to the environment than
languages like OPS, ART, or G2. Also working memory elements may be modified outside the
scope of rules. The graphic development environment is based on newest standards
(X-Windows, DEC-Windows). The programming language is C, and in addition to a
function-call interface to C, the user can program in "declarative C" style. PAMELA is
currently available for research organizations and universities.

[Barachini, Mistelberger & Bahr 89a, Barachini, Mistelberger & Bahr 89b] describe research
results on the parallel version of PAMELA for a distributed memory architecture.

1.9 Phoenix

Phoenix is a real-time, adaptive planner that manages forest fires in a simulated environment.
Alternatively, Phoenix is a search for the functional relationships among the designs of agents,
their behaviors, and the environments in which they work. In fact, both characterizations are
appropriate and together exemplify a research methodology that emphasizes complex, dynamic
environments and complete, autonomous agents. The Phoenix group, at the University of
Massachusetts, is empirically exploring the constraints the environment places on te:e design of
intelligent agents. See [Cohen et al 89, Howe, Hart & Cohen 90, Cohen & Day 88, Powell &
Cohen 89] The Phoenix system comprises five levels of software: Discrete Event Simulator
(DES), Map, Basic Agent Architecture, Agents and Agent Organization. The DES creates the
illusion of a continuous world, where natural processes and agents are acting in parallel, on serial
hardware. The Map level contains the data structures that represent the current state of the world
as perceived by agents as well as the "world as it really is" and the methods that update the state
of the world. The basic agent architecture provides the structure for sensors, effectors, reflexes
and problem solving capabilities. The agent level describes the agents that we have designed for
the Phoenix environment of forest fire fighting. The organization level includes a hierarchical
organization of agents in which one fireboss directs multiple agents. The Phoenix environment
(the DES and map level), the basic agent architecture and the agents with organization are
independent software packages available for other researchers. The system runs in Common
Lisp with Flavors on a TI Explorer.

1.10 PRS

The Procedural Reasoning System (PRS) is a generic architecture for real-time reasoning and
acting that has been developed at SRI [Georgeff 88, Georgeff & Ingrand 89a, Georgeff &
Ingrand 89b]. PRS is capable of operating efficiently in continuously changing environments It
can both perform goal-directed reasoning and react rapidly to unanticipated changes in its
environment. It includes meta-level reasoning capabilities, which can be tailored by the user,
employing the same language used to describe domain-level reasoning. PRS has been applied to
various tasks, including malfunction handling on the NASA space shuttle, threat assessment, and
the control of an autonomous robot.
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1.11 RT-1

RT-1 is a small-scale, coarse-grained, distributed, event-driven architecture based on the
blackboard paradigm. It consists of a collection of reasoning modules which share a common
blackboard data space and operate asyncrhonously. Each reasoning module has 3 processes: the
1/0 process for inter- and intra-module communication, the blackboard demon process for
asynchronous blackboard maintenance operations, and the reasoning process which performs the
knowledge processing actions for the reasoning module. The main features of the reasoning
process are: multiple, prioritized event channels for improved responsiveness to more critical
events, explicit meta-level reasoning capability which permits opportunistic problem solving and
ability to meet deadlines, and execution margin for intelligently regulating performance between
the extremes of completely reactive to completely goal-directed according to changing workload
and priorities. Thus, RT-1 addresses the responsiveness, timeliness, and graceful adaptation
aspects of real-time as defined in [Dodhiawala et al 891. RT-1 has associated with it measures
and metrics that help evaluate the performance of the system.

1.12 SOAR

Soar is an Al architecture that combines a recognition-driven memory (a production system), the
ability to interact directly with sensors and effectors, a decision cycle driven by the system's
knowledge and perceptions, the ability to automatically generate subgoals, and the ability to
learn from experience. Soar is written in CommonLisp, and runs on a variety of machines (Sun
3&4, Dec Vax & 3100, IBM RT, TI Explorer, ...), in CommonLisps provided by several
different vendors. There is an extensive set of publications, including [Laird, Rosenbloom &
Newell 86, Laird, Newell & Rosenbloom 87, Laird et al 89a, Rosenbloom et al 89, Steier et al
87, Laird et at 89b, Tambe et al 88].
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Abstract

We propose a framework for modeling intelligent real-time problem-
solving systems embedded in an environment. Within this framework,
measurements may be defined on the system and on the environment,
and particular measurements may be designated for judging the per-

formance of the system. Although this framework supports analyti-
cal evaluation, we concentrate on its use for experimental evaluation,
especially for evaluating and comparing system architectures. This
framework also provides a basis for formalizing various requirements
terms, such as "reactivity" and "graceful degradation".

1 Introduction

Intelligent real-time problem-solving systems (IRTPSs) are embedded com-

puter systems that interact with their environments in a continuous fashion,

sensing asynchronous events and acting in ways designed to satisfy certain

goals. Instances of such systems include intelligent robots, factory control

systems, avionic systems, and medical monitoring systems. Many software

*This work was supported by AFOSR Contract F49620-89-C-0129 and AFOSR Con-
tract F49620-89-C-0117.
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architectures have been proposed to ease the design and implementation of
effective IRTPSs, and there has arisen the need for some objective means of
evaluating and comparing them. As part of the research program on Intelli-
gent Real-Time Problem Solving being sponsored by the Air Force, a small
working group was formed to consider the methodologies for experimentally
evaluating IRTPS architectures. This document is a preliminary report of
that working group.

2 A Model of Embedded Systems

The first step in developing an evaluation methodology for IRTPSs is to lay
out a conceptual framework for modeling systems and their interactions with
the environment.

A natural beginning point is with models of dynamic physical systems.
Such systems can be described in terms of time series of physical states,
for example as mappings (possibly stochastic) from instants of time to some
state space of values that model the physical features of interest. One then
partitions the overall physical system into sub-components corresponding to
the IRTPS S and the environment E, each having dynamic local state that
varies as a function of signals received from the other. We may wish to regard
the IRTPS and its environment as being parametrized in various ways. Let
S(u) and E(v) represent the system and its environment with parameters u
and v respectively. In addition, either or both of S and E could have random
elements.

Because S and E are dynamic, time-varying objects, we are usually inter-
ested in describing not only those properties that hold statically of individual
states, but properties of the time series of states. For present purposes, we
will call these time series runs and write runs((S, E)) to represent the set of

runs of the combined IRTPS/environment pair. Each run is (conceptually)
a sequence of total system states (i.e., states of the IRTPS/environment ag-
gregate.) Conceptually, a run could be infinite and there could be an infinite
number of runs.

Under this very general model, the boundary between S and E is arbi-
trary and can be adjusted to address different g--I. the prmsent context,
we are concerned with evaluating proposed IRTPS architectures with respect
to their performance in particular classes of environments. Thus, the S - E
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boundary should be placed so as to distinguish between a proposed archi-
tecture and the environment in which it is claimed to be effective. Then we
can evaluate the relationships between properties of the architecture as man-
ifested in S and properties of E. In particular, note that the S - E boundary
need not correspond to the boundary between a "complete agent" and its en-
vironment, but may correspond to the boundary around any "partial agent"
of interest. For example, to evaluate a complete agent architecture, the S-E
boundary should encompass all perception, reasoning, and action elements.
But to evaluate a perception architecture, the S - E boundary should more
tightly encompass only perceptual elements, with any reasoning or action
elements treated as part of the environment. We might often choose to treat
particular sensors and effectors as elements of E. As discussed below, for a
given placement of the S - E boundary, we will be attempting to attribute
properties in the environment to the behavior of particular IRTPSs and, by
inference, to their underlying architectures.

3 Measurement and Utility

In order to describe the effectiveness of an IRTPS architecture in controlling
aspects of the environment, it is necessary to identify measurements that
can be made and how those measurements will be interpreted to determine
utility.

A measurement is any function of state values. Measurements can be
made within a state or over sets of states or runs.

Under the above model of embedded systems, for a given S - E boundary,
measurements on E are distinguished from measurements on S. Measure-
ments on E describe the dynamic properties of the environment, some of
which are determined by processes internal to the environment and others of
which are influenced by the behavior of S in E. The latter sorts of measure-
ments are distinguished and used to assess the effectiveness of S in determin-
ing properties of E under various conditions. These assessments may be in
absolute terms or relative to alternative Ss. Measurements on S describe the
dynamic properties of the IRTPS, some of which are determined by processes
internal to it and others of which are determined by the impact of E on S.
These measurements are used help to explain the performance of S and its
(in)effectiveness in determining properties of E in terms of its underlying ar-
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chitecture. They also are used to analyze and predict its performance under
other values of u and v.

Two classes of measurements are distinguished - descriptive and utility.
Descriptive measurements represent objective features of a state, ru. or set
of runs. Examples are: (a) deadline d was met; and (b) 80% of deadlires of
type t were met. Other illustrative simple descriptive measurements are:

* Latency from environmental event el to environmental event e2 e.g.,
latency from occurrence of a fault to occurrence of its correction

e Deadline satisfaction e.g., whether a given fault is corrected by the time
of its deadline

9 Logical correctness of result

* Quality of result

* Precision of result

Illustrative functions on measurements are:

* Average latency for critical events

# Percent deadline satisfactions for critical events

* sum of latencies for all instances of event-type-a to event-type-b

e average percentage over deadline on soft-deadline events

Utility measurements represent valuational conclusions based on the fea-
tures or qualities of a state, run, or set of runs. An example is: satisfactory
performance requires meeting > 95% of priority 1 deadlines and > 50% of
priority 2 deadlines. Other illustrative utility measurement (higher is better)
are:

* Weighted sum of importance x deadline satisfied (0 or 1) for all events

* Weighted average of response qualit y x i-p-rtan- X dA in :r satisfied

* Gracefulness of degradation (suitably formalized)
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The choice of utility measures may be specific to the S - E boundary
placement. They certainly will be specific to the purpose of the evalua tion.

To describe system S1 (u) parametrically with respect to various rmea-
surements of utility against fixed (parametric) environment E(v) amounts to
characterizing the expected utility of Si(u) as a function of (u, v), using a
variety of techniques, some of which are described below. Similar methods
can be used to compare two similarly parametrized systems, S,(u) and S2(u),
fixed (parametric) environment E(v).

4 Evaluation

In principle, there are many ways a proposed IRTPS design might be eval-
uated. The methods fall into two general categories: analytical and ezperi.
mental. Because each of these methods has its advantages and drawbacks, a
thorough evaluation often requires both. In the first section below, we briefly
mention some of the advantages and disadvantages of analytical methods.
The following section treats experimental methods, which are the focus of
this document, in more detail.

4.1 Analytical Evaluation Methods

One method of characterizing system performance is by establishing certain
of its properties through analytical techniques. These techniques draw on
relevant mathematical methods and amount to proving theorems.

The main advantage of the analytical approach is the ability to establish
with mathematical certainty very general or universal statements about en-
tire classes of behaviors and phenomena far too numerous to enumelate in
explicit detail. For instance, it might be shown mathematically that a cer-
tain undesired situation can never arise given the nature of the environment
and the control system, or that when a triggering event occurs a response is
always generated within a certain time period. Results of this kind can be
very powerful and can give us great confidence in the system we design.

Analytical approaches are not without their drawbacks, however. The
primary drawback is that the complexity of the systems being modeled gives

. .. ...... nthe atic4 l models that often resist analysis. In an
attempt to render the models tractable, simplifications are often made which
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cause the models to diverge from reality in ways that undercut the usefulness
for building the model in the first place.

In defense of analytical methods it should be pointed out that there is no
way to insure against bad modeling and analysis. Experience shows, however,
that formal models are of use but often they must be supplemented by other
techniques.

4.2 Experimental Evaluation Methods

The other main category of evaluation technique is experimental. In this
approach, evaluation is done by measuring properties of particular instances
of runs of particular systems and drawing certain conclusions. Experimental
approaches can be further subclassified according to whether they involve
(a) the real control system embedded in the real environment, (b) the real
control system embedded in a simulated environment, (c) a simulated con-
trol system in a simulated environment, or (d) some hybrid approach. Real
systems offer the obvious advantages of evaluating against reality, but they
are often cumbersome or even unavailable, may pose unacceptable risks, etc.
In the simulation approach to experimental evaluation, the environment and
possibly the control system as well (e.g., if we are using a conventional ma-
chine to simulate a massively parallel system controlling an environment) a
computer program is run to generate samples of the behavior of the overall
system. These samples are then analyzed empirically to provide evidence in
favor of certain conclusions regarding performance of the real system in the
real environment.

Experiments provide a framework for inductive inference of general re-
lations between architectures and real-time performance based on observa-
tions. The goal is to discover general relations that can be expected to hold
whenever the appropriate conditions hold. For example, one relation might
be that architecture A provides graceful degradation in performance under
increasing rates of environmental events; another relation might be that ar-
chitecture B produces unacceptable performance degradation under similar
circumstances. Because it is infeasible to make observations of all of the
instance- enc,,mpa-s-C. by" .. .L "ized reiation, it becomes necessary to

draw conclusions about what would happen for all such instances based on
observation of a few particular instances. For example, we might draw con-
clusions about the relative advantages of architectures A and B on the basis
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of their performance on a small number of environmental scenarios.
Drawing general conclusions from a small number of observed instances

is a risky business. A given S realizes an abstract architecture, A, in a
particular implementation, I, and instantiates it for a body of knowledge, K.
Architectures themselves are complex artifacts, differing in both theoretically
interesting variables (e.g., knowledge representation, inference procedures,
control mechanism) and incidental variables (e.g., implementation details,
execution environment). Similarly, different environmental scenarios differ in
a great many variables (e.g., frequency of important events, distribution of
deadlines, amount of interpretation required, predictability of events). As a
consequence, any given observation of the performance of a given architecture
on a given environmental scenario is likely to reflect the combined effects of
many such variables.

Controlled experimentation is an attempt to reduce as much as possible
the incidental variability in a set of observations in order to: (a) obtain
a reliable account of particular effects of a particular set of theoretically
interesting variables; and (b) rigorously bound the class of situations in which
those effects can be expected to obtain. In a controlled experiment, one or
more "independent variables" are manipulated and their distinctive effects on
one or more "dependent" variables are measured. In the present context, we
will typically be manipulating independent variables representing a proposed
architecture within S and measuring dependent variables representing the
performance of interest within E. Other variables, including both S and E
variables, are "controlled" to avoid confounding their effects with those of
the independent variables. We also will often evaluate the performance of a
fixed S as a function of various E scenarios; for this, we keep S fixed and the
dependent and independent variables are in E.

Some controlled variables are simply held constant, while others are sys-
tematically manipulated or randomly sampled to provide a basis for gener-
alization. In the domain of IRTPS systems, there are a variety of important
variables we may wish to control:

S variables:

* sensors

* effectors

@ knowledge available
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o computing resources

e responsibilities

E variables:

* domain

* rate of critical/non-critical events

* distribution of deadlines

9 complexity of events (e.g., multi-variate, temporal properties, noisy,
uncertain)

e complexity of required effects of actions

* complexity of reasoning required

* knowledge required

* tasks required

In general, the more thoroughly variables are sampled within a class,
the more reliably we can generalize conclusions based on associated observa-
tions. Statistical inference techniques permit probabilistic statements about
the likelihood that relations observed in a given number and distribution of
instances will hold for the entire class of such instances.

For example, to compare two different control mechanisms, A and B, we
might set up two complete agent architectures differing only on this single
independent variable, while holding constant all other architectural variables.
In effect, we would be placing the S - E boundary tightly around the control
mechanism. We might then apply the architectures to a set of scenarios in
which we hold constant the environmental domain (e.g., power plant mon-
itoring) and systematically manipulate the frequencies of critical and non-
critical events and-the associated distributions of deadlines. In each condition
(unique combination of values of independent and controlled variables), we
.. ul.------- Sevral dependent variables, such as logical correctness of re-
sponse and satisfaction of deadlines for critical and non-critical events. Given
an appropriate statistical analysis of the results of these measurements. we
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might draw certain conclusions with high confidence, for example: (a) for
critical events in all conditions, control mechanism A produces a higher rate
of correct answers within deadline than control mechanism B (97% vs. 75%);
(b) for non-critical events in all conditions, control mechanism B produces
a higher rate of correct answers within deadline than control mechanism A
(75% vs. 65%); (c) as the frequency of events increases (1---50 events per unit
time), control mechanism A's performance on critical events degrades slowly
(l00--*95%), while its performance on non-critical events declines dramati-
cally 90--+40%); and (d) as the frequency of events increases, control mecha-
nism B's performance declines significantly for both critical and non-critical
events (95---50% in both cases). Given a particular set of utility functions-
in particular, valuing critical events more highly than non-critical events-we
might conclude from these results that control mechanism A is "better" than
control mechanism B because it provides "better" performance overall and
a "better" degradation profile.

Control of variables determines what kinds of conclusions an experiment
can support. For example, observing the performance of S1 and S2 on a
single scenario, 01, in a single environment, El , permits only conclusions
about the comparative effectiveness of S, and S2 on scenario 01. Observing
performance on a representative sample of scenarios in E, permits conclu-
sions about the comparative effectiveness of S, and S2 in environment El.
Observing performance on a sample of scenarios in a sample of environments
from class E permits conclusions about the comparative effectiveness of S,
and S2 in environment class E.

Of course some variables are quite difficult to control, and these necessar-
ily limit the conclusions that can be drawn from experiments. In particular,
it is difficult to separate and control variables that distinguish among the ar-
chitecture, implementation, and knowledge of a given system S. Nonetheless,
if we wish to draw strong conclusions about the utility of an architecture,
we must control these potentially confounding variables. In many cases, our
experiments may permit conclusions only about the level of performance of
an S or the relative performances of alternative Ss. It may require ana-
lytical methods-or be infeasible-to determine whether an S's performance
advantage is due to its architecture, implementation, or knowledge.
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5 Other Implications

Although the primary purpose of this document concerns methodologies for
evaluating IRTPS architectures, these considerations also carry implications
regarding requirements specification and experimental testbed.

5.1 Implications for Requirements Specification

At this early stage of IRTPS research, we have many proposals for IRTPS
requirements that use idiosyncratic, but overlapping vocabularies to describe
concepts whose relationships to one another are ambiguous. The proposed
model of embedded systems offers an opportunity to operationalize intuitive
concepts like reactivity, coherence, interruptability, etc. in terms of basic
measurements on state values. Thus, it will become clear, for example, that
researcher A uses the term "interruptability" to refer to the latency to re-
spond to a critical event, while researcher B uses the same term to refer to
the ability to abort an ongoing computation. Although this does not in-
sure agreement on ter- .s and definitions, it provides a "lingua franca" for
communication about terms and definitions.

The concept of an S - E boundary is fundamental to the proposed model
of embedded systems. Although placement of the boundary is flexible, to
allow study of IRTPSs of differing scopes, a given placement of the boundary
structures the definition of requirements and assessment of their satisfaction.
Thus, on one side of the boundary, we have the S whose "requirements" con-
stitute a theory or design that is hypothesized or intended to produce satis-
factory consequences in E. On the other side of the boundary, we have the
E whose "requirements" defme the so-called satisfactory consequences. An
informative experiment will tell us to what degree the requirements hypoth-
esized for S (and realized in a particular implementation) actually achieve
the requirements demanded for E.

For example, we call systems "reactive" in (at least) two different situa-
tions. First, we speak of reactive systems that iterate a highly efficient sense-
act loop. Second, we speak of systems as reactive if they react promptly to
important external events. Under the proposed model of embedded systems,
the first sense of reactive is a hypothesized requirement on S, S-Reactivity
while the seeond i: .deai d requirement on E, call it E-Reactivity. The
testable claim is that S-Reactivity produces E-Reactivity (and perhaps some
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other desirable E-Requirements as well). Notice, however, that other testable
claims are possible, for example that a non-reactive S (one whose architec-
ture is something different from the above-mentioned sense-act loop) also
produces E-Reactivity (and perhaps some other desirable E-Requirements
as well). The purpose of experiments is to evaluate such claims.

Accordingly, the model of embedded systems suggests that efforts to spec-
ify requirements for IRTPSs clearly distinguish between S-Requirements and
E-Requirements. In particular, E-Requirements should be defined strictly
in terms of measurements on E variables, while S-Requirements should be
defined in terms of measurements on S variables. For example, S-Reactivity
might be defined as a bound on the computation performed between sensing
and acting. E-Reactivity might be defined as a bound on the latency be-
tween occurrence of an important "problem" event and the occurrence of an
appropriate external "correction" event. Moreover, a given experiment re-
quires agreement among participants on the E-Requirements against which
alternative S-Requirements will be evaluated.

5.2 Implications for an Experimental Testbed

As discussed throughout this document, IRTPSs are complex artifacts em-
bedded in complex environments. Experiments that allow generalization of
conclusions beyond the immediate experimental conditions require control of
many variables in both the S and the E. In addition, experimentation on S's
of differing scopes requires flexibility in the placement of the S - E boundary.
To support these kinds of experimentation requires a sophisticated testbed.

For example, a basic testbed would allow one with an S to run and exper-
iment with it. The testbed provides an E (likely simulated, and also perhaps
paremeterized) and defines the S - E boundary by the interface functions
and data structures through which S and E interact. The testbed should also
provide means for controlling multiple runs and for collecting measurements
on E and, perhaps, on S as well. Ideally a testbed also provides utilities for
analyzing the results (i.e., the measurements) across multiple runs.

A more general testbed facility would not have the E built in, but would
instead accept both the E and the S as inputs. That is, it defines a generic
interface between any E and any S compatible with that E. It would ac-
complish this by defining an interface between the testbed itself and 5, and
between the testbed and E. These interfaces would allow the testbed to
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control each of S and E, to support their interactions, and to collect the
measurements.

For still more flexibility, a testbed would support experiments with vary.
ing boundaries between S and E. That is, the experimenter would supply a
complete, modular system to the testbed and specify, for any rn, where the
S - E boundary is. This requires a more extended interface definition facility
- one which supports a complex of interacting modules, preferably compos-
able, and allows for measurements on any of their interfaces. Indeed, we can
generalize this concept so that the S - E boundary is not even fixed for a
run, but shows up only ii terms of which measurements are designated the
utility measurements. This reflects the idea that the S and E together are
a complete system, and specifying the boundary is only a means for analysis
and evaluation.
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1. Overview

AFOSR has posed three questions regarding intelligent real-time
problem solving (IRTPS):

(a) What are the important terms and issues in IRTPS?

(b) What characteristics should appear in a community testbed
application?

(c) What experimental methodology should guide research in this
area?

It is easier to contrast an IRTPS system with other frameworks than
to define it. IRTPS systems contrast on the one hand with traditional real-
time systems, and on the other hand with classical Al planning systems.
With the former they share properties such as responsiveness and
timeliness. With the latter they share concepts such as process
representation, prediction, and reasoning about resource limitations.

To actually define IRTPS systems we need to give precise meaning to
the notions mentioned above, and to others such as reactivity, robustness,
flexibility and uncertainty. In section 2 we propose a neutral setting in
which these terms can be defined, which is compatible with the
framework proposed in another workshop paper, "Notes on Evaluating
Methodologies for IRTPS Systems," by Stan Rosenschein, Barbara Hayes-
Roth, and Lee Erman. In section 3 we introduce several intuitive notions
regarding IRTPS requirements and define them in terms of the proposed
framework. In section 4 we briefly outline our particular perspective on
IRTPS systems, that of real-time intelligent agents (on which we say
more in two attached documents). In section 5 we give recommendations
regarding the testbed environment. Our recommendations regarding
experimental methodology appear in the above-mentioned paper and are
not repeated here. In section 6 we offer a particular recommendation for
structuring AFOSR's IRTPS Research Program.

2. A Computational Model for IRTPS Systems

This section discusses how the modeling of a computational device and its

environment, and draws on an analogy with control theory.



1M-3

Franz Reuleaux' book of 1876, The Kinematics of Machinery, is
considered to have laid the foundations to modern kinematics. His insight
was the following. In order to reason about the possible motions of
physical objects in space, both rotation and translation, one should focus
not on the single object but on pairs of adjacent objects, the kinematic
pair. The fundamental object of investigation, proposed Reuleaux, was the
interaction between physical objects, the joint. The basic question, given
a joint between two objects in a specific geometric configuration, is
what translational and rotational freedom they allow each other.
Reuleaux was able to give a general answer to the question (which since
then has been refined and extended).

A similar view of computation is possible, which focuses on the
interaction of a machine with its environment. Furthermore, as in the
case of kinematics, one need not speak of a machine as one sort of object
and its environment as another; instead they can be viewed symmetrically
as interacting machines, the informatic-pair. A theory of any sort of
computation now becomes a theory about the interaction between
machines.

A few simple definitions are probably in order at this point. We first
define an automaton to consist of several inputs and outputs, an internal
state, and a transition function. The transition function is the only
nontrivial aspect of the definition: it specifies that the state and output
of the machine at each time t are determined by its state at time t-
deltaS, and its input at time t-deltal. In the following we assume DT, a
set of nonzero durations. In the context of an IRTPS system, we take DT
to be the positive real numbers.

Definition 1. An automaton (also called a machine) is a tuple
[S,I,O,F, deltaS, deltal]

where S is a set of states, / is a (possibly empty) set of n-ary tuples of
input values (for some fixed n), 0 is a set of m-ary tuples of output values
(for some fixed m), and F is a transition function F: S X / --> S X 0, and
deltas, deltal are respectively the state and input lags.

Thus, if the machine's state at time t-deltas is s 1 and its input at
time t-deltal is il and furthermore F(sl,il)=(s2,o2), then at time t the
machine will be in state S2 and have output 02.

With the exception of the temporal aspect, this is a standard construct in
system-modeling disciplines. It is a very general model. Although we
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will restrict the discussion in this manuscript to finite and deterministic
automata, we- allow in general infinite sets of internal states and
stochastic transition functions.

In general we cannot speak of the behavior of the automafnn, since
that depends on the input. The one case in which we can do it is when the
set of inputs is empty.

Definition 2. An automaton with an empty set of inputs is called closed;
otherwise it is open.

For a closed automaton we can assume a unary transition function,
one that depends only on its internal state. Given an initial history of the
closed automaton's internal states and outputs, we can define the trace
(or run or behavior] of the automaton at all future times in the obvious
way.

The systems we build, whether they are low-level process
controllers or high-level planners, are open automata; we can model their
behavior only in conjunction with their environment, which, as was
mentioned, will be viewed as simply another automaton.

We first define what it means to wire together a collection of
automata. Intuitively, when we wire such a collection we connect some
inputs to some outputs: an input is connected only to an output of another
machine, not necessarily all inputs and outputs are connected, and at most
one output is connected to each input and vice versa. (It may seem natural
to allow connecting more than one input to a single output. We disallow it
because it makes for cleaner semantics of. composite machines below.
However, we allow a machine to have several outputs that always carry
the same value.)

Such a wired set of automata induces a new automaton. Intuitively,
the new states are the cross-product of the old states, the new inputs are
the union of the old ones that have not been connected to an output, and
the new outputs are the union of the old outputs that have not been
connected to an input. The only nontrivial aspect is the definition of the
new transition function. The subtlety is in the timing. Suppose we
manage to catch the collection of automata at a moment when all of them
just switched to a new state, which by definition is a new state for the
composite machine. When is the next state-change of the composite
machine? Intuitively, the composite machine will undergo state
transitions at several times, corresponding to the different delays of the
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individual machines. However, by definition any automaton has a single
pair of delays associated with it. Indeed, we will define the composite
automaton to change state as soon as any of the individual machines do. In
other words, the delay time of the composite automaton is the minimum
among the delay times of all individual automata. However, in the new
state of the composite automaton each individual automaton will switch
to a new "intermediate" state, which will record thp remaining delay time
of that individual machine.

Definition 3. (Formal definition is omitted.)

One specific kind of wiring is of particular importance, and that is
the wiring of two machines into an informatic pair.

Definition 4. An informatic pair is a pair of automata wired together so
that every input of one automaton is wired to an output of the other
machine, and vice versa.

By definition, therefore, an informatic pair induces a closed
automaton, whose trace is well-defined.

3. Formal Definitions of Intuitive IRTPS Concepts

We propose the model outlined in the previous section as one in which
to couch discussion of IRTPS issues. Specifically, we propose viewing
the IRTPS system as a machine wired to the environment. The various
considerations that have been raised in the past can be given precise
meanings in terms of the class of environment-machines being considered,
their internal structure (which the "intelligent" system will be able to
exploit), their wiring to and from the IRTPS (assumptions about input and
output), and the internal structure of the IRTPS itself.

We do not propose a comprehensive list of criteria for IRTPS systems,
only the setting in which to define them. We hope to reach a concensus of
sorts on the criteria during the workshop itself. The most general
formulation of them presumably is a some maximization of a utility
function over time. Such a requirement would have to specify the class of
environments being considered, and the utility function. This is
sufficiently general that it's probably both correct and useless (though
others may wish to correct us). What we will do instead is pick a few
keywords tat have been used in the past, and attempt to give them a
more-or-le, precise meaning in our model. In most cases, these
definitions 'JI short of fully capturing the intuitions behind the terms;



If-6 Shoham & Hayes-Roth

we hope to improve these definitions as well as formulate new ones for
other important terms at the workshop. Nonetheless, even these partial
definitions contribute to our understanding of these terms by showing
that some of them are neutral specifications of the performance required
of an IRTPS system, while others are specifications of the internal
workings of a particular IRTPS system architecture. (See related
discussion in the workshop paper "Notes on Evaluating Methodologies ... ")

Timeliness

Intuitively we require that an IRTPS system not only produce correct
or useful output, but to do so at the right time. This requirement
translates in our framework to a restriction on delays allowable between
certain outputs of the environment-machine and its reaching certain other
states later. In the simple form the restrictions are absolute, and in the
more sophisticated form they are stochastic, allowing occasional harmful
long delays in exchange for extra speed at most other times. (From here on
we'll talk only of absolute requirements, understanding that the
definitions can be extended to the statistical case.)

Some of the other notions below are mentioned in service of

timeliness.

Internal Clock

Intuitively, this is a requirement that the IRTPS have a notion of the
passage of time in the real world. In our framework this translates to a
requirement that some component machine of the IRTPS change at a
constant rate.

Recency

The IRTPS should not fall behind real time to handle a backlog of
inputs and it should not operate on seriously out of date inputs--unless it
has explicitly decided to do so. In terms of our framework, the probability
of an environmental state change influencing an IRTPS system state
change should decrease rapidly to 0 over time. If the IRTPS sytem has
internal structure, then the probability that state changes in its
components will affect one another should decrease rapidly to 0 over
time.

Guaranteed Cycle Time
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Intuitively, we require that the IRTPS never get "lost in thought" for
an unbounded period. In our framework this translates to upper bounds on
the state and input delays (deltaS and deltal) of the IRTPS-machine.

Unpredictability

Intuitively, there is a significant number of environment state and
output changes that the IRTPS system cannot predict. In terms of the
framework, this means the rate of environmental state transitions varies
widely.

Asynchrony

Given this unpredictability, an IRTPS system must receive inputs when the
environment produces them and not on any arbitrary schedule. To make
sense of this in terms of our framework, we need to model the IRTPS
system as a wired set of sub-automata, including some for input
reception. Then, the rate of state changes in input reception components
must be independent of the rate of state changes in other components.

Data Glut

Intuitively, the IRTPS system will be overwhelmed with data, and
will be able to act on only a small part of it. In our framework means that
the wiring between the IRTPS system and the environment be dense, with
many more input changes to the IRTPS machine than state changes at any
given period.

Selectivity, Intelligent Data Filtering

Intuitively, in order to cope with this data glut, the IRTPS cleverly
chooses which inputs to process. Defining intelligent data filtering in
terms of our framework will depend upon the internal structuring of the
machine as a set of wired sub-automata and specification of dependencies
among their state changes.

Uncertainty, Noise

Intuitively, the data and world model available to the IRTPS system
Wii'll be paiiai, approximate, and sometimes plain wrong. In our
framework this translates into imperfect correlations between inputs to
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and states of the IRTPS, on the one hand, and states of the environment, on
the other hand.

Modeling, Prediction, Foresight

Under some architectures, the IRTPS system will have a model of the
enviroment, which it can use to predict the future and thus guide its
actions. In our framework this is captured by a requirement that some
component of the IRTPS system have an internal structure that stands in
correlation to the internal structure of the environment. Furthermore, this
component must influence state transitions of the IRTPS.

Robustness, Graceful Degradation

Intuitively, as enviroments get more demanding, the performance of
the IRTPS system should deteriorate only gradually. To define this concept
in our framework, we would have to define measurements on
demandingness of the environment and quality of performance cf the
IRTPS. For example, demandingness of the environment might be measured
in terms of number of state variables or rate of state changes. Quality of
performance wculd depend upon application-specific utility functions.
Then graceful degradation implies that small changes in demandingness
should produce small changes in quality.

4. Perspective on Real-Time Intelligent Agents

We have attempted so far to use as neutral a language as possible,
free from terms for which different researchers have conflicting
intuitions, or from presuppositions about possible solutions. We now
deviate from this restriction and talk briefly about our perspective on
real-time intelligent agents.

The term agents is used so much nowadays that it has become
meaningless without reference to some particular notion of agenthood.
What we mean by this term is a system that is embedded in a temp.oral
framework, and about which one can talk in terms of its having knowledge
and beliefs, desires and goals, reasoning capabilities, resource
limitations, and similar other mentalistic-sounding terms.

We see several related advatages to dragging th;S notio. of

agenthood into the context of IRTPS. Among other things, it allows us to:
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* ascribe to the system knowledge of the environment and the related

abilities to interpret past events and to predict and plan for future
events; ov

* talk of the goal the system has at any point in time, and the

knowledge it needs in order to achieve the goal;

* design and explain the IRTPS as making tradeoffs among different

goals, having knowledge of its reasoning resources, and making decisions
such as whether to spend time incorporating new data into its world
model.

In general, the agent level gives formal meaning to the "I" in IRTPS.
If in addition we view the environment as containing other agents we have
additional benefits. For example, we can:

* talk of the IRTPS having knowledge of the goals, knowledge and
capabilities of these other agents;

* specify the class of environment in which the IRTPS is to function

at least partially in terms of what agents it contains, whether they are
hostile or friendly, what their capabilities are, etc.

Thus, "agent" is a useful concept to have, both in specifying the problem
and (especially) in specifying architectures.

In order to make engineering sense of this concept, however, we
must do at least the following:

1. Define the notions we associate with agents, such as knowledge and
goals, including their temporal dimension. For example, what does it mean
for a process controller to "know" that it "needs" to lower the pressure in
the chamber within five seconds? What does it mean for the agent to
"believe" that doing so will prevent an explosion?

2. Explain the connection between these high-level notions and low-level
behaviors like sensing a signal or actuating an effector.

3. Explain the special constraints placed on agents by real-time
evi r II "lle t I t S.

We have both made some progress in this direction, which we describe
briefly in two attachments to this paper. "Agent-Oriented Programming"
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outlines a general approach to treating information systems as formal
agents, and some related work that is taking place in Stanford's Robotics
Lab. "Research on Adaptive Intelligent Systems" outlines architectural
work and related applications being developed in Stanford's Knowledge
System's Laboratory.

5. Recommendations regarding Testbed

5.1 Desirable Features of Testbed Environments

Testbeds should include simulated IRTPS environments both for
development purposes and for controlled experiments. For verification, it
will be necessary to test at least some scenarios in real environments,
for example involving interface to a real vision module or to a real
process controller.

Testbed simulations should provide appropriate sensors and effectors
for use by application systems. They should be factorable--provide "black
box" solutions to component tasks--so that researchers can choose to
address only those parts of the application problem that interest them.
Simulations should be tunable--permit constant factor speed
modulations--so that researchers can ignore conventional issues of
efficiency and concentrate on more fundamental research issues. Finally,
simulations should be instrumented--equipped with meters on important
performance variables--so that researchers can analyze the different
aspects of performance of their application systems.

Testbeds also should provide a suite of modular application scenarios.
Each scenario should be issue-oriented, stressing a particular aspect of
intelligent real-time problem solving, such as hard real-time constraints,
conflicting sensor data, need for synchronization, etc. Each scenario
should include a simulation controller to "play" the scenario and an
associated knowledge base (in some neutral representation scheme) for
use by application systems in handling the scenario. There should be
several variations on each scenario. Base scenarios are for use by
researchers in developing aspects of their application system to address
the scenario issue. Standard test scenarios should exhibit the same issue-
related phenomena as the base scenario, but differ from it on incidental
features. For example, a standard test scenario for hard real-time
constraints might different from the base scenario on which event carries
the constraint, when it occurs in the scenario, what other events occur in
the scenario, etc. Standard test scenarios will allow researchers to
determine whether they have developed problem-independent approaches.



Stress test scenarios also should correspond to the development
scenarios, but they should exhibit extreme cases of the issue-related
phenomena. For example, a stress test scenario for hard real-time
constraints might impose much shorter time constraints or introduce
many more competing events. These scenarios will allow researchers to
determine how their approaches degrade under extreme conditions. These
different types of scenarios merely illustrate the kinds of scenarios we
think would benefit research in an IRTPS testbed.

5.2 Desirable Features of Testbed Domains

An IRTPS testbed domain should exhibit the general task
characteristics identified in section 3. To take a few examples, we are
interested in domains in which:

* it is not feasible to exhaustively sense interesting features of the

environment;

" situation assessment requires interprktion of sensed data and
fusion of data from multiple sensors;

* it is not feasible to enumerate every condition the IRTPS will

encounter;

* the environment is orderly enough to permit probabilistic
prediction of future events;

* coordinated courses of action are sometimes superior to
sequences of locally determined actions;

* events vary in the deadlines associated with effective responses;

* multiple goals vary in importance;

* a broad range of relevant knowledge is available;

* explanations of phenomena and rationales for behavior are

required.

Because different application domains may differentially emphasize
particular subsets of these features, it would be preferable to identify at
laast t,,o or three .t.bed applications to avoid artificially skewing
research activities toward an arbitrary subset of relevant issues.
Moreover, we do not believe that an IRTPS testbed application should
replace other applications being studied in the research community, but
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rather that a diversity of applications promotes a more complete
exploration of the space of relevant research issues and solutions.

6. Recommendations for Structuring the IRTPS Research
Program

Three programmatic objectives motivate our remarks on structuring
the IRTPS Research Program:

* to stimulate new IRTPS research by providing environments in

which new investigators could begin to study IRTPS issues without the
overhead entailed in developing one's own application;

* to facilitate interactions and exchange of results in the IRTPS

community by providing a communications medium in which investigators
could demonstrate approaches originally developed in diverse application
domains that are unfamiliar to their colleagues;

* to permit a more scientific approach to IRTPS research by providing

a controlled environment for comparative evaluation of competing
approaches.

As discussed at the first AFOSR workshop on IRTPS, development of
a high-quality and easily accessible testbed application that meets all of
the requirements would be an expensive and time-consuming task. If we
aim for a diversity of testbed applications, as recommended in this paper,
the cost rises proportionately. At the same time, this effort would be
redundant with efforts already underway by individual researchers to
develop a variety of interesting IRTPS testbed applications for their own
work, for example:

* Hayes-Roth's simulation of the intensive care environment;

* Hayes-Roth's simulation of GaAs crystal growth by MBE;

* Cohen's simulation of fire-fighting in Yellowstone Park;

* D'Ambrosio's simulation of wilderness exploration;

* Lesser's simulation of vehicle fleet maneuvers;

* SRI's Flakey the robot;
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* Latombe's Gofer robots.

Given AFOSR's budget and timetable for this research program,
developing a new community testbed application does not seem to be the
best use of scarce resources at this time.

As an alternative, we recommend that AFOSR use its IRTPS Research
Program to encourage empirical research on testbed applications
currently being developed in the community, with particular interest given
to two kinds of proposals:

(a) Proposals that offer, in addition to new empirical research, to
deliver a testbed version of their application domain suitable for use by
other members of the community;

(b) Proposals that offer to comparatively evaluate alternative
architectures through controlled experiments within their application
domain.

This structuring of the program would address all three progammatic
objectives:

* Testbed applications obtained under the first kind of proposal would

stimulate new IRTPS research by providing environments in which new
investigators could begin to study IRTPS issues.

* These testbed applications would facilitate interactions and

exchange of results in the IRTPS community by providing a
communications medium in which investigators could demonstrate
different approaches.

* Research conducted under the second kind of proposal would

specifically include comparative evaluation of competing approaches in a
controlled environment.

This structuring of the program would offer two additional advantages:

* It would offer individual researchers more latitude in choosing an

application domain for their work.

* It would guarantee exploration of a diverse set of application

domains and a broad range of IRTPS issues within the research community.



14 Shohamn & Hayes-Roth



v- I

IV. Intelligent Real-Tihne Problem Solving Workshop -- Dean

(This document was submitted to the workshop coordinators as an
indication of research inte'est and willingness to participate in the

workshop. It is included here because of its succint description of the
ERTPS problems.)

Thomas Dean
Department of Computer Science

Brown University
Box 1910, Providence, RI 02912

Phone: (401) 863-7645
Fax: (401) 863-7657

Email: tld@cs.brown.edu

1 Rationale and Level of Participation

I have been doing research in the area of real-time planning and problem solving for the
last three years. My students and I have published papers on the subject il IJCAI-89,
AAAI-88, and several other conferences and workshops. I am working on a book entitled
"Planning, Execution, and Control" which treats the subject of real-time planning and
control in some detail, and, hence, I am very interested in tracking developments in the
area. Contingent on the level of effort involved, I would be willing to act as a reviewer for

one of the three exploratory groups and either lead, or participate in a discussion of that
group's work. The rest of this document consists of paragraphs drawn from recent papers
and proposals arranged in some semblance of a coherent account of my IRTPS research
interests.

2 IRTPS-Related Research Interests

The trad.fionni view of plan-nng in robotics and .. i...... , tellugence a3 off-line computation
relying on precise models and perfect information has been challeiuged by recent work on

situated activity- the study of robotic control systems embedded in complex environments.
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The challenge has been met with proposals for reactive system : systems designed to react

directly to perceived conditions in situations where there is little or no time to deliberate

on how best to respond. The work on reactive systems, however, has diverted effort from

planning: predicting possible futures and formulating plans of action that take into account

those possiblities. My :urreut research can be seen as attempting to connect traditional

research in planniig with the constraints governing embedded systems, by reformulating

the process of planning in terms of control. Viewed from a control perspective, reactive

systems embody particular strategies for controlling processes. In order to evaluate reactive

systems, we must analyze the connection between such strategies and the physical systems

they seek to control. The tools required to perform such analyses are readily available from

computer science, control theory, artificial intelligence, and the decision sciences.

Over the last few years, my students and I have examined a number of the tradeoffo in-

volved in building robotic systems that solve time-dependent control problems. We assume

that robotics engineers have as their primary goal the design of high performance systems.

One can often improve the performance of a robotic system by trading accuracy for speed in

decision making. In some cases, the tradeoffs can be made at design time and compiled into

a run-time system. Alternatively, general knowledge for making the tradeoffs can be built

into the system, enabling it to make the necessary tradeoffs at run time. Many systems

will employ a hybrid strategy involving compiled design-time tradeoffs coupled with some

means of making additional run-time tradeoffs.

Previous approaches to planning have taken a rather cavalier attitude toward the avail-

ability of computational resources. The fact that planning systems have limited computa-

tional resources leads to the need for a theory of time-dependent planning. In our framework

for time-dependent planning, we view decision processes as consumers of computational re-

sources, and producers, as well as consumers, of informational resources. We refer to the

task of allrcating computational resources to decision processes to maximize some measure

of utility as deliberation scheduling, and we employ standard methods from decision theory

to analyze time-dependent planning problems and their solutions.

By making use of a class of approximate decision procedures we call anytime algorithms,1

'An anytime aigorithm corresponds to a decision procedure that can be interrupted at any time during its

execution to return an answer. For the sorts of anytime algorithms wc are interested in, one can determine
the expected utility of the answers returned by the corresponding decision procedure as a function of the

time spent in computing the answers. The most useful anytime algorithms are those whose expected utility
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we are able to view the problem of time-dependent control as a combinatorial optimization

problem and analyze it in terms of the theory of computation. For certain control problems,
we have been able to devise strategies for making tradeoffs at run time that are provably

optimal. We are also looking at design-time strategies for generating o, ';-J run-time

systems. By casting a time-dependent control problem as a sequential decision-making

problem, we can apply stochastic modeling techniques and the theory of Markovian deci-

sion problems to analyze the tradeoffs involved in using a fixed-computation-time decision

procedure as part of a run-time system.

We view planning as the process of anticipating possible future courses of events so

as to choose among them. Planners are embedded systems that have to synchronize their

behavior with that of the world in which they are embedded. Other researchers noting

,he expressive limitations of the predictive models used in early planning research have

sought to develop better models that capture uncertainty and ignorance on the part of

the planning systems. In particular, researchers have begun to explore various stochastic

modeling methoas [17, 20, 21, 1] that make more realistic assumptions about what an

agent might know about its environment. We have developed one such model for prediction

(7, 8] that extends previous work in temporal reasoning and promises to provide a basis

for planning under uncertainty. Unfortunately, the inference required for computing our

stochastic temporal models is computationally prohibitive (5], and, hence, we fall prey to the

complaints of those researchers who have abandoned research in planning on the basis that it

makes unrealistic assumptions about available computational resources. Recently, however,

several researchers have devised methods [4, 14] for computing approximations in a manner

consistent with our approach to time dependent planning [6, 2J. It is our expectation that

such approximation algorithms coupled with methods of Horvitz (11, 12, 13], Russell and

Wefald [19], Hansson and Mayer (91 and others will pave the way tc. developing a realistic

model of planning under uncertainty and time constraints.

Ultimately, we would like some means of synthesizing high-performance run-time sys-

tems from a model of the anticipated run-time environment and a set of performance criteria

[15, 18, 16, 101. Unfortunately, the current methods for automated synthesis using existing

modeling techniques are prohibitively expensive from a computational perspective. In order

to reduce the complexity of synthesis, we are seeking ;r~ternative modeling techniques that

employ only a small number of parameters. For instance, by characterizing the utility of the

increases monotonically over some sianificant range of computing timps.
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components of a run-time system as linear functions of a few parameters, certain synthesis

problems reduce to solving a set of simultaneous equations. While the alternative modeling

techniques often fail to capture important features of the run-time environment, they do

appear to be useful for certain classes of time-dependent control problems; characterizing

thi- class precisely is one of our current objectives.
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V. Real-Time Problem Solving: Preliminary Thoughts

N. S. Sridharan, R. T. Dodhiawala

FMC Corporate Technology Center, Santa Clara, CA

Abstract
Before real-time problem solving approaches gain widespread fascination leading a flurry of

half-hearted attempts, it is important to review the range of issues involved to successfully build
such problem solvers. We are at an appropriate juncture in the work on real-time problem solvers
to be able to highlight the basic issues. This paper presents preliminary thoughts on the nature of
the real-time problem and the issues involved in building such systems - ranging from
architectures to performance evaluation and feedback. There are a few issues, like verification
and fault-tolerance, that are not discussed.

1. Model of a Real-Time Problem Solver
A model of a distributed, real-time problem solver is shown in figure 1-1.

The main features of the model are:

* The system is event-based: all interactions between the system and the environment
and between subsystems is captured in events. Processing i. the system is driven by
the need to respond to these events. Events must specify deadlines by which they
may be responded to.

* The system has buffers at various interfaces, permitting asynchronous operation.

The system interacts with the environment via sensors and effectors. Sensors collect
and buffer data from the environment. Effectors accept signals which represent
commands (for example, on/off, set-speed) that have been buffered by the system.
Pre- and post-processing of the sensor data and effector commands may be
necessary.

The system interacts with one or more operators in an asynchronous fashion. The
interaction is facilitated by display devices and graphical interfaces.

* The system performs assessments and maintains a model of the environment. Task
models, domain goals, and performance goals enable replanning according to the
established policies for reaction.

e The meta-level system performs the planning and scheduling of domain actions by
considering deadlines and required response(s) using the resource model. The
resource model provides a description of the use and availability of the physical
resources (like sensors) as well as computing resources.

We use this model of the system to define terms, to explore issues and approaches to real-time
problem solving. The type of problems we are interested in cover a spectrum that can be
categorized as follows:
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Figure 1-1: Model of a Real-Time Problem Solver

* simple, non-interactive, expert systems (example, for online diagnostics of
automobile fujnctions)

* telerobotic systems where the major decision-makdig responsibility reu on the
operator (example, pround controlled space probes)

* multi-agent systems woiking in controlled environments with limited problem-
solving capability (example, multiple autonomous munition handling robots on a
carrier deck)

* i..*-.a1-9 . OM.U1g a system opatingwin highly compl1ex enviroinents
(example, Pilot's Associate, Submarine Operations Automation System).

Different real-time issues become prominent as we progress through the problems from the
simple to the complex, and there is a need for common terinology with which to describe the
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various aspects of real-time performance.

1. I. Terminology and Deinitans
Speed alone is not real-time. A knowledge processing system must address the following

aspects of real-time performance: speed, responsiveness, timeliness, and graceful adaptation. We
define these four aspects of real-time next.

Speed is defined as the number of tasks executed per unit time. Typically, this is a function of
the type of tasks, the hardware/software systems being used, and the granularity of the tasks.

Responsiveness is defined as the ability to take on new tasks, that is, responding quickly to
user interaction and to stay alert to external data. Responsiveness facilitates reactivity by
aowing the system to focus attention on the more critical data for further processing.

Timeliness is defined as the ability of the system to react to and meet deadlines. Predicting
response times is an aspect of timely behavior, allowing the system to prefer more critical tasks
based on the prediction.

Graceful adaptation is defined as the ability of the system to reset task priorities to adjust to
changing workload or resources. Graceful adaptation allows for a smooth transition across
potential perturbations to the system. Graceful adaptation also includes monitoring performance
indicators and resetting system priorities to ensure performance within tie desired bounds. Thus,
graceful adaptation allows system behavior to adapt to demands of the external as well as
internal destabilizing effects; the performance of the system must degrade gracefuily rather than
cause the system to halt abruptly.

While speed is indeed fundamental to real-time, a knowledge based system must exhibit all the
,ur aspects for acceptable real-time performance.

vmptoms of Real-Time Failure
,,mance failure of a real-tin system can be characterized in several different ways. We

aok at the levei of the system at which a failure occurred, or base it on the type of event the
system was attempting to respond to, or simply classify the failure along one or more observable
symptoms.

A system may be described at three distinct levels as follows:
* Problem Lcvek This level consists of the enviroment, the operator, and the issues

in the problem domain and the requirements on solving the problem. Failures here
are indicative of the lack of real-time consideratiors at the problem formulation
stage.

* Design Level: This level consists of the hardware and software design. This layer
addre s- d.e fLmcdatcr " an. pellunr-1-Ince requirements of the system, typically
hosted on a conceptual architecture or problem-solving framework. Failures at this
level are due to lack of appropriate technology (hardware, software and algorithms)
to support real-time performance, the misapplication of the existing tcchnology or
the lack of performance models to evaluate system's performance.
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*Implementation Level: This level is the actual physical system mounted on the
appropriate hardware and 3ofrware plasfoni(s). The implementation consists of the
application system, application support tools, software support, and hardware.
Failures at this level include hardware malfunctions (poor reliability), poor quality
control of the software, and inadequate performance probes and metrics.

The design level is the more interesting level to study real-time issues, because it can be
independent of particular applications or implementation methodologines. While there are
interesting real-time issues at the. problem and implementation levels, our discussion will be
.tirected primarily at the design level.

There are several dimensions of real-time failures. The severity of the failures depends on the
stress on the system, but the following failure symptoms may be observed.

e Communication traffic jams: thcre is too much information that is being transmitted
between environment and system or between the subsystems.

* Ignored critical events: the system is incapable of recognizing critical events from
the non-critical events for further processing.

* Poor solution quality: the system does poorly in the trade-off between solution
quality and time.

* Wrong solution: in an attempt to meet deadlines, the system's response is incorrect.

* No solution: the system is unable to produce even an acceptable partial solution in
the given time.

* Data glut: the system is unable to manage incoming data effectively, causing a
backlog of data at its input ports.

* Breakdown of com, .nication with interactive user: the system is not responsive to
the needs of the user with which it interacts.

e Thrashing over resource allocation: the system is being overly reactive and is unable
to maintain its focus of attention on the critical events or ta*ks long enough without
rf allocating resources.

While this is not an exlusti-ve list, it does reflect on the kind of symptors an intelligent real-
time problem solver must address.

3. Factors of the Problem Environment Affecting Real-Time Performance
A real-time system is hnteded to operate in environ tets with the following characteristics:

" Dynamic: Mon of the effects obamrved in the environment are, beyond the control of
the system and introduce large variations in the levels of priority W real-time
stress. The effects of the system's plarmed actiotr are often unpredictable also,
adding to the dynamics of the enviromnent in which the system operates.

" Continuous Interactions: Even after being responded to, the changes are the basis of
continuous interactions possibly because the influence of planned actions is often
hard to comprehend over future time intervals.

" Uncertainty: The level of certainty of the information is generally low mainly due to

K__
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poor sensors or too much information with too little content needs to be assimilated
in an unreasonable amount of time (data glut).

" Time-bounded Interactions: The response times are fairly short with stringent
deadlines which if not met may cause cascading effects possibly rendering system to
fail catstrophically.

" Discontinuous Changes: The changes may be abrupt and sudden, hard to anticipate
and cause major perturbation leading to excessive demands on time and resources.
The discontinuous changes tend to destabilize the system beyond recovery.

Not all these characteristics may be present in all real-time environments and various
manifestations of these are also possible.

4. Approaches
The discussion in this section is intended to indicate that some thought has already been given

to real-time problem solving but there is a need for developing sound techniques that will
facilitate further advancement of the issues involved in successful building and deployment of
such systems. Thus, we set the motivation for exploring the issues and approaches in this section.

4.1. Stages of Development of Real-Time Systems
Knowledge based systems are increasingly being used to address real-time problems that arc

too complex for conventional real-time approaches. Knowledge based systems, however,
introduce some new issues while solving some old ones. The one that stands out prominently is
the difficulty of predicting real-time response times. Knowledge based systems utilize search
methods and pattern-matching techniques extensively, that make run time highly data-dependent
and context-sensitive. In order to address the predictability and other such issues, we feel that
real-time considerations must not be relegated simply to implementation time tactics of code
tuning and ad hoc enhancements. They must be a part of the total design and development effort,
and, in fact, spans the life cycle of the application.

Figure 4-1 shows the mapping of the various stages of development of a knowledge-based
application to the real-time issues that are relevant at each of these stages.

Real-time performance cannot be achieved by run-time capabilities alone. Even the best
approaches based on the good scientific principles may not work under particular situations and
cannot be depended on for delivering the desired performance all the time. Real-time issues are
pervasive at all stages of the development. The "insertion" of real-time solutions begins right at

the problem formulation stage. Given an application, there may be ways to specify the problem
such that it becomes amenable to real-time techniques downstream. Real-time consideraxions
may then be given attention during design; knowledge engineering; problem-solving architecture
development; performance testing, validation and tuning; and finally, dynamically at run-time. A
certain amount of engineering is essential to mv-t the desands of today's applicaions. Generic

approaches, while relevant, may just not work. A careful balance between these extremes of

science and engineering is essential, both to meet performance requirements as well as to

improve systern robustness.

Our experience may be used for evaluating the IRTPS problem(s) and the proposed approaches
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Figure 4-1: Real-Tunme i~ues malpped to the stages of development of a
problem solver

along these lines. We will also study carioniial problem situations and generate and evaluate
approaches that address the issues.

4.2. Framework for Discussing Approaches
We now present a fr ewodr, shown infW 4-2, which will be used to discuss the

approaches.

We must con.bine the best of conventional real-time approaches with Al techniques for
effectively addressing real-time ismus in a knowledge-based system.

Man-machine interfatce must consider bandwidth of communication between the operator(s)
and the system, and how it changes according to the levels of autonomy,

Real-tim issme in knowledge re~mesntation call for knowledge intensive mneta-level control.
Based on perfornuane statu, the system determines the impact on performance goals which if
needed may be dynamically changed according to predeflmed policies.

Reasoning in real-time primarily infuences solution quality versus effectiveness tradeoffs. The
main issue is to produce acceptable solutions using limited resources. Perforrrance models,

tempral reasoning uAd resource calculus can be used to determine tradeoffs.

Problem formulation must conr'ider alternative approaches to the problem with predico-able
tradeoffs in quality of the solutions versus the effort exnded. Real-time issues must begin to
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Figure 4-2: A framework for investigating real-time approaches

play a prominent role starting at this stage.

The problem-solving framework must be tunable to the needs of the applicaion. The main
advantage of a problem-solving frameiork is to make selected control decisions implicit with
tie capability to reAsoo about tadeoffs in tim and resources through predefined control flows
which match problem situation&

Knowledge engineering is a key step in the proper identification and acquiring of performance
requirernents. The knowledge enginteering methodology needs to be gmended to V-Ml ral-
time considerations according to the definition of real-time.

Prevalent rapid pzototyping methodology must be extended to not caiy ev-Iuate the functional
but also the real-time performance feasibility of the approaches.
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Performsnce measures and metrics are essential to validate real-time approaches. They must be
based on the definition of real-time so that they can be controlled to ensure that the system
Performs within the desired bounds. Performance measures and metrics must be defined both for
the architecture and the domain system.

System architecture must be tunable to permit experimentation with alternate approaches, be
controllable and predictable to facilitate acceptance.

Design methodology must incorporate mechanisms which facilitate rapid prototyping and

performance prediction.

Besides the conventional real-time needs for interrupts, etc., the hardware system must provide

the capabilities for hosting the software and application systems efficiently.

Software system must support the scheduling, communication, distributed implementation, and

collecting performance data.

4.3. Solution Candidates
Based on our experiences in the Real-Time Risk Reduction (RTRR) program (sponsored by

DARPA, subcontract to the Pilot's Associate program) as well as work on a real-time process
management application, we are well prepared to bring to the project a broad perspective on bo,..i
the science and engineering aspects of developing real-time knowledge-based systems.

Our earlier work on real-time systems involved studying general real-time issues,'investigating
available and imminent technology (both conventional and Al, hardware, software and
algorithms) that will support real-time performance, developing innovative solution candidates
for the near term with potential for evolutionary growth, develop a real-time knowledge
processing architecture and demonstrate its validity for tuning and achieving real-time
performance, and developing and demonstrating a scenario from the Pilot's Associate domain.

An important part of ou earlier work was developing performance measures and metrics that
can be used to evaluate real-time performance. Timeliness used a metric called Event Response
Timeliness (ERT) which was defined in terms of importance-weighted scores of average lateness
for tasks that were late. Responsiveness used a metric Response Latency, which was defined in
terms of average time delay between the time of arrival of an evem in the buffer and the time at
which the task was picked for execution. Extensive experimentation and performance evaluation
was a key feature of the RT-l work under RTRR. From our early work, we know that a system
cannot show extmes of both responsiveness and timeliness at the same time. The nature of our
work will involve developing such fiondamental insights that are supportable empirically and
explainable theoretically. We believe that studying similar limitations is cracial to developing
the means to alleviate the impact of these limitations.

Our solution candidates capture esscntial aspects of approaches for real-thne performance, and
Ie - of siock of current ideas.

* Control Reasoning: Use knowledge about task demands, time constraints, goals and
system resomuces to select methods and formulate schedules. - improves timeliness
and graceful adaptation. The specific solutions undet tl'is category include
supervisory control, temporal reasoning, discretionary 10, and speed/effectiveness
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Focus of Attention: Use designs that permit quick and efficient shift of attention to
the more critical events. It improves responsiveness and graceful adaptation. The
specific solutions include interruptibiity of knowledge sources, interruptibility of
the top level control cycle, and prioritized triggering. Control reasoning is needed
for successful application of focus of attention techniques.

Parallelism: Execute knowledge sources in parallel and allow asynchronous event
transmission. It improves timeliness and speed. The specific solutions include
asynchronous execution of knowledge sources, asynchronous execution of the top
level control cycle, parallel execution of knowledge sources.

Algorithm Efficacy: Design new algorithms or redesign existing algorithms to
deliver approximate and acceptable solutions quickly. It improves timeliness and
graceful adaptation. The specific solution candidates include incremental
algorithms, algorithmic caching, cascaded algorithms, and anticip-.tory processing.

5. Current and Future Work
We list most of the issues in real-time problem solving and the early ideas on the approaches

on the basis on extensive study as well as implementation in the course of several applications at
FMC. The need to define basic concepts is needed to come to terms with the issues. There have
been several simultaneous attempts in the AI research community to define the basic concepts.
While we have merely presented our perspective, our study shows that it is mostly consistent
with other work. The two main areas where we direct our current efforts are architectures for
real-time systems and performance metrics. Future work involves problem-solving architectures
for classes of problems and verification of both functional and performance requirements.



V[. Agent Oriented Programming

Yoav Shoham
Computer Science Department
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1 Introduction

This is an abbreviated version of a manuscript that describes work we are
doing in the Artificial Agents group in the Robotics Lab. It touches on
issues that are subject of much current research in Al, issues that include
the relationship between a machine and its environment, and the notion
of agenthood. Many of the ideas here intersect and interact with ideas of
others. For the sake of continuity, however, I will delay placing this work in
the context of other work until the end.

The term 'agents' is used a lot these days. This is true in Al, but also
outside it, for example in connection with data bases and manufacturing au-
tomation. Although very popular, the term has been used in such diverse
ways that it has become almost meaningless without reference to a particu-
lar notion of agenthood. Some notions are primarily intuitive, others quite
formal. Some are very austere, defining an agent essentially as a Turing-
like machine, and others ascribe to agents sensory-motor, epistemic and even
natural language capabilities.

We propose viewing 'artificial agents' as formal versions of human agents,
possessing formal versions of knowledge and beliefs, desires and goals, capa-
bilities, and so on. The result is a computational framework which I will call
agent-oriented programming.

The name is not accidental, as AOP can be viewed as an ex.tension of the
object-oriented programming (OOP) paradigm. I mean the latter in the spirit
of Hewitt's original Actors formalism, rather than in the more technologi-
cal sense in which it is used nowadays. Intuitively, whereas OOP proposes
viewing a computational system as made up of modules that are able to
communicate with one another and which have individual ways of handling
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in-coming messages, AOP expands the picture by allowing the modules to
possess knowledge and beliefs about one another, to have goals and desires,
and other similar notions. A computation consists of these agents informing,
requesting, negotiating, competing and assisting one another.

This is the programming-paradigm perspective on AOP. An alternative
view of AOP is as a formal language. From this perspective it may be viewed
as a generalization of epistemic logics, which have been used a fair amount
in Al and distributed computation in recent years. These logics describe the
behavior of machines in terms of notions such as knowledge and belief. These
mentalistic-sounding notions are actually given very precise computational
meanings, and are used not only to prove properties of distributed systems,
but to design tlem as well. A typical rule in such a 'knowledge-based' system
is "if processor A does not know that processor B has received his message,
then processor A wil not send another message." AOP expands these logics
by augmenting them with formal notions of goals, desires, capabilities, and
possibly others. A typical rule in the resulting framework would be "if agent
A knows that agent B intends to do something agent A does not want done, A
will request that B change his intention." In addition, temporal information
is included to anchor knowledge, desires and so on in particular points in
time.

Intentional terms such as knowledge, beliefs, goals and so on are used in
a curious sense in the formal Al community. On the one hand, the defini-
tions (e.g., of knowledge) come nowhere close to capturing the full linguistic
meanings. On the other hand, the intuitions about these formal notions do
indeed derive from the everyday, commonsense meanings of the words. What
is curious is that, despite the disparity, the everyday intuition has proven a
good guide to employing the formal notions, when done in moderation.

The rest of this document is organized as follows. We first provide mo-
tivation for the Agent-Oriented Programming paradigm by looking at three
futuristic applications. We then outline the research programme, including
a sketch of the progress we have made to date. We conclude with a brief
comparison with recent related research efforts.
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2 Agent-Oriented Programming in the year

199x

We present three futuristic scenarios. The fiist involves only human agents,
the second both humans and machines, and the third only robots.

2.1 Office automation

(omitted)

2.2 Manufacturing automation

Alfred and Brenda work at a car manufacturing plant. Alfred handles regular-
order cars, and Brenda handles special-order ones. The plant has a welding
robot, known affectionately as Calvin. The plant foreman is Dashiel. The
following scenario develops.

At 8:00 Alfred requests that Calvin promise to weld ten bodies for him
that day. Calvin agrees to do so. At 8:30 Alfred requests that Calvin accept
the first body, Alfred agrees, and the first body arrives. Calvin starts weld-
ing it and promises to let Calvin know when it is ready for the next body.
At 8:4.5 Brenda requests that Calvin work on a special-order car which is
needed urgently. Calvin responds that it can't right then, but that it will
when it finishes its current job, at approximately 9:00. At 9:05 Calvin com-
pletes welding Alfred's first car, ships it out, and offers Brenda to weld her
car. Brenda ships it the car, and Calvin starts the welding. At 9:15 Alfred
enquires why Calvin is not yet ready for his (Alfred's) next car. Calvin tells
him why, and also that it (Calvin) expects to be ready by about. 10:00. At
10:05 Calvin completes the welding of Brenda's car, and ships it out. Brenda
requests that he reaccept it and do some painting, but Calvin refuses, ex-
plaining that it doesn't do painting. It then offers to weld another car for
Alfred. Calvin then proceeds to weld Alfred's cars, until 12:15 at which time
Brenda requests that Calvin commit to welding four more special-order cars
that day. Calvin replies that it cannot, since there are still six more cars it
promised to weld for Alfred that dv. Brenda requests from Alfred that he
allow Calvin to work on her cars first, finishing as many of Alfred's cars as it
can afterwards. Alfred refuses. Brenda requests that Dashiel order Calvin to
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accept her Important Request and cancel its commitment to Alfred. Dashiel
orders Calvin to weld two of Brenda's cars, and then as many of Alfred's as
time allows.

2.3 Gofer robots

It is 1995, and the nev Stanford Information Sciences building has been
completed. In addition to its human inhabitants, the building is populated
by about 100 Gofer robots. The role of the Gofers is to carry documents to
and from the copying machine, fetch coffee and sodas, and generally make
themselves useful.'

At a junction of corridors two Gofers, G-Ed and G-John, engage in the
following exchange.

G-Ed: I intend to turn into the north corridor.

G-John: So do I; you may go first. Where are you headed?

G-Ed: The copying machine.

G-John: In that case, will you xerox this document for me and drop it off
at John's office?

G-Ed: Ok.

G-Ed proceeds down the north corridor, and G-John scuttles back down the
west corridor. Half way down the corridor it runs into G-Nils.

G-Nils: Where are you headed?

G-John: To John's office.

G-Nils: Watch out, there's a traffic jam in corridor #25; G-Terry and G-
Mike collided, and it's not a pretty sight.

'The presence of the Gofers is an actual plan; the Gofer project in out Robotics Lab is
.urrently exPerimenting with three patforms. The completion of the building by the said
date, however, is pure speculation.



3 Research programme

The preceding scenarios made reference to mentalistic notions such as knowl-
edge, belief, desires, goals and capabilities. The goal (...) of our research is
to make engineering sense out of these abstract concepts. The result is to be
a programming paradigm w'iich we call Agent-Oriented Programming. This
framework is to have three primary components.

e A restricted formal language of intentional constructs such as beliefs
and goals, with clear syntax and semantics. This language will be used
to define agents.

* A programming language in which to program these agents, with prim-
itive commands such as request and offer. The semantics of the pro-
gramming language will be derived from the semantics of agents.

e A compiler from the agent-level language to a machine-level language.

In the following subsections we expand on these components a little bit.

3.1 Language definition

We need to first define a precise language for talking directly about knowl-
edge, beliefs, goals, and similar properties of agents. We have already begun
work in this direction; here are a few examples of statements in the language
of agents.

* The fact that at 9:00 Bob has a goal to purchase X-terminals at 10:00
is expressed by

(9 : 00, Gob(lO : 00, purchase(Bob, Xterminals)))

* The fact that at 9:15 Alfred believes that at that time Calvin has the
goal of welding car #14 at 10:00 is expressed by

(9:15, B,,d(9 :15, Gc,,,, (1 lO0 0, weld( Calvin, car-Il14))) )
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The fact that on Monday G-John knows that on Thursday he will know

whether on Wednesday G-Ed copied document #114 on Wednesday is

expressed by (M onday, KG.-Joh, (Thursday,
(I'G 0ohn (Wednesday, copy(G - Ed, document # 114)) V

[KGjoh,( Wednesday, -copy(G- Ed, document # 114)))))

To define the language precisely its syntax and semantics must be fixed.
Appendix A provides a few more details of the syntax, in its present stage
of development. A fuller description of both syntax and semantics can be
found in an article authored by Becky Thomas, Sarit Kraus and myself.

3.2 A programming language

The language discussed above will define the concept of artificial agents. The

second step will be a development of a language in which to program these
agents. Basic operations in this language will include:

* execute a primitive action;

* inform;

* request;

* consent;

0 offer;

* promise;

* persuade;

* negotiate

Both preconditions and effects of these actions will refer to goals, beliefs and
so on. For example, in its simplest version, a precondition of infrrming

that the speaker knows the information, and post conditions are that the

hearer knows it, that the speaker knows that the hearer knows, and so on.

This illustrates also the extent to which we will deviate from common

sense. The act of informing among human beings is very complex, and in-

volves many considerations, such as the speaker believing that the hearer
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does not already know the information, the fallibility of human knowledge,
and so on. We will incorporate into the formal language just as many of
those features as are both needed and amenable to formalization.

As is well known from speech-act theory, the interpretation of commu-
nicative acts can be complex. For example, an apparent informing act may
actually serve as a request ('that sandwich looks good'). We may wish to
incorporate some of these properties into the programming language.

As of now we have no report on the design and implementation of this
programming language.

3.3 Compiling into the language of machines

We have said that we intend to view machines as well as agents. If we wish
to do that, however, we face the problem of bridging the gap between the
AOP level and the agentless language of machines. Consider for example the
task of coordinating a welding robot with other activities in the plant. We
may find it convenient to speak as if the robot has "knowledge" of the cars
waiting to be welded and a "goal" to weld one of them, but ultimately we
need to connect to the sensors on board the welder and to its controllers.

For that we need to "compile" statements in the AOP to the machine
language, so that, for example, the high-level command "offer to weld the
next car" will be translated to the appropriate control commands. Of course,
each machine will have highly idiosyncratic sensors and controls, and so the
target language of our compiler will have to be at a slightly higher level than
the individual machine. We model machines more abstractly as consisting
of an internal state, input and output, and a transition function with an
associated time delay. These machines can be aggregated, yielding quite
complex behaviors. The compiler will take AOP expression. ,nd commands,
and translate them into input to those machines.

We propose to use the machine language outlined in our report with
Barbara Hayes-Roth as our target language.

We have Dot yet tackled the compilation process head on. The closest
we have gotten to doing so is to look at a particular aspect of the transition

from high-level commands to low-level controls, namely its tolerance to small
perturbations: the high level command can be reduced to more than one low
level command. This comes up whether the high-level command includes
intentional operators or not. For example, it is unreasonable to interpret the
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gross command 'roll down the middle of the corridor' as specifying a pre-
cise geometrical trajectory. Instead, we propose viewing it as a protogram.
A protogram specifies the prototypical behavior, an ideal that is deviated
from due to the interaction with other protograms (such as the 'avoid obsta-
cles' protogram). Our current thinking about protograms is described in an
appendix in the full manuscript.

4 Brief comparison with other work

Much work: -been directed a t defining agents, machines and environments.
Some of the, rk is similar to ours. In fact, some aspects of this research
programme were inspired by this previous work. Other work is quite dif-
ferent, even though it uses similar terminology. Here I briefly mention the
relationship I see to several projects in and around Stanford, given my limited
knowledge of them.

a McCarthy's ELEPHANT language. Appears similar with respect to
the vision of a programming language, its primitive commands, and
the general wish to endow them with formal semantics.

* Winograd's project on coordination. I don't know enough to really say
yet; my initial perception is that our intuitions overlap significantly, but
that Winograd does not intend to rest his system on formal foundations.

* Nilsson's work on Action Nets. Similar in the desire to incorporate in-
tentional notions into the machine model (actually, talks only of beliefs
and goals). Significantly different machine model, and very different
way of incorporating the intentional notions. Similar emphasis or, the
real-time nature of the machine.

* Genesereth's work on agents. Genesereth's model of machines inspired
the one defined here, although some differences exist. In his work these
machines are called agents, whereas we associate the term with the
intentional level.

* Barbara Hayes-Roth's work on agents. Is similar in its general goal to
combine high-level, cognitive-like behavior with real-world input and
output. Emphasizes less the theoretical framework and the inter-agent
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aspects, and more the experimental methodology and structure of the
individual agent.

o Rosenschein and Kaelbling's work on situated automata. Probably
the strongest influence on our work. Differences: different intensional
languages (they have no time and only the K operator, which makes
reasoning at th. intentional level less interesting), and also a slightly
different machine-level language (no real-valued delays, as far as I can
tell).

* Work, mostly at SRI, on belief, desire and intention (by Cohen, Levesque,
Pollack, Konolige, Moore and others). Similar in motivation to ours as
far as the semantics of agents goes. Cohen and Levesque's definition of
goals is similar to (and preceded) ours, though we find that our explicit
temporal framework is easier to use than the dynamic-logical language
they adopt.

These are only a few of the related projects. There are others, both
around Stanford and farther away. Rumor has it that some work is happening
even in Massachusetts. A more detailed comparison will be good.

A A sketch of the agents language

Our language takes the notion of time as basic. Our most basic well-formed
formulas (wffs) have the form

(t,p)

where t is a time point and p is a proposition. This means that proposition
p is true at time t.

If p and 1b are wffs, then so are

* p A 0, meaning varphi and 4.
o --Vp, meaning not so

* Vt Wo (where t is a variable standing for a time point), meaning that v
is true at all times t.
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We define p V ' to mean -(- A -,0); that is, o or ', and p i 4 to
mean -o V 01; that is, implies 0.

Now we must introduce our modal operators B, D, and G; these will
represent belief, desire, and goals. If vp is a wff in our language, then so are

e (t, Bo) (where t is a constant or variable denoting a time point), mean-
ing that at time t, (p is believed

* (t, Do) (where t is a constant or variable denoting a time point), mean-
ing that at time t. y is desired

* (t, Gt) (where t is a constant or variable denoting a time point), mean-
ing that at time t, p is a goal

Now we need to describe some of the characteristics we expect these
notions to have; for example, if we belive W is true (at time t) and believe
that V - 0 is true (at the same time t) then we believe that 4 is true at time
t as well. This keeps our set of beliefs internally consistent. Some properties
we want to have:

B2 Vt ((t, Bcp) A (t, B( p-+ (')) -- (t, BO)).

B3 Vt, Vt2 -,(ti, B(t2, false)).

B4 Vt ((t, BV) - (t, B(t, BV))).

B5 Vt '(t,--B~o) -+ (t, B(t,"-BV)>)).

D1 Vtl Vt2 -,(ti,D(t2,false)).

G1 Vt ((t.,,G) A (t,-G( , 0)) --- (t,GO)).

G2 Vt ((t, Gp) A (t, GO) (t, G(V A '))).

G3 Vtl W2 -,(ti, G(t2, false)).

So our agents' beliefs are internally consistent and don't include falsity;

agents are aware of their own beliefs (according to B4 and B5; agents don't

desire falsity or have it for a goal; an agent's set of goals is closed under

implication and conjunction.



How do these notions interact? Whenever an agent has a goal, surely the
agent also believes that it has that goal:

Vt ((t, G ) E (t, B(t, GV)))

Intuitively, the agent must have consciously committed to act so as to
bring about p; otherwise o would only be a desire. (***-) Similarly, if an
agent thinks that V is impossible to achieve, then the agent won't choose V
as a goal, because that would mean wasting time trying to achieve something
that's impossible:

Vt "((t, Gv) A (t, B-o))

When does an agent form a goal? Presumably, only when achieving that
goal will help the agent satisfy some desire the agent already has. So every
goal either is also a desire, or will serve to help achieve that desire:

Vt ((t, Gy) -4 34 (t, Do A B(W --+ f)))

This provides a necessary condition for having a goal; we might also specify
a sufficient condition. For example, we might say that any time an agent has
a desire and doesn't believe that desire is impossible to achieve, the agent
must adopt that desire as a goal.

Vt (((t, DV) A (t, -B-V)) -+ ((t, Gy) V (t, G-v)))
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1. Real-Time Performance in Intelligent Agents

Imagine an "errand robot" driving an automobile on its way to some
destination. Noticing a yellow traffic light at the next intersection in its
path, the robot infers from its current speed, distance to the light, and
conservative traffic-light policy that it should stop. The robot
immediately releases the accelerator and, after a few seconds, applies
the brake to bring its vehicle to a gradual stop just before entering the
intersection. The robot's behavior is satisfactory not simply because it
produces the correct result, but because it does so at the right time. If,
for example, the robot stopped very much before or after reaching the
intersection, its behavior would be unsatisfactory and potentially
catastrophic.

The errand robot illustrates a class of computer systems, which we
call "intelligent agents," whose tasks require both knowledge-based
reasoning and interaction with dynamic entities in the environment--such
as human beings, physical processes, other computer systems, or complex
configurations of such entities. Tasks requiring an intelligent agent occur
in diverse domains, such as: power plant monitoring (Touchton88), sonar
signal interpretation (Nii82), process control (Allard87, d'Ambrosio87,
Fehling86, LeClair87, Moore84, Pardee87,89), experiment monitoring
(O'Neill89), student tutoring (Murray89), aircraft pilot advising, and
intensive care patient monitoring (Fagan8O, Hayes-Roth89a).

To perform such tasks, an agent must possess capabilities for:
perception--acquiring and interpreting sensed data to obtain knowledge of
external entities; cognition--knowledge-based reasoning to assess
situations, solve problems, and determine actions; and action--actuating

effectors to execute intended actions and influence external entities. In
the example above, the errand robot perceives signals from which it infers

that the traffic light is yellow. It reasons with this perception, its traffic
light policies, and other perceptions and knowledge to determine that

gradually coming to a stop at the intersection is the appropriate result
and that releasing the accelerator and applying the brake are the

appropriate actions. It performs those actions in the appropriate temporal

organization, thereby achieving the intended result.

Because external entities have their own temporal dynamics,
interacting with them imposes aperiodic hard and soft real-time

constraints on the agent's behavior. Following Baker89, we use the term
"aperiodic" to describe tasks having irregular arrival times. Fo!lowing

Faulk88 and Stankovic88b, we usr, the terms "hard" and "soft" to



distinguish between real-time constraints whose violation precludes a
successful result versus those whose violation merely degrades the
utility of the result. For example, a vehicle that happens to stop in front
of the errand robot is an aperiodic event with a hard deadline. The robot
must stop its own vehicle in time to avoid colliding with the other
vehicle. When that is not possible, the robot should consider alternative
actions, such as maneuvering around the stopped vehicle.

In a complex environment, an agent's opportunities for perception,
action, and cognition typically exceed its computational resources. For
example, in the scenario above, the errand robot has opportunities to
perceive the physical features and occupants of other automobiles on the
road and the buildings and landscape along the sides of the road. It might
reason about any of these perceptions or other facts in its knowledge
base. It might perform a variety of actions more or less related to driving
its automobile. Fortunately, the robot largely ignores most of these
opportunities to focus on matters related to the traffic light. Otherwise,
it might fail ', -)erform the necessary perception, reasoning, and actions
in time to , ,s automobile at the right time. On the other hand, the
errand robot :,nnot totally ignore incidental informati'-i without risking
the consequeu,.,,s of rare catastrophic events. For example, the robot
should notice a child running 1,.to its path. In some cases, the robot might
benefit from noticing informadon that is not immediately useful. For
example, it might notice a sign posting business hours on a shop window
and use that information when planning a subsequent day's errands.

Because an intelligent agent is almost always in a state of
perceptual, cognitive, and action overload, it generally cannot perform all
potential operations in a timely fashion. While faster hardware or
software optimization may solve this problem for selected application
systems, they will not solve the general problem of limited resources or
obviate its concomitant resource-allocation task (Stankovic88a). For an
agent of any speed, we can define tasks whose computational
requirements exceed its resources. Moreover, we seek more from an
intelligent agent than satisfactory performance of a predetermined task
for which it has been optimized. Rather, we seek adaptivity of the agent to
produce satisfactory performance of a range of tasks varying in required
functionality and available knowledge as well as real-time constraints.
For example, the errand robot should be able to respond appropriately to
traffic signals and other usual and unusual events in a broad range of
driving situations. It should drive competently on freeways as well as on
surface streets. If it unexpectedly finds itself on surface streets where
others are driving at freeway speeds (or, more likely, vice versa), it



VHI-4 Hayes-Roh

should adapt its own behavior accordingly. The agent might have other
sorts of skills, such as planning its own errands under high-level goals
and constraints or learning new routes from experience taking necessary
detours. Other things being equal, the broader the range of tasks an agent
can handle and the wider the range of circumstances to which it can adapt,
the more intelligent it is.

For these reasons, we view real-time performance as a problem in
intelligent control. An agent must use knowledge of its goals, constraints,
resources, and environment to determine which of its many potential
operations to perform at each point in time. For example, the errand robot
might decide to give high priority to perceiving and reasoning about
traffic lights so that it can always stop in time for yellow or red lic'hts.
When the operations required to achieve an agent's current goals unier its
specified constraints exceed its computational resources, it may have to
modify them as well. For example, if the errand robot finds itself
unexpectedly late to an important destination, it might decide to relax its
conservative traffic-light policy and drive through selected yellow lights.
Because it is situated in a dynamic environment and faces a continuing
stream of events, an agent must make a continuing series of control
decisions so as to meet demands and exploit opportunities for action as
they occur. For example, if the errand robot is making a planned gradual
stop at a traffic light and a child runs into its path, the robot should
perceive the child and stop immediately. In general, an agent should use
intelligent control to produce the best results it can under real-time
constraints and other resource (e.g., information, knowledge) constraints.

Our conception of real-time performance in intelligent agents is
qualitatively different from conceptions of real-time performance in
other sorts of computer systems (Baker89, Brinkley89, Faulk88, Henn89,
Lauber89, Marsh86). In particular, we do not view real-time performance
as a guaranteed, universal, or provable property of the agent. Nor do we
seek real-time performance through effective engineering of the agent. We
feel that these constructs are surely premature and possibly unrealistic
for the versatile and highly adaptive agents we envision. Rather, we view
real-time performance as one of an agent's several objectives, which it
will achieve to a greater or lesser degree as the result of interactions
between the environment it encounters, the resources available to it, and
the decisions it makes. In many cases, the agent Wi!! a, v e, ''" reali,,,,,

performance only at the expense of quality of result or by compromising
response quality or real-time constraints on other tasks. Ironically, as the
agent's competence expands, so will its need to make such compromises.
From this perspective, real-time performance in intelligent agents
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depends critically upon an underlying architecture that enables agents to
make and apply the necessary kinds of control decisions.

2. Real-Time Requirements and Heuristics

An intelligent agent's real-time requirements can be summarized very
simply: To maximize the number of important goals for which it achieves
an acceptable result at an acceptable time. This section presents
heuristics for meeting these requirements. We do not mean to suggest that
these heuristics provide the optimal approach to meeting the
requirements or even a valid approach. We suggest only that they
represent a promising approach, which we currently are investigating.

1. Asynchrony. For a given objective, an agent can't count on all
necessary perceptual information being available at the start of its
associated reasoning or on its reasoning being completed prior to
execution of its first associated action. Relevant information may arrive
at any time during reasoning and relevant reasoning may continue beyond
initiation of early actions. In addition, with multiple objectives, the agent
may have to interleave unrelated perception, reasoning, and action
operations. Finally, the agent must always be prepared to interrupt its
ongoing acitivites to handle unpredictable emergencies or simply to
switch its attention to more important matters than those currently under
consideration. For these reasons, an intelligent agent must perceive,
reason, and act asynchronously, without these activities interrupting or
directly interfering with one another or with communications among them.
For example, in the scenario above, the errand robot's execution of actions
planned to produce a gradual stop do not impede its immediate perception
of a child running unexpectedly into its path or its consequent actions to
avoid hitting the child.

2. Timeliness. Because an agent interacts with independent dynamic
entities, its sensory information is perishable, the utility of its reasoning
operations degrades with time, and the efficacy of its actions depends
upon synchronization with fleeting external events. Therefore, the agent
must perceive present or recent sensed events, perform present or recent
reasoning operations, and execute currently intended actions, regardless
of how many earlier unexploited opportunities have occurred. The agent
should not fall behind real time to handle a backlog of inputs in any of
the.se categories andl it should not operate on seriously out of date inputs-
-unless it has explicitly decided to do so. For example, while approaching
an intersection, the errand robot perceives information relevant to its
reasoning about actions to be taken at the intersection. Having passed
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through the intersection, the robot ordinarily does not dwell upon
unprocessed perceptual events available at the intersection, inferences it
might have drawn, or alternative actions it might have taken. Instead, it
performs operations related to its current post-intersection situation.

3. Selectivity. Except for rare occasions, opportunities for
perception, cognition, and action vastly exceed the agent's resources for
performing those operations. Even when the rate of such opportunities is
well within the agent's capacity, it may be unproductive or even harmful
for the agent to pursue many of them. Therefore, the agent must
selectively perceive information and perform reasoning operations that
enable it to perform the most useful actions. For example, although the
errand robot could respond to great quantities of incidental information
regarding the other vehicles on the road, their drivers' intentions, or the
passing landscape, it ignores most of these opportunities in favor of
activities related to its current driving task.

4. Coherence. Most non-trivial tasks require coordinated percept
cognition, and action. In the simplest case, perceived information mu., Je
intcgrated with knowledge and reasoning to determine actions that lead to
objectives. In more complex, but no less typical cases, achievement of
objectives depends upon a strategic sequence of such activities
coordinated over a period of time. To perform such tasks, the agent must
develop strategic plans and use them in a "top-down" fashion to direct its
perception, cognition, and action toward the desired objectives. For
example, given its general plan for travelling about the city and
dispatching errands, the errand robot focuses on dynamically refining its
intended route and obeying traffic laws as it follows that route.

5. Flexibility. A dynamic environment entails considerable uncertainty
in the situations an agent will face and the details of those situations as
they unfold. In addition to rare catastrophic events, many unanticipated
events simply require minor modifications of the agent's behavior or even
offer new opportunities for the agent to improve the overall utility of its
performance. In order to adapt to actual evolving situations, the agent
must monitor the environment (and its own inferences as well) for
important unanticipated events and respond flexibly to those events in a
"bottom-up" fashion to modify its objectives or its strategic plans for
achieving them. For example, to avoid traffic delays caused by an accident,
the errand robot should modify its planned route and take a reasonable
detour. If the robot calculates that the detour also entails excessive
delay, it might eliminate certain errands from its plan in order to insure
completion of critical errands in the time available.
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6. Responsivity. Situations vary in urgency--that is, the rapidity with
which a response is required in order to produce a satisfactory result.
Some situations impose "hard" deadlines; a logically correct response that
occurs after the deadline is as useless as a logically incorrect response.
Other situations impose "soft" deadlines; the utility of a logically correct
response declines monotonically, but not precipitously, with delay after
deadline. Depending upon the complexity of its environment, the agent may
incur multiple aperiodic tasks imposing various hard and soft deadlines
within a local time interval. Often it must compromise the correctness or
timeliness of its performance of some of these tasks in order to satisfy
the requirements of other more important tasks. However in general, other
things being equal, the more urgent a situation is, the more quickly the
agent should perceive the relevant information, perform the necessary
reasoning, and execute the appropriate actions. Thus, the errand robot
should perceive a child in its path and stop its vehicle as quickly as
possible, while a somewhat longer latency is tolerable for perceiving and
stopping at a yellow traffic light.

7. Robustness. Despite its best efforts to use its limited resources
wisely, an agent will encounter situations that strain or exceed its
capacity: too many important perceptions, reasoning tasks, and actions.
Regardless of the degree of overload, the agent must continue to function.
It cannot arbitrarily ignore pending tasks or fail to complete tasks it has
decided to undertake. Instead, the agent must adapt to high resource-
stressing situations by ensuring graceful degradation of its performance.
It must reduce the demands on its resources by eliminating or revising the
least important of its objectives and refocusing its resources where they
are needed most. It must compromise the quality of its performance to
provide satisfactory results for the most important objectives. For
example, when driving near a school or playgound, th9 errand robot may
compromise its responsivity to traffic lights so that it can monitor more
vigilantly for children running into its path.

3. Research Goals

The primary goal of our research is to develop a general architecture for
intelligent agents--systems that perform a variety of knowledge-based
reasoning tasks while functioning autonomously in naturalistic
environments. By definition, an intelligent agent must integrate
capabilities for performing the following tasks: interpretation of
information sensed from a complex, dynamic environment; detection and
diagnosis of exceptional conditions; reactive response to urgent
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conditions; prediction of important future conditions; planning and
execution of a course of actions to influence external conditions;
explanation of the physical phenomena underlying observed or predicted or
planned conditions; consultation with human beings or other computer
systems; and learning to improve performance based on experience. In
performing these several tasks, the agent must allocate limited
computational and other resources (e.g., sensors and effectors)
dynamically, to achieve its most important objectives in a timely fashion.
In particular, they must achieve at least the real-time performance
objectives characterized above.

4. Architecture

In previous work, we developed a blackboard architecture that
integrates task-level reasoning with reflective processes, such as
dynamic planning and control of reasoning, strategic explanation, and
strategy learning. Implemented in the BB1 system, this architecture has
been used in a number of projects at Stanford and licensed widely outside
of Stanford. Our current work is directed toward extending the
architecture in four areas: perception/action processes to mediate
asynchronous interactions with a complex environment, a satisficing
control regime to support guaranteed response times, and conceptual
graph representation to provide a declarative representation for all of an
IRTPS's knowledge, beliefs, intentions, etc., with a temporally organized
representation of dynamic information. The architecture is designed to
address all of the requirements discussed above. Current research
activities are intended to evaluate its achievement of those design goals
both analytically and empirically. The architectural design and
implementation and related research are discussed in several articles in
the attached references, especially Hayes-Roth85, 87b, 88a, 89c.

We are developing generic models of knowledge and reasoning for
prototypical tasks performed by an intelligent IRTPS. Examples are: focus
of attention, incremental modeling of dynamic external phenomena;
reactive detection, diagnosis, and correction of exceptional external
conditions; model-based diagnosis, prediction, and explanation of external
conditions; time-constrained planning of longer-term courses of action.
Our approach represents explicit knowledge of the operations and
strategies involved in each of these tasks within the architecture
discussed above. Some of this work is discussed in (Boureau89,
Hewett89b, Hayes-Roth89b, Washington89).



Much of our past work concerns coordination of diverse knowledge
sources and reasoning methods invoked by run-time conditions (Garvey87,
Hayes-Roth85, Johnson87) to achieve efficient and effective performance
of complex tasks. Current research expands these concerns to performance
of multiple interacting tasks under real-time and other resource
constraints. In particular, we have developed an approach to integrating
reactive response to urgent events in the context of more deliberate
sftuation assessment and planning for stable or slowly evolving
conditions.

5. Experimental Research in Testbed Applications

Because our long-term research goal is to develop a general
architecture for adaptive intelligent systems, much of our research
involves experimental development of application systems in various
several domains. Each new domain tests the efficacy and generality of the
current architecture and presents new requirements to be addressed in
subsequent versions of the architecture. We currently are working on
several intelligent real-time monitoring applications, described briefly
below.

Guardian, being developed in collaboration with Dr. Adam Seiver, of the
Palo Alto Veterans Administration Medical Center, monitors ventilator-
supported patients and consults with physicians and nurses in a surgical
intensive care unit. Demonstration 4, which will be completed this Fall,
monitors about twenty automatically sensed variables (e.g., pressures,
temperature) and a few irregularly sensed variables (e.g., lab results). It
performs the several tasks mentioned above using several kinds of
knowledge: heuristic knowledge related to common respiratory problems;
structure/function knowledge of the respiratory, circulatory, metabolic,
and mechanical ventilator systems; and structure/function knowledge of
generic flow, diffusion, and metabolic systems. Guardian currently
monitors a simulated patient-ventilator-hospital system. However,
beginning this winter, we expect to have on-line access to patient data
monitors at the Palo Alto VAMC, so that we can begin experiments
involving real-time monitoring of actual patients. A paper describing
Guardian is in preparation.

A second system, being developed in collaboration with Professor
James Harris of Stanford's Electrical Engineering Department, is intended
to control the growth of gallium arsenide (GaAs) crystals by molecular
beam epitaxy (MBE). A simulation of the MBE machine and crystal growth
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process have been developed and a preliminary process planner is near
completion.

We currently are exploring two other domains: intelligent plant
monitoring for preventive maintenance, in collaboration with Professors
Raymond Levitt and Paul Teicholz of Stanford's Civil Engineering
Department; and intelligent control of micro-factory operations for semi-
conductor fabrication, in collaboration with Professor Nils Nilsson of
Stanford's Computer Science Department and with Professors Krishna
Saraswat, Gene Franklin, and Robert Dutton of Electrical Engineering.

6. Related Work

In this section, we briefly review other research related to adaptive
intelligent systems. This is by no means a complete survey, but gives an
indication of some of the most prominent lines of relevant research and
their treatment of the requirements discussed above.

A number of researchers have extended the classical planning model
(Fikes7l, Sacerdoti75) to permit interleaving of planning and execution,
either to build a plan incrementally or to modify the plan in response to
unanticipated conditions (Broverman87, Corkil182, Durfee86, Georgeff87,
Hayes-Roth85, Lesser88) or to employ more knowledge intensive and
computationally tractable methods for generating partial plans, including
for example: instantiating goal-oriented action schemas (Friedland79);
integrating top-down and bottom-up planning methods (Hayes-Roth79a,b,
Johnson87), transferring prior successful plans to new situations
(Hammond86); or successively applying constraints among potential
actions (Stefik8l)). These approaches are quite compatible with our work.

Several researchers have studied methods for controlling trade-offs
in the amount of time spent solving a problem or performing a task versus
the quality of the result, (Dean88, Horvitz87, Lesser88). These
approaches, which Dean calls "anytime algorithms" and Lesser calls
"approximate reasoning," are quite compatible with and appear in several
aspects of the proposed architecture, notably in its satisficing control
regime and in its accommodation of alternative reasoning strategies,
including approximate or anytime strategies.

By contrast, in an effort to avoid the computational cost of control
reasoning and thereby create real-time responsivity, a number of
researchers have turned their attention to the theory, design, and
implementation of "reactive agents" (Agre87, Andersson88, Brooks85,
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Fagan84, Firby87, Kaelbling88, Nilsson89, Rosenschein86, Schoppers87,
Suchman87). Basically, reactive agents store large numbers of perception-
action rules in a computationally efficient form and execute actions
invoked by environmental conditions on each iteration of a perceive-act
cycle. Thus, they are formally similar to control theoretic methods
(Boliinger88, Hale73), where traversal of symbolic networks replaces
computation of numerical models. We consider reactivity an essential
behavior in some circumstances and our architecture supports it, but we
do not consider it a promising foundational architectural principle, first
because enumerating all possible perception-action contingencies and
encoding them in a computationally tractable form is infeasible for
challenging task domains and second because many task domains
intrinsically require maintenance of internal state.

For several decades now, robotics researchers have aimed to build
"task-level" robot systems (Cox89, Ernst6l, Kathib86, Lozano-Perez89).
Unlike robots programmed to perform specific mechanical tasks, task-
level robots are intended to accept high-level goals and then determine
and perform whatever behaviors are necessary to achieve the goals. They
are intended to operate under a variety of incidental contextual
conditions, including low-frequency exceptional conditions related to
hardward, software, or environmental state. Significant applications of
this work include efforts to build autonomous vehicles (Burks89,
Crowley89, Goto89, McTamaney89). The robotics work is similar in spirit
to the present approach--integrating perception, action, and cognition to
achieve goals in a real-time task environment--differing primarily in
emphasis on perceptual-motor rather than cognitive functions. The
robotics research traditionally has focused on challenging perceptual-
motor tasks, but has begun to incorporate more cognitive activities, such
as goal determination, planning, exception handling, and learning (Bares89,
Barhen89, Rao89, Weisbin89). Conversely, our work grows out of earlier
work emphasizing reasoning and problem solving, with new emphases on
perceiving and acting in a real-time environment.

Finally, there has been interesting theoretical work aimed at a formal
characterization of agents (e.g., Genesereth89). This work tends to
encompass an extremely broad spectrum of computational entities.
However, recent work by Shoham (described in his paper for this
workshop) focuses on agents possessing formal versions of knowledge.
beliefs, desires, goals, etc., bringing it closer in spirit to the kinds of
intelligent agents discussed in this paper
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VIII. IRTPS Workshop Interim Team Report

Stanley J. Rosenschein (Teleos Research)
Michael Fehling (Stanford University)
Matt Ginsberg (Stanford University)

Eric Horvitz (Stanford University)
Bruce D'Ambrosio (Oregon State University)

October 30, 1989

1 Introduction

Over the last decade and a half, advances in knowledge-based systems tech-
rology have led to practical applications in a variety of problem domains.
Despite these advances, current technology remains inadequate for dealing
with systems that must maintain real-time interactions with ongoing pro-
cesses in their environment. Because systems of this type are critical to many
important applications, particularly in defense, the Air Force has launched
an initiative aimed at stimulating the development of a national research
effort on Intelligent Real-Time Problems Solving (IRTPS).

The goal of the first phase of the research initiative is to clarify terms and
issues underlying intelligent real-time problem solving, and as part of this ef-
fort three research groups, including the Teleos group led by S. Rosenschein,
have been chosen to investigate these issues to help guide subsequent phases
of the program. Phase 1 is to culminate in a workshop at which the groups

'This work was supported by AFOSR Contract F49620-89-C-0117.
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compare their findings and discuss issues with invited researchers. This doc.
ument contains an interim report of the Teleos group and is intended to serve
as a draft position paper for the IRTPS Workshop. It contains a preliminary
review of terms and issues followed by a discussion of implications for the

IRTPS research program being undertaken by the Air Force.

2 Background

In the simplest terms, intelligent real-time problem-solving (LRTPS) systems
are characterized by the following features:

1. They take in a stream of sensory input from the environment.

2. They produce a stream of control output that affects the environment.

3. The intervening computation is modeled as a reasoning or problem-
solving process.

4. Time matters.

The primary challenge in developing systems of this type lies in reconciling
the conflict inherent in the last two attributes. In conventional knowledge-
based applications, the system is intended to provide support to human
problems solvers, where the humans have sole responsibility for real-time
interaction with the environment, and the system is not required to exhibit
real-time performance. For example, these systems are typically unable to
adapt their mode of operation to changing deadlines for an action or the
unpredicted occurrence of critical events.

The central programming model for conventional knowledge-based sys-
tems work is that of an inference engine that performs reasoning steps and
draws conclusions from a set of domain-specific rules or facts stored in a
knowledge base. Because chains of inference leading to conclusions can vary
greatly in length and draw on facts in the knowledge base in ways that are
hard to predict and control, it is difficult to bound the execution time of pro-
grasms i ;,tIs model. This is compounded by the difficulty of controiling the
performance of the operating systems environment (e.g., list-processing) in
which most knowledge-based systems are embedded. In fact, much of the ap-
peal of the knowledge-based model ties precisely in the fact that it abstracts



.way from the details of resource allocation required to support inference and
allows the programmer to deal primarily with the content of the inferences.
However, in real-time applications, the resource question cannot be ignored.
Without considering execution time, rates of inference cannot be related to
rates of change in the environment, and the designer cannot be sure that the
system will be able to find satisfactory output responses in a timely fashion.

3 General programmatic issues

We see the IRTPS program as addressing the need for real-time knowledge-
based systems by developing three mutually-supportive research thrusts:

1. Historical/ Interdisciplinary

2. Core Research on Resource-Bounded Reasoning

3. Experimental Validation

The allocation of funds among and within these thrusts should be at least
partially "bottom-up," i.e., it should be responsive to the best ideas offered
during proposal solicitation. However, an effort should be made to maintain
balance so that major areas are not entirely neglected.

Because of the limited funding allocated to the main research effort of the
IRTPS program (S800,000 over an 18-month period), a realistic objective for
the program is to seed research in each of the key areas and to establish re-
search paradigms and activities to which additional funding can be attracted.
This is especially true for the experimental component of the program; the
resources required to develop and distribute a realistic testbed, for instance,
could overwhelm the program's funding, leaving little for basic research un-
less special care is taken to leverage existing software and other government
programs.

In the following sections, we describe each of the proposed program
thrusts and list several research questions that might be explored in each.
These questions are meant to be suggestive rather than exhaustive, and will
undoubtedly be supplemented as the research proceeds.
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4 Historical/Interdisciplinary

The current IRTPS program does not exist in a vacuum. IRTPS systems have

been built using existing artificial-intelligence (Al) concepts and tools, and
these should be investigated with a view toward drawing out the lessons to be

learned. Among the approaches that might be taken to these investigations

are case studies, literature searches, and attempts to classify existing systems
in terms of the conceptual categories developed in the IRTPS program.

In addition, artificial intelligence is not the only discipline to be concerned
with embedded real-time computation or intelligent problem solving. Work

in decision theory and control theory, in real-time operating systems and
scheduling algorithms, and in computer-based control systems has resulted
in a large body of practice, theory, and engineering methodology. Research
in these disciplines should be explored in light of IRTPS requirements and
objectives. In particular, methods should be developed that will allow non-
Al approaches to be adapted and applied to IRTPS problems and to coexist

with specialized techniques developed in the Al framework.

5 Core Research on Resource-Bounded Rea-
soning

This thrust should be aimed at developing a deeper understanding of the
tradeoffs inherent in reasoning under time stress. Constraints on a real-time

reasoning system's inference and representation lead to inescapable uncer-

tainties about the problems that may be faced. A real-time system immersed

in a complex world must grapple with uncertainty associated with both the

environment (object-level) and the reasoner (inference level). In addition,

agents must typically contend with deep uncertainty about the value of fu-

ture reasoning. However the benefits of controlling computational tradeoffs

in theoretically coherent ways are very great in high-stakes decision-making
arenas such as medicine, aerospace, and defense, and justify an intensive re-

search effort in this area. An important part of this research will involve a

s,'ntheis Of 10. ... .1--,- of reasoning with Bayesian and, more generally,

decision-theoretic models.
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5.1 B ase-level/Meta-level Reasoning

One set of research issues focuses on the control of search as a method for
bounding execution time of reasoning processes. Reasoning is modeled as
a search process in which many potential branches are available for explo-
ration and in which choices are made about where effort should be allocated.
The computation is broken into elementary bounded-time steps (with differ-
ent approaches varying in the grain size they consider for these elementary
units), and attention is shifted under the control of a higher-level process
whose time behavior is well understood. This method of resource allocation
similar to that used in a multi-tasking operating systems, and, as in the
case of operating systems, interruptability, pre-emption, and prioritization
are the key terms of analysis. Unlike operating systems, however, issues of
the content of the computation as a reasoning process need to be more fully
modeled and related to the resource-allocation algorithm.

Considerations of resource allocation lead directly to questions regarding
the criteria by which allocation is to be judged. One approach (metalevel
control of reasoning) is to formulate explicit theories about the reasoning
process and the effect of alternative control strategies. Research is needed
on methods for allocating resources between base-level and meta-level rea-
soners. An important goal of this research is to discover ways of limiting
the amount of time spent doing meta-level reasoning, or more generally, to
optimize the split of resources between base- and meta-level reasoning. An
attempt should be made to identify classes of tractable, closed-form, met-
alevel control problems.

For many applications it wil be important to quantify (1) the value or cost
of achieving (or not achieving) goals, (2) uncertainty about the existence of
alternative states of the world, and (3) the costs of continuing to deliberate
(versus taking an action). Decision theory provides a useful framework for
the design and evaluation of real-time systems as it gives us a language and
precise semantics for capturing preferences and uncertainty.

5.2 Anytime reasoning

Algorithms that can produce partial or reduced-quality output when their
execution is terminated before some complete soluction is produced have
been called anytime algoithms. Useful properties that such algorithms can
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exhibit include monoticity (improvement over time), continuity (gradual im-
provement), and convergence in the limit. We see a need to extend this line
of research to include inference processes, so that so that declarative compu-
tations can be interrupted before they have finished running and still produce
useful results.

Among the approaches that can be tried are the following:

1. Come up with an anytime inference algorithm that gradually and uni-
formly approaches the right answer.

2. Come up with an anytime inference algorithm that approaches the right
answer in the large-runtime limit, but might wander around before
doing so. (Presumably, the "quality" of the answer would increase
uniformly, in some strange sense.)

If the second approach becomes necessary, one important question will
be how to adapt the reasoning process, and the strategies that guide it, to
changes in the environment that invalidate previous input or modify the
available problem solving resources, Truth-maintenance techniques will be
important here, though research will be required to adapt these techniques
to the real-time setting. A related set of research topics involve modeling
anytime probabilistic and decision-theoretic reasoning.

5.3 Compilation (Compiled vs. Deliberative Reason-
ing)

So far, we have only discused deliberative approaches to reasoning and metar-
easoning. It can be important to reduce complex deliberation in computer-
based reasoners by developing decision-making techniques that rely to some
extent on precomputed or compiled responses. Such knowledge can be gen-
erated at design time or learned by agents over their lifetimes.

Recent research, including that labeled reactive planning, has centered
on the replacement of unwieldy solution mechanisms and detailed represen-
tations of knowledge with compiled situation-action rules. Such rules enable
agents to respond immediately perceptual inputs. Investigators have sensed
that, for many contexts, ,xplicit rpreetations and deliberation will not be
necessary for good performance.



Deliberation and reaction are merely two ends of a spectrum with many
intermediate points. One imporant topic of research involves developing
methods for optimizing the split between deliberation and reaction in the
design of embedded agents.

5.4 Pre-emptive control

This sub-area should explore pre-emptive control strategies for multiple, si-
multaneous problem-solving activities, with a distinction being drawn be-
tween pre-emption and multitask management. For example, pre-emption
can occur in managing even a single line of control. The policies that guide
pre-emption, and the systems architecture that facilitate the implementation
of these policies, need to be characterized and studied.

6 Experimental Validation

While abstract conceptual models of real-time reasoning are an important
first step toward the design of practical IRTPS applications, these models
must be augmented by a software-development methodology that design-
ers can actually use to solve real-world problems. The methodology should
help the programmer instantiate the general model to the particular data
structures and operations required to satisfy the requirements of his partic-
ular application problem. The methodology includes specialized software-
development tools that capture key abstractions, hide implementation de-
tails, but leave the programmer with sufficient flexibility and control over
what is important. One goal of the IRTPS research program should be to
enumerate and taxonomize programming methodologies, architectures, and
tools, relating them to the underlying conceptual model they support, and
exploring whether the abstractions they provide can be made orthogonal and
be incorporated into a more embracing IRTPS software methodology.

One of the goals of the IRTPS program is to provide a methodology for
exploring architectures for real-time problem solving in an empirical setting.
One way of promoting this goal is by establishing a common conceptual
framework to guide experimental work in the IRTPS community. Program
management has established an Experimental Methodologies Working Group
which has outlined such a framework and produced a draft document de-
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.cribing its l6ndings. The document describes ways that models of intelligent
embedded systems might be modeled and evaluated, focusing specifically on
comparing the effectivesness of agents with different compositions and abil-
ities immersed in distinct problem contexts. Evaluatiou methods include
theoretical analysis as well as experimental methods, both in simulated and
real environments. The document goes on to describe what kind of controls
would be necessary to make the results of experimental methods empirically
meaningful and proposes a variety of measurement types relevant to real-time
problem solving. Our team has reviewed a preliminary draft of this document
and, in general terms, is in agreement with its analysis and recommendations.

A second, more concrete, way of enhancing the field's experimental method-
ology is to provide a common testbed that might be used by the IRTPS
community to carry out empirical investigations. Such a testbed would allow
precise measurements of the performance of systems and architectures. We
feel such a testbed would be a useful component of the IRTPS program, pro-
vided it can be provided at reasonable cost and can be configured to adhere
to the methodological guidelines proposed in the Experimental Methodolo-
gies Working Group document. One method of leveraging the program's
research funds to good advantage would be to identify existing testbeds pro-
duced under other government programs that could be adapted to support
experimental work in IRTPS. Consideration should be given to dimensions of
variability among application domains, for example discrete vs. continuous
domains, low-level vs. high-level perceptual data, and so on.
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I. Introduction

This report presents our work on real time problem solving (IRTPS). The topic is
fundamentally challenging in the sense that it probably cannot be completely
addressed within the established knowledge-based and logicist paradigms, but
will require methodological, theoretical, and technical developments.
Accordingly, this report looks at IRTPS from all these perspectives. Because
readers will have different interests, each section of the report is independent of all
sections except this Introduction. Section 2 offers a definition of IRTPS. Section 3
describes our real-time testbed, including its current status and portability, and
our timetable for maldng it generally available. Section 4 discusses the
architecture we have developed for real-time agents and our near-term research
goals. Section 5 is devoted to methodological issues, specifically, how
characteristics of environments constrain the design of agents (including an
assessment of the pros and cons of simulated environments), how to evaluate
IRTPS systems, and the need for analytic models of agent architectures.

The task environment for much of our research is a simulation of forest fires. The
task is to control simulated fires by deploying simulated agents, including "smart"
bulldozers, fuel carriers, and airplanes. (Smart agents have the simulated
physical abilities of, say, bulldozers, and some of the simulated mental abilities of
their human operators.) This is a realtime problem in the basic sense that the
environment changes while agents think and act. If agents think too long, the
fires get too big to control. If they don't think long enough, their plans may be
flawed and their actions may be less effective. (Section 2 refines this basic
definition of the real-time problem.)

The Phoenix system comprises five levels of software:

DES -- the discrete event simulator kernel. This handles the low-level
scheduling of agent and environment processes. Agent processes
include sensors, effectors, reflexes, and a variety of cognitive actions.
Environment processes include fire, wind, and weather. The DES
provides an illusion of simultaneity for multiple agents and multiple
fires.

Map - this level contains the data structures that represent the current
state of the world as perceived by agents, as well as "the world as it
really is." Color graphics representations of the world are generated
from these data structures.

Basic agent architecture - a "skeleton" architecture from which agents,
such as bulldozers, airplanes, and firebosses are created. The agent



architecture provides for sensors, effectors, reflexes, and a variety of
styles of planning.

Phoenix agents -- the agents we have designed (and are designing) for
our own RTPS experiments.

Phoenix organization -- currently we have a hierarchical organization
of Phoenix agents, in which one fireboss directs (but does not control)
multiple agents such as bulldozers. Each Phoenix agent is
autonomous and interprets the fireboss's directions in its local
context, while the fireboss maintains a global view. A related project is
looking at multiple firebosses and distributed control.

The Phoenix environment (the DES and map level), the basic agent architecture,
and Phoenix agents are independent software packages that we offer to other
researchers (see Section 3.3). We will offer instrumentation for these components
of the Phoenix system by the end of Phase I of the IRTPS initiative.

Our research on IRTPS is part of a larger project whose goal is to develop a sound
basis for the design of Al agents. We are analyzing agents in terms of the
behavioral ecology view shown in Figure 1. This view encourages us to ask how
the characteristics of environments (including time) constrain the design and
behavior of agents. (We compare this view with the S/E model of Rosenschein,
Hayes-Roth and Erman, in Section 5). When we speak of a sound basis for design,
we mean the ability to predict how modifying the architecture of an agent will
change its behavior in a given environment. Curntly, we do this by building
models that relate the architecture of an agent tu ehaviors. The methodological
implications of the behavioral ecology view and of modelling are discussed in
Section 5.

agent's agent's
architecture behavior
and knowledge

environment
structure and

dynarrics

Figure 1. The three components of an agent's behavioral ecology.
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2. Definitions,

We begin this section with definitions of real-time problem solving and "the real
urme problem." Next we examine some terms that are common in the IRTPS
literature, such as deadline, predictability, and time scale. These terms are vague,
and it is often difficult to tell whether they are intended as descriptions of an
agent's environment or its behavior. We propose six classes of terms that should,
we hope, reduce the vagueness and ambiguity of previous discussions of IRTPS.
Lastly, we show how the behavioral ecology view helps us compare and organize
different approaches to IRTPS.

2.1 ITPS and the Real-time Problem

A crude definition of IRTPS was mentioned in the introduction:

The environment changes while agents think and act.

But this doesn't adequately convey the impact of changes in the environment upon
the agents. For example, while a bulldozer thinks about how to avoid a fire, the
position of the fire changes, and in some cases the bulldozer can be overrun. A
better definition makes explicit the value of problem solving and how it is affected
by changes in the environment:

The value of problem solving is a function of what the problem

solver does --- its thinking and acting --- and one or more
parameters in the environment, at least one of which changes
during problem solving.

Note that this definition makes no direct reference to time. This is because time is
itself an indirect way of talking about changes in the environment during problem
solving, and it is these changes, not the passage of time, that affect the value of
problem solving. When we say, "The fire is currently consuming 10 acres per
hour," we do not mean that an hour is worth ten acres. Time itself has no inherent
value. Time provides us a scale on which to measure events that do have value.
Consider an analogy to distance. We might say, "As we drive down this street,
property values increase by $10,000 a block," but we would not say that a block (e.g.,
200 yards) is worth $10,000. Throughout this document we will try to avoid giving
the impression that time has any value. We will try to foster the view that time
(like distance) is just a scale on which to plot changes in value.

Of course, we can define value to be a function of time, as in real-time operating

systems, but typically we measure value in terms of money, acreage, real estate,
lives saved or lost, and so on. Unlike time, these value functions may be nonlinear,

even discontinuous. This leads to the following definition of the "real time
problem":
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The value of problem solving does not always increase, nor
does it always decrease, during problem solving; thus simple
strategies such as "work for as long as possible," or "solve the
problem as quickly as possible,' will generally not maximize
value.

Example: Measuring value in terms of the area of burned forest, we might collect
statistics on the relationship between area burned and the amount of time that
elapses while the fireboss selects a plan. (For simplicity, we will plot elapsed time
against area saved instead of the area burned, so value increases on the y axis:)

area
saved

time elapsed during
plan selection

Apparently, a little time devoted to plan selection is worthwhile. After a point,
however, thinking longer doesn't save more forest. While this "inverted U" could
have many causes, the important point is that it seems to be characteristic of real
time tasks.

The inverted U function seems more representative of soft deadlines than hard
ones. Value decreases slowly when a soft deadline is missed, precipitously when a
hard deadline is missed. In Section 2.2 we formalize and illustrate a hard
deadline in the Phoenix environment.

It follows from this definition of the real time problem that an agent must have
control of the amount of time it devotes to problem solving. In terms of the previous
example, an agent should spend "just enough" time on plan selection---the
amount of time that corresponds to t6he highest point on the curve. Although this
picture is an oversimplification (we will discuss some of the complexities later) it
does illustrate that if an agent cannot control the amount of time it spends on
problem solving, it cannot affect the value of its problem solving.

What does it mean for an agent to control the amount of time it spends on problem
solving rst, it. do, s n t mean that the agent c,,tros th' rate at which t"= me
passes. We assume this is beyond every agent's control. Instead we mean that an
agent can with "one eye on the clock" decide whether to run a process or continue
running an interrupted process.
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Example: The Phoenix agent architecture provides for multiple execution methods
to achieve any goal. For example, Phoenix has several path planning methods.
Execution methods for a given task require different amounts of time. More
precisely, they differ in the amounts of time that are expected to elapse before each
terminates. One way that Phoenix agents control the amount of time they spend on
problem solving is to base the selection of execution methods on their estimated
time requirements.

Estimates figure heavily in this example, and in IRTPS in general. What remains
to be seen, in the course of this research, is what characteristics of the
environment affect the quality of estimates, and what characteristics of IRTPS
architectures affect their dependence on the quality of estimates.

2.2 Describing the Environment and Agents

Although our approach is to design agents for specific environments, we have
been content to describe environments at two levels cf abstraction, both inadequate
for design. We believe this is common in the IRTPS literature.

The levels, with examples, are:
Implementation-specific: When a cell ignites, the simulator figures out

when its knights-tour-neighbors are going to ignite. It calculates the
rate of spread of the newly-ignited cell to its neighbors, accounting fbr
weather, slope, fuel type, etc.

Apple-pie general The Phoenix environment is characterized by
unpredictable events, real-time constraints, and hard and soft
deadlines.

Neither level of description of the environment is appropriate for design. From the
first kind of description you can model the structure and dynamics of the
environment, so it is genuinely useful. But the second kind of description is
actually misleading without a lot of clarification, as the following examples show.

At the IRTPS Workshop2 , the Working Group on Arcbitectures made a list of
characteristics of environments:

lots of data

low signal to noise ratio

unpredictable rates at which data arrive (varying quantity of data)

hard and soft deadlines

time-dependent value

spectrum of predictability

2 Pasatiempo, Santa Cruz, California. November 6 & 7, 1989.



"X.

incompleteness in data

multiple time scales

combinatoric proliferation of things to attend to

Most of these seem self-explanatory. However, most could be interpreted as
descriptions of the agent as well as descriptions of the environment. Take
"multiple time scales." Our definition of time scale is the average time between
causal event cycles that have value for the agent. Some cycles are very short (e.g.,
the time between moving into a fire and getting burned) and some are much
longer (e.g., the time between a wind shift and the recognition of failure of a fire-
fighting plan). But it doesn't make sense to talk about time scales independent of
an agent; specifically, independent of the value of events to the agent. Without the
concept of value, there's no way to classify the limitless number of causal event
cycles, and so the distribution of time scales is uniform. The concept of value
enables us to select classes of events--those that have value to the agent-and
compute the average length of their causal event cycles. Scale depends on the
agent design. It is not an inherent property of environments 3.

Which of the other characteristics listed above is inherent to environments, and
which depend on the agent design? For some, both interpretations make sense.

When we ,ay "lots of data," we could mean two things: First unlike environments
like the blocks world, a lot is happening in the Phoenix environment--there's a lot
for the agent to attend to. This seems to be a description of an inherent
characteristic of the environment. But we might also mean that in this
environment, the agent's sensors can take in more stuff than it can process. So
"lots of data" can be interpreted as a characteristic of the environment or as a
potential problem for the agent.

Next, consider the "predictability" characteristic. When we say events are

unpredictable, we are usually mean "unpredictable for this agent." But, again, we

might mean "unpredictable for any agent." Once again, we must take care to
separate the inherent characteristic of the environment--the one that would

constrain any agent-from the potential problem that the environment poses the

agent.

The resolution of this ambiguity should provide us with the appropriate level of
description of environments for doing design.

There is a predicate called, Ue, that takes environmental events as
arguments. Ue(e) means that no agent can predict event e.

There is a predicate Ua that takes environmental events and agents as
arguments. If Ua(e,a) then agent a cannot predict event e.

3We are grateful to Les Gasser for pointing this out.
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By definition, Ue(e) implies Ua(e,a) for all a. But it is not the case that Ua(e,a)
implies Ue(e). This means, at the very least, that we have to be careful when we
say an environment is characterized by unpredictability. More importantly, it
points to a gap in our understanding of the agent-environment interaction: If
Ua(ea) and not Ue(e), there must be something about event e that makes it
unpredictable to agent a, and if we want to design an agent a' for which Ua(e,a') is
false, we have to know why Ua(e,a) is true. To designers, it helps to know Ue(e),
but knowing Ua(e,a) doesn't help us fix the problem. We need to know something

else. For example, if changes in the position of the fire are unpredictable to an
agent, and we view this as a problem, then we need to know why the changes are
unpredictable. Two contributing factors may be the limited field of view of agents
and the statistical distribution of changes in wind speed and direction. One is an
architectural characteristic, the other an environmental characteristic, and
together they produce Ua(fire-position,agent).

Terms like "unpredictable" are just shorthand for problems faced by particular
agents, not characteristics of the environment, except when they are universally
quantified over agents. From the standpoint of design, they don't help us much.
Instead we will develop a vocabulary to describe environments, in problem-
independent terms. When we say that an event has a statistical distribution V....,0
not imply anything about the architecture of an agent, or anything about the
problem that may arise for an agent as a result of the event ha,ring a statistical
distribution. We suggest six classes of terms:

Environment characteristics (ECs). These ar* problem-independent,
architecture independent descriptors of the environment. For
example, a parameter (say, windspeed) changes aperiodically. A
counterexample: Windspeed is unpredictable.

Architecture characteristics (ACs). These are problem-independent,
environment-independent descriptors of the architecture. For
example, the architecture has a random access memory of limitless
capacity; or, the plan selection mechanism is bounded in computation
time. A counterexample: the error recovery mechanism exhibits
graceful degradation. This is a counterexample because graceful
degradation implies something about the problem you are trying to
solve.

Problems. A problem is a shorthand for an undesirable behavior, that
is, an undesirable interaction between a particular agent and a
particular environment. For example, unpredictability is a shorthand
for interactions in which, because an agent did not anticipate an
environmental event, some negative consequence occured.

Inherent problems. An inherent problem is a problem that we believe
ail agents face, that is, an undesirable interaction between any agent
and a particular environment.

Solutions. A solution is a shorthand for a desirable behavior that we, as
designers, want to see instead of some undesirable behavior-the



problem. For example, a fast sense-act loop is sometimes a solution to
the unpredictability problem.

Solution realizations-A solution realization is one or more architecture
characteristics or modifications to architecture characteristics; in
short, what we intend to do to the architecture to ensure that the
solution (which is a behavior, remember) will occur when we want it
to.

In Section 5.1, we illustrate how design of a real-time mechanism proceeds from
an informal descriptio,: of a problem, through a formal description in terms of
ECs, ACs and ProbLi.as, to solutions and solution realizations.

2.3 The Behavioral Ecology Thangle Organizes and Justifies URTPS
Approaches

We can characterize the dozens of approaches to IRTPS in terms of the behavioral
ecology triangle in Figure 1. First, what behaviors do we want from IRTPS
systems? Second, what characteristics of the environment make particular
behaviors necessary or desirable? Third, what architectural decisions can
designers make to achieve the desired behaviors in the given environment?

Example: A desired behavior is for Phoenix agents to meet their deadlines. Two
characteristics of the Phoenix environment make this desirable: First, most fires
must be contained by the coordinated efforts of several agents. Second, fires spread
in such a way that if one agent is very late, the work of others is jeopardized.
Another characteristic of the environment conspires against coordinated effort:
unpredictable changes in parameters such as wind speed and direction
differentially affect the progress of agents. The architectural decisions that allow
Phoenix agents to meet deadlines despite unexpected events are discussed in
Section 4.2.

The behavioral ecology view provides a framework for organizing the real time
literature. For example, we can ask what characteristics of the environment make
anytime or approximate processing behaviors necessary or desirable, and what
architectural choices are needed to implement anytime or approximate behaviors
in particular environments. But we have found that the principal advantage of the
behavioral ecology view is that it forces us to justify our design decisions in terms
of agents' environments.

Example: It is not uncommon to claim that IRTPS requires a behavior called
"graceful degradation." (Other candidates are anytime or approximate behavior).
Too often, the next step is to build an architecture that implements this behavior in
some environment. This is backwards. The first step must always be to ask
whether the environment makes graceful degradation (or anytime, or
approximate behavior) necessary or desirable.
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3. A Real Time Testbed.

This section describes describes the Phoenix testbed from several perspectives.
Section 3.1 describes how the testbed appears to a user. Section 3.2 focuses on how
the discrete event simulator manages simulation time and cpu time for multiple
pseudo-parallel processes. Section 3.3 describes three levels of instrumentation for
the testbed. Section 3.4 presents a "baseline scenario," that can be run again and
again under different conditions to test real-time architectures. Section 3.5
addresses portability issues. The structure and implementation of the testbed is
independent of the architecture of Phoenix agents; indeed, we hope that other
researchers will use the testbed as an environment in which to test their own
agent architectures. For this reason, we will postpone discussing the Phoenix
basic agent architecture until Section 4.

3.1 The Appearance and Behavior of the Testbed.

If you watch the Phoenix system run, this is what you will see: A color
representation of Yellowstone National Park, in which fires are spreading and
several bulldozers, fuel-carriers, and other agents are travelling and cutting
fireline. You will see different kinds of vegetation coded by color. You will also see
roads and rivers of different sizes, elevation lines, lakes, houses, and
watchtowers. Status windows present elapsed time, wind speed, and wind
direction. You have full control over the resolution of your view; for example, you
can see the entire map at low resolution or just a few acres at high resolution. You
can see the environment as it really is, and as it is perceived by one or more of the
agents (which have limited fields of view). Figure 2 shows a view of an area of the
park, unfortunately not in color (but see (Cohen, 19891 for color pictures). The grey
region at the bottom of the screen is the northern tip of Yellowstone Lake. The
thick grey line that ends in the lake is the Yellowstone River. The Grand Loop
Road follows the river to the lake, where it splits. The Smokey the Bear symbol in
the bottom left corner marks the location of the fireboss, the agent that directs and
coordinates all others. Two bulldozers are shown cutting fl-eline around a fire in
this figure. Two other bulldozers are parked near the fireboss, along with a plane
and a fuel carrier.

The Map level of the Phoenix environment, from which the graphics
representations of the environment are generated, is constructed from Defense
Mapping Agency data. Because it includes ground cover, elevation, moisture
content, wind seed and direction, and natural boundaries, we have been able to
construct a moderately realistic simulation of forest fires (but see Section 5 for a
distinction between realism and accuracy). For exampie, real fires and our
simulated fires spread more quickly in brush than in mature forest, are pushed in
the direction of the wind and uphill, burn dry fuel more readily, and so on. These
conditions also determine the probability that the fire will jump fireline and



natural boundaries; and the intensity of the fire (which is coded by color in the
simulation) The physical abilities of fire-fighting agents are also simulated
accurately; for example, bulldozers move at a maximum speed of 40 kph in transit
(on the back of a truck), 5 kph traveling cross-country, and 0.5 kph when cutting
fireline.

Recently, we have implemented some realistic weather factors, specifically,
lightning strikes which start fires with some frequency, and rain, which affects
the moisture and thus the friability of fuels.

Fires are fought by removing one or more of the things that keep them burning:
fuel, heat, and air. Cutting fireline removes fuel. Dropping water and flame
retardant removes heat an'd air, respectively. In major forest fires, controlled
backfires are set to burn areas in the path of wildfires and thus deny them fuel.

In the past, fire-fighting agents were inexhaustible, but recently we have started to
model their consumption of resources. The following example of monitoring fuel
levels and refueling conveys the flavor of problem solving within and among
Phoenix agents.

Example: Bulldozers monitor their own fuel levels and notify the fireboss when
their tank drops below a preset level. Upon reciept of the "I'm low on fuel"
message, the fireboss marks the bulldozer with a status of "needs-refueling" and
when the bulldozer becomes idle (i.e. completes the segment of fireline it is
working on), the fireboss selects a refueling plan for that bulldozer. This involves
allocating an available fuel-carrier, calculating a rendezvous point on a road near
the bulldozer, telling the bulldozer where to go and who to look for, telling the fuel-
carrier where to go, and waiting for an acknowledgement from the bulldozer that
it has received fuel. The bulldozer and fuel-carrier then interact through the
following process: the bulldozer notices the rendezvous, requests service, and
waits for a service-complete acknowledgement from the fuel-carrier. The fuel-
carrier arrives at the destination, waits for service requests, queues them up if
necessary (not currently utilized), transfers fuel via a pump-effector, terminating
when either the bulldozer is not present or leaves, the refueling tank goes dry, the
bulldozer's tank is full, or the requested amount is pumped. The fuel-carrier then
tells the bulldozer it has finished and the bulldozer in turn tells the fireboss that
the refuleing task has been completed.

3.2 The Implementation of the Testbed

Underlying the Phoenix testbed is a discrete event simulator (DES) that creates the
illusion of a continuous world, where natural processes and agents are acting in
parallel, on serial hardware (currently a Texas Instruments Explorer II Color
Lisp Machine, but see Section 3.5). In the simulation, fires burn continuously over
time and agents act in concert to control it. Some of these actions are physical, as
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in digging fireline and cutting trees. In parallel to these physical actions, agents
perceive, move, react to perceived stimuli, and think about what action(s) to
execute next.

The DES manages two types of time: cpu time and simulation time. CPU time
refers to the length of time that processes run on a processor. Simulation tim,
refers to the "time of day" in the simulated environment. The illusion of
continuous, parallel activity on a serial machine is maintained by segregating
each process and agent activity into a separate task and executing them in small,
discrete time quanta, ensuring that no task ever gets too far ahead or behind the
others. The default setting of the synchronization quantum is five simulation-time
minutes, so all tasks are kept synchronized to within five simulated minutes of
one another.

The quantum can be increased, which improves the cpu utilization of tasks and
makes the simulator run faster, but this increases the simulation-time disparity
between tasks, magnifying coordination problems such as communication and
knowing the exact state of the world at a particular time. Conversely, decreasing
the quantum reduces how "out of synch" processes can be, but increases the
running time of the simulation.

Within the predefined time quantum, all simulated parallel processes begin or

end at roughly the same simulation time. Types of tasks differ in how they are
charged for" cpu time and simulation time. Sensory tasks run for very short

intervals of simulation time, after which they are rescheduled; this gives them a
high sampling rate compared to the rate at which the world is changing. Effector

tasks may use very little simulation time, or the full synchronization quantum.
Fire tasks always run for the full synchronization quantum.

All these tasks are allotted as much cpu time as they need by the DES; there is no
constant proportionality between the simulation time and the cpu time they
require. To see why, note that fires are implemented as cellular automata, so that

the cpu time required to calculate the spread of the fire depends on the size of the

fire. It may take only a fraction of a second of cpu time to calculate five simulation-
time minutes of burning for a small fire, but several cpu seconds to calculate the

five simulation-time minutes for several large fires. Similarly, the amount of cpu
time required to calculate a few simulation-time seconds of sensor processing
depends on the type of sensor being simulated, so there is no constant

proportionality between simulated sensor time and cpu time.

In contrast, there is a constant proportionality between the cpu time allocated to

cognitive tasks and simulation time. This is because we want to "charge" agents at

a fixed rate for thinking. Because cognition and other processes, such as the fire,

are simulated parallel processes, they are always allocated the same amount of
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simulation time. So when both have run for their allocated times

elapsed-simulation-time(cognition) = elapsed-simulation-time(fire)

as measured by the simulation time clock. Although these processes could take
arbitrary amounts of cpu time, it is advantageous to impose a strict relationship
between cpu time and the simulation time of the planner and the fire. Thus,

elapsed-simulation-time(cognition) = k * cpu-time(cognition)

and, from the previous expression,

elapsed-simulation-time(fire) = k * cpu-time(cognition)

The advantage of this proportionality is that we Dow have a way to exert time
pressure on cognition. The real.time knob is the device that exerts pressure,
simply by increasing k. Clearly, we can change k without changing the amount of
cpu time allocated to cognition, and when this happens, the net effect is to increase
the amount of simulacion time allocated to the fire. Because of the strict
proportionality between simulation time and cpu time for cognition, the indirect
effect of increasing k is to reduce the amount of simulation time allocated to
cognition, relative to the simulation time allocated to the fire. That is, to increase
time pressure on cognition. Currently k = 300, which means that one second of cpu
time for cognition is matched by five minutes of simulation time for the fire. If we
increase k to 600, then the fire is allowed to burn for 10 minutes for every cpu
second of cognition time.

Cognitive tasks are allotted a full synchronization quaantum each time they run. At
times there are not enough cognitive activities to fill a quantum, in which case the
task ends and waits to be rescheduled. Some cognitive activities take longer than a
full quantum, in which case their i,-'1rnal state is saved between quantum steps.

Example: Imagine it is now 12:00:00 in the simulated world, and an agent is about
to begin planning. After one cpu second, simulation time for the agent is 12:05:00.
The fire is thus "owed" five minutes of simulation time. But before it runs, the DES
runs all sensor, effector, and reflex tasks. After that, it may take 7 cpu seconds to
calculate the effects of five minutes of fire. Moreover, simulation time is still
1.20-.00, beealuse the agent and tha f-r are simulated parallel processes. So after
roughly eight cpu seconds (one for the planner, negligible time for sensors,
effectors, and reflexes, and seven for the fire), we have simulated five minutes of
planning and five minutes of fire, and both processes are paused at 12:05:00.
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3.3 Instrumentation of the Testbed

The Phoenix testbed is designed to support experiments with a variety of IRTPS
architectures---not only our Phoenix agent architecture. Currently it has been
instrumented to some extent, and much more instrumentation is planned. In this
subsection we describe three levels of instrumentation suggested by Nort Fowler.
Low level metrics are largely hardware-dependent estimates of how the software
system is utilizing the hardware. Middle level metrics give us a fine-grained
picture of how a specific architecture behaves over time; for example, we can
measure the communication overhead among agents, the time required to
respond to significant changes in the environment, the amount of time spent in
error recovery, the ability of scheduling algorithms to meet deadlines, and so
on.are specific to the agent architecture. High level metrics are domain specific.
They record features of the environment that are affected by the agents, such as
acreage burned by fires, and consumption of resources.

Any researcher who implements a new agent architecture in the Phoenix
environment will have to defiue middle-level metrics, because these are
architecture specific, but probably won't have to define high and low level metrics.
For example, Phoenix agents maintain a timeline of pending actions, and we need
to know the average latency between posting and executing an action. An agent
architecture implemented as a blackboard system may instead look at the
scheduling of tasks on an agenda. Most of our middle level metrics are for the
Phoenix agent architecture, not for unanticipated other architectures.

Currently, the following instrumentation is complete or nearly so:

Low Level Instnmentation
Run time, Cpu time, Disk wait time, Time since last run, Idle time,

Utilization, Overall. Each of these is graphed against time.

We also provide an interface to the Explorer performance metering tools
which work at the function call level and provide for each function the:
Number of calls , Average run time, Total run time, Real time,
Memory aJlocation, Page faults

Middle Level Instrumentation
Statistics on cpu utilization by the cc ,nitive component of each agent to

see the actual profile of real-time response, graphed against time
The latency between when actions on the timeline become available for

execution and when they are executed.

Metrics on sensor and effector usage

Metrics on reflexes

I
I



The goal of these metrics is to compare the utilization of cognitive and other
resources in different scenarios (see Section 3.4). Each scenario will contain
important events (e.g., a fir6 is detected). We will graph these metrics against time
and annotate the graphs at the points that the significant events occured, so we
can see how the agent architecture responded.

High Level Instrunentation.
Fire destruction is currently measured by amount and type of forest,

houses, and agents burned.

Resource allocation is currently measured by amount and type of agents
employed to fight the fire, gasoline consumed, fireline cut, distance
traveled, and time required to contain the fire.

3.4 Baseline Scenarios

One advantage of studying IRPTS in a simulated environment is the ability to run
the same environmental scenario again and again while modifying aspects of the
agent architecture (see Section 5). We have recently implemented the ability to
define scripts, which include the type and number of available agents, and guide
the environment through a series of changes in conditions such as windspeed and
other weather conditions. We also have the ability to introduce stochastic factors
into scripts, such as lightning strikes. Besides scripts, we will soon be able to
provide baseline statistics on events such as rates of spread of fires in different

conditions.

Scripts play an important role in evaluating IRTPS systems, and comparing
IRTPS architectures. By design, scripts can force an agent to confront virtually
any IRTPS issue. Here is a simple script that raises the six IRTPS issues that
were discussed in the original IRTPS Initiative:

Materie:

One fireboss to coordinate the activities of three bulldozers

Bulldozers can move 6.5 kph in softwood, 56 kph on road, .5 kph while
building line

One watchtower at location approx 42500x37500

Environmen
A fire of radius 700 km starting at coordinates approx 45000x46250,

Starting wind speed and direction 3 kph from the south

Environnwnal Cbanger
At time 2 hr, wind changes to 10 kph from the NW, threatening

buildings--the base and lodge

Since it involves a burning fire, the script requires agents to produce relevant
output in a timely fashion. The particular scenario includes an environmental
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change (asynchronous with the reasoning system) that invalidates previous
input, necessitating the detection of a new threat to higher priority areas and a
redirection of ongoing reasoning in order to protect them. To handle this scenario,
a system must reason efficiently and effectively about temporal processes, namely
the expected progress of a fire under particular environmental conditions and the
abilities of a limited number of agents to take steps, over time, toward putting out
the fire.

We must add that this script confounds the current implementation of Phoenix

agents. They are currently incapable of redirecting their efforts to save the base
and lodge.

3.5 Portability.

The Phoenix system runs on color and monochrome Texas Instruments Explorers
and MicroExplorers. We can package everything together (including support-code
for the frame system, grapher, EKSL utilities, etc.) as needed. We are making
progress on the documentation.

The entire Phoenix system is designed to be modular, so fellow researchers can
use the components they want. The smallest self-contained module, and the most
basic, is the Phoenix environment. This includes the DES, the Map layer, and the

user interface. We are confident that a researcher could take this code and build
his or her own agents to interact with it. However, we have not done this in our
own lab, so we cannot be sure.

Above the environment are three additional levels of software---the Phoenix basic
agent architecture, our own Phoenix agents, and the organizational structure that

holds among our Phoenix agents. The basic agent architecture is a skeleton with
hooks for sensors and effectors, reflexes, and a cognitive component (see Section
4). Some weeks ago the entire lab went through the exercise of defining a new type

of Phoenix agent (an airplane) given only the basic agent architecture, and we are

confident other researchers can do the same. There are really two aspects to
defining a new agent. One is mostly bookkeeping: We define frames for the agent

that describe its physical abilities, so that the DES knows how it behaves over time.

We also define frames that add instances of the new agent to a script. This is the

easy part. The hard part is defining the cognitive abilities of the agent. In terms of

the basic Phoenix agent architecture, this means defining plans, execution
methods, a cognitive scheduler, and other architectural components discussed in
Section 5.

Of course, the Phoenix environment does not and should not care about the
cognitive component of a new agent, other than to schedule its processes to

guarantee the illusion of simultaneity with other agents and environmental
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processes. Thus, it is relatively easy to tell the Phoenix environment about the
physical abilities of new agents, as in the examples above, and unnecessary to tell
the environment how the cognitive components of the agents work. We hope this
%vil make it easy for researchers to use the Phoenix environment, or the
environment and the basic agent architecture, to design and test their own agents.

4. Toward a Solution: The Phoenix AQent Architecture

A uniform agent architecture is shared by all agents. This architecture is the
structure of the agent, the "hardware" that dictates the fundamental faculties and
limitations of the agent. The structure endows and bounds acuity, speed of
response, and breadth of action. The structure constrains what an agent can do,
but not what it does. Specific methods control what the agent does. Control
methods determine what to do and how to do it. This dichotomy between structure
and control is reflected in this subsection and the one following it. Section 4.1
describes the agent architecture and Section 4.2 focuses on techniques for real-
time problem solving. For a more detailed description of these components, see
(Cohen, 1989 )

4.1 Phoenix Agent Architecture

The agent architecture has four components. Sensors perceive the world. Each
agent has a set of sensors, such as fire-location (are any cells within my radius-of-
view on fire?) and road-edge (in what direction does the road continue?). Effectors
perform physical acts such as moving or digging fireline. Reflexes are simple
stimulus-response actions, triggered when the agent is required to act faster than
the time-scale for the cognitive component. An example is the reflex of a bulldozer
to stop if it is m, fing into the fire. The cognitive component performs mental tasks
such as planning, monitoring actions, evaluating perceptions, and
communicating with other agents. Although every agent has these components,
each component can be endowed with a range of capabilities.

Sensors get input from the world (fire simulation and map structures). Their
output goes to state memory in the cognitive component, and also to the reflexive
component (triggering instant responses in the form of short programs to the
effectors). For example, a bulldozer sensor that detects fire within its radius-of-
view updates state memory automatically. If the detected fire is in the path of the
bulldozer, the emergency-stop reflex is also triggered. Effectors are programmed
by the cognitive component and by reflexes. Their output performs actions in the
world. in the preceding example, the emergency-stop reflex would program the

movement-effector of the bulldozer to stop. If the fire were not too close, the

cognitive component might then step in and program the movement effector to
start moving parallel to the fire. If the cognitive component also programmed the
blade effector to put the blade in the down position, the bulldozer would not only
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maintain a safe distance from the fire, but it would also build fireline as it moved.
Sensors and effectors are first-class objects whose interactions with other
components and the world are implemented in Lisp code. Reflexes, as mentioned,
are triggered by sensory input, which causes them to program effectors to react to
the triggering sensation. They are implemented in production-rule fashion, with
triggering sensations as their antecedent clauses and effector programs as their
consequents. Because they respond directly to the environment and so must keep
up with it, sensors, effectors, and reflexes operate at the same time scale as the
simulation environment and are synchronized as closely as possible within the
discrete event simulator.

The cognitive component receives input from sensors and sends programs to the
effectors to interact with the world. It is responsible for data integration, agent
coordination, and resource management, in other words, most problem solving
activity. This component operates in larger time slices than the others, thus
reducing the overhead of context switching, but increasing the possibility of
reasoning with outdated information.

The Phoenix cognitive component directs its own actions by adding prospective
actions onto the timeline, a structure for reasoning about the computational
demands on the agent, then selecting and exec-.ting these actions one at a time.
Actions may be added in response to a change in environmental conditions (e.g., a
new fire) or as part of the computation of other actions (e.g., through plan
expansion). Every action that the cognitive component accomplishes is
represented on the timeline with its temporal relations to other actions and
resource requirements (e.g., processing time and necessary data). The cognitive
scheduler decides which action to execute next from the timeline and how much
time is available for its execution.

Actions may perform calculations, search for plans to address particular
environmental conditions, expand plans into action sequences, assign variable
values, process sensory information, initiate communication with other agents, or
issue commands to sensors and effectors. These actions are represented in
skeletal form in the plan library. Actions are described by what environmental
conditions they are appropriate for, what they do, how they do it (the Lisp code for
their execution, called the execution methods), and what resources and data,
environmental and computational, they require. A plan is a special type of an
action. It includes a network of actions related by their data references and
temporal constraints.

Planning is accomplished by adding an action to the timeline to search for a plan
to address some conditions. When the search action is executed, it selects an
action or plan appropriate for the conditions and places it on the timeline. If this
new action is a plan, then when it is executed it expands into a plan by putting its
sub-actions onto the timeline with their temporal inter-relationships. If it is an
action, it instantiates the requisite variables, selects an execution method (there
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may be several with differing resource requirements and expected quality of
solution), and executes that method. We call this style of planning skeletal
refinement with lazy expansion. Plans are represented as sbells that describe
what types of actions should be executed to achieve the plan but do not include the
exact action or its variable values until it is executed. Delaying expansion allows
the expanded plan to address more closely the actual state of the environment
during execution.

This planning style is common to all agents in the Phoenix planner, though it is
flexible enough so that agents with a variety of cognitive capabilities are possible.
For example, the fireboss has far more sophisticated methods for gathering and
integrating information than the bulldozer does. It can direct the actions of the
bulldozers, while the bulldozers can only make requests of the fireboss. However,
the fireboss, unlike the bulldozers, does know how to get out of the way of the fire
because it does not work close to the fire.

Creating a different type of agent requires defining a cognitive component. One
can optionally define a set of programmable sensors and effectors (of arbitrary
complexity) and add a set of reflexes to handle situations that require instant
response by the agent. To create sensors and effectors, the simulator must be told
rates of action under varying environmental conditions, range of perceptions, and
other physical capabilities. Creating reflexes involves describing the triggers, the
expected output from sensors, and the response, the programming for the
effectors. The default cognitive component consists of plans, which are networks of
actions available to the agent and tailored to situations in the environment, and
methods which describe how to execute the actions. Creating a new cognitive
component with the same structure as that described here involves defining a new
plan library.

Several design decisions in the Phoenix agent architecture have been made
specifically to facilitate real-time control. One important decision is to incorporate
both reflexive and cognitive abilities in agents, enabling agents to respond
reflexively to events that occur quickly, while responding more deliberately to
resource management and coordination problems on a longer time scale. The
combination of a reflexive and cognitive component accounts for time scale
mismatches inherent in an environment that requires micro actions and
contemplative processing. Micro actions, such as following a road and keeping out
of the immediate range of the fire, involve quick reflexes and little integration of
data. Contemplative processing, such as route planning, involves long search
times and integration of disparate data such as available roads, terrain
conditions, and fire report-s. This holizontai de,-mposition ,a, that the igtn
can perform reflex actions to keep it from danger and maintain the status quo,
while also performing more contemplative actions. This strategy for responding to
disparate demands of the environment is advocated by Brooks, and Kaelbling;
although in both cases, they chose more levels of decomposition for their domains.
Our agent architecture, in effect, combines two different planning components.
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one highly reactive, triggered by specific environmental stimuli and operating at
;'ery small time scale, and the other slower and more contemplative, integrating
large amounts of data and concerned with resource management and
coordination.

Amother design feature that facilitates real-time control is the timeline and its
single representation for all actions. Because prospective actions share a uniform
representation on the timeline, all problem solving actions have access to the same
memory structures and can be monitored and allocated resources using the same
mechanisms. All problem solving tasks are subject to the same constraints with
respect to resource allocation: how much time is required, what information
gathering resources are required, and what data is necessary. This framework
allows new cognitive capabilities to be integrated easily by defining their
requirements within the action description language and relying on the timeline
and its supportive scheduling mechanisms to temporally arbitrate their
allocation.

Lazy skeletal expansion also facilitates real-time control. Plans are only partially
elaborated before the agent acts. This deferred commitment exploits recent
information about the state of the world to guide action selection and instantiation.
Completely deferred commitment, such as in reactive planning, is probably not
tenable when agents or actions must be coordinated or scarce resources managed.
The integration of planning and acting in Phoenix is designed to be responsive to a
complex dynamic world by postponing decisions on exactly what action to take,
while also grounding potential actions in a framework (skeletal plans coordinated
on the timeline) that accounts for data, temporal and resource interactions.

4.2 Real-Time Control in the Agent Architecture

How does a Phoenix agent respond to real-time pressure? One approach is to
control processing requirements. This enhances the flexibility of actions and the
sophistication of control decisions. Providing alternative execution methods for
timeline entries ensures a range of choices that vary in their timeliness. Different
scheduling strategies for managing the actions on the timeline provide greater
responsiveness to real-time constraints. Another approach is an expectation-based
monitoring technique that reduces the overhead of monitoring while providing
early warning of plan failure. Earlier warning of plan failure affords the planner
more time to adjust and more flexibility in possible responses. These approaches
are discussed below.

4.2.i Control of Processing Requirements

Processing requirements ran be controlled in two ways: by controlling how much
time is used by individual actions and by controlling the overall distribution of time
across all actions. Approximate processing and anytime algorithms are methods



for controlling how much time is used by individual actions. In these methods,
processing time is traded against quality or correctness of solution to satisfy tirae
constraints that could not be managed under rigid processing demands. In
Phoenix, these methods are alternative execution methods. Execution methods, as
.ntoduced in Section 4.1 are lisp code that performs the cognitive actions. Each
cognitive action may may be executed by one of several execution methods, with
differing time requirements and so differing solution expectations. The Phoenix
planner delays the choice of an action's execution method until the cognitive
scheduler selects the action for execution, thereby allowing the scheduler to select
a method suited to existing time constraints. By postponing the ultimate
commitment of cognitive resources until a choice must be made, those resources
can be allocated judiciously.

Alternative execution methods are particularly useful in actions that incur
potentially high computation costs with predictable results, such as path
planning. Phoenix uses an A* algorithm to calculate paths for bulldozers. It
searches the two-dimensional map representation of the world for the shortest
travel time path between two points. It expands the current best path
incrementally, searching each unobstructed neighboring cell for the best next
step. The algorithm is parameterized to work at multiple levels of resolution, so
that search steps could range from L28 meters up to 8 kilometers. A small search
step, 128 meters, yields the shortest path, requiring the least travel time for the
bulldozer. However, this resolution requires the most computation (i.e., cognitive
resources). The largest search step, 8 kilometers, typically yields a longer path,
which requires more travel time, but can be calculated quickly, consuming less
computation time. At times it even fails to find a solution, since there are
bottlenecks in the map that don't appear at large search steps. Each of these
resolutions constitutes a different execution method for calculating a path,
alternative methods which trade-off cognitive-time for quality of solution.

The cognitive scheduler controls the overall distribution of cognitive processing
time across all actions. At each time step, it selects the next action from the
timeline to execute, chooses an execution method for the action, and executes it.
Thus, the scheduler is key to controlling the responsiveness of the cognitive
component to real-time constraints. The current version of the scheduler for
Phoenix is rudimentary and considers only a short horizon for scheduling
decisions. It selects the next action for execution based on timeline ordering,
action priority and the amount of time an action has been waiting for execution. A
more sophisticated scheduler is being designed now.

4.2.2 Sophisticated Monitoring Through Envelopes

Just as we can explicitly represent the movements of an agent through its physical
environment, so can we represent its movement through spaces bounded by
failure or other important events. These spaces are called envelopes. Typically,
one dimension of an envelope is tir -, and the others are weasures of progress.
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For example, imagine you have one hour to reach a point five miles away, and
your maimum speed is 5 mph. If your speed drops below its maximum, for even
a moment, you fail. As long as you maintain your maximum speed, you arewithin
your envelope. The instant your speed drops below 5 mph, you lose orviolate your
envelope. This envelope is narrow, because it will not accomodate a range of
behavior: any deviation from 5 mph is intolerable. Most problems have wider
envelopes. Indeed, real time systems should be designed to ensure that narrow
envelopes are the exception, not the rule.

The following problem illustrates a wider envelope. A bulldozer has one hour to
travel five miles, as before, but its maximum speed is 10 mph. It starts slowly
(perhaps the terrain is worse than expected). After 40 minutes it has travelled just
two miles. It can still achieve its goal, but only by travelling at nearly maximum
speed.

Clearly, if the agent waits 40 minutes to assess its progress, it has waited too long,
because an heroic effort will be required to achieve its goal. In Phoenix, agents
check their envelopes at regular intervals, hoping to catch problems before they get
out of hand. One near-term research goal is to develop a theory of envelopes that
will tell us when and how often they should be checked.

Agents check failure envelopes, which tell them whether they will absolutely fail
to achieve their goals, andwarning envelopes, which tell them that they are in
jeopardy of failure. Typically, there is just one failure envelope but many possible
warning envelopes. To continue the previous example, the bulldozer would violate
a warning envelope if its average speed drops below 5 mph, because this is the
speed it must maintain to achieve its goal. Violating this envelope says, "You can
still achieve your goal, but only by doing better than you have up to this point."
These concepts are illustrated in Figure 3 . The failure envelope is a line from "30
minutes" to "five miles," since the bulldozer can achieve its goal as long as it has at
least 30 minutes to travel five miles. The average speed warning envelope is a line
from the origin to the goal, but the bulldozer violated that envelope immediately by
travelling at an average speed of 3 mph. In fact, it moved perilously close to its
failure envelope. The box in the upper right of Figure 3 illustrates that the agent
can construct another envelope from any point in its progress. In this example,

ne e~e 1 -V I-~~3LdLIW
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Figure 3. Depicting actual and projected progress with respect to envelopes

Agent Envelopes and Plan Envelopes. We distinguish between the envelopes of
individual agents and those of multi-agent plans. In Phoenix, plan envelopes are
maintained by the fireboss agent, who coordinates several subordinate bulldozers.
Because the environment changes, global plans may be put in jeopardy even if
agents are making progress that, from their local perspective, is well within their
envelopes. Figure 4 illustrates plan envelopes as they are currently implemented
in Phoenix: The leftmost illustration represents the current state of the fire, its
projected boundaries after one and two hours, and the firelines that three
bulldozers are expected to cut. By projecting where the fire will be, then adding
-om'e slack time, the fireboss anticipates that the last of these lines will be cut an
hour before the fire reaches it. On the right of Figure 4, we see the actual progress
of the fire: After one hour, it has grown less than expected, so the amount of slack
time grows (bottom of Figure 4) and the plan stays well within its one hour slack
time envelope. But during the next hour, the fire grows more rapidly than
expected; so rapidly, in fact, that the slack time envelope is violated. Sometime
during this interval, the fireboss will check the plan envelope and discover that it
is violated. It then replans and typically sends one or more additional bulldozers to
help out,
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Figure 4. A plan envelope for maintaining slack time.

The Utility of Envelopes. A planner can represent the progress of its plan by
transitions within the plan's envelopes. Progress, failures and potential failures
are clearly seen from ones position with respect to envelopes, whereas this
information is not always apparent from one's position in the environment.

Envelopes function as early warning devices in two ways. First, explicit warning
envelopes alert the planner to developing problems. Second, failure envelopes can
tell an agent it has failed long before its allocated time has elapsed. In Figure 3, for
example, the agent knows it has failed as soon as it crosses the envelope. A third
kind of early warning has yet to be implemented: Just as a planner can project the
course of events in its environment, so it can project its progress within its
envelope and, particularly, when an envelope might be violated. A simple
projection method is extrapolation. For example, if we checked the envelope in
Figure 4 aft~er 75 minutes we would see a "downward" trend. By linear
extrapolation we could estimate when the envelope would be violated. Of course,
the downward trend may reverse, or level out. But sometimes it will be worthwhile
to have the projected time of envelope violation despite its uncertainty.

Envelopes integrate agents at different levels of a command hierarchy: A fireboss
agent formulates a goal and a corresponding envelope, and gives them to a
subordtinate bulldozer agent with the following instructions: "Here is the goal I
want you to achieve. I don't care how you do it, and I don't want to hear from you
unless you achieve the goal or violate the envelope." The bulldozer then works
independently, not monitored by the fireboss. It figures out where to go, how to
avoid obstacles, and how to keep clear of the fire, until its goal is achieved or its
envelope violated. Meanwhile, the fireboss is free to think about other agents, other



goals, or to replan if necessary. Envelopes grant subordinate agents a kind of
autonomy, and grant superordinate agents the opportunity to ignore their
subordinates until envelopes are violated.

We have yet to develop cognitive scheduling mechanisms to take full advantage of
envelopes. The design of these mechanisms is motivated by the following
questions: How often should envelopes be checked? Should we adopt a fixed
interval or a dynamic one, and if the latter, what execution methods will
determine when to check next? When should agents project envelope violations
and how should they use the projections? Given that checking a plan envelope, or
projecting progress with respect to it, may involve collecting and integrating
information from the environment and all the participating agents, the cognitive
overhead of of these activities can be considerable and must be carefully scheduled.

5. Methodological Issues.

Our overriding research goal is to develop a sound basis for the design of AI
agents. Al is a kind of design. We don't design graphics, or VLSI circuits, or
mechanical devices: we design intelligent agents. The agents are evaluated by how
they behave. Their behavior is determined by their environments and their
architectures. Once we adopt this view, we see immediately that we do not know
enough about the relationships between agent architectures, behaviors, and
environments (the comers of the behavioral ecology triangle in Fig. 1) to design
intelligent agents in a principled way. For example, we cannot even precisely
define the characteristics of environments (Sec. 2.2), much less behaviors. And we
cannot answer the question, "How would the behavior of this AI program, in this
environment, change if you change its architecture this way: ... ?" But until we
can answer this question, Al system design will remain ad hoc.

In fact, design is one of six research activities implied by the behavioral ecology
model. Here is the complete list:

Prediction: How will behavior be affected by changing the architecture of the
agent or its environment? For example, how will behavior be affected by
changing the size of short-term memory, or by changing the mechanism by
which long term memory is accessed? How will behavior be affected if the
environment "speeds up," so that events that took N seconds now take N/2
seconds?

Explanation: Why does a particular behavior (presumably unexpected) emerge
from the interaction between an agent and its environment? For example,
why does an agent that combines long-term, goal-directed behavior with
short-term reactive behavior sometimes exhibit something like an approach-
avoidance conflict---dashing first toward a goal, then away from it, but
getting nowhere in the long run?
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Design. What architectures will produce a particular set of behaviors in
particular environments? For. example, what architectures will enable an
agent to respond to events in the environment that occur at very different time
scales?

Environment analysis: What aspects of the environment most constrain agent
design? What is our model of the environment?

Generalization: Whenever we predict the behavior of one agent in one
environment, we should ideally be predicting similar behaviors for
agents with related architectures in related environments. In other
words, our theories should generalize over architectures,
environmental conditions, tasks, and behaviors.

Functional relationships: What knowledge do we need to answer
questions in these classes? What are the functional relationships
between the architecture of an agent and its behavior?

Both the behavioral ecology model and the S/E model of Rosenschein, Hayes-Roth,
and Erman (see their paper in this volume) explicitly acknowledge the
relationships between architecture the environment, and behavior. Rosenschein et
al. denote the architecture and environment S and E, respectively; and
characterize behavior as a sequence of state changes called a run. Furthermore,
Rosenschein et al. seem to implicitly subsume, in what they call measurement
and evaluation, some of the research activities above. But because neither the S/E
model nor the behavioral ecology model make predictions, it is premature to
compare them except to note some apparent differences in emphasis.

Rosenschein et al. view the "S/E boundary" as flexible, so that sometimes the
environment can be made responsible for an activity that, in other circumstances,
we might require of the agent. For example, with the general vision problem
currently unsolved, we might construct an environment that "preprocesses"
sensory data for the agent, thus moving the S/E boundary inward, toward the
agent, bypassing the need for sophisticated sensors. This example suggests a
small apparent difference between the S/E model and the behavioral ecology
model: whereas the S/E model seems to assume a simulated environment, the
behavioral ecology model does not. Although the Phoenix project uses a simulated
environment, our principal research tasks (prediction, design, explanation, etc.)
do not presume a simulated environment. It isn't clear yet whether the principal
research tasks of Rosenschein et al. presume a simulated environment.

This raises the methodological question of whether one should use simulations at
all. Some researchers insist that the subtleties of real envronments are "lost
translation" to simulated environments. This is to some extent a straw man,
because we don't view simulations as accurate representations of the real world.
(In fact, we recently got into trouble by claiming that the Phoenix environment is
an accurate simulation of forest fires.4) But it is important to distinguish realism



and accuracy. Realism is necessary for our research; accuracy is not. Here are
some examples of the distinction: In a realistic simulation, processes become
uncontrollable after a period'of time; in an accurate simulation, the period of time
is the same as it is in the real world. In a realistic simulation, agents have limited
fields of view; in an accurate simulation, agents' fields of view are the same as
they are in the real world. In a realistic simulation, the probabilities of
enviionmental events such as wind shifts are summarized by statistical
distributions; in an accurate simulation, the distributions are compiled from real-
world data. When possible, we use accurate data; for example, in Phoenix we use
Defense Mapping Agency data of elevation, ground cover, and so on, anc' "he fire
dynamics are derived from U.S. Forest Service manuals (NWCG Fireline
Handbook, 1985). But the goal of our research is not to accurately simulate forest
fires in Yellowstone National Park. It is to understand the design requirements of
agents in realistic environments-environments in which processes get out of
hand, resources are limited, time passes, and information is sometimes noisy and
limited.

With this in mind, we see that simulations have several advantages:

Control. Simulators are highly parameterized, so we can experiment with
many environments. For example, we can change the rate at which wind
direction shifts, or speed up the rate at which fire burns, to test the
robustness of real-time planning mechanisms. Most important, from the
standpoint of our work on real-time planning, is the fact that we can
manipulate the amount of time an agent is allowed to think, relative to the
rate at which the environment changes, thus exerting (or decreasing) the
time pressure on the agent.

Repeatability. We can guarantee identical initial conditions from one "run" to
the next; we can "play back" some histories of environmental conditions
exactly, while selectively changing others.

Replication. Simulators are portable, and so enable replications and extensions
of experiments at different laboratories. They enable direct comparisons of
results, which would otherwise depend on uncertain parallels between the
environments in which the results were collected.

Variety. Simulators allow us to create environments that don't occur
naturally, or that aren't accessible or observable.

Interfaces. We can construct interfaces to the simulator that allow us to defer
questions we'd have to address if our agents interacted with the physical
world., such as the vision problem. We can also construct interfaces to show
things that aren't easily observed in the physical world; for example, we can
show the different views that agents have of the fire, their radius of view,
their destinations, the paths they are trying to follow, and so on. The Phoenix
environment graphics make it easy to see what agents are doing and why.

Let us return now to the comparison of the S/E and behavioral ecology models. We
noted that the former model represents behavior as "runs," sequences of state
transitions (or as measures over runs), whereas the behavioral ecology model is
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inspecific about how to represent behavior. On the other hand, the behavioral
ecology model is quite specific about the causal relationships that hold among the
environment, the agent architecture, and the agent's behavior. The behavioral
ecology model comes from biology; it regards the architecture as analogous to the
genotype and the behavior as analogous to the phenotype. And it assumes that
selection operates on the phenotype. Thus, there is no direct causal link between
an agent's environment and its architecture; rather, the environment ensures
that behaviors are differentially rewarded, so the architecture must be modified to
produce "good" behaviors. This, then, is what we mean by a good architecture-
one that produces behaviors that are good in a particular environment.

It's important to know whether such behaviors can be generatea by design, that is,
by intentional modifications to the architecture, or whether they must evolve by
search. Advocates of emergent behavior often take the latter view. They say that
one cannot generate the phenotype from the genotype; one cannot predict how a
moderately complex architecture will behave. This has important practical and
methodological implications for IRTPS. Do we build IRTPS systems "top down," by
assembling components that are predicted to behave in particular ways, and
damn the emergent behaviors? Or do we build them "bottom up," by assembling
components incrementally and empirically, waiting for desired (and undesirable)
behaviors to emerge? In fact, we mix the approaches in proportions determined by
the degree to which behaviors can be predicted from architectures (or components
of architectures). Moreover, this degree of predictability is determined in part by
the desired precision or scale of the predictions. If you want to know the precise
number of cpu seconds that a process will run, you are probably out of luck. But if
you want to know the upper hound runtime, it may be possible. You probably can't
know the exact location of a fire ten minutes from now, but you can certainly draw
a circle that has a high probability of circumscribing the fire. Thus, the question of
whether behaviors can be generated by design depends intimately on how precisely
we want to specify and predict the behaviors.

This brings us to a final methodological issue: evaluation. Let us first ask, What is
being evaluated? Whether an architecture exhibits "timely' behavior? or exhibits a
good tradeoff among several desired behaviors? Whether the behaviors are
exhibited in a sufficiently wide range of environments? Whether we can predict
when the behaviors will and will not occur? Whether we understand the
functional relationships between architecture and behavior well enough to design
an agent that will exhibit desired behaviors in a new environment? All of these
should be evaluated. More pointedly, evaluation cannot stop with the
demonstration that a system "works," however sophisticated the demonstration!
We must take at least two more steps: We must attempt to show why the solution
works (or doesn't work). This is uncommon, but essential if we are to make
progress as an engineering field. The third step is to show why any solution with
such-and-such abstract characteristics must work (or not work). This requires
models of the behaviors and environments under study.
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5.1 An Example of Design for IRTPS

We will briefly illustrate the previous points, and the terminology in Section 2.2,
with the example of the design of Phoenix's cognitive scheduler. It's current
cognitive scheduler is very weak. We are designing another one that achieves
many of the behavioral goals of IRTPS. In the terms of Section 2.2, this seems to
imply that we should list the problems and inherent problems, describe the
relevent ECs and ACs, and after analyzing how the problems arise out of the
interactions between ECs and ACs, we propose solutions and solution realizations.
In fact, this seems to be an idealization. Instead we start with an informal
description of some problems, and then hunt around for ECs and ACs that we
believe account for the problems. The result is a formal description of the problems
in terms of ECs and ACs. Then we generate solutions and solution realizations.

Here is an example of the first steps.

Informal description: The plan selection mechanism may take too long to find a
plan. As a result, the fire may burn too much area, or may become uncontrollable.
(Note that this is intentionally vague, to show how we formalize the problem
description in terms of ECs and ACs.)

Environment characteristics: What is going on in the environment that could
contribute to the problem, as informally described above? Let's concentrate on one
thing, the spread of the fire. We want to model this in a way that allows us to firm
up the informal problem description. Suppose we model the spread of the fire as
an exponential process analogous to compound interest and population growth.
Then, the perimeter of a fire after t time units is:

p = pi(1 + r)t

Here, p is the perimeter of the fire, pi is the initial perimeter of the fire, r is the
percentage increase in the fire perimeter every time unit, and t is the number of
time units that have elapsed.

Architecture characteristics. For now, we will list just two characteristics: It
takes a period of time, d, to generate a plan and get the bulldozers to the fire to
begin implementing the plan. And once at the fireline, bulldozers dig at a constant
rate.These are both oversimplifications, but useful, as we shall see.

Now we can say more formally what the problem is:
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The curved line represents p, the length of the perimeter, as a function of time. It
begins not at the origin, but at a point that represents the initial perimeter of the
fire (e.g., its size when detected). We assume for simplicity that the steepness of
the curve is described by one parameter, r, which captures factors such as wind
speed and fuel type. Obviously, a more complex model could be generated if
needed. After some delay, d, a plan is detected and.some bulldozers are dispatched
and then arrive at the fire. They begin cutting f-eline at a constant rate, so the
length of the controlled perimeter increases at a linear rate determined by the
number of bulldozers. We show two possibilities, case A and case B.. In case A
(solid line) the bulldozers arrive at the fire sooner, and in greater numbers than in
case B (dashed line). In fat in case A the fire is controlled, whereas in case B it is
not. We know this because the line for case A intersects the line for the perimeter,
which means that at some point, the length of the controlled perimeter equals the
length of the fire perimeter, or, all the fire perimeter is controlled. In case B, this
doesn't happen.

BefoLre can rephrase the informal problem description more precisely, we need
to know what affects the parameters represented in the diagram above. This will
tell us what we control as designers, what the system itself controls as an
autonomous agent, and what the environment alone controls.
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p'- This could be reduced if the fire was sighted earlier. The lower
limit on the speed with which the fire is sighted is an AC that we
control. It depends on things like how big a fire must -e before it is
noticed, how often the watchtowers look, how long it takes them to
report their findings, how long it takes the fireboss to notice, etc. Most
of these ACs have lower limits that we control, and actual values that
the agent controls.

r - This parameter, which determines the steepness with which the
perimeter increases, is an EC.

d - as with p',we control the lower limit on d, and the actual value is
controlled by the agent.

slopes of "controlled perimeter" lines - this has an upper limit that we
control (by controlling the number of available bulldozers) and an
actual value that the agent controls, by controlling the number of
bulldozers committed to the fire..

At this point, we can begin to give formal descriptions to problems. For example,
what is a deadline? In general, a deadline is a point at which the value of problem
solving changes, usually downward. Consider a hard deadline for the plan
selection process. In the previous diagram, this is represented as an upper limit
on d. Consider three cases, denoted c, d, and e in the following diagram:

case *

acase c

ti Q2

In case c, the slope of the "controlled perimeter" line is shallow because, say, it
corresponds to a plan that involves only two bulldozers. Moreover, the deadline for
the institution of the plan has already passed. You can see this by shifing the line
for case c to be tangent to the "perimeter" line. By the same operation you can see
that, for case d to succeed, the bulldozers (more of them than in case c, hence the
steeper slope) must be at work before t1; and for case e to work, they must be busy
by t2. Any delay longer than t1 or t2 shifts the respective lines to the right,
ensuring that they will never intersect the perimeter line and the fire will never be
controlled.



[X-32 Cohea. Howe & Han

Now we can be more precise about the problem: For given values of r and p'
(assuming the fire has just been sighted), find a plan that is expected to contain
the fire and that can be instituted before its deadline.

Note that the original problem, a failure to get plans ready in time, has been
formalized in the context of an agent model and an environment model. Moreover,
a common IRTPS term has been defined in these contexts. One might argue that,
in the process, we have taken a nice, general term like "deadline" and replaced it
with something that is so specific to Phoenix as to be unusable. We believe we have
done exactly the opposite. Not only have we made a vague term precise, but we
have also identified a very general functional relationship or "rule" associated
with the term: Imagine that the perimeter of the fire grows linearly, not
exponentially. Then the notion of deadline illustrated in Figure 5 would not exist.
If a process F grows linearly, and another linearly-growing process B is trying to
control it, then a comparison of the growth rates of F and B will tell us whether B
will succeed, and when it will succeed (assuming the growth rates don't change).
If B 'grows faster than F, then it will control F eventually. The only effect of
delaying the onse of B is to delay the control of F. On the other hand, if F grows
superlinearly, as in Figure 5, and B grows linearly, then a delay does not merely
delay the event in which B controls F, it may make that event impossible (as shown
by the dashed line in Figure 5). we believe this is a very general phenomenon, and
thus a very general interpretation of "deadline": A deadline is the point at which a
linear process becomes incapable of catching-at any time in the future-a
superlinear one. Obviously this can be generalized to functions of other orders-a
sublinear process trying to catch a linear one, and so on.

As we evaluate the Phoenix project, we will certainly ask whether it plans in a
timely way, whether it meets deadlines, balances cognitive load, exhibits graceful
degradation, and so on. But the most telling evaluation will be whether we have
been able to engage in the specialization-generalization process illustrated above:
Whether we gave terms such as "deadline" precise interpretations in terms of
Phoenix ECs and ACs and then generalized them again, as we did when we said a
deadline is a point at which one process becomes incapable of catching another.
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1 Introduction

Research in distributed problem solving has investigated several application domains,
such as air traffic control [11], distributed vehicle monitoring [8,10], and factory floor
control [9]. Each application emphasizes certain coordination issues. For example,
air traffic control emphasizes global coordination to guarantee the avoidance of air-
craft collisions, distributed vehicle monitoring emphasizes the generation and sharing
of tentative (possibly incorrect) partial results to converge on global solutions, and
factory floor control emphasizes the proper allocation and scheduling of production
tasks at different processing sites. Because of their different emphases, techniques for
coordination that have been developed for one application have often been inappropri-
ate for another application. Moreover, transferring techniques between applications
has proven difficult because of the knowledge engineering and translation needed to
recode a technique in a new domain. Thus, distributed problem solving research has
been limited by the inability to easily evaluate different coordination techniques in a
variety of application environments.

To overcome this limitation, we have developed a flexible testbed called MICE
(Michigan Intelligent Coordination Experiment) that extends the ICE testbed de-
veloped at the University of Southern California [6] in which artificially intelligent
agents interact on a two-dimensional grid [1,4]. MICE retains this two-dimensional
grid model of the world and adds a number of extensions that allow greater flexibil-
itv in the coordination issues that can be presented to the agents. MICE provides
an environment where agents "live," and imposes constraints on the capabilities and
actions of agents and on the interactions between agents. These constraints affect
the mobility of agents; the range, accuracy, and time needs of their sensors; their
ability to move, create or remove other agents; and how collisions or other spatial
relationships affect agents.

Our initial goal has been to build MICE as an experimental testbed that does
not simulate any specific application domain, but can instead be modified to im-
pose a variety of constraints on how agents act and interact so that we can emulate
the different coordination issues that arise in various application domains. Thus,
rather than building several testbeds and reimplementing the agents' reasoning ar-
chitectures and coordination techniques for each, we can leave the agents alone and
instead modify the parameters of our single testbed to simulate the important co-
ordination characteristics of different domains. An added benefit of this approach
is that, because our testbed does not have to fully simulate any application domain
(only the domain's coordination issues), we reduce the knowledge engineering effort
for building the testbed, and we decrease the chances of solving coordination issues
with approaches that are specific to an application domain.

In this paper, we describe the motivations behind MICE by presenting background
information and by outlining the approach taken in its design. We then describe the
capabilities of the MICE system, and illustrate how it simulates different environments
in which AI systems should coordinate. We conclude with plans and directions for
the future.
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2 Background

One objective of developing generic DAI testbeds is to simplify the investigation and
evaluation of coordination mechanisms in a variety of contexts, in an attempt to
discover general principles of coordination. MICE differs from previous generic DAI
testbeds because of the minimal assumptions it makes about hov agents are imple-
mented. For example, the MACE [5] testbed provides a language for defining both
agents and their environments, and provides many facilities for monitoring, error han-
dling, and interacting with the user. This language simplifies the task of defining new
types of agents, but also limits the agents that can be built and evaluated to those
that are specifiable in the MACE language. In contrast, the MICE testbed provides
facilities for describing only the environment in which agents act and interact, leav-
ing the user with the flexibility to implement agents in any way desired (so long as
they can interface with Lisp). The increased latitude in how MICE agents can be
implemented places a greater burden on the agents' developers, but allows experimen-
tation with widely different architectures, including blackboard systems [3] and Soar
[7]. Because MICE specifies only how agents interact indirectly through the environ-
ment, the agents' developers are free to specify how agents interact directly through
communication. Experimenters can populate a MICE environment with agents that

have different architectures provided they define communication protocols between
these agents.

3 Design

The research we are conducting with the MICE system is based on two very important
hypotheses.

1. Coordination issues arise from a combination of the requirements of an appli-
cation environment and the capabilities of the agents that inhabit the environ-
ment. For example, the catastrophic consequences of collisions in air traffic
control constrain how vehicles behave, but the difficult coordination issues trig-
gered by these constraints also depend on the vehicles themselves, such as how
much each can know about the environment and about the others, how quickly
they can reason, and what their communication capabilities are.

2. Coordination does not so much depend on "techniques" that are "given" to
agents, but, instead, that reasoning about coordination is a fundamental aspect
of intelligence that should permeate the reasoning of an agent. For example.

coordination is not achieved by starting with an artificially intelligent system
and then giving it a coordination technique such as the Contract Net protocol

[10]. Such an approach overlooks the fact that, to intelligently use this protocol,
agents must internally reason about coordination. Deciding how and when to
decompose, announce, award, and bid on tasks using the protocol is difficult
and can require sophisticated reasoning about local aad non-local goals, plans
and constraints. The ability to coordinate should be designed into an agent's
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reasoning architecture, so studying different ways of coordinating might means
studying alternative architectures.

By investigating alternative architectures under a variety of environmental constraints,
we can begin to identify the general coordination principles that must be considered
in any truly versatile architecture for intelligent coordination. To facilitate this in-
vestigation, we have designed MICE to meet the goals of:

1. Flexibility. MICE cau easily model the coordination issues that arise in different
application domains.

2. Limiting knowledge engineering requirements in simulating new scenarios. A
library of domain-specific predicates allows researchers to build environments
with unique combinations of coordination issues.

3. Providing a clean interface to the intelligent agents. The interface between
MICE and the agents is well-structured to give researchers the latitude to im-
plement agents in any reasoning architecture desired.

4. Helping researchers collect the results of running coordination experiments.
MICE provides a set of tools that can be used to view the interactions be-
tween agents in the environment, to review previous states and events, and to
collect statistics over the course of experimental runs.

MICE is intended to model the significant coordination issues of application do-
mains without modeling domain details that do not directly impact coordination.
This distillation from the space of completely detailed domains to the coordination
issues that they present allows us to use MICE to combine coordination issues in
unique ways. The ease with which new sets of coordination issues can be combined
and presented to intelligent agents, without forcing an interface change on the agents,
facilitates the evaluation of how well the agents coordinate.

MICE has been designed to maximize its portability as well as the ease with
which it can reproduce experimental results. To provide these features, MICE is im-
plemented in a standard language, Common Lisp, and runs on a serial processor, cur-
rently a Texas Instruments Explorer. These choices provide greater portability over
the use of special-purpose languages and multi-processor machines, both of which
are not as readily available. By simulating concurrency on a serial processor, MICE
retains greater control over the actions of agents, making it possible to exactly repro-
duce experimental results. Furthermore, since MICE uses simulated time to model
concurrent agent actions, agents are not subjected to real-time constraints. This
allows us to investigate reasoning architectures that have not yet achieved real-time
operating speeds.

4 Implementation

In this section we describe the MICE system and the options it provides in more
detail. During the course of an experimental run MICE maintains a state history
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that includes the location and orientation of each agent, the status of each agent
(created, activated, deactivated or removed), actions taken or attempted by each
agent, and characteristics of locations in the grid. This state information can be
saved away into a file for further examination after the run is complete.

In simulating a single time step, MICE first allows the intelligent agents to decide
what actions they wish to perform. The actions that they can choose from are:
moving; changing their orientation; scanning for other agents and for features of
the grid; linking to other agents; unlinking; making status changes by creating new
agents, removing existing agents, activating, and deactivating. Agents can also specify
an amount of time spent "reasoning". This allows the agents to associate time costs
in the simulated environment with the actual time they have spent in computation
or in communication with each other.

After all agents have chosen actions to perform, MICE executes the actions in
the environment to produce a new state. Any conflicts in this state are resolved
through a combination of fixed and user-specifiable predicates that ensure a consistent
resulting state. An example of a conflict that must be resolved is when two agents
that are not allowed to overlap (occupy the same location) decide to move to the
same location. MICE will detect this situation and call the resolution predicate that
has been chosen for the experimental run. One option causes the agents to bounce off
of each other, returning them to their prior locations. Another choice is to have an
authority relationship such that the agent with higher authority gets the location and
the lower authority agent is pushed back. The resolution process gets complicated
when resolving one location causes a new conflict in another location. This can
happen, for example, when a number of agents that are not allowed to overlap are
following each other. If the lead agent attempts a move into an illegal location and is
moved back, it will now be in conflict with the agent that was behind it. This results
in a domino-effect of undoing moves back through the line of agents (Figure 1). In the
worst case scenario, our resolution procedures will result in all actions being undone,
returning the environment to its previous state. That previous state is guaranteed
to be consistent since it was resolved at the end of the last time step. Under no
circumstances are actions undone that were completedin a prior time step.

MICE uses graphics to display the environment's state at each time step. Agents
and significant grid features are represented by geometric icons (squares, circles, tri-
angles, etc.). These icons can be changed in response to the occurrence of events.
For example, an agent represented by a filled square may change its representation
to a hollow square when it deactivates. MICE has an event-driven set of predicates
that can be used to aid interpretation of an experimental run. Such predicates can be
used to maintain statistics, change the graphic display of an agent or a grid location,
or cause other changes in the environment. In a fire-fighting scenario, for example,
after an area has been burned, its characteristics can be changed so that fire cannot
move through it again. At the same time, statistics can be updated on the amount
of area consumed by the fire, and the graphic representation of the burned location
changed to reflect its condition.

The flexibility of MICE is evident in the parameters that can be specified to create
new environments to test the skills of intelligent agents. These include:
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At one time, agents 1 through 5 aU decide to move east (a). MICE resolves the resulting
conflict between agents, 5 and 6 (b) by moving agent 5 to its previous location. This
results in a new conflict between agents 4 and 5 (c). Successive iterations of MICE's
conflict resolution procedure (d, e, f) finally produce the consistent state (g). The net
effect of the resolution is a return of the environment to the state it was in at the
previous time stenp

Figure 1: A Chain Reaction in the Resolution of Agent Moves



* The resolution of collisions between agents. When agents collide by attempting
to move through each other or by moving to the same Iccation, their final
positions can be resolved in a number of ways. For example, they may pass
through each other, bounce off of each other or push each other.

* The effects of collisions. Agent characteristics can change as the result of a col.
lision. For example, a collision might cause an agent to lose (or gain) resources,
influencing its future capabilities, such as when it loses energy in a collision and
afterward moves more slowly.

# The effects of being in certain spatial relationships. Any detectable spatial rela-
tionship can trigger a change to an agent's characteristics. For example, in the
predator-prey environment (Section 5.1, prey agents that have been surrounded
by predator agents are removed from the environment.

* The effects of other events or actions in the environment. Predicates can be
associated with any event such as agent movement, linking, unlinking, status
changes, etc.. For example, if an agent simulates "picking up" another agent
by linking to it, a consequence might be the other agent becoming deactivated
so that it would no longer be capable of moving itself.

* Agent characteristics. These include the agents' starting locations, the time
costs of moving and of scanning, which agents obstruct movement and sensing,
and so on.

v Features of the grid and locations in the grid. The size of the grid can be
specified as can features of individual locations. For example, we can assign
attributes to a location to block movement through the location, or obstruct
sensing beyond it.

* The entry into the code for the intelligent agents. When an agent must make
a decision on what to do next, MICE has a pointer to the agent's invocation
function. By calling this function, MICE passes control to that agent's rea-
soning process. We have implemented intelligent agents directly in Lisp and
in a blackboard system. We also have a human interface that gives the user a
menu-driven choice of actions.

* Termination predicate. The termination predicate decides when an experi-
mental run is complete and outputs results of the run. For example, in the
fire-fighting scenario, the run is complete when there are no active fire agents
(simulating the fire being extinguished or burning itself out). At the end of the
run, the termination predicate displays statistics that give indications as to how
well the fire was fought.
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5 Example Simulations

MICE provides us with a flexible framework in which we can simulate a wide variety
of environments that involve multi-agent coordination. That is, MICE allows us
to simulate the issues in coordination that arise in a wide variety of domains, and
we do not simulate other details of domains that have no bearing on coordination.
To simulate a particular multi-agent environment, we must give MICE two kinds of
information. First, we must specify the environmental parameters, predicates, and
constraints; MICE uses these to calculate the ramifications of the set of actions taken
by the agents at any given time. Second, we must define functions to invoke for an
agc. when that agent is to decide on its next action. These two kinds of information
are ightly intertwined, because agents' decisions might (and usually should) involve
some knowledge about their shared environment. To illustrate how we use MICE
to simulate particular multi-agent environments and populate these with agents, we
describe several simulations that we have implemented in MICE using 20 by 20 grids.

5.1 Predator-Prey

The inspiration for the MICE environment sprang from previous work that simulates
the interactions between predators and prey in a two-dimensional grid environment
(1,4,6]. Although different implementations have all concentrated on the problem of
how agents of one type (predators) can surround and capture agents of a second type
(prey), the constraints and capabilities of the agents have slightly varied from one
implementation to the next. ICE allows us to simulate a wide range of constraints
and capabilities for this problem, including:

* An agent's sensing range (how far it can sense), period (how often it can sense),
sensitivity (what objects and agents it can sense), and time costs (how long it
takes to sense) can be specified. Typically, a predator can be given the ability
to continuously sense an area around itself for other predators and prey, while
prey have no sensory capabilities.

# An agent's mobility, in terms of which directions it can move and how quickly
it can move in each direction, is parameterized. Typically, both predators and
prey can move equally quickly and well in any direction.

* Agents' spatial constraints, such as whether two agents can occupy the same
location, can be specified, along with a predicate to resolve conflicts. In the
predator-prey, we typically do not allow two agents to occupy the same location,
and when they attempt to do so the conflict is resolved by moving them back
to where they were before they attempted moving.'

'Some previous simulations of the predator-prey domain allowed only one agent to move at a
time in cycles of turn-taking, so that no such conflicts arise. We instead simulate the simultaneous
activity of all agents at any given time, so two agents that are unaware of each other's current
decision might take conflicting actions.
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We have implemented several different predator-prey environments, with minor
variations on agent goals, capabilities, and constraints. Our most common scenario
involves 2 prey agents that are moving across the area to reach a safe area, and 6
predator agents that attempt to capture them before they get there. Because it takes
4 predators to surround a prey, the predators must attack the prey one at a time. To
succeed they must coordinate their decisions as to which of the prey they will attack
at any given time.

Within this simulated environment, we have done some preliminary evaluation of
agents that have been implemented in two different ways. Initially, we wrote some
straightforward Lisp code to control agents' activities. In this implementation, a prey
agent simply moves in a direction that can reduce the distance between it and the
safe area. A predator agent scans the area within its sensor range to develop the
most up-to-date view of its vicinity, and if it sees no prey it does not move. If it sees
one or more prey agents, it builds goals to occupy each of the 4 adjacent locations to
each of the prey, unless it sees that a fellow predator is already in that location. It
then moves toward the nearest of its goals.

Not surprisingly, the performance of the predators was generally very poor, unless
their initial distribution in the area led to fortuitous coordination. As has been
discussed more fully elsewhere [6], entrapping prey can require a great amount of
coordination between predators--coordination that our original simple predators were
not taking into consideration. As a result, the predators would often fail to block the
escape route of prey, or worse yet, the 6 predators would split into 2 teams of 3 and
chase separate prey agents with no hope of success. In fact, even when they would be
in a good position to capture a prey agent, the lack of coordination between predators
could cause them to repeatedly collide with each other so that they would make no
progress as a team (Figure 2).

To improve coordination, we have developed a preliminary implementation of
agents as separate but communicating blackboard systems. The implementation has
been done in GBB [2] using the simple agenda-based control shell, but modifying this
shell to simulate a multi-agent environment. When MICE calls an agent's invocation
functica, this function triggers the continued processing of the agent's blackboard
system. The agent's knowledge sources (KSs) can act on the internal reasoning of the
agent by affecting its blackboard, and can also return commands to the MICE shell for
simulating agent actions. For example, a predator agent has a SCAN KS that sends
an appropriate command to the MICE shell, which in turn returns scan inforrration
that the KS can process. The small number of externally invocable functions in the
MICE shell are available to the GBB-based system, and MICE can invoke a few
external GBB functions, so these very modular shells can be used in tandem through
a well-specified interface.

To our GBB predators we have ,mprove: c oord&nation by adding rudimentary
capabilities for communication and for modeling other agents. Essentially, when a
predator decides which prey it will chase, it sends messages to the other predators with
this information. As predators receive this information, they update their models of
each other to reflect this addii.ional knowledge. As these models improve, a predator



X- I0 Durt'ee & fontgomer:

0
0110

The prey (indicated as a square) is surrounded on 3 sides by predators (circles). Two
predators are attempting to occupy the last side, but because they lack coordination,
they repeatedly collide with each other and bounce back to their initial positions.
Unless the predators have some additional coordination capabilities, this situation will
lead to a stalemate.

Figure 2: A Stalemate Position for Uncoordinated Predators



can make better decisions about what prey to chase. For example, if it has a choice
between being the fourth predator chasing a distant prey Or the only predator chasing
a nearby prey, it will give preference to the former. If more than 4 predators are
chasing the same prey, they can reason about which should abandon the chase in
order to chase other prey (to avoid wasting resources). If the predators have initially
di 'ided into teams which are each too small to successfully surround prey, they can
use heuristics involving measures such as the center of gravity [1] to decide which
teams should be dissolved and which other teams should be enlarged.

Our initial blackboard-based implementation haz, not surprisingly, shown signifi-
cant improvement over the much less sophisticated agents first developed. However,
there are still important improvements that we can make to our agents so that the
agents can reason even better about themselves, each other, and their environment.
For example, if predators could model the goals of the prey (such as moving toward
a particular safe area), it would only take 2 predators to block a prey from its goal
until other predators arrive to complete the capture. On the other hand, if prey are
moving randomly in directions away from nearby predators, then 2 predators will not
be sufficient to keep some prey in check (unless the predators can also move more
quickly than the prey). Because MICE allows us to easily change the characteris-
tics of the environment and of the agents, we plan to investigate the different-and
common-techniques for coordination in different specific instances of the more gen-
eral predator-prey domain.

5.2 Predator-Predator

Using MICE, it is simple to extend the simulated predator-prey domain to a domain
with 2 kinds of predators, each of which preys on the other kind. By modifying a
few characteristics of the prey in the predator-prey simulation, we can give the prey
the capability to capture predators. In addition, our simulation increases the number
of agents (obviously, 2 prey-turned-predators would not have much of a chance since
4 are needed to capture some agent). We have predominantly been experimenting
with simulations where there are 12 agents of each type, the agents being randomly
distributed in the 20 by 20 grid.

As in the predator-prey environments, one of the coordination tasks is for preda-
tors to dynamically team up to capture some prey. However, each predator must
also have a goal of avoiding being captured itself. This additional goal can cause
major changes in agent behavior, and in team organization. For example, although
we have not studied more centralized organizations where one of the team members
coordinates and fully controls the other 3 in the capture of some prey [1,6], these
are feasible organizations for predator-prey environments. When predators can be-
come prey, however, the centralization of control in some team manager might be
less desirable: Rather than depending on some captain (who might might have an
incomplete view of the agents it is coordinating) to recognize when an agent might
be in danger and telling that agent what to do, we might prefer giving the agent itself
some local autonomy so that it can unilaterally decide to quit being a team player
(at least temporarily) in order to save its own skin. The tradeoff between the benefits
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The circular predator I holds, its position to help capture square predator 1, even

though it will be captured itself sooner.

Figure 3: The Costs of Favoring Cooperation over Local Autonomy

of capturing agents (which encourage cooperation) and the costs of being captured
(which fall essentially on individuals) leads to a tension between the simultaneous
goals of being cooperative but also retaining some autonomy.

In our experiments to date, we have studied agents that are predominantly coop-
erative, so that one agent holds its post of occupying one side of another agent to
capture even though it is sometimes surrounded and captured first (Figure 3). As a
consequence, the agents often come together in a mixed group and jockey for posi-
tion, attempting to surround each other. These situations often lead to stalemates as
agents repeatedly collide with each other and no progress by either side is made. One
way that we have used the MICE testbed to explore alternatives within this type of

problem is to assign different authorities to the agents, and replace the collision func-
tion that returns agents to their previous locations when they collide with a function
that allows agents with higher authority to occupy their desired locations, forcing
lower priority agents out of their way.2 Once again, MICE allows such changes to be
made easily.

5.3 Forest-Fire Fighting

With a e : difiaions to our predator-prey environment, we can simulate some
coordination issues for a cooperative domain such as forest-fire fighting. As a simple

2We also use this function to allow agents to pu.sh each other around. For example, we can
simulate 2 high-authority robot agents that are moving a (low-authority) box by cooperatively
pushing it to some desired location.



X-J3

example of this domain, we can build fire-fighter agents and fire agents. The fire
agents move in certain patterns, and we can specify predicates that simulate fire
moving downwind and burning differently in areas with different groundcover (which
is simulated by giving appropriate feature information to different locations on the
grid). If unchecked for a certain amount of time, a fire agent creates a copy of itself
at an adjacent location. Thus, the fire can spread and enlarge over time. Moreover,
once a fire agent has occupied a location, the features of that location are modified
so that fire cannot spread there in the future. Firefighter agents are simulated in a
simple ,way by specifying an initial firefighting capability for each. When a firefighter
encounters a fire agent, it applies itself to destroy the fire agent, but as a. result it has
less capability (it is weakened).

The firefighter agents must work together to contain and extinguish the entire fire
before exhausting their capabilities. Strategic considerations include surrounding the
fire to contain it, fighting it before it can spread, and concentrating on the fire's front.
However, because each firefighter might have a limited local view of the fire (limited
sensor range), the agents might have different perceptions as to how to pursue these
strategic goals. The agents must therefore communicate and coordinate their actions
to work as an effective team.

To date, our firefighting agents use very simple knowledge sources and coordinate
little to fight the fire. Although the firefighting agents have some commonality to the
predator agents developed for other environments (such as the goal of surrounding
and containing other agents), the characteristics of the simulated firefighting environ-
ment, including the ability of fire agents to generate new fire agents and to move at
different speeds in different areas, bring in different issues in reasoning about local
and coordinated actions. Moreover, in MICE we can also define additional firefighting
agents, such as slowly-moving bulldozqrs, non-moving firebreaks created by bulldoz-
ers, and aircraft that are quickly-moving but less effective at extinguishing fire agents.
These extensions to the forest-fire fighting environment bring up important additional
issues in coordinating the effective use of heterogeneous agents and resources.

5.4 Cooperative Robotics

A motivating force in our development of MICE was to make a testbed that would
be flexible enough to simulate different domains that are typically addressed in dis-
tributed problem-solving research. A second motivation was to be able to simulate
coordination issues faced in actual systems that we have access to. That is, many real-
world systems call for coordination between individual agents, and we would like to

study the coordination issues for these systems without getting bogged down in other
details. For example, our laboratory has several types of mobile robots with different
capabilities. We have state-of-the-art, high-precision Cybernation mobile platforms
that can carry sophisticated sensory apparatus including cameras for computer vi-

sion. These platforms have no capability to manipulate the world, however. We also
have Heathkit Hero robots which move and sense imprecisely, but have manipulators

through which they can pick up and move (light) objects in the world.
We are studying issues in coordination and cooperation between these two robots,
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where the Hero relies on the Cybernation for sensory information, and the Cyber-
mation relies on the Hero for manipulating the world. Depending on their individual
goals, there are many ways that these systems can coordinate, and we would like to
build Al software for these systems to allow them to coordinate flexibly. However,
experimentally testing this software in the actual systems can be very dangerous and
time-consuming: Dangerous because software bugs can lead to physical disasters such
as robots colliding; and time-consuming because of the need to resolve many low-level
details in controlling the robots that have nothing to do with the higher-level coordi-
nation issues.

We therefore use MICE to simulate the environment containing the Cyberna-
tion and Hero robots. We define for MICE the capabilities of both types of agents.
A Cybermation has very accurate, wide-ranging sensors, and can move quickly and
precisely. Heroes have limited sensory abilities and move slowly and sometimes in-
accurately (they end up somewhere slightly different from where they intended), but
they can link to objects in the environment and move these objects. For example,
a simple task that we are trying to get our actual system to perform is to have the
Cybermation find cups and wastebaskets in the environment, and to provide infor-
mation to the Heroes so that the Heroes can pick up the cups and put them in the
wastebaskets. In our simulation, we simulate our Heroes approaching cup objects at
an appropriate orientation, linking to these objects (picking them up), carrying them
to wastebasket objects, and unlinking (dropping them).

In studying this task in the real system, our work has been delayed by low-level
difficulties in controlling robot motors and arms to actually perform the desired ac-
tivities. The MICE simulation allows us to concentrate on the coordination issues

instead, and we have implemented simple versions of the Cybermation and Hero
agents in GBB. These agents currently have identical goals, and exchange messages
to cooperatively pick up all of the cups. Our next stage will be to give the agents
different goals. For example, Cybermation agents might have goals to map the work
area, while Heroes want to pick up cups. To achieve their goals might require co-

operation: The Hero might need the help of the Cybermation to loc3te cups and
wastebaskets, while the Cybermation might need the help of a Hero to move a cup

out of the way so that the Cybermatioa can access some otherwise inaccessible part
of the area.

6 Conclusions

In essence, MICE is a shell for empirically evaluating coordination techpiques in
a variety of environments. MICE provides mechanisms for keeping track of agent

actions and interactions in a simulated environment, and toola for evaluating the
behavior of agents in the environment. It is 'up to the user to distill out from some
task domain the essential environmental constraints and characteristizk that influence

coordination, and then to encode this informat:on into MICE. Thus, MICE provides
the software infrastructure for executing a simulation of some environment, but the
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user must provide the domain-dependent information.3

As a consequence, MICE is only the first step toward our more general goal of
studying multi-agent domains and extracting general principles and techniques for
coordination. MICE provides the touchstone with which to evaluate alternative coor-
dination mechanisms, and will allow us to move much more easily between simulated
multi-agent environments. if we have developed agents that can coordinate well in
one type of situation, we can modify MICE to evaluate the same agents in a very
different. situation. For example, after we had developed GBB-based agents for the
predator-prey environment outlined previously, we attempted to apply these agents
to the cooperative-robotics environment. Although many aspects of how agents com-
municate and model each other can be transferred between domains, the issues in
cooperation between heterogeneous agents in cooperative. robotics highlighted some
assumptions about commonality that were embedded in the cooperating (and identi-
cal) predators. Insights about the transferability of coordination mechanisms across
domains are much more readily developed when it is easier to move between domains
and collect observations.

The initial version of MICE described in this paper has been implemented and
is in use, although we already plan extensions to improve its human interface and
experimental measurement capabilities. Our current research on building cooperative
agents is focusing on developing a core of cooperation knowledge sources that can be
part of any blackboard-based agent. Developing MICE has been a crucial first step
toward this research goal It is far from clear whether there are in fact any such
knowledge sources, and only by repeated implementation and evaluation can we hope
to converge on them or discover that the search is hopeless. But if we fail to find
such knowledge sources, will the implication be that there is no such thing as general
cooperation knowledge, or will it be that a blackboard-based reasoning architecture
is insufficient? Because MICE has a clean interface to the agents that act in the
simulated MICE world, we can easily explore alternative architectures within MICE.
Thus, in MICE we have laid the groundwork for years of experimental investigations
into different facets of coordination.
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This memorandum presents some of our views on Intelligent, Real-Time, Problem-
Solving (IRTPS) I. Due to limitations of time and space we attempt to restrict our
discussion to remarks that we believe differ from the views expressed by others cur-
rently participating in the IRTPS initiative. If we had more time we could have
been even more brief. Perhaps we could have also found a way to be more politic in
expressing these views. In particular, in this memorandum we discuss the fo!iowing
points:

1. IRTPS is a complex of issues which involves not only a system and its environ-
ment, but also the tasks the system must perform.

2. The behavioral requirements on a IRTPS system, such as interruptibility, arise
from, and must be analyzed in terms of, this triad.

3. The term Intelligent in IRTPS should not be taken to mean that existing prob-
lem solving methods in traditional AI are necessarily the appropriate starting
point for IRTPS research.

4. IRTPS is a normative view of problem solving and autonomous agency. Deci-
sion theory, as the premier normative formal theory of rational agency, will of
necessity play a central role in IRTPS.

5. A corollary of this is that uncertainty, its representation and its efficient man-
agement in dynamic situations, is a key issue for IRTPS.

6. The roles of reaction and deliberation in IRTPS are poorly understood.

7. Decision and Control theory both should be examined closely as contributors
to the normative foundations of IRTPS.

8. Fundamental research and more applied research are complementary, and nei-
ther can advance without the other. A corollary of this is that existing work
in the software engineering of real-time systems, as well as real-time operating
systems, should be reviewed for relevance, and analysis of existing IRTPS sys-
terns should be used to test the comprehensiveness and adeqiuacy of proposed
research programs.

The Environment-Task-Agent Complex We agree that a proper perspective
on IRTPS entails in part looking at the complex of issues that arise when considering
the relationship between a problem-solver and its enviconment. (This was discussed
in the Nov. workshop as the "S-E" relation.) However, we believe that the "S-
E" perspective is incomplete. Specifically, the real-time aspects of IRTPS implicitly
entail a commitment to some set of tasks to be carried out (i.e., problems to be
solved) by the problem-solver. These real-time aspects of IRTPS also entail some set

'This memorandum was prepared as part of phases I & II of the Air Force sponsored initiative
in IRTPS.
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of temporal constraints that bound how tasks are to be completed. The temporal
constraints may be part of the task requirements or they may be imposed by other
conditions or processes that arise from characteristics of the environment in which
the problem-solver is embedded and carries out its required tasks.

The following three way relationship summarizes this foundational view of the
basic IRTPS issues:

(E)
Environmental

Features / Events

(T) (A)
Task - Agent's (Problem Solver's)

Requirements Capabilities

To put this diagram into words, IRTPS entails a complex of issues that arise when
considering how an "agent's" problem-solving abilities (A) may be used to carry out
some set of tasks (T) while constrained by conditions in the task environment (E),
some of which are time varying. We believe this "E-T-A" perspective more completely
captures the essential IRTPS issues than does the "S-E" perspective discussed at the
Nov. workshop.

IRTPS is Normative 'Recognizing that task requirements and environmental con-
straints play a fundamental role in the complex of IRTPS issues leads us immediately
to the following conclusion: IRTPS is a normative view of problem-solving. That is,
according to our ET-A perspective, a candidate IRTPS "agent" will be measured in
terms of its potential (or actual) degree of success, relative to some ideal, at carrying
out the range of tasks assigned to it.

We, and subsequently others, have published analyses of "requirements" of real-
time problem-solving. We have argued that such factors as timeliness, ipterruptabil-
ity, foresight, and graceful degradation (e.g., so-called "anytime" solution methods)
are important substantive issues that arise in the design or operation of real-time
systems, including IRTPS systems. However. none of the- _.t. is b a a
constraint that singularly applies to E, T, or A alone. Rather, these factors appar-
ently represent bounds on the admissible relations among the features of E, T, and
A. For example, a performance "requirement" such as interruptability points to a
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constraint on the capabilities of a problem-solving agent that only arises if the E-T-A
complex has the following characteristics:

1. Some set of events, I, is deemed sufficiently unlikely to occur that tasks associ-
ated with their occurence should not be scheduled.

2. On the other hand, should any of the events in I in fact occur, the expected cost

of failing to respond is sufficiently high that some resources should be devoted to

monitoring for evidence of the occurence of events in I. These monitoring tasks
determine the interrupt conditions to which the agent should be responsive.

Note that these monitors are really instances of what in Al are often called "meta-
level" tasks, i.e., tasks that are devoted to managing task scheduling itself. (In
conventional real-time systems interrupts are often monitored by peripheral devices
that operate in parallel with the processor(s) doing the primary scheduled tasks.
However, this use of parallelism does not alter our account.) Note also that, as
the Agent proceeds with carrying out aspects of its overall Task, and/or as -.ew
information about conditions in E is obtained, new scheduling decisions entail changes
in the allocation of computational resources to the interrupt-monitoring tasks as well

as all others. (In conventional real-time systems this is captured by creating levels of
interrupt prioritization or interrupt "masks.")

As this example shows, one must analyze the issues of IRTPS "requirements" such

as interruptability by looking at the E-T-A relationships.
It is important that future IRTPS research focus in part on teasing out the re-

lationship between these factors, the specific characteristics of IRTPS tasks, envi-
ronments, and candidate IRTPS systems, as well as the E-T-A relationships that
instantiate successful achievement of such factors as interruptability.

The Intelligence in IRTPS We take a broad view of the "I" in IRTPS, Intelli-
gence. In our view, this expresses the aim of this initiative to focus on problem-solving

methods and systems that successfully carry out a broad range of real-time tasks that
(a) require the use of complex information, i.e., knowledge, or perhaps (b) require

adaptation, i.e., the acquisition of new knowledge, by the problem-solver during the

course of task completion.
We do not agree with some workshop participants who have asserted that the

focus on "intelligence" in IRTPS merely refers to an inclination to "base IRTPS

problem-solving methods on traditional Al concepts and methods such as deductive
planning." On the contrary, the adequacy of Al's existing computational methods for

problem-solving must be scrutinized. Most extant problem-solving methods are based
on assumptions that violate issues to be addressed within the E-.-A perspective. For

example, nearly all Al planning methods assume that the planner has complete infor-
mation at the start of planning about the effectiveness of its actions and environmental
conditions, that the environment is unchanging during planning, etc. IRTPS's focus

on intelligent problem-solving opens the initiative to quite poorly understood issues
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that must now be addressed in a much broader context than has typically been the
focus of extant Al research. We need to exercise caution in adopting the concepts
and methods of conventional Al research.

Constrained Rational Agency The preceding points also lead us to conclude that
proper IRTPS concepts and methods must meet standards for resource-constrained
rationality that reflect (a) the need to meet task requirements, and (b) the way in
which th, problem-solver manages the tradeoff among critical but limited problem-
solving resources. We suggest the phrase constrained rational agency (CRA) as a
label for these issues.

One of the most challenging aspects of the IRTPS initiative will be to elicit and
examine alternative theoretical paradigms as to their adequacy in explicating the
issues of CRA and IRTPS. It is quite possible that theories of "rational agency"
that base their operation on consistency management according to a classical (e.g.,
first-order) model of logical deduction provide an insufficient basis for explicating
constrained rationality in general, and IRTPS in particular. Prima facie, the recent
work based on formal theories of decision-making under uncertainty offer a more
suitable theoretical paradigm for investigating CRA and IRTPS. Fehling, D'Ambrosio,
Horvitz, Breese, and Russell (among others) have published compelling examples of
the use of decision-theoretic models of CRA, including some examples that focus
specifically on management of problem-solving resources in real-time tasks. These
decision-theoretic concepts got relatively little attention at the Nov. workshop. We
believe that this was a mistake that the IRTPS initiative cannot afford to make again.

Uncertainty in IRTPS If we are correct in our belief that the decision-theoretic
is a plausible candidate paradigm for IRTPS, then this initiative must focus a signif-
icant proportion of its efforts on some topics that have received comparatively little
attention by AI researchers to date.

One of these topics is real-time reasoning about and under uncertainty. On the
one hand it seems clear that uncertainty management is a ubiquitous requirement of
nearly all IRTPS tasks. On the other hand, existing computational methods for uncer-
tainty management are typically intractable, and hence not obviously suited for use in
IRTPS systems. In other words, we face a dilemma when considering the treatment
of our uncertainty: uncertainty is ubiquitous, but uncertainty-management meth-
ods are intractable. To resolve this imposing dilemma, the IRTPS initiative should
significantly encourage research on such issues as efficient methods for dynamically
updating uncertain beliefs, uncertainty in planning and reasoning about action, and
coping with uncertainty in "meta-level" control of problem-solving. Furthermore, as
Ward Edwards has pointed out, the world is full of uncertainty, but it is not always
necessary to represent it. We have written extensively regarding requirements for
uncertainty management and will not attempt to reproduce those arguments in their
entirety here. Fundamentally, the complexity of a fully quantitative treatment of un-
certainty, combined with the vast extent of knowledge typically available to an agent,



XI.6 Febling& D'Arbrosio ,

preclude complete integration of the available information in all but the most trivial
situations. Better understanding is needed of the problem of bounding the informa-
tion (data and knowledge) and processing cesources (space and time) in uncertainty
management during [RTPS. We have suggested that the dimensions of this problem
include:

1. Initial knowledge selection.

2. Incremental precision refinement (either through interval bounding or error es-
timate techniques).

3. Incremental updating in the presence of new information, including incremental
reformulation of the knowledge to be brought to bear.

One easy way to start the bounding process is to replace quantitative, measure-
based representations of uncertainty, with qualitative alternatives such as multi-
valued logics, and other "logicist" alternatives. We believe this tactic is in error
for the following reasons. First, it is yet to be demonstrated that these alternatives
offer a sufficient representation of the properties of probabilistic reasoning, i.e., they
are not "probabilistically coherent." Second, by ignoring measure-based informa-
tion, these alternatives limit their ability to address one of the most critical issues in
IRTPS, the ability to manage (i.e., represent and reason) about tradeoffgs.

Management of a problem-solver's preferences is another important topic that
arises when considering the issues of decision making under uncertainty. Unfortu-
nately, the research literature has focused even less attention on this topic than it has
on uncertainty management. Nevertheless, IRTPS clarifies the importance of pref-
erence management in intelligent agents. It seems obvious that a successful IRTPS
system must be able to choose among alternative actions by trading off such things as
quality or completeness of the expected result versus the anticipated time to obtain it.
In order to manage these tradeoffs, the problem-solving agent must be able to dynam-
ically manage preferences that reflect the agent's relative preferences for successfully
completing its prim.--ry tasks, maintain the agent's integrity (e.g., survive), etc. Note
that in a real-time task environment the agent's preferences among the most immedi-
ate conditions may change. Consider for example an autonomous robotic exploratory
vehicle carrying out experiments on the surface of an alien planet. Although that
agent's primary long-term objective is to complete its assigned experiments, environ-
mental conditions that threaten the agent's continued operation (e.g., an imminent
solar storm) might force it to prefer postponing an e.periment in favor of seekig tem-
porary shelter. In the Al literature, almost no attention has been given to the issues
of goal creation or managing tradeoffs among alternative goals. In fact, the deeper
issue of goals and their relationship to underlying preferences and desires has yet to
be adequately addressed by the AI research community. Although decision theory
offers a formal basis for treating these issues, the decision-theoryl loimn'nity has also
given comparatively little attention to dynamic, real-time prefer't ace*#4nagement.
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In light of these remarks we stress once again how unfortunate it is that the Nov.
workshop failed to focus more seriously on mature paradigms that address these issues
such as decision theory or stochastic control theory.

Reaction and Deliberation For the most part, methods of combinatorial search
underlie Al's computational methods for deliberation in problem-solving. In deliber-
ative problem-solving some form of inference such as logical deduction is employed to
derive conclusioni or select actions. Traditional work in planning, for example, is es-
sentially search for a satisficirng action sequence. Recently, it has become fashionable
to challenge this view, as Chapman has done in his recent MS thesis, by pointing out
the inherent intractability of such deliberative processes. Even the most optimistic
expectations of advances in parallel hardware do not give us reason to hope that
problems of real world complexity are amenable to naive search-based solutions.

Although this complexity problem for deliberation stands independent of IRTPS
concerns, it is of critical importance to IRTPS. In particular, an often advanced answer
to the complexity problem is "meta-level reasoning", that is, deliberative problem-
solving to formulate a control strategy specifying the sequencing of reasoning and
other problem-solving actions. More specifically, meta-level deliberation is employed
to select problem-solving actions that are as efficient as possible while still providing
a satisfactory level of task completion. Fehling, Horvitz, Breese, and Russell are
the main proponents of this approach. (For the most part, they have based their
meta-level mechanisms on decision-theoretic principles.)

Reliance upon meta-level deliberation may offer a partial answer. However, it
alone is insufficient as a solution to the complexity problems of IRTPS. One difficulty,
familiar to everyone who has written a recursive procedure, is: who controls the
controller, or where do the meta levels end? A second difficulty is that, unless it
is carefully crafted, meta-level reasoning can exacerbate the response-time problem.
A simple and standard answer to the problem of endless metalevels of control is to
use only a single meta level. While this terminates recursion, it leaves unanswered
questions regarding the adequacy, flexibility, and robustness of the fixed meta-level.
Certainly, this approach inadequately solves the problem of meta-level deliberation
for the general case and, hence, is best viewed as more of an engineering tactic than
a scientific solution to the management of problem-solving complexity.

A more recent and orthogonal alternative is the study of various partial solution
techniques which can continuously refine solutions as long as time permits. These
"anytime" methods may help, but again they are insufficient in general. For one
thing, in general an IRTPS agent may need to engage in some deiiberation to de-
ternine whether a partial answer already computed is acceptable or it is possible
and worthwhile to further refine the answer. In other words, anytime algorithms still
require control decisions for the use. And, if those control decisions are implemented
as fixed policies at design time, then all the questions of adequacy, robustne.ss, and
flexibility arise once again.

Another obvious strategy for coping with the complexity of deliberation is "corn-
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pilation." [n this case one introduces a reactive (non-deliberative) element that repre-
sent a fixed response to one or more anticipated problem-solving situatious. Research
on reactive approaches currently takes several forms. Some (e.g., Rosenschein or
Subramanian) are pursuing methods for transforming a problem description which
would normally be given to a deliberative mechanism, such as a theorem prover, into
a combinatorial logic circuit which can compute the same output in bounded time.
Others (e.g., Brooks) seek to directly engineer reactive architectures. Still others
seek to place a reactive front end on a deliberative engine (Cohen, Linden) to ensure
adequate response time, with a fixed policy for dividing responsibilities for taking
problem.solving actions between the reactive and the deliberative components.

Overall, no one seems to have a clear understanding of the relationship between
reaction and deliberatiou. For example, given a suitable compilation technology, is
deliberation still relevant at all? When? How does compilation savings in speed
impact the requirements for storage space?

We offer the following observations about the relation between reaction and de-
liberation in IRTPS systems:

1. Both reaction and deliberation will be essential component technologies of
CRA's, and so work on purely reactive and purely deliberative strategies should
continue, but with the recognition that these are only pieces, not entire solu-
tions. Specifically, research on "anytime" and resource-bounded reasoning and
decision-theoretic control of problem solving should be pushed. It is less clear
that continued pursuit of simple heuristic single-level meta-level reasoning ap-

iaches will contribute substantially to IRTPS.

:h which promises to provide mechanisms for transforming between delib-
ve and reactive problem formulations is particularly crucial to the IRTPS

r. Note that in addition to compilation approaches currently being
.... A, mu&' work in machine learning can be seen as contributing to this

area. The machine learning work may actually be further along, and should be
reviewed for potential relevance.

3. We believe that purely reactive solutions to most interesting problems will ei-
ther be unobtainable or too large to field. Since a balance must therefore be
established between the size of the reactive component and the speed of the
deliberative component, rather than simply selecting one or the other, it seems
likely that elements of decision theory will enter into evaluating the tradeoffs
involved.

4. The most fundamental research to be performed is architectural. That is, we

must understand the relationship and interaction between reaction and delib-
eration. No existing AI architecture adequately accounts for this interaction.

Control Theory Control theory, like decision theory, rests upon general concepts
and methods that have clear prima-facie relevance to IRTPS. Building upon these
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concepts, the fields of control theory and (process-)control engineering have success-
fully fielded an enormous amount of practical technology for real-time solution of
problems in complex, dynamic environments. Also like decision theory, the principle
difference from Al seems to lie in the control theoretic focus on quantitative rather
than qualitative methods and in analytic, optimal solutions rather than -approximate,
heuristic ones. However, the IRTPS initiative would be well advised to carefully ex-
amin. the potential of research and development of quantitative methods for real-time
control for informing the present initiative. For example, a better understanding of
work on such control-theoretic concepts as observability and state identification is
likely to inform Al research on such topics as real-time diagnosis and situation as-
sessment. In addition, certain notions like stability, convergence, and robustness play
an important role in control theory for characterizing the properties of a solution to
a control problem. It is quite possible that qualitative analogues of such concepts
could play an important role in characterizing the adecjuacy of an IRTPS system for
performing particular tasks. At the very least, there are mest probably important
lessons to be learned by exploiting the knowledge for building conventional real-time
control systems to provide suggestions for building IRTPS systems.

Traditional Real-Time Computing and IRTPS Research on the software engi-
neering and operational characteristics of non-Al, real-time software (including real-
time operating systems) provides another body of work that we believe is of obvious
prima-facie relevance to ITRPS. In fact, the successful examples of AI systems that
exhibit true real-time performance all borrow important techniques from conventional
real-time systems development. ITRPS researchers have two choices: they can find
ways to apply the best ideas from conventional real-time software engineering, or
they can fail to discover the relationship between IRTPS and this important body of
research and thereby be forced to "reinvent many wheels."

Development Methodology/Tools versus Operational Principles Practi-
tioners in fields such as control theory and real-time operating system design have
learned that progress on system-development methods proceeds concurrently with
progress on the development of new operational concepts and techniques. We expect
that this will be the case for IRTPS as well. That is, the IRTPS initiative would
be poorly served if too much emphasi3 were placed on software development at the
expense of research on new IRTPS methods and architectures, and conversely.

Learning from Prior Application Experiences There is an existing base of ex-
perience in building experimental, prototype, and successfully fielded IRTPS systems.
It is essential that IRTPS researchers exploit this. In particular, our own views, and
the contributions we are able to make to the IRTPS initiative, benefit significantly
from having had the opportunity to build a rather large and diverse array of real-
time Al systems. Some of these, such as our Material Composition Manager, and-our
Inertial Navigation Advisor (also known as INS-FAAMS) have been fully fielded for
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practical use or prototyped under full-field conditions. Careful retrospective analy-
sis of these application-development experiences have helped evaluate, interpret, and
guide our more basic research.

Frankly, we are quite dismayed at the minimal level of concern (or interest) dis-
played by IRTPS-initiative participants regarding the knowledge that can be derived
by looking at previous attempts to develop real-world AI systems that must meet real-
time performance constraints. We were further concerned that, at the Nov. workshop,
there was essentially no information presented regarding prior IRTPS applications.
Nevertheless, there is a significant body of work of this kind in addition to our own
efforts.

IRTPS raises extremely difficult issues, ones that challenge the very foundations
of Al theory and practice. We are convinced that, by carefully exploiting previous
IRTPS application experience, our research community will enhance its understanding
of the range of IRTPS issues, their significance, their relationship to one another, and
their implications for existing conceptions of intelligent agency. Therefore, we view
such retrospective analyses as a critical, high-proportion component of the IRTPS
initiative at this early stage.

Summary We believe that the time is right for significant, fundamental scientific
advances which can lead to fielding a new generation of highly capable IRTPS systems
in future. However, we do not believe that these advances will occur as a result of
simple, narrowly focused, extension of traditional AI techniques. We believe that a
much broader scientific base must be established for IRTPS, along the lines outlined
in this memorandum. We are disappointed and alarmed that this basic point is
apparently unrecognized, or at least disregarded, by the majority of the participants
at the November workshop. We believe that for the IRTPS initiative to be productive
and efficient the issues we have raised must be addressed.


