
A D-A 220 341 ON PAG srE rO 3. IECPII CIOV. r~lE FIL

12. rGfLE ACCSSON11.S. EC.lhbS AIt'e)LW

4. 77LE andwbre) . TYPE Of REPORT 9 PERIOD COVEREO
Ada Comtpiler Validation Summnary Report:R.R-: 19 Sept. 1989 to 19 Sept. 199C

Software, Inc., Janus/ADA, Version 2.1.3, IBM PS/2, Model *K,~RFOMuz -mc. REPORT OUNLR
o0 (Host & Target), 890919W1.10154

7. LUINORti) 1. CONTRACT 00 64N! UUMEER(s)

Wrignt."-Patterson AFB
Dayton, OH, LISA

9. PERFORMING ORGDANIZATIONi ANiD AODDRESS 10, PROGRAM ELEM~hl. PR~jE,'. TAS&
AREA 9 NOR& Uk:T NLJKEERS

Wright-Patterson AFB
Dayton, OH, USA

11. CON00LING OFFICE NAM~E ANiD &?DoESS 22. RIPOR' DATE
Ada Joint Program Office
United States Department of Defense 13 SUM=L
Washington, DC 2D301-3081

14. NON1TORkhG AGEN'r NAME & ADDRESS(lifferent fromnConroling Office) 15. SECURITY CLASS (ofthisreport)

UNCLASSIFIED
.Wright-Patterson AFB a EArCThDvDG
Dayton, OH, USA N/A

16. VISTIS.,TI0% STATEMEN~T (of rhis Report)

Approved for public release; distribution unlimited.

17. DSIR;B2ION S7A*Em.'N (0ith, dbSr?8citn'trercm83ck 2C if d, Oftrent from Report)

UNCLASSIFIED DI

19. I~yw:4:S (Contnue on reverse sd fnteuad) and ientify by bloc knum'be r)

Ada Progran-ing language, Ada Compiler Validation Surrjnary Rep~rt, Ada
Corpiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/FIL-STD-
1815A, Ada Joint Program Office, AJPO

20. iASSIaA:i (ContinueJ on~ reverst side rfnwctez. #nd 4envl) block Awrmbor)

R.R. Software, Inc., Janus/ADA, Version 2.1.3, Wright-Patterson AFB, IBM PS/2, Model 80
(Host & Target), ACVG 1.10'

Li ; "1 1473 rt~iioi 0 OF i. s5 is oascdti
I JAN 73 S/ti 0102-LiF--601 U)NCLASSIFIED

9 I 0 4) C1 I SLCu R11, CLASSI ICA IONw or 194S PAGE (,4Pt 0etAfntr~d)

AVF Control Number: AVF-VSR-318.0290
89-07-18-RRS

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 890919W1.10154
R.R. Software, Inc.

Janus/ADA, Version 2.1.3
IBM PS/2, Model 80

Completion of On-Site Testing:
19 September 1989 k.op ,

Prepared By:
Ada Validation Facility

ASD/SCOL
Wright-Patterson AFB OH 45433-6503

Prepared For: ," .
Ada Joint Program Office :' - _

United States Department of Defense
Washington DC 20301-3081

[I" :' , ,'<... :c

Ada Compiler Validation Summary Report:

Compiler Name: Janus/ADA, Version 2.1.3

Certificate Number: 890919W1.10154

Host: IBM PS/2, Model 80 under
SCO Xenix, Version 2.2.2

Target: IBM PS/2, Model 80 under
SCO Xenix, Version 2.2.2

Testing Completed 19 September 1989 Using ACVC 1.10

Customer Agreement Number: 89-07-18-RRS

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

Ada Validation Organization
Director, Computer & Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

/ /

Ada Joint Program Office
Dr. John Solomond
Director
Department of Defense
Washington DC 20301

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES. 1-31.4 DEFINITION OF TERMS................1-3

1.5 ACVC TEST CLASSES1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED.-.....2-1
2.2 IMPLEMENTATION CHARACTERISTICS.2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER3-2
3.4 WITHDRAWN TESTS3-2
3.5 INAPPLICABLE TESTS. 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS. . 3-6
3.7 ADDITIONAL TESTING INFORMATION3-7
3.7.1 Prevalidation 3-7
3.7.2 Test Method.... 3-7
3.7.3 Test Site3-9

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

APPENDIX E COMPILER OPTIONS AS SUPPLIED BY R.R. SOFTWARE, INC.

CHAPTER 1

INTRODUCTION

This Validation Summary Report ('SRdescribes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of ...tng this compiler using the Ada Compiler
Validation Capability-(ACWC)s-i.An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.,

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results., The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation-dependent but is permitted by the Ada Standard. Six classes
of tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

1-1

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

" To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

" To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

" To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 19 September 1989 at Madison WI.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C.552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD- 5A, Fe5ruary 983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures, Version 2.0, Ada Joint Program
-'6fice, May 1989.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc ., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

1-3

INTRODUCTION

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the contex, of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors because of
the way in which a program library is used at link time.

Class A tests ensure the successful compilation of legal Ada programs with
certain language constructs which cannot be verified at compile time.
There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

1-4

INTRODUCTION

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and eycutes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be

1-5

INTRODUCTION

customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by shoving that the test is inapplicable to
the implemertation. The applicability of a test to an implementation is
consioered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation sybteL for this validation was tested under the
following configuration:

Compiler: Janus/ADA, Version 2.1.3

ACVC Version: 1.10

Certificate Number: 890919W1.10154

Host Computer:

Machine: IBM PS/2, Model 80

Operating System: SCO Xenix
Version 2.2.2

Memory Size: 640 Kilobytes

Target Computer:

Machine: IBM PS/2, Model 80

Operating System: SCO Xenix
Version 2.2.2

Memory Size: 640 Kilobytes

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine th-
behavior of a compiler in those areas of the Ada Standard that
permit implementations to differ. Class D and E tests specifically
check for such implementation differences. However, tests in other
classes also characterize an implementation. The tests demonstrate
the following characteristics:

a. Cappcities.

(1) The compiler correctly processes a compilation containing
723 variables in the same declarative part. (See test
D29002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 17 levels. (See tests D55A03A..H (8
tests).)

(3) The compiler rejects tests containing block statements
nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to six
levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined
types LONG INTEGER and LONG FLOAT in package STANDARD.
(See tests 986001T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at
which constraints are checked are not defined by the language.
While the ACVC tests do not specifically attempt to determine
the order of evaluation of expressions, test results indicate
the following:

(1) None o' the default initialization expressions for record
components are evaluated before any value is checked for
membership in a component's subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same
precision as the base type. (See test C35712B.)

2-2

CONFIGURATION INFORMATION

(3) This implementation uses no extra bits for extra precision
and uses no extra bits for extra range. (See test
C35903A.)

(4) Sometimes NUMERIC ERROR is raised when an integer literal
operand in a comparison or membership test is outside the
range of the base type. (See test C45232A.)

(5) NUMERIC ERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the
range of the base type. (See test C45252A.)

(6) Underflov is gradual. (See tests C45524A..Z (26 tests).)

d. Rounding.

The method by which values are rounded in type conversions is
not defined by the language. While the ACVC tests do not
specifically attempt to determine the method of rounding, the
test results indicate the following:

(1) The method used for rounding to integer is round away from
zero. (See tests C46012A..Z (26 tests).)

(2) The method used for rounding to longest integer is round
away from zero. (See tests C46012A..Z (26 tests).)

(3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See test
C4AO14A.)

e. Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT.

For this implementation:

(1) Declaration of an array type or subtype declaration with
more than SYSTEM.MAX INT components raises no exception.
(See test C36003A.)

(2) CONSTRAINT ERROR is raised when 'LENGTH is applied to an
array type with INTEGER'LAST + 2 components with each
component being a null array. (See test C36202A.)

(3) NUMERIC ERROR is raised when 'LENGTH is applied to an array
type with SYSTEM.MAX INT + 2 components with each component
being a null array. -(See test C36202B.)

2-3

CONFIGURATION INFORMATION

(4) A packed BOOLEAN array having a 'LENGTH exceeding
INTEGER'LAST raises STORAGE ERROR when the array objects
are declared. (See test C52153X.)

(5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises CONSTRAINT ERROR when the
length of a dimension is calculateU and exceeds
INTEGER'LAST. (See test C52104Y.)

(6) A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However,
lengths must match in array slice assignments. This
implementation raises no exception. (See test E52103Y.)

(7) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

(8) In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

f. Discriminated types.

(1) In assigning record types with discriminants, the
expression is evaluated in its entirety before
CONSTRAINT ERROR is raised when checking whether the
expressionTs subtype is compatible with the target's
subtype. (See test C52013A.)

g. Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, index
subtype checks are made as choices are evaluated. (See
tests C43207A and C43207B.)

(2) In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised before all choices are evaluated
when a bound in a non-null range of a non-null aggregate
does not belong to an index subtype. (See test E43211B.)

2-4

CONFIGURATION INFORMATION

h. Pragmas.

(1) The pragma INLINE is not supported for functions or
procedures. (See tests LA3004A..B (2 tests), EA3004C..D (2
tests), and CA3004E..F (2 tests).)

i. Generics.

(1) Generic specifications and bodies can be compiled in
separate compilations. (See tests CA1O12A, CA2009C,
CA2009F, BC3204C, and BC3205D.)

(2) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

J. Input and output.

(1) Modes IN FILE and OUT FILE are supported for SEQUENTIAL 10.
(See tests CE2102D..E-(2 tests), CE2102N, and CE2102P.)-

(2) Modes IN FILE, OUT FILE, and INOUT FILE are supported for
DIRECT 10. (See tests CE2102F, CE2102I..J (2 tests),
CE21021, CE2102T, and CE2102V.)

(3) Modes IN FILE and OUT FILE are supported for text files.
(See tests CE3102E and CE3102I..K (3 tests).)

(4) RESET and DELETE operations are supported for
SEQUENTIALIO. (See tests CE2102G and CE2102X.)

(5) RESET and DELETE operations are supported for DIRECTIO.
(See tests CE2102K and CE2102Y.)

(6) RESET and DELETE operations are supported for text files.
(See tests CE3102F..G (2 tests), CE3104C, CE3110A, and
CE3114A.)

(7) Overwriting to a sequential file does not truncate the
file. (See test CE2208B.)

(8) Temporary sequential files are given names and not deleted
when closed. (See test CE2108A.)

(9) Temporary direct files are not given names. (See test
CE2108C.)

(10) Temporary text files are not given names. (See test
CE3112A.)

2-5

CONFIGURATION INFORMATION

(11) More than one internal file can be associated with each
external file for sequential files when reading only. (See
tests CE2107A..E (5 tests), CE2102L, CE2110B, and CE2111D.)

(12) More than one internal file can be associated with each
external file for direct files when reading only. (See
tests CE21O7F..H (3 tests), CE2110D, and CE2111H.)

(13) More than one internal file can be associated with each
external file for text files when reading only. (See tests
CE3111A..E (5 tests), CE3114B, and CE3115A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 379 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 192
executable tests that use floating-point precision exceeding that supported
by the implementation or that contain a line which exceed the maximum input
line length allowed by this implementation. Modifications to the code,
processing, or grading for 34 tests were required to successfully
demonstrate the test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 128 1131 1959 10 22 44 3294

Inapplicable 1 7 356 7 6 2 379

Vithdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 198 576 544 240 170 99 160 331 131 36 252 275 282 3294

Inappl 14 73 136 8 2 0 6 1 6 0 0 94 39 379

Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at the time of
this validation:

E28005C A39005G B97102E C97116A BC3009B CD2A62D
CD2A63A CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B
CD2A66C CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D
CD2A76A CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G
CD2A84M CD2A84N CD2B15C CD2Dl1B CD5007B CD5011O
ED7004B ED7005C ED7005D ED7006C ED7006D CD7105A
CD7203B CD7204B CD7205C CD7205D CE2107I CE3111C
CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 379 tests were inapplicable for the
reasons indicated:

a. The following 192 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAXDIGITS:

C24113L..P (5) C35705L..Y (14) C35706L..Y (14) C35707L..Y (14)
C35708L..Y (14) C35802L..Z (15) C45241L..Y (14) C45321L..Y (14)

3-2

TEST INFORMATION

C45421L..Y (14) C45521L..Z (15) C45524L..Z (15) C45621L..Z (15)
C45641L..Y (14) C46012L..Z (15)

b. C24113Q..Y (9 tests) are not applicable because they have contain
a line which exceeds maximum input line length allowed by this
implementation.

c. C35702A and B86001T are not applicable because this implementation
supports no predefined type SHORTFLOAT.

d. The following 30 tests are not applicable because this
implementation does not support 'STORAGESIZE representation
clauses for access types:

A39005C C87B62B CD1009J CD1009R
CD1009S CD1C03C CD2A83A..C (3) CD2A83E..F (2)
CD2A84B..I (8) CD2A84K..L (2) CD2B11B..G (6) CD2B15B
CD2B16A ED2A86A

e. The following 16 tests are not applicable because this
implementation does not support a predefined type SHORT INTEGER:

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55B07B B55B09D B86001V
CD7101E

f. C45231D, B86001X, and CD7101G are not applicable because this
implementation does not support any predefined integer type with a
name other than INTEGER, LONG INTEGER, or SHORT INTEGER.

g. C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because the value of SYSTEM.MAX MANTISSA is less than 48.

h. D55A03E..H (4 tests) use 31 levels of loop nesting which exceeds
the capacity of the compiler.

i. D56001B uses 65 levels of block nesting which exceeds the capacity
of the compiler.

J. D64005F and D64005G are not applicable because this implementation
does not support nesting 10 levels of recursive procedure calls.

k. B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

1. B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONGFLOAT, or SHORTFLOAT.

m. C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

3-3

TEST INFORMATION

n. LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F are not
applicable because this implementation does not support pragma
INLINE.

o. CD1009C, CD2A41A..B (2 tests), CD2A41E, and CD2A42A..J (10 tests)
are not applicable because this implementation does not support
size clauses for floating point types.

p. The following 13 tests are not applicable because this
implementation does not support record representation clauses:

CD1009N CD1009X..Z (3) CDlC03H CD1C04E CD4031A
CD4041A CD4051A..D (4) EDlDO4A

q. The following 21 tests are not applicable because this
implementation does not support size clauses for arrays:

CD2A61A..D (4) CD2A61F CD2A61H..L (5) CD2A62A..C (3)
CD2A64A..D (4) CD2A65A..D (4)

r. The following 16 tests are not applicable because this
implementation does not support size clauses for records:

CD2A71A..D (4) CD2A72A..D (4) CD2A74A..D (4) CD2A75A..D (4)

s. CE2102D is inapplicable because this implementation supports
CREATE with IN-FILE mode for SEQUENTIALIO.

t. CE2102E is inapplicable because this implementation supports
CREATE with OUTFILE mode for SEQUENTIALIO.

u. CE2102F is inapplicable because this implementation supports
CREATE with INOUTFILE mode for DIRECT IO.

v. CE2102I is inapplicable because this implementation supports
CREATE with IN FILE mode for DIRECT IO.

w. CE2102J is inapplicable because this implementation supports
CREATE with OUTFILE mode for DIRECTI0.

x. CE2102N is inapplicable because this implementation supports OPEN
with IN FILE mode for SEQUENTIAL 10.

y. CE21020 is inapplicable because this implementation supports RESET
with IN FILE mode for SEQUENTIAL IO.

z. CE2102P is inapplicable because this implementation supports OPEN
with OUTFILE mode for SEQUENTIALI0.

aa. CE21020 is inapplicable because this implementation supports RESET
with OUTFILE mode for SEQUENTIALIO.

3-4

TEST INFORMATION

ab. CE2102R is inapplicable because this implementation supports OPEN
with INOUT FILE mode for DIRECT IO.

ac. CE2102S is inapplicable because this implementation supports RESET
with INOUTFILE mode for DIRECT IO.

ad. CE2102T is inapplicable because this implementation supports OPEN
with IN FILE mode for DIRECTIO.

ae. CE2102U is inapplicable because this implementation supports RESET
with IN FILE mode for DIRECT IO.

af. CE2102V is inapplicable because this implementation supports OPEN
with OUTFILE mode for DIRECT IO.

ag. CE2102W is inapplicable because this implementation supports RESET
with OUT FILE mode for DIRECTIO.

ah. CE2107B..E (4 tests), CE2107L, CE211OB, and CE2111D are not
applicable because multiple internal files cannot be associated
with the same external file when one or more files is writing for
sequential files. The proper exception is raised when multiple
access is attempted.

ai. CE2107G..H (2 tests), CE2110D, and CE2111H are not applicable
because multiple internal files cannot be associated with the same
external file when one or more files is writing for direct files.
The proper exception is raised when multiple access is attempted.

aj. EE2201D and EE2401D are not applicable because USE ERROR is raised
when trying to create a file with constrained array types.

ak. CE3102E is inapplicable because this implementation supports
CREATE with INFILE mode for text files.

al. CE3102F is inapplicable because this implementation supports RESET
for text files.

am. CE3102G is inapplicable because this implementation supports
deletion of an external file for text files.

an. CE3102I is inapplicable because this implementation supports
CREATE with OUTFILE mode for text files.

ao. CE3102J is inapplicable because this implementation supports OPEN
with IN FILE mode for text files.

ap. CE3102K is inapplicable because this implementation supports OPEN
with OUT FILE mode for text files.

3-5

TEST INFORMATION

aq. CE3111B, CE3111D..E (2 tests), CE3114B, and CE3115A are not
applicable because multiple internal files cannot be associated
with the same external file when one or more files is writing for
text files. The proper exception is raised when multiple access
is attempted.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 34 tests.

The following tests were split because syntax errors at one point resulted
in the compiler not detecting other errors in the test:

B22002A B24007A B24009A B29001A B37106A B49003A
B49005A B51001A B53003A B55AO1A B63001A B63001B
B91001H BAllO A BA1101C BAllO E BA3006A BA3006B
BA3007B BA3008A BA3008B BA3013A BC2001D BC2001E
BC3005B

CC3601A was split because the original test generates more code than this
implementation can handle in one compilation unit.

The following modifications were made to compensate for legitimate
implementation behavior:

a. At the recommendation of the AVO, a "PRAGMA ELABORATE (REPORT);"
was added at the beginning of C39005A to ensure that the
elaboration of the routines in package REPORT takes place before
these routines are called.

b. At the recommendation of the AVO, the expression "2**T'MANTISSA -
1" on line 262 in test CC1223A was changed to "(2**(T'MANTISSA -
1) - 1 + 2**(T'MANTISSA - 1))" in order to avoid generating the
exception raising value 2**31. The grading criteria for this test
were also modified. See the next section for modified evaluation
criteria.

3-6

TEST INFORMATION

c. At the recommendation of the AVO, the variables V and W on line 41
of test CD2C11A were initialized to 5.0 due to PROGRAM ERROR being
raised when an attempt is made to use the uninitializeU variables.

d. At the recommendation of the AVO, the lines which check whether
temporary files can be created in tests CE2108B, CE2108D, and
CE3112B were commented out because of the way in which temporary
file names are constructed.

The following tests were graded using modified evaluation criteria:

a. At the recommendation of the AVO, test C34006D is graded PASSED
provided the only failure messages arise from the requirements on
the value of T'SIZE, where T is a type, since the meaning of 'SIZE
applied to a type is not clear in this test.

b. At the recommendation of the AVO, test CC1223A is graded PASSED
provided the only failure messages arise from the requirements on
the value of T'AFT, where T is a type.

c. CE3804G writes, then reads, a floating-point literal and tests the
input value against a textually identical literal; this
implementation stores the numeric literal with greater precision
than it uses for objects of the type, and because the literal is
not a model number, the test for equality at line 121 fails. The
AVO ruled that this test should be graded as passed if the only
failure messages arise from the test at line 121.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced
by the Janus/ADA, Version 2.1.3, compiler was submitted to the AVF by the
applicant for review. Analysis of these results demonstrated that the
compiler successfully passed all applicable tests, and the compiler
exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the Janus/ADA, Version 2.1.3, compiler using ACVC Version 1.10
was conducted on-site by a validation team from the AVF. The configuration
in which the testing was performed is described by the following
designations of hardware and software components:

Host computer: IBM PS/2, Model 80
Host operating system: SCO Xenix, Version 2.2.2
Target computer: IBM PS/2, Model 80

3-7

TEST INFORMATION

Target operating system: SCO Xenix, Version 2.2.2
Compiler: Janus/ADA, Version 2.1.3

Diskettes containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
diskettes. Tests requiring modifications during the prevalidation testing
were included in their modified form on the diskettes.

The contents of the diskettes were loaded directly onto the host computer.

After the test files were loaded to disk, the full set of tests was
compiled, linked, and all executable tests were run on the IBM PS/2, Model
80. Results were printed from the host computer.

The compiler was tested using command scripts provided by R.R. Software,
Inc. and reviewed by the validation team. The compiler was tested using
all the following option settings. See Appendix E for a complete listing
of the compiler options for this implementation. The following list of
compiler options includes those options which were invoked by default:

-0 Quiet error messages - suppresses user
prompting on errors.

-V Warnings off.
-T Trimming code on - this directs the compiler

to generate code which allows the linker to
trim unused subprograms.

-D Debugging code off.
-S? Re-direct the compiler scratch files into a

RAM disk where possible (? is replaced by a
drive letter).

-E Produce an .EXE file rather than a .COM file.
-F Library calls are generated for floating point

operations.
-L No listing file is generated.
-0 Memory model 0 is used.
-R The JRL file is put on the same disk as the

input file.
-X Extra symbol table information is not generated.
-Z Optimization is done only where so specified by

pragmas.

Tests were compiled, linked, and executed (as appropriate) using a single
computer. Test output, compilation listings, and job logs were captured on
diskettes and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3-8

TEST INFORMATION

3.7.3 Test Site

Testing was conducted at Madison WI and was completed on 19 September 1989.

3-9

APPENDIX A

DECLARATION OF CONFORMANCE

R.R. Software, Inc. has submitted the following
Declaration of Conformance concerning the Janus/ADA,
Tersion 2.1.3, compiler.

A-1

DECLARATION OF CONFORMANCE

Compiler Implementor: R.R. Software, Inc.
Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB, OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: Janus/ADA Version: 2.1.3
Host Architecture ISA: IBM PS/2, Model 80 OS&VER #: SCO Xenix 2.2.2
Target Architecture ISA: IBM PS/2, Model 80 OS&VER #: SCO Xenix 2.2.2

Implementor's Declaration

I, the undersigned, representing R.R. Software, Inc., have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A in the
compiler(s) listed in this declaration. I declare that R.R. Software, Inc.
is the owner of record of the Ada language compiler(s) listed above and, as
such, is responsible for maintaining said compiler(s) in conformance to
ANSI/MIL-STD-1815A. All certificates and registrations for Ada language
compiler(s) listed in this declaration shall be made only in the owner's
corporate name.

L-Kames A. Stewart, Vice President

Owner's Declaration

I, the undersigned, representing R.R. Software, Inc., take full
responsibility for implementation and maintenance of the Ada compiler(s)
listed above, and agree to the public disclosure of the final Validation
Summary Report. I declare that all of the Ada language compilers listed, and
their host/target performance are in compliance with the Ada Language
Standard ANSI/MIL-STD-1815A.

, Date: /., I'r
.R. Softw re, Inc. -

James A. Stewart, Vice President

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of the Janus/ADA, Version 2.1.3, compiler, as described in
this Appendix, are provided by R.R. Software, Inc. Unless specifically
noted otherwise, references in this Appendix are to compiler documentation
and not to this report. Implementation-specific portions of the package
STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -32768 .. 32767;
type LONGINTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 6 range -((2.0 ** 128) - (2.0 ** 104))
((2.0 ** 128) - (2.0 ** 104));

type LONG FLOAT is digits 15 range -((2.0 ** 1024) - (2.0 ** 971))
((2.0 ** 1024) - (2.0 ** 971));

type DURATION is delta 0.00025 range -((2.0 ** 31) - 1)/4096.0 ..
((2.0 ** 31) - 1)/4096.0;

end STANDARD;

B-1

Appendix F: Implementation Dependencies

F Implementation Dependencies

This appendix specifies certain system-dependent characteristics of
Janus/Ada, version 2.1.3 386 SCO XENIX compiler.

F.1 Implementation Dependent Pragmas

In addition to the required Ada pragmas, Janus/Ada also provides several
others. Some of these pragmas have a textual range. Such pragmas set some
value of importance to the compiler, usually a flag that may be On or Off.
The value to be used by the compiler at a given point in a program depends
on the parameter of the most recent relevant pragma in the text of the
program. For flags, if the parameter is the identifier On, then the flag is
on; If the parameter is the identifier Off, then the flag is off; if no such
pragma has occurred, then a default value Is used.

The range of a pragma - even a pragma that usually has a textual range -
may vary if the pragma is not inside a compilation unit. This matters only
if you put multiple compilation units in a file. The following rules apply:

1) If a pragma is inside a compilation unit, it affects only that
unit.

2) If a pragma is outside a compilation unit, it affects all
following compilation units in the compilation.

Certain required Ada pragmas, such as INLINE, would follow different rules;
however, as it turns out, Janus/Ada ignores all pragmas that would follow
different rules.

The following system-dependent pragmas are defined by Janus/Ada. Unless
otherwise stated, they may occur anywhere that a pragma may occur.

ALLCHECKS Takes one of two identifiers On or Off as its argument. and has
a textual range. If the argument Is Off, then this pragma
causes suppression of arithmetic checking (like pragma
ARITHCHECK - see below), range checking (like pragma
RANGECHECK - see below), storage error checking, and
elaboration checking. If the argument is On, then these checks
are all performed as usual. Note that pragma ALL_CHECKS does
not affect the status. of the DEBUG pragma; for the fastest run
time code (and the worst run time checking), both ALL CHECKS
and DEBUG should be turned Off and the pragma OPTIMIZE
(Time) should be used. Note also that ALLCHECKS does not
affect the status of the ENUMTAB pragma. Combining check

Revision 4.4

B-2

Appendix F: Implementation Dependencies

suppression using the pragma ALLCHECKS and using the pragma
SUPPRESS may cause unexpected results; it should not be done.
However, ALL-CHECKS may be combined with the Janus/Ada
pragmas ARITHCHECK and RANGECHECK; whichever relevant
pragma has occurred most recently will determine whether a
given check Is performed. ALLCHECKS is on by default. Turning
any checks off may cause unpredictable results if oxecution
would have caused the corresponding assumption to be violated.
Checks should be off only in fully debugged and tested
programs. After checks are turned off, full testing should again
be done, since any program that handles an exception may
expect results that will not occur If no checking is done.

ARITHCHECK Takes one of the two identifiers On or Off as its argum~ent, and
has a textual range. Where ARITHCHECK is on, the compiler is
permitted to (and generally does) not generate checks for
situations where it is permitted to raise NUMERICERROR; these
checks include overflow checking and checking for division by
zero. Combining check suppression using the pragma ARITHCHECK
and using the pragma SUPPRESS may cause unexpected results;
It should not be done. However, ARITHCHECK may be combined
with the Janus/Ada pragma ALL_'CHECKS; whichever pragma has
occurred most recently will be effective. ARITHCHECK is on by
default. Turning any checks off may cause unpredictable resalts
If execution would have caused the corresponding assumption to
be violated. Checks should be off only in fully debugged and
tested programs. After checks are turned off, full testing should
again be done, since any program that handles an exception
may expect results that will not occur if no checking is done.

CLEANUP Takes an integer literal in the range 0..3 as its argument, and
has a textual range. Using this pragma allows the Janus/Ada
run-time system to be less than meticulous about recovering
temporary memory space it uses. This pragma can allow for
smaller and faster code, but can be dangerous; certain
constructs can cause memory to be used up very quickly. The
smaller the parameter, the more danger is permitted. A value of
3 - the default value - causes the run-time system to be its
usual immaculate self. A value of 0 causes no reclamation of
temporary space. Values of 1 and 2 allow compromising between
"cleanliness" and speed. Using values other than 3 adds some
risk of your program running out of memory, especially in loops
which contain certain constructs.

Copyright 1988, R.R. Software, Inc.

B-3

Appendix F: Implementation Dependencies

DEBUG Takes one of the two identifiers On or Off as its argument, and
has a textual range. This pragma controls the generation of line
number code and procedure name code. When DEBUG is on, such
code Is generated. When DEBUG is off, no line number code or
procedure names are generated. This information is used by the
walkback which is generated after a run-time error (e.g., an
unhandled exception). The walkback is still generated when
DEBUG is off, but the line numbers will be incorrect, and no
subprogram names will be printed. DEBUG's initial state can be
set by the command line; If no explicit option is given, then
DEBUG is initially on. Turning DEBUG off saves space, but
causes the loss of much of Janus/Ada's power in describing run
time errors.

Notes:
DEBUG should only be turned off when the program has no
errors. The information provided on an error when DEBUG is off
is not very useful.

If DEBUG is on at the beginning of a subprogram or package
specification; then it must be on at the end .. of the
specification. Conversely, If DEBUG is off at the beginning of
such a specification, it must be off at the end. If you want
DEBUG to be off for an entire compilation, then you can either
put a DEBUG pragma in the context clause of the compilation or
you can use the appropriate compiler option.

ENUMTAB Takes one of the two identifiers On or Off as its argument, and
has a textual range. This pragma controls the generation of
enumeration tables. Enumeration tables are used for the
attributes IMAGE, VALUE, and WIDTH, and hence to Input and
output enumeration values. The tables are generated when
ENUMTAB is on. The state of the ENUMTAB flag is significant
only at enumeration type definitions. If this pragma is used to
prevent generation of a type's enumeration tables, then using
the three mentioned attributes causes an erroneous program,
with unpredictable results; furthermore, the type should not be
used as a generic actual discrete type, and in particular
TEXT_IO.ENUMERATIONJO should not be instantiated for the
type. If the enumeration type is not needed for any of these
purposes, the tables, which use a lot of space, are unnecessary.
ENUMTAB is on by default.

Revision 4.4

B-4

Appendix F: Implementation Dependencies

PAGELENGTH This pragma takes a single Integer literal as Its argument. It
says that a page break should be added to the listing after
each occurrence of the given number of lines. The default page
length is 32000, so that no page breaks are generated for most
programs. Each page starts with a header that looks like the
following:

Janus/Ada Version 2.1.3 compiling file on date at time

RANGECHECK Takes one of the two identifiers On or Off as its argument, and
has a textual range. Where RANGECHECK is off, the compiler is
permitted to (and generally does) not generate checks for
situations where It Is expected to raise CONSTRAINT-ERROR;
these checks include null pointer checking, discriminant
checking, index checking, array length checking, and range
checking. Combining check suppression using the pragma
RANGECHECK and using the pragma SUPPRESS may cause
unexpected results; It should not be done. However,
RANGECHECK may be combined with the Janus/Ada pragma
ALL._.CHECKS; whichever pragma has occurred most recently will
be effective. RANGECHECK is on by default. Turning any checks
off may cause unpredictable results If execution would have
caused the corresponding assumption to be violated. Checks
should be off only in fully debugged and tested programs. After
checks are turned off, full testing should again be done, since
any program that handles an exception may expect results that
will not occur if no checking is done.

SYSLIB This pragma tells the compiler that the current unit is one of
the standard Janus/Ada system libraries. It takes as a
parameter art integer literal in the range 1 .. 15; only the
values 1 through 4 are currently used. For example, system
library number 2 provides floating point support. Do not use
this pragma unless you are writing a package to replace one of
the standard Janus/Ada system libraries.

VERBOSE Takes On or Off as Its argument, and has a textual range.
VERBOSE controls the amount of output on an error. If VERBOSE
is on, the two lines preceding the error are printed, with an
arrow pointing at the error. If VERBOSE is off, only the line
number Is printed.

Copyright 1988, R.R. Software, Inc.

B-5

Appendix F: Implementation Dependencies

VERBOSE(Off):

Line 16 at Position 5
ERROR Identifier is not defined

VERBOSE(On):

15: if X = 10 then
16: Z := i0;

ERROR Identifier is not defined

The reason for this option is that an error message with
VERBOSE on can take a long time to be generated, especially in
a large program. VERBOSE's initial condition can be set by the
compiler command line.

Several required Ada pragmas may have surprising effects in Janus/Ada. The
PRIORITY pragma may only take the value 0, since that is the only value in
the range System.Priority. Specifying any OPTIMIZE pragma turns on
optimization; otherwise, optimization is only done If specified on the
compiler's command line. The SUPPRESS pragma is Ignored unless it only has
one parameter. Also, the following pragmas are always ignored: CONTROLLED,
INLINE, MEMORYSIZE, PACK, SHARED, STORAGEUNIT, and SYSTEMNAME.
Pragma CONTROLLED Is always ignored because Janus/Ada does no automatic
garbage collection; thus, the effect of pragma CONTROLLED already applies
to all access types. Pragma SHARED is similarly Ignored: Janus/Ada's
non-preemptive task scheduling gives the appropriate effect to all variables.
The pragmas INLINE, PACK, and SUPPRESS (with two parameters) all provide
recommendations to the compiler; as Ada allows, the recommendations are
ignored. The pragmas MEMORY_SIZE, STORAGEUNIT, and SYSTEM NAME all
attempt to make changes to constants in the System package; in each case,
Janus/Ada allows only one value, so that the pragma is ignored.

F.2 Implementation Dependent Attributes

Janus/Ada does not provide any attributes other than the required Ada
attributes.

Revision 4.4

B-6

Appendix F: Implementation Dependencies

F.3 Specification of the Package SYSTEM

The package System for Janus/Ada has the following definition.

package System is

-- System package for Janus/Ada

-- Types to define type Address.
type Offset_Type is new LongInteger;
type Word is range 0 .. 65536;
for Word'Size use 16;
type Address is record

Offset OffsetType;
Segment : Word;

end record;
Function "+" (Left : Address; Right : OffsetjType) Return Address;
Function ."+" (Left : OffsetType; Right : Address) Return Address;
Function "-" (Left : Address; Right : OffsetType) Return Address;
Function "-" (Left, Right : Address) Return OffsetType;

type Name is (UNIX);

System-Name : constant Name := UNIX;

Storage-Unit : constant := 8;
MemorySize : constant := 65536;

-- Note: The actual memory size of a program is determined
-- dynamically; this is the maximum number of bytes in the

data
-- segment.

-- System Dependent Named Numbers:
MinInt : constant := -2147_483_648;
Max Int : constant : 2147_483_647;
Max Digits : constant := 15;
Max _mantissa : constant :- 31;
Fine Delta : constant := 211.0#E-31;

-- equivalently, 4.656612873077392578125E-10
Tick : constant := 0.01; -- Some machines have less accuracy;

-- for example, the IBM PC actually ticks about
-- every 0.06 seconds.

Copyright 1988, R.R. Software, Inc.

B-7

Appendix F: Implementation Dependencies

-- Other System Dependent Declarations
subtype Priority is Integer range 0..0;

type Byte is range 0 .. 255;

for Byte'Size use 8;

end System;

The type Byte in the System package corresponds to the 8-bit machine byte.
The type Word is a 16-bit Unsigned Integer type, corresponding to a
machine word.

F.4 Restrictions on Representation Clauses

If T is a discrete type, or a fixed point type, then the size expression can
give any value between 1 and 1000 bits (subject, of course, to allowing
enough bits for every possible value). For other types, the expression must
give the default size for T.

A length clause that specifies T'STORAGE.SIZE for an access type is not
supported; Janus/Ada uses a single large common heap.

A length clause that specifies T'STORAGESIZE for a task type T is
supported. Any integer value can be specified. Values smaller than 256 will
be rounded up to 256 (the minimum T'StorageSize), as the Ada standard
does not allow raising an exception in this case.

A length clause that specifies T'SMALL for a fixed point type must give a
value (subject to the Ada restrictions) in the range

2.0 ** (-99) .. 2.0 ** 99,
inclusive.

An enumeration representation clause for a type T may give any integer
values within the range System.Min_Int .. System.MaxInt. If a size length
clause Is not given for the type, the type's size is determined from the
literals given. (If all of the literals fit in a byte, then Byte'Size is used;
similarly for Integer and Lorg_Integer).

The expression in an alignment clause in a record representation clause
must equal 1.

Revision 4.4

B-8

Appendix F: Implementation Dependencies

A component clause must give a storage place that is equivalent to the
default value of the POSITION attribute for such a component.

A component clause must give a range that starts at zero and extends to
one less than the size of the component.

Janus/Ada supports address clauses on most objects. Address clauses are not
allowed on parameters, generic formal parameters, and renamed objects. The
address given for an object address clause may be any legal value of type
System.Address. It will be interpreted as an absolute machine address, using
the segment part as a selector If In the protected mode. It is the user's
responsibility to ensure that the value given makes sense (i.e., points at
memory, does not overlay other objects, etc.) No other address clauses are
supported.

F.5 Implementation Defined Names

Janus/Ada uses no implementation generated names.

F.6 Address Clause Expressions

The address given for an object address clause may be any legal value of
type System.Address. It will be interpreted as an absolute machine address,
using the segment part as a selector if in the protected mode. It is the
user's responsibility to ensure that the value given makes sense (i.e., points
at memory, does not overlay other objects, etc.)

F.7 UncheckedConversion Restrictions

We first make the following definitions:
A type or subtype is said to be a simple type or a simple subtype
(respectively) if it is a scalar (sub)type, an access (sub)type, a task
(sub)type, or if it satisfies the following two conditions:

1) If it is an array type or subtype, then it is constrained and its index
constraint is static; and

2) If it Is a composite type or subtype, then all of its subcomponents have a
simple subtype.

Copyright 1988, R.R. Software, Inc.

B-9

Appendix F: Implementation Dependencies

A (sub)type which does not meet these conditions is called non-simple.
Discriminated records can be simple; variant records can be simple. However,
constraints which depend on discriminants are non-simple (because they are
non-static).

Janus/Ada imposes the following restriction on Instantiations of
Unchecked-Conversion: for such an Instantiation to be legal, both the source
actual subtype and the target actual subtype must be simple subtypes, and
they must have the same size.

F.8 Implementation Dependencies of I/O

The syntax of an external file name depends on the operating system being
used. Some external files do not really specify disk files; these are called
devices. Devices are specified by special file names, and are treated
specially by some of the I/O routines.

The syntax of an XENIX filename is:

[path] filename

where "path" is an optional path consisting of directory names, each
followed by a foreslash; "filename" is the filename (maximum 14 characters).
See your XENIX manual for a complete description. In addition, the following
special device names are recognized:

/dev/sti XENIX standard input. The same as StandardInput. Input is
buffered by lines, and all XENIX line editing characters may be
used. Can only be read,

/dev/sto XENIX standard output. The same as StandardOutput. Can only
be written.

/dev/err XENIX standard error. The output to this device cannot be
redirected. Can only be written.

/dev/ekbd The current terminal Input device. Single character input with
echoing. Due to the design of XENIX, this device can be
redirected. Can be read and written.

/dev/kbd The current terminal Input device. No character interpretation
is performed, and there is no character echo. Again, the input
to this device can be redirected, so it does not always refer to
the physical keyboard.

Revision 4.4

B-lO

Appendix F: Implementation Dependencies

The XENIX device files may also be used.

The XENIX I/O system will do a search of the default search path (set by
the environment PATH variable) if the following conditions are met:

1) No path is present in the file name; and
2) The name is not that of a device.

AlternatIvely, you may think of the search being done if the file name does
not contain any of the characters ':' or ''.

The default search path cannot be changed while the program is running, as
the path is copied by the Janus/Ada program when it starts running.

Note:
Creates will never cause a path search as they must work in the current
directory.

Upon normal completion of a program, any open external files are closed.
Nevertheless, to provide portability, we recommend explicitly closing any
files that are used.

Sharing external files between multiple file objects causes the corresponding
external file to be opened multiple times by the operating system. The
effects of this are defined by your operating system. This external file
sharing Is only allowed if all internal files associated with a single external
file are opened only for reading (mode In-File), and no internal file is
Created. Use Error Is raised if these requirements are violated. A Reset to a
writing mode of a file already opened for reading also raise UseError if the
external file also is shared by another internal file.

Binary I/O of values of access types will give meaningless results and
should not be done. Binary I/O of types which are not simple types (see
definition in Section F.7, above) will raise UseError when the file is
opened. Such types require specification of the block size in the form, a
capability which is not yet supported.

The form parameter for Sequentia1IO and Direct_10 is always expected to
be the null string.

The type Count In the generic package Direct_10 Is defined to have the
range 0 .. 2_147_4838647.

Copyright 1988, R.R. Software, Inc.

B-Il

Appendix F: Implementation Dependencies

Ada specifies the existence of special markers called terminators In a text
file. Janus/Ada defines the line terminator to be <LF> (line feed), with or
without an additional <CR> (carriage return). The page terminator Is the
<FF> (form feed) character; if It Is not preceded by a <LF>, a line
terminator is also assumed.

The file terminator is the end-of-file returned by the host operating
system. If no line and/or page terminator directly precedes the file
terminator, they are assumed. The only legal form for text files is "" (the
null string). All other forms raise USEERROR.

Output of control characters does not affect the layout that Text_10
generates. In particular, output of a <LF> before a New-Page does not
suppress the NewLine caused by the New-Page.

The character <LF> is written to represent the line terminator.

The type TextIO.Count has the range 0 .. 32767; the type TextIO.Field
also has the range 0 .. 32767.

10_Exceptons.USE_ERROR is raised if something cannot be done because of
the external file system; such situations arise when one attempts:

- to create or open an external file for writing when the external file is
already open (via a different internal file).

- to create or open an external file when the external file is already open for
writing (via a different Internal file).

- to reset a file to a writing mode when the external file is already open (via
a different internal file).

- to write to a full device (Write, Close);
- to create a file in a full directory (Create);
- to have more files open than the OS allows (Open, Create);
- to open a device with an illegal mode;
- to create, reset, or delete a device;
- to create a file where a protected file (i.e., a directory or read-only file)

already exists;
- to delete a protected file;
- to use an illegal form (Open, Create); or
- to open a file for a non-simple type without specifying the block size;
- to open a device for direct I/O.

Revision 4.4

B- 12

Appendix F: Implementation Dependencies

IO Exceptions.DEVICE_ERROR is raised if a hardware error other than those
covered by USE-ERROR occurs. These situations should never occur, but may
on rare occasions. For example, DEVICEERROR is raised when:

- a file Is not found in a Close or a Delete;
- a seek error occurs on a direct Read or Write; or
- a seek error occurs on a sequential EndOfFile.

The subtypes Standard.Positlve and Standard.Natural, used by some I/O
routines, have the maximum value 32767.

No package LowLevel_IO is provided.

Copyright 1988, R.R. Software, Inc.

B- 13

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$ACC SIZE 32
in integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

$BIG ID1 (1..199 -> 'A', 200 -> '1')
in Identifier the size of the
maximum input line length which
is identical to $BIG ID2 except
for the last character.

$BIG ID2 (1..199 a> 'A', 200 -> '2')
Xn identifier the size of the
maximum input line length which
is identical to $BIG ID1 except
for the last character.

$BIG ID3 (1..99 .> 'A', 100 -> '3',
An identifier the size of the 101..200 -> 'A')
maximum input line length which
is identical to $BIG ID4 except
for a character near-the middle.

C-i

TEST PARAMETERS

Name and Meaning Value

$BIG ID4 (1..99 .> 'A', 100 > '4',
Xn identifier the size of the 101..200 -> 'A')
maximum input line length which
is identical to $BIG ID3 except
for a character near-the middle.

$BIG INT LIT (1..197 -> '0', 198..200 -> "298")
in integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

$BIG REAL LIT (1..195 => '0', 196..200 -> "690.0")
universal real literal of

value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIG STRING1 (1 -> "', 2..101 -> 'A', 102 => '"')
1 string literal which when
catenated with $BIG STRING2
yields the image of $SIGID1.

$BIG STRING2 (1 -> '"', 2..100 -> 'A', 101 -> '1',
1 string literal which when 102 -> "")

catenated to the end of
$BIG STRING1 yields the image of
$BIGIDi.

$BLANKS (1..180 -> '
A sequence of blanks twenty
characters less than the size
of the maximum line length.

SCOUNT LAST 32767
A universal integer
literal whose value is
TEXTIO. COUNT' LAST.

$DEFAULT MEM SIZE 65536
An integer literal whose value
is SYSTEM.MEMORYSIZE.

$DEFAULT STOR UNIT 8
An integer literal whose value
is SYSTEM.STORAGE UNIT.

C-2

TEST PARAMETERS

Name and Meaning Value

$DEFAULT SYS NAME UNIX
The - value of the constant
SYSTEM.SYSTEM NAME.

$DELTA DOC C.0000000004656612873077392578125
A real literal whose value is
SYSTEM.FINE DELTA.

$FIELD LAST 32767
A universal integer
literal whose value is
TEXTIO. FIELD' LAST.

$FIXED NAME NOTAPPLICABLE
The name of a predefined
fixed-point type other than
DURATION.

$FLOAT NAME NOTAPPLICABLE
Thi name of a predefined
floating-point type other than
FLOAT, SHORT-FLOAT, or
LONGFLOAT.

$GREATER THAN DURATION 300000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATER THAN DURATION BASE LAST 1.OE6
A unTversal real Iteral that is
greater than DURATION'BASE'LAST.

$HIGH PRIORITY 0
AN integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGAL EXTERNAL FILE NAME1 \NODIRECTORY\FILENAME
An external fili name which
contains invalid characters.

$ILLEGAL EXTERNAL FILE NAME2 <BADI->
An -external- file name which
is too long.

$INTEGER FIRST -32768
A universal integer literal
whose value is INTEGER'FIRST.

C-3

TEST PARAMETERS

Name and Meaning Value

$INTEGER LAST 32767
A universal integer literal
whose value is INTEGER'LAST.

$INTEGER LAST PLUS 1 32768
A universal - integer literal
whose value is INTEGER'LAST + 1.

$LESS THAN DURATION -305000.0
A7 universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS THAN DURATION BASE FIRST -1.0E6
A-universal real litiral that is
less than DURATION'BASE'FIRST.

$LOW PRIORITY 0
in integer literal whose value
is the lover bound of the range
for the subtype SYSTEM.PRIORITY.

$MANTISSADOC 31
An integer literal whose value
is SYSTEM.MAX MANTISSA.

$MAX DIGITS 15
Haximum digits supported for
floating-point types.

$MAX IN LEN 200
MaxTmum input line length
permitted by the implementation.

$MAX INT 2147483647
A universal integer literal
whose value is SYSTEM.MAX INT.

$MAX INT PLUS 1 2147483648
I Univefsal integer literal
whose value is SYSTEM.MAX INT+1.

$MAX LEN INT BASED LITERAL (1..2 -> "2:", 3..197 > '0'
S iniviersal - integer based 198..200 => "11:")
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be $MAXIN LEN
long.

C-4

TEST PARAMETERS

Name and Meaning Value

SMAX LEN REAL BASED LITERAL (1..3 -> "16:", 4..196 .> '0',
A universal real based literal 197..200 .> "F.E:")
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be $HAXINLEN long.

$MAX STRING LITERAL (1 -> "', 2..201 -> 'A', 202 -> "")

X string literal of size
$MAXINLEN, including the quote
characters.

$MIN INT -2147483648
1 universal integer literal
whose value is SYSTEM.MIN INT.

$MIN TASK SIZE 32
Wn integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

$NAME NOTAPPLICABLE
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT INTEGER,
LONG FLOAT, or LONGINTEGER.

$NAME LIST UNIX
A-list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

$NEG BASED INT 16#FFFFFFFF#
X basid integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

$NEW MEN SIZE 65536
in integer literal whose value
is a permitted argument for
pragma MEMORY SIZE, other than
$DEFAULT MEM SIZE. If there is
no othir -value, then use
$DEFAULT.MEMSIZE.

C-5

TEST PARAMETERS

Name and Meaning Value

$NEV STOR UNIT 8
An intfeger literal whose value
is a permitted argument for
pragma STORAGE UNIT, other than
$DEFAULT STOR UNIT. If there is
no other periitted value, then
use value of SYSTEM.STORAGE UNIT.

SNEW SYS NAME UNIX
X value of the type SYSTEM.NAME,
other than $DEFAULT SYS NAME. If
there is only one vialue-of that
type, then use that value.

$TASK SIZE 32
AN integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

$TICK 0.01
A real literal whose value is
SYSTEM. TICK.

C-6

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 44 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
AI-ddddd is to an Ada Commentary.

a. E28005C: This test expects that the string "-- TOP OF PAGE. --63" of
line 204 will appear at the top of the listing page due to a pragma
PAGE in line 203; but line 203 contains text that follows the pragma,
and it is this text that must appear at the top of the page.

b. A39005G: This test unreasonably expects a component clause to pack an
array component into a minimum size (line 30).

c. B97102E: This test contains an unintended illegality: a select
statement contains a null statement at the place of a selective wait
alternative (line 31).

d. C97116A: This test contains race conditions, and it assumes that
guards are evaluated indivisibly. A conforming implementation may use
interleaved execution in such a way that the evaluation of the guards
at lines 50 & 54 and the execution of task CHANGING OF THE GUARD
results in a call to REPORT.FAILED at one of lines 52 or 36.- -

e. BC3009B: This test wrongly expects that circular instantiations will
.be detected in several compilation units even though none of the units
is illegal with respect to the units it depends on; by AI-00256, the
illegality need not be detected until execution is attempted (line
95).

f. CD2A62D: This test wrongly requires that an array object's size be no
greater than 10 although its subtype's size was specified to be 40
(line 137).

D-1

WITHDRAW TESTS

g. CD2A63A..D, CD2A66A..D, CD2A73A..D, and CD2A76A..D (16 tests): These
tests wrongly attempt to check the size of objects of a derived type
(for which a 'SIZE length clause is given) by passing them to a
derived subprogram (which implicitly converts them to the parent type
(Ada standard 3.4:14)). Additionally, they use the 'SIZE length
clause and attribute, whose interpretation is considered problematic
by the WG9 ARG.

h. CD2A81G, CD2A83G, CD2A84M..N, and CD50110 (5 tests): These tests
assume that dependent tasks will terminate while the main program
executes a loop that simply tests for task termination; this is not
the case, and the main program may loop indefinitely (lines 74, 85,
86, 96, and 58, respectively).

i. CD2B15C and CD7205C: These tests expect that a 'STORAGE SIZE length
clause provides precise control over the number of designated objects
in a collection; the Ada standard 13.2:15 allows that such control
must not be expected.

j. CD2D11B: This test gives a SMALL representation clause for a derived
fixed-point type (at line 30) that defines a set of model numbers that
are not necessarily represented in the parent type; by Commentary
AI-00099, all model numbers of a derived fixed-point type must be
representable values of the parent type.

k. CD5007B: This test wrongly expects an implicitly declared subprogram
to be at the address that is specified for an unrelated subprogram
(line 303).

1. ED7004B, ED7005C..D, and ED7006C..D (5 tests): These tests check
various aspects of the use of the three SYSTEM pragmas; the AVO
withdraws these tests as being inappropriate for validation.

m. CD7105A: This test requires that successive calls to CALENDAR.CLOCK
change by at least SYSTEM.TICK; however, by Commentary AI-00201, it is
only the expected frequency of change that must be at least
SYSTEM.TICK--particular instances of change may be less (line 29).

n. CD7203B and CD7204B: These tests use the 'SIZE length clause and
attribute, whose interpretation is considered problematic by the WG9
ARG.

o. CD7205D: This test checks an invalid test objective: it treats the
specification of storage to be reserved for a task's activation as
though it were like the specification of storage for a collection.

D-2

WITHDRAWN TESTS

p. CE2107I: This test requires that objects of two similar scalar types
be distinguished when read from a file--DATA ERROR is expected to be
raised by an attempt to read one object- as of the other type.
However, it is not clear exactly how the Ada standard 14.2.4:4 is to
be interpreted; thus, this test objective is not considered valid
(line 90).

q. CE3111C: This test requires certain behavior, when two files are
associated with the same external file, that is not required by the
Ada standard.

r. CE3301A: This test contains several calls to END OF LINE and
END OF PAGE that have no parameter: these calls were intended to
specify a file, not to refer to STANDARD INPUT (lines 103, 107, 118,
132, and 136).

s. CE3411B: This test requires that a text file's column number be set to
COUNT'LAST in order to check that LAYOUT ERROR is raised by a
subsequent PUT operation. But the former operation will generally
raise an exception due to a lack of available disk space, and the test
would thus encumber validation testing.

D-3

APPENDIX E

COMPILER OPTIONS AS SUPPLIED BY R.R. SOFTWARE, INC.

Compiler: JANUS/Ada, Version 2.1.3

ACVC Version: 1.10

E-1

Appendix F: Implementation Dependencies

F.9 Running the compiler and linker

The Janus/Ada compiler is invoked using the following format:

JANUS filename I-option)

where filename is an XENIX file name with optional compiler options
I-optioni.

The compiler options are:
B Brief error messages. The line in error is not printed (equivalent to turning

off pragma VERBOSE).
D Don't generate debugging code (equivalent to turning off pragma DEBUG)
F Use in-line 80387 instructions for Floating point operations. By default the

compiler generates library calls for floating point operations. The 80387 may
be used to execute the library calls. A floating point support library is still
required, even though this option is used.

L Create a listing file with name filename.PRN on the same disk as filename.
The listing file will be a listing of only the last compilation unit in a file.

Ox Object code memory model. X is 0 for the 80386 system. Other memory
models are not supported. (Since this model 'limits' a program to 4 Gigabytes
of Code and 4 Gigabytes of Data, this Is not a concern). Memory model 0 is
assumed if this option Is not given.

Copyright 1988, R.R. Software, Inc.

E-2

Appendix F: Implementation Dependencies

Q Quiet error messages. This option causes the compiler not to wait for the
user to interact after an error. In the usual mode, the compiler will prompt
the user after each error to ask if the compilation should be aborted. This
option is useful if the user wants to take a coffee break while the compiler
is working, since all user prompts are suppressed. The errors (if any) will
not stay on the screen when this option Is used; therefore, the console
traffic should be sent to the printer or to a file. Be warned that certain
syntax errors can cause the compiler to print many error messages for each
and every line in the program.

T Generate Information which allows trimming unused subprograms from the
code. This option tells the compiler to generate Information which can be
used by the remove subprograms from the final code. This option increases
the size of the .JRL files produced. We recommend that it be used on
reusable libraries of code (like trig. libraries or stack packages) - that is
those compilations for which it is likely that some subprograms are not
called.

W Don't print any warning messages. For more control of warning messages, use
the following option form (Wx).

Wx Print only warnings of level less than the specified digit 'x'. The given
value of x may be from I to 9. The more warnings you are willing to see,
the higher the number you should give.

X Handle eXtra symbol table information. This is for the use of debuggers and
other future tools. This option requires large quantities of memory and disk
space, and thus should be avoided if possible.

Z Turn on optimization.. This has the same effect as if the pragma OPTIMIZE
were set to SPACE throughout your compilation.

The default values for the command line options are:
B Error messages are verbose.
D Debug code is generated.
F Library calls are generated for floating point operations.
L No listing file is generated.
0 Memory model 0 is used.
Q The compiler prompts for abort after every error.
T No trimming code is produced.
W All warnings are printed.
X Extra symbol table information is not generated.
Z Optimization is done only where so specified by pragmas.

Leading spaces are disregarded between the filename and the call to JANUS.
Spaces are otherwise not recommended on the command line. The presence of
blanks to separate the options will be ignored.

Revision 4.4

E-3

Appendix F: Implementation Dependencies

Examples:
JANUS test-Q-L
JANUS test.run-W4
JANUS test
JANUS test .run -B -W-L

The compiler produces a SYM (SYMbol table Information) file when a
specification is compiled, and a SRL or JRL (Specification ReLocatable or
Janus ReLocatable) file when a body is compiled. To make an executable
program, the appropriate SRL and JRL files must be linked (combined) with
the run-time libraries. This is accomplished by running the Janus/Ada
linker, JLINK.

The Janus/Ada linker is invoked using the following format:

JLINK filename I-optionl

Here "filename" is the name of the SRL or JRL file created when the main
program was compiled (without the .SRL or .JRL extension) with optional
linker options (-option]. The filename usually corresponds to the first
fourteen letters of the name of your main program. See the linker manual
for more detailed directions. We summarize here, however, a few of the most
commonly used linking options:

E Create an EXE file. This option has no effect on the 80386 linker (it always
creates an EXE file).

FO Use software floating point (the default).
F2 Use hardware "(80387) floating point.
L Display lots of information about the loading process.
00 Use memory model 0 (the default); see the description of the /0 option in

the compiler, above.
Q Use quiet error messages; i.e., don't wait for the user to interact after an

error.
If Trim unused subprograms from the code. This option tells the linker to

remove subprograms which are never called from the final output file. This
option reduces space usage of the final file by as much as 30K.

Examples:
JLINK test
JLINK test -Q-L
JLINK test-L-F2

Copyright 1988, F R. Software, Inc.

E-4

Appendix F: Implementation Dependencies

Note that. if you do not have a hardware floating point chip, then you
generally will not need to use any linker options.

Revision 4.4

E-5

