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SUMMARY

Work over the contract period is summarized in an overview of the project and
also in four related papers. The common theme is the development of ‘computational
tools that can support DARPA sponsored research in nuclear monitoring using seismic
techniques. y :

The first paper, "A students guide to and review of moment tensors", provides a
general review of moment tensor notation. Special emphasis is taken to relate the
excitation due to an arbitrary seismic dipole/couple source to the Green’s functions as
defined in "Computer Programs in Seismology." Sufficient examples are given to test
computer programs connecting M;; to other source representations.

The next two papers, "Ground roll: rejection using adaptive phase matched filters”
and "Ground roll: rejection using polarization filters" demonstrate the use of the tools
developed to extract a low amplitude signal hidden within a large amplitude dispersed
signal. The first paper, utilizes techniques developed for -the enhancement of surface
waves by phase matched filters. The ground roll (surface wave) is iteratively isolated
using the data to define the proper dispersion. Once the ground roll is isolated, it is
subtracted from the signal in the frequency domain.

The second paper uses the polarization properties of different seismic wave types
to isolate the ground roll. This technique requires multi-component detectors to deter-
mine the type of polarization of the particle motion. Once the surface wave is iso-
lated, it can be filtered from the data.

The final paper, "On scaling of intra-continental earthquakes," improves previous
work by Nuttli on the spectral scaling of earthquakes in continental interiors. The
observed magnitude for North American events agree, wuhm scattering limits, with
predictions based on the improved scaling predictions. :
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ADVANCED COMPUTATIONAL TECHNIQUES

IN REGIONAL WAVE STUDIES

DISCUSSION

The purpose of this contract was to perform computational studies that would
increase our understanding of the Lg arrival and its coda, especially the use of the
coda to define a path specific attenuation operator for the Lg arrival. This is a very
difficult problem which requires the incorporation of realistic scattering mechanisms
for forward modeling of the phenomena.

Work done

It was realized that stable, well understood, synthetic seismograms for simpler
homogeneous plane layers is required first. Toward this end, programs developed for
other projects were documented and distributed through the Center for Seismic Studies
for use by other researchers. These programs consisted of over 80,000 lines of code
and 800 pages of documentation. Much effort was spent refining this package, espe-
cially those portions written by students, to ensure legibility and numerically stable
results.

The set of six volumes of "Computer Programs in Seismology" were distributed
by the Center for Seismic Studies to the following organizations:

Organization Contact

ENSCO (FLA) H. Ghalib
ENSCO (VA)  Z. Der

SMU B. Stump
U. Ruhr H.-P. Harjes
USGS S. Sipkin

S. Radiomana B. Massinon
AFTAC N. Yacoub

In addition, other DARPA/AFGL contractors have obtained copies directly from Saint
Louis University.

Toward the latter part of the project, the computer programs were stable enough
to attempt to look at real data. As reported in Quarterly Management Report No. 8,
the Lg and surface-wave signals from a strip mining blast 250 km away in western
Kentucky were used to infer a source yield of about 0.1 kT. The implication of this
result is that more than one wavetype at regional distances can be used to obtain a
robust seismic estimate yield of small explosions.

One of the unknowns is the value of Qp in the upper 3 km of the earth. We have
been looking at data from refraction profiles in Maine, from shallow seismic investiga-
tions in flood plains, and from regionally recorded mining blasts to define both the
robust analysis procedures required and the shallow shear-wave velocity and Qp.




Three dissertations were completed:
Russell, D. R., (1987). Multi-channel processing of dispersed surface waves.
Shieh, C.-F., (1988). Polarization analysis of complex seismic wave field.

M. L. Jost (1989). Long period strong ground motions and response spectra of large
historical earthquakes in the central and eastern United States from kinematic source
models, Ph. D. Dissertation, Saint Louis University.

David Russell is currently with AFTAC, performing work related to that sup-
ported by DARPA/AFGL. Michael Jost has taken a position at the University of the
Ruhr, working with the new GERESS data.

The dissertation work emphasized the development and use of advanced computa-
tional techniques for studying regional seismic phases. Russell (1987) implemented
surface-wave inversion, single and multi-channel phase matched filtering for the
analysis of dispersed surface waves. Shieh (1988) focused on polarization filtering,
with emphasis on exploration data, but he also considered representative teleseismic
signals. Jost (1989) made use of the programs to estimate low frequency ground
motion at short distances from large earthquakes. He found it necessary to modify a
scaling relationship for continental/plate interiors proposed by Nuttli (Jost’s paper is
attached). His work provides a better definition of how intra-continental earthquakes
should behave.

Recommendations

The discrimination and quantification problems become difficult for small events.
On the other hand, the possibility of new data sources at regional distances permits
using previously ignored signals. Unfortunately, these regional signals will travel large
distances through a heterogeneous crust. Attempts must be made to use the data to
define path dependent attenuation operators and to understand the effects of both
source and path heterogeneity on the observed signal. Even though moment tensor
inversion may not be used too much for large explosions, such inversion of regional
phase data, especially surface-wave, may provide added constraints on whether the
small explosive source is point or distributed.

vi
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A Student's Guide to and Review of Moment Tensors

M. L. Jost and R. B. Herrmann

Department of Eartih and Atmospheic Sciences
Saint Louts Universily
P. O. Box 8099
St. Louss, MO 63156

ABSTRACT

A review of a moment tensor for describing a general seismic point source is
presented to show a second order moment tensor can be related to simpler seismic
source descriptions such as centers of expansion and double couples. A review of
literature is followed by detailed algebraic expansions of the moment tensor into
isotropic and deviatoric components. Specific numerical examples are provided in
the appendices for use in testing algorithms for moment tensor decomposition.

INTRODUCTION

A major research interest in seismology is the
description of the physics of seismic sources. A commorn
approach is the spproximation of seismic sources by a
model of equivalent forces that correspond to the linear
wave equations neglecting non-linear effects in the near
source region (Geller, 1976; Aki and Richards, 1980; Ken-
nett, 1983; Bullen and Bolt, 1985). Equivalent forces are
defined as producing displacements at the earth's surface
that are identical to those from the actual forces of the
physical process at the source. The equivalent forces are
determined from observed seismograms that contain infor-
mations about the source and path and distortions due to
the recording. Hence, the principle problem of source stu-
dies is the isolation of the source effect by correcting for
instrument and path,

The classical method of describing seismic sources,
having small dimensions compared to the wavelengths of
interest (point source approximation) is by their strength
{magnitudes, seismic moment) and their fault plane solu-
tion (Honda, 1062; Hirasawa and Stauder, 1965;
Herrmann, 1975). Recently, seismic moment tensors have
been used routinely for describing seismic point sources
(e.g. Kanamori and Given, 1982; Dziewonski and Wood-
house, 1083b; Dziewonski et al , 1083a-c, 1984a-c; Giar-
dini, 1984; Ekstré6m and Dziewonski, 1085; Dziewonski
et al , 1085a-d, 1986a-c, 1087a-f; Ekstrom et al , 1087;
Sipkin, 1087; PDE monthly listings published by NEIS).
Gilbert (1970) introduced moment tensors for calculating
the displacement at the free surface which can be
expressed as a sum of moment tensor elements times the
corresponding Green's function. An elastodynamic
Green's function is a displacement field due to an uni-
directional unit impulse, i.e. the Green's function is the
impulse response of the medium between source and
receiver. The response of the medium to any other time
function is the convolution (Arfken, 1985} of that time
function with the impulse response. The Green’s function
depends on source and receiver coordinates, the earth
model, and is a tensor (Aki and Richards, 1980). The
linearity between the moment tensor and Green’s function
elements was first used by Gilbert (1073) for calculating
moment tensor elements from observations (moment ten-
sor inversion). The concept of seismic moment Lensors

ky)

was further extended by Backus and Mulcahy (1976), and
Backus (1877a, b). Moment tensors can be determined
from free oscillations of the earth (e.g. Gilbert and
Dziewonski, 1975), long-period surface waves (e.g.
McCowan, 1976; Mendiguren, 1077; Patton and Aki,
1979; Patton, 1980; Kanamori and Given, 1981, 1082;
Romanowicz, 1981; Lav et al, 1982; Nakanishi and
Kanamori, 1082, 1084) or long-period body waves (e.g.
Stump and Johnson, 1977; Strelitz, 1978, 1980; Ward,
19804, b; Fitch et al., 1980; Fitch, 1981; Langston, 1081;
Dziewonski et al, 1081; Dziewonski and Woodhouse,
1983a, b). Throughout this Student's Guide, we will
focus on second-rank, time independent moment tensors
(Appendix I). We refer to Dziewonski and Gilbert (1974),
Gilbert and Dziewonski (1975), Backus and Mulcahy
(1976), Backus (1977a), Stump and Johnson (1977}, Strel-
itz (1080), Sipkin (1982), and Vasco and Jo' nson (1998)
for a description of time dependent moment tensors.
Higher order moment tensors are discussed by Backus and
Mulcahy (1976), Backus (1977a, b), and Dziewonski and
Woodhouse (1983a).

The reason that moment tensors are important is
that they completely describe in a first order approxima-
tion the equivalent forces of general seismic point sources.
The equivalent forces can be correlated to physical source
models such as sudden relative displacement at a fault
surface (elastic rebound model by H. F. Reid, 1910),
rapidly propagating metastable phase transitions {(Evison,
1963), sudden volume collapse due to phase transitions, or
sudden volume increase due to explosions (Kennett, 1983;
Vasco and Johnson, 1988)  The equivalent forces
representing a sudden displacement on a fault plane form
the familiar double couple. The equivalent forces of a sud-
den change in shear modulus in presence of axial strain
are represented by a linear vector dipole (Knopofl and
Randall, 1970). In conclusion, a seismic moment tensor is
a general concept, describing a variety of seismic source
models, the shear dislocation (double couple source) being
just one of them.

The equivalent forces can be determined from an
analysis of the eigenvalues and eigenvectors of the
moment tensor (Appendix 1). The sum of the eigenvalues
of the moment tensor describes the volume change in the
source (isotropic component of the moment tensor). If the
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sum is positive, the isotropic component is due to an
explosion. The source has an implosive component if the
sum is negative. If the sum of the eigenvalues vanishes,
then the moment tensor has only deviatoric components.
The deviatoric moment tensor represents a pure double
couple source if one eigenvalue equals zero. If none of the
eigenvalues vanishes and their suin still equals zero, the
moment tensor can be decompcsed into a major and
minor double couple (Kanamori and Given, 1081), or a
double couple and a compensated linear vector dipole
{(CLVD)} (Kncpoff and Randall, 1970). A CLVD is a
dipele that is corrected for the effect of volume change,
describing seismic sources which have no volume change,
net force, or net moment. In general, a complete moment
tensor can be the superposition of an isotropic component
and three vector dipoles (or three CLVD's, or three double
couples, Ben-Menahem and Singh, 1981).

This Student's Guide is an extension of "A student's
guide to the use of P- and S- wave data for focal mechan-
ism determination” (Herrmann, 1975). Hence, emphasis is
given illustrating the relations between classical fault
plane solutions and seismic moment tensors. Addressing
general seismic point sources, we provide examples of
moment tensor decompositions into basic equivalent
source representations, as contributions of dipoles or dou-
ble couple sources. Clarification of terms such as major
and minor double couple or compensated linear vector
dipole is provided. Moment tensor inversion schemes are
briefly summarized. In the appendices, examples of the
use of notation by different authors are given along with
some numerical results which are useful for testing com-
puter programs. Furthermore, the formulation of the
basic Green's functions by Herrmann and Wang (1985) is
connected to a simple moment tensor inversion scheme.

GENERAL ELASTODYNAMIC SOURCE

By wusing the representation theorem for seismic
sources (Aki and Richards, 1980), the observed displace-
ment d, at an arbitrary position x at the time t due to a
distribution of equivalent body force densities, f;, in a
source region is

o0
do(xt) = [ [ Gulxtind) fi(r.1) dV(r) dt , (1)

—o00 V
where G,, are the components of the Green's function
containing the propagation effects, and V is the source
volume where f, are non-zero. We assume the summation
convention for repeated indices {Arfken, 1085). The sub-
script n indicates the component of the displacement.
Throughout, we will use the following coordinate system
(Figure 1): The x-axis points towards north, the y-axis
towards east, and the z-axis down (this system is right
handed). Then, e,, e, and e, are the unit vectors
towards north, east, and vertically down, respectively.

By assuming that the Green's functions vary
smoothly withkin the source volume in the range of
moderate frequencies, the Green's functions can be
expanded into a Taylor series around a refcrence point to
facilitate the spatial integration in (1) (ICennett, 1083;
Arfken, 1083). The expansion is usually done around the
centroid r = €. The physical source region is character-
ized by the existence of the equivalent forces. These forces

38

North

East

v

z
Fig. 1. Definition of the Cartesian coordinates (x,v.z).
The origin is at the epicenter. Strike is measured
clockwise from north, dip from horizontal down,
and slip counterclockwise from horizontal. u and v
are the slip vector and fault normal, respectively
(modified after Aki and Richards, 1980).

arise due to differences between the model stress and the
actual physical stress (stress glut, Backus and Mulcahy,
1976). Outside the source region, the stress glut vanishes
as do the equivalent forces. The centroid of the stress
glut is then a weighted mean position of the physical
source region (Backus, 1077a; Aki and Richards. 1980;
Dziewonski and Woodhouse, 1983a). It seems that the
centroid of the stress glut gives a better position for the
equivalent point source of an earthquake than the hypo-
center which describes just the position of rupture initiali-
zation. The Taylor series expansion of the components of
the Green's function around this new reference point is

Gu(xtir,t) = (2)
mi;o an (rjy=65) (3. =i) Gy s (xatiEel)

The comma hte* ween indices in (2) describes partial deriva-
tives with respect to the coordinates after the comma.
We define the components of the time dependent force
moment tensor as :

My, .. . (6t) = {/ (rj,=€;) -+ (r =& ) a(rit) dV. (3)
If conservation of linear momentum applies, such as for a
source in the interior of a body, then a term in Af, does
not exist in (3). With the Taylor expansion (2) and the
definition of the time dependent moment tensor (3). the
displacement (1) can be written s a sum of terms which
resolve additional details of the source (multipole expan-
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sion, Backus and Mulcahy, 1976; Stump and Johnson,
1977; Aki and Richards, 1080; Kennett, 1983; Dziewonski
and Woodhouse, 1983a; Vasco and Johnson, 1088):

d,/,t) = (4)
00 l -— —_
Y — Garjy - j-(x'l’f'” * M, U6,
may m!

where * denotes the temporal convolution. By using a

seismic signal that has much longer wavelengths than the
dimensions of the source (point source approximation), we
need to consider only the first term in (4) {Backus and
Mulcahy, 1976:; Stump and Johnson, 1977). Note, that
single forces will not be present in (4) if there are no
externally applied forces (indigenous source). The tc*al
force, tinear and angular momentum must vanish for the
equivalent forces of an indigenous source (Backus and
Mulcahy, 1976). The conservation of angular momentum
for the equivalent forces leads to the symmetry of the
seismic moment tensor (Gilbert, 107C).

We assume that all components of the time depen-
dent seismic moment tensor in (4) have the same time
dependence s(f) (synchronous source, Silver an<" Jordan,

2

1082). Neglecting higher order terms, we get (Stump and
Johnson, 1977)

dy(x,) =M | Gy ; * s(t)) (5)

M,, are conslants representing the components of the
second order seismic moment tensor M, usually termed
the moment tensor. Note that the displacement d, is a
linear function of the moment tensor elements and the
terms in the square brackets. If the source time function
s(t) is a delta function, the only term left in the square
brackets is Gy ; describing nine gencralized couples. The
derivative of a Green's function component with respect
to the source coordinate §; is equivalent to a single couple
with arm in the {; direction. For k£ = j, i.e. force in the
same direction as the arm, the generalized couples are vec-
tor dipoles (Figure 2; Maruyama, 1064). Thus, the
moment tensor component M,; gives the excitation of the
generalized (k,j) couple.

DOUBLE COUPLE SOURCES

The moment tensor components in (5) in an isotropic
medium for a double couple of eq.ivalent forces are given
by

%\(X:X) (x,¥) (x,2)
Y Yy Yy
(}’1x) ﬂ) (Ysz)
Yy Y Yy
(z’x) (Z’Y) (zyz)
X X
Y y Yy

Fig. 2. The nine generalized couples representing G, ; in (5) (modified
after Aki and Richards, 1980).

39
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A!ijﬂA(ukl/)'*'uij) y (6)

where gt is the shear modulus, A is the area of the fault
plane, u denotes the slip vector on the fault surface, and
v is the vector normal to the fault plane {Aki and

Richards, 1980; Ben-Menahem and Singh, 1981). Note
that the contributions of the vector of the fault normal v
and the slip vector u are symmetric in (6). From the sym-
metry of M, we note that the roles of the vectors u and v
could be interchanged without affecting the displacement
field; i.e. the fault normal could equivalently be the slip
vector and vice versa. This well known fav'" plane - auxi-
liary plane ambiguity cannot be resolved from the seismic
radiation of a point source. Hence studies of locations of
aftershocks, surface faulting, rupture directivity, or static
final displacements (Backus, 1077a) need to be done in
order to resolve this ambiguity.

The term v, v; + 4, ¥ in (6) forms a tensor, D,
describing a double couple. This tensor is real and sym-
metric, giving real eigenvalues and orthogonal eigenvec-
tors (Appendix 1). The eigenvalues are proportional to (1,
0. -1). Hence, the characteristic properties of a moment
tensor representing a double couple are i) one eigenvalue
of the moment tensor vanishes, and ii) the sum of the
eigenvalues vanishes, i.e. the trace of the moment tensor is
zero (thc other two eigenvalues are consirained to equal
magnitude but opposite sign).

Let t, b, and p designate the orthogonal eigenvectors
to the above eigenvalues (Herrmann, 1975; Backus, 1977a;
Dziewonski and Woodhouse, 1983a).

t=—\}_2—(u+u) (7)
b=vXu (8)
p=m(v—u) )

The tensor D corresponding to the terms in the brackets
in (6) can be diagonalized (principal axis transformation,
see Appendix 1), where the eigenvectors give the directions
of the principal axes. The eigenvector b corresponding to
the eigenvalue zero gives the null-axis, the eigenvector t
corresponding to the positive eigenvalue gives the tension
axis, T, and the eigenvector p corresponding to the nega-
tive eigenvalue gives the pressure axis, P, of the tensor.
These axes can be related to the corresponding axes of the
fault plane solution, since we are focusing on pure double
couple sources. The P-axis is in the direction of max-
imum compressive motion on the fault surface; the T-axis
is the direction of maximum tensional motion. Note that
the P- and T-axes inferred from the motion on the fauit
surface are not necessarily identical to the axes of
maximum tectonic stress, sinc the motion can be on a
preexisting plane of weakness rather than on a newly
formed fault plane that would correspond to the max-
imum tectonic stress (McKenzie, 1869). However, this
ambiguity cannot be resolved from the seismic radiation.
In order to determine the direction of maximum tectonic
stress, additional geological data such as in situ stress
measurcments and frictional forces is necessary. T acking
this kind of inforination, it is generally assumed that the
P- and T- axes found from the seismic wave radiation are
somewhat indicative of the direction of tectonic stress.

40

The double couple u; v; + u; v can equivalently be
described by its eigenvectors {Gilbert, 1073).

Uy Uj + u, b = & !j = Pj Pk (10)
=0.5((t, + ) (4 —p,)) + (4 —pe) (4 +2))

Comparing the terms in (10), we find the relation betwe~n
tension and pressure axes and slip vector and fault normal
(Appendix I):

u=5(t+p) (11)

V=vl2—(!—p) A (12)
The other nodal t..ne is defined by

u=vl§-(t—p) (13)

u=v1§-(t+p) (14)

If strike, &, dip, 6 and slip, X, of the faulting are
known, the slip vector u and the fault normal v are given
by (Aki an< Richards, 1980)

u=1u(coshcos® +cosdsinrsind)e,

+ @ (cosAsin P —cosdsin Acos P )e, (15)

y
— u sin dsin he, ,

where u is the mean displacement on the fault plane. The
fault normal v is

v=—sindsind e, +sind cosd e, —cosée, . (16)

The scalar product of u and v is zero. The strike of the
fault plane, ®, is measured clockwise from north, with the
fault plane dipping to the right when looking along the

strike direction. Equivalently, the hanging wall is then to
the right (Figure 1). The dip, §, is measured down from
the horizonta!. The slip, ), is the angle between the strike
direction and the direction the hanging wall moved rela-
tive to the foot wall (the slip is positive when measured
counterclockwise as viewed from the hanging wall side).
The range of the fault orientation para veters are

0<¢$<2m 0565%, and —7 <X <7 (Herrmann,

1975; Aki and Richards, 1080). The scalar seismic
moment is
My=pAzu (17)

Equation (6) together with (15), (16), and (17) lead to
the Cartesian components of the symmetric moment ten-
sor in terms of strike, dip, and slip angles.

M,, = —M,(sin 8 cos X\ sin 2 + sin 25 sin X sin® &)

= M (sin & cos X sin 2& — sin 26 sin X cos? §)

M, = M, (sin 28 sin X) (18)
= M, (sin 6 cos X cos 2¢ + 0.5 sin 26 sin X sin 29)

= —Af,(cos § cos X cos & + ccs 28 8in X sin P)

M, = =M, (cos 6 cos X s;n ¥ — cos 28 sin X cos )

Diflerent notation of the moment tensor elements are dis-
cussed in App.adix II. In Appendix III, several simple
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moment tensors are related to fault plane solutions.
Body-wave and surface wave radiation patterns from a
source represented by a moment tensor are discussed by
Kennett (1088).

Since the selsmic moment tensor is real and sym-
metric, a principal axis transformation can be found,
diagonalizing M (Appendix I). The diagonal elements are
the eigenvalues m; of M. Then, the scalar seismic moment
can be determined from a given moment tensor by

(19)

where m | and m, are the largest eigenvalues (in the abso-
lute sense). The seismic moment can equivalenily be
estimated by the relations (Silver and Jordan, 1982):

1 1
o (B2 - (32

GENERAL SEISMIC POINT SOURCES

In this section, it is assumed that the seismic source
canno! be described by a pure double couple mechanism.
The moment tensor is represented as sum of an isotropic
part, which is a scalar times the identity matrix, and a
deviatoric part.

1
M.,-?( Im )+ Imo )y

(20)

In order to derive a general formulation of the
moment tensor decomposition, let's consider the eigen-
values and orthonormal eigenvectors of the moment ten-
sor. Let m; be the eigenvalue correspondmg to the ortho-
normal engenvLctor a, = (a,,,a,,,a,,) . Using the ortho-
normality of the eigenvectors (Appendix I, (A1.5)), we can
write the principal axis transfurmation of M in reverse
order as:

r

a,T
M= [a, a; a3 ]m ar_,T (21)
L
a,; G, a:!zw a); iy a,,
= la,, a2, ag, 0 m, Gg; Ggy G,
a,; 8y “3:J 0 0 mgflas, ay ag,

From (21), we find relations between components of the
eigenvectors and moment tensor elements:

2 2 2
My, =m,aj; + mgay;, +myaj,

2 2 2
M, =m,af, + myaj +myaj

M, =m, alQ' +m, a'ft + my aszx

Al,’ =m, 8, GI’ + Mg Gay 02' + mj aj, a3y (22)
M, =m,a, a,, + mya, a,, + myay, ag,

Mu =m, d;, 4, + my a8y, ay, + mya3, a3,

The effect of the eigenvalue decomposition (21) is that a
new orthogonal coordinate system, given by the eigenvec-
tors, has been defined. In this new coordinate system, the

source excitation is completely described by a linear com-
bination of these orthogonal dipole sources.

m in (21) is the diagonalized moment tensor. The ele-
ments of m are the eigenvalues of M. We now define the
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general moment tensor decomposition by rewriting m as
tr(M) O 0

me = 0 (M) O (23)
0 0 tr(M)
m; 0 0
+]| 0 m; 0
0 0 m;
. rM) 0 0 N
-3 0 v o [+3 @
] 0o (M) !
where tr(M)=m, 4+ my+ m; is the trace of the

moment tensor and m; is a set of diagonal matrices
whose sum yields the second term in (23). The purely
deviatoric eigenvalues m,’ of the moment tensor are
=m - ————— =m; —-—tr(M) (24)
The first term on the right hand side (RHS) of (23)
describes the isotropic part of the moment tensor. The
eigenvalues of the isotropic part of the moment tensor are
important for quantifying a volume change in the source.
The second term describes the deviatoric part of the
moment tensor consisting of purely deviatoric eigenvalues,
which are calculated by subtracting 1/3 ¢r (M) from each
eigenvalue of M. This deviatoric part of the moment ten-
sor can be further decomposed, where the number of
terms or the specific form of the decomposition will be
discussed in the next sections. Obvicusly, a multitude of
different decompositions are possible. In Appendix IV, we
give some numerical examples illustrating several methods
of moment tensor decomposition.

Vector Dipoles

A moment tensor can be decomposed into an isotro-
pic part and three vector dipoles. In equation (23) let N =
3 and

m; 00 000 00 0
m=|0 00|, m;=[0m; 0, my=[00 0O (25)
0 00 00 0 00 mj

Applying (21) to m,, we get for the first deviatoric term
(i=1) in the decomposition

2
Gj; 06),;8,, 6,0y,

¢ 2 L4
my|a,.8y, af, @8, |=m;aa . (20)

;83 6y,G,, afe

where we identified the matrix as the dyadic a;a, (Appen-
dix 1). The dyadic a,a, describes a dipole in the direction
of the eigenvector a,. By applying (21) to m, and m; in
(25), we get similar expressions involving a,a, and aza,,
describing the second and third deviatoric terms in the
decomposition. Finally, equation (21) can be written for
the decomposition into three linear vector dipoles along
the directions of the eigenvectors of M as
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M= %(m,+m2+ma) I (27)

. L4 L4
+ ml 3la|+m2 328-2+'n3 aaas,

which is identical to (22) and equation (4.55) in Ben-
Menahem and Singh (1081).

Double Couples

Next, we decompose a moment tensor into an isotro-
pic part and three double couples. For the deviatoric part
in (23) let N = 6 and

; i ;

mi o o m{ 0 0
E,=% 0 -m,; 0f, ﬁz=;— 0 0 o0

[0 0 O] 0 0 —m;

o 0o o -m; 0 0

0 0 —mg] 0 0 0

r h 1

0 0 o0 Lmgo 0
ms=% 0 -m 0|, ms=% o 0o,

0 o mi;j | 0 0 ms’J

where each m; is equivalent to a pure double couple
source (Appendix III}. Notice that each double couple
consists of two linear vector dipoles (c.f. (25), (26) and
(28)). e.g. (my/3) (a;a, — a,a,) for m,. Each dipole con-
sists of two forces of equal strength but opposite direction
(c.f. Figure 2). Then, the double couple can be seen this
way: The first couple is formed by one force of each
dipole, one force pointing in the positive a;, the other in
the negative a, direction. The corresponding other couple
is constructed by the complementary force of each dipole,
pointing toward the negative a; and positive a, direction.

Using (21) with (23) and (28), we get the resuit that a
moment tensor can be decomposed into an isotropic part
and three double couples.

M= ](m1+m2+m3)l+ —(m—m,) (a,a,—a,a,) (29)

+

3
1
5 (ma—m,) (aza3—a,a,),

(my—myj) (3232"3333)4'?

which is identical to equation (4.57) in Ben-Menahem and
Singh (1081).

CLVD

Alternatively, a moment tensor can be decomposed
into an isotropic part and three compensated linear vector
dipoles. Adding terms like m; and m;, in (28) gives a
CLVD, 2a,a, —a,a, — aza;. This CLVD represents a
dipole of strength 2 in the direction of the eigenvector a,,
and two dipoles of unit strength in the directions of the
eigenvectors a, and a3, respectively. The decomposition
can then be expressed as:

M= -%—(m,+m2+m3)l+%m 1(2a,8,~a;8,—a33;) (30)

1 1
+ g"‘2(28232—3181‘3333)4‘5'"'3(233%—3131-3232)'
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which is identical to equation (4.58) in Ben-Menahem and
Singh (1981).

Major and Minor Couple

Next, we will decompose a moment tensor into an
isotropic component, a major and minor double couple.
The major couple seems to be the best approximation of a
general seismic source by a double couple (Appendix V),
since the directions of the principal axes of the moment
tensor remain unchanged. The major double couple is con-
structed in the following way (KKanamori and Given, 1981;
Wallace, 1985): The eigenvector of the smallest eigenvalue
(in the absolute sense) is taken as the null-axis. Let's
assume that |mj |>[m, [>|m; | in (23). In (23), let
N=2 and use the deviatoric condition m;+m;+m; = 0
to obtam

0 0 o m; 0 0
m=10-m; 0|, m=|0 —m/O (31)
0 0 m 0 0 0

Applying (21) to fm,, we get the first deviatoric term in
the decomposition which corresponds to a pure double
couple termed major couple.

MMA) o [a a233] 0 —m, Oll T

Instead of the major double couple, a best double couple
can be constructed similarly by replacing m:; in (32) by
the average of the largest two eigenvalues (in the absolute
sense, Giardini, 1984). Applying (21) to m, gives the
second deviatoric term in the decomposition which also
corresponds to a pure double couple termed minor couple.

T

a;
MA”N - [al a, a3 ]ﬁg aQT
T

a3

The complete decomposition is then:

(32)

(33)

M= %(ml+m2+m3)l (34)

+ m3 (a3a;~-a,m;) +m; (a,a,—asa,) .

Double Couple - CLVD

Following Knopoff and Randall (1970) and Fitch et
al. (1980), we can decompose a moment tensor into an iso-
tropic part, a double couple and a compensated linear vec-
tor dipole. Let's assume again that |mj |[>|m, |>|m; |
in (23). We can write the deviatoric part in (23) as (N =
1)

-F 0 0
mem; [0 (F-1) O] , (3%)
0 0 1
where F = - m] / m; and (F-1) = m; / m;. Note that

0<F <0.5. This constraint on F arises from the deviatoric
condition m{+mz+ms = 0. We can decompose (35)
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into two parts representing a double couple and a CLVD

0 00 -1 00
m=m;(1-2F) 0 =1 Oj]+mgy F o -1 0/[,306)
0 01 o 0 2

where we assumed that the same principal stresses
produce the double couple as well as the CLVD radiation.
The complete decomposition (21} is then:

M= 2(mtmptmo)l + m3(1-2F ) (383-a08y)  (37)

To estimate the deviation of the seismic source from
the model of a pure double couple, Dziewonski et al.
(1981) used the parameter

m *
€= | T (38)

.
M max

where m. is the smallest eigenvalue (in the absolute
sense) and m_,, is the largest (in the absolute sense),
given by (24). From (35), we see that ¢ = F. For a pure
double couple source, m,’nln = 0 and € = O; for a pure
CLVD, € = 0.5. Alternatively, € can be expressed in per-
centages of CLVD (multiply ¢ by 200. The percentage of
double couple is (1—2¢) * 100). Dziewonski and Wood-
house (1983b, see also Giardini, 1984) investigated the
variation of € versus seismic moment and earthquake spa-
tial distribution on the surface of the earth.

MOMENT TENSOR INVERSION

There are various methods of inversion for moment
tensor elements. The inversion can be done in the time or
frequency domain. Diflerent data (e.g. free oscillations,
surface- and body waves; diflerent seismogram com-
ponents) can be used separately or combined. In addition,
certain @ priori constraints such as tr (M) = 0, or M,, =
M,, = 0 can be imposed to stabilize the inversion, result-
ing in a decrease in number of resolved moment tensor
elements. In this Student’s Guide, we briefly outline cer-
tain approaches and refer to the original papers for
further reference.

Gilbert (1970) introduced the seismic moment tensor
for calculating the excitation of normal modes (Saito,
1967) of free oscillations of the earth. Gilbert (1973) sug-
gested an inversion scheme for moment tensor elements in
the frequency domain. Gilbert and Dziewonski (1975)
used free oscillation data for their moment tensor inver-
sion. Gilbert and Buland (1976) investigated on the smal-
lest number of stations necessary for a successful inversion
(see also Stump and Johnson, 1977). McCowan (1976),
Mendiguren (1977), Patton and Aki (1879), Patton (1980),
Romanowicz (1981), Kanamori and Given (1081, 1982),
Lay et ol (1982), Nakanishi and Kanamori (1982, 1984),
and Scott and Kanamori (1985) used long-period surface
waves (typically low pass filtered at 135 sec). Stump and
Johnson (1077), Strelitz (1078, 1980), Ward (1080a, b),
Fitch et al. (1980), Langston (1981), Dziewonski et al
(1081), and Dziewonski and Woodhouse (1883a, b), used
moment tensor inversion for body wave data (typically
low pass filtered at 45 sec). A comparison between
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moment tensors from surface waves and body waves was
done by Fitch et al. (1081). Dziewonski ef al. (1981) sug-
gested an iterative inversion method, solving for the
moment tensor elements and the centroid location (Backus
and Mulcahy, 1976; Backus, 1977a; see Dziewonski and
Woodhouse, 1083a for a review). The reason for that
approach is that moment tensor elements trade off with
the location of the earthquake. The lateral heterogeneity
of the earth was considered in inversion methods by Pat-
ton (1980), Romanowicz (1981), Nakanishi and Kanamori
(1982), and Dziewonski et al. (1984c).

The moment tensor inversion in the time domain can
use the formulation in (5) (e.g. Gilbert, 1970; McCowan,
1976; Stump and Johnson, 1977; Strelitz, 1978; Fitch
el al., 1980; Ward, 1980b; Langston, 1981). If the source
time function is not known or the assumption of a syn-
chronous source is dropped (Sipkin, 1986), the frequency
domain approach is chosen {e.g. Gilbert, 1073; Dziewonski
and Gilbert, 1974; Gilbert and Dziewonski, 1975: Gilbert
and Buland, 1976; Mendiguren, 1977; Stump and John-
son, 1977; Patton and Aki, 1979; Patton, 1980; Ward,
10802, Kanamori and Given, 1881; Romanowicz, 1981):

dy(x,f ) = My;(f) Gue (/) (39)

Both approaches, (5) and (39) lead to linear inversions in
the time or frequency domain, respectively. The advan-
tage of linear inversions is that a large number of fast
computational algorithms are available (e.g. Lawson and
Hanson, 1974; Press et al., 1987). We can write either (5)
or (39) in matrix form:

d=Gm (40)

In the time domain, the vector d consists of n sampled
values of the observed ground displacement at various
arrival times, stations, and azimuths. G is a n X 6
matrix containing the Green's functions calculated using
an appropriate algorithm and earth model, and m is a
vector containing the 6 moment tensor elements to be
determined {Stump and Johnson, 1977). In the frequency
domain, (40) can be written separately for each frequency.
d consists of real and imaginary parts of the displacement
spectra. Weighting can be introduced which actually
smoothes the observed spectra subjectively {Mendiguren,
1077; see also Ward, 1080b for weighting of body-wave
data in the time domain). In the same way, G and m
contain real and imaginary parts. m contains also the
transform of the source time function of each moment
tensor element. If constraints are applied to the inversion,
then m can contain a smaller number of moment tensor
elements. In such a case, G has to be changed accordingly.
We refer to Aki and Richards (1980) for the details of
solving (40) for m (Note that (40) is identical to their
(12.83)).

The following presents an outline of the processing
steps in a moment tensor inversion. The first step is the
data acquisition and the preprocessing. We need data
with good signal to noise ratio that are unclipped and
that have a good coverage of the focal sphere (Satake,
1085). Glitches (non-seismic high amplitude spikes due to
non-linearity of instruments e.g. Dziewonski et al, 1081)
have to be identified and possibly removed. Analog data
have to be digitized. The effect of non-orthogonsality of
the analog recorder must be corrected. The digitized
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record has to be interpolated and resampled with a con-
stant sampling rate. At this point, a comparison of the
sampled waveform with the original one can help to iden-
tify digitization errors. The horizontal components will
be rotated into radial and transverse components. Linear
trends have to be identified and removed. The instrument
eflect is considered next (for WWSSN data see Hagiwara,
1958; for SRO data see McCowan and Lacoss, 1978; for
IDA data see Agnew et al, 1976). We can use either one
of the two approaches: i) we can remove the instrument
effect from the observed data and compare with theory or
ii) we can apply the instrument response to the synthetic
Green's functions and compare with observed data. The
nominal instrument response can be used or the calibra-
tion of the instrument can be checked by using f.e. the
calibration pulse on the record. In addition, the polarity
of the instruments should be verified, e.g. from records of
known nuclear explosions. High frequency noise in the
data is removed by low-pass filtering. Amplitudes are
corrected for geometrical spreading and reflections at the
free surface of the earth (Bullen and Bolt, 1985). For sur-
face waves, the moving window analysis (Landisman et
al., 1069) is applied in order to determine the group velo-
city dispersion. From this analysis, we can identify the
fundamental mode Rayleigh and Love waves which can
then be isolated.

Second, synthetic Green's functions are calculated.
Notice that the Green's functions are dependent on the
earth-model, the location of the point source (centroid of
the stress glut, or epicenter and focal depth), and the
receiver position.

The third step is the proper inversion, i.e. the solu-
tion of (40) (Aki and Richards, 1980). Usually, the inver-
sion is formulated as least squares problem (Gilbert, 1973;
Gilbert and Buland, 1976; Mendiguren, 1977; Stump and
Johnson, 1977). However, using other norms can have
advantages in situations where less sensitivity to gross
errors like polarity reversions is required (Claerbout and
Muir, 1973; Fitch et al, 1980; Patton, 1980).

The source time function in (5) is often assumed to
be a step function (Gilbert, 1970, 1973; McCowan, 1976;
Stump and Johnson, 1077; Patton and Aki, 1979; Patton,
1080; Ward, 1080b; Dziewonski et al, 1081; Kanamori
and Given, 1981). Aiming at the recovery of source time
functions, Burdick and Mellman (1976) used 2 powerful
iterative waveform inversion method based on optimizing
the cross-correlation between observed, long-period body-
wave trains and synthetics. The same approach was used
by Wallace et al., (1081) in order to invert for fault plane
solutions. Other methods were employed by Strelitz (1980)
and Kikuchi and Kanamori (1982) for large earthquakes
(see also Lundgren et al, 1088). Christensen and Ruff
(1985) reported on a trade-ofl between snurce time func-
tion and source depth for shallow events.

If the focal depth is not known, then a linear inver-
sion can be done for each depth out of a number of trial
depths. The most probable depth will minimize the qua-
dratic error between observed and theorctical waveforms
(Mendiguren, 1977; Patton and Aki, 1079; Patton, 1080;
Romanowicz, 1981). The influence of source depth on the
results of the moment tensor inversion was investigated
by Sipkin (1082; Dziewonski ef al, 1987b). Diflerences in
source depth influence the relative excitation of normal
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modes, causing systematic errors in the inversion.

Systematic errors in the inversion are also due to
deviations of the earth-model from the actual propertics
of the earth, affecting the synthetic Green's functions.
This is a fundamental problem in the sense that we are
able to separate the source effect from the observed
seismogram only to a limited accuracy (Mendiguren, 1977;
Langston, 1081; Silver and Jordan, 1982; O'Connell and
Johnson, 1988). A major problem is the effect of lateral
heterogeneity of the earth (Engdahl and Kanamori, 1980;
Romanowicz, 1981; Gomberg and Masters, 1088; Snieder
and Romanowicz, 1088). For example, a relative change
of 0.5 % due to lateral heterogeneity can cause a misloca-
tion in the order of of 50 km at epicentral distances of
about 00 degrees (Dziewonski and Woodhouse, 1083b).
Giardini (1984) and Ekstrém and Dziewonski (1985)
reported on regional shifts in centroid positions due to
lateral heterogeneity. In the inversion, lateral hetero-
geneity is often neglected, i.e. the calculation of the
Green's functions is usually based on parallel layers of
lateral homogeneity (Harkrider, 1064, 1970; Langston and
Helmberger, 1975; Harkrider, 1976). Nakanishi and
Kanamori (1982) included the effect of lateral hetero-
geneity into the moment tensor inversion. Another
approach was developed for earthquakes within a small
source area: a calibration event is declared (mechanism
known); the spectral ratio of any earthquake in that
region and the calibration event will result in isolating the
difference in source effects - the influence of the path is
eliminated (Patton, 1080). It seems that the errors due to
lateral heterogeneity are usually large enough to make a
statistical significant detection of an isotropic component
of the moment tensor difficult (Okal and Geller, 1979;
Silver and Jordan, 1982; Vasco and Johnson, 1988).

Patton and Aki (1979) investigated the influence of
noise on the inversion of long-period surface wave data.
They found that additive noise such as background
recording noise does not severely affect the results of a
linear inversion. However, multiplicative noise (signal
generated noise) caused by focusing, defocusing, mul-
tipathing, higher mode or body wave interference, and
scattering distorts the inversion results significantly
{overestimation or underestimation of moment tensor ele-
ments, deviation from the source mechanism; Patton,
1080; Ward, 1980b). Finally, body waves of events with
moments larger than 10?7 dyne-cm are severely aflected by
finiteness of the source and directivity. If not corrected
for, an inversion can lead to severe errors in the moment
tensor elements (Dziewonski et al, 1981; Kanamori and
Given, 1081; Patton and Aki, 1070; Lay et al, 1982;
Giardini, 1984).

The inversion has only a limited resolution of
moment tensor elements for certain data. If we have spec-
tra of fundamental mode Rayleigh waves only, the con-
straint that the trace of the moment tensor vanishes (no
volume change) must be applied (Mendiguren, 1977; Pat-
ton and Aki, 1978). This constraint is linear. Another
constraint which is often applied in addition is that one
cigenvalue vanishes (approximating the source by a dou-
ble couple). This constraint is not linear {Strelitz, 1978:
Ward, 1080b}). In such a case, the inversion is iterative.
using a linearized version of the constraints {Ward.
1080b). For earthquakes at shallow depths (less than
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about 30 km), the moment tensor elements A,, and M,
corresponding to vertical dip slip faulting are not well
constrained from long-period surface wave data since the
related excitation functions assume very small values near
the surface of the earth (Fitch et al., 1981; Dziewonski et
al., 1981; Kanamori and Given, 1981, 1982; Dziewonski
and Woodhouse, 1983a). In order to overcome this prob-
lem, additional independent data, such as fault strike
(observed surface breakage) can be introduced into the
inversion. Another approach is to constrain these
moment tensor elements to be zero. Thus, possible fault
mechanisms are restricted to vertical strike slip or 45
degree dip slip (I(anamori and Given, 1981, 1982).

In Appendix V, we relate the Green's functions in the
formulation of Herrmann and Wang (1985) to a simple
moment tensor inversion scheme. This inversion example
is aimed at testing computer programs.

CONCLUSION

A seismic moment tensor describes the equivalent
forces of a seismic point source. The eigenvectors are the
principal axes of the seismic moment tensor. For pure
double couple sources, the principal axis corresponding to
the negative eigenvalue is the pressure axis, the principal
axis corresponding to the positive eigenvalue is the tension
axis, and the principal axis corresponding to the eigen-
value zero gives the null axis. The pressure, tension, and
null axes can be displayed in the familiar focal mechanism
plot (fault plane solution). For general seismic sources, we
can decompose the seismic moment tensor. First, we can
separate out the isotropic component which describes the
volume change in the source. The leftover part of the
moment tensor has, in general, three nonvanishing
eigenvalues. This deviatoric part of the moment tensor
can be decomposed into a number of simple combinations
of equivalent forces. Obviously, there is no unique
moment tensor decomposition, i.e. unique model of
equivalent forces. \We outlined methods of determining
moment tensor elements from observations, indicating
that recording noise as well as systematic errors due to an
insufficient knowledge of the Green's functions can intro-
duce errors into the moment tensor elements. This sug-
gests caution when apparent non-double couple sources
result from the inversion.

Randall and Knopoff (1970), Gilbert and Dziewonski
(1975), Dziewonski et al (1981), Kanamori and Given
(1981, 1982), Dziewonski and Woodhouse (1983b), Giar-
dini (1984), and Scott and Kanamori (1985) reported that
some seismic sources cannot be described by a pure double
couple. One explanation is that some fault planes show a
complex geometry {Dziewonski and Woodhouse, 1983b).
Another explanation can be that some sources deviate
from the model of a sudden shear dislocation; they can be
due to a rapidly propagating phase transition (Knopoff
and Randall, 1970; Dziewonski and Woodhouse, 1983b).
However, the simple inversion experiment in Appendix V
pointed out that the deviation from a pure double couple
can also be due to the presence of noise in the data
(Stump and Johnson, 1977; Patton and Aki, 1979; Pat-
ton, 1980; Ward, 1980b; Wallace, 1985; O'Connell and
Johnson, 1988).
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APPENDIX'1

In the following, we give some mathecmatical
definitions of tensors, the eigenvalue problem and dyadics
following Arfken (1985).

Let M be a moment tensor of second rank (order).
Then, M is represented as a 3X3 matrix in a given refer-
ence frame. Let a, be the cosine of the angle between the
p axis of another coordinate system and the k axis. Then
the components of M, M,;, transform into the new refer-
ence frame by the relation

(AL1)

where we need to sum over repeated indices (summation
convention).

My = ay 0 My,

Given a moment tensor M, let's assume that there is
a vector a and a scalar m such that

Ma=ma (A1.2)

a is called eigenvector of M and m is the corresponding
eigenvalue. For calculating the eigenvalues and eigenvec-
tors of a given moment tensor (solving the eigenvalue
problem), we transform (A1.2)

M-—mI)a=0 |, (A1.3)

where 1 is the identity matrix. {A1.3) is a system of 3
simultaneous homogeneous linear equations in a,. Non-
trivial solutions are found by solving the secular equation
(characteristic polynomial)

detM—m I)=0 |, (AL.4)

where "det" means the determinant. (A1.4) is a polyno-
mial of third degree. It has three real roots, i.e. eigen-
values, since the moment tensor is real and symmetric
(Faddeeva, 1959). Substituting each eigenvalue m, into
(A1.3) gives the corresponding eigenvector a,. The eigen-
vectors are orthogonal. Multiplying each eigenvector by
its inverse norm, we get the orthonormal eigenvectors,
renaming them as a;:

a, 8,‘ bd 6,] (Al.5)

Knowing the eigenvectors, we can diagonalize M (princi-
pal axis transformation). Let A be the matrix whose
columns are the orthonormal eigenvectors of M. From
(A1.5), we see that A is orthogonal : AT = A~'. Then,
AT M A =m, where m is diagonal, consisting of the
eigenvalues of M.

We represent a dyadic by writing two vectors a and
b together as ab (see Appendix A in Ben-Menahem and
Singh, 1981). These two vectors forming the dyadic are
not operating on each other, but define a 3X3 matrix. Let
i, j, and k be unit vectors along a right handed Cartesian
coordinate system. The dyadic ab is defined as
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ab = (a,i + a,j + a,k) (5,1 + &,j + b,k)
=iia, b, +ija,b, +ika,b,
+jiay b, +jja, b, +jka,b,
+ kia, b, +kja,b, + kka,b, (A1.6)
ab, ab, ab,
= )a,b, ab a b,
a,b, a,b, a,b,

For a = b, we get (26). The multiplication of a vector ¢
from the left is

c - ij = (ic, +je, + ke, }ilj = ¢, (A1.7)
If the dyadic is symmetric, the multiplication of any vec-
tor with the dyadic is commutative, i.e. ab = ba. In
general, we can understand a dyadic as a tensor of second
rank. By a proper choice of the coordinate system, a sym-
metric dyadic can always be transformed into diagonal

form (principal axis transformation). As an example, we
can rewrite (10) using dyadics (Gilbert, 1973):

uv + vu = tt — pp (A1.8)
= 0.5 [(t+p)(t—p) + (t—p)(t+P)] .

APPENDIX 11

The PDE monthly listings (NEIS) routinely publish
centroid moment tensor solutions in the notation of the
normal mode theory following Dziewonski et al (1981).
For reference, the spherical moment tensor elements, f,,
in the notation of Gilbert and Dziewonski (1975),
Dziewonski et al. (1981), and Dziewonski and Woodhouse
(1983a) are compared to the moment tensor elements as
given in (18) following Aki and Richards (1980).

[1=M, =M,
12=A[96=Mn
faﬂﬁlag =A1"

Jo=M,g =M, (A2.1)
Js=Mg4=— Myz
IG-AIO‘--M:y '

where (r,©,4) are the geographical coordinates at the
source. © is the colatitude (8 = 0 at the north pole) and
¢ is the longitude of the point source. The sign of the off-
diagonal moment tensor elements depend on the orienta-
tion of the coordinate system (Fitch et al., 1981). But the
eigenvalues and the eigenvectors of the moment tensor in
the formulation of (18) or (A2.1) are identical, which can
be shown by comparing the solutions to the secular equa-
tion (Appendix I). This result is expected since physical
laws should not depend on the choice of the reference
frame. The slip vector u and fault normal & are
(Dziewonski and Woodhouse, 1983a)

umy(—coshcosd —cosdsinAsind ) ey
+ 4 (cosAsin® —cosésinhcosP)e, (A2.2)
+ w sin Asinfe, ,

and

10

ve=sin §sin Peg +sindcos ey +cosbe, . (A2.3)

These two equations are identical to (4.122) in Ben-
Menahem and Singh (1981). The differences in sign com-
pared to (15) and (16) can be fully explained by noting
that e, = -e,, e, = e,, and eg = - &,; in other words,
eg, 4, and e, are unit vectors towards south, east, and
up, respectively (defining a right handed system).

APPENDIX I

In order to gain some experience in the relationships
between a moment tensor and a fault plane solution, three
simple focal mechanisms are discussed in detail. These
will be vertical strike slip, 45 degree dip slip, and vertical
dip slip faults. These three fault plane solutions form a
complete set : The seismic radiation from a dislocation on
a plane dipping an arbitrary angle (but striking north-
south) can be expressed as a linear combination of these
three solutions (Burridge et al., 1964; Ben-Menahem and
Singh, 1968).

Vertical strike slip fault
The following focal mechanism is assumed: (strike) ¢
= 0°, (dip) 6 = 90°, and (slip) A = 0°. From (15) and
(18), the slip vector on the fault plane is u = (1,0,0) and
the vector normal to the fault plane is ¥ = (0,1,0). The
moment tensor can be determined from (18).

0 M,0
M= |M, 0 0 (A3.1)
0 00

The eigenvalues and eigenvectors of this tensor
{Example 4.6.1 in Arfken, 1985, see also Appendix I) are
shown in Table A.1 (The components of the eigenvectors
are north, east, and down).

TABLE A.1
EIGENVALUE EIGENVECTOR
0 ( 0.0000, 0.0000,-1.0000)
M, ( 0.7071, 0.7071, 0.0000)
My (-0.7071, 0.7071, 0.0000)

The eigenvector b corresponding to the eigenvalue
zero is the null-axis, the eigenvector t corresponding to
the positive eigenvalue gives the tension axis, T, and the
eigenvector p corresponding to the negative eigenvalue
gives the pressure axis, P, of a focal mechanism.

The focal mechanism is obtained by using (7)-(14)
(Herrmann, 1975). For the trend and plunge (in degrees)
of the X-, Y-, null-, T-, and P-axes, we get (00, 0), (180,
0), (270, 90), (45, 0), and (135, 0), respectively. The trend
of both the P and T axes can be shifted by 180° (Figure
A.1a); i.e. the P-axis can also be described by (315°, 07)
and the T-axis by (225°, 0°). This ambiguity can be fol-
lowed through to the moment tensor: The sign of an
eigenvector is not constrained by the solution of the eigen-
value problem (Arfken, 1085). However, any choice of
sign leads to the same focal mechanism.
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a N b
+ @ |

Fig. A.1. Focal mechanisms of a vertical strike slip fault (strike = 0°, dip
= 80°, slip = 0°), (a), a 45 degree dip slip fault (strike = 0°, dip
= 45°, slip = 90°), (b), and a vertical dip slip fault (strike = 0°,
dip = 00°, slip = 90°), (c) (Appendix III).

45 degree dip slip fault
The following focal mechanism is assumed: (strike) &
= 0°, (dip) 6 = 45°, and (slip) X\ = 90°. From (15) and
(16), u = (0,-0.7071,-0.7071) and v = (0,0.7071,-0.7071).
The moment tensor is calculated from (18).

0 0 o
M= {0-M, 0 | . (A3.2)
0 0 M,

The corresponding eigenvalues and eigenvectors are
shown in Table A.2,

TABLE A.2
EIGENVALUE _EIGENVECTOR
0 (-1,0,0)
M, (0, 0,-1)
‘A'ln ( gv LLO)

The fault plane solution is obtained from (7)-(14)
(Herrmann, 1975). For the trend and plunge (in degrees)
of the X-, Y-, null-, T-, and P-axes, we get (90, 45), (270,
45), (360, 0), (180, 90), and (270, 0), respectively. The
trend of the P and null axes can be shifted by 180° (Fig-
ure A.1b) to (80°, 0°) and (1807, 0°), respectively.

Vertical dip slip fault
The following focal mechanism is assumed: (strike)
= 0°, (dip) 6§ = 90°, and (slip) A = 90°. From (15) and
(16), u = (0,0,-1) and v = (0,1,0). The moment tensor is
calculated from (18),

0 o 0
M=o 0o =M . (A3.3)

The corresponding cigenvalues and eigenvectors are

shown in Table A.3.
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¥ ’
TABLE A3
EIGENVALUE EIGENVECTOR
0 (-1.0000, 0.0000, 0.0000)
Mo ( 0.0000, 0.7071,-0.7071)
-Mp ( 0.0000. 0.7071, 0.7071)

The fault plane solution is obtained from {7)-{14)
(Herrmann, 1975). For the trend and plunge (in degrees)
of the X-, Y-, null-, T-, and P-axes, we get (0, 90). (90, 0).
(180, 0), (270, 45), and (90, 45), respectively. The trend
of the null axis can be shifted by 180° (Figure A.lc) to
(360°, 0°).

APPENDIX IV

In the following, examples of the five methods of
moment tensor decomposition are presented.

In order to construct a moment tensor that does not
lead to a simple double couple mechanism, let

100

M=1{010 (A4.1)
001
o010

M,=6[100 (A4.2)
000
[o 0 o

M,=3]0 -1 0 (A4.3)
00 1
[0 0 o

M,=1l0 0 =1 | . (Ad.9)
0 -1 0

The first moment tensor represents an explgsion, the
others are the faniliar ones from Appendix 111, represent-
ing a vertical strike-slip, a 45 degree dip-slip, and a verti-
cal dip-slip fault, respectively. All four moment tensors
are superimposed in order to describe a complex source
that is dominated by a vertical strike slip mechanism.
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Fig. A.2. Focal mechanisms of the double couples from the moment tensor
decomposition (Appendix IV). (2) major couple of the moment ten-
sor in (A4.5), elementary moment tensor EMT3 in (A4.6), and
second term on the RHS of (A4.9) (strike = 355°, dip = 80°, slip
= 16°), (b) elementary moment tensor EMT2 in (A4.6) (strike =

125°, dip = 637, slip =

—05°}), (c) elementary moment tensor

EMT4 in (A4.8) (strike = 199°, dip = 44°, slip = 63°).

The result is
1 6 O
M= |6 -2 ~1
0 -1 4
Table A.4 shows the eigenvalues of (A4.5) and the

corresponding eigenvectors, which are the principal axes of

M.

(A4.5)

TABLE A .4
EIGENVALUE EIGENVECTOR
3.8523 (-0.2038, -0.1397, -0.9456)
5.8904 (0.7352, 0.5992, -0.3170)
-6.7427 ( 0.6109, -0.7883, -0.0734)

The sum of the eigenvalues is equal to 3, which is the
expected value for the sum of the eigenvalues of (A4.1),
describing an explosion.

In order to calculate the deviatoric part of the given
moment tensor, the isotropic part is removed by subtract-
ing one third of the trace of (A4.5) from each diagonal ele-
ment. The solution to the corresponding eigenvalue prob-
lem leads to the same eigenvectors as above. This
indicates that the principal axes of the complete moment
tensor are the same as the principal axes of the
corresponding deviatoric tensor. The deviatoric eigen-
values are 2.8523, 4.8004, and -7.7427 in the order of
Table A.4 (see (24)). From (38), ¢ = 0.37, i.e. the given
moment tensor has a double couple component of 26 %
and a CLVD component of 74 %.

Fer the determination of the major couple from (32),
we identify the eigenvector (0.8100, -0.7883, -0.0734)
corresponding to the deviatoric eigenvalue of -7.7 as the
P-axis, the eigenvector (0.7352, 0.5992, -0.3170)
corresponding to the eigenvalue of 4.9 as the T-axis, and
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the eigenvector (-0.2938, -0.1397, -0.9456) with eigenvalue
2.9 as the null-axis. The fault plane solution of the major
double couple gives for the X-, Y-, null-, T-, and P-axes
(in degrees): (172, 16), (265, 10), (25, 71), (219, 18), and
(128, 4), respectively (Figure A.2a). The major double
couple gives a good estimate of the major contribution to
the faulting which is predominar ly strike slip (compare
Figures A.1a and A.2a).

Next, the moment tensor in (A4.5) is decomposed
into an isotropic part and three double couples following
(29) which is evaluated by using (26) together with the
data in Table A.4. The numbering of the eigenvalues and
eigenvectors in (29) follows the columns of Table A.4, but
that is not relevant to the solution. The calculation gives

100 0.4542 03995 -0.5109
M=1]01 0]|+06794 | 03995 03396 —0.3220
001 ~0.5109 -0.3220 -0.7936

01673 0.9221 —0.1882

+4.2110 | 09221 -0.2623 —0.2477
—0.1882 —0.2477 0.0951
—0.2869 0.5226 0.3227

+3.5316 | 05226 -—0.6019 0.0743].
0.3227 0.0743 0.8887

(A4.6)

This equation is identical to (A4.5). The first ele-
mentary moment tensor (EMT1) on the RHS of (A4.6)
describes the explosion (isotropic component of (A4.5))
and is identical to (A4.1). The last three elementary
moment tensors on the RHS (EMT2, EMT3, EMT4,
respectively) represent pure double couple sources since
the eigenvalues of each tensor is O and + 1. The three ele-
mentary moment tensors have identical eigenvectors
which are the same vectors as shown in Table A.4.
However, the correlation between eigenvector and eigen-
value (i.e. null-, P-, and T-axes) varies. Note that replac-
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ing My; by —M,; switches the sign of the eigenvalues
(leaving the eigenvectors untouched), which is identical to
interchanging the P- and T-axes.

From the eigenvalues and the eigenvectors, the fault
plane solution for each elementary moment tensor is
determined and shown in Table A.5.

TABLE A.5

EMT2 EMT2 EMT3 EMT3 EMT4 EMT4
AXIS TRD PLG TRD PLG TRD PLG

(deg.) (deg.) (deg.) (deg.) (deg.) ({deg.)
X 38 26 172 16 324 38
Y 226 63 265 10 109 48
NULL 128 4 25 71 219 18
T 219 18 219 18 25 71
P 25 71 128 4 128 4

The focal mechanisms corresponding to EMT2 -
EMT4 are shown in Figures A.2b, A.2a, and A.2¢, respec-
tively. Note that the positions of the axes remain fixed in
these figures, where only the correlation to the eigenvalues
changes. The fault plane solution representing the third
elementary moment tensor EMT3 in (A4.6) is identical to
the fauit plane solution of the major couple (Figure A.2a).
Notice that this solution has also the largest coefficient in
(A4.6). This solution is an approximation to the major
contributor of the moment tensor (Figure A.la and
(A4.2)). However, the other fault plane solutions (Figure
A.2b and A.2¢) do not show similarities to the input fault
mechanisms (Figure A.1b and A.lc).

The seismic moments of the elementary moment ten-
sors are given by the coefficients in (A4.6). The sum of the
seismic moments of the elementary moment tensors is 1.4
times larger than the seismic moment of the composite
moment tensor in (A4.5).

Next, the moment tensor in equation (A4.5) is
decomposed into an isotropic part and three vector dipoles
following (27) which is evaluated by using (26) together
with Table A.4.

100 0.0863 0.0410 0.2779
M=1 |0 1-0]+ 2.8523 [0.0410 0.0195 0.1321
001 0.2779 0.1321 0.8941

0.5405 0.4405 -0.2330

+ 48904 | 0.4405 0.3591 -0.1899
—0.2330 —0.1899 0.1005
03732 —0.4816 —0.0448
—0.4816 0.6214 0.0578
~0.0448 0.0578 0.0054

(A4.7)

- 7.7427

This equation is identical to (A4.5). In the notation
used above, each of the elementary moment tensors
EMT2, EMT3, and EMT4 have two eigenvalues equal to
zero, the third one equals one. EMT2 is represented by the
eigenvector (0.2938, 0.1307, 0.9458), EMT3 by (-0.7352,
-0.5992, 0.3170), and EMT4 by (0.6109, -0.7883, -0.0734).
These vector dipoles are mutually orthonormal. Notice
that these vector dipoles are identical to the eigenvectors
of equation {A4.5), which are the principal axes of the ten-
sor (Table A.4). EMT2 represents the null-, EMT3 the
tension-, and EMT4 the pressure axis. The seismic

49
13

moments of the elementary moment tensors are given by
the coeflicicnts in (A4.7) which are identical to the devia-
toric eigenvalues of (A4.5). This exercise demonstrated
that vector dipoles are related to the eigenvectors scaled
by the corresponding eigenvalue of a given moment ten-
sor, which makes an evaluation of (A4.7) obsolete.

Alternatively, the moment tensor in equation {A4.5)
can be decomposed into an isotropic part and three com-
pensated linear vector dipoles using (30).

100 -0.7411 0.1231 0.8336
M=1101 0{+12841 } 0.1231 —0.9415 0.3963
001 0.8336 0.3963 1.6823
0.6215 1.3216 -0.6991
+ 19635 ) 1.3216 0.0773 -0.5697 (A4.3)
—0.6991 —0.5697 —0.6985
0.1196 —1.4447 —0.1345
— 2.2476 |-—-1.4447 0.8642 0.1734 .
~0.1345 0.1734 -—0.9838
This equation is identical to (A4.5). The seismic

moments of the elementary moment tensors are given by
the product of the respective coefficient and V3 . The
eigenvalues and eigenvectors for {A4.8) are shown in
Table A.6, using the same notation as above. Note that
the eigenvectors are identical to those in Table A 4.

TABLE A.6
EMT EIGENVALUE EIGENVECTOR

2 -1 ( 0.6109,-0.7883,-0.0734)
-1 ( 0.7352, 0.5992,-0.3170)

2 {-0.2938,-0 1397.-0.0456)

3 -1 (-0.2938,-0.1307,-0.0456)
-1 ( 0.6100,-0.7883,-0.0734)

2 ( 0.7352, 0.5992,-0.3170)

4 -1 (0.7352, 0.5992,-0.3170)
-1 (-0.2938,-0.1397,-0.9456)

2 (0.6100,-0.7883,-0.0734)

Next, the moment tensor in (A4.5) is decomposed
into an isotropic part, a double couple and CLVD follow-
ing (37), where ¢ = F = 0.3684.

100 0.1673 0.9221 —0.1882
M=1 (01 0{+20379 | 09221 —0.2623 —0.2477
001 -0.1882 —0.2477 0.0951
0.1196 —1.4447 —0.1345
— 28523 |-1.4447 0.8642 0.1734 {A4.9)
~0.1345 0.1734 —0.9838

This equation is identical to (A4.5). Notice that the
second term on the RHS corresponds to EMT3 in (A4.8)
and to the major double couple. These three tensors all
have the same fault plane solution (Figure A.2a). The
third term in (A4.9) corresponds to EMT4 in (A4.8),
representing a CLVD (see Table A.8).

As final remark, let's consider the decomposition
equations (27), (29), and (30) for a simple double couple
source (¢ = 0 ), eg. let m; = - my, =1, and m3 = 0.
Then, M = a,a, - a,a, for all three equations. That is,
we get one pure double couple out of the decomposition.
For a CLVD (¢ = 0.5), let's assume that m, = m, = -1,
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and m4 = 2. Then ali three formulas give M = 2 aja,; -
a,a, - aja,, representing one CLVD.

APPENDIX V

In this section, we relate the Green's functions in the
formulation of Herrmann and Wang 1985) to a moment
tensor inversion scheme. Following the theory given by
Herrmann and Wang (1985), the Fourier transformed dis-
placements at the free surface at the distance r from the
origin due to an arbitrarily oriented double couple
without moment is

d,(r,2=0w) = ZSS A, + ZDS A, + ZDD A,
d,(r,z=O,w) = RSS A, + RDS A, + RDD A,
dy(r,2=0,w) = TSS A+ TDS Ag ,

(A5.1)

where d, is the vertical displacement (positive upward), d,
is the radial displacement, and d, is the tangential dis-
placement (positive in a direction clockwise from north).
The functions ZSS, ZDS, ZDD, RSS, RDS, RDD, TSS,
and TDS together with ZEP and REP are the ten Green's
functions required to calculate a wave field due to an arbi-
trary point dislocation source or point explosion buried in
a plane layered medium (Wang and Herrmann, 1980;
Herrmann and Wang, 1985). As before, let u=(u,,u,,u,)
and v=(v,,v,.v,) be the dislocation vector and vector
normal to the fault plane, respectively. Note that (15) and
{16) are identical to the formulation used by Herrmann
and Wang (1985), where our u equals their f and our v
equals their n (I = x-axis, 2 = y-axis, 3 = z-axis). Then

A =(u v, —u v, ) cos(2az2)+(u, v, +u, v, ) sin(2az)
Ag=(u,v,+u,v,) cos(az)Hu, v,+u,v,) sin(az)

A3=u‘ v, (A5.2)

A =(u v, —u v, ) sin(2az)—(v, v, +2, v, ) cos(2az)

Ag=(u,v,+u,v,) sin(az)—(v, v, +u,v,) cos(az) ,

where az is the azimuth of observation. Equivalently,
1 .

A= ?(M,, —M,,) cos(2az)+M,, sin(2az)

A= M,, cos(az)+M,, sin(az)

1
Ag= =2 (M +M,,) (A5.3)

A= %(Mu —M,, ) sin(2az)-M,, cos(2az)

Ag= —M,, cos(az)+M,, sin(az) .

These equations are identical to (A5.2) which can be
proven by using (18) together with (15) and (16). Note
that the coefficients given in (A5.3) agree with the
moment tensor elements as defined by Aki and Richards
(1980; (A5.3) differs in sign with the coefficients of Langs-
ton (1981) due to conventions on displacements and
Green's functions).

Note that either definition of the coefficients of the
Green's functions can be used for the calculation of the
displacement at the free surface, depending on whether
the focal mechanism or the moment tensor is given. Here,
equations (A5.3) and (A5.1) are used in order to develop
an inversion scheme for the moment tensor elements. We
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regroup and assume the presence of an isotropic com-
ponent (ZEP # 0, REP # 0):

ZSS ZDD | ZEP

d,(r,z=0,w) = M, { cos(2az) — = + ="

—258 ZDD , ZEP
+M"{ 2 cos(2az) —2—+—3—-
[ZEP
] 3

+M,

+ M, [ZSS sin(2az)] (A5.4)

+ M, [ZDS eos(az)]

+ M, [ZDS sin(az)]

_ RDD , REP

=228 4 2=

2 3

cos(2az) — —RI;D + —pr

d,(r,z=0,w) = M,, cos(2az)

RSS
2

+ M,

—RSS
1) 2

REP

+ M, [

L

o

+ M,, LRSS sin(2az) ] (A5.5)

r

+ M., | RDS cos(az) ]

+ M,, {RDS sin(az)]

r

dy(r2=0,0) = My |12

sin(Qaz)]

[
—~T55 .
+ M,, 2 sin(2az)

L

[
+ M, L—TSS cos(2az)] (A5.6)

+ M, {TDS sin(az)]

+ M, |-TDs cos(az)].

Equations (A5.4), (A5.5), and (A5.6) each set up a
moment tensor inversion scheme. Equations (A5.4) and
(A5.5) are formulated for the general case where the inver-
sion expects 8 moment tensor that is a composition of an
isotropic part and a deviatoric part. An inversion based
on transverse data, (A5.8), cannot resolve M,,. In such a
case, we assume that the moment tensor is purely devia-
toric and constrain M,, = - (M,, + M,,). The same con-
straint can be applied to (A5.4) and (AS5.5) in the case of
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an inversion that looks for a pure deviatoric moment ten-
sor (set formally ZEP = REP = 0 in (A5.4) and {A5.5),
Dziewonski et al., 1081).

From the last three equations we see that the
observed displacement at the free surface is a linear com-
bination of the station specific Green’s functions, within
the square brackets, with the moment tensor elements as
scalar multipliers. We also note that if the source time
function is known and a point source approximation is
acceptable, the moment tensor elements are independent
of frequency (linear inversion) and similar equations arise
relating observed time histories to temporal Green's func-
tions within the square brackets.

Next, we performed a simple moment tensor inver-
sion using the vertical component of synthetic teleseismic
P-wave first motion peak amplitudes as suggested by
Stump and Johnson {1977). We assumed a pure devia-
toric source (ZEP = 0 in (A5.4)).

Let ez, ..., az, be azimuths of n different stations.
Then the expressions in the square brackets of (A5.4)
define components of a matrix as a;,(az), ..., a;5(az;) for
the i-th azimuth. A system of linear equation arises:

7 [
[d,(az,) ap(az;) . . oys(ezy)
AL,

M,,
= My,
M,,

Ld,(az,,)J anl(“zn) o ans(azn)J ‘Vy:

(A5.7)

For observations at more than 5 distinct azimuths,
the system (A5.7) is overdetermined. The solution can be
reached by the classical least squares approach. The five
moment tensor elements can be determined by using the
numerical stable singular value decomposition. We
imposed the deviatoric constraint M,, = - (M,, + M, ).
Hence the inversion gives a purely deviatoric source.
However, we wzie not constraining one eigenvalue as zero
(double couple), letting the inversion tell us about double
couple and CLVD components. The eigenvalues and
eigenvectors can be calculated using the Householder
transformation with further QL decomposition. The
implementation of these numerical concepts was done
using code by Press et ol (1987).

In the following, some results of inverting synthetic
data are presented. First, Green's functions were calcu-
lated using a Haskell formalism for a simple half-space
model ( V, = 8 km/sec, V, = 4.6 km/sec and p = 3.3
g/em3, h = 30 km ). Figure A.3 shows the three basic
Green's functions 2SS, ZDD, and ZDS. The assumed
focal mechanism (Figure A.4: strike = 180°, dip = 40°,
slip = 110°) is the same as used by Herrmann (1975, Fig-
ure 2). Teleseismic P-wave first motions were synthesized
at 12 equidistant azimuths (epicentral distance = 50°).
Note that an instrument response was not included in the
synthetics. Due to the simple model and the fact that all
stations are equidistant from the source, a correction for
anelastic attenuation { t° = 0.7 ) or geometrical spread-
ing is not required. A correction for an extended source is
not necessary since the moment used is 10%° dyne-cm and
the duration of the source time function is 0.2 sec. We
used (A5.4) for time domain measurements.

ZS55

2. 388E-09

ZbD

7. 323E-09

ZDs

6. 402E-09

SRR

Fig. A.3. Synthetic Green's functions ZSS, ZDD. and ZDS
(Herrmann and Wang, 1985) for a half-space model
(V, = 8 km/sec, V; = 4.6 km/sec, p = 3.3
g/em3 h = 3C km, ' = 0.7) calculated by using
the Haskcli formalism. The time window ranges
from 4.0 to 55.1 sec (dt = 0.05 sec). Maximum
amplitudes are in em {Appendix V).

N

Fig. A, Assumed focal mechanism for the synthetic
scismograms: strike = 180°, dip = 40°, slip =
110° (Appendix V).
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TABLE A.7: RESULTS OF THE MOMENT
TENSOR INVERSION (MAJOR COUPLE)

Case 0 Case | Case I Case 111 Case [V Case V
M,, 0 -0.037 -0.050 -0.109 -0.202 0.301
M,, -0.925 -0.902 -0.951 -0.966 -1.023 -1.091
M,, 0.925 0.939 1.002 1.075 1.225 0.791
M,, -0.220 -0.199 -0.200 -0.194 -0.176 0.257
M,, -0.262 -0.262 -0.260 -0.264 -0.257 -0.172
M,, -0.163 -0.168 -0.162 -0.168 -0.156 -0.324
EV(NULL) 0.00 -0.04 -0.05 -0.11 -0.20 0.26
EV(T) 1.00 1.01 1.07 1.14 1.28 0.92
EV(P) -1.00 -0.97 -1.02 -1.03 -1.08 -1.18
% of DC 100 92 ] 81 69 56
% of CLVD 0 8 10 19 31 44
Mg 1.00 0.99 1.04 1.09 1.19 1.07
STRIKE 183.0 179.5 179.2 1778 176.4 2118
DIP 40.0 39.7 40.1 39.9 40.5 408
SLIP 110.0 109.0 1078 106.1 103.2 123.1
STRIKE 334.6 335.4 336.5 337.2 339.3 351.1
DIP 52.8 52.9 52.2 51.9 50.8 56.8
SLIP 74.0 74.9 7586 770 79.0 64.8
T (TRD} 192.7 194.9 194.7 196.8 198.2 209.7
T (PLG) 75.8 76.2 77.1 781 80.0 87.3
P (TRD) 75.9 76.1 76.7 764 771 98.8
P (PLG) 6.6 6.7 6.2 6.1 5.2 8.5

For Case 0, moment tensor elements are calculated from (18) assuming a double couple source
(strike = 180°, dip = 40°, slip = 110"}. The eigenvalues of the moment tensor corresponding to
the null-, T-, and P-axes are shown as EV(NULL), EV(T), and EV(P), respectively. Equation (38)
is used to determine the percentage of double couple or CLVD from the eigenvalues of the moment
tensor. The seismic moment is calculated using (20). The orientation of the fault plane and auxili-
ary plane is given together with the trend and plunge of the T- and P-axes (Herrmann, 1975}
Cases 1 - [V are for additive pseudo-random noise ( 0 %, 14 %, 28 %, and 56 %, respectively) in
the synthetic seismograms at 12 different azimuths. Case V assumes that one of the 12 seismo-
grams has a reversed polarity {0 9% pseudo random noise).

Table A.7 displays the inversion results for the major
couple. The moment tensor elements, the percentage of
double couple and CLVD, the seismic moment, and the
focal mechanism parameters are shown. For Case 0, the
moment tensor elements were calculated from the given
fault plane solution and (18). Next, three experiments
were performed: 1.) synthetic seismograms were calculated
using the Haskell method (Case I). Figure A.5a shows the
vertical component of a synthetic seismogram at an
azimuth of O degrees. 2.) Differenl amounts of pseudo-
random noise were added to the synthetic seismograms
calculated in Case 1 with amplitudes of + 0.25 X 107° cm
(Case 11, Figure A.5b), + 0.5 X 10~° em (Case 111, Figure
A5c), and £ 1.0 X 107% cm (Case IV, Figure A.5d).
Averaged over the 12 azimuths, these noise levels
correspond to 14 %, 28 %, and 56 % pseudo-random
additive noise, respectively. 3.) The final experiment
(Case V) relates to possible polarity errors of seismo-
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graphs. Hence it was assumed that one of the 12 seismo-
grams of Case I had a wrong polarity.

The theoretical focal parameters (Case 0) agree
within the measurement errors with the observed ones
(Case I). This justifies the technique. The effect of noise is
to severely distort the moment tensor elements. The iso-
tropic moment tensor components seem to be more sensi-
tive to noise than the deviatoric ones. Notice that the
moment tensor gains a contribution of a CLVD due to the
noise. The percentage of CLVD versus double couple
increases with increasing noise. The effect of random
noise on the fault plane solution that is derived from the
moment tensor elements is minor; i.e. the fault plane
solution for the major double couple is very close to the
original focal mechanism. However, with increasing nolse,
the fault plane solution deteriorates. 8 % polarization
errors in otherwise perfect data lead to worse results than
56 %% additive random noise (Case V). A doubling of the
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Fig. A.5. Vertical components of synthetic teleseismic
seismograms at 50 degrees and azimuth of 0°. The
time window ranges from 4.0 to 20.6 sec (dt =
0.05 sec). Maximum amplitudes are in cm. (a) No
pseudo-random noise added; (b} - (d) pseudo-
random noise is added with amplitudes of
40.25 X 107° cm, 20.50 X 107° e¢m, £1.0 X 107°
cm, respectively (Appendix V).

polarization errors gives meaningless results. Due to the
setup of the experiment, a minor couple would be a pure
artifact of the noise.
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Ground roll: rejection using adaptive phase matched filters
Robert B. Herrmann® and David R. Russell™
ABSTRACT

The technique of phase match filtering dispersive surface waves is extended to
permit an adaptive, iterative process by which the signal itself in a seismic trace
designs a filter to remove the surface wave. The technique is robust and well behaved,
and requires the specification of only simple parameters for its operation.

The technique is applied to data sets from three regions, representing a wide
range in the ratio of surface-wave noise to exploration signal. The technique works
very well with poor data sets and also improves good data sets. Since the technique is
applied to individual traces, it works in situations for which f-k filtering might not be
feasible due to poor spatial sampling. The technique is computationally more intensive
than recursive digital bandpass filtering of individual traces, but is less intensive than
filtering in the f-k domain.
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INTRODUCTION

Surface-wave noise, the ground roll, on reflection seismograms is always a part of
land based data acquisition. As such it has always been something to be eliminated in
order to focus on the underlying reflection data. Dobrin (1951) studied the ground roll,
showing that it possessed the properties of dispersive surface waves. Al-Husseini et al
(1981) inverted the surface-wave data obtained in special tests to characterize the
ground roll in a region of eastern Saudi Arabia and thus to provide the necessary infor-
mation for proper group array design for its elimination. Under optimal conditions,
proper group array design succeeds in attenuating the low phase velocity surface-wave
arrivals, enhancing the high phase velocity reflections.

Earthquake seismology has historically taken the opposite approach, that the sur-
face wave is a very useful signal for defining earth structure as well as the seismic
source. Because of this emphasis many techniques for surface-wave analysis have
been developed in this field. Our technique makes use of phase matched filtering of
surface waves (Herrin and Goforth, 1977; Goforth and Herrin, 1979; and Beresford-
Smith and Mason, 1980). In earthquake seismology, the objective of phase matched
filtering is to isolate a dispersed surface wave mode from a noise background consist-
ing of body-wave arrivals or secondary surface-wave arrivals due to multipathing. The
isolated surface wave has a smoother amplitude spectrum and also a better defined
dispersion for use in source and earth structure studies, respectively. From this point of
view, the typical exploration reflection signal is viewed as noise. The essence of the
technique described in this paper is the recognition that the surface-wave signal in
earthquake seismology is the exploration noise, and vice versa.

Phase matched filtering

Consider a frequency domain representation, S(f ), of a time domain signal, s(t)
at a distance x, consisting of N arrivals:

N .
S¢) =3 450", (1)
i=1
Here, a propagating wave notation is used to represent each arrival. A;(f) and ;(f)
are the complex amplitude and wavenumber spectra of the ith arrival. If the
wavenumber k;(f ) is purely linear in frequency, then its corresponding time domain
signal is just time shifted as a function of distance; otherwise it is dispersed. In addi-
tion, as long as we focus on a single distance, equation (1) is general enough to also
include a non-propagating noise components.
Suppose further that the m'th arrival is not desired, and that the wavenumber
function x,,(f) is a reasonable approximation to the unknown &, (f). Now multiply
S (f) by an inverse propagating wave function to yield

. N .
S(f)e"("'(”x= ) Ai(f)e‘.l[k.'(f)—'(-u(f)lx Q)

i=lizm

+ Am(f)e—j[k’"(f)_x"(f)k.

If the terms [k;(f )—x,, (f )]x for i#m are sufficiently different from zero, and if the
term [k, (f )—x,,(f )Ix is sufficiently close to zero, then the inverse transform of
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equation (2) will yield a pulse at zero lag, which will be the compressed, or
undispersed, m’th arrival. The other arrivals will be either spread out, or if
compressed, not compressed as much, and certainly not located at zero lag.

In earthquake seismology, the signal so compressed and shifted to zero lag is the
one of interest. It is windowed about zero lag, transformed into the frequency domain,
uncompressed using the dispersion operator

e'j K,,.(f)x’ (3)

and then inverse transformed into the time domain. This operation yields a clean
surface-wave signal (Herrin and Goforth, 1977; Goforth and Herrin, 1979). To obtain
the cxploration signal one can either subtract the isolated m'th arrival from the original
time series, the technique used here, or mute the inverse transform of equation (2)
about zero lag, and then take a Fourier transform of the resultant trace, apply the
operator of equation (3), and then inverse transform the result to the time domain
(Beresford-Smith and Rango, 1988; Saatcilar and Canitez, 1988). The result in either
case will now be a multi-arrival signal lacking the m’th arrival.

While conceptually very simple, the success of this technique lies in the correct
specification of the function x,,(f ). If multitrace data are available, and if a coherent
k—f or p—w (McMechan and Yedlin, 1981) display can be made, then this may be
possible. The resulting x,,(f) would represent a spatial average over the data set,
which may not be appropriate if there are lateral variations in the surface-wave disper-
sion. On the other hand, if the objective is only to remove the undesired surface-wave
signal and not to define the correct phase velocity dispersion function, then this same
technique can be applied using single trace data, e.g., treating each trace as an
independent data set. The trick is to make the processing iterative, allowing the data
itself to define its own dispersion operator by improving an initial estimate. This is in
fact the heart of the Herrin and Goforth (1977) and Goforth and Herrin (1979) tech-
nique.

In order to reject a signal, it must be isolated. Compressing it perfectly should
yield a zero phase wavelet centered at zero lag. The degree to which this is not true,
indicates the subtle differences between the unknown k, (f) and the trial function
K, (f ). By windowing the compressed signal about zero lag, Fourier transforming it,
and unwrapping the phase delay, the difference can be defined. This phase difference
is then used to adjust the x,, (f).

To control this procedure, we force the function X, (f) to be initially a simple
dispersion function by approximating it by B-splines with a small number of nodes. At
each iteration, a least-squares B-spline is fit to the phase differences, to yield a simple,
smooth perturbation on the current estimate of K, (f ). This smoothing technique main-
tains the assumption that a smooth dispersion operator is required to model surface
waves.

To start the process, an initial estimate of x,, (f) is required. For simplicity of
use, we use the following approach. By visual examination of all traces or by applica-
tion of multiple filter techniques (Dziewonski et al.,, 1969; Herrmann, 1973), an esti-
mate is made of the group velocity window and bandwidth associated with each signal
that is to be removed. Let the group velocity window be defined by the group
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velocities U and U, and let the corresponding frequencies associated with these velo-
cities be f and f |, respectively. Following Saatcilar and Canitez (1988), we approxi-
mate the group velocity dispersion function by requiring that the group slowness be a
linear function of frequency. Since the relation of w;wenumber k(f) to group slowness

Ul(f) is given by the definition k(f) = kg + ZnIU’l(x)dx, the initial x, (f) est-
fo
mate is defined once we specify a kg We choose the wvalue
fo+f1||Uq' +UT!
2 2
center of the group velocity window is shifted to zero lag on the first application of
equation (2).

In applying this technique, the input trace is windowed within the specified group
velocity window by using a window with a width twice the longest period in order to
focus the processing on the desired signal, and three iterations are performed. The
number of Fast Fourier Transforms required are 2(1 + N;), where N; is the number of
iterations.

k0=21t

to guarantee that the desired signal at the effective

This processing technique is adaptive since the surface wave signal itself
improves the dispersion function. The technique is robust since an initial poor guess of
the dispersion curve may yield nothing of consequence near zero lag when the signal
is reduced to zero distance, in which case the phase match filtered signal is almost
non-existent, and the result of the signal subtraction is essentially the same as the ini-
tial signal.

DATA PROCESSING
Oklahoma

As part of a sensor evaluation test, four data sets were collected at a field test site
at Oklahoma. Both dynamite and vertical vibrator sources were used with receiver
group arrays spaced 15.2 m apart between 152.4 and 441.9 m from the source. Each
group array consisted of six geophones. The vibrator acted at the surface while the
dynamite was buried at a depth of 15.2 m. The four vertical component data sets
acquired are as follow:

DynGrp - dynamite source with a 30.5 m geophone group array
DynNoGrp - dynamite source with a 1 m geophone group array
VibGrp - vibrator source with a 30.5 m geophone group array
VibNoGrp - vibrator source with a 1 m geophone group array

The receiver group arrays were not designed to maximally reduce the surface waves ;
at most they reduce the surface-wave signal by 6-10 db over the usable signal range
(5-85 Hz).

Figure 1 presents the input time histories, showing 1000 ms of data sampled at 4
ms intervals. Within each panel, the trace on the left is at a distance of 152.4 m and
the one at the right is at a distance of 441.9 m. An automatic gain correction with a
500 ms window has been applied to each plotted trace. In this figure, a set of
reflections is seen at a two way traveltime of about 500 ms. This is from the well
known Woodford shale formation at about 610 m. In addition well developed surface
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waves are observed. The data sets are arranged such that the ratio of reflection signal
to surface wave noise is greatest on the far left panel and decreases to the right. This
is well understord theoretically in that buried sources excite the surface wave less than
surface sources, and receiver group arrays of reasonable lateral dimensions also reduce
the low phase velocity arrivals, We note that the 500 ms reflection is not apparent in
the VibNoGrp, Figure 1d, data set at all.

One technique for reducing the surface wave in a record uses the fact that the
surface wave usually has a lower frequency content than the reflections. In this area
the peak surface-wave amplitude is at 18 Hz. Application of a high pass filter to the
record section will attenuate the surface wave. Figure 2 shows the result of applying a
2 pole, zero-phase high-pass Butterworth filter with a low-cut corner frequency at 32
Hz to the field data. It is obvious that the low frequency surface wave is virtually
eliminated in the case of the data set with the best S/N ratio, DynGrp, Figure 2a.
However, low velocity surface-wave and shear-wave arrivals can be seen in the other
time histories. The corner frequency of the filter could be increased to further reduce
the surface-wave arrivals, but this would in turn reduce the bandwidth of the
reflections.

To test the effectiveness of the phase matched rejection filter technique, we pro-
cessed each trace through three different filters, with control parameters given in Table
1. For each filter so defined, three iterations were used to adaptively refine the filter,
phase delays were smoothed using a 5 point least square B-spline. An AGC was
applied to the data prior to phase match filtering each trace to amplify the signal at the
end of the trace. The AGC gain as a function of time was saved so that, after the
phase match filtering, the effects of the AGC could be removed to preserve the true
amplitudes of the underlying reflections.

Figures 3 and 4 show the initial data sets and the output of each phase of pro-
cessing for the best, DynGrp, and worst, VibNoGrp, data sets in terns of S/N,
respectively. The parameters of the first pass were determined following the applica-
tion of standard techniques for determining group velocities from single traces (
Dziewonski et al, 1969) The first pass clearly removes the fundamental mode surface
wave. For the DynGrp data set, further processing does not change the character of
the record section in Figure 3.

The processing parameters used in the second pass were an attempt to remove the
direct shear-wave arrivals observed between the first P break and the 500 ms reflection
that is prominent in the DynNoGrp, VibGrp and VibNoGrp data sets. This has a
higher frequency content than the fundamental mode surface wave and travels at a
higher phase velocity. The result of this pass is quite significant in the case of Vib-
NoGrp for which the 500 ms reflection now emerges. The last pass is an attempt to
remove the very low group velocity arrivals that may be generated by the air wave.

Figure 5 compares the results of applying the three pass phase matched filtering
operation to the original data sets. Comparing this figure to initial data sets shown in
Figure 1, it is obvious that there has been a significant improvement in the reflection
signal to surface-wave noise ratio.

To see how these results compare to that of simple high-pass filtering, Figure 6
shows the result of high-pass filtering the phase matched processing output using the
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same filter used in Figure 2. Comparing this to Figure 2 shows the value of reducing
the shear wave arrivals through phase match filtering. In addition the faster surface
wave seen in the DynNoGrp, VibGrp and VibNoGrp data sets, Figures 2b, 2c, and
2d, respectively, has been eliminated.

This data set demonstrates how phase matched filtering can be applied to high
resolution data collection strategies using either small or zero length group arrays. A
more positive view is that good results may be obtained using fewer instruments in the
group arrays as long as there is numerically resolvable signal beneath the surface
wave.

West Texas

The second data set comes from a high density mini-refraction profile in west
Texas which was notable for its lack of reflections, but which was useful for other stu-
dies because of the sharp P-wave first breaks. The displays of the data set and phase
matched outputs are AGC’d with a 500 ms window. Figure 7a presents the original
data set. Traces are at 15.2 m intervals froin 15.2 to 731.5 m. Each trace consists of
1000 samples at a 2 ms sampling interval. The initial P waves and their reverberations
near the surface are apparent, as is a high frequency air wave arrival, e.g., at 2.00 s at
a distance of 701.0 m. In addition there are a number of overlapping dispersed low fre-
quency arrivals.

The phase matched filter was run as for the Oklahoma data set except the disper-
sion parameters of Table 2 were used. The parameters for the first pass were chosen
on the basis of a p—f stack and group velocity analysis. The next passes were
designed to remove the surface wave following the air wave and the direct shear wave.
The final pass was an attempt to remove the dispersed reverberation following the
direct P arrival. The reduction in surface-wave signal is evidenced by the relative
enhancement of the air wave arrival in the AGC display. The interesting aspect of this
data set was the dispersed surface wave following the air wave. These arrivals were
set up by a moving surface source, the air wave propagating across the array at 300
m/s (Press and Ewing, 1951; Mooney and Kaasa, 1962; René et al, 1986). The third
pass chose a group velocity window from the air wave to a point later in the trace.
The final result, Figure 7b demonstrates a significant reduction in the surface wave,
whether set up directly by the source or indirectly by the propagation air wave distur-
bance.

Permafrost

Data sets in the arctic regions are notorious for poor signal to noise, and often are
excellent candidates for phase match filters. Barton et al (1986), McConnell et al
(1986), and Beresford-Smith and Rango (1988) discuss the problems with data
acquisition on floating ice sheets. Our data set, Figure 8a, was acquired on land, and
is not overwhelmed by the dispersive flexural waves. The traces range in distance from
1542 m on the left to 100 m on the right. There are some very strong undispersed
arrivals with group velocities of 1400 m/s and 300 m/s. The large amplitude of these
arrivals is indicated by the apparent muting introduced immediately prior because of
the AGC process. These signals are also very narrow band with center frequency near
15 Hz. The result of processing this data set with the parameters of Table 3 is shown
in Figure 8b. The air wave is still present as a very high frequency arrival, but the
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1400 m/s arrival is virtually eliminated. The reduction of peak amplitude is indicated
by the lack of a muting by the AGC.

This data set demonstrates the inherent control of our technique, in that it can be
applied to a very narrow group velocity window and that if no dispersion is present, it
defaults to bandlimited mute.

CONCLUSIONS

A technique well known in earthquake seismology has been applied to an
exploration problem with the underlying idea that the earthquake noise is the explora-
tion signal and that the earthquake signal is the exploration noise. The adaptive phase
matched filter technique differs from k—f filter techniques in that each trace is
independently analyzed. This means that our method will work for data sets which
would be severely aliased in k—f analysis. To some extent it is similar to time variant
spectral whitening technique described by Yilmaz (1987) in that undesired signal is
removed from a single trace in a time variant manner. However, our technique essen-
tially subtracts a coherent noise from the trace, leaving the underlying signal undis-
torted in frequency and time, thus preserving true amplitude.

A similar technique has been applied to the problem of seismic data acquisition
on ice to remove the dispersive flexural wave (Barton et al, 1986; McConnell et al,
1986; Beresford-Smith and Rango, 1988). These approaches used a phase matched
filter and used an f-k analysis to define the dispersion operator, though Barton et al
(1986) recognized the problems with lateral changes in dispersion. They then applied
a phase matched rejection filter to the data sets. The adaptive phase matched filter
technique presented here does not require such a well defined dispersion operator.
Only a reasonable estimate is required. We used simple group velocity windows,
which are easily chosen by an analyst. This simple approach works since the dispersed
seismic signal itself defines its own rejection filter.

The processing shown was done on a number of different UNIX (TM AT&T
Technologies) machines. Using the present unoptimized code, we found that 38% of
the execution time was spent doing Fast Fourier Transforms, implemented in FOR-
TRAN. This indicates that the code can be run faster using array hardware. In addi-
tion, this also indicates that the technique may be faster than transformation to the
k—f domain for excising the surface wave and inverse transformation to the x -t
domain.

Since Saatcilar and Canitez (1988) have shows that phase match filtering to
remove ground roll significantly improves stacked sections, our focus was on making
the technique easier to use and understand. Our implementation of adaptive phase
matched filter technique is very robust since only simple control parameters are
required and since it is well behaved, even for data with no noticeable dispersion. With
future 24-bit field data acquisition, the subtractive nature of the coherent noise removal
may significantly improve marginally collected data, without distorting the underlying
exploration signal.
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