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DETERMINATION OF NOISE FIELD DIRECTIONALITY DIRECTLY FROM

SPATIAL CORRELATION FOR LINEAR, PLANAR, AND VOLUMETRIC ARRAYS

INTRODUCTION

When an array is located in a homogeneous stationary noise

field, measurement of the crosscorrelations between all pairs of

separated elements, at each temporal-frequency of interest, is

the most general second-order statistical information that can be

extracted. These spatial correlations depend upon the direction-

ality of the surrounding noise field, which is the primary quan-

tity of interest here. Instead of beamforming the element

outputs, for example, and trying to suppress the inherent side-

lobes by proper weighting procedures, we want to avoid any pre-

conceived notions about data processing and go directly from the

spatial correlation to the noise field directionality in as

direct and simple a manner as possible.

However, because the noise field directionality is a two-

dimensional function of polar and azimuthal angles, some inherent

loss or condensation of information takes place with a linear

array and, to a much lesser extent, with a planar array. Never-

theless, we want to preserve and extract the maximum amount of

information about the noise field directionality, consistent with

the dimensionality of the array employed, and to minimize the

amount of data processing required.
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We begin by assuming the array to be an infinite continuous

line in the one-dimensional case, and solve the integral equation

for the integrated (or collapsed) noise field directionality, at

each temporal-frequency, in terms of the spatial correlation

along the line. Then, we discretize the line, so as to be an

equi-spaced array, and determine the effect that this limitation

has upon the estimated directionality. Finally, we investigate

the smoothing that is caused by the practical requirement that

any physical array must have finite length. Thus, the facts that

the spatial correlation will never be available on a continuum,

nor for infinite separations, are included in the analysis.

A similar procedure is pursued for the two-dimensional case,

where the planar array is presumed to have equal spacings Ax and

a in the x and y dimensions, respectively. Again, the aliasingy

effects are considered, as well as the limitation of having to

employ a finite-size planar array. Finally, in the three-dimen-

sional case, where the problem is overdetermined, a plausible and

efficient procedure -or collapsing the surplus information is

presented, although it is recognized that an unlimited number of

alternatives exist.

Although it was stated that the noise field directionality is

of interest, this does not preclude the presence of plane-wave

arrivals, that is, additive signals or interferences in the back-

ground. In fact, the examples are specifically of that type, for

these can be considered as the fundamental building blocks of a

general noise field.

2
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Some related results on this problem of restoring the noise

field directionality from the spatial correlation are given in

[1,2,3,41, but limited to the line array. Specifically, [1] gave

a least squares approach, starting from a discrete finite-length

array. However, ill-conditioning of the simultaneous linear

equations for the noise field directionality precluded its use

for more than approximately ten elements. This ill-conditioning

is circumvented here by deferring the discretization until after

the integral equation is solved; this procedure for the line

array was first given in (4].

3/4
Reverse Blank
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CHARACTERIZATION OF NOISE FIELD

Let Nf( 9 ,o) be the intensity of the homogeneous stationary

noise field at temporal-frequency f, arriving from direction e, ,

where 0 < 9 < n, -n < 0 n; see figure 1. The amount of power

received in solid angle de do sine about e,* is

de do sine Nf(e,*). (1)

We call Nf(et) the noise field directionality; the product

sine Nf( 9 ,o) could be called the plane-wave density.

arrival

0n < 9 < nt
<ee

I /~y

- I /

Figure 1. Coordinate System

Consider general field point x1 ,y1 lzl. Then if the time of

arrival at the origin, of the component from direction e,0, is

zero, then the time of arrival at xly 1 ,z1 is

- i (xI sine cosO + y, sine sino + z cose), (2)

where c is the speed of propagation. Therefore, the transfer

function at xl,yl,z, applied to the arrival from direction e,o is

5
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H1 (f) - exp(-i2tfTl) =

- exp i-- (xI sine cosf + y1 sine sinf + z, cose)], (3)

where wavelength X - c/f.

The elemental contribution to the crosscorrelation between

this arrival at xlYlZ and x2,Y2,Z 2 , at temporal-frequency f,

is then

do df sine Nf(ef) Hl(f) H2 (f) = de df sine x

x Nf(ef) exp i--q (x sine coso + y sine sinf + z cose) (4)

where separations

x -x I - x2,

Y " Yl - Y2'

Z - zI  - z2 . (5)

If the arrivals from different directions are uncorrelated, the

spatial correlation (at frequency f) between two points separated

by x,y,z is then given by integrating over all angular space,.

G f(XFYIZ) j de { df sine Nf(e),O) x(
0 -n

x exp i- (x sine cost + y sine sin + z cose)]. (6)

The problem of interest is: given spatial correlation

Gf(x,y,z) versus x,y,z (or restricted slices of Gf(x,y,z)), solve

for noise field directionality Nf(,e,) (or smoothed versions of

6
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Nf(e,)). That is, invert integral equation (6) for noise field

directionality Nf( 9) or for whatever can be determined. There

are three cases that must be distinguished, namely, linear,

planar, and volumetric arrays.

7/8
Reverse Blank
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LINEAR ARRAY

It is most convenient mathematically to locate the line array

along the z axis, that is, x - y - 0. Then the exponential in

(6) is independent of f, and (6) reduces to*

Gf(z) - {d df sine Nf(8,) exp (i-- z cose -

0 -n

- dO sine Nf(9) expii z cose] (7)

0

where

Nf(e) - J d* Nf(e,%) for 0 e < 8

-n

is the integrated or averaged noise field directionality, and

Gf(z) is the one-dimensional spatial correlation at separation z

along the line, both functions evaluated at frequency f. Gf(z)

is the only second-order function that can be measured (or

estimated) from the line array, and Nf(e) is the only field

runction that can be determined. There is no possibility of

undoing the integration of (8); this is a mathematical represen-

tation of the inherent conical symmetry of response of a linear

*The case where the line array is located on the x axis is

treated in appendix A.

9
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array. It is also one reason for choosing the line array to lie

along the 8 - 0 axis, since all the two-dimensional field infor-

mation is conveniently ollapsed into a one-dimensional function

of 8 alone. See appendix A for the problems associated with

choosing a different coordinate system.

SOLUTION OF INTEGRAL EQUATION

To solve integral equation (7) for noise field directionality

Nf(e), consider the following:

+ C

dz exp(-i2- u z) Gf(z)

= de sine Nf(G) dz exp -i-- z (u - cose) -

0 -

- f de sin8 Nf( 8 ) X S(u - cose), (9)

0

where 6 is the delta function. Now let t = cose, which is a

one-to-one transformation for 0 < 9 < n, to get

+am 1

dz exp(-i-R u z) Gf(z) - X f dt Nf(acos(t)) 6(u - t)
f -1

fX N f(acos(u)) for Jul <1

0 for Jul > 1

That is,

10
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Nf(acos(u)) = j dz exp(-i-- u z) Gf(z) for lul < 1, (11a)

or

+0

Nf(0) - dz exp(-i- cose z) Gf(z) for 0 < e < n. (lib)

Here, acos is the principal value inverse cosine function.

Compare (lib) with starting point (7).

Thus, given the spatial correlation Gf(z) for all possible

separations z along the line array, the integrated noise field

directionality Nf is available via a single one-dimensional

Fourier transform.

11
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EXAMPLE

An example is informative at this point. Let

Nf(e) - 6(e - eo), 0 < eo < n.

Then the spatial correlation is, from (7),

Gf(z) = sine0 exp(i-" z cose o ).

Observe that as e0 + 0 or n, that is, endfire of the line array,

the strength of this quantity decays to zero, due to the sine

term in the area element in (1). Substitution of correlation

Gf(z) into (lb) yields noise field directionality

Nf(e) - sine0 6(cose - cos8 ) for 0 < e < n.

Now the delta function here is located at e = e and has area0

I/sine . Thus, Nf(9) is 6(8 - e ), as it should be; however, the

trigonometric form shows N f(9) as the product of two terms, the

first of which tends to zero as 90 4 0 or n, and the second of

which has an area that tends to infinity as 80 - 0 or n. This

behavior will re-occur in the following investigations.

We have employed the following useful property above: if

g(x) has an isolated zero at x0 , then in the neighborhood of xO f

6rg(x) - s g(x o ) (x-xo ) - l (x - x)
Igx, X ) g'(x 0 ) )I

That is, the area of the delta function at x is equal to the

reciprocal absolute slope of the argument at xo, if nonzero.

12
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DISCRETE INFINITE-LENGTH ARRAY

If samples of spatial correlation Gf(z) at increment 6 in z

are available, an approximation to (11a) is afforded, for

lul < 1, by

Nf(acos(u)) = exp(-i-L u A n) Gf(6 n), (12)

the right-hand side of which has period X/A in u. Since the

integrated noise field directionality in (lla) is defined on an

interval of length 2, that'is, -1 < u < 1, aliasing will occur in

approximation (12) unless A < X/2. Thus, the spacing 6, between

samples of Gf(z), must be less than a half-wavelength at the

temporal-frequency f of interest. This is presumed true hence-

forth.

Now if u is restricted to the values

m X fo N N
um - for -t < m ! - 1, (13)

which cover a full period, there follows, for 1,
+-

Nf(acos(m .)) = exp(-i2nmn/M) Gf(a n). (14a)

The sum on the right-hand side can be accomplished via an M-point

fast Fourier transform when collapsing is employed [5; p.5]. The

resultant angles at which N f(e) is available are

em W acos , or cos~m - for - t! m ' - i, (14b)

13
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provided that - < 1 These values are equally spaced in cos
M t 1 T

space.

The right-hand side of (12) can be rewritten in the form

[5; pp. 3-4]

dz exp(-i- u z) Gf(z) A &(z - a n) =

cc n

- Nf(acos(u)) Q S(u - n - Nf acos(u- )), (15a)
n=-C n=-

where * denotes convolution. The separation of these aliased

lobes (for n * 0) is X/A on the u scale; then, since the extent

of Nf(acos(u)) is 2 on the u scale, overlapped aliasing lobes do

not occur if A < X/2. This is a mathematical back-up to the

claim under (12).

14



TR 8631

DISCRETE FINITE-LENGTH ARRAY

The effect of a finite-length array can easily be incorpora-

ted by modifying (15a), so as to include weighting w(z). Then,

we have, for the estimated noise field directionality,

Jdz exp(-i-- u z) Gf(z) 6 6(z - a n) w(z) =

-O n=-c

= Nf(acos(u)) 4 ) W(u- E), (15b)

where window

W(u) - dz exp -i-- u z w(z). (15c)

Thus, not only is the noise field directionality aliased at sep-

arations X/b in u, but, in addition, it is smoothed by window W.

Sampling, per se, does not distort the estimated directionality,

if done finely enough, that is, a < X/2. However, the finite

length of the array always causes smearing, with a window width

of the order of X/L z , where Lz is the effective length of

weighting w(z).

15/16
Reverse Blank
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PLANAR ARRAY

It is now most advantageous mathematically to locate the

planar array in the x,y plane, that is, at z = 0. Then the

exponential in (6) is independent of cose, and (6) reduces to

n n

Gf(x,y) de dt sine Nf(e,) exp(i- sine (x cost + y sint)

0 -

n/2 n

- de dt sine Nf(e,t) exp(i-1 sine (x cost + y sint)), (16)

0 -n

where

Nf(e,.)- Nf(e,) + Nf(n - e,t)

for 0 < e < n/2, -n < n. (17)

f is the sum of the elemental components in symmetrically-

arriving rays on opposite sides of the planar array; recall that

e - n/2 now corresponds to the plane of the array. Spatial

correlation Gf(x,y) is the only function that can be measured (or

estimated) from the planar array, and Nf(et) is the only field

directionality function that can be determined. There is no

possibility of undoing the summation of (17); this is a mathemat-

ical representation of the inherent two-sided symmetric response

of a planar array. It is also one reason for choosing the planar

array to lie along the e - n/2 plane, since the totality of the

two-dimensional field information is conveniently collapsed into

a one-sided function of e, that is, 0 < e < n/2.

17
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SOLUTION OF INTEGRAL EQUATION

Consider the two-dimensional Fourier transform of (16),

+ CD

I(u,v) - dx dy exp zi- (ux + vy) Gf(x,y)

(18)
n/2 FE
f de d+ sine Nf(8,+) X2 6(u - sine cost) 6(v - sine sin+).

0 -

Let

- sine cost, 0 - sine sint for 0 < e < n/2, -n < t < n. (19)

These relations can be inverted by using

a + ig - sine exp(if), (20)

to give

sine - + i0l C2 + 2) , = arg(cx + io). (21)

Thus, (19) is a one-to-one two-dimensional transformation in the

ranges 0 < e < n/2, -n < n < I allowed in (18). From (19) and

(21), the Jacobian is

a(a, ) cose cost -sine sint

cose sint sine cost

-sine cosG - (Ot2 + is2) ( 2 is2) . (22)

Substitution of these results in (18) yields

18
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I(u,v) - X 2 J d d F(a,O) (1 - a(u- ) _(v-2)-

Cl

x2 F(u,v) (i - u 2 _ v 2 -  for u2 + v 2 <1
- 1 (23)

0 otherwise

where C1 is a circle of radius 1 located at the origin, and

F ( Nf(asin(ja + i~j), arg(% + iO)). (24)

Here, asin is the principal value inverse sine function. From

(23), (24), and (18), the noise field directionality is

Nf(asin(Iu + ivi), arg(u + iv)) -

(1 - u2 - v2) +
U2 dx dy exp -i-- (ux + vy) Gf(xy)

2 2

for u + v <1. (25)

An alternative form is available by letting

u - sine cos+, v - sine sin+ for 0 < e < n/2, -nt < < , (26)

namely
+40

(elf) - rCOS dx dy expr -i- sine (x cosf + y sinf) Gf(xy)
f(2,f) ) f

for 0 < e < n/2, -n < n i. (27)

It is interesting to compare this form with starting result (16).

An alternative, when the planar array lies in the y - 0 plane, is

given in appendix B.

19
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BEHAVIOR NEAR PLANE OF ARRAY

At first sight, the presence of the cose term in (27) would

appear to be a problem for e = n/2, which is the plane of the

array. However, the following example illustrates what is

happening; let

Nf(eW)) - 8(e - 90) 6(0 - *0) for 0 < e0 < n/2, -rt < *o < R.

Then (16) yields spatial correlation

Gf(xy) - sine0 exp(ii-n sine0 (x cosoo + y sin 0

The strength of this quantity tends to zero as e 4 0. Substitu-

tion of this Gf(x,y) in (27) yields noise field directionality

Nf( 8 ,) - sine cosG 6(sin8 coso - sine cos O0 ) x

x 6(sine sino - sine sino0 ).

By use of the property

6(ax + by) 6(cx + dy) 8(x) 6(y)

lad - bcl

it may be shown that &Nf(eI,) is (e - e0) 6(0 - ), as expected;

however, the trigonometric form shows Nf as the product of two

terms, the first of which tends to 0 as e04 0 or n/2, and the

second of which has impulses with area which tends to infinity as

e 0 or n/2. Thus, the sine and cose terms are not a problem

since they are compensated by multiplicative terms; however, they

may lead to inaccuracies in numerical computation.

20
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DISCRETE INFINITE-LENGTH ARRAY

The form in (25) gives the noise field directionality sum

Nf, defined in (17), as a double Fourier transform of the two-

dimensional spatial correlation function Gf(xy). If samples of

Gf(xy) at increments AX in x and Ay in y, respectively, are
2 2

available, an approximation to (25) is afforded, for u + v < 1,

by

Nf~asin~iu(1 - u2 - v2)

f(asinllu + ivl), arg(u + iv)) u 2 Ax 6y X

+0 +0

X exp(-i--n (u Ax k + v a i) G (A k, j). (28)
k--- jm---

The summation on the right-hand side of (28) has periods X/Ax in

u, and X/Ay in v. Since the sum Nf is defined within the circle
y f2

u + v2 < 1, overlapped aliasing lobes will occur in (28) unless

a < X/2 and A < X/2; that is, the spacings between samples ofx y

2f(xy) must be less than a half-wavelength at the temporal-

frequency f of interest. We presume this to be true henceforth.

Now if we restrict u and v in (28) to the values

m X for M M
x

n A o N Nv n -- fr - < n < - 1, (29)

y

both of which cover full periods in u and v, respectively, there

follows

21
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1 - u2- 2

Nf(asin(Ium + iv n ), arg(um + ivn  = 2 n x

+m +

Ax A y T exp(-i2nmk/M-i2nnj/N) Gf(A x k, Ay j), (30)
k--- j--

provided that

u + iVnI - + i < 1. (31)
m n Max NAy

The double sum in (30) can be accomplished as an MxN two-dimen-

sional fast Fourier transform, when collapsing is employed

(5; p.5]. The resultant angles at which noise field directional-

ity Nf(e,.) is available are

0 < e = asin X x n

-n < n W arg + i a L <, (32)mn x N A

or

sinemn n + =

x y

Rs J 2 + (a'2] (33a)

wh e re

M M N N
< m < -< n < 1 (33b)

2 - - 2 2 2- - 2

but remembering that (31) must remain true.

22
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The right-hand side of (28) can be re-written in the form

[5; pp. 3-41

( 2 -- v2) dx dy exp(-i2 (ux + vy) Gf(xY) x

+0 +O

x A Z S(x - x k) yy E (Y - Ay J)

k =-o j =-

- Nf(asin(Iu + ivi), arg(u + iv)) Q

+0 +0
u Z - -s 6(v -VS ) (34a)

The separations of the aliased lobes (for (k,j) * (0,0)) are X/ax

on the u scale and X/y on the v scale. Then, since the extent

of the noise field directionality Nf is u2 + < 1, overlapped

aliasing lobes do not occur if Ax < X/2 and ay < X/2. This is a

quantitative restatement of the claims made in the sequel to

(28).
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DISCRETE FINITE-LENGTH ARRAY

The effect of finite lengths in the x and y directions can be

incorporated by modifying (34a) so as to include weighting

w(x,y). Then, we have, for the estimated noise field direction-

ality,

( 2 _ v) dx dy exp -i-l (ux + vy) Gf(x,y) x

x x ( - 'xk) Ay 6(y - 6j) w(x,y)
E y-+w +m

= Nf(asin(Iu + ivi), arg(u + iv)) j W u - - v -

kw-® j=--

(34b)

where window

W(uv) - Jj dx dy exp iin (ux + vy) w(x,y) (34c)

Thus, not only is the noise field directionality aliased at

separations X/6x in u and X/Ay in v, but, in addition, it is

smoothed by window W. Sampling alone does not distort the

estimated directionality if done with a < X/2 and a < X/2; seex y
(34a). However, the finite lengths of the array always smears,

with window widths of the order of X/Lx in u and X/Ly in v, where

Lx and Ly are the effective lengths of weighting w(x,y) in x and

y, respectively.
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VOLUMETRIC ARRAY

We now have the full version (6):

nt I

Gf(xyz) f f de j do sine Nf(e9,) X

0 -n

x exp(i-- (x sine coso + y sine sinO + z cose)). (35)

However, since noise field directionality Nf is a function of two

variables, while spatial correlation Gf has three arguments, some

of the information in Gf is superfluous and must be reduced or

collapsed in some fashion.

SOLUTION OF INTEGRAL EQUATION

We begin by defining triple Fourier transform

+ C

I(u,v,w) a dx dy dz q(z) exp -i-- (ux + vy + wz) Gf(xyz) -

f { de f do sine Nf(,,) X2 6(u - sine coso) 6(v - sine sino) x

0 -i
x Q(w - cose), (36)

where we use a weighting q(z) on the z variable, and define

+ C

Q(t) - f dz exp(-i2ntz/X) q(z). (37)

(If q(z) - 1 fbr all z, then Q(t) - X 6(t).)
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We now break the right-hand side of (36) into two parts

according to

n R n/2 nt it n

j d9ej d. - def'd-+-f de fd. (38)

0 -R 0 -it r/2 -11

and in each region, we make the change of variable used in (19)

et seq., namely

- sine cosO, 0 = sine sint. (39)

Then * - arg(c + iO), while

e . ( asin(Io + i01) for 0 < e < n/2 (40)

- asin(lj + i01) for n/2 < e < n

and
cc 2 _ a- ) for 0 < e < n/2

cose - (1 c2_o2) for n/2 (41)
-i- 2 - 02 for n/2 < e < r

Define, for future use,

( 2 B2) %

s(a,i) . 1 - - for cz2  + < 1. (42)

Using these results in (36), there follows

I(u,v,w) - X2 f da= dO s(a,0) - 1 F,( c,) 6(u-x) 8(v-0) Q(w-s(a,0))

C1

+ X2  f d dO s( (,O) -  F 2 ((,o) 6(u-0) a(v-0) Q(w+s((,0)), (43)

C1

where C 1 is a circle of radius 1 located at the origin, and
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FI(=,8) " Nf(asin(Ic + i 0), arg(a + i for IJ + i01 s 1.

F 2 (. - Nf( n - asin(I + i1), arg( + i)) (44)

Evaluating the integrals in (43), we have

I(u,v,w) - 2 s(u,v)-1 [F1(u,v) Q(w - s(u,v)) +

+ F2 (u,v) Q(w + s(u,v))] for u2 + v2 < 1. (45)

SIMULTANEOUS EQUATIONS

If we evaluate the triple Fourier transform in (36) at two

different values of w, we have

s(uv) I(u,v,w1 ) F (uv) Q(w I - s(u,v)) + F2(uv) Q(w + s(u,v))

x2  1 1 1.

(46)

and

s(uV) I(u,v, w) - F (u v) Q(w 2 - s(u,v)) + F (u v) Q(w + s(u,v)).
22 1 2 2 2

(4t

Also, if we define

Qn(+) - Q(w n + s(u,v))

Qn(-) - Q(w n - s(u,v)) , (48)

and denominator

D - Q 1(- )  Q2(+) -QI(+) Q2(-), (49)

the solutions to (46) and (47) are
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FI(uv) - S(U'V) (Q2(+) I(u,v,w ) - QI(+) I(u,v,w2 )) for
X + V < 1,

F2 (uv) s(- I(uuVw) I(u,v,w) I(uvw) (50)2 X ~2 D Q2 21

provided that D * 0. Function s is defined in (42).

There is a great deal of leeway in these solutions. Namely,

Q(t) in (37) is arbitrary, and the values wI and w2 are arbitrary

as well; the only restriction is that D in (49) not be zero. In

the special case where weighting q(z) in (36) is real and even,

then Q(t) in (37) is also real and even; we presume this to be

the case henceforth. If we then choose w2 - -wi, (49) becomes
= Q2  Q2

D (w1  - s(u,v)) - Q (w1  + s(u,v)). (51)

If the effective length- of weighting q(z) is Lz , a represent-

ative plot of Q2 (t) is displayed in figure 2. For small s, a

good location for wI is at the point where Q2 (t) has its maximum

slope. For larger s, a value for w. near s would guarantee a

large value for D in (51).

Q 2(t)

Lz

W1-S 0 wI wl+s t

Figure 2. Window Function Q2
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ANGULAR REPRESENTATIONS

If we make the substitutions

u - sine cos#, v - sine sinf for 0 < e < n/2, -n < * n, (52)

then (42), (44), and (51) yield

s(sin9 cos , sine sin+) - cose
for

F 1 (sine coso, sine sin ) - N f(9P.0

F 2 (sine cos ,, sine sino) - N f(fl - 0,#) 0 < e < n/2, -n < * n.

D - Q 2(w 1 - cose) - Q0 (w I + cose) (53)

Then (50) becomes

N (10)- COSO Q(W 1 - cose) I(+) - Q(w 1 + cose) I- 5a
Nf(x 2)Q 2 (w 1 cose) - Q 2 (w 1 + cose)

N (n- . ~f) cose Q(w 1 -cose) I(-) - Q(w 1 + cose) I(+) (5b
f x 2 Q 2(w1 - cose) - Q 2(w I+ cose)

for 0 < e < n/2, -n < n f,

where we define

I(±) - I(sine coso, sine sin , ±w 1) dx dy dz q(z) x

x exp(-ili- (x sine cos# + y sine sin* z w1) Gf(x~y,z), (55)
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upon use of (36). We repeat that these results for the noise

field directionality apply only for Q(t) real and even; other-

wise, Q(t) and w1 are arbitrary.

An alternative form to (54b) is available, if desired, by the

substitution e' - n - e, namely

N cose, Q(w 1 + cose') I'(-) - Q(w1 - cose') I,(+)

Nf(e',.) 22-+cs'
Sx 2  Q2 (wI - cose') (w)

for n/2 < e < n, -n < n, (56)

where

I'(±) - I(sine' cost, sine' sin , ±wl). (57)

The most extensive calculation required here is that given by

(55); rewriting it differently,

I(u,v,±w) {f dx dy exp(-i3 - (ux + vy) x

x dz exp -i-n (±wl)z q(z) Gf(x,y,z). (58)

The innermost integral, the Fourier transform on z, only needs to

be accomplished for the two values ±w1, whereas the outer inte-

grals must be done for ranges of u and v. This is the collapsing

operation alluded to under (35). On the other hand, the inner

integral must be repeated for every x,y value of interest;
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nevertheless, (58) is not as difficult as a three-dimensional

Fourier transform.

An example of this procedure for the volumetric array is

carried out in appendix C; it illustrates the care that must be

taken with respect to the 8 variable in (54).

31/32
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SUMMARY

The noise field directionality for the cases of one-, two-,

and three-dimensional arrays have been solved for, explicitly, in

terms of the appropriate spatial correlation available in each

case. In the one-dimensional case, only the polar directionality

can be determined, while in the two-dimensional case, the sum of

symmetrically arriving rays on both sides of the planar array can

be evaluated. For the three-dimensional case, all ambiguity can

be eliminated, but the overdetermined nature of the problem

requires some collapsing of information and leaves many options

to consider. For example, one could let the volumetric array be

a thin-shelled sphere; however, the resulting two-dimensional

integral equation for the noise field directionality cannot be

solved explicitly. The attractive feature of large stacked

planar arrays is that it permits the use of Fourier transforms

and, therefore, an explicit expression for the noise field

directionality in terms of the three-dimensional spatial corre-

lation. Also, Fourier transforms are efficiently evaluated by

the use of fast Fourier transforms.

In this investigation, we have presumed exact knowledge of

the spatial correlation Gf(z) or Gf(x,y) or Gf(x,y,z), depending

on the dimensionality of the array employed. In practice, Gf

must be estimated from measurements made from a physical array;

in this case, maximum advantage should be taken of the station-

arity and homogeneity of the noise field. Thus, for a line array

of equi-spaced elements, Gf(nA) should be estimated from all the

33



TR 8631

available pairs of elements that have separation na in space and

over the total available observation time that data have been

recorded on all elements.

A comparison [6] is underway between the methods of this

report and the Fourier series method given in [4], at least for

the line array. Results are similar, but not identical; in

particular, the aliasing of the Fourier series method is more

severe than for the Fourier integral approach.
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APPENDIX A. ALTERNATIVE LOCATION OF LINEAR ARRAY

If we locate the line array along the x axis, that is,

y - z - 0, then (6) reduces to

nL Tt

Gf(x) -f de f dt sine Nf(et) exp i1-- x sine cost -

0 -r

n/2 R

de f dt sine Nf(elt) exp (i-- x sine cost), (A-1)

0 0

where

N f(e,t) - Nf(9,t) + Nf(n - Gt) + Nf(e,-t) + Nf(f( - 9,-t) (A-2)

for 0 < e < n/2, 0 < < n. Therefore, Fourier transform

+0

I(u) o dx exp (-i- u x) Gf(x)

n/2 n

- j d9 d sine -Nf(et) X 8(u - sine cost). (A-3)

0 0

Now let

s - sine, t - cost, (A-4)

which are one-to-one transformations in the ranges allowed in

integral (A-3). Then
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1 1
d(U j dtNI(u) N -d -t f(asin(s),acos(t)) s U(u-ts).-(1 s2 1 (1 _ t2)

(A-5)

The innermost integral on t yields

( Nf(asin(s), acos(u/s)) f

(i - u2/s 2) 0 for lul > , (A-6)

thereby giving

1

1(u) = xfds sdus ( - 2)4 (s2 _ u2) N f(asin(s), acos(u/s))J ul - s ,s

for lul < 1. (A-7)
JThis integral equation for noise field directionality Nf is more

general than Abel's integral equation, because limit u is also
-J

involved in one of the arguments of -41f. Wc h:z been unable to

simplify (A-7) and extract any simple descriptor of the noise

field directionality analogous to (8). Placing the linear array

along the y axis, instead, encounters the same problem.
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APPENDIX B. ALTERNATIVE LOCATION OF PLANAR ARRAY

Suppose the planar array lies in the x,z plane, that is,

y = 0. Then (6) becomes

nr T

Gf(x,z) - d d sine Nf(ef) exp(i-"(x sine cosf + z cose)

0 -n

n n

= de df sine Nf(eG,) exp(i-(x sine cosf + z cose) (B-1)

0 0

where

Nf(e,.) - Nf(e,) + Nf(e,-f) for 0 < e < n, 0 < n < r. (B-2)

Then

+W

I(u,v) . dx dz exp -i- (ux + vz) Gf(x,z) -

Ti fl

- de [ df sine Nf(e,) X2 6(u - sine cos ) 6(v - cose). (B-3)

0 0

Now let

s - sine cosf, t - cose, (B-4)

for which the Jacobian is
a(s t) sin2e si( 2 )  i s 2  -5)

Then
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I(u,v) X 2 JJ' ds dt -f -cstcs(~ t2) ') 6(u-s) S(v-t)

X ,acos(v), acos foru2+ 2<

u(12 _ ]] 2)

0 otherwise

(B-6)

Thus, we have the explicit representation for the noise field

directionality,

Nf~acos(v), acosfl 2)] _ 2) J' dx dz x

x exp(-i -j (ux + vz)) Gf(xlz) for u 2 + v2< 1 (B-7)

If we now let

u - sine) coso, v = cosO, (B-8)

this becomes

N'e)~~~~~~ cciesn~r r sn

Nf(),) -sie snf dx dz exp(-i-n(x siocos cose)JX

x G f(x~z) for 0 < e) < nt, 0 < * .(5-9)

This is a viable alternative to (27). Compare with starting

result (B-i).
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APPENDIX C. EXAMPLE FOR VOLUMETRIC ARRAY

Let the noise field directionality be given by

Nf(e,.) = S(e-e ) S(O-0o), 0 < eo < n, -n < # 0 "n. (C-1)

Notice that arrival angle e can range over an interval of length

n. We distinguish two cases:

A: 0 < 00 < n/2,

B: n/2 < eo < n. (C-2)

From (35), the three-dimensional spatial correlation is

Gf(x,y,z) - sine0 exp(ii- (x sine0 cos+ o +

+ y sine0 sin+0 + z coseo) . _(C-3)

The problem addressed here is the reestablishment of (C-i) by

means of the solution procedure given in (54)-(57). Recall that

Q(t) is real and even.

First, substituting (C-3) in (55), there follows

I(t) - sine0 X2 S(sine cos+ - sine0 cos*0 ) x

x 6(sine sin+ - sine sin*0 ) Q(±w I - cose0 )  (C-4)

Now, when we recall that e is limited to (0,n/2) in (54), the

delta functions in (C-4) are located at

A: e= e , * - o0

or B: e - n - eo, * =0 (C-5)

39



TR 8631

By means of the two-dimensional transformation employed in (19)-

(22), we find that

x 2

A: I(±) - cose (- e o ) ( - 0 ) Q(w I + cose ) ,

X 2

B: I(±) = Icoseo &(e - n + 90) 6( - ) cose O ) (c-6)

Substitution of (C-6) in the numerator of (54a) yields

2
A: cose( &( E - eO ) 6(t - o c(e,eO )o

0

B: IcOSeo S(- n + e0) 6(#- o C(e,%) , (C-7)

where

c(ee 0 ) - Q(wl-cose) Q(w1 -cose o ) - Q(wl+cose) Q(wl+coseo). (c-8)

But since

CEol) Q (w1 - cose) - Q(w I + coseo )

C( n- 0 e0 ) = 0, (C-9)

we find that

f 6(e - e0 ) 6( - for case A
Nf(e,.) - . (C-10)

10 for case B J

On the other hand, substitution of (C-6) in the numerator of

(54b) yields
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A: Cos() c s (e - e 0 S( - 0 ) D(0,9 0)

B: cose x2 S(O- + 9 ) 8(* - * ) D(9,9 (C-li)
1coseol 0 0 0

where

D(,E) 0) - Q~lcs)Qw1 +CS)0 (w1 +cos8) Q(w 1-cos%). (C-12)

But since

D(e ,'e ) 0,

D(n-e0 ,E 10) -Q (w 1 +cosO) - Q2 (w 1 -cose 0 ) ,(C-13)

we find that

Nf 1-,0 0 for case A (-4

'I (-n+9 0 6(0-+0, for case B)

This last case could be written in a form similar to (56) as

N (11)- S(e'-e 0) 6(0-00) for n/2 < e' < n. (C-15)

In any event, (C-10) and (C-14) confirm starting result (C-i) for

the noise field directionality.
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