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Abstract ‘A'/

This paper summarizes the results presented at the Army Research Workshop held
at Monterey, CA in October, 1989. A more deiailed version will appear elsewhere.
" In the age-dependent minimal repair model of Block, Borges, and Savits (1985),
a system failing at age ¢ undergoes one of two types of repair. With probability
p(t), a perfect repair is performed, and the system is returned to the ‘good-as-new”” .
state, while with probability 1 — p(t), a minimal repair is performed, and the sys-
tem is repaired, but is only as good as a working system of age {. Whitaker an
Samaniego (1989) propose an estimator for the system life distribution F' when data\ specTe0
are collected under this model. :
Using the product integral representation of the survival function, a basic result
of Block, Borges, and Savits concerning the waiting time until the first perfect repair
is extended to allow for discontinuous distribv.ions. Then using counting process
techniques, the large sample theorems of Whitaker and Samaniego are extended to
the whole line. These results are used to derive confidence bands for F, and to
determine a sufficient condition for their applicability on the whole line. Simulation
results for the bands are provided. An extension of the Wilcoxon two-sample test to
the minimal repair model is also examined. / Lol

1 The Minimal Repair Model

To fix notation, let F be a life distribution, let 77 be the upper endpoint of the support of F'
(possibly infinite), and let A(t) = fio,4(F(s—))""dF(s) be the cumulative hazard function
of F', where F=1—F.

Now, for j = 1,...,n, let {X,0 = 0,X;1,Xj2,...} be independent record value
processes from F. These are Markov processes with P(X;x > t | Xjo,..., Xjk-1) =
F(t)/F(Xjk-1),fort > Xx_1, k 2 1. If AF(7F) > 0, define X;; = oo for all [ larger than
the first k for which X;x = 7. In all cases we take p(rr) = 1. These processes represent
the failure ages of n systems under a “forever minimal repair” scheme.




Perfect repair is introduced into this model by the use of independent uniform random
variables. This facilitates the construction of the o-field structure (filtrations) necessary
to our analysis of the model through martingale methods. Thus welet {U;;x : 1 < j <
n,k > 1}, be i.i.d. uniform r.v.’s, and define

ik = I(Ujk < p(Xjn)),
=inf{k:6;p, =1}

Thus observing {(Xj1,...,X;.,);j = 1,...,n}, is equivalent to observing n indepen-
dent copies of the age-dopendent minmal repair process of Block, Borges, and Savits
(BBS)(1985), each until the time of its first perfect repair.

This structure provides us with a concrete starting point for a statistical analysis of the
BBS model. However, we need conditions which are sufficient to assure the finiteness of
X, - Such conditions are given by the following result, which generalizes a result of BBS to
the case of possibly discontinuous F'. Though this generalization may not be important for
modeling system failures, it will be useful to us in proving large sample results. Also, the
proof of this result, which we sketch below, is more straightforward than the original proof
of BBS. The reader is scferred to Hollander, Proschan, and Sethuraman (1989) (HPS), for
detailed proofs of this and other results in this paper.

Proposition 1 Let H(t) = P(X, < t,v < 00). Then

H(t) = gl —dAn)

- e ( [ o5 ;)H(l—p(s@(i(f;)

s<t

Moreover, if either
(i) AF(mp) > 0 (and p(1r) = 1),
or
(%) F(rp=) = 1 and 57 p(s)$03 = +oo,

then H is a proper distribution function and v is almost surely finite. Conversely, if H is
a proper distribution function, then either (i) or (ii) must hold.

Proof. (Sketch) Note that
H(t) = 1-P(X, <t v< o)
= 1-) P(X; <twv=j).

=1

A conditioning argument shows that

Fo =S [] dete)-date)

0<ty <<ty <t
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where

a(t) = [, (1= oD T

This is equivalent to

|
—~~

(j)) = Toa(1 + de) = exp (o"(1) JT(1 + Ac(s))

where a° is the continuous part of & and Aq(t) is the jump in & at ¢. Here, [](g4(1 + da)
represents a product integral. The theory of product integration with applications in
statistics is reviewed in Gill and Johansen (1987). The result follows from the last equation
after some algebra. O

We will say that a pair satisfying either (i) or (ii) describes a regular repair scheme.

"y

2 The Whitaker-Samaniego Estimator

In this section, we derive a martingale representation for the Whitaker-Samaniego (1989)
estimator (WSE). This representation is then used in conjunction with Rebolledo’s Mar-
tingale Central Limit Theorem and the techniques of Gill (1983) to derive limit theorems
for the WSE.

The Basic Martingale

Define
Ni(t) =#{k: X;x < t},

and
Fo = a({N;(s):sgt,lngn})
V o({Ujx:k21,1<53<n}).

For the rest of this paper, (F;):>0 will serve as the underlying filtration for all martingales.
Now let

N@)=#{0, k) : Xjp St,k <1< j<n),
Y()=#{j: X, 2,17 Tn}
and

M(t) = N(t) - /(M Y (s) dA(s).

In HPS, it is shown that M is a locally square-integrable martingale with predictable
quadratic variation given by

(M)(1) = [ ¥(s)(1— AA(s)) dA(s) (1)

(0.4]

This provides the basic martingale structure for further analysis of the minimal repair
model.




A Martingale Representation for the WSE

Assume that F is continuous and that the pair (F,p) describes a regular repair scheme.
Let X(x) be the kth ordered value of the set {Xk:k<vj,1<j<n}let

T = min{ X : Y(Xy) =1},

and let J(s) = I(s < T). Then the Whitaker-Samaniego estimator (WSE) can be written

FP(t) =gt —dR) =] (1 - AK(S)) ’

<t

Aw) = /M ;',EZ)) dN(s).

Using Duhammel’s equation (Gill and Johansen, 1989), (F — F)/F can be expressed
as an integral with respect to the martingale M:

(t) T F(t / F(s s) dM(s)-

From this and (1) it follows (F' — F)/F is itself a locally square-integrable martingale with
predictable quadratic variation process given by

F_F\ / (ﬁ(s—)>2 dF(s)
F [ 7 Jog\F(s=)) F(s)Y(s)
This quadratic variation process essentially serves to identify the covariance structure of
the limiting Gaussian processes derived in the next section.

where

Large Sample Results

With the above representation, Rebolledo’s martingale CLT and the methods of Gill(1983)
yield the following result, which extends Theorem 3.3 of Whitaker and Samaniego (1989)
to the whole line.

Theorem 1 Let (F,p) describe a regular repair scheme, with F continuous. Then the
following hold:

(1) Asn — oo,
vi(F~F) B F.B(C) in DJ0,o0),

where B is Brownian motion on [0,00), and

o dF(s)
= AG)FE)




(i) Asn — oo,

\/_IF((F F) 2 BYK) in DJ0,o0),

where B® is Brownian bridge on [0,1], and K = C/(1 + C).

Details of the proof of this theorem are given in HPS. We note here that the proof of
(i) does not require any additional conditions beyond regularity of the repair scheme. This
is in contrast with the analogous result of Gill (1983) for the Kaplan-Meier estimator in
the usual censored survival data model, where some condition on the amount of censoring
is needed. We will see below however, that an additional condition limiting the amount of
imperfect repair is needed to assure convergence of the expression in (ii) when an estimate
is substituted for K/F.

3 Applications

In this section, the asymptotic results of the last section are used to derive large sample
confidence bands for F' and to obtain the limiting distribution of an extension of the
Mann-Whitney-Wilcoxon test statistic to the minimal repair model.

Confidence Bands

The result in part (ii) of Theorem 1 suggests confidence bands based on the distribution
of the supremum of Brownian bridge. It is necessary however to estimate K /F F in order
to construct the bands. Let H be the empirical cdf of the Xj,,, and let K= C’/(l + C),
where C is defined by _
ew=[ LG _
(0,1] H( —)F(s )

—

We would like to have
}_2 -~ D 0 .
\/EF(F —F) 5 B’(K) in D[0,00], as n — o0, (2)

in order to justify asymptotic (1 ~ a) x 100% confidence bands for F of the form
FEVR)FIR,

where A, is the upper oth quantile of the distribution of sup |B%(t)|.
We can show that (2) holds on [0, 7] for any 7 < 7r, but for the complete result, some
additional condition seems to be needed. Using the result of Prop.1, it is shown in HPS

that K/F and f?/f‘ are nondecreasing and that

=

< and 1
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Using this, it can be shown that a sufficient condition for (2) is that

H(rp—) /
orD) — (O,TF)(I p(s)) dA(s) < oo.
This condition requires that p(t) — 1 as t T 77 (at a rate sufficient for the convergence of
the integral), and hence provides a limit on the amount of imperfect repair.

Simulation results for the bands computed over finite intervals (in the case of constant
p) indicate that coverage probabilities are quite good for sample sizes of 50 or more. This
will of course vary with the parameters of the model. Simulations were carried out with
both Gamma and Weibull F, with varying shape parameters, and with various values
of p, various interval lengths, and various nominal confidence levels. As an example, the
following table gives the simulated coverage probabilities for nominal 95% confidence bands
over the interval [0, 4.744] when the underlying F' is Gamma with shape parameter 2. (Note
that 4.774 is the ninety-fifth percentile of Gamma(2).) More extensive tables are provided
in HPS.

n [p=.30]p=.25|p=.10
10 | .9025 .8660 .8710
20 | .9270 9125 9187
30 | .9460 9287 9327
50 | .9515 .9398 .9395
100 | .9528 9540 .9452
200 | .9515 9517 9495

An Extension of the Mann-Whitney-Wilcoxon Test

Using part (i) of Theorem 1, it is also possible to obtain the limiting distribution for
an adaptation of the Mann-Whitney-Wilcoxon two-sample statistic to the minimal repair
model. Here we assume that for ¢ = 1,2, we observe n; BBS processes from (F}, p;), each
until its first perfect repair. In general we wish to test the null hypothesis Hy: F} = F3,
with typical one-sided alternatives specifying [F; dF; > 1/2, and two-sided alternatives
specifying [F dF; # 1/2.

A statistic analogous to the Mann-Whitney form of the Wilcoxon two-sample test
statistic is W, as given by

W = /Fl dﬁ‘g
ES ~ ANQ(S)
= Fi(s)F2(s—) ;
AN§)>O Y(s)

where F; is the WSE, ANi(s) is the number of failures at age s, and Y(s) is the num-
ber of items at risk at age s in the i*® sample. This statistic is a natural estimator
of [FdF;, = P(X, < X,), where X, and X, are independent random variables, with
X; ~ F;. Assuming continuous distributions, P(X; < X;) = 1/2 under Hy, and in the
one-sided case, significantly large values of W provide evidence against Ho in the direction
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of [FydF; > 1/2. For large sample sizes, we have the following result, which is proven in

HPS:

Theorem 2 If F| and F, are continuous, and the pairs (F\,p1) and (F3,p,;) describe reg-
ular repair schemes, and if ny,n; — 00 in such a way that =2~ — A, 0 < X < 1,

1+n2
then 1

1
NETD [W —/Fl dF2] 5N (0, XUf + 1—_)-‘03) ) (3)
where

o2 = 2 /0°° /tooFl(s)F‘l(t)Cl(t)sz(s)ng(t),

0! = 2 /0°° /t°° Fy(s)Fy(t)Ca(t) dFy(s)dFy (2).
Under the null hypothesis, Hy : F; = F = F3,
o3 ~2/ 1)C1(t) (/°° F(s)dF(s )) dF(t) = i “;(( ))dF(S)'

For purposes of testing the null hypothesis in the large sample case, we thus propose

referring the test statistic
1 a2 &2
Z = (W _ -) %, %
2 / (nl o, Ng

to a standard normal distribution, where

-3
- 4[.‘ ]/_{\' dF,(S) =z Z

(3_) 4 AN;(s)>0

nF; (s)Fi(s=) ANi(s)
YZ(s) !

and H; is the empirical distribution of the perfect repair ages in the i** sample.

It is shown in HPS that the o; are consistent, which justifies the use of this test. If
the p; are cons‘rants (see Brown-Proschan (1983)), the above expressions simplify greatly
under Ho. If F; = F;, = F, then H; = F?, and the asymptotic variance in (3) reduces to

1U2+ 1 »_1 1 L1 1
AT 12T A \4d-p)) 1-2\4d—-p2)/)°

The p;’s are of course consistently estimated by their MLE’s, p;, the ratio of n; to the total
number of failures in the i*" sample, and for large samples, the statistic Z’, given by

1/2
- (v-3)/ [y * ]

can be referred to a standard normal distribution in order to test the null hypothesis. Note
also that if py = p, = 1, then we are in the usual i.i.d. two-sample model, the WSE’s
reduce to the empirical c.d.f.’s, and W is just a multiple of the Mann-Whitney form of the
Wilcoxon rank-sum statistic. In this case, the above results yield

(w-3)/la(a)]”  won

in agreement with the usual results for the Mann-Whitney-Wilcoxon test.
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result cf Block, Borges, and Savits concerning the waiting time until the first
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using counting process techniques, the large sample theorems of Whitaker and
Samaniego are extended to the whole line. These results are used to derive
confidence bands for F, and to determine a sufficient condition for their
applicability on the whole line. Simulation results for the bands are provided.
An extnesion of the Wilcoxon two-sample test to the minimal repair model is also
examined.




