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1. Introduction

Given the type of a threat and its attack direction the vulnerability of a target system
(e.g. if a tank) is computed in two steps. First, one computes estimates of the effect of the
threat for a number of attack points. Second, these effects are integrated to obtain the
overall effect. The evaluation of the integrals is done by a summation of the local effects
and the result of the integration measures the overall "vulnerability" of the target.
Depending on the definitions of the local effects and the form of the integrals the computed
result might be a "vulnerable area", a "probability of kill" or another similar averaged
vulnerability indicator. The accuracy of the result depends on the following three parts of
the computing process: the accuracy of the local vulnerability model, the detail and accuracy
of the target description and the accuracy of the numerical evaluation of the integrals. In a
reasonable procedure, these three sources of inaccuracies should be properly balanced. Ihe
present report provides criterions and error estimates that help one to achieve such a
balance. For instance, using the results of this report one can determine if improvement of
any part of the calculations is indicated, or whether a contemplated improvement will have
a noticeable effect on the overall accuracy of the computation.

Usually the numerical evaluation of the integrals is done by defining a computing grid
with square cells in a reference plane normal to the direction of the threat, computing the
integrands at a random point in each cell and approximating the surface integrals by
appropriately weighted sums over the computing cells, The discretization error will
decrease for smaller cell sizes and, therefore the cell sizes should be small. On the other
hand, the detail of the target is finite, and sometimes the target description is quite coarse.
This means, that for a given target there is a bound for the cell sizes in the sense that any
calculations with smaller cells do not change the value of the integral, because in a very fine
net the integrand is constant within most of the cells. Consequently, there is also a bound
for the accuracy of the vulnerability indicators which cannot be improved by refined
numerical integration. That bound depends on the detail of the target description, on the
spacial variation of the response of the various components of the target to the threat, and
on the accuracy of the local vulnerability models. Our task is to find this bound in terms of
easily obtainable input information. The largest cell size that produces the integral value
with the achievable accuracy can be considered as an optimal cell size. Also useful are
accuracy estimates for computations with cell sizes that are larger than the optimum. Then
the accuracy can be improved by sampling at more than one point from each cell, and one
would like to have an estimate of the proper number of samples.

We illustrate some aspects of the problem using a one-dimensional example where the
problem is easily tractable. Let y=h(x) be a piecewise constant function, and let fj be the



sum of lengths of segments where y=hi= constant. Then (see Figure 1)

b c

I= fh(x) dx- fj hj (1.1)
a j-1

Let the values hi have uncertainties which are expressed by spreads 5h. The corresponding
spread of the integral is

C
81= Tfj h, (1.2)

j.1

We compute the integral numerically by subdividing the segment b-a into n equal
elementary segments and sampling the integrand at k random points in each elementary
segment. The average distance between the sampling points is

8 b-a (1.3)
nk

and the integral is approximated by

n-k Y h(xa) , (1.4)

where x,, are the coordinates of the sampling points in the i-th segment. We Lound the
difference between I and I by considering points of discontinuity of h(x). Let {b} be the set
of all those elementary segments which contain at least one discontinuity, and let Ah, be 'he
range of h(x) within the elementary segment j. Then

1 I- 1 - D-= b-n a Y, Ahij (1.5)
nj(ib}

The sample size parameter k does not enter the expression (1.5) for the bound of the
difference, because the x, are chosen at random in each elementary segment.

Next we derive three estimates for the standard deviation r(T) of the approximation T
from the true value 1. Each estimate is based on different assumptions about the integrand
and the arrangement of the sampling points. We show in the Appendix that for a random
arrangement of nk sampling points the standard deviation is bounded by

-r(') < - (hm.-h)(h-hmn) 1/2 b-a 1a -l (h<-(h-~n -;77 - ,h&-mn

where h is the average value of h(x). This estimate only requires thb. the integral I exists
and no other properties of h(x) are used.

A better estimate is obtained if one takes into account the piecewise-constant property
of the integrand. Then the sum (1.4) can be rearranged as follows
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(b-a) Fa, h, (1.7)
j-1

where a, is the fraction of sampling points that fall within the segment fj. The expected
value of aj is fj/(b-a) and the standard deviation of a, is (Ref. 1, p. 168)

a (aj) 1 a (1-a /2 (1.8)

Hence

a(T) = (b-a) o(a) 2 (hj - h)2  = f(l-fj)(hj-1f1). 1.

j-1 I~ 1 =1
For the third formula we assume that the integrand is piecewise constant and that the

n elementary segments are equal. In each elementary segment the k sampling points are
random and we may use eq. (1.6) to estimate the standard deviation of integration over the
segment. Let I, be the integral of h(x) over the i-th elementary segment, h, be the average
value of h(x) within the segment, and ",=(b-a)h,/n. Then, in analogy to eq. (1.6)

) ba (hmii._i)( b-_hin) 1/2 s 1 (1.10)

Hence an estimate of the standard deviation of T is

I() (X2( 1/2 k2a1  i} ) 1/2 (.12(b <_ n %7k (Ah,) I. I
i ({bl}

If n is sufficiently large then the estimate (1.11) is better (smaller) than the estimate (1.9).
Thi- - !s because in the derivation of eq. (1.11) we have used more information about the
computing process.

The number of sampling points should be sufficiently large so that the error of the
numerical integration is smaller than the intrinsic error of the integral. Therefore, one
should chose n such that

D < 61 ,(1.12)

or chose n and k such that, using one of the estimates for a,
or (T) < bi1 , (1.13)

or less than a fraction of 81. The second condition (1.13) is less demanding, because it uses
an estimate of the standard deviation of the integral, whereas the condition (1.12) is based
on a bound of the integration error.

A function step with y-h, and the width t, contributes (h,-ho)t, to the value of the
integral, whereby h0 is the average value of y within the segment t, if the step is left out. It
is not reasonable to include the step into the definition of the function if
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(hi-ho) tj I << 81 (1.14)

or if

I (hj-ho) tj < a(-) . (1.15)

In the example shown in Figure 1 the step of the integrand with the width f5 contributes to
the integral less than 81 (half of the shaded area). Therefore, this step can be deleted
without a noticeable effect on the integral value. This criterion for a deletion or inclusion
of a step into the integrand depends only cn the accuracy of the integrand and is
independent of the integration method. An example of a border case is the step with the
width f 2. Its contribution to the integral is approximately equal to the spread 81 and,

therefore, it should be kept in the integrand.

To capture all relevant parts of the integrand, the distance between sampling points
should be less than the width f of the smallest relevant step of h(x). In terms of the
average distance (1.3) the condition is

b- a < 1 (1.16)
n k 2jf

More rigorous is the condition in terms of the maximum distance between sampling points:

b- a <1 (1.17)n 2

The conditions (1.16) or (1.17) for the number of sampling points are based on the detail of
the function h(x), whereas the conditions (1.12) and (1.13) are based on the accuracy of the
function. Hence, each set of conditions address different aspects of the problem and
supplement each other.

In the remaining part of this report we apply the outlined considerations to the surface
integrals of vulnerability computations. To simplify the analysis we assume that the number
of computing cells or sampling points is large (at least of the order of 100) since this is
usual in applications. The integral formulation of vulnerability indicators is provided in
Seciion 2, where we also discuss the i~iaccuracies of the vulnerability integrals in terms of
the inaccuracies of the predicted local effects. From that discussion, we establish criterions
for the inclusion of (small) additional components into a given target description. Formulas
for the numerical evaluation of the integrals by sampling are given in Section 3. The
section also contains accuracy estimates for the integrals based on the number of sarnftjing
points. In Section 4 we discuss the accuracy of the numerical evaluation of the integrals in
terms of the properties of the integrand. Conditions are derived for the size -f the
integration cells and for the number of samples which insure that the target geometry is
properly taken into account. The accuracy estimates of Section 3 are specialized in
Section 5, where we take into account the piecewise-constant property of the integrand. A
further refinement is provided in Section 6, where also the cellular arrangement of the
sampling points is exploited. In Section 7 we illustrate the application of the results by
presenting an example where the proper cell sizes and!or number of sampling points are
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estimated. A summary of the results and conclusions are given in Section 8.

2. Integral Formulation of Vulnerability Indicators

We consider the vulnerability of a target system, such as a tank with respect to a
threat from a particular direction. To the threat, the target presents an area (a silhouette)
within which the threat might have an effect. The silhouette is the projection of the outline
of the target onto a plane normal to the direction of the threat. We call this plane the
reference plane. In the vicinity of the target the threat is assumed to travel along a straight
path called a shotline. Each shotline is normal to the reference plane and completely
described by the coordinates x and y of its intersection with the plane. If a shotline of an
attacking threat falls within the silhouette of the target then the threat might have a non-
zero effect which we assume can be calculated and which we denote by v(x,y). We further
assume that the effect function v(x,y) is dimensionless and has a val:e bet, een zero and
one. The overall vulnerability of the target to a threat from a direction nornmtl to the
reference plane is obtained by integrating the effect v(x,y) over the reference plane. TIle
effect may be, for instance the probability of kill or the reduction of combat effectivcness,
and the integral over v(x,y) can be either simple or weighted (the latter if an average of v is
computed). The threat might also have a distribution in the reference plane, specified f'r
instance by an aim point and a dispersion. Then thv: vulnerability integri is a weightei
average of v(x,y) with the distribution density of the threat as weight.

We define two generic vulnerability integrals which represent two types (if
vulnerability indicators. Let E be the reference plane, S be the area of the silhouette in E
and let v(x,y) be the probability of kill. We call the first integral the vulnerable area arid
define it by

Vs = fv(x,y) dx dy (2.1)
S

The dimension of Vs is MI2 .

The second vulnerability integral represents an average of the effect fanction v(x,y)
over an averaging area. That area usually is either the silhouette of the target or a
dispersion area of the threat. We assun-.- that the averaging area and the averaging weight
are specified by a weight density function g(x,y) that has the dimension 1,'m2 and is
normalized by

f g (,,Y) dx.V 1 (.2)
E

We define the average vulnerability VA by

V A  f g(x,y) v,(x,y) dx dv , (2.3)
A



where A is the area defined by g(x,y)>O. We introduce a dimensionless weight function
-y(x,y) by the definition

-y(x,y) =g(x,y) • A . (2.4)

Then the average vulnerability is

VA af A Y(xy) v(x,y) dx dy (2.5)
AA

We assume that the function g(x,y) is exactly known, differentiable in A and has a
bounded gradient in A. About v(x,y) we assume that it might contain unknown errors with
absolute values less than a given error bound function bv(x,y). For simplicity, we assume a
symmetric error bound with the property

tv(x,y) <- min { v(x,y), 1-v(x,y) I , (2.6)

so that

0 S v(x,y)-bv(x,y) S v(x,y)-+Sv(x,y) :5 1 (2.7)

The intrinsic error of V. due to the inaccuracies of v(x,y) is bounded by

V= f bv(x,y) dx dy . (2.8)
S

Next, we subdivide the silhouette S in sub-areas F, such that within each F, the effect
function is approximately constant. Often these areas will coincide with presented areas of
target components, particularly in so-called compartment model calculations. In general
they will be extensions, combinations or parts of component projections. Let the F, be
called nodal areas and the correspondinig constant values V'Fj of the effect function be callcd
nodal values of v(x,y). Formally, we define the F, as follows. F,, j=l,...,c is a set of
areas such that FifnF,=O if j-/i, U FjiS and I v(x,y)-FikfjI-avFJ/2 for (x,y) in F,

whereby VFr>O is the average value of v(x,y) in F,, and the AvFj are arbitrary but fixed
constants. We supplement this set with a nodal area F0 which encloses all those parts of the
silhouette and reference plane where V,0=0. In terms of the nodal areas the vulncrablIc
area is

C C

Vs = , fv(x,y) dx dy= , F,- v, (2.9)
i-1 Fj j1

The error bound (2.8) can be further bounded using the F, by

C

Vs !5 Ds =E FJ BVFmax , (2.10)
j=1

where vFjm, , is the maximum value of hv(x,y) in the nodal area FP.
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The nodal value representation (2.9) of the vulnerability integral is not merely an
artifact. Such a representation is natural for compartment model calculations where v(x,y)
is approximately constant within the projections of component silhouettes onto E. Also,
recent high resolution calculations that include spall modeling indicate that v(x,y) likely in
general assumes only a finite number of values. Examples and an explanation of this
property of v(x,y) are given in Reference 2, page 35.

Eqs. (2.8) or (2.10) can be used to determine whether a particular component should
be added to an existing target description. Let the effective presented area of a component
be that part of E in which thi: threat has an effect on the component. In a compartment
model, the effective presented area is the projection of the silhouette of the component onto
E. In a general model, particularly if spall effects are considered, the effective presented
area will be larger than the silhouette. Let Tj be the effective presented area of a

component, i'rJ be the average value of v(x,y) within TI, vol be the average within T,
before the component is added, and ivTjm, , be the maximum of 8v within T,. Then a

reasonable criterion for the inclusion of the component into the target description is
1

Tj * (V TjrJ) I > Ds

or TI. 1 >I(2.11)

The second condition in (2.11) is included to cover cases where the addition of the new
component does not significantly change the value of V., but nevertheless increases the
::.:curacy of the result. The exclusion of such a component would falsely suggest a too
accurat - result.

Corresponding formulas for the average vulnerability VA are as follows.

1vA I A fy(x,y) bv(x,y) dx dy , (2.12)
AA

VA= , (F nA).(')Fj , (2.13)
A j.0

1

8VA 5 DA I (F i A ) • BV (2.14)A =0

The summation in eqs. (2.13) and (2.14) starts with j-O because the nodal area with _Fj =0

must be included in the sum. The total number of nodal areas intersecting with A, e+l, in
general will be less than the number c of nodal areas intersecting with the silhot:ette. The
criterion for the inclusion of a component with the effective presented area T, in the target

description is

- -



TJ-' (-v TJ -(V)OJ} 
D A J (2.15)

and T A [ 8V ITJmx > DA

and 2A

Parts of nodal areas which satisfy the conditions (2.11) or (2.15), respectively, we call
relevan. One can use these criterions to simplify target descriptions so that all parts of
nodal areas are relevant. In particular, the criterions can help to simplify complicated
boundaries of nodal areas. We note that in certain problems there can be other criterions
which justify the inclusion of small nodal areas in a target description. For instance, if the
target contains a large number of irrelevant components which cannot be easily combined
into a few components with simple geometry, and whose combined contribution is relevant,
then one might treat all components as relevant. However, as we shall see later, if the
relevent details are very small, then one needs a very long computing time to capture their
small contributions. Therefore, it is advisable to keep the target description simple,
smoothing out complicated component boundaries and combining small components into
larger and simpler ones. Because only approximate estimates of Ds, DA and of the other
terms in the criterions (2.11) and (2.15) are needed, the estimates can be obtained by visual
inspection of temporary results with few and simple components.

3. Monte Carlo Computation of Vulnerability Integrals

The computation of a value of the effect function v(x,y) typically involves tracing the
shotline with the coordinates (x,y) through the target and evaluating the damage models for
those target components which are encountered by the shotline or otherwise affected, e.g.
by spall. The results from the damage models are aggregated by special algorithms to
obtain the effect v(x,y) of the threat on the target system. Because v(x,y) can only be
obtained pointwise, the vulnerability integrals are computed by discrete approximations.
Usually this is done by defining in the reference plane a square grid, obtaining a value of
v(x,y) for a randomly chosen point within each cell of the grid, and adding the values with
appropriate weights according to eq. (2.1) or (2.5), respectively.

For a general grid consisting of identical cells, the algorithm can be described as
follows. Let C (m2] be the area of a cell in the computing grid and n be the number of cells
within the silhouette. Let (x,,y,) be a point in the i-th computing cell. Then the

approximation of the vulnerable area integral is

n n

VS = C iv(x",Y') = En iv(x"y) (3.1)

where the summation is over the n cells that intersect with the target silhouette. The
approximation of the average vulnerability integral is

-8--



VA = A±Y(X",) V(x,'y) = y(x,,y,) V(xiy,) , (3.2)

where m is the number of cells that intersect with A.

A simple generalization of the algorithms is to take more than one sample of the
integrand from each computing cell. Let k be the number of samples from each cell, let
(x,1,y,) be points within the i-th cell and let v,=v(x,,y,). Then the approximate vulnerable
area integral is

1 n k 1 n k

vs=C-< Xv=S4- v 1 (3.3)
-1 1-1 i-1 1-1

and the approximate average vulnerability integral is

m k m k
A~~X k .,,v a 1'mvk (3.4)

(= 1=1 i,-1 I,-I

Equations (3.3) and (3.4) include as special cases eqs. (3.1) and (3.2).

Estimates of the standard deviation of a numerically computed integral from its true
value are derived in the Appendix. The estimated standard deviation of the approximation
IF, to the vulnerable area integral Vs is

,((V) <- 1 -Z 7-- <- 1 = -27k (35

where s=Vic=(S/n)12 is the side length of a computing cell if the grid consists of square
cells. An estimate of the standard deviation of the approximation IVA to the average
vulnerability VA is

,(V7,A) 5 V = ,V, ,A (3.6)

where F is the largest value of y(x,y) within the intersection of A and S.

The standard deviation estimates (3.5) and (3.6) are general assuming only that the
range of v(x,y) is the interval [0,1] and that the sampling points are random. One can
obtain other estimates by also taking into account the piecewise-constant nature of the
integrand and the cellular arrangement of the sampling points. We shall derive such
estimates in later sections of this report. However, their usefulness is likely restricted to
simple target geometries, because the application of the formulas require an analysis of the
target description.

-9-



4. Cell Size Commensurate with Target Description

In Section 2 we introduced a subdivision of the target silhouette in nodal areas F, with
approximately constant v(x,y) in each area. The proper cell size for the numerical
evaluation of vulnerability integrals depends on the size and shape of these areas. On one
hand, the cells should be sufficiently small to capture complicated boundaries of the nodal
areas. On the other hand, small slender extensions from a nodal area do not contribute
significantly to the values of the integrals. We characterize the smoothness of the
boundaries of nodal areas by a parameter that expresses the fineness of the details of the
boundaries. We loosely define the parameter as the average diameter of the smallest
relevant convex part of the nodal area F and call it the fineness fj of the nodal area F.
(The relevance of parts of nodal areas are discussed at the end of Section 2). The fineness
of the target description is defined as the smallest f:

f = in { fj} (4.1)

In practical applications, the fineness measures fj and f can be estimated by an inspection of
the projection of the target on the reference plane E. The fineness measure depends on the
aspect of the target, on the type of the threat and on the type of the vulnerability model. It
is, therefore, not a constant for a given three-dimensional target geometry description.
However, the order of magnitude of f should be a valid indicator for the smallest diameters
of relevant details in a target. An example of f is discussed in Section 7.

The concept of the fineness measure is important for the representation of target
components in the vulnerability integral approximations (3.3) and (3.4). If the distances
between the sampling points (xd,y,) are larger than the fineness measure then relevant
components of the target description might not be represented in the integrals. Also, if a
cellular sampling point arrangement systematically excludes a set of small components then
the standard deviation estimates (3.5) and (3.6) are not valid. Therefore, it is reasonable to
require that the average distance between sampling points is smaller than a fraction (for
instance, smaller then one half) of the fineness of the target description. On the other
hand, there is no advantage to have a computing grid with average distances between
sampling points much smaller than the fineness measure.

An average distance between uniformly distributed sampling points in a plane can be
defined as follows. Let k sampling points be located in an area A,. We assign to each point
an area Ak/k, represent this area by a circle with the diameter 8, and define 8 as the
average distance between the points. Explicitly, for given sampling area A, and number k
of sampling points the average distance is

8 = _L4 A, 1/2 (42
( iT k )42

For instance, if the computing cells are squares with the side length s, and the number of

samples per cell is k then the average distance between sampling points is
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= sV i = 1.13 s/Vk_ (4.3)

If the grid is triangular with the side length sA then the corresponding formula is

8 = st V/(2 sin 60)/(rr k) = 0.74 s. /N/k" . (4.4)

A reasonable value of the average distance between sampling points is

21-- f (4.5)

This value might be too large if all nodal areas are square-like or circle-like. On the other
hand, real target descriptions characteristically have complicated component projections and
the indicated 8 should be about right for the capturing of relevant slender nodal areas.

For a square grid, eq. (4.5) can be replaced by

s < 0.44 f V (4.6)

or by

k ;2 5.1 f (4.7)

Eq. (4.6) and (4.7) are conditions that the size of square cells and number of sampling
points in each cell are commensurate with the fineness of the target description.

If the integrals are computed by a general Monte Carlo algorithm without a grid
pattern then the condition (4.5) in terms of the number k of samples is

k >16- = 5.s1 -L (4.8)

where S [m2] is the sampling area, i.e. the silhouette of the target or the averaging area A.

5. Integration Accuracy Based on Nodal Areas.

In this section we estimate the standard deviation of the discrete approximations of
vulnerability integrals for the case where the integrand can be represented in terms of nodal
values and nodal areas. First we consider the vulnerable area V.. By definition,

IFs - VS = S lai ('FJ- ), (5.1)

where aj is the fraction of the nk sampling points that are inside the nodal area F. If the
number of sampling points is sufficiently large then a, estimates the probability that a
sampling point falls within the nodal area F,, that is

a1  F (5.2)S
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and the standard deviation of aj is (Ref. 1, p. 168)

( ) n k S --S

Hence the standard deviation of VS is

(¢s = )2- - 1/2 (5.4)

Estimates of bounds for a(Vs) can be obtained by manipulations outlined in the Appendix.

The results are

C$V~ SV s Vrjmi 1
- (7 -2 Fjms ) (5.5)

- 2S- v rjm "- v jmin ) 
<- S T 2

Even the least accurate bound in eq. (5.5) is for c<4 smaller than the general bound (3.5).
If c>4 then eq. (5.4) should produce a better bound than eq. (3.5).

For the average vulnerability V, we have

'VA -VA Xbj(QV) Fj -VA) e (FA), (FFj -v ., (5.6)
j-O j-0

where b, is the fraction of sampling points that are in (FA)j=Fjnf A, and (FA)j/A estimates

the probability that a random point falls within (FA),. The standard deviation of the

estimate (FA), /A is

(FA)j 1 A (FA 1/2 (5.7)

or, because n/n=S/A

( A jV - I r~ F ~ / 5 8

AA (5.8)

Hence

= VA (s - V)2 (FA)j 1 (FA), (5.9)
Ij=O

Bounds for the standard deviation are in analogy to eq. (5.5)
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'Y(VA) 1 N' r V +~~ 2 1(ey_) Fjmax VA)(VA -(V) Fjmin)J 1/2S
-7 _VA,-

1V~ 2/S V (eFmz(VFmU _ (5.10)

Si--V 7T 2

The accuracy estimates in this section are based on a piecewise-constant nature of the

integrand and assume a random distribution of sampling points. We shall see in the next
section that one can obtain smaller estimates if also the cellular sampling point arrangement
is taken into account. Therefore, if such an arrangement is used and the cell size is
commensurate with the target detail then eqs. (5.4) and (5.9) are upper bounds of standard
deviations.

6. Integration Accuracy Based on Cells

In this section, we estimate the accuracy of the discrete approximations of the
vulnerability integrals in the case where the sampling points are arranged in a cell pattern
and the cells are commensurate with the target description.

Let v, be the average value of v(x,y) in the computing cell i. Thcn the exact value of

the vulnerable area integral (2.1) is

VS = C Vi (6.1)
i=1

The difference between the approximation (3.3) and V. is

-V 5  C [ .v', - I . (6.2)

The summation is over all those cells which intersect with the silhouette S. Next, we
subdivide the n computing cells into two groups. Let one group consist of 7 cells that do not
contain nodal area boundaries, and let the set of the corresponding cell indexes be {}. Let
the parameters of the other group (cells containing boundaries) be denoted by b and {b},
respectively. Then eq. (6.2) can be reformulated as follows:

Vs-V i .,, : , (6.3)

The first sum in eq (6.3) is close to zero because by definition the effect function v(x,v) is
about constant within each cell. We assume in the following that the first sum can be
neglected.
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The second sum in eq. (6.3) is

Sb = c (6.4)i({b}

The summation is over the 5 cells which contain component boundaries. Let Av, be the
range of v(x,y) in the cell i. Then ISI can be bounded by

Is I < c Y AVj = ., Y ,A, (6.5)
i({b} iE(bj

A cellular arrangement of the sampling points has advantages only if the cell size s is small
compared to the target description fineness measure f. We therefore assume that
commensurability is satisfied by a large margin:

S << f (6.6)

We now split the sum (6.5) over all boundary cells in partial sums over cells containing the
boundary of each nodal area F,, and over the outer boundary of the integration area S, and
estimate the bound of IS, I by separately bounding each of these partial 'ums. Let Prj be the

length of the perimeter of Fj, Ps be the length of the outer boundary, AvFJ be the
maximum of the absolute value of the discontinuity of v(x,y) across the boundary of Fj,
Avps be the maximum absolute value of the discontinuity across the outer boundary, and
Av. be the maximum absolute value of all discontinuities:

AVP = max {Av} . (6.7)

Let p, be the total length of all boundaries within the integration area:

P, T " 4 F + Ps (6.8)
j-1

The discretization error (6.3) of the vulnerable area is equal to the absolute value of S. and
can be bounded by

i({b} 2 j=PFJ Av,, + Ps Av 5 J (6.9)

and furthermore by

fVs-Vs -5 s pI: AVp < s p. (6.10)

An estimate for the perimeter P.J is

F : 2 1j + f(6.11)
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The formula (6.11) is about right for slender F1 and might be used if the perimeter Ppj is
not available. However, in general estimates of the Pj can be easily determined by an
inspection of the target description.

In a single boundary cell, an estimated bound for the standard deviation of the
discretization is (see Appendix)

S(Sb,) !5 C AV, = 1 Av, (6.12)

The corresponding estimate of the standard deviations of Sb and Vs is

s2 ( 1/2
a(Vs) = o(Sb) - 2 I (Avi)i , (6.13)

2 7 b}

or

XPFJ 1 1/2 s\/a -c s -A( )6.14or(V) = pj (Av 1 1)2 + ps (Avp5) 2  S 3 2 (P) 1 2 AV (6.14)

Eqs. (6.13) and (6.14) are alternatives to eqs. (5.4) and (5.5). In order to compare both
sets of formulas we use the relation s- V= " n and obtain

0 - s 3/2 (P) 12  - 1 s 3'4 W1/2 Ave (6.15)
(Vs) -j-2-- A = 1/4 2 "

Thus, for sufficiently large n the estimates (6.13) or (6.14) are smaller than the
estimates (5.4) or (5.5) that do not take into account the cellular arrangement of sampling
points.

We now consider the average vulnerability integral (2.5). Let its exact value be

VA = A V) (6.16)

where the summation is over the m cells that intersect with A. The difference between the
discretization (3.4) and VA is

VFA -VA = - ~1 1 (6.17)

Within each computing cell the difference is bounded by
VA -VAI (VA-i+ -Y, Av, (6.18)

where 7, and -, are average values of v(x,y) and -y(x,y), respectively, in the cell i, and Av,
and Ay, are the corresponding variations. Let {A} be the set of cell indexes of cells that
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intersect with A. The first term in eq. (6.18) provides the sum

DIA = A m Y' ] i{A} (6.19)

The second term in eq. (6.18) contributes nothing if the cell is inside a nodal area. For cells

containing nodal boundaries, we can estimate the total contribution to the difference VA -VA

by using the same steps as for the accuracy estimates of V.. The only important difference

is that all perimeter lengths and maxima pertain to the averaging area A instead of S. We

indicate this by placing a tilde over the corresponding symbols. The result is

D 2 A~ ' j Avs ...L - ,A Y A irf + PA lipA '6VA ), (6.20)
i-i j-O

where 'I, and -YA are the largest values of 'y(x,y) on the boundaries P., and pA,

respectively. Eq. (6.20) can be bounded further by

D2 L pX- -Y, Ap Y s (6.21)

where p4 is the total length of boundaries within A and -y is the largest value of 'y(x,y) on

all boundaries. Combining the estimates DIA and D 2A one obtains, for instance the bound

I A -sVA 2MaxIVAI + p A-- p (6.22)
i({A} A

or some similar expression based on some of the forms of DIA and D2A. In order to expose

the trend of the estimate, we introduce the quantity -y' by the definition

(6.23)

For linear -y(x,y) it approximates the absolute value of the gradient of y in the cell i. Then
eq. (6.22) can be reformulated as follows

IVA- VA 1 S max [ IVf ]-- + y, A{ , , (6.24)
(i((A} A)II

which shows that the estimate of the difference is proportional to the cell size s.

To obtain the standard deviation of VA we follow the same steps as for the derivation

of eqs. (6.12) through (6.15). The result can be formulated by

(Y(VA) ! -- max [v Ay] 2 + ((6.25)
i kA H{A} ' 4 k A 2  ,

or in one of the following equivalent forms
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11/2

a(0A) : V 7A I max + (s .,(6.26)rkN i((AJ 4 A'

((Vi - 1n I({A} [/ NlP+ A Amax)2 
)• (6.27)

The estimate (6.27) is smaller than (5.10) if n is sufficiently large.

The estimates in this section presuppose small cell sizes (s<<f) whereas the estimates
in Section 5 depend only on the number of samples. If the sample number n is increased
then eventually the estimates in this section become better (smaller) than those of Section 5.
If n is not very large then the estimates of Section 5 might be smaller. If there is a
difference then in general one should use the smaller estimate. The estimates at the end of
Section 3 are most conservative, because they do not postulate any properties of the
integrand or sampling point arrangement. On the other hand, they are very simple to
calculate and might be the only practical formulas if the target description is complicated.

7. Application Example

In the previous sections we have derived a number of accuracy estimates and criterions
for a rational choice of the numerical integration method and of the level of detail in target
description. In this section we illustrate the application of these results with a simple
artificial example. We have chosen an artificial example to have a clear presentation of the
principal aspects of the criterions. In a real life example one would have to discuss the
possibly complicated details of the target. Such discussions are necessarily lengthy and do
not contribute to the understanding of the method.

Table 1. Sizes and Vulnerabilities of Nodal Areas.

j F [mJ p (m] f (m] " 8V

1 3.00 11.00 0.5 0.05 0.05
2 1.57 5.14 0.8 1.0 0.0
3 1.10 4.20 1.0 0.8 0.05
4 5.33 19.34 0.15 0.4 0.05

5 1.00 40.0 0.05 1.0 0.0

2t 2.57 45.14 0.05 1.0 0.0
4t 4.33 59.34 0.15 0.4 0.05

S = A =11m2 , ps = 15m,

p= 27.34 m, f = 4 =0.15 m,

P2:t = 67.34 m, A = f2= 0.05 m.

Figure 2 shows the projection of a target description onto the reference plane. The
corresponding numerical data are listed in Table 1. We shall use these data to compute the
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average vulnerability whereby the averaging is over the whole silhouette. (Hence, A=S
and y -"1). The first four entries in the table contain the parameters of the four nodal areas
shown in Figure 2. The last three entries we shall discuss later. Using the data for
j=-1,...,4 we compute with eqs. (2.13) and (2.14) the average vulnerability VA of the target

consisting of the first four components

VA =0.430, (7.1)

and the corresponding intrinsic spread DA of VA:

DA = 0.043 (7.2)

The commensurate average distance between sampling points equals 0.075 m
according to eq. (4.5). If a square grid is used with one sampling point per cell then the
side length of the cell should be less than 0.06 m (see eq. (4.6) ). If the side length is
0.1 m then, according to eq. (4.7), one should take two samples from each cell. However,
the criterions based on the target fineness measure implicitly assume that the fineness is
typical for the target description and that the nodal fineness measures are diameters of
relevant areas. In the present example, the fineness is determined by the width of the
isthmus between the nodal areas F2 and F3. It is obvious that a failure to represent the
isthmus in the vulnerability integral would not significantly affect the average vulnerability.
Therefore, a better value for the fineness measure is f=0.5 m which approximately
represents typical diameters of the narrow parts of the nodal areas if the isthmus between
F2 and F3 is neglected. Then the commensurate cell size according to eq. (4.6) should be
less than 0.2 m, that is, a cell size of 0.1 m is adequate.

We test the relevance of the isthmus by using eq. (2.15) and assuming that the area of
the isthmus is added to F2. (Adding to F3 has a smaller effect). The effect of this
replacement on the average vulnerability is less than

T - ( V2 - V4 ) (0.15.0.5). .0.6 = 0.0041 , (7.3)

A 11

which is much smaller than the intrinsic error DA of VA.

Let the cell size for the numerical integration be s=0.1 m, and let the number of
samples from each cell be k=1. Then the estimate (3.6) for the standard deviation of the
numerically computed average vulnerability IVA from the true value VA is

Cr(VA) < -. (r - VA) VA] = 0.1./0.5700.430 = 0.0172 (7.4)

which is about 40% of the intrinsic error DA. More accurate are the estimates (5.9) and

(6.26). With eq. (5.9) we obtain

[(--v,),EL A 0.0858.s, (7 5)
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where we have used the relation \/n=V/S/sVT/s. This estimate shows that an
integration with the cell size s=0.1 m is adequate because the standard deviation of the
numerical integration is only about 20% of the intrinsic error DA of the average

vulnerability, eq. (7.2). Even a cell size s=0.2 m is sufficiently accurate in this example
and would require only a fourth of the computing time.

The first term in the standard deviation estimate formula (6.26) equals zero, because
in our example -y is constant and A-y,=0. The second term yields for s=0.1

-(VA) S3/2 ([)l, 2 v M "2. 3 11 0.75 = 0.1782-s3/2 =0.0056 . (7.6)

Thus, the more accurate formulas yield in this example estimates that are smaller than the
general estimate (7.4) by a factor of 0.5 to 0.3.

The bound of the error of the numerical integration can bc corrnuted using eq. (6.22):
V A_ VA S P . - 27.34 .0.75 - 1.864"s (7.7)

A 11

Th2 more accurate eq. (6.20) proJuces

A - V A prAVPFj + Pstpvs J- .-2.27 .688 = 1.258"s (7.8)

For s-0.1 we obtain a bound that is three times as large as the intrinsic error DA of VA.

Therefore, if guaranteed error bounds are important theni the cell size s should be about
0.03 m. However, because the best estimate of the standard deviation of VA is only about
13% of the intrinsic error DA, the large estimate of the bound likely is too pessimistic and

can be ignored.

We now assume that the target contains in addition to the first four components a very
sensitive fifth component with a small diameter (e.g., a fuel line), and determine whether
that component should be included in the target description. Let the effective diameter of
the component be 2 cm, its length be 10 m, and let it be located in the component area 4.
The presented length of the line is rather large: it is two times as long as the horizontal
dimension of the silhouette and about three times as long as the length of the area j=4.
We use eq. (2.15) and estimate the effect of the additional component on the average
vulnerability The presented area of the component is Ts=0.02-10=0.2 m2 and

Ts -1 - (vs-v,) = 0 .2 .L. 0 .6 = 0.011 . (7.9)

A 11

This is about one fourth of the intrinsic error. Therefore, the component is not relevant
and the inclusion of such a component in the target description is a waste of resources. On
the other hand, if such a component is already present in the target description, then it can
be ignored in the sense that the cell size need not be made commensurate with the fineness
measure of the component.
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To have an example where a change of the target description is indicated we assume
that the additional fuel line has an effective diameter of 5 cm and a length of 20 m. It is
listed as the fifth component in the Table 1. Its effect equals 0.055 and is about the same as
the intrinsic error, eq. (7.2). (Also, the effective presented area of the line is formidable: it
is about the same as the area F3 or about 10% of the silhouette). Because the fifth
component is assumed to be located in the nodal area j=4, the area and its perimeter must
be modified. We assume for simplicity that the fineness measure f4 is not changed, and list
the other new parameters of F4 in the line j=4t of Table 1. Because Vs=V2 , the new
component belongs to the nodal area F2 the parameters of which are changed and listed in
the line j=2t. Finally, the total length of nodal area boundaries P1 is increased to p,, and
the new fineness measure of the target description is ft=f5 =f 2t. The new table of the
target description now consists of the entries j= 1, 2t, 3 and 4t.

Using the modified table, one obtains for the average vulnerability

VAt = 0.485. (7.10)

Hence, by adding the fuel line to the target description the average vulnerability is
increased by 0.055. The intrinsic spread of the new result is

DAt = 0.038. (7.11)

The spread DAt is smaller than DA, because the added component has an error free eff tL.
function value v, 1.

The standard deviation of VAt is, if computed with eqs. (3.6), (5.9) or (6.26),

respectively,

o(VA- o.i.V I o15 0.0151 (7.12)V7iT

Cr(VA0) - 0.3093 - 00933 0.0093 (7.13)
T 3/2 .* 67. 0.0097.3 . 7..2

(VA) < s'2/13 0.75 = 0.2798-s3 ' = 0.0088 (7.14)

Thus, the cell size s=0.1 m is adequate for the modified target in the sense that the ic:.ult

of the numerical integration likely will be within the intrinsic spread of the avcrag'c
vulnerability, and that the standard deviation of the integral is less than 209 of the
vulnerability increase 0.055 due to the new component-

Next we compute estimates for the bound of the difference betwLen VA, and VA,.
Using eq. (6.22) one obtains

IVAt - VAt s6 7.3,I 0.75 - 4.591. . (7.15)11

and, with the more accurate eq. (6.20).

- 20 -



VAt - VAt [ 3.440.s . (7.16)

Therefore, to guarantee a numerical integration accuracy better than the effect of the fifth

component one needs a cell size of about 0.055/3.440=0.016 m. This is about the same as

the commensurate cell size which is 0.020 m according to eq. (4.6). For the cell size

0.02 m, the number of cells is about 25 times larger than for s=0.10 m. We note in passing
that sampling of 25 random points per cell results in the same increase of computing time

and a substantial reduction of the standard deviation estimate but does not guarantee that
the effect of the fifth component is correctly computed, because the random sampling points
might not fall within the projection of the component.

In summary, a cell size of 0.1 m with one random sample per cell is adequate for the
computation of the average vulnerability. Likely even the effect of the (long and thick) fuel
line (the fifth component) will be correctly determined. However, because the
commensurability condition is not satisfied a detection of the effect of the fifth component
is not guaranteed. If a guaranteed computation of that effect is important then the cell size
must be reduced at the cost of a corresponding increase of the computing time by a factor
of 25 or more.

Finally, the example illustrates the tediousness of the application of the theoretically
better formulas for error estimates. Usually, the simple standard deviation estimate,
eq. (7.4) or (7.12), will suffice to establish adequacy of the numerical integration, and a
detailed analysis of the target description will not be necessary. The significance of the
more accurate formulas is mainly theoretical, showing that a cellular point arrangement is

indeed better than random sampling.

8. Summary and Conclusions

We considered in this report the computation of target system vulnerabilities by

numerical integration of local effect functions over a reference plane. Accuracy is affected
by three sources of errors: an "intrinsic" error caused by inaccurate models of component
response, an error caused by inadequate target geometry description and a numerical
integration error. In a reasonable algorithm the magnitudes of these three errors should be

of the same order, because the final accuracy is dominated by the largest error and a
reduction or elimination of one or both of the smaller errors does not change the order of
magnitude of the total error. In this report, we assume as given the "intrinsic" error which
is determined by the accuracies of component vulnerabilities. Errors from the other two

sources can be controlled by proper choices of target description detail and numerical
integration procedures, respectively. Error estimates provided in this report help one to
make such choices.

We assume that the integration is done with a Monte Carlo method as follows. First.
the integration area is overlaid with a computing net consisting of square cells with the cell
side lengths s=0.1 m. Next, the integrand is computed at k random sampling points in each

computing cell, and the integral is obtained by weighted adding of the sampled integrand
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values. The usual computation is done with k= 1 sampling points from each computing cell.

The following particular aspects might be treated based on the results presented in this

report:
(a) Estimates and bounds of the overall accuracy of vulnerability calculations.
(b) Relevance of particular components.
(c) Rational choice of computing mesh based either on the fineness of the target

description or on the achievable accuracy.
Formulas which may be used to address these problems are listed in Table 2 by application
area.

Table 2. Numbers of Formulas by Application.

Applicationi Vulnerable Average
area vulnerability

Intrinsic error (2.8), (2.10) (2.12), (2.14)

Standard deviation (3.5), (3.6),
of integral (5.4), (5.5), (5.9), (5.10),

1 (6.13), (6.14), (6.15) (6.25), (6.26), (6.27)

Bounds of integration (6.5), (6.9), (6.10) (6.19), (6.20),
error ..... (6.22), (6.24)

Component relevance (2.11) (2.15)

Commensurate (4.6)
mesh size

Three general conclusions can be drawn from the discussions in this report. First, a
statement about the computing cell size. The standard deviation of the Monte Carlo
computation of the vulnerability averaged over the silhouette is (see eq. (3.6))

U'C A) - 2 "S

Assuming S= 10 m2 as typical for the order of magnitude of an armored vehicle silhouette,
and setting s=0.1, one obtains

cr(VA) < 0.1 6.s = 0.016

Hence, for a cell size of s=0.1 m the standard deviation of the integral is of the order of
the second digit of the average vulnerability. This is likely less than the intrinsic error of
the average vulnerability VA due to model inaccuracies and, therefore, a cell size of 0.1 m is

adequate for the computation of directional average vulnerability of a typical tank.

The second conclusion pertains to the importance of detail in the target description.
Minute details are necessary if one wants to predict the effect of a single shot on a
particular target. For any average vulnerability which is defined by an integral over an area
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in the reference plane, the contribution of a detail is directly proportional to the relative
size of its presented area. If the intrinsic inaccuracy of the average vulnerability indicator is
of the order of 5%-10%, a typical value, then any detail with an effective presented area
of less than 10% of the averaging area is suspect of not being relevant. (The effective
presented area is defined as that part of the reference plane where the threat has an effect
on the component, see page 7). Such a detail might be removed from the target description
without penalty as shown in the example in Section 7. However, the removal should be
judicious, because a combination of several irrelevant components might well be relevant.
On the other hand, if one wants to investigate the effect of a small detail of the target by
comparing the values of the corresponding vulnerability integrals, then the mesh size must
be commensurate with the detail. (A simple increase of the number k of points per cell
does not guarantee that the effect of a detail is correctly computed). This can increase the
computing times by orders of magnitude unless the algorithm is arranged such that a fine
net is used only in the area of the detail.

Finally, for a piecewise constant integrand, cellular arrangements of sampling points
theoretically yield more accurate results than random sampling if the cell size is much
smaller than the fineness of the target description.
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LIST OF SYMBOLS

A - area of averaging in the reference plane E, m 2 ,

{A} - set of cell indexes of cells intersecting with A,
a1  - fraction of sampling points in the nodal area F1 , dimensionless,
{b} - set of cell indexes of cells containing boundaries of nodal areas,
h - cardinality of {b}, dimensionless,
C - cell size in computing grid, m 2,

c - number of nodal areas within the silhouette S, dimensionless,
DA - bound of 8VA, dimensionless,
D s  - bound of 8V,, n2 ,

E - reference plane normal to the direction of threat,
e - number of nodal areas within the averaging area A, dimensionless,
F - nodal area j, me,

(FA)j - intersection of F, with A, M 2 ,

f - fineness of the target description, m,
fs - fineness of the description of the nodal area F,, m,

g(x,y) - density of averaging weight, M - 2,

k - number of samples in a computing cell, dimensionless,
m - number of cells intersecting with the averaging area A, dimensionless,
n - number of cells intersecting with the silhouette S, dimensionless,
)h - total length of boundaries within the silhouette S, m,
PIA - total length of boundaries within the averaging area A, m,

PA - perimeter of the averaging area A, m,
PFj - perimeter of the nodal area Fj, m,

Ps - perimeter of the silhouette S, m,
S - area of target silhouette in the reference plane E, mi2 ,

s - side length of a square cell in a computing grid, m,
Ts  - effective presented area of a target component, m 2 ,

{t} - set of cell indexes of cells completely inside a nodal area,
I - cardinality of {t}, dimensionless,
VA - average vulnerability, dimensionless,
VA - approximate average vulnerability, dimensionless,
8VA - bound of error of VA due to error of v(x,y), dimensionless,
Vs  - vulnerable area, M 2 ,

V S  - approximate vulnerable area, m 2,

8Vs  - bound of error of Vs due to error of v(x,y), m2 ,

v(x,y) - effect of a threat impinging at (x,y), dimensionless,
vit - sample v(x,,,y 1 ), dimensionless,

V Fj - nodal (average) value of v(x,y) in the nodal area F1 , dimensionless,

v T' - average value of v(x,y) in the effective area T, dimensionless,
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' -average value of v(x,y) in cell i, dimensionless,
; oj - average value of v(x,y) in T, without the component, dimensionless,
AvI - discontinuity of v(x,y) in cell i, dimensionless,
AvP - maximum discontinuity of v(x,y), dimensionless,
A Vp - maximum discontinuity of v(x,y) in A, dimensionless,
AV,, - maximum discontinuity of v(x,y) on PA, dimensionless,
AVpFj - maximum discontinuity of v(x,y) on Prj, dimensionless,
A 7jFJ - maximum discontinuity of v(x,y) on PFJ in A, dimensionless,
AvPS - maximum discontinuity of v(x,y) on Ps, dimensionless,
8v(x,y) - error bound of v(x,y), dimensionless,
8 vFjma. - maximum value of bv(x,y) in F,, dimensionless,
BVrJmA - maximum value of bv(x,y) in T,, dimensionless,
x,y - Cartesian coordinates in the reference plane E, m,
1' - largest value of -y(x,y) within A n S, dimensionless,
y(x,y) - normalized density of averaging weight, dimensionless,
.YP - maximum of -y(x,y) on nodal boundaries, dimensionless,

Yi/j - sample -y(X, 1,y,), dimensionless,
-Y - maximum y(x,y) on the outer boundary, dimensionless,

'YpA - maximum y(x,y) on the perimeter PA, dimensionless,
YpFj - maximum -y(x,y) on the perimeter PFj, dimensionless,

%,s - maximum -y(x,y) on the perimeter Ps, dimensionless,
A-Y, - absolute variation of y(x,y) in cell i, dimensionless,
(jv), - average va!ue of y(x,y)v(x,y) in cell i, dimensionless,

V___) Fj - average value of -y(x,y)v(x,y) in the nodal area F,, dimensionless,
('yv).j - average value of -y(x,y)v(x,y) in the component area T,, dimensionless,
(-yv) 0j  - average value of (yv) in area T,, without the component, dimensionless,
[-YV]Pjma -% maximum value of [-ybv] in F,, dimensionless,

[Y8VITJma - maximum value of [y8v] in T,, dimensionless,
-Y - approximate I grad y I in the cell i, 1/m,
8 - average distance between sampling points, m,
U(WA) - estimated standard deviation of VA, dimensionless,
a(Vs) - estimated standard deviation of Vs, m2 .
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Appendix. Estimate of Monte Carlo Standard Deviation.

Let h(x) be integrable over the x-interval [a,b], and let it have the range [hmig,hmaj.

Let

b

bh= Iafh(x) dx (A.1)
a

We estimate h by chosing k random points x E[a,b] and computing the sample mean
k

Hk = 1 7 h(xi) (A.2)
fj=1

The expected value of Hk is h and an estimate of the variance of the sample mean H is

(Ref. 1, p. 147)
1k k

VrH Var(h(xj))= 2 (h(x ) - H,)2

Var(Hk) = k j

k
- -- h2(xj)- -k' = (A.3)

i-I
k

k 2 (h(Xj) -h J 2.) (Hk - h..)' •

A simple upper bound of Var(Hk) is obtained by taking the largest term in the sum:

Var(Hk) !- I max [h(xj)-Hk]2 -- max { (h.. -H) 2, (Hk -hmif) 2 } (A.4)
k j k

A generally more accurate bound is

1 (h..-Hk) (H&-hm.) =
--..(h hma- 2min) (H hmin) ' .(Ht~ Jmi)2=(A5

k

I (h(xj-hmi)(hma-min) - (A.k5)

j-1

To show that U is an upper bound of Var(Hk) we compute the difference

D = Var(Hk) - U = (h(xj)-hmi) 2 - (h(xj)-hmn)(hm..-hmn)j. (A.6)
j=1

Eq. (A.6) shows that D is in general negative and vanishes only if the range of h(x) is
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restricted to the set {h.i.,h..}. Therefore,

Var(Hk) 2 1- (hm..IHk)(Hk-hmI.)! l " (h. _zhm,.) 2 , (A.7)
k k 4

since Hk can only have values within the interval [hminhmaj.

The standard deviation of a Monte Carlo calculation thus can be estimated using
eq. (A.4) by

11 ,)( .S
a(Hh) : . max { hm -Hk, Hk- hmin ! s I (hma hmi ) I (A.8)

or, using the more accurate bound (A.7) by

a(Hk 2S 1 (hh...HA-hkh,., )1) (A. 9)

These formulas are not restricted to integration in one dimension, because we have only
assumed integrability and used the maximum and minimum properties of h(X). Therefore,
the same formulas apply to the calculation of integrals in any dimension, in particular to the
surface integrals in vulnerability analysis.
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