
August 1989 Report No. ST.AN-CS-89-1279

00 New Heuristic Algorithms for
V -Efficient Hierarchical Path Planning

0
Nic

CT E by
tI 5 1990

David Zhu and Jean-Claude Latombe

Department of Computer Science

Stanford University

Stanford, California 94305

S04 04 079

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

FZ; ApprovedREPORT DOCUMENTATION PAGE oO. 0704-0Io M

la REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE C ,>7.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Stanford University (if applicable)

6c- ADDRESS (City, State, and ZIP Code) 7b- ADDRESS (City, State, and ZIP Code)

Stanford, CA 94305

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION DARPA/CIS/CIFE (if applicable) DAAA21-89-C-0002/Latombe Seed Res./Latombe

Bc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS tr'

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO.

I I TITLE (Include Securgty.Ctassif ~tion).New HeurlsiLc KAgorithms for Efficient Hierarchical Path Planning

12. PERSONAL AUTHOR(S)
David Zhu and Jean-Claude Latombe

13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

research FROM TO 89-8-21 42
16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

19 ABSTRACT (Continue on reverse if necessarv and identify by block number)
) One of the ultimate goals of robotics research is to create autonomous robots. Progress toward this

goal requires advances in many domains, including automatic motion planning. The "basic problem" in
motion planning is to construct a collision-free path for a moving object among fixed obstacles. Several
approaches have been proposed, including cell decomposition, retraction, and potential field. Neverthe-

less, most existing planners still lack efficiency, or reliability, or both. In this paper, we consider one of
the most popular approaches to path planning: hierarchical approximate cell decomposition. We propose
a set of new algorithms for constructing more efficient and reliable path planners based on this general
approach. These algorithms concern the hierarchical decomposition of the robot's configuration space
into rectangloid cells, and the search of the connectivity graphs built at each level of decomposition. We
have implemented these algorithms in a path planner and experimented with this planner on various
examples. Some are described in the paper. These experiments show that our planner is significantly
faster than previous planners based on the same general approach. O , , .- - -

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

M UNCLASSIFIED/UNLIMITED 0 SAME AS RPT 0 OTIC USERS unclassified
22a NAM OF RONSOLE INDIVIDAL"

2 2 b TELEP ONb(Include Area Code) 22c OFFICE SYMBOLujean;l aucae Lac e 41P-7300350 7
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

S/N 0102-LF-014-6603

7

New Heuristic Algorithms for

Efficient Hierarchical Path Planning

David Zhu and Jean-Claude Latombe
Robotics Laboratory, Computer Science Department

Stanford University

Abstract: One of the ultimate goals of robotics research is to create autonomous robots.

Progress toward this goal requires advances in many domains, including automatic motion
planning. The "basic problem" in motion planning is to construct a collision-free path for
a moving object among fixed obstacles. Several approaches have been proposed, including
cell decomposition, retraction, and potential field. Nevertheless, most existing planners still
lack efficiency, or reliability, or both. In this paper, we consider one of the most popular

approaches to path planning: hierarchical approximate cell decomposition. We propose a set

of new algorithms for constructing more efficient and reliable path planners based on this

general approach. These algorithms concern the hierarchical decomposition of the robot's

configuration space into rectangloid cells, and the search of the connectivity graphs built
at each level of decomposition. We have implemented these algorithms in a path planner

and experimented with this planner on various examples. Some are described in the paper.

These experiments show that our planner is significantly faster than previous planners based
on the same general approach.

Acknowledgements: This research was funded by DARPA contract DAAA21-89-C0002 (Army),

CIS (Center of Integrated Systers), and CIFE (Center for Integrated Facility Engineering).

.1 Introduction -.

One of the ultimate goals of robotics research is to create autonomous robots. Such
robots will accept high-level descriptions of tasks and will execute them without
further human intervention. The input descriptions will specify what the user wants
done, rather than how to do it. Progress toward this goal requires advances in many
domains, including automatic reasoning, perception, and real-time control. One of
the key topics in reasoning is motion planning. It is aimed at providing robots with -

the capability of deciding which motion commands to execute in order to achieve 0
specified arrangements of physical objects. During the last ten years, it has emerged
as a major research area [Lozano-Perez, 1983] [Schwartz, Hopcroft and Sharir, 1987].

The "basic problem" - planning a collision-free path for a moving object among &P .,4 "

fixed obstacles - has attracted a lot of attention. Several approaches have been
proposed, e.g.: exact cell decomposition [Schwartz and Sharir, 1983], approximate

:11e

cell decomposition [Brooks and Lozano-Prez, 19831, retraction [O'Dinlaing, Sharir
and Yap, 1983], potential field [Khatib, 19861 (Khosla and Volpe, 1988] [Rimon and
Koditschek, 19881. Most of the existing methods, however, still lack efficiency, or
reliability, or both, in practical cases.

In this paper, we consider one of the most popular approaches to motion planning:
hierarchical approximate cell decomposition. It was first introduced in [Brooks and
Lozano-P6rez, 1983], with subsequent contributions by other authors (e.g., [Laugier
and Germain, 1985] [Faverjon, 1986] [Kambhampati and Davis, 1986]). We propose
a set of new algorithms for constructing more efficient path planners based on this
approach. We have implemented these algorithms in a planner and experimented
with them on a variety of examples. Taking into account the relative speed of the

computers, our planner is significantly (approximately 10 times) faster than previous
planners using the same approach. Like other path planners based on cell decomposi-
tion, our planner generates a sequence of cells, which we call a "channel". Hence, the
robot does not commit itself to a single path at planning time, so that it can adapt its
path at execution time, using, say, a potential field method for avoiding unexpected
obstacles. We have implemented this approach on an actual mobile robot moving in
a time varying office environment [Choi, Zhu and Latombe, 1989].

The hierarchical approximate cell decomposition approach consists of decomposing
the configuration space of the moving object into rectangloid cells at successive lev-
els of approximation. Cells are classified to be EMPTY or FULL, depending on
whether they lie entirely outside or entirely inside the obstacles. If they are neither

EMPTY, nor FULL, they are labelled MIXED. At each level of approximation, the
planner searches the graph of the adjacency relation among the cells for a sequence
of adjacent EMPTY cells connecting the initial configuration of the robot to the goal
configuration. If no such sequence is found, it decomposes some MIXED cells into
smaller cells, label them appropriately, and searches again for a sequence of EMPTY
cells. The process ends when a solution has been found, or it is guaranteed that no
solution can be found, or MIXED cells are smaller than some prespecified size.

Most motion planning approaches have their own advantages and drawbacks, which
have to be weighted in function of the context in which they are considered. Never-
theless, the hierarchical cell decomposition approach presents a rather unique combi-
nation of attractive features. It is relatively easy to implement even when the moving
object can both translate and rotate. It is reasonably efficient when the number of
degrees of freedom of the moving object is small, and parallelization is possible for
achieving better performances. It is complete under reasonable assumptions, if we
accept no upper bound on the worst-case time complexity, and "resolution-complete"
otherwise. Finally, as mentioned above, it produces a channel, which leaves some
freedom at execution time, for instance, to optimize dynamic behavior and avoid

2

unexpected obstacles.

However, despite the conceptual simplicity of the main two steps of the approach - cell
decomposition and graph searching -, their efficient implementation raises delicate
questions not thoroughly addressed in previous publications. While we were imple-
menting and experimenting with a planner for a mobile robot, we found out that
efficiency can be sharply increased by shifting from naive answers to these questions,
to more sophisticated ones. In this paper, we present in detail the new algorithms
which we have developed, and we report on our experimentation with the implemented
planner.

The problem of decomposing a MIXED cell is to maximize the volume of the EMPTY
and FULL cells resulting from the decomposition, in order to make it possible find-
ing a path (or the absence of path) as quickly as possible. In particular, the blind
2"-tree (e.g., quadtree, octree) decomposition technique has the drawback of decom-
posing many MIXED cells into smaller MIXED cells. We propose a new "constraint
reformulation" technique, which provides better results than earlier decomposition
techniques. It consists of approximating the obstacles intersecting with the MIXED
cell to be decomposed by a collection of rectangloids, and computing the complement
of these rectangloids in the cell. Two types of approximation are used, "bounding"
and "bounded" approximations. The first is used to produce EMPTY cells, the sec-
ond to produce FULL cells.

The problem of graph searching is to take advantage of unsuccessful search work
done at lower levels of approximation, since most of the search graph remains the
same from one level to the next (only the portions of the graph, which correspond
to decomposed MIXED cells, are modified). We propose a set of search techniques
based on appropriate representation of the search graph and on the recording of
failure conditions. These techniques, inspired from those implemented in dependency-
directed backtracking systems [Stallman and Sussman, 19771 [Latombe, 19791, avoid
the path planner to run into the same mistakes several times.

The paper consists of four sections, in addition to the introduction and th, conclusion.
In Section 2 we review the concepts underlying the hierarchical cell dr c:mposition ap-
proach and introduces the necessary terminology. In Sections 3 ar.i 4, we investigate
the cell decomposition and graph searching problems, respectively, and we describe
in detail the new algorithms which we have developed. In Section 5 we present some
of the experiments which we conducted with the implemerted planner.

3

2 Background and Overview

2.1 Configuration space

Let us consider a rigid object A moving in a Euclidean space W = RN - called the
workspace - among fixed obstacles Bi, i = 1, ... ,q. Both A and the 8,'s are closed
regions in RN.

A standard. Cartesian coordinate frame, denoted by r w, is embedded in WV. Another
Cartesian frame, denoted by .FA, is embedded in A. The origin of .FA, denoted by
OA, is called the reference point of A.

A configuration of A is a specification of the position and orientation of 'T A with
respect to .Fw. The configuration space of A is the space, denoted by C, of all the
possible configurations of A. The unique configuration where FA and rV coincide
is called the reference configuration of A. The subset of W occupied by A at
configuration q is denoted by A(q).

The obstacles B,'s map in C as closed regions denoted by C13 and called C-obstacles.
These regions are defined by:

CBi = {q E C / A(q) n 13, 0}.

The region:

Cf 7ee = C - U cM,
iE[1,q]

is called the free space. A collision-free path (more simply, a free path) is any
continuous map r: [0, 11 -- * Cfr.e.

In this paper, we consider the case where A is a two-dimensional object, which trans-
lates and rotates in W = R2 . In this case, C is a manifold diffeomorphic to R 2 x S' ,

where S' denotes the unit circle [Spivak, 1979]. We parameterize a configuration in
this manifold by a triplet (x, y, 0), where z, y E R 2 are the coordinates of OA in ,
and 0 E [0, 2ir) is the angle (modulo 27r) between the x axes of J-w and -.FA.

2.2 C-obstacles in Polygonal Case

Throughout the paper, both A and the 1i's are polygons. Under this condition,
the cross-section of each CEi at any orientation 0 is also a polygon defined by (see
[Lozano-Prez, 19831):

C1, = BE A(O, 0, 0)

where A(0,0,O) denotes the region occupied by A at configuration (0,0,0) and & is
the symbol for the Minkowski difference. Each edge of this polygon is the locus of OA

4

P

Figure 1. Both A and B are polygons. The cross-section through the C-obstacle CB at a
fixed orientation 0 of A is another polygon equal to 8 e A(0, 0, 0) (see text).

when A translates at fixed orientation 0, in such a way that an edge (resp. a vertex)
of A stays in contact with a vertex (resp. an edge) of B (see Figure 1). A contact
between an edge of A and a vertex of Bi is called a Type A contact. When A rotates
slightly, the corresponding edge of CBj rotates by the same angle. A contact between
a vertex of A and an edge of Bi is called a Type B contact. When A rotates slightly,
the corresponding edge of CBj translates.

Therefore, the C-obstacle CB corresponding to an obstacle B is a three-dimensional
volume without hole, which is bounded by patches of ruled surfaces, which we call
C-facets. Each C-facet is generated by a straight line segment of variable length,
which remains parallel to the xy plane and either translates or rotates. A C-facet
created by a contact of Type A (resp. Type B) is called a Type A (resp. Type B)
C-facet. Each C-facet is comprised between two limit orientations, beyond which the
contact that creates the C-facet is no longer feasible.

The geometry of CS, when A and B are polygons, is studied in depth in various
publications, e.g. [Lozano-Pdrez, 1983] [Donald, 19841 [Avnaim and Boissonnat, 1988]
[Brost, 1989].

If A and 8 are both convex polygons, CS is bounded by O(nAnS) C-facets, where nA

5

and ns are the number of edges in A and B, respectively. If A and B are non-convex,
C3 has 3(n~na) C-facets [Avnaim and Boissonnat, 1988].

2.3 Rectangloid Decomposition

In the following, we will assume, without practical loss of generality, that the range
of possible values for x and y axe closed intervals [min, Xmax] and [Ymin, Ymax]. We
represent C as a closed rectangloid

)C= ×XminXmax] X [×minYmax] x [0, 2r] C 3

with the two cross-sections at 9 = 0 and 0 = 2ir procedurally identified.

Let r be a rectangloid, i.e. a region of the form:

[xI, x21 X [Y1, Y21 X [01,021 C 1C.

A rectangloid decomposition of r. is a collection of rectangloids, {tc } ., such
that:

1. . is equal to the union of the Kj, i.e.:

n

X-" U Kj.

j=1

2. The icj are non-overlapping1 :

Villj 2 E [1,n], il $1i2: int(tc1)flint(x,2)=

Each rectangloid ici is called a cell of r in the decomposition. Two cells ,j, and
•j2 are adjacent iff their intersection is not a set of measure zero in R 2, i.e. the
intersection of two of their faces is a surface of non-zero area. (The intersection is
computed by taking into account that the cross-sections at 0 and 27r are identified.)

A cell Kj is classified as:

- EMPTY, iff its interior int(K,) intersects no C-obstacle, i.e. int(rcj) n Ui CS, = 0;

- FULL, iff xj is entirely contained in the union of the C-obstacles, i.e. K1 C U CBi;

- MIXED, otherwise.

Given an initial configuration

q;.i = (Xiit, Y;n;t, Oin.t)

'Throughout this paper, we say that two closed sets are non-overlapping iff their interiors do not
intersect.

6

and a goal configuration

qgoal =_ (Xgoai, Ygoal, Oqoa)7

a rectangloid decomposition of IC, - is admissible iff it contains a sequence
of EMPTY cells Xk, k = 1, ... ,p, called an EMPTY channel, such that:

- (X.Ti, Yinit, Oinit) E n1 ;

- (xo,,, ygoal, OgoaI) E XP;

- Vk E [1,p - 11 : tck and ICk+1 are adjacent.

Let (Kk)k=l,...,P be an EMPTY channel. Any path connecting (xi,,, yinit, Oini) to
(Xgo0, Yg , ,) and lying entirely in the interior of .= 1 1k is a free path. Such a

path can easily be constructed as an open polygonal line. If necessary, it can also be
smoothed by fitting splines curves [Kant and Zucker, 19861.

A rectangloid decomposition is said to be semi-admissible if it contains a sequence
of EMPTY and MIXED cells ICk, k = 1, ...,p, called MIXED channel, with the same
three properties as above. A MIXED channel may contain a free path connecting the
initial to the goal configuration, but there is no guarantee that this is the case.

One could think of decomposing configuration space into fine cells at a single level
of approximation, labelling the cells EMPTY of FULL depending on whether their

interiors lie entirely in free space or not, and searching the connectivity graph of
the EMPTY cell (see [Gouzenes, 19841 [Lozano-Prez, 19871). The problem with
this one-level decomposition approach is that either the number of cells is large and
the planner is always time inefficient, or the number of cells is relatively small (i.e.,
the decomposition is coarse) and the planner often fails to find free paths, while
some exist. The motivation for the hierarchical decomposition introduced below is
that in general large chunks of configuration space may be labelled EMPTY or FULL,
drastically reducing the number of cells and consequently the size of the search graph.

2.4 Hierarchical Path Planning

Hierarchical path planning consists of generating an EMPTY channel by constructing
successive rectangloid decompositions of IC, until an admissible decomposition has

been generated and an EMPTY channel has been extracted. Let P1, 1 = 0,1,...,
denote the successive decompositions of IC, with Po = {AC}. Each decomposition P1,

1 > 0, is obtained from the previous one ?P1- 1, by decomposing one or several MIXED
cells, the other cells being unchanged.

Whenever a decomposition Pt, I > 0, is generated and its cells labelled EMPTY,
FULL, or MIXED, an undirected graph denoted by CCg, is constructed:

- The nodes of CCGQ are the EMPTY and MIXED cells in P1.

7

- Any two nodes are connected by a link iff they are adjacent.

This graph is called the cell-connectivity graph, or ccg, of the decomposition P1.

Once constructed2 , the graph CC9 1 is searched for an EMPTY or MIXED channel.
Three outcomes are possible:

1. An EMPTY channel is found. Then, the planner returns success.

2. No EMPTY or MIXED channel is found. Then, the planner returns failure.

3. A MIXED channel is found, but no EMPTY channel.

In the third case, the planner proceeds recursively by decomposing the MIXED cells
contained in the MIXED channel. Hence, the planner iteratively refines the "inter-
esting" areas.

Let us assume that the region occupied by the C-obstacles can be expressed as the
union of disjoint sub-regions, each equal to the closure of its interior ("full-bodiness
assumption") 3 . Then, the planning process sketched above can be made complete -
i.e., guaranteed to terminate successfully, whenever a free path exists, and to return
failure, otherwise. This requires that some details of the algorithms be worked out
appropriately. However, for an unknown problem, there is no time bound on the
process, since there is no lower bound on the size of the cells which may have to be
generated.

The worst-case time complexity can be bounded at the expense of completeness, by
imposing constraints on the decomposition of any MIXED cell xc. One possible con-
straint is that the total volume of the EMPTY and FULL cells extracted from r. be
greater than a predefined ratio of the volume of xc; in addition, every MIXED cell
resulting from the decomposition of xc which has any of its dimensions (side length)

-smaller than a predefined value is relabelled FULL. Another possible constraint is
that every generated cells should have dimensions greater than prespecified values.
The choice of the constraints on the decomposition of a MIXED cell typically de-
pends on the decomposition technique. If the decomposition algorithm fails to find
a decomposition of r. satisfying the constraint, r. is said to be non-decomposable and
is re-labelled FULL.

If constraints are imposed on MIXED cell decomposition, it is no longer guaranteed
that a free path is found, whenever one such path exists. However, the planner can
be made "resolution-complete", i.e. if an EMPTY channel exists at the resolution
determined by the constraints, it will be found.

'Actually, the graph is a by-product of the decomposition and is constructed concurrently with
the decomposition.

3 1n Solid Modelling, a closed set that is the closure of its interior is called a regular set.

8

If the assumption of "full-bodiness" of the disjoint C-obstacle regions is not satisfied,
then in the absence of constraints on the decomposition of MIXED cells, the planning
process may loop for ever. The constraints given above guarantee termination in
bounded time.

In the presence of uncertainty in robot control, a minimal size requirement may also
have to be imposed to both the cells in a channel and the intersection of two successive
cells in the channel, in order to allow the robot to move safely despite uncertainty.

3 Cell Decomposition

3.1 Issue

The subproblem considered in this section is that of generating a rectangloid de-
composition {ic1 } of a given MIXED cell re. For the efficiency of the planning
process, the generated decomposition should simultaneously satisfy the following two
goals:

1. The number of cells in the decomposition should be reasonably small, in order
to keep the size of the search graph as tractable a- possible. This goal directly
relates to the motivation for the overall hierarchical strategy: we want the plannei
to consider "details" only when it is necessary.

2. The volume of the EMPTY and FULL cells should be large relatively to the total
volume of x. This goal is aimed at reducing as quickly as possible the "uncertain
area" - i.e., the MIXED cells. Clearly, decomposing a MIXED cell into smaller
cells would not be useful, if all of these cell were MIXED.

These two goals may be conflicting since one obvious way to achieve the second goal
is to produce many small cells, which is in contradiction with the first one. A good
quantitative measure of the efficiency of the decomposition of a cell may be:

E 1 VEMPTY + VFULL

NEMPTY + NMIXED V.

where:

- NEMPTY (resp. NMIXED) is the number of newly generated cells labelled EMPTY
(resp. MIXED),

- VEMPTY (resp. VFULL) is the total volume of newly generated EMPTY (resp.
FULL) cells,

- V is the volume of the cell Kc.

9

3.2 Previous Approaches

One simple method of decomposing a MIXED cell is to partition it into 2' cells of

equal dimensions, where m is the dimension of configuration space (3 in our case).
The overall decomposition of configuration space obtained with this method is called
"quadtree" when m = 2 and "octree" when m = 3 [Ayala et al, 1985]. The appli-

cation of this method is reported in [Kambhampati and Davis, 1986] (quadtree) and
[Faverjon, 1986] (octree). The advantage of this method is that it leads to a decoin-
position easily representable in a tree structure of degree 2m. The drawback is that
most of the time none or a few of the newly generated cells are EMPTY or FULL.
The method tends to produce a huge number of cells.

Another method is described in [Brooks and Lozano-Pdrez, 1983]. The basic idea is
to consider potential cuts of the cell, score them, and choose the best-. The potential
cuts are chosen wherever a C-surface4 will go through a vertex of one of the new
cells generated by the decomposition. The scoring function favors cuts which do
not generate small cells, i.e. the cuts closer from the mid-points of each edge are
preferred. The scoring function also attempts to minimize the number of C-surfaces
intersected by each new cell, in order to reduce future computations. This method has
the drawback of treating each C-surface (not C-facets) individually and to combine
the effect of the various C-surfaces in a global scoring function. Although certainly
better than a 2't -tree, the resulting decomposition may still be fax from optimal. It
may also incorrectly' label a cell that intersects no C-obstacle as MIXED.

In [Lozano-Prez, 1983], Lozano-Prez describes a method which consists of slicing
the orientation axis into intervals, computing the area swept out by A when it rotates
about its reference point in each interval, approximating the swept area as a polygon,
and growing the obstacles by this polygon. The result is a decomposition of config-
uration space into prismatic cells, which are either empty or not empty (the latter
are not characterized further). A path is search among the empty cells only. If it
fails, the angular intervals are refined. The decomposition method is very similar to
the "swept-area" method proposed below. Our method, however, generates EMPTY,

FULL and MIXED cells.

3.3 Constraint Reformulation

We propose a different approach for decomposing MIXED cells. It consists of first
approximating each C-obstacle lying in the cell xc to be decomposed as a collection
of non-overlapping rectangloids. The complement of a union of rectangloids within
a rectangloid region is also a union of rectangloids, which can easily be computed.

4 A C-surface is the infinite ruled surface that support a C-facet.
"This conservative "error" gets corrected when the decomposition proceeds deeper.

10

approximation

Boundedapproximation

(a) (b)

Figure 2. This figure illustrates the notion of bounding (a) and bounded (b) approxima-
tions of a region in a two-dimensional space.

This yields a rectangloid decomposition of tc. We call this approach contraint refor-
mulation, since it basically consists of reformulating the constraints imposed by the
C-obstacles into a form directly compatible with the format of the decomposition of
k; into rectangloid cells.

Let r. = [xI, x 2] x [Y1, y2] x [01,02] be the MIXED cell to be decomposed. For every

i E [1, q], we denote by C!3j[x] the portion of C/, contained in r., i.e.:

CBin] = CS, n .

Our planner generates and uses two types of approximation of C-obstacles, bounding
and bounded approximations:

1. A bounding approximation of Cji[] is a collection of non-overlapping rectan-
gloids lk's, k = 1,...,p, with Vk E [1,p] : 7Rk C /c and CB1 [V C Uk=I ...,p Rik.

2. A bounded approximation of CS![] is a collection of non-overlapping rectan-
gloids 's, k = ,...,p', with Uk=z Rik C C4].

The EMPTY cells of the decomposition of r. are obtained by computing the comple-
ment of Ui Uk lZi-k in tc. The FULL cells are the T<k's. The MIXED cells are obtained
by computing the complement of U Uk Z'k in every Rik.

Figure 2 illustrates the notion of bounding and bounded approximations in a two-
dimensional space. Figure 3 illustrates the rectangloid decomposition of a cell r into
EMPTY, FULL and MIXED cells, using these two approximations.

11

*mFULL

Figure 3. This figure illustrates the decomposition of a rectangular cell into a collection
of EMPTY, FULL and MIXED cells built using the bounding and bounded approximations
of Figure 2.

3.4 Outline of the Algorithm

There are infinitely many ways to generate bounding and bounded approximations of
a C-obstacle CS in a cell r. Our method computes "outer" and "inner" projections
of CS on the xy plane, next on the x or y axis. Then, it lifts back the projection into
rectangloid cells. It consists of the following two steps:

1. Decomposition of [01, 021: The [O, 02] interval is cut into non-overlapping subin-
tervals [7u,i'u+1], u = 1, ... r > 1, with -1 = U, and 7r+1 = 02. We denote by rcu
the rectangloid l1, zX2] X [Y1, Y2] X [u, 7%+i]-

For every u E (1, r], we compute the outer projection and the inner projection
of CB[u] on the xy plane. These two projections, which we respectively denote
by OC3xy[t(u] and ICB [Ku], are defined by:

OCs.'[,v"I = {(xy) / 30 E (yu,-yu+11 : (x, Y,.) E CB[KII,

ICS.J[,ul = {(x,y)/ V 0 -r,,", i: (x,y,o)ECBu]}.

Clearly, we have: ICBIy[ru C QCy[x"u].

2. Decomposition of [xI,X 2] and [yl,y2]: For every u E [1,r], the interval [X,x 2

or [Y1, Y2], whichever is longer, is cut into non-overlapping subintervals.

Let us assume that [xI, x2] is subdivided (a similar presentation would be made in
the case where [Y,, y21 was decomposed). The generated subintervals are [a,,, a,,+,I,
v = l,.._,s s > 1 with a2 = x, and a,+ = x2. We denote by Ku" the rectangloid

[av,,v+11 X [Y,,421 X [_Yu,_tu+,].

12

For every v E [1, s], we compute the outer projection of OC3x ocuJ on the y axis,
i.e.:

ocBy[tc"] = {y / 3x E [a,,a,+,]: (xy) E OCB. k0 I}

and the inner projection of ICB.,[tcu] on the y axis, i.e.:

1CBA,[,u'] = {Y / Vx E [a,,, a,,+,] : (x,y) E 1CB,,[,"]}.

Both OCB[x""] and "C5,[cu"v] are sets of intervals. yCfi,[u"I C OC31,[tic-.

Each rectangloid [a,,,a,,+] x [b, b] x ['1,,,+1], where [b,b'] E 0CB51 [KU] (resp.
"CBJ[xv]) is a rectangloid "iik (resp. TZk) in the bounding (resp. bounded) ap-

proximation of CBi[c] (see Subsection 3.3).

The choice of the -yu's and the aj's is empirical. Various heuristics can be used, but
most of them seem to have limited effect on the average efficiency of the method. The
only useful heuristic guideline is to keep the three dimensions of every MIXED cell
approximately "homogeneous". Let 8x, 6y and S0 be these dimensions. We say they
are "homogeneous" iff Sx Sy - p80, where p is the maximal distance between OA
and the points in the boundary of A.

In the next two subsections, we describe the computation of the outer and inner
projections of CB[r."] on the zy plane. We propose two different methods. The first,
called "projection" method, consists of computing the projection of the surface of CB
comprised between -yt, and -u+1, and clipping the subset of the projection contained
in [z, X21 x [yi, y2]. The second method, called "swept-area" method, consists of
computing the "outer" and the "inner" swept areas of A when it rotates around the
reference point from orientation -t. to orientation y+,, and growing the obstacle B
by these two areas. The projection method is preferred when the interval [7, 1+i]

-is small. The swept-area method runs significantly faster when this interval is large;
however, it does not exactly compute "CB,[x"], but a subset of it. The computation
of OCBv,[c'uJI and ICB 1 [nuv] is quite simple and not described below.

In the following, we assume that the reference point OA is chosen in the interior of A.
In fact, the choice of OA has some impact on the efficiency of the decomposition. The
"best" location of OA should minimize the area of the outer projection of CB[rc"I on
the xy plane, while maximizing the area of the inner projection, so that less MIXED
cells are ultimately generated. The center of the "smallest enclosing circle" of A
is probably close to minimize the area of the outer projection, while the center of
the "largest enclosed circle" of A should be close to maximize the area of the inner
projection. A compromise between these two locations is in general necessary, since
they do not coincide.

13

,' \.

Figure 4. The C-patches comprised in an angular slice [-f., -u+iI] project on the xy plane
according to generalized polygons, whose union is a "donut" shaped region bounded by an
outer contour r,~ and an inner contour r2 .

3.5 Projection Method

Principle. Let us first assume that both A and B are convex polygons. In R' x
[0, 27r], CB is a volume without hole, which is bounded by C-facets (see Subsection
2.2). Consider the point (xo, yo) in the xy plane and the segment {(xo, IO,O)/ 0 E

[-,~ -.. +~}above this point. If the segment pierces a C-facet, then (x0 ,yIo) is in
OCs'z,[,uI, but not in TCBS,cul. If it pierces no C-facet, then either (xo,yIo) is not
in CCBZ,y[tcul, or it is in ZCS,,,[tcul. The segment {(xo,yo,O) / 0 E Pr-,,-/+1J} pierces
a C-facet e iff (xo, y/o) lies in the projection of e in the xy plane.

We show below that each C-facet comprised between -yu and -tu+, projects on the xy
plane according to a generalized polygon". The projection of the boundary of CS that
is comprised between -yu and -yul is the union of generalized polygons, each being
the projection of a C-facet. This union is a "donut" shaped region (see Figure 4),

6 A generalized polygon is a compact two-dimensional region bounded by a simple curve consisting

of straight segments and circular arcs.

14

with an outer boundary I1 and an inner boundary r2. The compact region bounded
by 11 is OCBj,,[r]. The compact region bounded by 172 is ICB.,,[1Cu].

Therefore, the projection method consists of: (1) projecting all the C-facets (to the
extent they are contained in the interval [y,,yu+1]) on the xy plane; (2) clipping the
union of the projections by the rectangle [xI, X21 X [y1, Y2] and, within this rectangle,
tracking 1L and F72.

The projection method may be made faster by associating with each interval [', '+']
the list of all the C-obstacles having a non-empty intersection with the interval, and
for each of these C-obstacles the list of the C-facets that intersect the interval. If the
interval gets decomposed further, only these C-facets have to be considered.

The projection method is efficient when the number of C-facets which have to be
projected is reasonably small, that is when the interval [Y,%y+,] is small.

Projection of Type A C-Facet. Let eA be a C-facet of Type A comprised between
the limit orientations 01 and 02. The contact that generates eA is illustrated in Figure
5 a. It occurs between an edge E of A and a vertex b of S. E connects two vertices
of A, a, and a2. b is the extremity of two edges of B, F and F 2. OA projects on the
supporting line of E at the point p. We assume below that p is located between a,
and a2. (The case where p is outside the segment T is treated in a very similar
fashion.) The orientation '1 (resp. 02) is achieved when the edge E is aligned with
the edge F (resp. F2). Assuming that [1, 021 g [-, ,'+1, the projection of eA on
the xy plane is shown in Figure 5 d. It is obtained as the union of two regions shown
in Figures 5 b and c.

The region in Figure 5 b is the locus of 0.4, when A translates and rotates while
the edge segment Ujp stays in contact with the vertex b. This region is bounded by
two circular arcs and two straight segments. The two arcs are centered at b. The
smaller one is the locus of O.A when p coincides with b and A rotates from €1 to 02.

The larger arc is the locus of OA when a, coincides with b and A rotates from €1 to
02- The straight segments are the loci of OA when A translates at fixed orientations
€1 and 42 from the position where p and b coincide to the position where a, and b
coincide. The region in Figure 5 c is the locus of OA, when A translates and rotates
while the edge segment T stays in contact with the vertex b.

The case of eA projecting for the orientation range [,y, 'Yu+1] C [01, 02] can be treated
in the same way, by drawing fictitious edges F, and F2 from vertex b (see Figure 5
e), so that, when E is aligned with F, (resp. F2), A's orientation is -yu (resp. 7u+i).

Projection of a Type B C-Facet. Let eB be a C-facet of Type B comprised
between the limit orientations 01 and €2. The contact that generates eB is illustrated

15

A0r2 Ep

at F1

P2 r

(a) (b) (c)

(d) W€)

Figure 5. This figure illustrates the computation of the projection of a C-patch of Type
A on the xy plane (see text).

in Figure 6 a. It occurs between a vertex a of A and an edge F of B. a is the extremity
of two edges of A, E, and E 2. F connects two vertices of B, b, and b2 . Since we
assumed A to be convex, OA lies within the convex angular sector bounded by the
two half-lines supporting E, and E 2 and erected from a. The orientation 01 (resp.
02) is achieved when the edge E 2 (resp. EL) is aligned with the edge F. Assuming
that [461, 021 C[-Y, Y.+1], the projection of eB on the xy plane is shown in Figure 6 d.
It is obtained as the union of two regions, shown in Figures 6 b and c.

Let 0 be the orientation of A when a lies in F and the segment a is perpendicular
to F. The region in Figure 6 b is the locus of OA, when A translates and rotates with
the vertex a staying in F and the orientation 0 ranging over [0,l,. (If tk < 01, then
the region is empty.) This region is bounded by two circular arcs and two straight
segments. The two arcs are centered at b, and b2, respectively, and have the same
radius equal to the distance between a and OA. The region in Figure 6 c is the

16

bI

Ar2 E2r2I

TI

B
El F

b2

(a) (b) (C)

bi

OA

F

a

b2

(d) Me (

Figure 6. This figure illustrates the computation of the projection of a C-patch of Type

B on thle xy plane (see text).

17

locus of O when A translates and rotates with a staying in F and the orientation
0 ranging over [;b, 021- (If 0 > 02, the region is empty.)

The case of eB projecting for the orientation range [Y., y+1] C [01, 02] can be treated
in the same way, by drawing fictitious edges E, and E 2 from vertex a (see Figure 6
e and f), so that, when E1 (resp E 2) is aligned with F, A's orientation is -,. (resp.

'Yu+i)-

Computation of OCB.,,[ru] and 2ZCB.[ir]. The projection of every C-facet is a
generalized polygon with a small number of edges - two to four straight line segments
and two or three circular arcs. The union of all the generalized polygons forms a
"donut" shaped region (see Figure 4).

F1 and F 2 can be extracted by a line-sweep technique. This is a well-known tech-
nique in Computational Geometry (e.g., see [Preparata and Shamos, 1985]), whose
application to the computation of the intersections of arbitrary generalized polygons
is described in [Laumond, 1987]. It consists of sweeping a line across the plane. For
example, the line is parallel to the x axis and is swept bottom-up. At each instant, the
"status" of the line - i.e., the list of the intersections of the line with the generalized
polygons - is represented in a balanced tree [Aho, Hopcroft and Uliman, 1983]. The
status of the line changes in a qualitative fashion only at a finite number of ordinates,
called "events", where the line is either tangent to a C-obstacle or passing through
the intersection of two generalized polygons. At every event, the list of future events,
which is also represented in a balanced tree, is updated.

The line-sweep process starts at the bottom-most ordinates of all the points in the
generalized polygons. Below this ordinate, the line intersects no generalized polygon
and thus lies entirely outside OCB.3y[t]cu. During the sweeping process, the contours

T, and F2 are tracked by labelling the intervals between the ordinates listed in the
sweep-line status as being outside CC8.3,[,cu], inside OCBS,[xu] but outside ICB,,[xu"],
or inside 1CB,,Y[K].

Once F1 and 172 have been extracted in the form of sequences of straight segments
and circular arcs, it is not difficult to clip them by the rectangle [x1, x 2] X [yl, y21. The
projections OCBy[c"u] and ICB[/cu"] are easily computed by determining the points
of F and F2 at abscissae a,, v = 1, ... ,s + 1, and the other extremal points of r, and
F2 within each interval [a,,, av+ i], v 1,..., s. In fact, all these computations can be
done during line sweeping. If the interval [xI, x 2] is decomposed into sub-intervals,
the sweep line has to be parallel to the x axis, otherwise it should be parallel to the
y axis.

The overall line-sweep process takes time O((n + m) log n), where n is the number of
C-facets that intersect with the interval [,y,, tu+1] and m is the number of intersections

18

of the generalized polygons. We know that n < n.Ans (see Subsection 2.2). On the

other hand, m E 0(n 2), but it is usually much smaller.

One way to improve the efficiency of the algorithm could be to restrict the line-sweep

process to the rectangle [xI, x 2] x [Y1, y2]. However, there seems to be no simple way of

establishing the initial status of the sweeping line if it does not start at the bootom-

most ordinate (or left-most abscissa). Nevertheless, the process can be stopped as

soon as the sweeping line leaves the rectangle.

Generalization. If A is a non-convex polygon that can be decomposed into con-
vex components, such that the interiors of all these components have a non-empty

intersection, then the reference point can be selected within this intersection and the

above method directly applies to each component taken separately.

If A is non-convex and cannot be represented as the union of overlapping convex

components (for instance, it is a U-shaped object), the above method can still be

applied, but with some changes. Since the reference point will be outside some of the
convex components, the shape of the projection of the corresponding C-facets will be
different, but not difficult to establish.

Avnaim and Boissonnat [Avnaim and Boissonnat, 19881 describe an algorithm of time
complexity 0(n n3 log n.Ans) for computing the description of the boundary of CB,
when both A and B are non-convex. In the case where A is non-convex, using this

algorithm first and projecting the C-obstacles on the xy plane next, would probably
be an efficient method. However, we have not implemented it.

3.6 Swept-Area Method

Principle. The swept-area method consists of first computing two areas swept out

by A when it rotates about its reference point from orientation y,, to orientation yfu+1:

the outer swept area denoted by OSA[-y,, -tu+1] and the inner swept area denoted by
ISA[-y, -yu+I]. They are defined as follows:

OSA-yu,yt+ 1] = UeEt..,.,1iA(0,0,0) = {(z,y) / 30 E [-tu,-u+1 (z,y) E A(0,0,0)},

ISA[,-y, +-y] = nf....+.]A(,0,0) = {(z,y) /VO E [7u,u+i] (x,y) E A(O0,0,)}.

Then, the method regards both 0SA[-y, -y+] and ISA[y, - as moving objects,
which can only translate in the plane, and it maps the obstacle B in the configuration

spaces, R 2 , of these objects. The mapping is obtained by "growing" 8 inversely to
the shape of these two objects, leading to two regions OB[y, -y,,+,] and I61Y, -,+1]
formally defined as follows (see Subsection 2.2):

0[tyi = BE0S[t.7+1]
QLr[yu,-yu+1I = E0SA[-f,-fU+ 1

19

It is shown in [Laumond, 19871 that the Minkowski sum (resp. difference) of two
generalized polygons is a generalized polygon, which can be computed in time O(ni +
n 2), if the two input polygons are convex, and O(nin 2), otherwise. (n, and n2 denote
the number of edges of the input generalized polygons.)

The swept-area method returns two regions:

[Xi×X21 X [Y1,Y21 X 013.,-Y.+,1

and:
[XI, X21 X [Y1, Y21 X -B[7Y,,7Y.+I].

The first is exactly OCB[t0], as shown in [Lozano-P6rez, 1983]. The second is
strictly included in XCB1,[r], which leads the overall decomposition algorithm to
generate a set of FULL cells of less total volume than with the projection method.

In practice, the swept-area method is significantly more efficient than the projection
method when the intervals [-y, 7u+i] are large. When these intervals become small
enough, the projection method is preferred because it exactly computes TCB.[l"].

Computation of OSA[fy, y+]. The outer swept area OSA[7-f,, -t'+1 is a general-
ized polygon (see Figure 7). The straight edges of this polygon are portions of edges
of A(O, 0, -y,,) and A(0, 0, -y,+,). Each circular edge is the locus of a vertex of A, when
A rotates from -y, to 7+, about the reference point.

The contour of OSA[,, -y,,+1 is traced out in time O(n2) starting at the vertex the
most distant from OA.

Computation of ,.A[,,, + The inner swept area ISA[7,, 7y+i] is a gener-
alized polygon (see Figure 8). The straight edges of this polygon are portions of
the edges of A(0,0,-y,) and A(0,0,y,+ 1). Each circular edge is the locus of a point
obtained by projecting the reference point on an edge of A, if that projection falls
between the two extremities of the edge.

The contour of ISA[f,,-+ 1] can be traced out in time O(n'). The starting point
is the first intersection of a ray (any one) drawn from the refence point with the
potential edges of 1SAt-u,t,, +1. (Since the reference point is in the interior of A, it
is also in the interior of ISA[, -i,,+i].)

20

Yu+1

Figure 7. The contour of the outer swept area of A when it rotates about its reference
point from orientation 7u to orientation 7u+i is made of portions of edges of A(O, 0, -y) and
A(O, 0, -u+i), and circular segments traced by vertices of A during the rotation.

4 Construction of a Channel

4.1 First-Cut Algorithm

Remember from Subsection 2.3 that a channel is a sequence of adjacent EMPTY or
MIXED cells connecting the initial configuration qit = (xinit, Yinit, 0rnit) to the goal
configuration Clgoal = (Xgoa,,Ygoa , ,O9o). A channel is EMPTY, if it only contains
EMPTY cells; otherwise, it is MIXED. Below, we call an EMPTY channel an E-
channel, and a MIXED channel an M-channel.

A simple first-cut search algorithm for generating an E-channel is the following:

1. Generate a first partition Po of K2. Construct the graph CCg0 corresponding to
this decomposition. Set i to 0.

2. Search CCCi for a channel. If an E-channel is found, return success. If no channel
is found, return failure.

3. Let H be the M-channel generated at Step 2. Set Pi+ to 7'i and i to i + 1. For

21

N.N

Yu+ 1 'l

Figure 8. The contour of the inner swept area of A when it rotates about its reference
point from orientation tu to orientation 7u+1 is made of portions of edges of A(O, 0, -) and
A(O, 0, 7u+,), and circular segments. These circular segments are traced by the projections
of OA on the edges of A during the rotation.

every MIXED cell r. in 1 partition ic into a set 7,, of smaller cells and set P to
[Pi\] U P,,. Goto Step 2.

This algorithm searches successive ccg's until an E-channel is found. Each ccg CCGi,
1 $ 0, is obtained from the the previous ccg, i.e. CCGi-, by only expanding some of
the MIXED nodes, which belong to the M-channel generated in CCGi-1.

The search for a channel in a ccg may be guided by various types of heuristics. In
general, a ccg is not searched for an F-channel before it is searched for an M-channel.
Indeed, although it is natural that the heuritics put an extra cost on MIXED cells in
order to generate an E-channel quicker, it may also be appropriate to prefer shorter
channels over longer ones (according to some metrics). Thus, although an E-channel
may exist in a ccg CCQi, it may be preferable to generate a significantly shorter M-
channel instead, and refine CCCI accordingly. Notice that any E-channel existing in
CCgi still exists in all its successors CC,+,, j = 1,2,

22

4.2 Improved Algorithm

The major drawback of the simple first-cut algorithm given above is that the search
work performed in CCgi, if it does not return success, is not used to help the search of
CCgi+1 . This drawback can be remedied as follows. Rather than reconstructing a full
ccg, whenever MIXED cells along an M-channel are refined, a ccg representing the
decomposition of every refined cell x is generated separately and recursively searched
for a "subchannel". This subchannel is a sequence of adjacent EMPTY or MIXED
cells produced by the decomposition of c.

The new algorithm hence generates a hierarchy of ccg's. The ccg at the top of the
hierarchy corresponds to the initial decomposition of C - i.e., K - and is denoted
by CCgc. Every other ccg corresponds to the decomposition of a certain MIXED
cell, say r., and is denoted by CCg,,. A channel H is first generated in CC9C. If II
is an E-channel, the planner exits with success; otherwise, each MIXED cell K in II
is decomposed recursively, and a subchannel II., if any, is generated in CO.. This
subchannel is substituted for r in II.

In order to make the algorithm work properly, however, one must be careful that each
subchannel 11,, connects appropriately to the rest of II [Kambhampati and Davis,
1986J. This can be worked out as explained below, by generating a complete channel
connecting qinit to %oai at every level of refinement.

Let 11 be an M-channel extracted from the top-level ccg, i.e. CCgc. Set II2 to the
empty sequence of cell. (112 will be incrementally augmented into a refinement of II1.)
Each cell K in II is considered in the order it appears in l . If / is EMPTY, it is
simply appended to the current rl 2 . If Pc is MIXED, it is first decomposed into a set
7, of smaller cells and a ccg CC,, is built using this decomposition; then, CCGQ, is
searched for a subchannel [L, satisfying the following four conditions:

- If K is the first cell in IF (hence, it contains qiit), then the first cell in II, also
contains qiit.

- If K is the last cell in 1 (hence, it contains qot), then the last cell in HI, also
contains q2 o.o.

- If K is not the first cell in I, the first cell of Hr, is adjacent to the last cell of the
current rH

2 .

- If K is not the last cell in I', the last cell of , is adjacent to the cell following K

in H1 .

In the following, a sequence of adjacent EMPTY or MIXED cells in the decomposition
of K is called a subchannel iff it satisfies these conditions.

23

-~K Icl :

K3 x2 0:2 IC31 K21

33i x22

(a) (b)

Figure 9. Figure a represents a decomposition of a rectangle. In order to ultimately
construct an E-channel at a deeper level of decomposition, the planner must consider the
sequence (x1, K2, K3, 92, K4), which contains the cell K2 twice, as an M-channel. This leads
the planner to decompose the two MIXED cells K2 and K3 into smaller cells (for example,
as in b) and generate the E-channel (tl, K 2 1 ,, I31, 3 2, K3 3 , K2 2,K 4).

Assuming that the planner succeeds in generating [Lu, H2 is modified by appending rl,,
to it. The case when the planner fails in generating II, will be examined in Subsection
4.4.

When all the cells in 1I1 have been considered successfully, we have obtained a channel
11 2, which is a refinement of I1. If 112 is aii E-channel, the planning problem is solved;

the planner returns [12 and success. Otherwise, [12 is recursively refined into a third
channel [13 by decomposing the MIXED cells it contains. Etc...

4.3 Cell Occurrences in a Channel

An E-channel is now generated by refining an M-channel without reproducing a global
ccg. Therefore, it is important that we allow an M-channel to contain several times
the same MIXED cell (i.e., loops). Indeed, different occurrences of the same MIXED
cell may lead to different subchannels. This need is better explained using an example.

Consider the twu-dimensional example of Figure 9. In a, the sequence of cells
(ICI,C 2 , C3, K2 ,C 4), which contains K2 twice, has to be considered as an M-channel.
(The grey area represents C-obstacles, so that r 2 and N3 are MIXED, while ic1 and
tC4 are EMPTY.) We assume that i2 and tC3 are decomposed as shown in Figure 9
b. When the two occurrences of IC2 are refined they produce different EMPTY sub-

24

channels. This is illustrated in Figure 9 b, where x2 is partitioned into three smaller
cells, two EMPTY ones (K 21 and K 2 2) and a FULL one (r.23). The first occurrence of

r2 leads to a one-cell subchannel made of Ke21, while the second occurrence leads to
another one-cell subchannel made of tc23. On the other hand, the decomposition of
r13 produces four cells, three EMPTY ones, 3 1 , K 3 2 , and r.33, and a FULL one, K 3 4 .

From this decomposition the EMPTY subchannel (3 1 , 1K3 2 ,K 3 3) is extracted. The
generated E-channel is (Kx, - 2 1 , K 3 1 , t 3 2 , -3, K 2 2 , K4).

Since the same cell may appear several times in a channel l'k, we now refer to the
elements in a channel as cell occurrences rather than just cells. We denote by wk

the ith cell occurrence in flk and cell(w) the cell of which w is an occurrence. A cell
occurrence w is said MIXED (resp. EMPTY) iff the cell cell(w) is MIXED (resp.

EMPTY). A subchannel generated as a refinement of a MIXED cell occurrence w is
denoted by H,; it is constructed by searching CCgc,I(,).

In Subsection 4.6, we will examine the impact of allowing loops in a channel on the

search of a ccg.

4.4 Failure Recovery

Consider the situation when the algorithm of Subsection 4.2 fails to refine a MIXED
cell occurrence w into a subchannel. We distinguish three cases:

Case (1):

i = 1. Hence, w = w is the first cell occurrence in 11k . The search proceeds
by generating a new channel 11k, i.e. -I1- ' is re-considered and refined into a new
channel Hk. If no new channel IIk can be generated and k = 1, the planner returns
failure. If no new channel flk can be generated and k :/ 1, the planner recursively
attempts to generate a new channel W".k- .

Case (2):

z > I and wi_ is EMPTY. The search proceeds as described in case (1). (Some
differences will appear in the next subsection.)

Case (3):

I > 1 and wi_ 1 is MIXED. The search proceeds by generating another subchannel
H,_, if any, in the ccg of cell(w_ I). If another sul)channel exists in this ccg, the

planner substitutes it for the previously generated one in flk+i, and tries again to
refine w into a suI)channel by searching in the ccg of cell(,o) Otherwise, it iteratively
treats wl as it just treated w . (Either (1), (2), or (3) applies to

25

4.5 Recording Failure Conditions

One can organize (sub)channel generation and failure recovery in a systematic fashion
in order to avoid infinite looping. However, this may not prevent the planner to make
the same mistakes several times. Higher efficiency can be obtained by remembering
the (weakest) conditions of the failures in order to avoid reproducing them [Stallman
and Sussman, 1977] [Latombe, 1979]. One way to remember failure conditions is
to annotate cells and use the annotations as follows. Cases (1), (2) and (3) below
refer to the same cases as in the previous subsection. nk denotes the number of cell
occurrences in l k .

Case (1):

Let = cell(wk) and i = cell(w) in the current II.k If nk = 1, by convention 4' = A,
where A denotes the inexisting cell. The cell is annotated with Al: [4], which is
called a type 1 annotation.

This annotation is later used as follows: If a new channel 11k is generated, which
contains an occurrence wc of in first position, then an occurrence of ' should not
be considered a valid successor of wt. In the particular case where 4k = A, this means
that w(must not be the last cell occurrence of the new Il k.

Notice that the first cell occurrence in the new Ik is necessarily an occurrence of ,

since f contains qinit. But there may be other occurrences of appearing in this new
IIk, to which the above annotation does not apply.

Case (2):

Let = cell(w) (i > 1), o = cell(wil) and k = cell(wk 1) in the current IIk. If
i = nk, then 4' = A (with the same meaning of A as above). is annotated with
A2 : [Wp, 7k], which is called a type 2 annotation.

This annotation is later used as follows: If a new channel Ilk is generated, which
contains an occurrence w of C preceded by an occurrence of W, then an occurrence
of 4 should not be considered a valid successor of w . In the particular case where
P - A, this means that wC must not be the last cell occurrence of the new rjk.

Notice that if A # A the construction is symmetrical, i.e., if cannot be traversed by a
subchannel connecting p to 4, it can neither be traversed by a subchannel connecting
4 to p. Therefore, the annotation A2: [so, 4] is later used commutatively.

Case (3):

In this case, failure conditions are more involved than in cases (1) and (2), and
may require sequences of cells of arbitrary length to be considered. The cell =
cell(w _,) is annotated with an expression of the form A3 : [,(412...4')], called

26

type 3 annotation, whose construction will be explained below.

This annotation is later used as follows: If a subchannel HIl, is generated (by searching
CC9C) as a refinement of an occurrence wc of , while wc is followed in the current
channel II' by a sequence w1 ,w 2, ... ,Wq of cell occurrences, such that for all j E [1, q]

cell(wj) = Ok (if Oq = A, the condition cell(wq) = A requires that Wq.-1 be the last cell
occurrence in the current Ik), then the last cell occurrence in 1,, must not be an
occurrence of W.

Let us now examine how the annotation was built. Let V)1 = cell(wj) and 02 =

cell(wi+1), when the planner failed to refine w . If nAr = i, then 02 = A. Let also
W be the last cell occurrence in the (incomplete) current Ik+, i.e. 0 is the last cell
occurrence of the subchannel HI, L previously generated. For every type 3 annotation

A3: [p', (14...,)] attached to 01, if w is followed in the current 11k by the sequence
Wi+,...Wi+, , with cell(w+j) =Oj for all j E [1,p] and i + p = kk + 1 if ?/, = A,
is annotated with A3: [W, (1&?k24'p+1)], where kj+l = b for all j E [1,p]. If no type
3 annotation has been attached to during this iteration (this happens in particular
if no type 3 annotation is currently attached with ?b1), then is annotated with
A3 : [V¢, (0102)].-

4.6 Search of a Cell-Connectivity Graph

The planning algorithm builds a hierarchy of ccg's and searches each of these ccg's
separately. The ccg at the top of the hierarchy is CC!c and is searched to generate
the channel lIV. Each other ccg CCg!, represents the decomposition P, of a cell xc
which belongs to the parent ccg of CC!Q,, in the ccg hierarchy.

Remember that C is just a particular cell x:. We denote by 1I0 the channel that only
contains w°, with celt(w') = AC. I' is a refinement of II. In the very particular case
where there is no C-obstacle in the configuration space, then)C is an EMPTY cell,
and 11' is an E-channel, so that [I1 does not have to be generated.

Let us consider that we have generated an M-channel 11 k (k > 0), which we now
refine into 1 1k+1, and that we are currently considering the MIXED cell occurrence
w E I'. Let , = cell(w). If te has already been decomposed, we just reuse the
ccg CCQ,, that was previously generated; otherwise, we decompose rK into a set ",, of
smaller cells using the method described in Section 3 and we build CCg,,. We then
search CC9,, for a subchannel that will be appended to the tail of the current [1 k+1 .

The search of CCQ,, consists of first determining the possible initial and goal cells of
the subchannel to be generated:

If i = 1, wU is the first cell of nk. Then the only possible initial cell in CC!M,, is the
cell of 7. that contains qinit. Otherwise, the possible initial cells of CC9,, are all

27

the cells of P, which are adjacent to the cell - call it W - of the last cell occurrence
w, in the current -Ifk+ and whose insertion in r1 k+1 as cell occurrences succeding
W, does not violate any annotation of type 1 or 2 attached to p.

If i = nk, w is the last cell occurrence of 11 k. The only possible goal cell in CC9, is
the cell of P, that contains qg,,.. Otherwise, the possible goal cells of CCQ,, are all
the cells of P, which are adjacent to cell(w k) and do not violate any annotation
of type 3 attached to tc.

If there is no possible initial or goal cell in CCCM, the planner considers that situation
as a failure to refine w and applies the treatment described in Subsections 4.4 and
4.5.

If at least one initial and one goal cell are established in CC9,,, the planner searches
that graph for a subchannel H,k linking any of the initial cells to any of the goal cells.
It does that in a way such that no annotation of type 1 or 2 attached to the cells
in the generated subchannel is violated. (If i > 1, checking the annotations of type
2 attached to the first cell occurrence in this subchannel requires the cell of the last
cell occurrence in the current 11k+1 to be considered.)

As noted previously, the subchannel HI, to be generated in CCG should be allowed
to contain several occurrences of any MIXED cell in P. However, it seems quite
realistic in an implementation to limit the number of occurrences of the same cell in

a subchannel7 .

Since there may be multiple occurrences of the same cell in a subchannel, the actual
graph that is searched to refine a cell occurrence wi' is not CC9, but a graph derived
from it. This graph contains the subset of subchannels (with and without loops)
in CCG., which do not include two occurrences of the same EMPTY cell or more
occurrences of the same MIXED cell than a predefined number (see paragraph above).
This search graph is made (partly) explicit while it is searched. Since a MIXED cell
is adjacent to a finite number of other cells, the search graph is finite. Hence its
search is guaranteed to terminate, either with success or with failure. If it terminates
with success the generated subchannel HI , is appended to r 1 k+i . If it terminates with
failure, the treatment described in Subsections 4.4 and 4.5 is applied. Thanks to the
annotations attached to the cells, the search cannot iterate for ever through the same
sequence of failures.

7In our implementation, this number is not bounded. However, we apply a best-first search
strategy, which always considers the (sub)channels of minimal "cost" first. The cost of a (sub)channel
grows with its length and the number of MIXED cells it contains.

28

4.7 Boundary-Connectivity Graph

Cell-connectivity graphs are one way to represent connectivity among cells. Another

way is to build a graph called boundary-connectivity graph, or bcg. Given a

partition P,, of a cell Pc into non-overlapping cells, the bcg BC!J, is defined as follows:

Each node of BC!,, corresponds to the intersection of the boundaries of two adjacent

cells.

Two nodes of B3C9,, are connected by a link iff the two nodes are portions of 'the

boundary of the same cell.

Each link in a bcg can be regarded as the connection between two cells (each cell
includes the boundary portion associated with one extremity of the link) through a
third one.

For the same cell r., the size of BCg,, is larger than CCg!,'s size. However, bcg's

presents some advantages over ccg's because they represent more explicitely the con-

nectivity of the cells in P,,. In particular, using bcg's removes the need for type 1
and 2 annotations. Indeed, attaching a type 1 or 2 annotation to a cell in a ccg is
equivalent to removing a link in a bcg. However, in order to use bcg's properly one

must be careful about various details. In particular, the initial and goal configura-

tions should appear as nodes in some of the bcg's. Moreover, since type 2 annotations
may involve two cells of two different partitions P,, and P,,2, bcg's should also be
connected among them.

One possible way to use bcg's is sketched below. Every M-channel HIk-1 (k > 0) is
still a sequence of cell occurrences. When it is refined into IIk, an extended bcg BCgk

is constructed as the bcg of all the cells which are either EMPTY cells in H1 k or cells
. in the decomposition P,, of a MIXED cell r in IIk. In addition, qi,i and q2goaj are

included in BCg k &- nodes. The node corresponding to qi,,it (resp. qo9 0 4 I) is connected

by a link to every node representing a boundary portion of the cell containing qi,,t
(resp. a oa). When 11 k is refined, parts of 3Cgk may already exist and are simply

re-used. The links having qi,,it as one extremity are called initial links. The links
having q9 ,o0 as one extremity are called goal links. The links contained in the bcg
BCg, of a cell x are called intra-links. All the other links are called inter-links.

The refinement of Ik-1 into f1 k is essentially done in the same way as before. The
only difference is that rather than searching the ccg of the MIXED cell occurrences

along Hk -l , the planner now searches the portion of BCgk that corresponds to the bcg
of the MIXED cell occurrence being currently considered. The initial links, goal links,

and inter-links are used only to determine the possible initial and goal nodes of this

search. Case (1) and (2) failures lead to remove some links from 6Cgk. Annotations
of type 3 are still needed and used as before.

29

Figure 10. Example 1.

5 Implementation and Experimentation

We have implemented the techniques described in the above sections in a path planner.
The planner is written in Allegro Common Lisp and runs on an Apple Macintosh II
computer.

We ran the planner on many examples including both convex and non-convex mov-
ing objects. Twelve of these examples are illustrated in Figures 10 through 21. In
each figure, we show a path extracted from the generated channel. Statistics - CPU
time, total number of cells generated (Nto&a1), number of EMPTY cells generated
(NEMpTy), number of EMPTY cells used in the output channel (N,,,ed), and decom-
position efficiency measure (E) - characterizing the efficiency of the planner are given
in Table 1.

Examples 4 and 8 have been previously reported in [Brooks and Lozano-Perez, 1982]
(BLP planner), the best previous planner known to the authors using the hierarchical
approximate cell decomposition approach. In Table 2, we give the comparison of the
statistics on these two examples with our planner and BLP planner'. We should
point out that for Example 4 the path generated by our planner is "simpler" than the

*3The BLP planner was implemented on a LISP machine, which runs LISP approximately 5 times

faster than the Macintosh II runs Allegro Common Lisp (according to our own benchmark). In
addition, since we do not count the number of FULL cells in our planner's statistics (they have no
effect on the search graph), we subtracted this number from the statistics of the BLP planner.

30

<4I
A

\ \

Figure 11. Example 2.

Figure 12. Example 3.

31

Figure 13. Example 4.

Figure 14. Example 5.

32

Figure 15. Example 6.

Figure 16. Example 7.

33

Figure 17. Example 8.

Figure 18. Example 9.

34

Figure 19. Example 10.

Figure 20. Example 11.

35

Figure 21. Example 12.

path generated by BLP planner, in the sense that it does not include a backing-up
maneuver.

For examples 2, 6, 11, and 12, we compared the number of cells generated by our
planner with the number of cells that a similar planner using the octree decomposition
technique (see Subsection 3.2) would generate. Based on partial implementation, we
obtained a conservative estimate (i.e., lower bound) of the number of cells generated
by the octree decomposition technique. The data are reported in Table 3. Example
11 was extracted from [Avanaim, Boissonnat and Faverjon, 1988]. According to this
paper, the planner described in [Faverjon, 1984], which uses the octree decomposition
technique, generates more than 10,000 cells.

Therefore, the above results demonstrate major improvements brought by our algo-
rithms to the approximate cell decomposition method.

In addition to the previous experiments, we tried to characterize empirically the
efficiency of the planner as a function of the "complexity" of the workspace - i.e.,
the number of edges of the obstacles - and the "sparsity" of the workspace - i.e.,
the distance between obstacles. (The "clutteredness" of the workspace is the inverse
of the sparsity.) To that purpose we run our planner on several hundreds problems
using randomly generated environments with pre-specified complexity and sparsity.
Figure 22 shows twelve of these examples. The vertical axis points down toward
higher complexity and the horizontal axis points right toward smaller sparsity (i.e.,

36

-j .

Figure 22. We ran cur planner on many randomly generated examples with different

complexity - number of edges - and sparsity - distance between obstacles - of the workspace.
The purpose was to gather statistics about the effiency of the planner as a function of these

parameters.

37

120- 1400-

1200-

100-
1000-

800-

600-

400-
so0

200

40 * 0
0 10 20 30 40 0 10 20 30 40

Complexity Complex ity

(a) (b)

160- 1000.

140-
800-

120-

600.

100 a

400-
so-

so- 200-

40'
0 12 3 40 12 3 4

sparsity sparsity

(c) (d)

Figure 23. These diagrams illustrate the variation of the running time of the planner as

a function of the complexity (a and b) and the sparsity (c and d) of the workspace.

38

example CPU time (min) Ntotai NEMPTY Nuse& E (x 1000))
1 0.6 98 35 12 9.4
2 0.9 140 74 18 8.0
3 1.5 210 104 10 6.9
4 5.5 293 96 36 4.8
5 6.0 324 114 42 4.9
6 5.0 218 116 29 5.3
7 0.9 160 77 22 12.0
8 2.5 205 88 17 6.1
9 6.5 170 25 13 9.8

10 9.8 206 46 19 2.1
11 11.0 312 72 21 7.9
12 10.5 369 121 18 4.3

Table 1: Statistics for the Twelve Examples

Example 4 Example 8
planner CPU time Ntot i NEMPTY Nu.ed CPU time Ntota I NEMPTY IN. d

Ours 5.5 293 96 36 2.5 205 88 17
BLP tens 644 120 87 tens 782 62 29

Table 2: Comparision with the BLP Planner

greater clutteredness). (The two obstacles in the workspace are enclosed within two
rectangular boxes. The sparsity is measured as the distance between the vertical
sides of these two boxes.) For each complexity and sparsity, we have generated and
run tens of examples. The mean value of the running time obtained for some series
of examples are depicted in Figure 23. Figure 23 a corresponds to the first column
of Figure 22, Figure 23 b to the third column, Figure 23 c to the first row, and
Figure 23 d to the third row. Figures 23 a and b show that, within the range of our
experiments, the running time varies linearly with the complexity. Figures 23 c and
d show that above some clutteredness, the running time increases very quickly. This
results from the fact that the planner has to generate many small cells before it has
any chance to find an E-channel.

6 Conclusion

We have described new heuristic algorithms for path planning using the hierarchical
approximate cell decomposition approach. An important feature of this approach is
that it decomposes the robot's configuration space into cells of predefined shape -

lypically, rectangloids - at successive levels of approximation. The two main steps of

39

Num cells example2 example6 example ll example 12
Ours 140 218 312 389

Octree > 500 > 2000 > 5000 > 5000

Table 3: Comparison with the Octree Method

the approach are cell decomposition and graph searching.

With respect to cell decomposition, we have proposed an algorithm that decomposes
a MIXED rectangloid cell into a collection of EMPTY, FULL and MIXED rect-
angloid cells. It attempts to minimize the total volume of the generated MIXED
cells, while producing a reasonably small number of cells. Our algorithm is based
on the construction of a bounding and a bounded rectangloid approximations of the
C-obstacles. Experience shows that it produces much better results than vif,' earlier
decomposition techniques. Additional improvements could be possible, for example
by allowing cells having more involved shapes. However, such an improvement would
probably make other components of the planner (e.g., the construction of the search
graph) more delicate to implement and eventually less efficient to run.

With respect to graph searching, we have proposed a set of techniques for allowing
the planner to take advantage of the work carried out at other levels of detail for
conducting the search at the current level of decomposition. Some of the techniques,
inspired from dependency-directed backtracking, allows the planner to record the
conditions of past mistakes so that it does not repeat them.

We have implemented the proposed algorithms in a path planner, with which we
have conducted a variety of experiments. These experiments show that our planner
is significantly faster than previous planners based on the same general approach.

Our current research is aimed at developing a motion planner/controller capable of
dealing with some un-expected obstacles. Our approach described in [Choi, Zhu and
Latombe, 1989] consists of controlling the robot in a channel using a potential field
approach. We have conducted experiments with this approach both with a simulated
robot and an actual one. We currently work on the interaction between the planner
and the controller, so that if the robot gets stuck in a channel (for example, the channel
may be completely obstructed by an obstacle), the controller may ask the planner to
modify the channel accordingly. This kind of interaction requires to planner to be
fast.

References

Aho, A.V., Hopcroft, J.E. and Ullman, I.D. (1983) Data Structures and Algorithms,
Addison-Wesley, Reading, MA.

40

Avnaim, F. and Boissonnat, J.D. (1988) Polygon Placement Under Translation and Rota-
tion, Technical Report No. 889, INRIA, Sophia-Antipolis, France.

Ayala, D., Brunet, P., Juan, R. and Navazo, I. (1985) "Object Representation by Means of
Nonminimal Division Quadtrees and Octrees," ACM Transactions on Graphics, 4(1).

Brooks, R.A., and Lozano-Prez, T. (1982) A Subdivision Algorithm in Configuration Space
for Findpath with Rotation, Al Memo 684, Al Laboratory, MIT, Cambridge, MA.

Brooks, R.A. and Lozano-Prez, T. (1983) "A Subdivision Algorithm in Configuration Space
for Finpath with Rotation," Eighth International Joint Conference on Artificial Intelligence,
799-806, Karlsruhe, FRG.

Brost, R.C. (1989) "Computing Metric and Topological Properties of Configuration-Space
Obstacles," IEEE International Conference on Robotics and Automation, Scottsdale, Ari-
zona.

Choi, W., Zhu, D.J. and Latombe, J.C. (1989) "Contingency-Tolerant Motion Planning and
Control," IEEE Workshop on Intelligent Robots and Systems, IROS'89, Tsukuba, Japan.

Donald, B.R. (1984) Motion Planning With Six Degrees of Freedom, Report No. AI-TR-791,
Artificial Intelligence Laboratory, MIT, Cambridge, MA.

Faverjon, B. (1986) "Object Level Programming Using an Octree in the Configuration
Space of a Manipulator," IEEE International Conference on Robotics and Automation, San
Francisco, CA.

Gouz~nes, L. (1984) "Strategies for Solving Collision-Free Trajectories Problems for Mobile
and Manipulator Robots," International Journal of Robotics Research, 3(4), 51-65.

Kambhampati, S. and Davis, L.S. (1986) "Multiresolution Path Planning for Mobile
Robots," IEEE Journal of Robotics and Automation, RA-2 (3), 135-145.

Kant, K. and Zucker, S.W. (1986) Planning Smooth Collision-Free Trajectories: Path, Ve-
locity and Splines in Free Space, Technical Report, Computer Vision and Robotics Labora-
tory, McGill University, Montreal.

Khatib, 0. (1986) "Real-Time Obstacle Avoidance for Manipulators and Mobile Robots,"
International Journal of Robotics Research, 5(1), 90-98.

Khosla, P. and Volpe, R. (1988) "Superquadric Artificial Potentials for Obstacle Avoidance
and Approach," IEEE International Conference of Robotics and Automation, Philadelphia,

PA, 1178-1784.

Latombe, J.C. (1979) "Failure Processing in a System for Designing Complex Assemblies,"
Sixth International Joint Conference on Artificial Intelligence (IJCAI), Tokyo, Japan.

Laugier, C. and Germain, F. (1985) "An Adaptative Collision-Free Trajectory Planner,"
International Conference on Advanced Robotics (ICAR), Tokyo, Japan.

Laumond, J.P. (1987). "Obstacle Growing in a Non Polygonal World," Information Pro-
cessing Letters, Information Processing Letters, 25, 41-50.

41

Lozano-Pirez, T. (1983) "Spatial Planning: A Configuration Space Approach," IEEE
Transactions on Computers, C-32(2), 108-120.

Lozano-P6rez, T. (1987) "A Simple Motion-Planning Algorithm for General Robot Manip-
ulators," IEEE Journal of Robotics and Automation, RA-3(3), 224-238.

O'Dinlaing, C., Sharir, M. and Yap, C.K. (1983) "Retraction: A New Approach to Motion
Planning," 151h FOCS, 207-220.

Preparata, F.P. and Shamos, M.1. (1985) Computational Geometry: An Introduction.
Springer-Verlag, New York.

Rimon, E. and Koditschek, D.E. (1988) "Exact Robot Navigation using Cost Functions: The
Case of Distinct Spherical Boundaries in En," IEEE International Conference on Robotics
and Automation, Philadelphia, PA, 1791-1796.

Schwartz, J.T. and Sharir, M. (1983) "On the 'Piano Movers' Problem: II. General Tech-
niques for Computing Topological Properties of Real Algebraic Manifolds", Advances in
Applied Mathematics, Academic Press 4, 298-351; also in [Schwartz, Sharir and Hopcroft,
19871.

Schwartz, J.T., Sharir, M. and Hopcroft, J. (1987) Planning, Geometry, and Complexity of

Robot Motion. Ablex, Norwood, NJ.

Spivak, M. (1979) A Comprehensive Introduction to Differential Geometry, Publish or Per-
ish, Wilmington, DE.

Stallman, R.M. and Sussman, G.J. (1977) "Forward Reasoning and Dependency-Directed

Backtracking in a System for Computed-Aided Circuit Analysis," Artificial Intelligence,

9(2), 135-196.

42

