- - g .‘ ’

Alir University : i’
In Partial Fulfilliment of the (v}
Reguirements for the Degree of

Master of Science in Computer Engineering

saztic releasey

Appraved fo:
Diustniguzosa Uniimated

f DISTRIRUITICN STATEMINT A

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

90 04 .05 131




AFIT/GCE/ENG/90M-2

A COMPARISON OF A RELATIONAL
AND NESTED-RELATIONAL IDEF,

DATA MODEL

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Inst.jtute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Computer Engineering

Gerald Roger Morris, B.S.E.E.

Captain. USAF

MARCH. 1990

Approved for public release: distribution unlimited




AFIT/GCE/ENG/90M-2

A COMPARISON OF A RELATIONAL
AND NESTED~-RELATIONAL IDEF,
DATA MODEL

THESIS

Gerald Roger Morris
Captain. USAF

ATFIT/GCE/ENG/90M-2

Approved for pubiie release: distribution unlimited




Preface

The purpose of this thesis is to develop an abstract data model of a computer aided soft-
ware engineering {CASE) methodology, and to compare the query complexity, database size. and
~peed of query execution of a relational database management system (DBMS) implementation of
the methodology with a nested-relational DBMS implementation. The United States Air Force
Integrated Computer Aided Manufacturing (ICAM) program defines a subset of Ross's Structured
Analysis (SA) language called [CAM Definition Method Zero (IDEFg); it is precisely this IDEF,
~nthset that is considered (30)(23). Ingres Corporation's relational DBMS, Ingres. is the implemen-
tation media for the relational version; the University of Wisconsin's Extensible Object-oriented

Database. Exodus. is the implementation media for the nested-relational version (29)(4).

The comparison is undertaken to demonstrate potential advantages of a nested-relational
DBMIS for this application. Additionally, the development of an abstract data model for IDEFy is
directly related to on-going AFIT research efforts associated with the Strategic Defense Initiative

Organization (SDIO), which has adopted the IDEF, analysis language.

[ extend my gratitude to several people who supported me during this effort. I thank my
thesis advisor. Major Mark Roth for his patience and guidance in the area of database theory and
application. [ thank the other two members of my committee, Dr. Thomas Hartrum, who strongty
inflnenced the development of the abstract data model, and Dr. Gary Lamont, who taught me
carly on to assume nothing and to return to first principles when lost. [ thank Capt Neal Smith

and Capt Ken Austin. who helped me develop the abstract data model. I thank Capt Mike Mankus

1

who developed the nested-relational DBMS and Capt Jim Kirkpatrick for his insight in helping me "—é_"
a
(D)

develop the nested-relational version. [ especially thank Penny for her moral support during these

past. months.

Gerald Roger Morris -

B "V’>
oa o N o OF
N | CTED st

Mo

i




Tuble of Contents

Page

Preface . . . .. o 1
[able of Contents . . . . . . . . .. 1l
Listof Figures . . . . . . . .. .. viil
List of Tables . . . . . . . . o o X
Abstract . . L L Xi
I. INTRODUCTION . . . . . . 1
General Issues . . . . . . . . .o 1

Background . . . ... . e 2

Overview of CASE Development. . . . . . . . .. . ... . .. 2

Overview of Database Development. . . . . . . . . .. ... 4

Problem Statement . . . . . . ... L 10

Plan of Attack . . . . . . . . ... 11
Development of an Abstract Data Model. . . . . . . .. ... . . . . 11

Mapping of Abstract Data Model. . . . . . . . ... ... .. ... . . 13

Example Database Instance. . . . . . . . . . . .. ... ... .. ... 13

Development of Queries. . . . . . . . . . .. ... ... 13

Comparison. . . . . . . . . ... 14

Scope and Limitations . . . . . . .. ... 15

Scope. . . . . 15

Limitations. . . . . . . . .. .. . L 15

Sequence of Presentation . . . . . . . . .. . e 16

n




1. LITERATURE REVIEW . . . . . ... ... . ... ..
Introduction . . . . . . . ..o
Overview of IDEFy . . . . . . . . .. ... ... ... .
AFIT and IDEFy . . . . . . . . ... ...
Overview of Exodus . . . . . . . . .. ... .. .. ..

CASE Toolsand DBMS . . . . . . . .. .. .. . .

An Analysis Scenario - The Need for a DBMS. . . . .

Mapping Difficulties. . . . . . . . .. ...
Commercial Databases for CASE Tools. . . . .
Integration of CASE Tools. . . . . . . .. .. ..

Summary . . ...

1. METHODOLOGY . . ... .. . . . . ... ...,
Introduction . . . . . . . . ...
Extended E-R Notation . . . . .. ... .. ... ...
IDEF, Abstract Data Model . . . . . .. ... . . ..

Essential Data Model. . . . . . . ... .. .. ..
Drawing Data Model. . . . . . ... ... .. ..
IDEF, Relational Database . . . . . . . ... . ... .
Design Trade Offs. . . . . .. . ... ... ..
Relational Design. . . . . . . . .. ... ... .
Example Relational Database Instance. . . . . .
Relational Implementation. . . . . . . . . . . ..
SQL Queries. . . . . ... .. L
IDEF Nested Relational Database . . .. . . ... ..
Design Trade-Offs. . . . . .. .. ... . . ..

Nested-Relational Design. . . . . ... .. .. . .

Example Nested-Relational Database [nstance. . . .

24

[§%
=1

31

35

36

36

36

61

61

63




Nested-Relational Implementation. . . . . . . .. . ... ... .. 72

SQL/NF Queries. . . . . . ... 72

Summary . . ... 74

IV FINDINGS © 75
Introduction . . . . . . .. L 75

Query Complexity . . . . . . . . ... 5

A Definition of Complexity. . . . . . ... ... ... . ... 5

Comparison of SQL versus SQL/NF.. . . . . . . e o

Size of Database . .~ . . .. . e

Relational Logical Size. . . . . . .. ... .. ... ... T8

Nested-Relational Logical Size. . . . . . . . .. ..o 79

Speed of Query Execution . . . . .. . ... ... 33

Disk Resident Project Data. . . . . . ... .. . . . .. .. ... .. 83

Memory Resident Project Data. . . . . . . . ... . ... ... 34

Summary . . . .. . 91

Y CONCLUSIONS AND RECOMMENDATIONS . . . . .. .. .. .. ... ... . 92
Introduction . . . . . ..o 92

SUMMAry . . . . . . . 92

Conclusions . . . . . . . .. 93
Recommendations . . . . . . . . . ... .. 95

Appendix A, Some CASE Tools and Vendors . . . . . . .. .. .. ... 97
Appendix B. IDEF, Language Features . . . . . . . ... . ... . ... ... .. ... 100
Appendix C. SAtool Products . . . . . . ..o 101
Typical SAtool IDEF, Drawing Outputs . . . . . .. .. . .. ... . . .. .. 101

Data Dictionary Qutputs . . . . . . . . . . ... 104




Appendix D.

Appendix E.

Appendix F.

Appendix G.

Appendix H.

Appendix L

ACTIVITY Data Dictionary. .

DATA ELEMENT Data Dictionary. . . . . . . .. . ..

Analysis Phase Data Base . . . . . . . . . ... ... . ... ...

Typical Data Manager Session . . . . . ... ... .. .. .. .

Example IDEF; Relational Database Instance . . . . .. . . . . . . . .

SQL Seripts . . . . ..
Create Tables . . . . .. . . ...
Load Database . . . . . . .. .. ... .. ... ...

Erase Database . . . . . . . . . ... ...
Show Database . . . . . . . . . ...
Extract Drawing Data . . . . . . .. . . ...
A-0 Drawing Data. . . . . . . . ... ...
A0 Drawing Data. . . . . . ...
Extract Essential Data . . . . . ... .. ... ..
Activity Data Dictionary. . . . . . . . .. . .. .. ..

Data Element Data Dictionary. . . . . . . . ... . .. ... ... ...

Example IDEF; Nested-Relational Database Instance . . . . . . . . . ..

SQL/NF Scripts . . . . . . . . ...
Create Tables . . . . . . . ... .. .. ..
Load Database . . . . . . .. . . ... .. ...

Erase Database . . . . . . ... ... .. .. ... ... .
Show Database . . . . . . .. . .. ...
Extract Drawing Data . . . . . . .. . ... ... . ... ...

Extract Essential Data . . . . . ... . . ... .. .. ...

Activity Data Dictionary. . . . . . . . . .. ..o

vi

Page

104

109

111

117

117

121
122
123
123
127
137
137

139

142

158

160

161

161

161




Appendix J.

Bitliography

Vita

Data Element Data Dictionary . . . . .

Ada Package for Drawing Data Structures




List of Figures

Figure Page
l.  Typical Hierarchical Database . . . . . . . .. .. .. ... ... .. ... . 5
2. Typical Network Database . . . . . . . .. ... ]
3. Typical Relational Database . . . . . . ... ... .. .. . .. L 7
t. Typical Entity-Relationship Diagram . . . . .. . ... .. ... . . . 9
) IDEF,; Abstract Data Model . . . . . . . . . .. ... .. . 12
0 Structured Decomposition . . . . . . ... o 18
v A-U Diagram . S S S , o 19
8. A0 Diagram . .. ..o e 20
9. SAtool Products . . . . .. 22
10.  Highly Simplified E-R Diagram of SAtool Data Model . . . . . .. . . . . .. .. 29
11. Common Database System Structure . . . . . . . . .. ... ... ... .. ... 34
12, Modified Entity-Relationship Notation . . . ... . ... ... . ... . ... .. .. 37
13, [DEF, Abstract Data Model: Essential Data and Drawing Data . . . . . . . . . .. 33
14, IDEF; ACTIVITY Essential Data Model . . . . . . . . . .. .. ... ... . 40
13. IDEF; DATA ELEMENT Essential Data Model . . . . . . .. ... . .. .. . {1
1. IDEF; ACTIVITY Drawing Data Model . . . . . . .. ... ... . ... . ... 15
I7. IDEF,; DATA ELEMENT Drawing Data Model . . . . . . . . ... . . A
IN. A-0 Diagram (partial drawing 1) . . . . . . .. ... B
1Y A-0 Diagram (partial drawing 2) . . . . . S . o o 60
20 SAton] Products 101
21. Typical A-0 Diagram . . . . . . .. ..o ... 102
220 Typical A0 Diagram . . . . . ..o . 103
23, A-0 Diagram (partial drawing 3) . . . . . . . ... Lo 124
24 A-0 Diagram (partial drawing 4) . . . . . . . . .. ..o 126
23, AO Diagram (partial drawing 1) . . . . . . ... ... o000 L0 o128

viil




Figure
26. A0 Diagram (partial drawing 2) . . . . . . . . . 130
27 A0 Diagram (partial drawing 3) . . . . . . . T L 131
28 A0 Diagram (partial drawing 4) . . . . .. ... L 135




List of Tables

Table Page
l.  Description of Components in the Essential Data Model . . . . L 42
2 Description of Components in the Drawing Dara Model S . 47
4 Relational Design . . . . . S L 31
4 Mapping of E-R Essential Data to Relational Design . . . . . . .. o 36
3. Mapping of E-R Drawing Data to Relational Design . . . . . . ... . . ... . 57
6.  Nested-Relational Design . . . . . . ... . .. ... 64
7. Comparison of Query Script Complexity . . . . . . . . ... T
3. Comparison of DDL/DML Script Complexities . . . . . . ... ... . ... . 3
g Simple Relational Example . . . . . . ... ... . ST
10.  Simple Nested-Relational Example . . . . . . .. .00 79
ll. Logical Size of Relational Instance . . . . . . .. ... ... ... ... ... 31
12, Logical Size of Nested-Relational [nstance . . . . . . .. ... ... . ... .. A 82
13.  Relative Query Speeds: Number of Disk Accesses . . . . .. .. 84
1t. IDEF, Language Features . . . . . . . .. . . . o ... . 100




AFTT/GCE/ENG/90)M-2

Abstract

< This thesis develops an abstract data model of a particular computer aided software engineer-
e (CASE) methodology, and compares the query complexity, database size, and speed of query
rxecttion of a relational database management system (DBMS) implementation of the methodology
wirh a nested-relational DBMS implementation of the same CASE methodology. In particular, the
thesis considers the United States Air Force Integrated Computer Aided Manufacturing (ICAM)
prooram's subset of Ross's Structured Analysis (SA) language called ICAM Definition Method Zero
HIDEFAY. Ingres Corporation’s relational DBMS, Ingres. is the implementation media for the rela-
rional version. The University of Wisconsin's extensible database, Exodus, is the implementation

mmedia for the nested-relational \'ersion.“}

-

The thesis provides background information on the development of CASE methodologies and
the development of database management systems. Additionally. it provides an overview of the

INEF. analysis langnage. and the Exodns extensible DBMS. o ; {—-—\
' - /

Inchided in the thesis 1s an abstract data model of the IDEF; language. The model partitions
[DEF. ints an essential data model and a drawing data model. This partitioned representation
facilitates ongoing and future research relative to syntax checking, generation of an executable
<oftware specification. and automatic lavout of SA diagrams. Since IDEFy is the analysis method-
aleay selected by the Strategie Defense Initiative Organization, the abstract data model alone 1s of

tportance

The abstract Jdata model is mapped into a relational representation and tinplemented within
Biwres. The pelational representation is mapped into a nested-relational representation and imple-
meented within Fxodus, The two implanentations are compared to see if there are any advantages
to b e by nsing a nested-eelational DBMS for this type of apphication (CASE tool data). The

vieas ol carnpartsen melnde gquers copplexitys <ize of the database, and speed of query execution

N




A COMPARISON OF A RELATIONAL
AND NESTED-RELATIONAL IDEF,

DATA MODEL

[. INTRODUCTION

General Issues

The application of the modern digital computer was the stepping-stone from which soft-
ware engineering and database theory developed. This thesis investigation involves both software
engineering and database management systems (DBMS). It compares a relational DBMS unple-
mentation of a software engineering methodology with- a nested-relational DBMS implementation
of the same methodology. The United States Air Force Integrated Computer Aided Manufactus-
ing ([CAM) program defines a subset of Ross's Structured Analysis (SA) language called I[CAM
Definition Method Zero (IDEFy); it is this language \vHich is considered in this research (25) (30).
['he relational version of the IDEF, language is implemented within Ingres Corporation’s rela-
rional DBMS, Ingres (29). The nested-relational version is implemented within the University of

\Wisconsin's Extensible Object-oriented Database, Exodus (4).

The comparison is undertaken to determine potential advantages relative to query complexity,
size of the database, and speed of query execution of a nested-relational DBMS for the application
of computer aided software eng:neering (CASE) tools. Additionally. the development of an abstract
dara inodel for the IDEF, language is directly related to on-going AFIT research efforts associated
with the Strategic Defense Initiative Organization (SDIO). which has adopted the IDEF, analysis

inguage.




Background

Overriew of CASE Development. Software engineering is a relativelv new field which has
undergone dramatic transformation in the past 40 years. In the early years. computer programming
and software development in general was pretty much a “black art™ which depended upon the skill
of a few ~high priests.” There were often cost and schedule overruns. As Betty Forman said. “If
carpenters built buildings the way programmers write programs, the first termite would destroy
civilization™ (13:53). The community recognized this problem and began to address it. A workshop
in 1963, in Garmisch, West Germany, and a subsequent one in Rome. [taly in 1969 looked at the
zrowing technical and managerial problems associated with the development and maintenance of
comiputer software. According to Fairley, it was these workshops which coined the phrase, software

engineering (12:4). Fairley proposes the following definition for software engineering:

Software engineering is the technological and managerial discipline concerned with sys-
tematic production and maintenance of software products that are developed and mod-
ified on time and within cost estimates. (12:4)

There are literally dozens of software engineering approaches covering virtually all phases
of software development. Some the theoretical work concentrated on the requirements analysis
rhase. Larry Constantine invented data flow diagrams and perhaps structured programming: one
of the first books on structured design was written by Constantine and Edward Yourdon (41). Tom
DeMarco wrote the classic book on the principles of structured analysis and showed the use of data
flow diagramming as part of a software analysis methodology (11). Paul Ward and Steve Mellor
Jid important work in the area of real-time structured analysis; Ward's 1985 paper describes the
extensions made to DeMarco's data flow diagram, which allow it to represent timuing and control
mformation (40). In 1987, Paul Ward, Hughes Aircraft Company’s Randall Jensen, Honeywell's

William Bruyn, and Boeing's Dinesh Keskar, developed the Extended System Modeling Language




(ESML),! a method that combines some features of both the Hatley and Ward-Mellor methods

(13).

Roger Pressman gives an overview of some other approaches (27). For example, Jackson
System Development (JSD) combines a natural language Jduring the initial phases with structure
charts and structured text added during the later phases. Another methodology is the Warnier-
Orr Data Structured Systems Development (DSDD). which considers data hierarchy, information
flow. and functional characteristics. There are several methodologies based upon some type of
requirements language, e.g., Software Requirements Engineering Methodology (SREM). and Prob-
lem Statement Language/Problem Statement Analyzer (PSL/PSA). Another increasingly popular
approach is the so-called object-oriented methodology, which attempts to link real-world objects

and their associated operations.

Of particular interest. is Ross's Structured Analysis (30). This graphical analysis language is
the bhasis for IDEFg, the language modeled in this investigation (25). Like the traditional data flow
Jdiagram. SA is a hierarchical decomposition. It allows data (nouns) and activities (verbs) to be
modeled via arrows, boxes, and other graphical and textual devices. Additional information about

SA and IDEFq is given in Chapter [ of this thesis.

The early theoretical work naturally led to the development of computer based tools to assist
the software developers. The term computer aided software engineering (CASE) is used to describe
these computer based tools. First-generation CASE tools were developed using a theoretical and
technological base that changed even as the tools were being written. To a large extent this is still
1rine. Many of today’s CASE products are constantly being revised to accommodate new theories,
methodologies, and programming languages. CASE has become a grab bag for a variety of software
products and services; some are quite valuable, other are just “pieces of methodology out chasing

markets” (17:52). A list of some commercially available CASE tools is inciuded in Appendix A.

"\Vhile assigned to the Government Plant Representative Office at Hughes, [ had the opportunity to review Dr.
Jensen's draft paper on the ESML model.




A software development organization needs a suite of CASE tools rather than one “super-
tool.” In fact anyv one tool that tried to combine all features would be rather unwieldy. Hawley

expresses this sentiment rather succinctly:

To combine all the functions and features known to CASE tools and designate that list
as the standard is a disservice to users and vendors. [t makes the ideal CASE product
resemble an elephant; enormous, clumsy, frightened, and expensive. (17:33)

Since each of the tools within a CASE environment must be able to use the data generated
by the other tools, it is important to develop a formal or semi-formal model for each methodology
being automated and create an environment in which each of these models can exchange data,

perhaps through some type of DBMS.

Overview of Database Development. Database system theoty is even more fledgling than
computers and software in general. In the thirty years since 1960, it has experienced dramatic
changes. Businesses took advantage of the power and speed of computers; the complexity and size
of data processing applications began to grow. These applications were based on a file-processing
svstem wherein the various pieces of information were stored in sepatate files. Korth and Silber-
schatz point out that this file-based approach has major disadvantages such as data redundancy,
Jifficulty in accessing data, concurrency problems due to multiple users, and security problems
(20:2). Companies such as IBM, North American Aviation (now Rockwell International). and
General Electric had extensive database requirements that were rapidly exceeding the capability
of the existing programmer community. It was becoming difficult for these large organizations to
coplete existing projects, let alone take on new projects. Increasing amounts of time were being
<pent on special purpose code to accommodate multiple users, provide adequate security, ensure
the tutegrity of data, and so forth. Each new application basically reinvented the wheel in terms of
ata structures, access methods, and so forth. As a consequence of these issues, database manage-

ment svstems (DBMS) were developed. As far as traditional business applications are concerned,




Jatabase system theory and practice appears to have matured and stabilized. “The fundamental

Jdatabase system concepts are now well defined and well understood™ (20:xiii).

The first DBMS systems were based upon the hierarchical model. In this logical approach,
records are contained in multiple levels that graphically form a tree structure with the root at the
top and the branches formed below. There is a distinct superior-subordinate relationship. Figure |
i+ an example of a hierarchical database structure based upon Date’s supplier, parts, and shipments
database (10:64). The data base is a forest of trees. each of which has a root node record. Below
the root record are subordinate record nodes, each of which, in turn, owns one or more other
nodes (perhaps none). Each node in the tree, except the root, has a single owner. Each of the
records in the tree contains a collection of fields. Each field contains a single value. Because of the
structure, data must often be replicated i.n several different locations within a hierarchical database.
According to Korth and Silberschatz, this presents two major drawbacks: (1) data inconsistency

may result when updating takes place, and (2) waste of space is unavoidable (20:144).

P1 Nut Red 12 London P2 Boit Green 17 Paris
S2 Jones 10 Paris 300 S3 Blake 30 Panis 200
Sl Smith 20 London 300 S2 Jones 10 Paris 400
S1 Smith 20 London 200
P3 Screw Blue 17 Rome
S1 Smith 20 London 400

Figure 1. Typical Hierarchical Database

As database theory continued to develop. some of the problems inherent in the hierarchical




model were circumvented by the more sophisticated network model. Like the hierarchical model,
a uetwork database consists of a collection of records connected via links. Unlike the hierarchical
model, the network model allows arbitrary graphs as opposed to trees. Thus, each node may have
several owners and may, in turn, own any number of other records. The network model provides a
mechanism by which a field can have a set of values. It also reduces the amount of replicated data
inherent in the hierarchical model. Figure 2, which is borrowed substantially from Date, shows a

tvpical network database (10:64).

St [ South 20 | London 52 lJones |10 | Pans S3 |Blake 30 | Panis

300 200 400 300 [ 400 200

N\

P'.’I Bolt lGreen JL l Paris |l;]5crew l Blue llT I Rome Pl] Nut l Red ] 12 l London

Figure 2. Typical Network Database

The Database Task Group (DBTG) of the Conference on Data Systems Languages group
{CODASYL), which had set the standard for the COBOL language, studied a number of these
network-based DBMS in the late 1960s. This study resulted in the first database standard specifi-

cation. the so-called DBTG network model.

Research on database systems continued. E. F. Codd, at the IBM Research Laboratory
San Jose, introduced the relational model in his 1970 paper (7). A relational database consists of
a collection of tables (relations), each having a unique name. Each table has a number of columns

fattributes), which also have a unique name. The primary assumption of Codd’s relational model is




that all attributes in a relation can only have atomic values, i.e., cannot be decomposed. A relation
which only has atomic valued attributes is said to be in first normal form (INF). Codd’s paper
includes a rigorous mathematical treatment of the subject. Additionally, his model provides the
mechanism for separating the programs from the machine representation and organization of data
{one of the big problems associated with both the hierarchical and netwerk Jdatabase models). A set
of relations from Date’s sample database, is shown in Figure 3 (10:64). According to Stonebraker.
Codd’s paper “started a heated controversy in all ACM SIGFIDET (now SIGMOD) meetings from
1971 onward between two collections of people...” (36:1). The previously mentioned CODASYL
group was pushing the DBTG network model (their recently defined database standard). while

C'odd and academic researchers were pushing the relational model.

supplier
s# |sname status city sup-part
S1 Smith 20 London s# ¥ hid
S2 | Jones 10 Paris Si P1 300
S3 Blake 30 Pans s P 200
St P3 100
part s» | P1 o fa3uo
p# pname color wgt city S P2 100
"1 A Red 12 London $3 P2 200
P2 Bolt Green 17 Paris
P3 l Screw Blue 17 Rome

Figure 3. Typical Relational Database




Two influential prototype database systems based on the relational model were developed and
subsequently commercialized. These two systems, “helped shape a fair amount of the history that
followed” (36:2). The IBM Research Laboratory at San Jose built System R, and the University
of California at Berkeley built Ingres. Ingres was eventually commercialized by several companies.
including Relational Technology (now Ingres Corporation). System R was also commercialized by

several companies including Oracle.

By and large. the relational model is the de facto database standard. However, research in
the database arena has continued. and several other models have been proposed. One such model.
which has found significant use during the design phase of databases, is Chen's entity-relationship
model (6). Basically the E-R model extends the relational model with the concepts of entities,
which are represented by rectangles; attributes, which are represented by ellipses: relationships.
which are represented by diamonds; and the links between them. which are represented by lines.
An example E-R diagram based upon Date’s database is shown in Figure 4. There do not seem to
he any commercial database systems that use the entity-relationship model as their underlying data
nodel. Nonetheless. the E-R model has obvious uses, in particular for logical database design?.
[n fact. many commercial relational database design tools require the database administrator to
express data using the E-R model. Stonebraker explains why the E-R model never really took
icld. “The relational model was dramatically and obviously better than the older hierarchical and
network models. .. The E-R model, on the other hand was not seen to be dramatically better than

the relational model” (36:369).

Stonebraker gives an overview of some other database approaches, for example; the functional
model attempts to view the database as a collection of functions: the semantic data model is
an attempt to deal with what Stonebraker calls the “semantic poverty™ of the relational model

(36). Another increasingly popular approach is the so called, object-oriented approach®. The

‘The IDEF, data model in this thesis is derived via an entity-relationship analysis.
}The Exodus DBMS used to implement the nested-relational [IDEF; database is an object oriented system.

A




snam
supplier
wgt

Figure 4. Typical Entity-Relationship Diagram

exact meaning of object-oriented varies from person to person. Bancilhon describes the main
characteristics of an object-oriented system which should, in turn, be manifested in any DBMS that
chooses to be called object-oriented. These characteristics include encapsulation, object identity,

tvpes and classes. inheritance. overriding and late binding, and degrees of freedoin (2:152).

Another important database model is the nested-relational model, which is basically an ex-
tension of Codd’s relational model. The extension allows for attributes within a relation to be
multi-valued or even relation-valued, i.e., the INF assumption is relaxed. Perhaps the earliest
work in this area was done by Makinouchi, who considered set valued attributes {22). Thomas
and Fischer subsequently extended this concept to include relation-valued attributes (38). Roth.
Korth. and Batory proposed extensions to the SQL query language (SQL/NF) so that it could
deal with these non-first normal form (—=1NF) relations (33). The nested model, while retaining
Cndd’s traditional operators, also has two new operators, nest, and unnest. These operators are

hest explained by way of the following example from Mankus:

. suppose a relation r is defined on some scheme R, with attributes A, B, and C. This
may be denoted as R = (4BC). If the attributes B and C are then nested under one
attribute, thus giving us a relation-valued attribute, the scheme may now be shown as
R' = (AD), D = (BC), where B and C are nested under the D attribute of R'. By
unnesting R’ with the unnest operator, the scheme R = (ABC) is returned. (23)




One advantage of the nested model is that it can deal with complex, hierarchically structured
objects wherein an object is composed of lower level subobjects. A good example of this is seen in a
personal computer. The object “computer™ is made up of subobjects such as “monitor”, and “disk
drive.” Each of these subobjects, in turn may be comprised of subobjects. For example, “moni-
tor” 15 comprised of subobjects such as “circuit board,” which. in turn, is made from “integrated
cireuits,” “resistors,” “capacitors,” etc. Each subobject 15 dependent upon its parent object. If
the parent is deleted, so are all its subobjects. Although there do not seem to be any commercial
databases based upon the nested relational model. there are prototype research systems such as

that built by Mankus (23).

The current situation is that relational database systems work quite well for business data-
processing applications. However, if you “stray from data that looks like the SUPPLIER-PARTS-
SUPPLY example popularized by Codd or the EMP-DEPT examples also in widespread use, rela-
tional systems tend to run into trouble very quickly” (36:477). In nonbusiness application areas the
apportunity to stray is rampant. For example; CAD applications need to store two-dimensional and
three-dimensional objects in some type of database; considerable research has been expended on
trying to integrate database management systems with artificial intelligence systems; Rubenst~in
lescribes the design of a database system for musical information (34). It is almost certain that
next-generation CASE tools will put software specifications. definition of forms. reports, graphs.
and even source code in a database. In all these areas, current relational systems tend to work
poorly; user queries are difficult to construct and they execute slowly. As a result, developers of
these kinds of applications generally ignore relational technology. Some other database approach

might prove useful. Particularly in a data intensive area such as CASE tools.

Problem Statement

The purpose of this thesis investigation is to analyze the data requirements of the IDEF,

10




structured analysis language; develop an abstract data model of the language: implement this Jata
model within an Ingres-based relational DBMS; implement the model within an Exodus-based
nested-relational DBMS; compare the two implementations in terms of query complexity. size of
the database. and speed of query execution: and, based upon the comparison, determine if the

nested-relational implementation of the model is more appropriate for the IDEF, application.

Plan of Attack

The plan of attack is to analyze the data requirements of the IDEF, language and develop
an abstract data model. After the data model i1s complete, it is mapped to a set of relations and
implemented in the Ingres relational DBMS. An example database instance, and a series of queries
15 developed to extract data from the relational implementation. The relational model is then
mapped into a nested-relational representation and implemented within the Exodus-based nested-
relational DBMS. An example database instance containing the same information as the relational
instance is developed. as well as a series of queries to extract data from the nested-relational version.
Finally. comparisons between the two implementations are generated. These comparisons include

complexity of queries, speed of query execution, and size of the database.

Development of an Abstract Data Model. In order to facilitate development of the relational
and nested-relational DBMS implementation of the IDEF, language, an abstract data model of the
language is constructed. This abstract data model consists of two parts, the essential data model.
and the drawing data model. The former captures only the essence of the analysis language in terms
of activities and data elements, whereas the latter captures only those portions of IDEFg which are
strictly graphical constructs. This approach allows future tools to extract analysis data without
having to deal with the fact that the analysis language was IDEF,. The concept is illustrated in

Figure 5.

11




IDEF,
Essential
Data
Model
IDEF,
Abstract
Data
Model
IDEFO /
Drawing
Data
Model

Figure 5. IDEF, Abstract Data Model

Essential Data Model. The [DEF, essential data model captures those portions of the
language which represent the semantics (relative to a human interpretation) of a particular analysis.
This includes, for example, activities and their children, as well as data elements. It does not
include, for example. the location of the boxes or arrows which graphically represent the activities
and data elements. As mentioned earlier, this approach allows future tools to extract analysis
information without having to deal with the IDEFg graphical representation explicitly, i.e., without

having to “walk through” the drawing.

The entity-relationship model is used to analyze the essential data model since it allows for
~asy mapping into a relational design. Furthermore. one of the advantages of the entity-relationship
approach, as explained earlier, is that it retains many of the semantics of the actual data being

modeled.

Drawing Data Model. The drawing data model represents the actual graphical con-
structs, e g., boxes, arrows, etc.. used to represent the particular IDEF, analysis. This data is used
g p p

to draw an [DEF, model. It contains such information as the location of boxes, the line segments

12




which graphically represent a given data element, etc. For the same reasons as before, an E-R

analysis is used to derive the model.

Mapping of Abstract Data Model The mapping of an E-R model into the corresponding
relations is relatively straight forward. An example of a mapping approach is given in Chaprer
2 of Korth and Silberschatz (20:21). After the mapping into relations is accomplished and tuned
via stepwise refinement, it is a simple task to implement the design within the Ingres DBMS. The
mapping into a nested-relational model is a different matter. There are paradigms for mapping
a scheme into a nested-relational design given a universal relation, its functional dependenctes.
and multivalued dependencies (31). Unfortunately, there is no easy way to determine multivalued
dependencies. particularly if the data model is developed using classical methods such as E-R.
Thus. the development of the nested-relational design is essentially still an art form which relies on

the skill of the analyst. Following the nested-relational mapping is the implementation within the

Exodus DBMS.

Erample Database Instance. A two-level IDEFg analysis is used as the basis for the example
Jdatabase instances. This instance is loaded into the relational implementation. and the nested
relational implementation. Identical instances in each version allow for a somewhat normalized

comparison.

Development of Quertes. Typical queries to extract data from the example database are
developed. For the relational version, the query language is SQL. Queries to extract the identical
data from the nested-relational implementation are developed. Although the query language for
Mankus's nested-relational DBMS is based upon Colby algebra, the ultimate goal is to build a
uery language front end based upon Roth's SQL/NF (8) (33). Accordingly, the nested-relational

queries are written in SQL/NF and translated into Colby algebra. The justification for writing the

13




queries in SQL/NF pertains to the query complexity comparisons between the nested-relational

version and relational version.

C‘omparison. The comparison is a somewhat difficult issue. One area that could provide
useful data is in the area of query complexity. In order to determine which query is “more”
complex. complexity is quantified in terms of query language constructs. The queries associated
with the relational and nested-relational implementations are compared based on these complexity

measures.

The comparison of the size of the database files seems to be rather straight forward. Unfor-
tunately. a simple comparison of file size is not necessarily meaningful. Is the smaller size due to an
trinsic property of the data model or is it due to the skill of the database programmer in choos-
ing a data structure? The best that can be done with this approach is to build several database
mstances and attempt to draw some qualified concluei~~s, On the other hand, if a relational exam-
ple database instance and a nested-relatinal example database instance (containing the identical
data) are compared byte by byte, on paper, then the logical size of each can be determined. This

provides a worst case comparison, since internal representations tend to compress data.

While it is rather easy to simply compare the running time of the two implementations for
various queries, the numbers are again not necessarily meaningful. Is the faster running time of
one medel due to an intrinsic property of the model or is it due to a more skillful programming
effort” Does the Ingres version run faster because there a fewer people logged in? Does Exodus
run faster because it is on a Sun workstation? The best that can be done with such an approach is
to examine a number of different queries and attempt to draw some qualified conclusions. A more
reasonahle approach is to consider query speed in terms of number « ~ disk accesses (assuming a
disk based DBMS approach), or an order-of analysis on programs which run the embedded query

language queries {assuming a memory based DBMS). This latter approach obviously depends upon




the size of a given IDEF, analysis. It may not be possible to load the complete set of data for a

siven project into memory at one time.

Seape and Limitations

Scope. The thesis effort covers four specific areas as indicated below:

1. Devclopment of an abstract data model for the IDEF, language.

1o

Design and implementation of an Ingres-based relational database to capture the IDEF, data.

3. Design and implementation of an Exodus-based nested-relational database to capture the

IDEF, data.

4. Comparison of the two DBMS implementations to determine the benefits, if any. associated

with the use of a nested-relational DBMS for such applications.

Limitations. The development of the abstract data model, and the nested-relational imple-
mentation of this model are the primary areas of emphasis. The ability to use the abstract data
model in other on-going thesis efforts relative to IDEF, is of primary concern. In particular.
Smith’s Ada implementation of SAtool uses the data model, as does Austin's implementation of a
Structured Analysis Tool Interface to the Strategic Defense Initiative Architecture Dataflow Mod-
eling Technique (35) (1). Another area of emphasis is Kirkpatrick’s dissertation efforts relative
to nested-relational DBMS. The nested-relational IDEF, implementation depends upon Mankus's
development of a nested-relational DBMS (23). If the nested-relational DBMS is not robust enough
to nnplement the nested-relational design, a "paper model™ will be constricted and used as the
hasis for comparison. Finally, the ability to map the abstract data model into the existing AFIT

software development environment is of concern (16:8).




Sequence of Presentation

This thesis consists of five chapters. An overview of the IDEF, language. and the Exodus
extenstble DBMS. as well as a literature review of DBMS as each applies to CASE tool data is pre-
sented in Chapter 1I. The design of the IDEF, abstract data model and the corresponding relational
and nested-relational DBMS implementations are presented in Chapter [II. Chapter IV summarizes
and compares the IDEF, implementation within a relational and nested-relational DBMS. Finally.
Chapter V presents the conclusions of this research effort and includes recommendations on further

research in this area.

16




Il. LITERATURE REVIEW

Introduction

The purpose of this investigation is to develop an abstract data model of the IDEF, language.
umplement the data model within a relational and nested-relational DBMS. and determine if there

are benefits associated with the nested-relational implementation of the model.

Since the particular language being implemented is IDEF,, and the implementation DBMS
for the nested-relational model is Exodus, a brief overview of each is presented. The underlying
1ssue of course, s to determine if the mapping of CASE tool data into a DBMS is worthwhile.
Accordingly, a literature review of CASE tools and their connection with DBMS is conducted to

sain some insight mto the problem.

Orerview of IDEF,

IDEF, is a graphical language which, among other things can be used during the analysis
phase of software development. In order to discuss IDEFy, it is necessary to also discuss Structured

Analysis (SA). The following paragraphs give a brief overview of both SA and IDEF,.

In his 1976 paper, Douglas Ross introduced Structured Analysis as a generalized language.
which allows a complex idea to be represented in a hierarchical, top-down representation (30).
According to Ross. “The human mind can accommodate any amount of complexity as long as it
1s presented in easy-to-grasp chunks that are structured together to make the whole” (30:17). SA
~omibines graphic features such as lines and boxes with standard written language to create the
SA model. Figure 6 illustrates the basic idea behind this structured decomposition. At each level,
~aiv the details essential for that level are given. Further details are exposed by moving down in

the luerarchy.

SA provides for two kinds of decomposition, an activity decomposition, and a data decompo-

~sitwn. [n the activity decomposition, activities (verbs) are represented by rectangular boxes, and




. A-0 diagram

details

A0 diagram

A3 diagram

A32 diagram

Based on (30:18)

Figure 6. Structured Decomposition

[ata (nouns) are represented by arrows flowing into and out of the boxes. In the data decomposi-
tion. boxes represent data, and arrows represent activities operating on the data in the boxes. An
example of an activity decomposition is shown in the following two figures. Figure 7 represents
the overall context of the system being analyzed (the so called “A minus zero” diagram). Figure 3
represents the first level decomposition (the “A zero” diagram). In a real analysis, the A0 diagram
would be further decomposed to whatever level was necessary to ensure an unambiguous interpre-

tation of the system requirements. Marca and McGowan have written an excellent book which

18




AUTHOR: Gerald R Mornis DATE 14Febs9 |[READER
PROJECT. DM Example REV 10 DATE.

[
e

userdata feedback
manage c
database

1

2

1
an example decomposition

not completed

NODE TITLE DM Example NUMBER 1
A-0

Figure 7. A-0 Diagram

describes SADT! and provides numerous workshop-style examples with which users can develop a

flavor for the language (24).

A full implementation of Ross's SA includes 40 different language features, and the dual de-
composition (30:20). But the United States Air Force Program for Integrated Computer Aided
Manufacturing (ICAM), which is directed towards increasing manufacturing productivity via com-
puter technology, defines a subset of Ross's Structured Analysis language called ICAM Definition
\l»thod Zero. or just IDEF, (25). This functional modeling language eliminates some of the inore
esoteric features of Ross's language, as well as the data decomposition. Appendix B shows the

features of the IDEF, language.

According to the IDEF,; manual

IStructured Analysis and Design Technique (SADT) is SofTech’s name for SA.




AUTHOR. Gerald R. Morrns DATE 14Feb89 |[READER

PROJECT DM Example REV 1.0 DATE:

rules

1 w R

numberrules alpharules

userdata unumber numbermsgs

[ manage

1 @_' numeric \ feedback
data 1 -
ol
alphamsgs
manage
ualpha

alpha
@* data 2
~— l
_.Q fetrl/A13

error codes

NODE TITLE. manage database NUMBER. 2
A0

Figure 8. A0 Diagram

The ICAM program approach is to develop structured methods for applying computer
technology to manufacturing and to use those methods to better understand how best
to tmprove manufacturing productivity. ... IDEF, is used to produce a function model
which is a structured representation of the functions of a manufacturing system or envi-
ronment. and of the information and objects which interrelate those functions. {25:1-1)

One of the problems with both SA and IDEF; is that there does not appear to be a formal
model of the language. In addition to “blueprint-like graphics,” SA and IDEF; call for the use of
natural language (30). The use of such natural language, by definition, introduces ambiguity in
the overall IDEF, language. In addition, certain graphical features of IDEF, allow for ambiguous
models to be constructed. In short, IDEF, is not a rigorous language. Although the original intent
of the [DEF; language was to provide a structured approach for computerizing manufacturing pro-
cesses, it s also the language being used by the Strategic Defense Initiative Organization (SDIO) to

help understand the requirements for the so called “star wars” defense. The language also provides

20




an analysis methodology for the requirements-phase of a development effort. It is precisely this
use of IDEF, as a software requirements inethodology which was the motivation for developing the
data model presented in this thesis. In addition, the model helps mitigate some of the ambiguities

mherent in IDEF,.

AFIT and IDEF,

The Air Force Institute of Technology (AFIT) Department of Electrical and Computer En-
sineering has promulgated a set of system development guidelines and standards which encourage
consistency throughout all phases of hardware and software systems development (16). As part
of this standard. and in conjunction with ongoing efforts to utilize computer aided software en-
gineering (CASE) in the software engineering curriculum, the department selected IDEF, as the
language of choice for performing systems analyses. The IDEF, language was extended to include
a data dictionary, which is AFIT’s implementation of and improvement over the glossary called for

the ambiguous features of the language.

Several past efforts have produced CASE tools to assist AFIT students during software de-
velopment. In particular, Johnson developed a tool called SAtool, based upon the IDEF, language.
which allows the software engineer to perform an aualysis of the software requirements (19). SAtool.
which runs on a Sun workstation, is a graphics based editor which allows the analyst to draw the
dingrams and enter portions of the data dictionaty for the requirements analysis phase of software
developiment. The remaining elements of the data dictionary are automatically derived from the
diagram. The user can generate a printout of the SA diagram, a so-called facing-page tert printout,
and a hard-copy printout of the data dictionary. The analysis results can be saved in a standard

dara file for uploading into a common database. The tool also saves the graphical drawing informa-

21




diagrams data dictionary

==l ===

SAtool

7
\

facing page text
standard data file

graphics file

Figure 9. SAtool Products

tion so the user can recall the diagram for editing. Figure 9 illustrates some of the SAtool products.

and Appendix C contains some typical examples of these products.

The standard data file generated by SAtool can be uploaded into AFIT's common database.

According to Connally, the goal of the common database system is to

provide an integrated system in which a designer could sit down at a workstation,
download the necessary data from a central database, work on a portion of the design,
and when finished, upload the data back to the database. (9:2)

Overview of Erodus

There are several ongoing research efforts within the database arena which are attempting to
deal with non-traditional database applications. There seem to be two general approaches; build a
database that has all the capabilities needed for non-traditional applications; or build an extensible

database that can be tailored to the needs of a specific application. One such project, which falls

22




into the second category, is the Uuiversity of Wisconsin's Extensible Object-oriented Database

Svstem (Exodus).

Basically, Exodus can be perceived of as a toolkit which allows an application-sperific database
to he constructed on top of an existing set of kernel facilities. Carey provides the following abstract

description of Exodus:

The goal of this project is to facilitate the fast development of high-performance,
application-specific database systems. Exodus provides certain kernel facilities, includ-
ing a versatile storage manager. In addition, it provides an architectural framework
for building application-specific database systems: powerful tools to help automate the
generation of such systems, including a rule-based optimizer generator and a persis-
tent programming language; and libraries of generic software components (e.g., access
methods) that are likely to be useful for many application domains. (4:1)

The Exodus architecture provides the following tools to be used in building a database:

(1) The Storage Manager.

(2) The E programming language and its compiler.

(3) A library of type-independent Access and Operator Methods.
(4) A rule-based Query Optimizer Generator.
)

(5) Tools for constructing query language front ends. (4:3)

[t is Exodus’s toolkit quality which makes it ideal for implementing a nested-relational DBMS
to manage the data associated with IDEFg. Although the Wisconsin researchers have already built

a relational DBMS. called Exrel, using the Exodus toolkit, it is not robust enocugh to handle

the relational implementation of IDEF, (3). The nested DBMS built by Mankus is used as the

implementation media for the nested-relational version of the IDEF, database (23).

CASE Tools and DBMS

A data base is invariably at the center of any kit of CASE tools. As experience with such

Jara bases accumulates, CASE vendors are finding more ways to use stored information to aid

23




in the software-development process. Because it is a repository for the specifications developed
during the analysis phase, the data base can act as a bridge to the design phase, making specific
information on system functions available while the design is being partitioned and detailed. As
the storage place for the data elements and code modules that make up the final design, the data
base becomes the source for reconfiguring the software after design changes and for reuse of code. as
well as specification and design elements. The data base is also the source from which information

for documentation, project management and software testing is drawn.

An Analysis Scenario - The Need for a DBMS. The following scenario, assoctated with the
developnient of an analysis via AFIT's SAtool, demonstrates an initial input sequence, modifi-
cation sequence, and several queries. The section closes with a discussion as to why a database

nmianagement system might e useful for storing the data.

Creat ..g S4 Diagrams. The following is a brief description of a typical SAtool session.
Using th~ graphics based SAtool editor, the analyst creates the A-0 top-level diagram shown in
Fir.re 7. The graphics frame includes attributes such as author, date, revision number, project
name, the title of the diagram. diagram number, and node number. For the single activity box
on the diagram, there are several attributes. Examples include activity name; the input. output,
control, and mechanism arrows attached to the activity: a description of the activity; and an
activity number. Each of the data arrows also includes several attributes. For example, data
name. description. data type, range, value. and composition (data arrows nested inside another
data arrow). Typically. the analyst does not vet know the composition of “high level” arrows; more
often than not, this is determined at the next lower level. In any case, after drawing the boxes and
arrows and entering all of the known data associated with the A-0 diagram, the analyst then saves

the drawing data in a flat file and the data dictionary data in another flat file.

A new drawing is then started which decomposes the parent activity box to expose the details

in the next level as shown in Figure 8. Here the analyst essentially starts over again. He draws

24




all the boxes, all the arrows, enters all the data dictionary items, and saves the result to another
pair of flat files. Notice that much of the information on the A0 diagram is the same as on the A-0

diagram.

Modifying an SA Diagram. Suppose the analysis documents need to be modified. For
example, a requirement to handle dates gets added. The analyst must open the file for the A-0
diagram and edit the data dictionary for the three data arrows userdata, rules, and feedback to
include udate, daterules, and datemsgs respectively, in the composition fields. He would enter
the new revision number and date and then save the results (if the old version was required as
history, its files would have to be saved elsewhere). The analyst would then open the A0 diagram,
add a new activity box manage date data, and add the new data arrows between userdata.
rules, feedback and this new activity box. He would enter all the data dictionary requirements

for the new arrows and activity box, and save the results.

Querying an 5S4 Diagram. Obviously there will be a number of predetermined “stan-
dard™ queries associated with the SA diagram. For example, the queries needed to extract the
drawing data, or the queries needed to move from one level to another. or the queries needed to
determine the data content of a parent arrow. Certainly, even without the use of a DBMS, it is
possible to write these standard queries in some high-level language and make them available to the
tool user via the standard tool interface mechanism. However, ad hoc queries are another matter.
Let's look at several queries that might be typical for an SA analysis (these queries are based on
my own personal experience with software analyses in general, and with SA in particular). Suppose
the analyst is interested in determining all of the activity boxes which are touched by the userdata
data arrow. This is currently done by painstakingly examining each diagram and manually tracing
the arrows. There is no effective way of accomplishing this via the current automated tool. Sup-
pose the analyst is interested in all the primitive (lowest level) activities within a certain activity

box. Once again this must be done by manually looking at each of the subordinate diagrams and

25




extracting the activity boxes which have no “children.” Suppose a certain analyst on the team gets
promoted. His replacement, Mary, needs to know which diagrams now belong to her. This would
currently be done by manually examining each diagram to determine the author. Finally, suppose
the project manager needs to determine which diagrams were modified after a certain date. Once

again this would be done by manually examining each and every diagram.

Why a DBMS Would be Useful. The previous sections consider a typical analysis sce-
nario in terms of creating, modifying, and querying the analysis products. Some of the problems
associated with the current. non-DBMS implementation of SAtool are illustrated. This section

suggests that a DBMS might be useful in providing a solution to each of the problems.

Consider the initial creation of the A0 diagram. Clearly, much of the information needed
on the diagram is already available from the previously generated A-0 diagram. For example; the
project name, title, etc., should be propagated down.to subordinate levels. Unfortunately, the
current implementation of SAtool requires the user to enter all of this information at each level. As
a result. there is a significant amount of redundant data stored for each level of the diagram. Say
that an analysis consists of N levels, and at each level (e-xceptv the A-0). there are k boxes. Assume
that the only redundant data is the project name. It gets stored once at the A-0 level, k times at
tevel 0 (AO), k? times at the level 1 (nodes Al through Ak), k£° times at level 2 (nodes A1l through
Akk). k3 times at level 3 (nodes A111 through Akkk), ..., kY times at level N. Adding this all up

we see that the same piece of data has been redundantly stored Ry times, where

1 — kN4

~
RN=1+Zki=l+-TT

i=0

The formula above is conservative; SAtool actually saves project name for each box and for

each data arrow! The simple 2-level analysis depicted in the two SAtool figures results in a flat data

26




file which contains the project name "DM Example” 14 times. If this information were available

in a database, it could simply be referenced by the subordinate level diagram.

Aside from the redundant storage issue, there is the high potential for incorrect data entry.
All of the input is done manually at each level; no consistency checking is done. It is possible
to create diagrams that absolutely do not match at the various levels. A DBMS. which typically

includes consistency validation routines, could help mitigate this problem.

The modification scenario presented above could be significantly simplified by the use of an
appropriate DBMS. When the analyst decomposes a pipe data element into its constituent data
elements. their names. et al, would be automatically propagated upward into the higher level
diagrams. As already mentioned, it is currently possible to decompose an arrow (data item) at a
lower level and then not update it's “parent” arrow. The fact is that an IDEF; analysis, being
a top-down approach, gradually exposes more detail as one moves down the hierarchy. Generally
speaking, the analyst does not even know the composition of a given “high level” data arrow until
the lower level diagrams are drawn. Accordingly, the analysis typically goes something like this:
draw the high levei diagram and save it. Draw the lower level diagrams and save them. Reopen
the high level diagram and add the correct composition to arrows. Clearly this redundant effort

might be eliminated by the use of a DBMS.

The queries discussed above could also benefit from a DBMS. The drawing tool could use an
embedded version of the DBMS query language to extract and draw the diagrams. The user could
~mploy the query language of the database manager to extract information. Stored queries could
e maintained for those queries which occur frequently; ad hoc queries could be constructed on the
flv. Finally, the use of a DBMS would automatically provide for crash recovery and concurrency

control for multiuser applications.

Mapping Difficulties. It is certainly not yet clear that the nested-relational DBMS is the

answer to all the problems associated with mapping CASE tool data into a DBMS. At the risk of




appearing prejudiced against relational databases, I would like to illustrate some of the problems
that arise when using a relational DBMS in a CASE tool data environment. For example. a design
object may be physically too large to fit in a standard record, and if a single design object is
represented by many records, the user must still be able to manipulate it as if it were a single unit.
n addition, different users may want different views of the same object. One user might want to
see a high-level data-flow view of the “Guide-Torpedo” system, whereas another user might want
1o see only the processes associated with “Guide-Torpedo,” or perhaps only the main routine from

the Jesign phase data dictionary.

One of the biggest problems associated with mapping CASE data into a relational model is
that the record oriented relational model forces the designer to oversimplify data structures to the
extent that information about the database is lost. Logical entities must be broken up into many
relations in order to “force fit” them into the relational model. This typically results in a large
number of relations and tuples. In a design phase database, for example, the code of a module
body typically involves perhaps 100 lines. Assume that each line is restricted to an 80-column
format. Clearly we would need to map this into 100 tuples each having (among other fields) an 30
character string field. In order to retrieve the single logical entity called “code body,” we would
have to retrieve 100 tuples from the database and then (somehow) force these lines into a single
text file. Figure 10 is an admittedly simplified E-R diagram of the SAtool data inodel. There are
essentially two entities: activity boxes, and data arrows. Nonetheless, when we map this into a
relational model. we end up with some 23 different relations as shown in Appendix D. A direct
consequence of this mapping is that query processing is slowed down by virtue of the multiple joins

requited,

Another problem associated with mapping CASE data into a relational model is the length
(time wise) of transactions. In a typical business a.plication, a transaction only lasts a few mo-

ments. The user grabs the applicable tuples, immediately makes clianges to them and writes them

28




activity

data
item

Figure 10. Highly Simplified E-R Diagram of SAtool Data Model

hack to the database. In CASE tools however, the user checks out the appropriate diagram (tu-
ples?), and then may spend hours if not days making changes before checking in the results. In a

tvpical relational DBMS, this might seriously impact the crash recovery capability of the system.

Yet another problem when mapping CASE data into a relational model is that of keeping
revisions (history). A typical software development effort requires the developer to keep all revisions
in the database. Thus, when we “update” a logical entity. we might be adding a new feature to the
entity, or we may be simply changing an existing feature, i.e., the meaning of the word “update”
15 now ambiguous. A similar problem exists with “delete;” say a certain revision, y, requires us to
delete module, x. Clearly we want to keep the entities associated with module x 1 the database

for revisions earlier than y, and “delete” them for revisions v and beyond.

As a result of these mapping problems (and perhaps others), existing database technology

29




forces many CASE vendors to defer to the file-based structures that early business applications
used. The current generation of CASE tools, for the most part, are special-purpose systems in
which a collection of files represent design objects. The primary drawbacks of this approach are
the lack of data independence, the complexity of database administration, the high degree to which
the data is tied to the machine representation and internal data structures, and the lack of fully
general concurrency and recovery systems. These drawbacks are, in many respects. identical to
those encountered by data-processing applications before database management systems came into

wirdespread use.

Commercial Databases for CASE Tools. There are a few vendors who have developed databases
tailored specifically towards the needs of CASE tools. Three such systems are briefly described in

the following paragraphs.

CDD/Plus. The VAX Common Data Dictionary, CDD/Plus, developed by Digital
Equipment Corporation (Marlboro, MA), is a distributed data dictionary which allows users access
to software data definitions either centrally or locally across a network. It spans the entire software
life cycle-from applications development and code generation, through production and systems
implementation. It allows data extraction to simplify software documentation efforts, and allows

ad hoc analysis and reporting (37).

The Developer. The Developer, available from Asyst Technologies. Montreal, Canada.
let< the user construct simple diagrams consisting of rectangles, interconnecting lines and arrows.
and text. In addition to storing items such as data elements and data-flow descriptions, a data base
cont...ns attribute information for each item, as well as associations between stored items. The user
~an decide not only which items to store, but also what attributes the items will have and what

the rules will be for associations between the items (17).

30




vsDesiguer. vsDesigner, from Visual Software, Santa Clara. CA. is a highly flexible
Jdatabase oriented specifically towards the CASE market. It is object-oriented and lets users define
the objects and object attributes. Associations between objects can also be defined in the form
of rules. Each object has multiple user-defined representations: graphics symbols. object descrip-
tions, rules for using it with other objects, and attributes. During analysis, users can install links
in specification objects that will later be connected to design objects. Source code can also be
assoclated with each object, along with attributes such as execution times. With the help of a data
hase query language called vsSQL, users can make execution-time analysis of real-time software by

walking through rhe branches of the software design and summing the object execution times (17)

Integration of CASE Tools. CASE tools are providing substantial productivity gains during
the initial phases of software development, but CASE tools haven't generally been integrated with
software coding, debugging or testing. This is largely d‘-ue to the file based architectures discussed
previously. Nonetheless, there are some ongoing attempts to alleviate this problem and provide
Jata availability across all phases of the development effort. The following paragraphs provide

insight into some of these efforts.

Standardized File Interchange Solution. One effort to solve the problem of CASE con-
nectivity has been proposed by Cadre Technologies (Providence, RI), a leading CASE vendor.
Their proposal has been submitted to the Electronic Design Interchange Format (EDIF) Techni-
eal Subcommittee. which makes recommendations on standards to the American National Stan-
dards [ustitute (ANSH). EDIF Review Process Committee mémbers include a rather impressive
lixt of well-known companies including; Advanced Technologies Applications. the Aerospace Corp..
Apollo Computer. Applied Microsystems, Atherton Technology, Cadre Technologies. Deere and
C'o . E-Systems, Expertware, Hewlett-Packard, Index Technology. Integrated Data Ltd., I-Logics.
Mark V Ltd.. ProMod, Ready Systems, Sage Software, and Textronix. The benefits of an EDIF

standard, according to Vizard, will include more competition among CASE tool vendors, greater

31




compatibility among products, increased specialization for particular CASE tools, better bench-
mark comparisons, and greater integration between contractors and subcontractors, irrespective of
the CASE tools they are using (39). Basically, this adaptation of the EDIF standard will allow
=ach tool vendor to exchange data through a standardized interchange file format. Unfortunately.

the standard has not yet been approved by all parties.

Microprocessor System Development Solution. To provide CASE tool integration within
the embedded system development arena, Microcase (Beaverton, OR) is teaming up with Cadre
Technologles. Microcase manufactures the Software Analysis Workstation, an IBM PC-based sys-
tem that provides performance optimization and verification for embedded software. The two com-
panies are now developing an interface that will let data from the Software Analysis Workstation be
captured by Cadre’s data base. Microcase also sells compilers, debuggers, and in-circuit emulators.
The partnership with Cadre gives Microcase the opportunity to build a complete microprocessor
development solution, from front-end CASE tools to coding, hardware-software integration. and

test (14).

VAX/CDD-FEzcelerator Solution. There are other ongoing efforts to integrate CASE
tools across the software life cycle. Index Technology has developed a link integrating its systems
analysis and design software, Ezcelerator/IS, with the VAX Common Data Dictionary, CDD/Plus.
Excelerator/IS is the preeminent CASE system for commercial systems analysis and design. CDD/Plus

was discussed in the previous section (37).

A Generic DBMS Solution. Goering discusses a standardization effort undertaken oy
Atherton Technology (Sunnyvale, CA) and Digital Equipment Corporation { Marlboro, MA) (15:28).
Tieir solution, currently called ATIS, involves defining a way for tools to link into a consistent data-
management system. The ultimate result will be a public-domain, nonproprietary database stan-

dard. Companies involved include Atherton Technology, Digital Equipment Corporation, Apollo

32




Computer. Cadre Technologies, Ford Aerospace, Hewlett-Packard, IBM, Index Technology, Inter-
active Development Environments, Interleaf, RCA, Rockwell, and Sun Microsystems. This effort
attempts to accomplish the same goal as the proposed EDIF standard previously discussed. How-
ever. the ATIS effort allows a so-called “deeper level of integration™ by defining a common way of
managing multivendor data, as opposed to the simple data interchange format proposed by Cadre’s
EDIF solution. ATIS defines an object oriented methodology that provides an interface between
C'ASE tools and data-management services, and it establishes models for such procedures as version

control, security and access control. and transaction control. According to Goering,

The tool interface is based upon a predefined, single-inheritance hierarchy of data types.
As is typical in object-oriented programming, each type has associated messages (such
as open, merge and check-in), methods (pieces of code that implement messages) and
properties (such as child and parent). To add a new tool, the tool integrator can either
use existing types or add a new subtype. A new subtype can inherit existing methods
and messages, or new methods and messages can be added. A tool that’s designed with
ATIS in mind can be integrated more efficiently than an existing tool. By supporting
the predefined types, the tool can exchange data more efficiently and avoid duplicating
storage. ATIS doesn’t mandate a specific system for implementing a management ser-
vice, nor does it dictate a specific type of data base. It does however, set forth some
conceptual models that describe the execution of messages. Under the current version
control model, for example, two users can open a file concurrently and update it locally.
After the files are checked in, the management system merges them into a new version.
ATIS provides several types of models including those for security and access control,
which determines who has clearance to access data; those for naming services, which
establish a file naming methodology; and those for transaction control, which guarantee
Jata base consistency during concurrent multiuser access. The ATIS group also plans
to address correspondence control, which establishes relationships between objects in
the database. Another area that will be considered is data access and communication
across a network. (15:28)

AFIT's Common Database Interface Solution. Many of the same problems being ad-
dresseed in the commercial marketplace are also being addressed by the Software Engineering Lab-
oratory here at AFIT. In his recent thesis effort, Connally designed and built an interface into an
Ingres database which captures information from the analysis, design, and coding phases of the
software life cycle (9:9). Figure 11 illustrates Connally’s basic idea. The system allows the require-

ments phase data dictionary editor, the design phase data dictionary editor. the coding phase data

33




dictionary editor, and the SAtool editor to communicate, via a standard data file, with a central-
1zed atabase. In theory, his system provides an ideal solution. However, several issues complicate
things. First, the analysis tool, SAtool, runs on a Sun workstation and the Data Manager runs
on a VAX 11/780. This requires network transfer of Connally’s standard data file. Also, the data
is being captured in a relational database. This requires a large number of relations as discussed
earlier. As a result, the transfer of data to and from the Ingres database takes 10 - 15 minutes per

~ession. In short, we have less than an ideal solution. Appendix E includes a typical Data Manager

<ession.

REQUIRE
DD
VAX
DESIGN | ( STANDARD DATA
DD DATA FILE MANAGER 11/780

CODE
DD

CENTRAL
DATABASE

SADT FUTURE
EDITOR TOOLS

(9:28)

Figure 11. Common Database System Structure

34




Summary

This chapter presents a brief overview of the IDEF; language, and the Exodus extensible
DBMS. It also investigates the use of database management systems to support computer aided
oftware engineering (CASE) tools. The connection (or lack of connection) between CASE tools
and DBMS is considered. Since many commercial CASE tools do not seem to use relational DBMS
in their implementation, and in light of the difficulties illustrated in this chapter, one can infer
that current relational technology may not be the ideal way to manage CASE tool data. The
AFIT SAtool scenario establishes that CASE tools could definitely benefit from the use of a DBMS
hecause of the reduced data redundancy, crash recovery, concurrency control, and ease with which
ad hoc queries can be made. Obviously, it's not yet clear as to whether the nested-relational DBMS

will actually provide a tractable solution.

The chapter points out three commercialized databases explicitly designed for use by CASE
tools. It looks at several attempts to provide CASE tool integration across the entire software life

cvele: included were of AFIT's ongoing efforts in the area.

35




II. METHODOLOGY

Introduction

The IDEF, abstract data model and its relational and nested-relational DBMS implemen-
rations are presented in this chapter. After introducing certain notational adaptations to Chen's
entity-relationship analysis methodology, an E-R analysis is used to develop an abstract data model
of IDEFy. This model helps mitigate some of the ambiguities inherent in IDEFy;. The model is
divided into two parts representing the analysis data (the essential data model) and the graphical
Jata (the drawing data model). This dual modeling approach allows for the extraction of analysis
Jata without having to deal explicitly with the IDEFq graphical language. Relations corresponding
to the E-R diagrams are then developed, stepwise refined, and mapped into a relational database
design. An example database instance is developed. The relational design is implemented within
Ingres Corporation’s relational DBMS (Ingres) and loaded with the example data. SQL queries are
developed to extract drawing data and essential data from the database. The relational design is
transformed into a nested-relational design. The relatiqnal database instance is transformed into
a nested-relational instance. SQL/NF queries are developed to extract drawing data and essential

Jdata from the nested-relational database.

Ertended E-R Notation

As mentioned earlier, Codd’s relational data model is the de facto database standard (7).
However, several other models have been proposed, including Chen’s entity-relationship (E-R)
model (6). The E-R model includes the concepts of entities (represented by tectangles), attributes
(represented by ellipses), relationships (represented by diamonds), and the links between them
(represented by lines). One of the advantages of the entity-relationship model is that it allows

for easy! mapping into a relational design. An E-R diagram based upon an example in Date

'\any E-R design tools actually do this mapping.




)

Figure 12. Modified Entity-Relationship Notation

is shown in Figure 12 (10). This drawing illustrates certain extensions to Chen’s E-R notation
which make the E-R diagrams more understandable by humans. In particular, a line is added on
the side of the relationship construct to clarify how it relates to the corresponding entities. For
example. Figure 12 is read “supplier supplies parts.” Additionally, the cardinality is now explicit.
for example, Figure 12 is read, “supplier supplies zero to many parts,” and “parts are supplied by
one to many suppliers.” Finally, an asterisk is associated with the attribute which serves as the

key. e.g.. s# is the key attribute for entity, supplier.

IDEFy Abstract Data Madel

[n order to facilitate development of a DBMS implementation of the IDEF, language, an
abstract data model of the language is constructed. This abstract data model consists of two parts,
the essential data model, and the drawing data model; the concept is illustrated in Figure 13. This
hial modeling approach allows for the extraction of analysis data without having to deal explicitly

with the IDEF, language, i.e., without having to “walk through” the various drawings.

The IDEF; essential data model captures those portions of the language which represent the

underlying semantics of a particular analysis (an IDEFg analysis could actually be represented by




IDEF,

Essential
Data
S I N
IDEF,
Abstract
ata
Model
IDEF, /

Drawing

R

Figure 13. IDEF, Abstract Data Model: Essential Data and Drawing Data

infinitely many drawings by just moving one box a little on the diagram). Perhaps an analogy will
better explain the concept. Say a good friend is going on a trip, and you wish to bid him goodbye.
There are any number of different ways this could be done. A card that says “good riddance.” a kiss.
a handshake, a bon voyage party, etc. Now clearly, each of these actions is syntactically different.
vet they all convey to the human the same semantics, i.e., “goodbye.” In a similar sense. an IDEF,
analysis may be syntactically expressed any number of ways, yet still convey the same semantical
information to a human interpreter. It is this underlying “essential” data which is captured by
the essential data model. This includes, for example, activities and their children, as well as data
elements and their children. It does not include. for example, the location of the boxes or arrows

which graphically represent the activities and data elements.

The drawing data model, on the other hand, encapsulates the graphical constructs which
represent the particular IDEF, analysis. It contains such information as the location of the boxes
which graphically represent activities, the line segments which graphically represent data elements,

various other graphics artifacts, such as the location of “squiggles,” the location of footnote markers.




some of the graphics “short-hand” such as double headed arrows, etc. This drawing data is used

to actually draw an IDEF, diagram.

The entity-relationship method is used to represent both the essential data model and the
Jrawing data model since it retains many of the semantics (for a human interpreter) of the actual

data being modeled.

Essential Data Model. As described earlier, the IDEF; essential data model captures those
nortions nf the language which represent the underlying semantics of a particular analysis. This
includes, for example. activities and their children, as well as data elements and their children. It
does not mclude, for example, the location of the boxes or arrows which graphically represent the

activities and data elements.

In order to allow for an understandable, yet complete representation, the E-R analysis of the
essential data model is done in two parts that complement one another. The first part shows the
activity model. with the details about data elements left out. The second part shows the data

element model while leaving out the details about the activities.

Figure 14 illustrates the essential model associated with IDEFg activities and Figure 15
illustrates the essential model associated with IDEF, data elements. Each of the entities and
relationships for both E-R diagrams is explained in Table 1. Most of the attributes include a

reference to show why the given attribute was necessary.

39




nputs

activity

S eenpuon>
gm

=lement

0 m

node number

historical
activity

e

cef :
Copaference | sloswhere

analyst

defined

Figure 14. IDEFo ACTIVITY Essential Data Model

40




1S

controlled

data

element

0n

based on

atomic

data item

Aetined

wlsewhers -
eshere. ahas

values

comment

where use

Figure 15. [IDEF; DATA ELEMENT Essential Data Model

41




Table 1. Description of Components in the Essential Data Model

E-R construct

description

activity

This weak entity, which is existence dependent upon project. represents
the IDEF, activities. Attribute node number is the discriminant, and name
captures the name of the given activity (24:13-14). Attribute, description.
allows the analyst to describe the activity (16:12).

composed of

This relationship shows that a given parent activity is composed of zero to
many (0:m) child activities. It also shows that each activity has one parent
activity. The 0:1 notation accounts for the fact that the A-0 activity does
not have a parent activity (16:12).

analyst

This entity is used to capture information about the analyst who perforined
the analysis. The reason for making analyst an entity, rather than an at-
tribute of activity, is so that it might be tied into a personnel database. The
entity, analyst, currently has the single attribute, author, which identifies
the person who performed the analysis (16:12).

[ W —

analyzes

This relationship expresses the fact that a given analyst analyzes zero to
many activities (or data elements). Note that the current model only allows
an activity (data element) to be analyzed by one analyst. Attribute, ver-
ston, i1s used to record version information; date indicates when the analysis
was performed; changes captures change information about a given activity
(data element) (16:12).

project

This entity identifies the project to which each activity (data element) is
assigned. Key attribute, pname, indicates the name of the project (16:12).

part of

This relationship indicates that an activity (data element) is part of ex-
actly one project, whereas a project contains one to many activities (data
elements).

ref

This entity captures any references associated with an activity (data el-
ement). Key attribute, reference, identifies which reference is involved.
and attribute, type, identifies the type of reference (16:12). Basically, this
entity allows a library of various documents such as DoD standards, user
requirements, contractual clauses. etc., to be tied to the given activity {data
element).

based on

This relationship indicates that a given activity (data element) is based on
one to many references, and that a given reference is the basis for zero to
many activities (data elements).

historical activity

This entity is primarily used as a convenience so that the database does not
have to be loaded with analyses which were previously accomplished. At-
tribute, project, indicates which project contains the historical activity, and
attribute, node number, identifies the specific activity withiu the project.

12




Table | (continued): Description of Components in the Essential Data Model

E-R construct

description

calls

This relationship indicates the fact that an activity can call zero to many
previously completed (historical) activities, and that a given historical ac-
tivity is called by one to many activities (30:33).

inputs This relationship indicates that an activity can input zero to many data
elements. Ross's SA (and the IDEF, subset) only require activities to have
control data elements and output data elements (30:20). Note that the
entity, data element, is expanded in the next section.

outputs This relationship shows that an activity must have at least one but can

have many output data elements (30:22).

is controlled by

This relationship shows that an activity can have one to many control data
elements (30:22).

is mechanized by

This relationship indicates that an activity can have zero to many mecha-
nism data elements. Ross’s SA (and the IDEF, subset} only require activ-
ities to have control data elements and output data elements (30:20).

data element

This weak entity, which is existence dependent upon project, represents
the IDEF, data elements. Attribute, name, which is the name of the data
element, is the discriminant (24:14). Attribute, description, allows the
analyst to describe the data element {16:12).

pipe

This entity 1s a specialized data element, as illustrated via the ISA construct
on the E-R diagram. It has no additional attributes, but merely indicates
that the data element is actually a pipe containing at least two other data
elements (30:20).

counsists of

This relationship shows that a pipe consists of at least two data elements,
and that a data element can be contained within at most one pipe.

atomic data item

This entity is also a specialized data element for capturing data that have
atomic values, i.e., are not pipes. Attribute, data type, indicates the type of
data (in the Pascal or Ada sense); minimum is the minimum data value, if
applicable, mazimum is the maximum data value, if applicable, and range
is the data value range, if applicable (16:14). In the case that none of
the attributes are applicable, entity values, as described below, probably
applies.

values

This entity is used to accommodate atomic data items which have enumer-
ated values, e.g., color can have values red, blue, and green. The entity has
a single (key) attribute, value (16:14).

can have

This relationship ties the atomic data item entity to its corresponding values
entity.

——g 7 - -

alias

This weak entity, which 1s existence dependent upon data element, cap-
tures any aliases that the given data element might have. Attribute, name.
is the name of the alias and the discriminant of this weak entity set, at-
tribute, comment, is used by the analyst to clarify why the alias was needed,
and attribute, where used. indicates where the alias is used (16:14).

has an

This relationship shows that a data element can have zero to many aliases,
and that a given alias corresponds to exactly one data element.

43




Drawing Data Model. As discussed above, the drawing data model represents the actual

graphical constructs, e.g., boxes, line segments, etc., used to represent the particular IDEF, anal-

Vals,

As with the essential data model, the E-R analysis of the drawing data model is done in two
parts that complement one another. The first part of the analysis shows the activities and other
graphical constructs, e.g., squiggles, etc., with the details about data elements left out. The second

part only shows the data element model.

Figure 16 illustrates the drawing model associated with IDEF, activities and Figure 17 illus-
trates the drawing model associated with IDEF, data elements. Each of the entities and relation-
ships for both E-R diagrams is explained in Table 2. As appropriate, a reference is given citing

why the entity, relationship, or attribute is needed.

44




activity

S _=

visible DRE

Jdecomposed

box
graphics
artifact
s
note
x1
squiggle

{efined

=lsewhere

text

<D

FEO NGO

) o

meta-note

IS

®—— footnote

Figure 16. IDEFy ACTIVITY Drawing Data Model




Jara ‘ corresponds

~lement

line
segment

< number >

Loundary

arrow

all

slsewhere  : ” dot
< label >

turn

Figure 17. IDEF; DATA ELEMENT Drawing Data Model




Table 2. Description of Components in the Drawing Data Model

E-R construct

description

box

This weak entity, which is existence dependent upon activity, captures the
graphical construct which represents an activity on the IDEF, diagram. At-
tributes, z, and y, indicate the location of the upper left hand corner of the
box (all boxes are the same size). The attribute, visible DRE. corresponds
to Ross's detail reference expression. In Ross’s words “The omission of a
detail reference expression indicates that the box is not further detailed in
this model” (30:33).

is represented by

This relationship simply indicates the one to one correspondence between
an activity and its graphical representation, box.

activity

This entity is described in the section dealing with the essential data model.

sheet

This weak entity, which is existence dependent upon activity, captures the
fact that an activity is decomposed. It has the single attribute, c-number
(24:17). Note that c-number is used as the DRE symbol on the parent
diagram.

is decomposed on

This relationship ties an activity to the sheet upon which it is decomposed.
if such a decomposition exists.

drawn on

This relationship ties a box to the sheet upon which it is drawn.

graphics artifact

This weak entity, which is existence dependent upon sheet is a generalized
entity which includes note and squiggle (30:20).

contains

This relationship indicates that a given sheet can contain zero to many
graphics artifacts.

note

This entity is used to capture the location of note markers, and it is the gen-
eralized entity for both text notes (footnote and meta-note) , and FEO
(30:20). There are two attributes, r, and y, which indicate the locatior of
the note marker on the diagram.

squiggle

This entity simply contains the four ordered pairs which denote the location
of a squiggle on the sheet (30:20).

text

This entity, which is a member of entity, note, as seen from the ISA con-
struct, captures the text for meta-notes and footnotes. Attribute, contents,
holds the text of the note and the ISA construct indicates the type of note.
i.e., footnote or meta-note (30:20).

FEO

This entity, which is a member of entity, note, as seen from the ISA con-
struct, captures the drawings associated with the for exposition only (FEO)
(30:22).

. footnote

This entity is a specialized type of text note as seen from the [SA construct.
Attributes z, and y, are the location on the drawing where the footnote is
placed.

meta—-note

This entity is a specialized type of text note as seen from the [SA construct
on the E-R diagram.

label

This weak entity, which is existence dependent upon data element, cap-
tures the label associated with a data element, as well as the location of
the label on the diagram. Discriminant attribute, label. is the label itself.
and attributes, . and y, are the location of the first character of the label.

47




Table 2 (continued): Description of Components in the Drawing Data Model

| E-R construct

description

} corresponds to

This relationship connects a data element to it's label. A data element
can have zero to many labels, but a given label can only refer to one data
element.

data element

This entity 1s described in the section dealing with the essential data model.

line segment

This weak entity, which is existence dependent upon data element, cap-
tures all the line segments from which the graphical representation of a
data element is built.

is built from

This relationship simply indicates that a data element is graphically repre-
sented by at least one but perhaps many line segments.

is drawn on

This relationship indicates the sheet on which a particular line segment is
drawn. It also indicates that a sheet can have one to many line segments
drawn on it.

symbol

This weak entity, which is existence dependent upon line segment, is a
generalized entity used to capture the type of symbol with which a line
segment either starts or ends.

starts with

This relationship connects a line segment to the symbol with which the
line segment starts. The two attributes, z, and y. are the location of the
starting symbol. Note that a line segment can start with more than one
symbol, e.g., an arrow and a dot.

cnds with

This relationship connects a line segment to the symbol with which the line
segment ends. The two attributes, r, and y, are the location of the ending
symbol. Note that a line segment can end with more than one symbol. e g..
icom code (boundary) and arrow.

boundary

This entity indicates that the starting or ending symbol on the line segment
corresponds to a boundary. Attribute, type, indicates the type of boundary
(Input, Control, Output, and Mechanism), and attribute, number, is the
number of the boundary (24:22).

all

This entity captures the to-all and from-all construct: the single attribute,
label, captures the to-all/from-all label (30:31-32).

tunnel

This entity denotes that the line segment corresponds to a tunnel arrow; the
attribute, type, indicates if this is an external arrow that did not appear
on the parent diagram (hidden source), or if it is an arrow that touches
an activity but does not appear on that activity’s decomposition (hidden
destination) (24:24).

turn

This entity is used if the line segment starts or ends with a turn. Attribute,
type, determines the type of turn (right-up, left-up, right-down, left-down,
up-right, up-left, down-right, and down-left).

arrow

This entity is used if the line segment starts or ends with an arrow. At-
tribute type determines the type of arrow (right, left, up. and down).

dot

This entity is used in the case of two-way arrows {30:20).

null

This entity 1s used if the line segment does not have a starting or ending
symbol, e g., the segment simply connects to another segiment and therefore
does not have a starting symbol.

43




[DEF, Relational Database

This section considers some of the design trade-offs associated with the relational implemen-
ration of the [IDEF, database; the mapping of the E-R model into relations; an example database
for the relational design; the Ingres implementation of this design; and SQL queries which extract

data from the Ingres implementation.

Design Trade Offs. In coming up with the relational design, several trade offs are considered.
With one exception, the relational design retains the explicit division between the essential data
anid drawing data. The exception is the relation, activity, which includes both essential data, and
drawing data. The justification is simple. Fully separating the activity from its box representation
results in either; a significant amount of replicated data, e.g., name (essential), name (drawing),
node (essential), node (drawing), etc.; or requires all queries associated with retrieving box data to
involve joins, which are costly. In short, the drawing data abstraction, box, and its essential data

abstraction. activity. are both contained in the same relation.

In the interest of efficient queries, seemingly redundant “id” attributes are added to certain
relations. For example, the attribute, project-id, in relation, project, is redundant since the at-
rribute name is a superkey. However, a query involving a 4-byte integer project_td is intuitively

inore efficient {time wise) than a query involving a 12 byte character string.

All the relations corresponding to weak entities have a globally unique “id” attribute which
climinates the need for extraction of superkeys from the relation on which the given weak entity is
~xistence dependent. This is done in the interest of of efficiency (relative to queries). An example
is the attribute, node.id, in the activity relation. Obviously the “real” superkey for activity is

the attribute pair. node, project_.name. Once again, a 4-byte integer comparison is more efficient.

Several of the drawing data relations have the sheet_:d attribute included in them, whereas
the E-R diagrams show no such direct relationship. This is done to eliminate the need for multiple

joins. A good example is the arrow relation. Obviously, a join between arrow. symbol, segment.

19




and sheet is needed to determine which arrows go on which sheets. By simply adding the sheet_:d
into the arrow relation, the joins are eliminated. Clearly this generates additional problems relative
to redundancy and consistency. However, it is felt that the sheet_id attribute is not like to change
frequently, whereas queries to draw the diagrams will occur frequently. In short, the decision, while
increasing redundancy and creating an increased potential for inconsistent data, provides a more

efficient implementation (time wise).

Finally, some of the entities and relationships were collapsed into a single relation; some were
renaimed to make their roles more clear. This section includes tables which show the connection
between the requirement (as manifested in the E-R analysis) and the implementation (as manifested

in the relational design).

Relational Design. In developing the relational de§ign, the approach taken was to initially
do a straight one-to-one translation from the E-R diagrams, and then through stepwise refinement,
reduce the tables as alluded to above. In fact, it took 21 iterations to get the relations into the
format shown in Table 3. The bold faced header indicates the name of the relation and a brief
Jescription of the relation. This header is followed by a three column layout which shows the name

of each attribute. its type (e.g., integerd), and a brief description of the attribute.

50




Table 3. Relational Design

[ act2act

cross reference parent activity to its child activities

parent_node

i4 identifies the parent activity

child node 14 identifies the child activity

act2data cross reference activity to its data elements
node_id 14 identifies the activity

data_id 14 identifies the data element

icom.type cl I=input, C=control, O=output, M=mechanism
act2hist cross reference activity to historical activity being called
node_id i4 identifies the calling activity

hist _id i4 identifies called historical project/activity
act2ref cross reference activity to it references

node.id i4 identifies the activity

ref_id 14 identifies the reference

activity IDEFq activity or its box representation
node.id 14 key attribute identifies activity

node c20 | node number for activity

name ¢25 | name of activity

project_id 14 identifies the project

author_id i2 | identifies the analyst

version c10 | activity version

date ¢8 | date this version was created

X 12 x-wise location of box representation

y 12 y-wise location of box representation
visible DRE | il —1 = activity is decomposed, " = not yet
sheet_id i4 sheet on which this activity appears

act_changes

changes made to the activity

node_id i4 identifies the activity

changes ¢60 | description of the change

act_descr descriptions can be nuultiple lines

node_id 14 identifies the activity

line_no 12 keep description lines in proper order
desc_line ¢80 | one line of the description




Table 3 (continued): Relational Database Design

alias data element can have multiple aliases

dataad 14 identifies the data element

name ¢25 | name of alias

where_used ¢25 | where alias is used

comment ¢25 | why alias is needed

analyst person doing the analysis

author_id i2 key attribute identifies analyst

author ¢20 | name of analyst

arrow tvpe of arrow

symbol.d 14 key attribute identifies arrow

arrow_type it 0 = up, | = down, 2 = left, 3 = right
boundary ICOM codes for boundary arrows

symbol.id 14 key attribute identifies boundary symbol
icom-code c2 | I, C, O, M (input, control, output, mechanism)
data2data cross reference pipe data element to its children
parent_data 14 identifies the parent data element
child_data 14 identifies the child data element
data2label cross reference data element to its labels
data.id 14 identifies the data element

label.id i4 identifies the label

data2ref cross reference data element to its references
dataid i4 identifies the data element

ref_id 14 identifies the reference

data2value cross reference data element to its data type values
dataid 14 identifies the data element

value_d i4 identifies the data type value

data_changes

changes to the data elements

data.d
changes

i4 identifies the data element
¢60 | description of the change

data.descr

descriptions can be multiple lines

dataid 14 identifies the data element

lineno 12 keep description lines in proper order
desc_line ¢60 | one line of the description

data_elem IDEF, data element

data.id i4 key attribute identifies the data element
name ¢25 | name of data element

project.id 14 identifies the project

author.id 12 identifies the analyst

version ¢10 | data element version

date c8 | date this version was created




Table 3 (continued): Relational Database Design

data_range | range of this atomic data element

data.id 14 key attribute identifies the data element
data_range c60 | range of legal values

data_type | data type of this atomic data element

data_id 14 key attribute identifies the data element
type c25 | data type

data_value | legal values for enumerated atomic data elements
value_id 14 key attribute identifies the value

value ¢15 | the actual value

dot type of dot (Ross’s two-way arrow notation)
symbol.id 14 key attribute identifies dot

dot_type 11 0 = above-right, 1 = below-right, 3 = below-left
footnote location of actual footnote text

grafid 14 key attribute identifies the footnote

X 12 x-wise location of actual text

y 12 y-wise location of actual text

feo for exposition only (picture)

graf.id 14 | key attribute identifies the FEO

picture ¢60 | perhaps the name of a graphics file?
graphics graphics artifacts

grafid 14 key attribute identifies graphic artifact
sheet_id 14 identifies sheet on which graphic is drawn
hist _call historical activity call

hist._id 14 key attribute

hist_proj ¢12 | name of project containing the historical activity
hist node ¢20 | node number within the project, e.g.. A312
label label associated with a data element

label_id 14 key attribute identifies the label

name c10 | name of the label

X 12 x-wise location of the label

y 12 y-wise location of the label

sheet_id 14 identifies sheet where label is drawn
min_max minimum and maximum values for atomic data elements
dataid 14 key attribute identifies data element
minimum ¢15 | minimum value

maximum c15 | maximum value




Table 3 (continued): Relational Database Design

note some kind of note

graf_id 14 key attribute identifies the note

label cl | the label associated with the marker
X 12 x-wise location of the marker

y 12 y-wise location of the marker
note_text | contents of a note can be multiple lines
graf.id i4 | key attribute identifies note contents
line_no 12 keep contents lines in proper order
text.line ¢60 | one line of text for the note

project project {model) name

project.id | 14 key attribute 1dentifies project (model)
name cl2 | project name

reference | references can be multiple lines

ref_id i4 key attribute identifies the reference
line_no 12 keep reference lines in proper order
ref_line ¢60 | a line of this reference

ref_type type of referenc:

ref_id i4 key attribute identifies the reference
ref_type ¢25 | type of reference

segment | line segments graphically representing a data element
seg-id i4 key attribute identifies the line segment
data-id i4 | data element for this segment
sheet_id i4 | sheet where the segment is drawn

Xs 12 x-wise point where line segment starts
¥s 12 | y-wise point where line segment starts
xe 12 x-wise point where line segment ends
ve 12 y-wise point where line segment ends
sheet sheet containing activity

sheet_1d 14 key attribute identifies the sheet
c.number | 14 Ross’s c-number

squiggle | Ross's famous squiggle

graf.id 14 key attribute identifies the squiggle
x1 12 location of the four points

yl 12 which connect in the order

x2 12 1—2—-3—14

y2 12 to make the squiggle

x3 12

v3 12

x4 12

yvd 12

54




Table 3 (continued): Relational Database Design

symbol segments start and end with many kinds of symbols
symbolid i4 | key attribute identifies the symbol

seg-id i4 | identifies the segment associated with this symbol
sheet _id i4 | identifies sheet on which the symbol is drawn
X 12 | x-wise location of symbol

v 12 | y-wise location of symbol

tofrom._all | label for to-all and from-all arrows

symbol.id 14 | key attribute identifies the symbol

tfa_label ¢l | label in the to-all from-all circle

tunnel Ross’s famous disappearing arrows

symbolid i4 | key attribute identifies the symbol

tunnel_type | il | —1 = hidden source, 0 = hidden destination
turn type of turn, combos of up, down, right, and left
symbol_id i4 | key attribute identifies the symbol

turn_type il | O=ru, l=lu, 2=rd, 3=Id, 4=ur, 5=ul, 6=dr, 7=dl

Essential Data Requirements to Design Connection. Table 4 shows the connection be-
tween the essential data requirements (as manifested in the E-R analysis) and the implementation
(as manifested in the relational design). The notation entity.attribute, and relation.attribule is

used to denote a particular attribute for a given entity or relation.

Drawing Data Requirements to Design Connection. Table 5 shows the connection be-
tween the drawing data requirements (as manifested in the E-R analysis) and the implementa-
1on (as manifested in the relational design). As before. the notation entity attribute, and rela-

tion.aftribute is used to denote a particular attribute for a given entity or relation.

Erample Relational Database [nstance. An example database corresponding to the diagrams
shown in Figure 7 and Figure 8 was constructed by hand. Appendix F has a listing of the exainple

database.

Relational Implementation. The relational design shown in Table 3 is implemented within

Ingres Corporation’s relational DBMS, Ingres. The script file used to create the relations is shown

55




Table 4. Mapping of E-R Essential Data to Relational Design

E-R construct

Relational Design Construct

activity activity i
activity.description act descr
composed of act2act !
analyst analyst 7|
analyzes activity.author.id |
data_elem.author_id |
analyst.version activity version T
data_elem.version }
analyst.dale activity date !
data_elem.date
analyzes.changes act_changes
data_changes
project project
part of activity project_id
data_elem.project.id
ref reference
ref_type j
based on act2ref o
data2ref JI
historical activity hist_call o
calls act2hist
inputs act2data |
outputs |
is controlled by
is mechanized by
data element data_elem
data element.description data_descr
pipe data2data
consists of
atomic data item.data type data_type
atomic data item.mintmum min_max
atomic data item.mazimum J\
atomic data item.range data_range 7

values data_value
can have data2value
alias alias

has an alias data_id




Table 5. Mapping of E-R Drawing Data to Relational Design

E-R construct

Relational Design Construct

box
is represented by

activity.z
activity.z
activity.y
activity.visible. DRE

sheet

sheet

is decomposed on

To find the sheet on which an activity
is decomposed, one must look at activ-
ity.sheet_id of any child of the activity
(via act2act)

drawn on

activity.sheet_id

graphics artifact graphics
contains graphics.sheet_id
note note

squiggle squiggle

text note_text

FEO FEO

footnote footnote

meta—note

A note tuple which does not have a corre-
sponding footnote tuple is a meta-note.

label label
corresponds to data2label
line segment segment
is built from
is drawn on
symbol symbol
starts with

! ends with

| boundary boundary
all to_from_all
tunnel tunnel
turn turn
arrow arrow
dot dot
null A line segment end for which there 1s not

a symbol simply does not have an entry
in any of the available symbol relations,
e.g.. arrow, etc.

v




in Appendix G, as are the script files used to input the hulk data files, show the contents of all the
tables. and delete all data from the database. The next section shows some queries used to extract

the drawing data from this example database.

SQL Queries. Although this thesis effort does not involve building a tool to actually draw an
INEF, diagram, such a tool might require the user to supply the name of the project. Accordingly.

the queries shown below have "DM Example” as the project name.

The first query extracts the data required to begin drawing the A-0 diagram illustrated in
Figure 7. The table immediately following the query contains the tuples that are extracted as a
result of the query. Note that Ingres truncates the column title to be commensurate with the data

<ize. e.g.. visible_DRE is of type integer 1. so the column title gets truncated to visibl.

select a.x,a.y,a.name,a.date,an.author,a.version,a.visible_DRE,s.c_number
from activity a, analyst an, sheet s
where a.node = "A0" and
a author_id = an.author_id and
s sheet_i1d = a.sheet_id and
a.project_id in (
select p.project_id
from project p
where p.name = “DM Example");

x ly Iname |date |author Iversion |visibllc_number

At this point. a drawing tool can draw the blank sheet, and fill in NODE (A-0), NUMBER
(nlways a | for A-0). PROJECT (DM Example), TITLE (same as PROJECT for A-0 sheet). DATE.
\I'THOR. and REV (version) on the sheet. The tool can draw the box at location (x,y)*. fill in
the name of the activity. and enter the node number in the activity box®. Finally. if visible.DRE is

trie (-1), the tool can put the c.number to the lower right of the activity box to denote the sheet

* The (x.y) values are only symbolic in this example, normally they represent a location on the screen
"In the specific case of the A0 node. the node number is a 1, not the expected 0, shame on you Douglas Ross!

U
o 4




AUTHOR. Gerald R Mornis DATE 14Febs3% [READER
PROJECT DM Example REV 10 DATE
manage
database
1
2
NODE TITLE DM Example NUMBER 1
A0

Figure 18. A-0 Diagram (partial drawing 1)

on which it is decomposed (Ross's detailed reference expression). The partial drawing that results

1> =hown in Figure 18,

This next query extracts all the line segments which represent the data arrows on the A-0

sheet. As before, the table immediately following the query contains the tuples that are extracted

as i result of the query.

59




AUTHOR Gerald R Morris DATE 14Feba% [READER
PROJECT DM Example REV 10 DATE
T manage I
-Jatabase

1

2
NODE TITLE DM Example NUMBER 1
A-0

Figure 19. A-0 Diagram {partial drawing 2)

select se.xs ,se.ys,se.xe,se.ye
from segment se
where se.sheet_id in (
select a.sheet_id
from project p,activity a
where p.project_id = a.project_id and
a.node = "AO'" and
p.name = "DM Example");

{xs lys Ixe |ye |
e |
| 3] 31 4| 4l
! 6| 61 71 71
| 9l 9l 101} 101

Notice that for each line segment. there are two (x.y) pairs. These points represent the »nds

of the line segments which are drawn by the drawing tool. The updated partial drawing that results

tfrem adding the line segments is shown in Figure 19,




The queries required to complete the A-0 drawing are shown in Appendix G. as are the queries
needed to draw the A0 diagram. In addition. Appendix G contains example SQL queries to extract
o~<ential activity Jata and essential data element data from the Ingres implementation. These

queeries provide the data necessary to create the data dictionary examples shown in Appendix ¢

IDEF, Nested Relational Database

This section ronsiders some of the design trade-offs associated with the nested-relational
version of the IDEF, database; the mapping of the relational design into a nested-relational desygn:
an »xample database for the nested-relational design; a “paper” implementation of this design: and

SQL/NF queries which extract data from the nested-relational implementation.

Destgn Trade-Offs. Because the nested-relational model is an extension of Codd's relational
model, the relational design is used as the starting point. In this nested-relational design. the

drawing data and essential data are completely separated.

As with the relational design, certain “id” attributes are retained in the interest of efficient

quertes, e.g.a 4-byte integer comparison versus a 12-byte character string comparison

There is some redundancy in this database, e.g., some of the data in the activities relation-
valued attribute are also found in the sheets relation-valued attribute. The decision to Jdo this
1= hased on the cost of joins versus the cost of redundancy. Joins between nested relation-valued
attributes can involve unnesting the involved relation-valued attributes, doing the join, and then
nesting again. This is an intuitively expensive operation. It is felt that the cost of redundancy

neore than offsets the cost of doing a join on the nested attributes.

Several other design trade-offs are considered during the development of this nested-relatinnal
version. In particular; whether to nest data elements inside of activities, activities inside of data
«lements, or neither; whether to nest data elements inside data elements (recursively); and whether

tn tecursively nest activities inside activities,




From a purely graphical viewpoint. the seemingly “natural” approach is to nest data elenients
inside of activities since a given activity's decomposition “contains” data elements. However, this
quickly leads to trouble since a given data element is an input. output, control, or mechanism.
perhaps a combination of several depending upon how many activities it touches. The implication
of nesting data elements inside activities is that each activity which uses the data element has
1o nest the identical data in its attributes. This immediately leads to a potentialiy high degree
of Jduplication. Thus there is again the dilemma of redundancy due to increased nesting versus
increased requirements for joins due to a more flattened design. In a pathalogical case. a given data
element might touch dozens of activities. Of course the biggest problem is that the essential data
aodel does not keep track of tunnel arrows {a strictly graphical construct designed to minimize
anniecessary clutter on a diagram). This means a given data element could “appear” suddenly as
an input (for example) to an activity without having traversed the parent activity. In short, an
update to a single data element requires an enumeration of all activities. Another problem that
results from nesting data elements inside activities is that of deletion. If an activity is deleted. are
all of its data elements also deleted? The issues described above relate to the partial dependency
problem found in the flat relational model. A full discussion is beyond the scope of this thesis but
Ozsoyoglu and Yuan address this problem within the context of nested-normal form (26). At any
rate. the decision is to not nest data elements inside activities, to simply put a list of data element

names and icom types inside each activity.

The next decision is whether or not to nest activities inside one another and whether or
not to nest data elements inside one another. A fully nested approach in either case exhibits
anomolous behavior relati.v to “when to stop” whenever queries are done because the algebra
((uery language) does not support recursion and transitive closure. Perhaps this is best illustrated
by way of a simple example involving activities (a similar example can easily be constructed for
data elements). Suppose that activities are recursively nested inside one another via relation-valued

attribute, child. Further suppose a query is issued requesting all the offspring of the A0 node (in

62




flattened form) and that there are only three levels of nesting. A nested-relational algebra query

looks something like

7(node,name(oy(u(child{ u(child(activity)))))))

where 7 is the database projection operation, ¢ is the selection operator, 8 is a predicate identifving
the appropriate project, and u is the unnest operator (32) (8). The problem of course, in the general
case, 1s that the number of levels of nesting associated with a particular node is not known apriori:
thus. it is not known how to construct the query. On the other hand, a similar query for a design

in which the activities are not nested inside one another could be expressed as

t(node.name(og(activity))

where 6 is a conjunctive predicate identifying the project and selecting all nodes starting with the
<equence “A0”.* Thus, the decision is to keep activities at the same nesting level: the children are
identified via a list of node names within each activity. For similar reasons, all data elements are

kept at the same nesting level; children are identified via a list of data element names.

Nested-Relational Design. The IDEF, nested-relational schema consists of a single table,
project. Unfortunately, the size of the project schema precludes the use of diagrams like those
used by Roth (33:100), Colby (8:5), and others. Thus, in order to make the discussion of the
~cheme comprehensible, a hierarchical approach is necessary. Table 6 is a thumb-nail sketch of
the hierarchical structure of the nested-relational design. To allow for an easier to comprehend

tepresentation a vertical presentation method is used.

YRecall the syntax of IDEF, requires offspring nodes to start with the parent node nuinber. e.g.. A221 is the first
vhilel of A22 and the second grandchild of A2. Thus we can take advantage of the node number relationships to
Aetermine hierarchical relationships.




Table 6. Nested-Relational Design

(project)
|project_nrame

(activities)
Inode_id Inode [name lauthor |version |date Ichanges

[REEEEE T |===== R DDt EEP PR R L TP [==moemae [ESLTEEEEES Rt T
(act_descr)

lline_no ldescr_line )

fremmnmem | mm e e I
(refrences)

Iref_type |

(ref_lines)
|line_no {ref_line |
l=emmmmm" R RO L EEPEEES S S |
(hist_calls)
lhist_proj  |hist_node
R el |==weee ~e=-]|
(data_elems)
|data_name licom_type
Jommommm e R |
(children)
{node_name |

(data elements)
Idata_id Iname lauthor Iversion |date !changes |parent |
fommmee R fomemmm e R e R DL e e fommmm——— |amememaam |
(data_descr)
|line_no ldescr_line |
fomwmmnee IR L EEE R L TR PR I

(refrences)

(ref_lines)
|line_no |ref_line }
[ELEL TS D e DT L LT TP - -==|

(aliases)
|where_used | comment |
R R s Jomemmecaan |
(min_max)
Idata_type Iminimum |maximum |
|=emmmmceae |~mmmmee e lommomenea ~=]
(range)
|data_type

(values)
|data_type |value |
|===mwnenm- |=cmmmmeccncneee |
(activitees)
Inode_name licom_type |
R e -
(children)
Idata_name |

64

|c_number {parent
[EREEEEEEES R !




(sheets)
|c_number|node |name lauthor |version |date |
|eomoomn- |=wmm== [ et [ el R e E R L LT |
(boxes)
Inode |name Ix |y lvisible _DRE |
| === |ommmmmm e ee e |==l=clommmmcmaan- |
(segments)
|data_id |

(location)
{xs {ys |xe lya |
|===|===l===f--=]
(symbols)
Ix |y ltype_symbol |symbol_type |
(R e R R |
(squiggles)
Ixt |yt x2 ly2 Ix3 |y3 Ix4 Ily4 |
R R e B B el Bl RS L EL L |
(meta_notes)
|label Ix |y |
| === |==1=-=]
(note_text)
|line_no [text_line |
|mmeemm—- R e L L L L L e e l
(foot_notes)
jlabel lxm |ym [xn |yn |
[EEEI (R e B e B
(note_text)
|line_no ltext_line |
|~=m==ee R b e LD LRt D |
(feos)
ilabel Ix |y |picture |
femmm—- R R R e e LT B I
(labels)
|data_id [name Ix Iy |

From the design sketch it is clear that, at a nesting level of 0. the project nested-relation
schenie consists of four attributes as shown below. Relation-valued attributes (RVA) are indicated

in bold type. atomic-valued attributes (AVA) are indicated in :talicized type.

1. project.name - the name of the project

2. activities - all the activities associated with this project; this RVA captures essential activty

data only

3. data.elements - all the data elements associated with this project: this RVA captures ex-

sential data element data only

1. sheets - the drawing data for the project; this RVA captures both the activity drawing data

and the data element drawing data




The discussion that follows considers each of the three RVA, and their associated AVA/RVA.

At a nesting level of 1, the activities RVA scheme consists of fourteen attributes as listed

below. As before. RVA are indicated in bold type, AVA are indicated in italicized type.

1. node.id® - identifies the activity

[

node - node number, e.g., A32
3. name - name of the activity
4. author - name of the analyst
3. rersion - revision number

6. date - date of this revision

. changes - changes for this revision

8. c.number - sheet on which this activity is drawn

9. parent - name of the parent activity

10. act_descr - description of the activity

11. refrences - why the activity is needed

12. hist calls - calls to activities from other previously completed projects
13. data_elems - data elements associated with this activity

14. children - child nodes of this activity

The discussion that follows describes the RVA associated with the activities RVA: At a
nesting level of 2, the act_descr RVA has 2 atomic attributes; line_no (helps ensure the description

lines are retrieved in the proper order); and desc_line {one line in the description).

*The integer valued node.d is used in lieu of node for reasons of efficiency, i.e., it's faster to compare a 4-byte
integer than a string.




At a nesting level of 2, refrences consists of two attributes; ref.type (the type of reference.
e.g.. MILSTD). and the relacion-valued attribute ref_lines (contains lines of text elucidating the

reference).

RVA ref_lines. at a nesting level of 3, has the two attributes line_no; and ref_line. The former

is a number to help keep the latter lines of text in the proper order.

At a nesting level of 2, the hist_calls RVA, which has the two attributes hist_proj and hust _act,

captures the project name and node (activity) which is being called.

The data.elems RVA (also at a nesting level of 2) has two attributes, deta_name and
tcom _type which specify the data element and its role (input, control, output. mechanism) wirh

respect to the particular activity.

Finally, at a nesting level of 2 is the children RVA with a single attribute node-name. This

is a list of all children of the activity®.

The next RVA considered is again at a nesting level of 1. The data_elements RVA scheme

consists of fourteen attributes as enumerated below.

1. data_td” - identifies the data element

[V

name - the name of the data element

3. author - name of the person who did the analysis
4. verswon - the current version number

5. date - date of the revision

6. changes - changes reflected in this version

parent - name of the parent data element

“Strictly speaking, this is not necessary since a child node can always be found by looking at the node number.
nonetheless it is included in the interest of efficiency.

"The integer valued dataid is used in lieu of name for reasons of efficiency, i.e., it's faster to compare a {.byte
integer than a string.




iy 4

. data_descr - a description of this data element

9. refrences - why the data element is needed

10. aliases - aliases for this data element

11. min_max - minimum and maximum values for atomic data elements
12. range - range of values for atomic data elements

13. values - list of values for enumerated atomic data elements

4. activitees - activities touched by the data element

15. children - children of pipe data elements

The diszussion that follows describes the RVA associated with the data elements RVA: At
a nesting level of 2, the refrences RVA consists of two attributes, ref_type, and reflines. The
former indicates the tvpe of references and the latter contains all the lines which comprise the wiven

teference.

At a nesting level of 3, the ref dines RVA consists of two attributes, ref_type which is used to

keep the reference lines in proper order, and ref_lines which are the reference lines themselves

At a nesting level of 2, the aliases RVA has three attributes. These attributes indicate the
name of the alias (name), where it is used (where_used) and a comment line describing why the

alias was needed (comment).

At a nesting level of 2, the min_max RVA has three attributes; data_type (the data type of
this atomic data element): mintmum (its minimum value); and maztmum (maximum value) Note
that this particular RVA will only have one tuple. The decision to make it an RVA is based on the

fact that there are null values in the case ¢f non-atomic data elements.

At a nesting level of 2, the range RVA has two attributes. These attributes indicare the

data type of the atomic data element (data.type), and its range of values {(range). Note that this

63




particular RVA will also only have one tuple. The decision to make it an RVA is again based on

the fact that there are null values in the case of non-atomic data elements.

At a nesting level of 2, the values RVA has two attributes. data_type and value. The former
identifies the data type of the atomic data element, and the latter indicates all legal values (this

applies to enumerated data types).

At a nesting level of 2, the activitees RVA has two attributes, node.name and wcom_typr.
The former identifies the activity touched by the data element, and the latter identifies the role of

the data element (input.control.output,inechanism).

At a nesting level of 2, the children RVA contains a list of all children of tlns data elemen

(if it’s a pipe), via the single attribute. data_name.

Back again at a nesting level of 1, the sheets RVA scheme consists of 13 attribures as
enumerated below. As before, RVA are indiated in bold type. AVA are indicated in ttalicized

type.

1. c_number - the sheet identifier number

[ 3™

node - box being decomposed on this sheet
3. name - the title of the sheet

4. author - the person who drew the picture
5. rerston - the revision number

6 dale - the date of the drawing

7. boxes - all boxes appearing on the sheet
8. segments - the line segments on the sheet
9. squiggles - squiggles on the sheet

10. meta_note - meta notes on the sheet

659




11. foot notes - {oot notes on the sheet
12. feos - for expositions only

13. labels - labels for line segments

The discussion that follows describes the RVA associated with sheets: At a nesting leve] of
3. the boxes RVA has 5 attributes. Attribute node 1s the node number. name 1s the name of the
hox. r and y are the location of the upper left corner of the box, and visible.dre the c_uumber on

which the box is decomposed or -1 if it is not decomposed.

At a nesting level of 2, the segments RVA scheme consists of three attributes data_id. lo-
cation. and symbols. which indicate the data element being represented by the segmenr. and the
Incaticn of the seament, and the symbols that appear at the ends of the line segment. As always.

RV'A are indicated in bold type, AVA are indicated tn tfalicized type.

Immediately below segments. at a nesting level of 3. the location RVA scheme consists of
four attributes rs. ys, re. and ye. which indicate the start and end points of the hnes seqtenies

for the given data element.

Also below segments at a nesting ‘evel of 3. the symbols RVA scheme consists of four
atinibutes: r and y indicate tha location of the symbol; type_symbol is the type of symbol. 1e.
arrow. boundary. dot. to-all/from-all construct, tunnel, or turn: and symbol_type. the interpretation
of which depends upon type_symbol. indicates the symbol type, ie.. type of arraw. the icom_ole
the tvpe of dot. the label associated with a to-all/from-all construct. the type of tunnel arrow. or

the type of turn.

At a nesting level of 2. the squiggles RVA scheme consists of eight attributes r1.yl 70 vz
14y rf. and y) These attributes indicate the four points winch are connected together (in the

arder 1 — 2 — 3 — 1) to make Ross’s squiggle.

)




At a nesting level of 2, the meta notes RVA scheme consists of four attributes. Attribute
lahel is the marker label for the meta_note. r and y are the location of the meta_note marker, and

RVA note_text contains the text associated with the meta_note.

Immediately below meta notes. at a uesting level of 3, is the note_text RVA which has rwo
attributes, line_no. and tert_.line. The former attribute is used to ensure that the text lines in the

latter attribute are retrieved in the proper order.

At a nesting level of 2, the foot notes RVA scheme consists of six attributes: label indicates
the footnote marker label: rm and ym are the location of the foot note marker: rn and yn are the

location of the footnote text; and RVA note_text contains the actual lines of text in the footnote.

Immediately below foot _notes, at a nesting level of 3. is the note_text RVA which has two
attributes, line_no. and tert.line. The former attribute is used to ensure that the text lines in the

latter attribi:te are retrieved in the proper order.

At a nesting level of 2, the feos RVA scheme consists of four attributes: label indicates the
FEO marker label; rand y are the location of the marker; and picture is the name of the text/picture

file associated with the FEO?®.

At a nesting level of 2, the labels RVA scheme consists of four attributes. Attribute deta_id
identifies the data element associated with the label. name is the label itself, and r and y are the

location where the label 1s drawn.

Frample Nested-Relational Database Instance. An example database, containing the same
mformation as the relational database, was constructed. As before, the intent was to deternune
if the nested-relational design had any “holes.” Appendix H contains a listing of the example

nested-relational Jatabase.

*In a nested database which supports objects of type bitmap (say), one could actually store the picture in the
database.




Nested-Relational ‘mplementation. Unfortunately, the Exodus-based nested-relational DBMS
creared by Mankus does not support all the capabilities required by this real world database ap-
plication. Accordingly, a “paper” implementation of the nested-relational design is used. Certain
extensions to SQL which support a nested-relational database have already heen formalized by
Roth and others (33). T[he queries of the nested-relational IDEF, database are developed using
R-rh’s SQL/NF syntax?. The SQL/NF script to create the nested-relational schema is shown in
Appendix [, as are the scripts to input the bulk data files into the nested-relationa: implementation.

~how all data, and erase all data.

SQL/NF Quertes. The following query extracts drawing data from the nested-relational
IDEF: aarabase. This data is required by the drawing tool to create the A-0 diagram shown
in Figure 7. As with the relational queries, the data resulting from this query is ~hown, in a
postulated format. immediately following the query. The items delimited by parenthesis are the

relation-valued attribute names.

SELECT (SELECT ALL BUT segments.data_id,labels.data_id FROM sheets WHERE node = "4-0")
FROM project
WHERE project_name = ‘DM Example';

(sheets)
|c_numberinode |name lauthor |version |date [
j~m=mmm——- [e=emm= |=mememcermaaee [ et R T L DLl lemmmmne- |-=m=eee- |
1 14~0  |DM Example |Gerald R. Morris [1.0 102/14/89]
R |==vee= |=mrmeeceecene- R i teld R [==moeee- !
(boxes)
Inode |name Ix |y |visible DRE

[==--- fommemmemm e R R I
1A0  |manage database |1 |1 (2 |
foo--- |=emommmmmm e e e B |
(segments)

(location)

Ixe 1~ ize |ye !

e e e R |

13 13 14 14 |

e P R e

‘Since the nested-relational DBMS of Mankus is not nsed, the translati-n of SQL/NF to the Colby altegrais not
peapiived

-1
(1%




(symbols)
Ix ly Itype_symbol |symbol_type |
e e e et |===--mmmmoee- |
14 14 |arrow Iright_arrow |

16 16 17

J===l===|===]-==I
le {9 110 J10 |
[===t===]===1--=1
l===l===]==mo=mmmeeen |eoomeomeoen |
110 {10 |arrow Iright_arrow |
[ R R R it R il |
(squiggles)
Ix1 Iyt Ix2 ly2 Ix3 1y3 Ix4 Iy4 |
I R R R R R EE R B
112 112 113 {13 {14 114 115 {15 |}
e R R R B B Rt R EE L
(meta_notes)
|label Ix |y

(note_text)
|line_no |text_line |

(foot_notes)
|label |xm |ym |xn |yn |
[-=====~ [EEE e R R
(1 t1r {11 190 190
|-===-- R e R R Ly
(note_text)
|line_no ltext_line |

11 |an example decomposition |

12 Inot completed |

[m=mmmme- R bl |
(feos)

|label !x |y |picture |

(labels)
|name itz 1y |
fomommmmemmaee f======|
juserdata 12 12 |
Irules I1s Is |

| feedback 18 18 |
jrmemmcremamaan fammfem=]

Appendix [ includes additional SQL/NF scripts which extract the drawing data for the AQ

dingram. as well as essential data for a typical activity, and a typical data element.

3




Summary

An IDEF, abstract data model s presented in this chapter. The justificanion for a daal
modeling approach (essential data and drawing data) is developed. The relations corvesponding to
the E-R dingrams are developed. as is an example database. The relational Jdesian i< niplemented
in Ingres Corporation’s relational DBMS, Ingres. SQL queries to extract drawing lata {rom the
relational database are constructed, and the data is used to actually draw some IDETF; diagrams.
Additional queries to extract essential data are constructed. The relational design is transformed
mnto a nested-relational design. An example database is constructed. SQL/NF ueriex 1o extract
data from the nested-relational database are constructed and used to draw IDEF, diagrams. Ad-

litional queries to extract essential data are constructed.




V. FINDINGS

Introduction

This chapter summarizes the IDEF, implementation within a relational and nested-relational
DBMS by comparing the two implementations in several areas including query complexity, size of

the database, and speed of query execution.

Query Complexity

This section considers the complexity of queries for the relational versus nested.-relational
versions of the IDEF,; database. In particular. it looks at the queries associated with IDEF,

drawing data and essential data.

A Definttion of Complezity. Obviously a database query language complexity niea~nre conld
inclitde such criteria as number of joins, number of projects, number of binary comparison operators,
number of unions. number of nests, number of unnests, etc. Unfortunately, some of these criteria
de» not necessarily apply to SQL/NF. and others do not épply to SQL. [t i1s kind of like comparing
apples to oranges. Thus, in order to ensure some type of commonality, assume that complexity 15
Just a simple count of select-from-where (SFW) clauses. This consecvative approach actually favors

SQL over SQL/NF as suggested by the following example:

Suppose that ry is a INF relation on scheme Ri. and r2 is a INF relation on scheme R;. where
Ry = (a.b.c). and R2 = (b.d.e). Suppose it is possible to generate a nested-relation. r.. on
scheme. Ri, where Ry = (a. B.c) (B is a relation-valued attribute such that B8 = id.«y) The
qnery of interest is the entire database. The queries are:

~select rpa iy borpeorydorpe [t SQL Y/
from ry. r

where ri b = r. b,

~elect ALL trom ry. /* SQL/NF ¢/

1)




['sing the simple complexity measure suggested above, hoth queries appear to have the same
complexity since they both have a single SFW clause. It is easy to show that the SQL query. which
mvolves a natural join, 15 more complex, both from a user viewpoint, and an mternal execntion
viewpaoint. The user viewpoint is obvious: an intimate knowledge of the matelimy kevs o well as
the ~svntax for crearing a natural joimn are required. The mternal viewpowt i~ hased apon soane
knowledege of how the nested-relational implementation works. Basically. auy efficient nested-
relational implementation will keep all the tuples in a nested relation on coutiguous blocks of
the disk. The Exodus storage manager allows for this to occur. It defines a storage object as “an
nminterrupted container of bytes which can range in size from a few hytes to hundreds of megabytes”
(5:1). In short. the nested-relational version requires the storage manager to retirn one or more
contiguous blocks from the disk. The relational version, on the other hand. will have 1o nse <ome
tvpe of join strategy. e.g., block-oriented iteration. to generate the required tuples. Generally this
results in multiple disk accesses from non-contiguous blocks, even if both relations have clustered

mdices on the join attribute.

Thus, by using the simple criteria above, the results are conservative. That 1~ to ~ay, the

extent to which SQL/NF appears to be “hetter” than SQL 1s understated.

The ramplexity measure discussed above can be formahized as, C.r, (query) = *he numher
of SFW clauses in query. Note that C,py, is additive: if extraction of a data ~set invalves »quertes,

then the complexity of the query for the entire data set is given by

"
Cypo (tutai) = Z Cypu (query,)

1=

wlere Cypy (query,) s the complexity of the 'th query.




Data definition language (DDL) statements. and data manipulation language (DML) state-

ments, which may not involve SFW clauses. need additional complexity definitions.

In the case of DDL statements, the complexity is given by by Cyg = n, + n,. where n, is the

number of atomic attributes, and n, is the number of TABLE clauses.

For DML statements which perform a bulk load, the complexity is given by ¢y = u, + 0., +n
where n, is the number of atomic attributes, n,y, 1s the number of relational-valued attributes,

and n. s the number of COPY TABLE clauses.

For DML statements which delete data. the complexity is defined as Cj,y = | + n.s, . since

there is always at least one DELETE keyword, and n,;,, SFW clauses (n,,, = 0 is allowed).

The SQL and SQL/NF scripts in this thesis do not include any INSERT or UPDATE DML
statements. Neither do they involve NEST or UNNEST. Accordingly. complexity measures associ-

ated with these types of statements are not defined.

Comparison of SQL versus SQL/NF. Having formalized the meaning of “complexity,” 1t is
now possible to compare the relational SQL queries with the nested-relational SQL/NF quertes. A
direct comparison of the drawing data and essential data queries illustrate rather profoundly the
~implicity of the SQL/NF queries! as shown 1n Table 7. From a inore intuitive viewpoint relative
to the nested version. all the data is nested exactly where it 1s needed, the requirenieut for joins s

miniiized/eliminated, as is the requirement for multiple queries from multiple refations

Table 7. Comparison of Query Script Conglexity

Query Cypu |
SQL | SQL/NF
A.0 activity drawing data 16 1
AOQ activity drawing data 19 1]
A1l activity essential data T 1
unumber data element essential data 14 1
| average 215 | |

*Recall these numbers are conservative.

~1
~1




The create tables scripts for SQL and SQL/NF are on the same order of complexity since,
at some point, all the atomic attributes must be defined. Even so. because of the many to many
relationships in the IDEF, abstract data model, the relational version needs to have a number of
relations just to resolve the many to many conflict. The load tables scripts are also on the =ame
order of complexity since, once again, all atomic attributes must be referenced. On the ather hand.
the erase tables script for SQL/NF is clearly less complex since there is only one table 15 erase!

The actual complexity measures are shown in Table 8.

Table 8. Comparison of DDL/DML Script Complexities
Cudt | Croad | Cant
SQL 161 137 40
SQL/NF | 113 ] 119 1

Size of Database

This section considers the relative sizes of the relational implementation and nested-relational
implementation of the IDEF, database. Unfortunately, a direct comparison is not possible since
the nested-relational DBMS build by Mankus does not have all the features necessary to implement
a complex nested-relational application such as IDEFg. Fortunately, the logical comparision is still

posstble and is presented below.

Relational Logical Size. In the relational instance the algorithm for determining logical size is
to count the number of bytes per tuple in each relation, determine the number of tuples. and then

multiply the two. The example shown in Table 9, taken from Roth, illustrates the nlea (33:102).

Suppose attribute, dno requires 4 bytes: dname tequires 13: and loc requires 10, Assime there
are 10 tuples in the database. Since each tuple uses 29 bytes and there are 10 tuples, the logical

size of the database is 29 x 10 = 290.

A similar analysis of the IDEF, refational database instance is shown in Table 11

-1
v 4}




Table 9. Simple Relational Example

Dept
dno dname loc
10 | Manufacturing | Austin
20 Personnel Dallas
30 Retail Austin
Nested-Relational Logical Size. In the nested-relational instance, the approach is to count

the number of bytes used by the atomic attributes in each each relational-valued attribute. count
the total number of tuples in each RVA, and then multiply the two. The simiple example shown in

Table 10, taken from Roth, illustrates the idea (33:100).

Table 10. Simple Nested-Relational Exainple
Supply

supplier | Supplies
part
42 T

8

9

10

18
20

21

45 8

10

32

34

33

56 3

3

10

| Y

Suppose the supplier atomic attribute uses 5 bytes, and the part atomic attribute r=es 3
bytes. Since there are 3 occurrences of a Supply tuple and 16 occurrences of a Supplies tuple. the
logical size of the database is 5 x 34+ 3 x 16 = 63. A similar analysis of the IDEF, nested-relational

di rabase 1s shown in Table 12.




The latter results bear some explanation since, in general, nested-relations are small then their
r-lational counterparts. To make joins more efficient in the relational design. globally nnique integer
“1d” attributes were used in lieu of the “real” superkeys. Since the nested-relational version avoids
joins as much as possible, it would have been counterproductive to include such “1d™ attributes. Not
including them naturally increases the size of the nested-relational model since all the attributes

must he stored. This is perhaps best understood by way of some examples.

Suppose that the activity relation had stored the 12 character project name as the join
attribute instead of the 4 byte integer. project.id. the resulting size of an activity tuple would be
90 byvtes as opposed to 82 bytes. In the case of data_elem, the size of a tuple would have been
51 bytes as opposed to 53 bytes. The space savings associated with the 2 byte integer. author_id.
as opposed to the 20 byte character string, author, is 18 bytes per tuple for hoth activity and
data_elem. Perhaps the biggest savings is in the cross reference tables. For examiple. assume
activity used its “real” key, project-name, which is a 12 byte character string, and node. which
i~ 1 20 byte character string, in lieu of the 4 byte integer key. node_td. [Further <uppose that
data_elem used project-name, and data_name, which is a 25 byte character string, in lieu of the 4
byvte integer. data_id. Consider the effect on the act2data cross reference relation. Since attribute
rcom_code remains the same, but a the other two attribu‘es, node_id, and dafa_td ave changed as
just described, one tuple of act2data would require 70 bytes instead of 9 bytes. In short. the size
<avings associated with the relational version has to do with the design decision to use global integer
“id” values in leu of the “real” keys; it is not an intrinsic feature of the relational model. Thus, the
nested-relational instance, which uses 6,579 bytes, takes up more room than the relational tustance,

which only uses 6,036 bytes.




Table 11. Logical Size of Relational Instance

RELATION | BYTES | TUPLES | STORAGE
act2act 8 2 16
act2data 9 12 108
act2hist 3 1 S
act2ref 3 4 32
activity 32 3 2465
act_changes 64 0 0
act.descr 66 5 396
alias 79 0 0
analyst 22 1 22
arrow 5 12 650
boundary 8 3 13
data2data 3 6 48
data2label 8 14 112
dataZref 3 9 T2
data2value 8 2 16
data_changes 64 0 0
data_descr 66 - 13 R58
data_elem 53 11 583
data_range 64 2 128
data.type 29 3 37
data_value 19 2 38
dot 5 0 ]
feo 64 0 0
foctnote 8 1 3
graphics 8 2 16
hist_call 36 1 36
label 22 14 3038
minJnax 34 0 0
note 9 1 9
note_text 66 2 132
project 16 1 16
reference 68 19 1.254
ref.type 29 13 377
segiment 20 21 420
sheet 8 2 16
squiggle 20 | 20
symbol 16 26 416
tofrom.all 5 3 15
tunnel 55 1 55
turn 5 3 40
TOTAL STORAGE 6.036

81




Table 12. Logical Size of Nested-Relational Instance

RELATION/RVA | ATOMIC | TUPLES | STORAGE !
BYTES |
PROJECT 12 1 12
activities 176 3 528 |
act.desct 62 ] 372!
refrences 25 4 10y
ref_lines 52 3 370
hist _calls 32 1 32
data_elems 26 9 234
children 25 2 30
data_elements 152 11 1.672
data.descr 62 14 363
refrences 25 9 225
ref_lines 62 12 T44
aliases 75 0 0
min._max 55 0 0
range 86 0 0
values 30 2 30
children 25 6 150
sheets 37 2 174
boxes 51 3 153
segments 4 14 56
location 8 21 168
symbols 3 26 203
squiggles 16 1 15
meta_notes 5 0 0
note_text 62 0 0
foot_notes 9 1 9]
note_text 62 2 [
feos 55 0 0 ].
labels 13 14 250 1
TOTAL STORAGE 6G.57Y

2 4
(%]




sSpeed of Query Evecution

I'his section considers the speed of query execution for the relational hnplementanion and
nosted-relational implementation of the IDEF, database. Unfortunately. a dircctly measurable
comparison is not possible since the nested-relational DBMS build by Mankus does nat have all the
foatures necessary to implement a complex nested-relational application such as IDEF - [lowever it
ix ~t1l] possible to compare the implementations from two different perspectives. The first approach
assumes that tne applicable tuples are fetched from the disk as needed. Speed 15 determined
basedd npon a conservative assumption as to the number of disk accesses needed. The second
approach assumes that the entire data set associated with a given project is ~mall enongh to fit
in main memory. Speed is determined via an order-of analysis of a typical progran 1hat talks
to the database via embedded language queries. The initial load at run time. and final thish at

termination time are ignored.

Dusk Resident Project Data. In order to determine the relative speeds of the queries, cerratn

conservative estimates are made relative to physical mapping of the data onto the hisk

Assume that the relational DBMS has memory resident clustered B+ tree indices on the join
attribites. Further assume that the DBMS is “smart” enough to store relations that are hkely
to he joined in clase proximity to one another on the disk. Based upon these highly optumistic
asstimptions. assttme that it takes one disk access for every two relations involved in a join. Formally.

tlie number of disk accesses, nygy. for a relational (SQL) query is given by

n
Mgl = f—;]

-

where 1, 15 the number of unique relations involved in the query being considered.

Assume that the nested-relational DBMS stores the data in contiguous locations on the sk,

amid rhat it takes two accesses to retrieve a given set of tuples for the queries considered  The




latter is actually a fairly good assumption. The example database instance shown above is around
R kilo-hytes, which includes three activities. eight data elements, and two sheets. Considering that
a 2k to 4k page size is typical, it seems reasonable to presume a query for a given sheet, activity,
ot data element could be done with just two accesses. As to the contiguous storage assumption,
Exodus definitely allows this capability as discussed in the Exodus Storage Manager guide (3°1)
In short, the assumptions seem to he reasonable. The last assumption is that a memory resident
index identifies the appropriate disk locations. Formally, the number of disk accesses. ny, ;. for

the given nested-relational (SQL/NF) queries is given by

Nyging = 2.

Table 13 shows the results for the queries given in Chapter 3

Table 13. Relative Query Speeds: Number of Disk Accesses

Query Nagl | Negin
A.-0 activity drawing data 17 2
A0 activity drawing data 36 2
A1l activity essential data 13 2
unumber data element essential data 25 2
| average 22.73 2

Memory Resident Project Data. Obviously a tool which uses the IDEF, database needs to
tatk to the database. The mechanism with which a high-level language such as C or Ada interfaces
with the resident DBMS is the embedded query language call. The next two sections cansider such
embedded query language calls for the Ingres relational IDEF, implementation and the nested-
relational implementation. The assumption is that the entire dataset for a given project is smail
enongh to fit into main memory. Note that certain liberties are taken relative to syntax. The

nunmportant issue here is the concept (semantics), not the syntax!

34




Embedded SQL Erample. Embedded SQL in Ingres involves the coucept of a cursor
(2%:3-7). Basically, a “template” SQL statement is created, along with some data structures that
are “visible”™ to SQL. Whenever the embedded SQL call is made, the next tuple is placed in the
visible data structures. Consider the following C header file which defines the types needed to
contain the sereen data in the IDEF, database (an analogous set of Ada type definitions is given

m Appendix J):

/+ This header defints the data structures that are used to capture the
drawing data from the IDEFO database via embedded query language calls
It 1s not known apriori how many tuples there are, so a linked list
structure is used.

The element names correspond identically to the attribute names used in
the IDEFO database. It is assumed the user of this header is familiar
#ith the database schema... s/

typedef struct box{
char node(21] ,name{26];
int x,y,visible_dre;
struct box *next_box; /* pointer to next box o
} sboxptr; /e type boxptr points to a box structure s/

typedef struct loc{
int xs,ys,xe,ye;
struct loc *next_loc;
} slocptr;

typedef struct symbol{
int x,y;
char type_symbol(13],symbol_type[13];
struct symbol *next_symbol;

} ssymbolptr;

typedef struct seg{
locptr location;
symbolptr symbols;
struct seg ¢next_seg;
} ssegptr;

typedef struct squig{
int x1,y1,x2,y2,x3,y3,x4,y4;
struct squig *next_squig;

} esquigptr;

typedef struct note_txt{

int line_no;

char text_line(1l..61];

struct note_txt enext_note_txt;
} enote_txtptr;




typedef struct meta{
char label(2];
int x,y;
note_txtptr note_text;
struct meta *next_meta;
} emetaptr;

typedef struct foot{
char label[2];
int xm,yx,xn,yn;
note_txtptr note_text;
struct foot snext_foot;
} sfootptr;

typedef struct feo{
char label(2];
int x,v;
char picture[61];
struct feo *next_feo;
} sfeoptr;

typedef struct label{

char name[11];

int x,y;

struct label *next_label;
} slabelptr;

typedef struct shaeet({
int ¢_number;
char node[21] ,name[26] ,author{21] ,version(11],date[9];
boxptr boxes;
segptr segments;
squigptr squiggles;
metaptr meta_notes;
footptr foot_notes;
feoptr feos;
labelptr labels;

} esheetptr;

/% and some other stuff as well ¢/

Given this header file, which defines the data structures needed to draw the screen. a procedure
must now make the appropriate embedded SQL calls, load the resulting tuples in the screen drawing

structure, and then call the screen drawing procedure. The following elided routine illustrates the

concept:

[+ 4
(o2




/% Obligatory procedure header, includes, et al =/

draw_the_a_minus_zero_screen(the_project_name,...) /¢ relational version s/
/¢ required parameter declarations */

/+ perform necessary initialization to talk to Ingres SQL s/

/* declare C variables that are visible to SQL. Note that strings
gotta be one more since C uses a null byte to teminate strings ¢/
EXEC SQL BEGIN DECLARE SECTION;

char project_name; /* name of project ¢/
/* declare the variables for the first query s/
int x,y, /* coordinates of box */
visible_dre, /* true if this box is decomposed s/
c_number; /* sheet on shich it is decomposed */
char name[26], /* activity name &/
date[9], /« date of the revision s/
author[21], /% name of analyst ¢/
version([11]; /* revision number =/

/+* declare the variables for the remaining queries ¢/

EXEC SQL END DECLARE SECTION;

/* Create some local linked list structures to Lold all the stuff
until you can allocate the screen drawing data structure.
Recall, we don’t know its size yet... ¢/

/® let SQL “see" the name of the project ¢/
strcpy(project_name, the_project_name);

/+* Open Database */

/* Create query cursor, basically this is a prototype of the
desired SQL query that is to be performed. This
cursor is used to generate the firat part of the A-O sheet */
EXEC SQL DECLARE a_minus_O_first_cursor CURSOR FOR
select a.x,a.y,a.name,a.date,an.author,a.version,a.visible_DRE,s.c_number
from activity a, analyst an, sheet s
where a.node = 40" and
a.author_id = an.author_id and
s.sheet_id = a.sheet_id and
a.project_id in (
select p.project_id
from project p
where p.name = :project_name);

/+ Open cursor and prepare to perform the query */
EXEC SQL OPEN a_minus_O_first_cursor;

EXEC SQL WHENEVER NQT FOUND GOTO duni; /# Branch vhen done - Ugh! ¢/

/* Query loop ¢/
while(1) { /¢ until the stinking goto above is taken s/
/* Fetch next tuple via defined cursor and put the resulting
tuple into the C variables defined above ¢/

EXEC SQL FETCH a_minus_O_first_cursor INTO
!X, 'y, :name, :date, :author, :version, :visible_dre, :c_number;

/% allocate a new node to save this data «/




/+ fetch next tuple (none in this case) ¢/

}
dunt: /¢ Bo more tuples; do whatever clean up is necessary +/

/* Close cursor s/
EXEC SQL CLOSE a_minus_O_first_cursor;

/+ Define the next cursor
and grab the data in a query loop

and at each pass, allocate a new local node to keep the data,
and load it into the new node ¢/

/¢ Define the next cursor
...ad nauseaum... ¢/

/* Close database */

/* now that the data is available, create, allocate, and load a sheetptr
type data structure to send to the drawing routine s/
sheetptr the_sheet;

/* now that the data is loaded, call the drav screen procedure s/
drav_screen{the_sheet);

} /% that’s all folks +/

In order to assess the worst case time complexity of this code, it is necessary to [bak at the

definition of Big-O and order-of:

Definition of Big-O:
A function f(n) is of order O(g(n)) if and only if there exist constants, ¢ > 0 and ng > 0.
such that

fR)<c-g(n)  ¥n > n

f(n) = O(g(n)) says that g(n), multiplied by some constant, c, gives an upper houn |

on f(n). (21)

The code shown above would actually involve ten different cursors and query toops. as seen
in Appendix G. The first loop always has exactly one tuple, and is therefore of time order. O(1).
The second loop is of time order, O(s), where s is the number of segmerts on the A-0 diagram.

The third loop is of time order, O(a), where a is the number of arrrw syinbols. The fourth loop is

of time order, O(t), where t is the number of turn symbols. The fifth loop 15 of time order, O(u),




where u is the number of tunnel arrow symbols. The sixth loop is of time order. O({). where { is the

number of labels. The seventh loop is of time order, O(q). where g is the number of squiggzles on
the A-0 diagram. The eighth loop is of order, O(f), where f is the number of foatnotes. Although
not shown in the example A-0 diagram in this thesis, a generalized A-0 drawing might include
meta-notes and FEQ ronstructs. These would require two additional loops. whiclh would rin on
the order of, O(m) (number of meta-notes), and O(p) (number of FEO pictures associated with
the diagram). In all the cases above, the constants would depend upon the machine used. svstem
loading (in a multiuser environment). etc. Nonetheless the order-of analysis. in canjunction with
the fact that there are 10 sequential loops, does give an indication that the embedded SQL queties
could be potentially slow. This rings particularly true since for each of the 10 «[ueries, there is
a separate parsing, optimization, and extraction. In addition, the queries all involve a multi-way

Join. As discussed in the previous section, this is likely to be an expensive process.

Embedded SQL/NF Ezample. The prototype nested-relational DBMS built by Mankus
does not support embedded SQL/NF. Accordingly, postulate the existence of such a capability.
Assume it is along the same lines as the embedded SQL in Ingres. A call to ermibedded SQL/NF
gets the next tuple. much like Ingres embedded SQL. However, since a “single tuple™ contains
relational-valued attributes, the embedded SQL/NF must automatically allocate space in a linked-
list structure which receives the data. In short, assume that embedded SQL/NT requires a cursor,
which is again a “template” SQL/NF statement. and some linked-list data structurve which is
“visible” to SQL/NF. Whenever the embedded SQL/NF call is made, the next tuple is placed in

the linked list along with all tuples in its relational-valued attributes.

Assume the header file mentioned in the previous section is available. The [ollowing elided

rontine illustrates the embedded SQL/NF call;




/+ Dbligatory procedure header, includes, et al ¢/
drav_the_a_minus_zero_screen(the_project_name,...)

/+ nested-relational version ¢/
/* required parameter declarations ¢/

/+ perform necessary initialization to talk to SQL/NF e/
/+* declare C data structures that are visible to SQL/NF. &/
EXEC SQLNF BEGIN DECLARE SECTION;

char project_name; /* name of project */

sheet _ptr the_sheet; /+ the entire enchilada! s/
EXEC SQLNF END DECLARE SECTION;

/* let SQLNF ''see” the name of the project «/
strcpy(project_name, the_project_name);

/+ Open Database ¢/
/e Create query cursor, basically this is a prototype of the
desired SQLEF query that is to be performed. This
cursor is used to generate the entire A-0 sheet ¢/
EXEC SQLNF DECLARE a_minus_O_cursor CURSOR FOR
SELECT (sheets ALL BUT segments.data_id,labels.data_id WHERE node = "A-0")
FROM project

WHERE project_name = :project_name;

/* Open cursor and prepare to perform the query e/
EXEC SQLNF OPEN a_minus_O_cursor;

/* Fetch next tuple via defined cursor and put the resulting
tuple into the the_sheet defined above */

EXEC SQLEF FETCH a_minus_O_cursor INTO :the_sheet;

/+ Close cursor e/
EXEC SQLNF CLOSE a_minus_O_cursor;

/* Close database #/

/¢ How that the data is loaded, call the drav screen procedure */
dravw_screen(the_sheet);

} /¢ that's all folks e/

In the case of SQL/NF, there is a singie cursor and query (recall there 15 a4 single tuple per
sheet). Accordingly, the procedure is of time order, O(1). Now obviously the constant for a nested
query will be different than the constant for a non-nested query. Even so. there s a single parsing,
optimization, and extraction. Accordingly, it seems reasonable to suggest that the SQL/NF query
will run faster. Obvicusly, the actual speed depends a great deal upon the particular machine,

system loading, etc.

90




Summary

This chapter summarizes the IDEFg implementation within a relational and nested-relational

DBMS.

A conservative definition of query complexity is presented, and used to determine the relative
complexities of SQL (relational) queries, and SQL/NF (nested-relational) queries. The average

complexity of the relational (SQL) queries is an order of magnitude (21.5 times) more complex

than the average complexity of the nested-relational (SQL/NF) queries.

The logical size of the relational and nested-relational instances are derived. The larger size
of the nested-relational instance (6,579 bytes) as compared to the relational instance (8,086 hytes)
15 due to the use of integer “id" attributes in the relational design; it is not due to some intrinsic

quality of relational versus nested-relational designs.

The speed of execution for queries is presented from two aspects; a disk based DBMS wherein
the number of disk accesses determines the speed; and a memory resident DBMS wherein the speed

of execution is determined via program run time.

Disk-based rtelational (SQL) queries require an average of 22.75 disk accesses. Disk-based

nested-relational (SQL/NF) queries require an average of 2 disk accesses.

An order-of analysis is used to determine the relative speeds of queries for the memory resident
DBMS. A program containing embedded SQL (relational) queries to extract the A-0 drawing data
rins in linear time based upon the number of graphical constructs in the diagram. A program
containing embhedded SQL/NF (nested-relational) quereis to extract the A-0 drawing data runs in
constant time. Obviously the constants associated with the order-of analysis are dependent upon

the particular machine, operating system. numer of users, etc.

91




V. CONCLUSIONS AND RECOMMENDATIONS

Introduction

This chapter summarizes and presents conclusions about the research: it also tncludes some

recommendations as to further research in this area.

Summary

This research effort accomplished several objectives relative to the design of hoth a rela-
tional and nested-relational database to handle the IDEF, analysis language data. The primary

accomplishments include the following:

1. Developed a partitioned abstract data model of IDEF, which included:

e An essential data model.

e A drawing data model.
2. Developed a relational DBMS to handle the IDEF, language data which tncluded:
e Mapping the abstract data model into a relational design.
¢ Implementing the relational design in the Ingres DBMS.
e Creating an example database instance.
e Developing SQL queries which extract:

- Drawing data.

- Essential data.
3. Developed a nested-relational DBMS to handle the IDEF, language data which included:
e Mapping the relational design into a nested-relational design.

e Creating an example database instance.

02




e Developing SQL/NF queries which extract:

- Drawing data.

~ Essential data.
4. Compared the relational and nested-relational versions in terms of:
o Complexity of quertes.
e Size of the database.

e Speed of query execution.

Conclusions

The partitioned abstract data model, while more complex. allowed tie drawing data to be

~eparated from the essential data.

In the nested-relational design, the drawing data and essential data were completely separated.
In this sense. the nested-relational version more closely modeled the abstraction gencrated via the

I.-R analysis

['he complexity results, which were based on metrics that favor SQL over SQL/NF. clearly
~hiawed the o lvantage of the nested-relational version over the relational version for the particular
<t of queries considered. On average, the relational queries (SQL) were an order of magnitude

121.5 tunes) more complex than the equivalent nested-relational (SQL/NF) queries.

The nested relational instance had a slightly larger logical size when compared to the relational
instance. [t was shown that this was a result of optimizing the relational design via use of glohal
mteger “id™ attributes instead of the “real™ keys. Even so, the apparent benefits ol sunpler queries
and faster execution times would seem to offset the increased size. Obviously from a user perspective

this is desirable (assuming the storage is available).

93




The query speeds of the disk-based DBMS model clearly showed the advantage of the nested-

relational version over the relational version. On average, the relational (SQL) ueries required

5 disk accesses whereas the nested-relational queries only required an average of 2 disk accesses
This is an order of magnitude speedup. In large part. this is due to the assumption of a contignous
storage model for the nested-relational DBMS. An object-oriented storage miodel, such as Exodus

(3). does allow this capability.

The query speeds for the memory-based DBMS model also showed that the nested-relational
version has an advantage over the re.ational version. The running time of the embedded SQL/NF
program which extracts the A-0 drawing data is of order, O(1); the running time of the embedded
SQL program is of order, O(max(s.a.t.u,l,q. f,m,p)), where s is the number of segments, n is
the number of arrow symbols, ¢ is the number of turn symbols, « is the number of thnnel arvow
symbols, { is the number of labels, ¢ is the number of squiggles, f 15 the number of footnotes, 1 is
the number of meta-notes, and p is the number of for-exposition-only picture constructs. Obviously
the constants associated with big-O depend upon the machine used. system loading (in a multiuser
environment), etc. Nonetheless the order-of analysis, in conjunction with the fact that there are
10 <equential loops in the relational case, does give an indication that the embedded SQL queries
conld be potentially slow relative to the nested-relational case. This rings particularly true sinre
for each of the 10 queries, there is a separate parsing, optimization, aud extraction. In addition,

tue queries all involve a multi-way join.

The overall conclusion is that a nested-relational data mode} has an advantage over a relational
mnel for this particular application (IDEF;), and the particular queries constdered {drawing data

and essential data).

94




Recommendations

Unfortunately. this research effort generated more questions than answers Obviously these

questions can only be answered through additional research.

The most obvious area where additional work needs to be done is in an actnal nested-refatinnal
nnplementation of the derived design. Given a robust nested-relational DBMS. it wonld Lo pussible
to implement both a relational version and a nested-relational version using using the ~same DBMS.
In the relational case one would simply create tables that only have atomic valued atrribares.
The advantage of using the same DBMIS is that the confounding influence attributable to different
machines, algorithms, data structures, etc., would be minimized. Once the two implementations
are in place, one could then develop a set of database instances/queries from which statistically

valid conclusions could be made relative to run times, query complexities, size of the database, ete.

The thesis tnvestigation does not consider either the relational or nested-relational version in

terms of input and update. This arca needs to be addressed.

The assumptions as to number of disk accesses for the relational versus nested-relational

versions needs to be empirically studied.

Chapter 2 discussed several commercially available DBMS that are designed explicitly for nse
within a CASE tool environment. An interesting research topic might be 1o ~ce il une of these
DBMS miore appropriately meets the needs of the IDEF, abstract data model. In addition, chapter
2 looks at some efforts to integrate CASE tool data across the software development life cyvele.
In particular, the EDIF standardized file interchange solution, and the ATIS “generic DBMS”
~olntion. An interesting research topic might be to map the IDEF, data requirements into one of
these proposed formats in order to allow the data to be available during all phases of the software

development process.

Another potentinl research area concerns an embedded query language interface to SAtool

IT. One suggestion is to build an Ingres-based embedded SQL version of SAtool [I. The intorfuce




should be as modular as possible such that the nested-relational SQL/NF version could be plugged

in later. Considering that SAtool II is written in Ada, this modularization should be possible,

The complexity measures developed in this thesis effort did not include all of the SQL/NF
svutax, and they ignored the complexity introduced by joins, unions. compound predicates. etec.
An interesting research effort might be to develop some metrics by which the complexity of var-
1oux queries can be compared. Obviously these parametrically based metrics would have to he

statistically validated using a sample from some population of queries.




Appendix A. Some CASE Tools and Vendors

The following descriptions represent some of the more popular CASE tools currently on the
matket. It by no means is an exhaustive list. Nonetheless, it does give some idea as to the variety

of different products and vendors.

Adagraph Analytic Science, Arlington, VA Combines early graphical design with an Ada style
PDL. Users can define graphics idioms for tasks and subtasks, and then insert and reuse these
idioms in their designs. The tool provides general idioms for recurring tasks such as buffering,
monitoring, data movement or device driving.

Aris Software Systems Design, Claremont, CA Takes an analysis result from the Cadre Teamwork
tool and automatically creates a first-cut at an Ada program structure. Waorking from dataflow
diagrams, Aris also does a preliminary partitioning.

Autocode [Integrated Systems. Santa Clara, CA Developed out of a need to simulate control system
operation. Working somewhat like chips, Autocode software blocks contain prewritten code.
Each block performs a different transformation on its inputs. The user basically wires the
blocks together on the screen. As with most other code generators. scine of the code must he
hand written, e.g..the code for reading of inputs and posting of ontputs to outside hardware.

Byron PDL [ntermetrics, Cambridge, MA An Ada design language that lets the user add key-
words and comments in the code thus making it possible to automatically extract DoD-STD-
2167 documentation from the annotated code via the Byron Document Generator.

Designaid Nastec. Southfield, MI Based upon the Ward Mellor methodology. The user draws the
diagrams, which the system then ch.cks to ensure that the connections are legal, and that
the data items have been defined correctly. All verified information is automatically stored
in the system database.

EPOS-S Software Products and Services, New York, NY Combines graphics and PDL. It is a
design-oriented formal language used for partitioning the software design and for more detailed
design using a PDL. Users start with graphics at the higher levels, and then switch to PDL
at the lower levels. There is a module to check for completeness, consistency and module
mterconnection. There are templates for DoD-STD-2167 documentation.

Excelerator Inder Technology, Cambridge, MA Supports both Yourdon DeMarco and Gane Sar-
son systems analysis methods; supports Chen or Merise entity-relationship analysis methads.
With this tool, users can develop data flow diagrams and structure charts. The tool can be
used to develop data model diagrams, entity relationship diagrams. It allows allows the user
to generate presentation graphics to present the overall system definition to users and man-
agers. All information is kept in Excelerator's data dictionary, which is one of Fxcelerator’s
most powerful features. Every part of a graph can be described to the central project database
at the time you create it. This “record-as-you-go" feature prevents loss or unnecessary du-
plication of data. Index has done quite well with it's [BM-PC based version of Excelerator.
[t is probably the most well known and perhaps the most capable of the current geuneration
of PC based CASE tools.

Popkin Windows System Architect Chelsea Systems, New York, NY Supports the Ward Mel-
lor methodology. The user draws diagrams, the system checks them for compliance with a
set of rules, and stores the results in a data base

97




Promod/RT Promod, Lake Forest, CA Based on the Hatley control-flow and state-transition
diagrams. The user draws the required graphics with the tool’s graphics editor, and then
eunters control specifications et al, by way of a text editor. The results are then saved in
files. The tool can perform an automatic provisional design partitioning based upon rthese
files created by the software analysis.

Ready Taskbuilder Ready Systems, Palo Alto, CA Set of tools based on Ward Mellor method.
Allows users to develop data-flow diagram, get information on intertask synchrounization and
communication, estimate concurrent execution timing, define data items, data types and Ada-
style software packages, lay out a graphical design, and then proceed to write program design
language (PDL) descriptions.

Reverse Engineering Meta Systems, Ann Arbor, MI Examines code or data dictionaries and
then automatically forms a logical view of the software. Users can look at the calling structures
of the code, get data definitions and data structures, and locate dead data and code.

Software Engineering Workbench Yourdon, New York, NY Based on Cadware’s Rule Tool.
Yourdon has added its own icons and associated rules for the Ward Mellor real-time systems
method, global checking, and its own data dictionary

Statemate :Logiz, Burlingtom, MA Interesting tool in that it can execute real-time software spec-
ifications. The simulation can be for the entire system or any syntactically complete portion
of the system considered in isolation. The system can also generate DoD-STD-2167 docu-
mentation for use by companies developing software under DoD contracts.

Structured Architect-Real Time Meta Systems, Ann Arbor, MI Implements the Ward Mellor
software-analysis methods. This tool generates the required graphics including data-flow,
data-control, and state-transition diagrams, and state transition matrices. Users also create
structured lists and data base entries. This material is used by SA-RT to automatically enter
information into a data base.

SuperCASE Advanced Technology International, New York, NY Prompts the user to name the
Ada-like subsystems and packages. That information is used to generate subsystem, package
and task template specifications—all of which can be customized or used as is. Then the
designer moves on to templates for package, subpackage and task bodies, writing and editing
them in PDL on the screen-displayed templates.

Tags Teledyne Brown Engineering, Fairfaz, VA A requirements language to express software spec-
ifications. It uses blocks and icons to create timing and flow diagrams. These specifications
can be checked to uncover static errors and then executed to simulate the real-time operation
of the software being modeled. The executable code generated from the description is in the
Ada language, but is for use only in this kind of dynamic checking, not in the final system.

TekCASE Designer Tektroniz, Beaverton, OR Tool set which implements the Ward Mellor or
Hatley method for system software analysis. It merges real-time software specification dia-
grams into a single diagram and produces an editable provisional partitioning, for software
design. A listing and evaluation routine reports on inconsistencies, problem areas and de-
viations from defined structured design methods. TekCASE does not do automatic code
generation, but the output of the listing routine can be edited into code stubs for the lan-
guage being used. Once the source code is completed, a TekCASE Designer routine can
convert it into structure charts, compare the charts with the final design and report on any
differences.

Toolkit Cadre Group, New Haven, CT Can be adapted to a several popular diagramming methods.
The user selects icons with the mouse or keyboard and uses them to draw the diagrams. [f
a use-rule is violated, a circled X appears over the affected item and an error message is
displayed. Another routine automatically enters information into a database {rom information
drawn on the screen. The Verify routine detects any global violations of rules, particularly

98




those violations that couldn't be checked during the drawing process. There's also a tool
(Cadware Rule Tool) that lets users modify existing analysis methods or set up their own
methods for creating software diagrams

99




Appendix B. [DEF, Language Features

Ross defines 40 features of his Structured Analysis language, which “constitute the basic core
of the language for communication™ (30:19). Unfortunately, the IDEF, user’s manual does not
mclude a single summary of the IDEF, language as does Ross's paper. However. (uring his thesis
offort. Johnson extracted the IDEF, subset from the user's manual and cross referenced it to the

appropriate SA feature. The following table is adapted from Johnson’s work:

Table 14. IDEF, Language Features

SA Item No. | Name
1 | box
2 | arrow
3 | input
3 | output
4 | control
5 | mechanism
6 | activity name
7 | label
12 | branch
13 | join
14 | bundle
15 | spread
13 | boundary arrow
20 | detailed reference expression
22 | 2-way arrow
24 | tunnel arrow
25 | to/from all
27 | footnote
28 | metanote
29 | squiggle
30 | c-number
31 | node number
32 | model name
33 | ICOM code
37 | facing page text
38 | for exposition only
39 | glossary
40 | node index
(19:A-3)
100




Appendix C. SAtool Products

The following pages present some typical examples of the current SAtool products. as illus-
trated in Figure 20. Recognize that the new Ada version. built by Smith. may have a slizhtly

Aifferent format (35).

diagrams data dictionary

SAtool

7
\

facing page text
standard data file

graphics file

Figure 20. SAtool Products

Typrcal SAtool IDEF, Drawing Qutpuls

The following two drawings are typical those produced by SAtool. Figure 21 represents the
sn called "A minus zero” diagram, which is basically the context diagram, and Figure 22 represents

the first level decomposition, the “A zero” diagram.

101




AUTHOR. Gerald R Mornis DATE 14F=h39 |[READER
PROJECT. DM Example REV:1.0 DATE
rules D
userdata feedback
' manage ——
database
1

D an example dJecomposition
not completed

NODE TITLE. DM Example
A.0

NUMBER |

Figure 21. Typical A-0 Diagram

102




AQ

AUTHOR. Gerald R. Mornis DATE 14Fcbs9 [READER
PROJECT DM Example REV 10 DATE
rules
c )
numberrules alpharules
userdata unumber numbermsgs
' manage
" @—- numeric 1 feedback
data 1 -
(o]}
|
) alphamsgs
manage
ualpha alpha
@* data 2
~—V l
__.Q fetrl/A13
error codes
NODE TITLE manage database NUMBER 2

Figure 22. Typical A0 Diagram

103




Data Dictionary Outpuls

The following two listings are representative of an activity data dictionary SAtool product.

and a data element data dictionary product.

ACTIVITY Data Dictionary.

|
NAME :manage numeric data
TYPE :ACTIVITY
PROJECT :DM Example
NUMBER :A1
DESCRIPTION
This activity will
handle numbers
INPUTS

unumber

errors
OUTPUTS

numbermsgs
CONTROLS

numberrules
MECHANISMS

ALIASES

COMMENT

PARENT ACTIVITY :manage database

REFERENCE:

KNR NO0O028-89-0123 3.3.2.1.2a
REF TYPE:
contract

VERSION :1.0

VERSION CHANGES

DATE :14Feb89

AUTHOR :Gerald R. Morris

104




DATA ELEMENT Data Dictionary.

|

NAME : unumber
TYPE : DATA ELEMENT
PROJECT :DM Example
DESCRIPTION :This is the user numeric data
DATA TYPE :integer
MIN VALUE
MAX VALUE
RANGE :integer’range
VALUES
PART OF :userdata
COMPOSITION
ALIASES
WHERE USED
COMMENT
SOURCES
DESTINATIONS

INPUT:

manage numeric data
REFERENCE:

AFM 35-10 page 3 para. 2.3

REF TYPE:

AFM

VERSION :1.0
VERSICON CHANGES
DATE :14Feb89
AUTHOR :Gerald R. Morris

105




Appendix D. Analysis Phase Data Base

The AFIT System Development Guidelines specify the two types of itemis that belong in an
analysis phase data dictionary - activities, and data elements (16:8). As seen 1u the last chapter.
the SAtool output products include an ascii text data dictionary file which can he umported to
the heterogeneous database via Connally’s Data Manager (9). The following pages illustrate the

velations for the analysis phase portion of Connally's heterogeneous database.

106




aalias
1 | project cl2
2 | aname c25
3 | aliasname | c25
4 | comment c60
activityio
I | project | cl2
2 | aname | ¢25
3 | diname | ¢25
L4 ] type c4
adesc
1 | project cl2
2 | aname c25
3 { line 12
! 4 | description | ¢60
ahistory
1 | project cl2
2 | aname c25
3 | version cl0
4 | date c8
5 | author c20
6 | comment | ¢60
divalueset
1 | project | cl12
2 | diname | ¢25
3 | value cl5
sadtdata
1 | dataname | cl15
2 | relname cls
3 | kevl cl5
4 | key2 cl5
5 | filddesc c4
6 | entryclass | ¢2
7| mifid cl
3 | numflds c3
9 | direction | cl0
10 | type cl0
11 | delflag cl
12 | version cld
13 | line 12

107

ahierarchy

project cl?
hianame | ¢25
loaname | ¢25

bkup_dirname

| 1 | dirname [ <100 |

dataitem
1 | project cl2
2 | diname c25
3 | datatype | ¢25
4 | low cl0
5 | hi cl0
6 | span c60
7 | status cl
diref
1 | project cl2
2 | diname c25
3 | reference | ¢60
4 | reftype c25
sadtact
1 | dataname | cl13
2 | relname cl5
3| keyl cld
4 | key?2 cl3
5 | fAddesc cl
6 | entryclass | ¢2
7 | mifld cl
8 | numflds c3
9 | direction | <10
10 | type cl0
11 | delflag cl
12 | version cl3
13 | line 12
dialias
1 | project cl?
2 | diname c2)
3 | aliasname | ¢25
4 | comment <60
5 | whereused | ¢25




activity sess_id _tab
1 | project | cl2 1 | session_id | ¢12
2 | aname c25 2 | project
3 | number | ¢20 3 | parent_val | ¢25
4 | status cl 4 | levels c2
3 | phase c6
6 | type cd
dihistory T | owner c20
1 | project cl2 8 | toolcode | c10 |
2 | diname c25
3 | version cl0
1 | date c8 monitordata
5 | author c20 1 | time ¢35
) | comment | ¢80 2 | loginname | ¢50
3 | action ¢50
ent_id_table
1 | phase 8 entowner_tab
2 | type c3 1 | phase cB
3 | relname | ¢12 2 | type c3
41 keyfld cl2 3 | relname cl?2
4 | kevfld cl2
5 { owner.attr | cl2
areference
1 | project cl2
2 | aname c25 dihierarchy
3 | reference | ¢60 1 | project cl2
4 | reftype c25 2 | hidiname | ¢25
.3 | lodiname | ¢25
didesc
l | project cl2 tooldesc_tab
2 | diname c25 1 | code clo
3| line 12 2 | phase cb
4 | description | ¢60 3 | tvpe c3
4 | parent_rel cl?
5 | parent_attr | -12
par._rel_tab 6 | child.attr cl?
1 | toolname | ¢10 7 | def.table cl?2
2 | phase c? 8 | description | ¢60
3 | type c4
4 | levels c2
3 | prelo-nm cl2
6 | pkey_attr | 12
7 | psub.attr | c12
8 | crel-nm cl?2
9 | ckey.attr | c12
10 | csub_attr | cl2




Appendix E. Typical Data Manager Session

As mentioned in the previous chapter. Connally included a Data Manager which allows the
data dictionary files to be uploaded into his heterogeneous database. Here is a typical Data Manager

<esston:

ssc(1)> dm
DATA MANAGER EXECUTION MENU

1. Build new transaction file for execution.
2. Use existing transaction file for execution.
3. Exit

ENTER CHOICE: 1

Please enter the transaction file name: jerry

DATA MANAGER
TRABSACTION RECORD MENU

TOOL SELECTION
1. Sun SADT Editor
2. Data Dictionary Editor
ENTER CHOICE: (1]
DATABASE WAME: [jerry------- ]
SESSION OWNER NAME:[DATA MABAGER----~--- ]

TRANSACTION INDICATOR SELECTIOW
1. RETRIEVE DATA
2. RETRIEVE DATA FOR UPDATE
3. WRITE NEV DATA
4. WRITE UPDATED DATA
S. DELETE
6. ABORT SESSION
7. EXIT TRANSACTION MENU

ENTER CHOICE: (3]
SESSION FILE WAME: [dma_0-~=-======--==ccenomon- =]
PROJECT: [DNM Example--)

TYPE SELECTION

1. ACTIVITY
2. DATA ITEM
3. BOTH

ESTER CHOICE: (3]

109




SUCCESSFUL BUILD OF TRANSACTION FILE
TYPE OF EXECUTION
1. Background (Terminal available during execution)

Foreground (Terminal unavailable during execution)
3. Exit

~

Enter Choice: 2
Data Manager now executing

Please be patient, screen may be blank for up to 30 seconds.
Possibly longer for PARENT/LEVEL transactions.

DATA MANAGER TRANSACTION RESULTS

TRANSACTION FILE NAME: jerry.ins

TOOL NAME: SADT

SESSION OWEER: DATA MANAGER

DATABASE NAME: jerry

PHASE: REQ

TYPE: BOTH

PROJECT NAME: DM Example

TYPE OF TRABSACTION: WRITE -- ALL NEW RECORDS
Updates performed using file: dma_0.dbs

ENTITIES LISTED TO BE UPDATED

manage database ACT LJ
feedback 0BJ W
userdata 0BJ v

rules 0BJ [}

RESULTS OF THE UPDATE

manage database ACT W successful update
feedback 0BJ ¥ successful update
userdata 0OBJ W successful update

rules 0BJ W successful update
SUCCESSFUL UPDATE

ssc(2)>

110




Appendix F. Ezample IDEF, Relational Database [nstance

The relational database instance shown below corresponds to the diagrams shown in Figure 7,
aml Figure 8. The example was constructed manually using a plain text editor. and was used to
do the stepwise refinement of the relational design. Note that some of the dara i the example
database is in symbolic form, e.g.. the locations of the various components. [n addition. recall
that the IDEF, diagrams only show drawing data. For example, the label “error codes™ on the AQ
diagram actually corresponds to the data element “errors” as can be determined via the data2label

re-lation. In short, the essential data below is being shown for the first time.

actact

parent_node child_node

1 2

1 3

act2data

node_id data_id icom_type

1 1 I

1 2 C

1 3 0

2 4 I

2 11 I

3 S I

3 11 I

2 6 [

3 7 c

2 8 0

3 9 0

3 10 M

act2hist

node_id hist_id

3 1

act2ref

node_id ref_if

1 1

1 2

2 6

3 7

act_descr

node_id line_no desc_line

1 1 This is the context diagram
1 2 for the data manager analysis
2 1 This activity will
2 2 handle numbers

3 1 This activity will
3 2 handle alphanumerics

111




activity (part 1)

node_id node name project_id author_id
1 10 manage database 1 1
2 Al manage numeric data 1 1
3 A2 manage alpha data 1 1

activity (part 2)

version date x y visible _DRE sheet_id
1.0 02/14/89 1 1 -1 1
1.0 02/14/89 16 16 © 2
1.0 02/14/89 17 17 © 2
analyst
author_id author
1 Gerald R. Morris
arrow
symbol_id arrow_type
2 3
4 1
6 3
10 3
14 3
18 1
22 1
24 3
36 1
41 3
42 3
43 3
boundary
symbol_id icom_code
7 I1
15 C1
23 01
data2data
parent_data child_data
1 4
1 5
2 6
2 7
3 8
3 9
data2label
data_id label_id
1 1
2 2
3 3
1 4
4 S
S 6
2 7
6 8
7 9
3 10
8 11
9 12
10 13
11 14

112




datalref
data_id ref_id
1 3

2 4

3 5

4 8

5 9

6 10

7 11

8 12

9 13
data2value
data_id value_id
11 1

11 2

data_descr

data_id line_no desc_line

1 This is the user

input data

This is the

database rules

This is the

user feedback

This is the user numeric data
The users alphanumeric data
Rules for numeric data

Rules for alphanumeric data
Feedback for numeric data
Feedback for alphanumeric data
See Flight Control Node A13

QO WO NDWYLE WWNN R~
e e e e N e N N

—

data_elem

data_id name project_id author_id version
1 userdata 1 1 1.0
2 rules 1 1 1.0
3 feedback 1 1 1.0
4 unumber 1 1 1.0
S ualpha 1 1 1.0
6 numberrules 1 1 1.0
7 alpharules 1 1 1.0
8 numbermsgs 1 1 1.0
9 alphamsgs 1 1 1.0
10 alphacall 1 1 1.0
11 errors 1 1 1.0

data_type

data_id type

4 integer
S ascii

11 errcode

data_range

data_id data_range

4 integer’'range
s ascii’range

data_value

value_id value

1 bad input
2 bad output

113

date

02/14/89
02/14/89
02/14/89
02/14/89
02/14/89
02/14/89
02/14/89
02/14/89
02/14/89
02/15/89
02/17/89




footnote
graf_id x y

1 90 90
graphics
graf_id sheet_id

1 1
2 1
hist_call
hist_id hist_proj hist_node
1 Flight Control 413
label
label_id name x y sheet_id
1 userdata 2 21

2 rules s 5§ 1

3 feedback 8 8 1

4 userdata 17 17 2

5 unumber 20 20 2

6 ualpha 22 22 2

7 rules 25 25 2

8 numberrules 28 28 2

9 alpharules 30 30 2
10 feedback 34 34 2
11 numbermsgs 37 37 2
12 alphamsgs 41 41 2
13 fetrl/a13 55 55 2
14 error codes 85 85 2
note
graf_id label x y

1 1 11 11
note_text
graf_id 1line_no text_line
1 1 an example decomposition
1 2 not completed
project
project_id name

1 DX Example
ref_type

ref_id ref_type

1 military standard

2 std operating procedure
3 military standard

4 military standard

5 military standard
6 contract

7 contract

8 AFN

9 AFN

10 AFN

11 AFN

12 AFN

13 AFM

114




referen

ref_id line_no
MIL-

1

ce

1

ref_line
5td-00091

page 3 para. 7-5
System Development Guide
Draft 4

chap 2 page 7

MIL-

Std-00091

page 9 para. 8-1

MIL-

S$td-00091

page 9 para. 8-2

MIL-

Std-00091

page 9 para. 8-3

KNR
KER
AFM
AFM
AFNM
AFM
AFM
AFM

1 2
2 1
2 2
2 3
3 1
3 2
4 1
4 2
5 1
S 2
6 1
7 1
8 1
9 1
10 1
11 1
12 1
13 1
segment
seg_id data_id
1 1
2 2
3 3
4 1
5 4
6 5
7 S
8 2
9 6
10 7
11 7
12 3
13 8
14 8
15 8
16 9
17 9
18 10
19 11
20 11
21 11
sheet

sheet_id c_number

1
2

squiggle

graf_id «xi1
12

2

2

1
12

§100028-89-0123 3.3.2.1.2
R00028-89-0123 3.3.2.1.2
35-10 page 3 para. 2.3
35-10 page 3 para. 2.4
35-10 page 4 para. 3.2
35-10 page 4 para. 3.3
35-10 page 5 para. 4.5
35-10 page S para. 4.6
sheet_id xs ys

1 3 3

1 6 6

1 9 9

2 18 18

2 19 19

2 19 19

2 23 23

2 26 26

2 27 27

2 27 27

2 32 32

2 35 3s

2 38 38

2 39 39

2 40 40

2 42 42

2 43 43

2 40 40

2 75 75

2 77 77

2 79 79

x2 y2 x3 y3 x4 y4

13 13 14 15 1§

xe

10
19
21
23
24
27
29
32
33
36
39
40
36
43
36
41
76
78
80

yeo

10
19
21
23
24
27
29
32
33
36
39
40
36
43
36
41
76
78
80




symbol

symbol_id seg.id

2

q

6

7
10
11
13
14
15
17
18
21
22
23
24
28
30
34
35
36
37
38
39
41
42
43

to_from_all

symbol_id tfa_label

38
39
41

tunnel

symbol_id tunnel_type

37

turn
symbol_id
11

13

17

21

28

30

34

35

[}
A
[}

turn_type

B OO NNV ON

1

WOWONNONBWN

1

sheet_id

1

N RO NV ONNNUNRORONRNNNNNOODNROONNRDONDR -

4

4

7
10
18
21
19
23
24
26
27
29
32
33
35
35
39
40
43
36
40
75
76
77
79
80
76

4

7
10
18
21
19
23
24
26
27
29
32
33
a5
35
39
40
43
36
40
75
76
77
79
80
76

116




Create Tables

IDEF,; database.

CREATE TABLE act2act (
parent _node
child_node
act2data (
node_id
data_id
icom_type
act2hist (
node_id
hist_id
act2ref (
node_id
ref_id
activity (
node_id
node

name
project_id
author_id
version
date

x

CREATE TABLE

CREATE TABLE
CREATE TABLE

CREATE TABLE

y
visible _DRE
sheet_id

CREATE TABLE act_changes (

node_id
changes
CREATE TABLE act_descr (
node_id
line_no
desc_line
CREATE TABLE alias (
data_id
name
shere_used
comment

Appendix G. SQL Scripts

This appendix includes the SQL scripts used to create the relational tables. perform a bulk
load, and bulk erase of the relational database. show the contents of all the relational 1ables, and

extract drawing and essential data.

The following SQL script creates the relations for the Ingres relational implementation of the

integer4,
integer4);

integer4,
integer4,
cl),;

integer4,
integer4)

integer4,
integer4)

integerd,
c20,

c5,
integer4,
integer2,
c10,

c8,
integer2,
integer2,
integeri,
integer4);

integer4,
c60);

integer4,
integer2,
c60);

integer4,
c25,

c25,
c25);




CREATE

CREATE

CREATE

CREATE

CREATE

CREATE

CREATE

CREATE

CREATE

CREATE

CREATE

CREATE

CREATE

CREATE

CREATE

CREATE

CREATE

CREATE

TABLE analyst (

author_id integer2,

author c20);
TABLE arrow (

symbol_id integerd,

arrov_type integerl);
TABLE bdoundary (

symbol_id  integer4,

icom_code ¢2);
TABLE data2data (

parent_data integer4,

child_data integer4);
TABLE data2label

data_id integer4,

label_id integer4);
TABLE datalref (

data_id integer4,

ref_id integer4);
TABLE data2value

data_id integer4,

value_id integer4);
TABLE data_changes (

data_id integer4,

changes c60) ;
TABLE data_descr (

data_id integer4,

line_no integer2,

desc_line ¢60);
TABLE data_elem (

data_id integer4,

name c25,

project_id integer4,

author_id integer2,

version c10,

date c8);
TABLE data_range (

data_id integer4,

data_range c60);
TABLE data_type (

data_id integer4,

type c25);
TABLE data_value

value_id integer4,

value ci8);
TABLE dot (

symbol_id integer4,

dot_type integeri);
TABLE feo (

graf_id integerd4,

picture c60);
TABLE footnote (

graf_id integer4,

x integer2,

y integer2);
TABLE graphics (

graf_id integer4,

sheet _id integer4);
TABLE hist_call (

hist_id integer4,

hist_proj c12,

hist_node <¢20);




CREATE TABLE

CREATE TABLE

CREATE TABLE

CREATE TABLE

CREATE TABLE

CREATE TABLE

CREATE TABLE

CREATE TABLE

CREATE TABLE

CREATE TABLE

CREATE TABLE

CREATE TABLE

CREATE TABLE

CREATE TABLE

label (
label_id
name

x

y
sheet_id
min_max (
data_id
minimum
maximum
note (
graf_id
label

x

y
note_text (
graf_id
line_no
text_line
project (
project_id
name
reference (
ref_id
line_no
ref_line
ref_type (
ref_id
ref_type
segment (
seg_id
data_id
sheet_id
xs

ys

xe

yeo
sheet (
sheet_id
c_number
squiggle (
grat_id
x1

71

x2

y2

x3

73

x4

y4
symbol (
symbol_id
seg_id
sheet_id
x

y
to_from_all
symbol_id
tfa_label
tunnel (
symbol_id
tunnel_type
turn  (
symbol _id
turn_type

integer4,
ci0,
integer2,
integer2,
integer4);

integer4,
cis,
c15);

integer4,
ct,
integer2,
integer2);

integer4,
integer2,
c60) ;

integer4,
c12);

integer4,
integer2,
c60);

integer4,
c25);

integer4,
integer4,
integer4
integer2,
integer2,
integer2,
integer2);

integer4,
integer4);

integer4,
integer2,
integer2,
integer2,
integer2,
integer2,
integer2,
integer2,
integer2);

integer4,
integer4,
integer4,
integer2,
integer2);
(
integer4,
cl);

integer4,
integer1);

integer4,
integer1);

119




Load Database

I'ie following SQL script perfornis a bulk load of the data in the example database into ihe

Ingres relational implementation of the IDEF, database.

CoPY
FROM
COPY
FROM
copPY
FROM
COPY
FROM
COPY

TABLE act2act(parent_node=c0,child_node=c0)

"DUA1: [MROTH.GMORRIS .NEWIDEFO]act2act .dat";

TABLE act2data(node_id=cO,data_id=cO,icom_type=cO)
"DUA1: [MROTH.GMORRIS . NEWIDEFO]act2data.dat";

TABLE act2ref(node_id=cO,ref_id=cO)

“DUA1: [MROTH.GMORRIS . REWIDEFO]act2ref.dat";

TABLE act2hist(node_id=cO,hist_id=c0)

"“DUA1: [MROTH.GMORRIS . NEWIDEFO]act2hist .dat";

TABLE activity(node_id=cO,node=cO,name=cO,project_id=cO,

author_id=cO,version=cQ,date=cO,x=c0,y=cO,visible DRE=cO,sheet_id=cO)

FROM
CcoPY
FROM
CoPY
FROM
COPY
FROM
CcoPY
FROM
CoPY
FROM
CoPY
FRON
CoPY
FROM
COPY
FROM
COPY
FRONM
COoPY

DUAL: [MROTH.GMORRIS . NEWIDEFO]activity.dat";

TABLE act_descr(node_id=c0,line_no=c0,desc_line=c0)
“DUA1: [MROTH.GMORRIS . BEVIDEFO]act_descr.dat”;

TABLE analyst(author_id=cO,author=c0)

“DUA1: [MROTH.GMORRIS .NEWIDEFO]analyst.dat";

TABLE arrow(symbol_id=cO,arrow_type=cO)

“DUA1: (MROTH.GMORRIS . BEWIDEFO]arrow.dat";

TABLE boundary(symbol_id=cO,icom_code=cO)

“DUA1: [MROTH.GMORRIS . JEWIDEFO]boundary.dat";

TABLE data2data(parent_data=cO,child_data=cO)

"“DUA1: [MROTH.GMORRIS . NEWIDEFO]data2data.dat";

TABLE data2label(data_id=cO,label_id=c0)

“DUAL: [MROTH.GMORRIS . BEWIDEFO]data2label .dat";
TABLE data2ref(data_id=cO,ref_id=c0)

"DUA1: [MROTH.GMORRIS . NEWIDEFO]data2ref .dat";

TABLE data2value(data_id=cO,value_id=c0)

"DUAL: [MROTH .GMORRIS . BEWIDEFO]data2value.dat”;
TABLE data_descr(data_id=c0,line_no=cO,desc_linescO)
“DUAL: [MROTH.GMORRIS . JEWIDEFO]data_descr.dat";
TABLE data_elem(data_id=cO,name=cO,project_id=cO,author_id=cQ,

version=cO,date=cO) FROM "DUA1:[MROTH.GMORRIS .NEWIDEFO]data_elem.dat";

COPY
FROM
COPY
FROM
COPY
FROM
COPY
FROM
coPY
FRON
copPY
FROM
COPY
FROM
coPY
FROM
COPY
FRONM
CoPY
FROM
CoPY
FRONM

TABLE data_type(data_id=cO,type=cO)

"DUAL: [MROTH.GMORRIS . BEWIDEFO]data_type.dat";
TABLE data_range(data_id=cO,data_range=cO)

"DUAL: (NROTH.GMORRIS.SEVIDEFO)data_range .dat";
TABLE data_value(value_id=cO,value=c0Q)

“DUA1: [MROTH.GMORRIS . NEVIDEFO]data_value.dat";
TABLE footnote(graf_idecO,x=c0,y=c0O)

“DUAL: (NROTH.GMORRIS . FEVIDEFO]footnote .dat";

TABLE graphics(graf_idscO,sheet_id=cO)

“DUA1L: (NROTH.GMORRIS . BEVIDEFO]graphics .dat";

TABLE hist_call(hist_id=cO, hist_proj=cO,hist_node=c0)
“DUA1: (MROTH.GMORRIS . BEVIDEFOlhist_call.dat";

TABLE label(label_id=cO,name=cO,x=c0,y=xc0,sheet_id=cO)
“DUA1: (MROTH.GMORRIS . NEVIDEFO]label .dat";

TABLE note(graf_id=cO,label=cO,x=c0,y=c0)

*DUAL: (MROTH.GMORRIS . BEWIDEFO]note.dat";

TABLE note_text(graf_id=cO,line_no=scO,text_line=cO)
"DUA1: (MROTH.GMORRIS .BEWIDEFO]lnote_text .dat™;

TABLE project(project_id=cO,name=c0)

“DUA1: (MROTB .GMORRIS . BEVIDEFO)project .dat”;

TABLE reference(ref_idmscO,line_no=cO,ref_line=cO)
"DUA1 : (NROTH.GMORRIS . BEVIDEFO]reference.dat";




COPY TABLE ref_type(ref_id=cO,ref_type=cO)

FROM "DUA1:[MROTH.GMORRIS.JEVIDEFO]ref_type.dat";

COPY TABLE segment(seg_id=cO,data_id=cO,sheet_id=c0,xs=c0,ys=c0,xe=c0,ye=c0)
FROM "DUA1:(MROTH.GMORRIS.EEWIDEFO)segment .dat";

COPY TABLE sheet(sheet_id=c0,c_number=c0)

FROM "DUA1: [MROTH.GMORRIS.NEWIDEFO]sheat .dat";

COPY TABLE squiggle(graf_id=c0,x1=c0,yt=c0,x2=c0,y2=c0,
x3=c0,y3=2¢c0,x4=c0, y42c0)

FROM "DUll:[HROTE.GHORRIS.lEHIDEFO]Iquigglo.dat";

COPY TABLE symbol(symbol_id=cO,seg_id=cO,sheet_id=c0,x=c0,y=c0)
FROM "DUA1:[MROTE.GMORRIS.BEWIDEFO)symbol.dat";

COPY TABLE to_from_all(symbol_id=cO,tfa_label=c0)

FROM "DUA1: [MROTH.GMORRIS .NEVIDEFO]to_from_all.dat";

COPY TABLE tunnel(symbol_.id=cO,tunnel_type=cQ)

FROM "DUA1: [MROTH.GMORRIS.JNEWIDEFO]tunnel.dat";

COPY TABLE turn(symbol_id=cO,turn_type=cO)

FROM “DUA1:[MROTH.GMORRIS.NEWIDEFO)turn.dat";

Erase Database

The following SQL script eliminates all the data in the Ingres relational implementation of

the IDEF, database.

DELETE FROM actact;
DELETE FROM act2data;
DELETE FROM act2hist;
DELETE FROM act2ref;
DELETE FROM activity;
DELETE FRACM act_changes;
DELETE FROM act_descr;
DELETE FROM alias;
DELETE FROM analyst;
DELETE FROM arrow;
DELETE FROM boundary;
DELETE FROM data2data;
DELETE FROM data2label;
DELETE FROM datalref;
DELETE FROM data2value;
DELETE FROM data_changes;
DELETE FROM data_descr;
DELETE FROM data_elem;
DELETE FROM data_rangs;
DELETE FROM data_type;
DELETE FROM data_value;
DELETE FRON dot;

DELETE FROR feo;

DELETE FROM footnote;
DELETE FROM graphics;
DELETE FROM hist_call;
DELETE FROM label;
DELETE FROM min_max;
DELETE FROM note;
DELETE FROM note_text;
DELETE FROM project;
DELETE FROM reference;




DELETE FROM ref_type;
DELETE FROM segment;
DELETE FROM sheet;
DELETE FROM squiggle;
DELETE FRON symbol;
DELETE FROM to_from_all;
DELETE FROM tunnel;
DELETE FROM turn;

Show Database

The following SQL script shows all the data in the Ingres

IDEF; database.

SELECT
SELECT

FRON tunnel;
FRON turn;

SELECT s FRON act2act;
SELECT ¢ FROM act2data;
SELECT » FRON act2hist;
SELECT * FROK act2ref;
SELECT = FROM activity;
SELECT ¢ FROM act_changes;
SELECT » FROM act_descr;
SELECT « FROM alias;
SELECT ¢ FROM analyst;
SELECT ¢« FROM arrow;
SELECT » FRDOM boundary;
SELECT « FRON data2data;
SELECT « FRON data2label;
SELECT ¢« FROM datalref;
SELECT + FRON data2value;
SELECT « FROM data_changes;
SELECT = FRONM data_descr;
SELECT » FROM data_elem;
SELECT ¢ FRONM data_range;
SELECT ¢ FROM data_typs;
SELECT ¢ FRON data_value;
SELECT » FROM dot;
SELECT » FROM feo;
SELECT ¢ FRON footnote;
SELECT » FRON graphics;
SELECT » FRONM hist_call;
SELECT o FRON label;
SELECT » FRON min_max;
SELECT » FRON note;
SELECT » FRON note_text;
SELECT » FROM project;
SELECT « FRONM reference;
SELECT » FROM ref_type;
SELECT » FRONM segment;
SELECT o FROM sheet;
SELECT ¢« FROM squiggle;
SELECT * FROM symbol;
SELECT o FRONM to_from_all;

.

*

122

relational nunplementation of the




Eztract Drawing Data

The following queries extract drawing data from the Ingres DBMS implementation of the
IDEF, database. The first set of queries complete the drawing that was started m Chapter 7, the

second set of queries extract the data to draw the A0 diagram depicted in Figure 3.

A-0 Drawing Data The queries in this section complete the extraction of Jrawing data for
the A-0 diagram depicted in Figure 7, that was started in Chapter 3. Recall the partially completed

drawing so far consists of the sheet headers, all boxes, and all line segments.

This set of quertes extract all the symbols for the ends of the segiments. The syhols exrracted
are arrows, turns, tunnels. and tofrom_alls. In some instances, e.g., tunnels, there are no tuples
extracted because there are none of that tvpe of symbol. Associated with each symbol is its location,
and a discriminator which indicates the type , e.g., down arrow = 1, or, in the case of to_from_all,

a label.

select sy.x, sy.y, ar.arrow_type
from symbol sy, arrow ar
where ar.symbol_id = sy.symbol_id and
sy.sheet_id in (
select a.sheet_id
from project p,activity a
where p.project_id = a.project_id and
a.node = 40" and
p.name = “DM Example");

Ix ly |arrow_|
[eemmccccmmmcc e caae |
| 41 4| 3l
| 71 4] 11
| 10| 10} 3l

select sy.x, sy.y, tu.turn_type
from symbol sy, turn tu
where tu.symbol_id = sy.symbol_id and
sy sheet_id in (
select a.sheet_id
from project p,activity a
where p.project_id = a.project_id and
a.node = "AO0" and
p.name » "DM Example");

123




AUTHOR: Gerald R. Morns DATE [4Fetnd [READER
PROJECT DM Example REV 10 DATE

—————— Pl manage [ —— >
database
1

2

NODE. TITLE DM Example NUNMBER |
A-0

Figure 23. A-0 Diagram (partial drawing 3\

Ix ly |turn_t|

select sy.x, sy.y, tu.tunnel_type
from symbol sy, tunnel tu
where tu.symbol_id = sy.symbol_id and
sy.sheet_id in (
select a.sheet_id
from project p,activity a
where p.project_id = a.project_id and
a.node = “AO0" and
p.name = DM Example*)

It ly |tunnell

At this point the drawing tool adds the symbols to the drawing. The updated partial drawing

that results from adding these symbols is shown in Figure 23.

124




This next query extracts the wuples corresponding to the labels associated with the data

»lements (arrows).

select 1.x,1.y,1 name
from label 1
where 1.sheet_id in (
select a.sheet_id
from project p,activity a
where p.project_id = a.project_id and
a.node = "A0" and
p.name = "DM Example');

Ix ly | name |
R |
| 21 2(userdata |
| 51 Slrules |
| 8l 8|feedback

The drawing tool now adds the labels at the specified (x.y) locations resulting in the partial

drawing shown in Figure 24.

These next queries extract the data associated with the other graphical constructs, i.e., squig-
gles, and footnotes. Note there are two set of ordered pairs associated with the footnote. The first

pair is the location of the label marker, and the second is the location of the actual footnote text.

select s.x1, s.y1, s.x2, s.y2, s.x3, s.y3, s.x4, s.y4
from squiggle s, graphics g
where s.graf_id = g.graf_id and
g.sheet_id in (
select a.sheet_id
from project p,activity a
vhere p.project_id = a.project_id and
a.node = "AQO" and
p.name = "DN Example");




AUTHOR: Gerald R. Morris DATE 14FchA9 IREADER
PROJECT DM Example REV 10 DATE
cules
userdata y feedback
manage [
database
1
2
NODE TITLE DM Example NUMNBER 1
A.0

Figure 24. A-0 Diagram (partial drawing 4)

select xmarksn.x, ymark=n.y, n.label, xtext=f x, ytext=f.y,
nt.line_no, nt.text_line
from note n, note_text nt, footnote f, graphics g
where n.graf_id = g.graf_id and
f.graf_id = g.graf_id and
nt.graf_id = g.graf_id and
g sheet_id in (
select a.sheet_id
from project p,activity a
where p.project_id = a.project_id and
a.node = 10" and
p.name = DN Example");

|xmark |ymark |label |xtext |ytext |line_njtext_line

I 111 111 | 90| 90| 1lan example decomposition
{ 11 1111 I 90| 90| 2{not completed

At this point, the drawing tool can add the footnote, and squiggle, which results in the

comipleted diagram as previously seen in Figure 7.




A0 Drawing Data. These next queries illustrate the extraction of the drawing ata associated
with the A0 diagram. As before, a drawing tool might require the user to supply the name of the
project being drawn, and perhaps the desired node. Accordingly. the queries shown below have

“DM Example” as the project name, and “A0” as the desired node.

The first query extracts the data required to begin drawing the AO diagram itlustrated in
Figure 8. As in the previous section, the table immediately following the query contains the tuples

that are extracted as a result of the query.

select a.name, a.date, an.author, a.version, s.c_number
from activity a, analyst an, sheet s
where a.node = 40" and
a.author_id = an.author_id and
s.sheet_id = a.sheet_id and
a.project_id in (
select p.project_id
from project p
where p.name = "DM Example");

Iname |date |author |version [c_number |

At this point. the drawing tool can draw the blank sheet, fill in NODE (A0). NUMBER
(c.number), PROJECT ("DM Example"}, TITLE (name), DATE. AUTHOR. and REV (version)
for the sheet on which the A0 node is decomposed. The resulting partial drawing s shown in

Figure 25.

These next queries extract all activity boxes on the A0 sheet. A join between activity and
itself via act2act is needed to retrieve the desired tuples. Note the c.numbers are extracted n a

separate quety since non-decomposed nodes yield no tuples.




AUTHOR: Gerald R Morns

DATE 14Feb83 |JREADER

PROJECT. DM Example

REV 10

DATE:

NODE TITLE manage database
A0

NUMBER. 2

Figure 25. A0 Diagram (partial drawing 1)

select a.name, a.x, a.y, a.node
from activity a, act2act aZa
where a.node_id = a2a.child_node and
a2a.parent_node in (
select a.node_id
from activity a
where a.node = "A40" and
a.project_id in (
select p.project_id
from project p
where p.name = “DN Example"));

|name Ix ly Inode
frmmmmm————————— PO wmmamemmccccemeemma—a—-
|manage alpha data | 161 16142
|manage numeric data | 171 17111




select a.Xx, &a.y, s.c_number
from activity a, act2act a2a, sheet s
where a.node_id = a2a.child_node and
a.node_id = s.node_id and
a.visible_DRE = -1 and
a2a.parent_node in (
select a.node_id
from activity a
where a.node = "AO0" and
a.project_id in (
select p.project_id
from project p
where p.name = "“DM Example"));

Now the drawing tool can draw all the boxes at the given (x,y) locations, enter the names
and node numbers into the boxes, and enter the c.number to the lower right of each activity box
that has been decomposed (none in this particular case). The partial drawing resulting {rom this

is shown in Figure 26.

The next query extracts all the line segments on this sheet. These line segments correspond
to the data elements. As always, the (x,y) pairs are only symbolic in this simple example database.

A “real” database would have a screen location represented in (x.,y).

select se.x3, se.ys, se.x¢, S¢.Yy6
from segment se
where se.sheet_id in (
select s.sheet_id
from activity a, sheet s, act2act ala
vhere a.sheet_id = s.sheet_id and
a.node_id = a2a.child_node and
a2a.parent_node in (
select a.node_id
from activity a
shere a.node = "A0" and
a.project_id in (
select p.project_id
from project p
where p.name = DN Example")));

129




AUTHOR. Gerald R Mornis DATE 14Feba% |[READER
PROJECT DM Example REV 10 DATE
manage
numeric
data 1
manage
alpha
data 2
NODE TITLE manage database NUMBER 2
A0
Figure 26. A0 Diagram (partial drawing 2)
........................... |
181 18| 191 19|
194 19§ 211 211
19) 191 23| 23|
23] 23] 24| 24|
26] 26| 271 27]
271 27! 29| 291
271 271 321 321
32| 321 331 33|
351 35| 361 a6
38| 38| 391 391
394 9] 401} 40/
40| 401 36| 36|
40| 40| 41} 41|
42| 421 43| 43|
43} 43| 36| 36l
751 751 761 761
77 771 78} 781
791 791 80| 801

130




AUTHOR' Gerald R Morns DATE 14Febas [READER

PROJECT DM Example REV 10 DATE
~——— ——{ manage
numeric I
—]data _
manage [~
alpha
T ldata 2
NODE TITLE. manage database NUMBER 2

A0

Figure 27. A0 Diagram (partial drawing 3)

Now the drawing toal can draw all the line segments at the given (x.v) locations. The partial

Jdrawing resulting from this is shown in Figure 27.

These next queries retrieve the tuples representing all the symbols at the ends of the line
segments. The queries include retrieval of dots. arrows, turns, tunnels. to.from.alls, and bonnd-
aries (ICOM codes). As mentioned eatlier. each symbol has an (x.v) location, and =ome type of

Jdiscriminator or label.

131




select sy.x, sy.y, do.dot_type
from symbol sy, dot do
where do.symbol_id = sy.symbol_id and
sy.sheet_id in (
select s.sheet_id
from activity a, sheet s, act2act ala
where a.sheet_id = s.sheet_id and
a.node_id = a2a.child_node and
a2a.parent_node in (
select a.node_id
from activity a
vhere a.node = "A0" and
a.project_id in (
select p.project_id
from project p
vhere p.name = "DM Example*)));

lx ly ldot_tyl

select sy.x, sy.y, ar.arrow_type
from symbol sy, arrow ar
where ar.symbol_id = sy.symbol_id and
sy.sheet_id in (
select s.sheet_id
from activity a, sheet s, act2act a2a
“here a.sheet_id = s.sheet_id and
a.node_id = a2a.child_node and
a2a.parent_node in (
select a.node_id
from activity a
where a.node = "40" and
a.project_id in (
select p.project_id
from project p
where p.name = "DNM Example")));

Ix Iy larrow_}j
[ e e L e L |
{ 21| 21 31
| 24| 24| 31
| 29| 291 1
| 33| 33| 1l
{ 3st asi 3
| 40| 40| 1l
| 781 781 31
I 801 80l 31
| 761 761 31l

132




select sy.x, sy.y, tu.turn_type
from symbol sy, turn tu
where tu.symbol_id = sy .symbol_id and
sy.sheet_id in (
select s.sheet_id
from activity a, sheet s, act2act a2a
where a.sheet_id = s.sheet_id and
a.node_id = a2a.child_node and
a2a.parent_node in (
select a.node_id
from activity a
where a.nodes = "A0" and
a.project_id in (
select p.project_id
from project p
where p.name = “DM Example')));

lx ly |turn_t|
R ~mm———e- |
I 191 19| 21
| 23| 23| 6|
! 271 27| 2|
I 321 321 21
| 361 361 41
| 391 391 2|
| 40| 40] 6|
| 43| 43| 0]

select sy.x, sy.y, tu.tunnel_type
from symbol sy, tunnel tu
where tu.symbol_id = sy.symbol_id and
sy.sheet_id in (
selact s.sheet_id
from activity a, sheet s, act2act ala
where a.sheet_id = s .sheet_id and
a.node_id = a2a.child_node and
a2a.parent_node in (
select a.node_id
from activity a
where a.node = “A0" and
a.project_id in (
select p.project_id
from project p
where p.name = “DN Example")));

133




select sy.x, sy.y, tfa.tfa_label
from symbol sy, to_from_all tfa
vhere tfa.symbol_id = sy.symbol_id and
sy.sheet_id in (
select s.sheet_id
from activity a, sheet s, act2act a2a
where a.sheet_id = s.sheet_id and
a.node_id = al2a.child_node and
a2a.parent_node in (
select a.node_id
from activity a
where a.node = "A0" and
a.project_id in (
select p.project_id
from project p
where p.name = "DM Example“)));

lx ly |1label

|ewmemm e I
| 761 7614 |
| 774 771 |
i 791 79)4 |

select sy.x, 8y.y, bo.icom_code
from symbol sy, boundary bo
where bo.symbol_id = sy.aymbol_id and
sy.sheet_id in (
select s.sheet_id
from activity a, sheet 8, act2act a2a
where a.sheet_id = s.sheet_id and
a.node_id = a2a.child_node and
a2a.parent_node in (
select a.node_id
from activity a
where a.node = "A0" and
a.project_id in (
select p.project_id
from project p
where p.name = "DX Example')));

lx ly licom_cl
R e |
| 18| 18111 |
| 26| 26|C1 |
| 351 35/01 |

fommmmmnnnen eemmene |

Now the drawing tool can draw all the symbols for each of the line segiments at the given

(x.y) locations. The partial drawing resulting from this is shown in Figure 28.

This next query extracts all the labels for each of the arrows on the diagram. Associated with

each label is the (x,y) location where the label is to be drawn.




AUTHOR.: Gerald R. Morns DATE 14Feb’9 |[READER

PROJECT. DM Example REV 10 DATE

ci A

[ manage
n @_. numeric 1
data 1
A

manage

alpha
data o]
l
g

B j

[e]

NODE. TITLE: manage database ’ NUMBER. 2
AQ

Figure 28. A0 Diagram (partial drawing 4)

select 1.x, 1.y, 1l.name
from label 1
where 1.sheet_id in (
select s.sheet_id
from activity a, sheet s, act2act a2a
where a.sheet_id = s.sheet_id and
a2a.child_node = a.node_id and
a2a.parent_node in (
select a.node_id
from activity a
where a.node = "AO0" and
a.project_id in (
select p.project_id
from project p
where p.name = "DM Example')));




Ix ly Iname !
R L LR L |
1 171 17 |userdata |
! 20| 20|unumber |
! 22] 22)ualpha |
| 25| 25| rules f
] 28| 28 |number:ulel
| 301 30| alphar.les|
| 341 34| feedback

| a7l 37 | numbermsgs|
! 411 41]alphamsgs |
| 5S| S51fctrl/A13

| 85| 85|exror codel

[=mmmmm——— comemmmmem———— [

Now the drawing tool can enter all the labels for each of the data elements at the given (x.v)
locations. The drawing resulting from this is actually the same as the complete drawing shown i

Figure 8.

These next queries extract the additional graphics entities on the drawing. In this particular

instance, there are no additional graphics entities, i.e, squiggles, and footnotes.

select s.x1, s.y1, s.x2, s.y2, 5.x3, s.y3, s5.x4, s.54
from squiggle s, graphics g
where s.graf_id = g.graf_id and
g-sheet_id in (
select s.sheet_id
from activity a, sheet s, act2act a2a
where a.node_id = a2a.child_node and
a.sheet_id = s.sheet_id and
a2a.parent_node in (
select a.node_id
from activity a
vhere a.node = "A0" and
a.project.id in (
select p.project_id
from project p
vhere p.name = "DNM Example')));




select xmark=n.x, ymarksn.y, n.label, xtextsf.x, ytext=f.y,
nt.line_no, nt.text_line
from note n, note_text nt, footnote f, graphics g
where n.graf_id = g.graf_id and
f.graf_id = g.graf_id and
nt.graf_id = g.graf_id and
g sheet_id in (
select s.sheet_id
from activity a, sheet s, act2act a2a
where a.node_id = a2a.child_node and
a.sheet_id = s.sheet_id and
a2a.parent_node in (
select a.node_id
from activity a
where a.node = "40" and
a.project_id in (
select p.project_id
from project p
where p.name = "DM Example")));

|xmark |ymark |label Ixtext lytext |line_nltext_line |

Ertract Essential Data

The following queries extract essential data from the Ingres DBMS implementation of the
IDEF; database. The first set of queries extract the data for a typical activity data dictionary
The second set of queries extract the data for a typical data element data dictionary. As with the

drawing data above, these queries are associated with the diagram shown wn Figure 8.

Activaity Data Dictionary. These next queries illustrate the extraction of the data dictionary

Jdata (essential data) associated with a typical activity (Al in the example).

SELECT a.name,a.node,a.version,a.date,an.author
FROM activity a,analyst an,project p

WHERE an.author_id = a.author_id and
a.project_id = p.project_id and

a node = "A1" and

p.name = DN Example”;

|name |node |version |date lauthor !

00 5 !

Imanage numeric data 1AL 11.0 102/14/891Gerald R. Morris |

T et e i e D et e |
137




SELECT c.changes /¢ Get the changes =/
FROM activity a,act_changes c,project p
WHERE ¢.node_id = a.node_id and
a.project_id = p.project_id and

a.node = "A1" and

p.name = "DN Example";

|changes I

SELECT ad.line_no,ad.desc_line /e Get the description s/
FROM activity a,project p,act_descr ad

WHERE a.node_id = ad.node_id and

a.project_id = p.project_id and

a.node = "A1" and

p.name = DN Example";

lline_n|desc_line |

! 1|This activity will |
| 2|handle numbers |

SELECT parent=a.name /* Get the parant activity e/
FROM activity a,project p,act2act a2a
WHERE a.node_id = a2a.parent_node and
a2a.child_node in (

SELECT a.node_id

FROM activity a,project p

WHERE a.project_id = p.project_id and

a.node = "A1" and

p.name = DM Example");

|parent |

SELECT d .name,a2d.icom_type /* Get the data elements */
FROM activity a,data_elem d,act2data a2d,project p
WHERE a.node_id = a2d.node_id and

d.data_id = a2d.data_id and

a.project_id = p.project_id and

a.node = “A1" and

p.name = DM Example*;

Iname licom_t|
oo ool !
| unumber (B |
|numberrules Ic |
|numbermsgs o |
jerrors 11 I

138




SELECT rt.ref_type,r.ref_line,r.line_no /e Get the references »/
FROM activity a,project p,ref_type rt,reference r,act2ref alr
WHERE a.node_id = a2r.node_id and

r.ref_id = a2r.ref_id and

r.ref_id = rt.ref_id and

a.project_id = p.project_id and

a.node = "A1" and

p.name = "DM Example";

jref_type |ref_line {line_nl

R ettt e D et L T PR P |
Icontract [KNR §00028-89-0123 3.3.2.1.2a ! 1

Data Element Data Dictionary. These next queries illustrate the extraction of the data fie-

tionary data (essential data) associated with a typical data element (unumber in the example)

SELECT d.name,an.author,d.version,d.date
FROM data_elem d,analyst an,project p
WHERE d.name="unumber" and
d.author_id=an.author_id and
d.project_id=p.project_id and
p.names"DM Example";

|name |author Iversion |date |

SELECT dd.line_no,dd .desc_line /¢ description */
FROM data_descr dd,data_elem d,project p

WHERE d.name =''unumber" and

dd.data_id = d.data_id and
p.project_id=d.project_id;

|line _nldesc_line |

SELECT c.changes /¢ changes ¢/

FROM data_changes c,data_elem d,project p
WHERE c.data_idad.data_id and
d.name="unumber" and

p.project_id = d.project_id;

Ichanges |

SELECT a.name,a.vhere_used,a.comment /+ aliases ¢/
FRON alias a,data_elem d,project p

WHERE a.data_id=d.data_id and

d name="unumber* and

P project_id = d.project_id;

[name |shere_used | comment |




SELECT parent=d.name /¢ parents ¢/
FROM data_elem d,data2data d2d
WHERE d.data_id=d2d.parent_data and
d2d.child_data in (
SELECT 4.data_id
FROM data_elem d,project p
WHERE d.name="unumber" and
d.project_id=p.project_id and
p.name = DM Example");

|parent |

SELECT children=d . name /#+ children »/
FROM data_elem d,data2data d2d,project p
WHERE d.data_id=d2d.child_data and
d2d.parent_data in(

SELECT d.data_id

FROM data_elem d,project p

WHERE d.names'unumber"” and

d.project_id=p.project_id and

p.name = “DM Examplae");

lchildren |

SELECT dt.type /e data type ¢/

FRON data_type dt,data_elem d,project p
WHERE dt.data_id=d.data_id and
d.names"unumber" and
p.project_id=d.project_id;

SELECT dr.data_range /e data range s/
FROM data_range dr ,data_elem d,project p
WHERE dr.data_id=d.data_id and
d.names'‘unumber’" and
p.project_id=d.project_id;

Idata_range |
|—memmmm— mememescememcmmeememeeemeseeeeemeeeeem—eeeseeenanon |

Jinteger’range )

SELECT m.minimum,m.maximum /* get min/max ¢/
FROM min_max m,data_elem d,project p

YHERE m.data_idsd.data_id and
d.names"unumber" and

P project_idsd .project_id;

|minimum |maximum |

140




SELECT v.value /+ data values ¢/

FROM data_value v,data2value d2v,data_elem d,project p
WHERE v.value_id=d2v.value_id and
d2v.data_id=d.data_id and

d.name="unumber"” and

p.project_id=d.project_id;

| value |

SELECT a.name,a2d.icom_type /® sources and destinations =/
FROM activity a,data_elem d,act2data a2d,project p

WHERE d.data_id=a2d.data_id and

a.node_id=a2d.node_id and

d name=''unumber" and

p.project_id=d.project_id;

SELECT rt.ref_type,r.line_no,r.ref_line /* get references ¢/
FROM data_elem d,ref_type rt,reference r,project p,data2ref d2r
WHERE rt.ref_ids=r.ref_id and

r.ref_idsd2r.ref_id and

d2r .data_ijid=d.data_id and

d.name=''unumber” and

p-project_idad.project_id;

{ref_type |line_nlref_line
|emmmmmemee————cmam———a- e mmeememem = mmmmemme—mm—seee—mme——mmmmme——eemm——————————
[AFK { 1{AFX 35-10, page 3, para. 2.3

141




Appendix H. Erample IDEF, Nested-Relationa! Database [nstance

The example nested-relational database shown below corresponds to the diagrams shown in
Figure 7. and Figure 8. The example was constructed manually using the relational implementation
as a starting point. Note that some of the data in the example database is in symbolic form. e g..

the locations of the various components, the arrow_types, etc.

The nested-relational database instance below includes the names of the relational-valued
attributes in parenthesis to make things easier to understand. In addition. the table ix split into

three sections, activities, data elements, and sheets.

project
Iproject_name |
R ittt |
|DM Example |
[ |
(activities)
Inode_id Inode !name lauthor |version ldate Ichanges |c_number |parent !
e |-=---- |=mmmmmmmmmm oo e fatatttt R |==mmmme- e R [===mmmmmmme oo~ |
11 140  |manage database |Gerald R. Morris (1.0 [02/14/89 | 1 | !
fommoome- fommee Jommmmmme e |=memmmmrmmeme e e et J=mmmmme- R e R [==ommmmmme oo {
(act_descr)
|line_no |descr_line |
R |==mmemmmmmee e e bt |
11 IThis is the context diagram |
12 |for the data manager analysis |
Jooommom- f==mcomem- --- -1
(refrences)
|ref_type |

(ref_lines)
|line_no |ref_line |
|==comme- R e LD L L L LR e et L e |
It |¥IL-Std-00091 |
2 Ipage 3 para. 7-§ |
|=c=meae e el L b |

|std operating procedure

11 |System Development Guide |
12 |Dratt 4 |
|=eoence- |==emcmemcccccrc e ccc e e |
(hist_calls)
{hist_prej |hist_node

142




(data_elems)
|data_name |icom_type |
R bt bt [memmmceea- [
|userdata (B¢ |
|rules Ic |
| feedback o |
(R |o==mmccaaa |
(children)
|node_name |

|manage numeric data |
|manage alpha data |

Inode_id |node |name lauthor |version |date |changes lc_number |parent !
|-oomemm— |===-- |==mmmommmccmc e joosommmmcce e foooeoem- R St |-==mmm---- oo Jmmmmmmmm e |
12 141  |manage numeric data |Gerald R. Morris [1.0 112/14/89 | 12 Imanage database
|-=-memmem fe=ee- R e |==omommmooocnana- bomeommes foomemeee- [-===-mm-- |eomemmmnn lmmmmmmm oo I
(act_descr)

Iline_no |descr_line |

11 [This activity will |
12 |handle numbers |
|=-oemee- I B et S L et Bl |
(refrences)
Iref_type |
| =eomemennmcccan e |
|contract i
|- |
(ref_lines)
|line_no |ref_line |
[==e==mee- |====memecmcccccc e n e ae -~
it |KBR §00028-89-0123 3.3.2.1.2a |
|ommmmom- fommmm e m e e e e |
(hist_calls)
lhist_proj |hist_node
R foomoenaae |
R ommmeemeae |
(data_elems)
|data_name licom_type |
== |- -1
|unumber X |
|errors 11 |
| numberrules IC |
{numbermsgs 10 i
L i R ety |
(children)
Inode_name |
|=mocmmmmm e |
|===oommccceccnnn “==]|
Inode_id [nede |name {author |version |date Ichanges |c.number [parent !
| sewanena |oeem- R L R L DL Ll |==mcome- jomemmemm- R e fowmmmmeee Joooomommorm e I
13 I1A2 |manage alpha data |Gerald R. Morris (1.0 112/14/89 | 12 Imanage database
|=eommme- |==o== |=momvommmcc i cee e R e L L L R femommne- e [ el (EEELEEEEE [ bl !
(act_descr)
|line_no |descr_line |
- |==memmmmemcccrccccocccn o ccnneen |
1 (This activity will |
12 {handle alphanumerics |
oo |=emmmcscc o ccccacac e oo |
143




(refrences)
|ref_ type |

(ref_lines)
|line_no |ref_line |

1 IKNR ¥00028-89-0123 3.3.2.1.2a |
R Bl R L e LB R PR Y !
(hist_calls)
Ihist_proj Ihist_node

lomcmmmmmcecaae R |
IFlight Control (413 |
R e L e b |

(data_elems)
|data_name licom_type |
R an et T L |==semccnnn |
{ualpha 1T |
|errors 1T |
|alpharules Ic |
|alphamsgs 10 |
lalphacall N |
|==mmmmrrmcccaeaes |==~emcneae |
(children)
Inode_name |

144




(data_elements)
|data_id |name lauthor |version |date Ichanges {parent |
fremmmaae bommmmmmeeea [ewmmmmmcmecnc . |==ooosan [emmomrena R |wemmemaee i
11 luserdata |Gerald R. Morris /1.0 102/14/89 | | [
l===oomne |osmmmmmeee f-wemammmcccccan |~==mmnme |===eeenun |===meee [ =mmmmme i
(data_descr)

|line_no ldescr_line |

f=meeamn- fmmm e oo !

11 IThis is the usar |

12 |input data 1

fommmaean R e s |
(refrences)

|ref_type |

(ref_lines)
Iline_no {ref_line |

i1 IMIL-Std~00091 |
(2 |page 9 para. 8-1 [
==~ R |
(aliases)
|name |shere_used | comment |
R |==-mmmmmccccee l=mmmmmnceea i
R fomccmmcccce o [ |
(min_max)
|data_type Iminimum |maximum |

(range)
|data_type |range |
|ommememeee fommmmmmmmmaeeee |
R |==mmmm e i
(values)

|data_type !value |

(activitees)
Inode_name licom_type |
A —— NE—— [N |
|manage datadbase 11 !
e e |=mmmmmmmee |
(children)
|data_name |

|data_id |name lauthor |version |date Ichanges |parent |
l====--u- R R LD D LT R [ELEIEEEEES [RELE S R !
12 Irules |Gerald R. Morris {1.0 102/14/89 | | |

|~ememman R |omemcccccnes ERCCI EET TR e|emm—ene- |=-ewacen fommommne- |
(data_descr)

[line_no [descr_line f

[====mmem R e !

I IThis is the |

2 |database rules |

R R e TR R '




(refrences)
|ref_type |

(ref_lines)
|line_no lref_line |

(B |MIL-Std~00091 |
|12 {page 9 para. 8~2 |
(R (R L LEE L L L PRty |
(aliases)
|name |where_used | comment |
[=====me- A R Jommmm e |
[emmemnean R e L |=mmmemmmea |
(min_max)
|data_type [minimum |maximum |
|=mmmmmmcen e D el Jommmmm e |
[==mmmmmme R R |
(range)

|data_type |range |

(values)
{data_type |value 1

(activitees)

Inode_name licom_type |

|s=mevmecreccaccnceaa |===eencnan |

Imanage database Ic |

(R R |
(children)

|data_name |

|=mmomeecen ————————— |

Inumberrules |

lalpharules |

[ sommmmena- |
|data_id iname lauthor Iversion |date Ichanges |parent |
|==mmmme- [ |omememtence e caas R |==eevonn" |ommmeee- Jommommaeaa |
i3 |feedback |Gerald R. Morris (1.0 102/14/89 { | |
f=mmeemm- [ Rt |memmrrc e cccaas |=emeeea- R R |emmmmmeee |
(data_descr)

|line_no |descr_line 1

(R |-= -- - -

1 |This is the |

12 luser feedback |

fammmmmee IR b L e i

(refrences)

(ref_lines)
|line_no |{ref_line |

(B} |MIL-Std-00091 |
12 |page 9 para. 8-3 |
|emomcaen (R e e e L L L L LSS L Lt |
(aliases)
iname |vhere_used | comment |




(min_max)

|data_ type |minimum |maximum |
|-===moe-- R bttt | |
foommmoonan Jommmmm - J-ommmmmem——- ]
(range)
|data_type |range |
|-ommmmmne Jemmomom oo |
|-==oemneee |ommmmmmmmmme e |
(values)

|data_type |value |

(activitees)
Inode_name licom_type |
|mesommm oo R |
|manage database |10 |
R it b b Db |-=evreeaaam |
(children)
|data_name |

|numbermsgs !
|alphamsgs |

{data_id Iname lauthor |version |date |changes |parent |
R R |emmmmmm e j===-=--- |=ooenee- e e |
14 | unumber |Gerald R. Morris (1.0 102/14/89 | luserdata |
-~ | e R |===mem- e feomomnen R it |

(data_descr)
|line_no |descr_line I

11 {This is the user numeric data |
|===mcmee R e -==-]
(refrences)

lref_type ]

R e L L L P L e |

|AFNM |
R |

(ref_lines)

{line_no |ref_line |

i1 |AFM 35-10 page 3 para. 2.3 |
|===cecnn |~memcecccecncccccnces - |
(aliases)
|name |where_used | comment |
R R e i R iy |
fommmmee- | --- |- -=-=
(min_max)
|data_type |minimum Imaximum |
R |weeeeccccenan [eeoeancanean |
jecmeeonans |eewmeenecocen |eeecnecacnan |
(range)
|data_type irange l
R et |s-emsemccncacan |
linteger linteger’range
[EETES LR ahd e |
(values)

|data_type |value 1

(activitees)
Incde_name licom_type
|seecreccccanaan |== =]

Imanage numeric data |I |
R e L bty l-sommenee |

147




(children)

|data_name 1

fmmmemom e |

J=m=mmmmmemm e |
|data_id |name |author |version |date |changes |parent |
lwmmmaee | -=|-- -1- e R |===moemm froommmm—- |
15 lualpha |Gerald R. Morris 1.0 102/14/89 | luserdata
|=moomeea- R Jomommmmmm e e |=mmmmeme [meeenmm" R |
(data_descr)

|line_no |descr_line |
[==ooemem D Rt L el |
1 {The users alphanumeric data |
fomonece- Jemmmmm e |

(refrences)

(ref_lines)
|line_no lref_line |

f=mmmmmm- [m=mmmmmmm o m oo |

11 |AFM 35-10 page 3 para. 2.4 |
|-=mmemee R e b |
(aliases)
|name |ehere_used | comment |
|==-meevee | = eeeee R |
e R L L |+oemmmemmame |
(min_max)
|data_type Iminimum |maximum |
|-- I=-- =|ommmeemeeeee |
|emmmmmnaee R et |emmecrceenas |
(range)

|data_type |range |
L Jmemmmmmcceaaae |

lascii lascii’range |

|mmmcmmaae fomemmmcmmccaaaa |
(values)

|data_type |value t

(activitees)

|node_name licom_type |

R D ety [ I

|manage alpha data 1T |

[ e et |oememeee~ |
(children)

|data_name |

R e L LR S |

R D e L B L |
{data_id |name tauthor Iversion |date |changes |parent |
|eemommee [ |==emmemcmcmm e |==mmeaee focomomnne [EEEETEES |emeemcnan |
16 |numberrules|Gerald R. Morris (1.0 102/14/89 | |rules |
|eeoeeeea S |===mmemmmccccaea- (RAETTEEES |~eomemnas [EELTEEEES |emeccanns |
(data_descr)

|line_no |descr_line |
|omomoae- R e il E Db E L) |
I |Rules for numeric data |

148




(refrences)
Iref_type )

(ref_lines)
{line_no Iref_line

i1 |AFM 35-10 page 4 para. 3.2
Jommmmaae R b b I D e Dt
(aliases)
| name |ehere_used | comment
R R D kel | rweememeeee |
|wmmmeem—— R il R |
(min_max)
|data_type iminimum |maximum

(range)

(values)
|data_type |value |

(activitees)
Inode_name |icom_type |
|=emmcrenaa -1 ---1
manage numeric data |C |
(R L L LI L L L R et |

(children)

|data_id |name |author

(data_descr)
|line_no |descr_line

|====meen |===memen- e e L L |
11 |Rules for alphanumeric data
|=mmcmeee |ommmmm e e e cc e ees |

(refrences)

(ref_lines)
|line_no |ref_line

I1 {AFM 35-10 page 4 para. 3.3
|eoemcan- e b e e LB
(aliases)
Iname [where_used [comment
fommmoooe- fomeomccneccnna- it |
R Joemommmme - l===-moomm- |
(min_max)
|data_type [minimum |maximum

|version [date

102/14/89

149

|changes |parent
R |-mwemeeeaee |=mcemcrenccenanes |==emmee= |==mmmmcae |-eemmme |=ommomeee |
17 lalpharules |Gerald R. Morris [1.0
R |-- e R DD e L |=memmn=- e |==meeame |moommooe |




(range)
ldata_type |range |

(values)
Idata_type |value |

(activitees)
Inode_name |icom_type |
e aind f=mmmmmae |
|manage alpha data Ic |
R ~emmeeeees |=eomeoe- !
(children)
|data_name |

Idata_id |name |author Iversion |date Ichanges |parent |
|==m=emee [===e~eneee- |==mmmmm oo {-==-- | ———— [t b [ |
|18 |numbermsgs |Gerald R. Morris (1.0 102/14/89 | | feedback
|-=mmee- [ R ettt [===mmnee [ESEELT T |-emwmee- femmmmmane |
(data_descr)

|line_no !descr_line |

fomom——— R T b DD IS DR DD S e 1

11 |Feedback for numeric data |

|emmme R EX T bbb |
(refrencas)

- ———-- |

(ref_lines)
|line_no |ref_line |
[~omeemwn [==mmmcmmmccccc e m s m e c e ea i
11 |AFM 35-10 page 5 para. 4.5 |
|==memee- R et e b b -1

(aliases)
|name |where_used | comment |

(min_max)
|data_type |minimum |maximum |

(range)

(values)
{data_type |value {

(activitees)
Inode_ name licom_type |
|===- ~- |- -==-1
Imanage numeric data |10 |
R D e T |veooeeaces |
(children)
|data_name |

{data_id {name lauthor |version |date |changes |parent |

[ommemm- B [, [eeemmmcmcosnmacnn]|mecencna|ennarcone|ecacmans|acanasaaa)]

19 lalphamsgs {Gerald R. Morris |1.0 102/14/89 | | feedback |
f=sommman |ecemeananae |ocsoeoammacoconn lo=menemc|mmeannaaa- fooomem-- R ]

150




(data_descr)
{line_no |descr_line !
[mmmm———- R e itk e bt !
(B | Feedback for alphanumeric data
l=-mmene- R D i !
(refrences)
Iref_type |
|-- - - |
| AFM l
R e |
(ref_lines)
[line_no lref_line |
[-==ee~e- R il |
1 | AFM 35-10 page 5 para. 4.6 |
Jomomm~e- R e inieh ettt |
(aliases)
{name |shere_used |comment |
|-=emmoeme R et b |moeoemmnaann I
[==mmmmm—- [===emmmmr oo R |
(min_max)
|data_type |minimum |maximum |
|==emmoeca- |==mmmmcencee R el |
|-ommmmeeen |===mmrmmmoee jommeocooaca- |
(range)
|data_type irange |
=== R b |
fomoomoeee- |=m=mmmmmmcee |
(values)
{data_type |value |
|=o=mooona- Jomemmecmerncaan |
R R bt |
(activitees)
Inode_name licom_type
R et DA R |
Imanage alpha data 10 |
[==mmemccemercenecaaee |--=omcmue- |
(children)
|data_name |
|=====memmccmcccaae |
{data_id Iname | author |version |date |changes |parent |
fooomcoa-n e |==emvommmeccneee |===osen- |~mmmmmme— jomeeem-- Rt I
t10 lalphacall |Gerald R. Morris |1.0 102/15/89 | | 1
[-omsmons |ememmmmmaam |=====cmmmomanccnn R el R bt Lo |===oemen ommomone- |
(data_descr)
|line_no idescr_line |
|==ememen |====ccmmccccceoaca- A |
I |See Flight Control Node 413 |
|=eomnne- f=mmceman- memecesaas R bt |
(refrences)
Iref_type |
S b DD LD L L ettt [
Jomonn= Smeese—eeceroro—ea |
(ref_lines)
Iline_no |ref_line |
l=--==--- i R R }
l-==oam-- |====- mesccseces R i LT 1
(aliases)
|name |where_used | comment |
|=ememeae- ~|emmmmmeeeeaaeea [ it |
|-==emoean [ |=escemusaann 1
(min_max)
|data_type |minimum |maximum |
|mmmomeens =)emenee- mmmm—- Jooowommonnen !
|=soceconne R atataal |e=momconcnn- |
151




(range)
ldata_type |range |

(values)
idata_type |value |

(activitees)

Inode_name licom_type

e e e L Lt L e DTS R |

Imanage alpha data M |

R e fommmmmmm l
(children)

|data_name |

|data_id Iname lauthor |version |date Ichanges |parent |
fooeecee- e e L LT R l--oeeonmm R R ket |
11 lerrors IGerald R. Morris [1.0 102/17/89 | | |
R e |ommmmmm s fommmmmm e [-===-=-- |--=ommme- R |--mmmmmee |
(data_descr)

|line_no |descr_line |

(refrences)
Iref_type |

(ref_lines)
|line_no |ref_line |

(min_max)
|data_type Iminimum | maximum |

(range)
|data_type |range |

(values)
|data_type |value |
[===mmmmee- fomemmmmcnccaan- |
lerrcode  |bad input |
lerrcode  |bad output |
R St R LT |
(activitees)
Inode_name licom_type |
R e e L DL fomemeoamm-m 1
|[manage numeric data |[I [
Imanage alpha data I |
fomosmemmc e |emweeoeenn !
(children)
ldata_name |




(sheets)

{c_numberinode [name fauthor |version (date |
[~=eeenee [EEEESS [ ettt R LT R [===mme- |
1 {A-0  |DM Example |Gerald R. Morris [1.0 102/14/891
[=memeeae |eeemm- R it R e e |=meeoume R t
(boxes)

{node |name lx |y |visible DRE

J-mm-- |mmmmmeoemmeceeee J==l==fmmmmmmmmcaes }

140  |manage database |1 |1 |2 |

|~==== R Lt L L R R R |
(segments)

ldata_id |

(location)
lzs lys Ixe |ye |

13 13 14 |4 |

f===l=mmfmem] ===
(symbols)
ix |y |ltype_symbol |symbol_type
Rl e e e LT R el |
14 14 larrow |right_arrow |
R R e R el l
[eemommee 1
12 |

[===l=mm]=mn]=an]

16 16 |7 17 |

=== fmmmfmmmfamn]

===l omm]mmmmmmmmmeee | mmmmmmmemees [

17 17 larrow |down_arrow |

e e B R R TS
19 19 110 [10 |
R R R R
R R R Josmmmmmmeaaee |
110 {10 |arrow lright_arrow |
R R R leemmmeeccees |
(squiggles)
fx1 Iyt 1x2 |y2 Ix3 |y3 Ix4 [ya |
R i Rt B B R e EEEE S B |
112 112 113 13 (14 114 (15 [15 |
e i hat sl RO S LI R EEERY EEEE) PEEEY
(meta_notes)
[label Ix |y |

(note_text)
|line_no {text_line |

153




(foot_notes)
|label Ixm [ym lxn |yn |

(note.text)
|line_no |text_line |

R fmmmmmm o m oo r

It lan example decompesition |

12 Inot completed |

|=ememnn- R et smsesssscconosonn |
(feos)

(labels)

ldata_id |name I iy |

|==eewee- [ e e |===f==-

11 luserdata 12 12 |

12 {rules 1s 15 |

13 | feedback 18 (8 |

|=-meem-- |~=emmm e |==efmm=]
[c.number [node [name [author [version |date |
|==mmemem- jeemm- I e bt L R it R |memmmm——— |
12 [A0  |manage database IGerald R. Morris 1.0 102/14/89
[~mmemam—- |omeee R et |=memerr e |=~==meeme |==mmom-- |
(boxes)

Inode !name lx |y |visible DRE |

|~eemme R e (R ey B |

¥ 3 Imanage numeric data |16 116 | -1 |

142 Imanage alpha data 117 [17 | -1 |

|[=emam= [+mcmmeme e caoman Rl R R |
(segments)

{data.id {

|=emmmee- !

11 |

|=eommmm= |

(location)

Ixs lys |xe lye

Jeomlom=]mem|===}|
118 118 [19 |19 |
[==ml===]===}-=-]
(symbols)
Ix |y |type_symbol |[symbol_type |
|

e R OO PR
119 119 |21 |21 |

R R R e |
121 121 |arrow Iright-arrow [

B B I e [

R e R B

119 119 123 (23

l=emlomm)emm] =]
l==el-mmocommcccoanns |omemmmmmmeoono- !
119 119 Jturn Iright-down |
R e R ~emoes jommemmmmenoaen- i




123 123 124 124 |

f===l===] === ==

123 123 jturn
124 [24 {arroe

126 126 (27 {27 |

126 126 |boundary
127 127 |turn

127 (27 129 |29 |

129 129 larrow

127 |27 132 132

R P et B

{32 {32 (turn

R P B B

132 132 {33 {33 {

133 133 |arrow

135 135 |boundary
135 {35 {arrow

|down-~right
Iright-arrow

Iright-down
e emmmmmm———ee

|oemmmmcmmmmceee
|down~arrow

| ---------------
fright-dosn

|down~arrow

[,
101
iright-arrow

R B B R |

o

ot




138 138 139 |39 |

e e e R |

R R R I b I
139 139 |turn Iright-dowmn I
R R e i |ommmmmmme e i

139 (39 (40 (40 |

140 140 |turn |down-right |
R R R Jesoommmcenceae |

140 140 136 |36 |

B b E

142 142 143 143 |

[Py RPN P P

R R e Rl R |
143 |43 |turn Iright-up |
R R R | et !

=== [ ===l ==m] ===

143 143 136 136 |

e e e R |
136 136 |turn lup-right !

S P Y D

140 140 141 141 |

175 175 176 {76 |

[FEY U P w]emmem——— ———— |

175 175 |tunnel |hidden-source |
|76 |76 |to~from-all |4 |
176 176 larrow Iright-arrow |
R R [emeomemcnacaana |
A R EL R ELEY |
177 177 178 |78 |
IRE R R RLEY P
R R R | mmmemeem semmee— ]

177 (77 |to-from-all |[A i
|78 {78 larrow Iright-arrow |
R R B [=memoococnanana |

L R Rt B

179 179 180 |80 |

fom=lamn]=en]=nn]

156




R R R LR R Rt !
179 {79 lto~from-all |4 |
180 180 |arrow Iright-arrow |
R R Rt Jommemmm e ]
(squiggles)
Ixt |y1 1x2 ly2 1x3 |y3 |x4 |y4 |
R R Rkl B R R Lty PR
e e bt RE e By Py P
(meta_notes)
{label Ix |y |

(note_text)
{line_no {text_line |

(foot_notes)
|label |xm |ym Ixn {yn |

(note_text)
[line_no [text_line |

(labels)

|data_id |name Iz ly

[EEEEEE e |memmecman Raiid EA I PR |
1 luserdata 117 117 |
14 |unumber 120 120 |
s {ualpha 122 122 1
12 {rules 125 |25 |
6 [numberrules 128 |28 |
7 talpharules |30 |30 |
13 | feedback 134 (34 |
I8 |numbermsgs 137 (37 |
9 lalphamsgs 141 141

110 |fctrl/a13 165 155 |
111 lerror code |85 |85

o




Appendix [. SQL/NF Scripts

This appendix includes the SQL/NF scripts that create the nested-relational database, per-
forny a bulk load, and bulk erase of the database, show the contents of the nested-relational datatiase,

and extract data from the database.

(reate Tables

The following SQL/NF script creates the schema for the nested-relational implementation of

the IDEF, database.

SCHEME
TABLE DESCRIPT
ITEM line_no INTEGER 2
ITEM desc_line CHARACTER 60
TABLE REF
ITEN ref_type CHARACTER 25
ITEN (TABLE ref_lines
ITEM line_no INTEGER 2
ITEN ref_line CHARACTER 60)
TABLE NOTETEXT
ITEM line_no INTEGER 2
ITEM text_line CHARACTER 60
SCHEMA
TABLE PROJECT
ITEM project_name CHARACTER 12 UNIQUE
ITEM (TABLE activities
ITEM node_id INTEGER 4 UNIQUE NOT WULL
ITEN node CHARACTER 20
ITEM name CHARACTER 25
ITEN author CHARACTER 20
ITENM version CHARACTER 10
ITEM date CHARACTER 8
ITENM changes CHARACTER 60
ITEN c_number IBTEGER 4 REFERENCES PROJECT.sheets.c_number
ITEM parent CHARACTER 25 REFERENCES PROJECT .activities.name
ITEN (TABLE act_descr DESCRIPT)
ITEM (TABLE refrences REF) /* confusing name choice here! s/
ITEX (TABLE hist_calls
ITEN hist_proj CRARACTER 12
ITEM hist_node CHARACTER 20)
ITEN (TABLE data_elems
ITENM data_name CHARACTER 25 REFERENCES PROJECT data_elements name
ITEM icom_type CHARACTER 1)
ITEM (TABLE children
ITEN node_name CHARACTER 25 REFERENCES PROJECT activities . name))
ITEM (TABLE data_elements
ITEN data_id IBTEGER 4 UNIQUE NOT NULL
ITEN name CHARACTER 25
ITEN author CHARACTER 20
ITEN version CHARACTER 10




ITEM

ITEN date CHARACTER 8
ITEN changes CHARACTER 60
ITEX parent CHARACTER 25 REFERENCES PROJECT.data_elements.name
ITEM (TABLE data_descr DESCRIPT)
ITEM (TABLE refrences REF)
ITEM (TABLE aliases
ITEM name CHARACTER 25
ITEM vhere_used CHARACTER 25
ITEM comment CHARACTER 25)
ITEM (TABLE min_max
ITEM data_type CHARACTER 25
ITEM minimum CHARACTER 1§
ITEM maximum CHARACTER 15)
ITEM (TABLE range
ITEM data_type CHARACTER 25
ITEM range CEARACTER 60)
ITEM (TABLE values
ITEM data_type CHARACTER 25
ITEN value CHARACTER 15)
ITEM (TABLE activitees
ITEN node_name CHARACTER 25 REFERENCES PROJECT activities.name
icom_type CHARACTER 1)
ITEM (TABLE children
ITEM data_name CHARACTER 25 REFERENCES PROJECT.data_elements.name)

ITEM (TABLE shoets

ITEN c_number INTEGER 4 UNIQUE EOT NULL
ITENM node CHARACTER 20 REFEREBCES PROJECT.activities.node
ITEN name CHARACTER 25 REFERENCES PROJECT.activities.name
ITEM author CHARACTER 20 REFERENCES PROJECT.activities.author
ITENM version CHARACTER 10 REFERENCES PROJECT .activities.version
ITEM date CHARACTER 8 REFERENCES PROJECT .activities.date
ITEN (TABLE boxes
ITEM node CHARACTER 20 REFERENCES PROJECT.activities.node
ITEN name CHARACTER 25 REFERENGES PROJECT .activities.name
ITEM x INTEGER 2
ITEM y INTEGER 2
ITEN visible_dre INTEGER 2)
ITEN (TABLE segments
ITENM data_id INTEGER 4 REFERENCES PROJECT .data_elements.data_id
ITEM (TABLE location
ITEM xs INTEGER 2
ITEM ys INTEGER 2
ITEN xe INTEGER 2
ITEN ye INTEGER 2)
ITEM (TABLE symbols
ITEM x INTEGER 2
ITEM y IBTEGER 2
ITEM type_symbol IBTEGER 2
ITEN symbol_type INTEGER 2))
ITEM (TABLE squiggles
ITEM x1 INTEGER 2
ITEN y1 IBTEGER 2
ITEX x2 INTEGER 2
ITEM y2 INTEGER 2
ITEN x3 INTEGER 2
ITEM y3 INTEGER 2
ITEN x4 INTEGER 2
ITEM y4 INTEGER 2)
ITEN (TABLE meta_notes
ITENM label CHARACTER 1
ITEN x INTEGER 2

ITEN y INTEGER 2

ITENM (TABLE note_text NOTETEIT))
ITEX (TABLE foot_notes

ITEN label CHARACTER 1




ITEN xm INTEGER 2

ITEM ym INTEGER 2

ITEM xn IBTEGER 2

ITEX yn INTEGER 2

ITEM (TABLE note_text NOTETEXT))
ITEM (TABLE feos

ITEM label CHARACTER 1

ITEM x INTEGER 2

ITEM y INTEGER 2

ITEN picture CHARACTER 60)
ITEM (TABLE labels

ITENM data_id IBTEGER 4 REFERENCES PROJECT.data_elements.data_id

ITEM name CHARACTER 10

ITEN x TNTEGER 2

ITEM y INTEGER 2)

Load Database

The following SQL/NF script does a bulk load of the data in the example database it
the nested-relational implementation of the IDEF; database. Note that Roth's SQL/NF data
manipulation language does not actually contain the DML command which allows a bulk foad. Tl
~vutax shown below is based on the syntax associated with the Ingres SQL. Note that a pereent
sign (%) is used to delimit nested relations (as denoted by the =c0% format). and a comma or

carriage return are used to delimit atomic values (as denoted by the =c0 format).

COPY TABLE project
(

project_name=cO,

activities(node_id=cO,node=scO,name=cO,author=co,
version=cO,date=cO,changes=cO,c_number=cO,parent=c0,
act_descr(line_no=cO,desc_line=c0)=c0¥,
refrences(ref_typescO,ref_lines(line_no=cO,ref_line=c0)=c0%)=cOY,
hist_calls(hiat_projecO,hist_node=c0)=cOY%,
data_elems(data_name=cO,icom_type=c0)=cOY,
children(node_name=c0Q)=c0¥

Y=c0Y%,

data_elements(data_id=cO,name=cO,author=cO,
version=cO,date=cO,changes=cO,parent=cO,
data_descr(line_no=cO,desc_line=c0)=c0Y,
refrences(ref_typescO,ref_lines(line_no=cO,ref_line=c0)=cO%)=c0¥,,
aliases(name=cO,vhere_used=cO,comment=c0)=c0Y,
min_smax(data_type=cO,minimum=cO,maximum=cO)=c0¥,
range(data_typescO,rangescO)=co¥,
values(data_type=cO,value=scO)=cO¥,
children(data_name=cO)scO¥

)=c0Y,

sheets(c_number=cO,node=cO,name=cO,author=cO,version=cO,date=c0,
boxes(nodescO, namencO,x=cO,y=cO,visible_dre=cO)=cOY,
segments(data_id=c0,location(xs=cO,ys=cO, xe=cO,yenc0)=cOY,

symbols(x=c0,yscO,symbol_types=cO,type_symbol=cO)=c0%)=cOY,

squiggles(x1=cO0,y1=c0,x22c0,y2xc0,x32c0,y3=2c0,x42c0,y4=c0)=c0%,

160




meta_notes(labelscO,x=c0,y=cO,note_text(line_no=cO,text_line=c0)=c0%)=cO%,
foot_notes(labelscO,xm=cO, ymwcO, xn=c0, yn=c0,
note_text(line_no=cO,text_line=c0)=cO%)=c0%,
feos(label=cO,x=cO,y=cO,picture=c0)=c0%,
labels(data_id=cO,name=cO,x=c0,y=c0)=c0¥,
)=c0Y,
) from nested_example.dat;

Frase Database

The foliowing SQL/NF script eliminates all the data in the nested-relational unplementation

of the IDEF, database.

DELETE FROM project;

Show Database

The following SQL/NF script shows all the data in the nested-relational implementation of

the IDEFo database.

SELECT ALL FROM project;

Ertract Drawing Data

The following query extracts drawing data from the nested-relational implementation of the

IDEF, database. The query is associated with the diagram shown in Figure 8.




SELECT (SELECT ALL BUT segments.data_id,labels.data_id FROM sheets WHERE node = "AO")
FROM project
WHERE project_name = "DM Example";

(sheets)

|c_number |{node |name lauthor Iversion |date |
|ammmoema- |~=em= |==mmcccmccenceee R fmm=e=--- e |
|2 {40  |manage database |Gerald R. Morris 1.0 102/14/89
e |vw=- [momomocmccccnnas |=--=eomsmmcccaann | —==w==e- |=-=mmmamm |
(boxes)

|Inode |name Ix |y |visible_DRE |

| =mmme- (R e et R R e |

1Al Imanage numeric data {16 |16 | -1 |

142 |manage alpha data 117 |17 | -1 |

|wmmmm— (R e L L EE L L e R B L e R |
(segments)

(location)

Ixs lys |xe lye |

118 18 |19 |19

|==mfemmfemm]===]
(symbols)
1x |y |type_symbol |symbol_type |
|

l===1--=] -1 - --1
121 |21 |arrow {right-arrow |
R R e et R !
l===foenaemm]=-=-]
(19 119 23 {23 |
R e RS LI RS
R R R R el !
119 119 |turn lzight-down |
R R R |ommooommccooee- |
R Rt B R R
123 123 124 124 |
e R Rt R
I R R |ommmmmmmmeneene |
123 123 |turn |doon-right |
|24 124 |arrow lright-arrow |
[=o=fomc]ommmmmmcnnaes e by |
[===f==e]==mi===|
126 126 |27 127 |
l===]emm]omm]===|
R R R fommmmmmmemmnnne |
126 126 |boundary ict |
127 (27 |turn |right-doun I
R e R R bl l
e R R R
127 127 {29 129 |
e e EE LI ELEY
R R |osommommccnee- |
129 |29 |arrow |down-arrow |
e R R lem=momocccee- |
R R Rt REed
127 127 132 132 |
R R RS R A
R R feoeommomneeee- |
132 132 lturn |right-down |

f=m=foeefummmmmmananan I [

162




(32 132 {33 (33 |

[ [ DO |=mmemmmme —————— |

133 (33 |arrow

135 135 136 (36 |

135 135 |boundary
135 135 larrow

138 138 139 {39 |

139 {39 |turn

T P P P

139 139 140 |40 |

l=m=l=m=fomn|=nn]

l===f==mfommmmmmmann

140 140 {turn

140 140 136 136 |

142 142 143 143 |

R P P

143 143 |turn

143 )43 j236 |36 )

R R P s

136 136 |turn
R R B EE

{down-arrows

Iright-arrow

f==ml=me]==mf=nn]
140 140 141 |41 |
R D Bt Py

140 140 |arrow

R P

lemmfamm]mmnfunn]

175 175 176 176 |

175 175 |tonnel

176 176 |to-from-all

176 |76 larrow

177 177 178 |78 |

P ey oy

Jemofmen|memacncnnan
177 177 (to-from-all

178 |78 larrow

Ihidden-source
Ia
Iright-arrow

Iright-arrow

{
|

|---|---' ........... | emcrv v nnr———— |

163




R R R
179 {79 180 |80 |
Jo=m]eemfoamtomn|
R e e b |- |
179 179 lto-from-all |a |
180 (80 |arrow Iright-arrow |
e e R it ittt |
(squiggles)
Ixt Iyt Ix2 ly2 1x3 |y3 (x4 |yq |
e B R B e R R EELY
R R R R A R Bt B
(meta_notes)
llabel Ix 1y |

(note_text)
|line_no |text_line ]

|=ww-

(foot_notes)
|label |xm |ym |xn lyn |
[=veemm-= R R P T EEY
|vomene- I R EE Ry
(note_text)
|line_no |text_line |

(labels)
|name Ix ly |
e e [===f===]
fuserdata 117 117
lunumber {20 |20
lualpha 122 |22
lrules 125 125

|

|

|

|
|numberrules |28 (28 |
|alpharules 130 130 |
| feedback 134 134 |
|

|

!

i

!numbermsgs |37 {37
| alphansgs 141 141
Ifctrl/a13 155 1585
lerror code |85 {85

Frtract Essential Data

The following queries extract essential data from the nested-relational nplemientation of the
IDEF, database. The first query extracts the data for a typical activity darta dictionary.  he
second query extracts the data for a typical data element data dictionary. As before, these queries

are associated with the diagram shown in Figure 3.

164




Activity Data Dictionary. This next SQL/NF query illustrates the extraction of the lata

Jictionary data (essential data) associated with a typical activity (Al in the example).

SELECT (SELECT ALL BUT node_id,c_number hist_calls,children FROM activities WHERE node = A1)
FROM project
WHERE project_name = "DM Example";

(activities)

inode |name |author |version jdate |changes | parent |
fo==e- Rttt T J=memem- [====mmme- fommoemmmm - [==meemmmmmmmm e |
1A1  |manage numeric data |Gerald R. Morris |1.0 112/14/89 | Imanage database
f----- R Sl foomooomoccoconmas e [===momme- R el [=-emmommmem o !
(act_descr)

|line_no |descr_line |
R [ e EE LS e b |
[1 IThis activity will |
|2 |handle numbers |
[=mmmmme— I A el [
(refrences)

Iref_type !

|contract )
|amemmme- meesesemceeeaen- |
(ref_lines)
|line_no iref_line |

I KR §00028-89-0123 3.3.2.1.2a |
|- ad Rt LIS --- Rttt |
(data_elems)

{data_name ficom_type

|~emmmmmmmmemcaan |meemmemeae |

| unumber 1T |

|errors 1T |

|numberrules IC |

|numbermsgs lo |

165




Data Element Data Dictionary This next SQL/NF query illustrates the extraction of the data

Jdictionary data (essential data) associated with a typical Jata elemient (unumber in the exampled

SELECT (SELECT ALL BUT data_id FROM data_elements WHERE name = '‘unumber')
FROM project
WHERE project_name = "DM Example";

(data_elements)
{name lauthor Iversion |date Ichanges |parent |
R | mmemmrer oo ne |m=mmmme R |==ememee [==mmmmme- ]
lunumber |Gerald R. Morris |1.0 102/14/89 | luserdata
[=mmmemeeee R bl fommeeaae | === |===m=--- |ommmmmme- |
(data_descr)

|line_no |descr_line |
| == R e D |
(B! |This is the user numeric data
(R R et |
(refrences)

(ref_lines)
[line_no lref_line i

(B} |AFM 35-10 page 3 para. 2.3 ]
|-=senn-- e et b LI L L L EEEEEE S |
(aliases)
Iname |shere_used | comment |
fremmmmm—- R Rt R e |
R |==omemmmm e R il |
(min_max)
idata_type Iminimum |maximum
[=ommmmmmmm R el |===mocmmeee |
[===mmmmeen e e |===mmmmmmmm |
(range)

linteger |integer’range |

lommmmooee R e 1
(values)

|data_type |value i

(activitees)
Inode_name licom_type
[ L ettt R |
Imanage numeric data |1 |
e e L PR LR L e |
(children)
{data_name |




Appendix J. Ada Package for Drawing Data Structures

The following (incomplete) package specification illustrates the data structures that nught he
nsed to capture the drawing data in the IDEF, database. Obviously some type of embedded query

lnnguage capability would be required.

with activity_data, data_element_data, analyst_data;
package drawing_data is

-~ This package defines the data structures that are used to capture the
-~ drawing data from the IDEF0 database via embedded query language calls

-~ It is not known apriori how many tuples there are, so a linked list
-~ structure is used.

-~ The element names correspond identically to the attribute names used in
-~ the IDEFO database. It is assumed the user of this package is familiar
-~ with the database schenma...

type box;
type box_pointer is access box;
type box is record

node : activity_data.node_type;

name : activity_data.name_type;

x : integer;

y : integer;

visible_dre : integer;

next_box : box_pointer := null; -- next box 1in list

end record;

type loc;
type loc_pointer is access loc;
type loc is record

xs : integer;
ys : integer;
xe : integer;
ye : integer;
next_loc : loc_pointer := null; -- next location

end record;

type symbol;
type symbol_pointer is access symbol;
type symbol is record
x : integer;
y : integer;
type_symbol : string(l..12);
symbol type : string(l..12):
next_symbol : symbol_pointer := null; -~ next symbol
end record;

167




type seg;

type seg_pointer is access seg;

type seg is record
location : loc_pointer := null;
symbols : symbol_pointer := null;
next_seg : seg_pointer := null;

end record;

type squig;
type squig_pointer is access squig;
type squig is record

xl : integer;
y1 : integer;
x2 : integer;
y2 : integer;
x3 : integer;
y3 : integer;
x4 . integer;
y4 : integer;

next_sjuig : squig_pointer := null;
end record;

type note_txt;
type note_txt_pointer is access note_txt;
type note_txt is record

line_no : integer;
text_line : string(1l..60);
next_note_txt : note_txt_pointer := null;

end record;

type meta;
type meta_pointer is access meta;
type meta is record

label : string(l..1);
x : integer;
y : integer;

note_text : note_txt_pointer := null;
next_meta : meta_pointer := null;
end record;

type foot;
type foot_pointer is access foot;
type foot is record

label : string(1..1);
xm : integer;
ym : integer;
xn : integer;
yn : integer;

note_text : note_txt_pointer := null;
next_foot : foot_pointer := null;
end record;

163

-- next segment

-- next squiggle

-- next line of text

-- next meta-note

-- next foot-note




type feo;
type feo_pointer is access feo;
type feo is record

label : string(1..1);

x ¢ integer;

y : integer;

picture : string(1..60);

next_feo : feo_pointer := null; -- next FEO

end record;

type label;
type label_pointer is access label;
type label is record

name : string(1..10);

x : integer;

y : integer;

next_label : label _pointer := null; -- next label

end record;

type sheet;
type sheet_pointer is access sheet;
type sheet is record

c_number : integer;

node : activitv_data.node_type;
name ¢ activity_data.name_type;
author : analyst_data.author_type;
version : activity_data.version_type;
date ¢ activity_data.date_type;
boxes : box_pointer := null;
segments : seg_pointer := null;

squiggles : squig_pointer := null;

meta_notes: meta_pointer := null;

foot_notes: foot_pointer := null;

feos : feo_pointer := null;

labels : label_pointer := null;
end record;

procedure drav_a_O_sheet(the_sheet : in sheet_pointer);

-- and some other stuff as well

end draving_data;

169




Bibliography

. Austin, Capt Kenneth A. SAtool Interface to the SDI Architecture Dataflow Modehing Tech-

nique. MS thesis, Air Force Institute of Technology, December 1989,

. Bancilhon, Francois. “Object-Oriented Database Systems.” ACM SIGACT-S[CGMOD

SIGART PODS, pages 152-162 (1988).

. Carey, Michael, et al. “An Overview of the Exrel Relational DBMS.™ Computer Seienrces

Department. University of Wisconsin, 1989.

. Carey, Michael, et al. “The EXODUS Extensible DBMS Project: An Overview.” Canpiter

Sciences Department, University of Wisconsin, 1989.

Carey, Michael, et al. “Using the EXODUS Storage Manager V1.2." Computer Sciences De-
partment, University of Wisconsin, 1989.

. Chen, P. Pin-Shan. “The Entity-Relationship Model-Toward a Unified View of Dara™ 167}/

Transactions on Database Systems, 1(1):9-36 (1976).

. Codd, E. F. A Relational Model of Data for Large Shared Data Banks.” Communications of

the ACM . 13(6):377-387 (1970).

Colby, Latha S. 4 Recursive Algebra for Nested Relations. Technical Report. Indiana Univer-
sity, January 1989.

. Connally, Capt Ted D. Common Database Interface for Heterogeneans Software Fngimeeriy

Tools. MS thesis, Air Force Institute of Technology, December 1957 (AD - A INYG2N)

. Date, C. J. An Introduction to Database Systems. Addison-Wesley Publishing Company,

1981.

. DeMarco, Tom. Structured Analysts and System Spectfication. Prentice Hall. 1979.
. Fairley, Richard E. Software Engineering Concepts. McGraw-Hill Book Company. 1985,
. Forman, Betty Y. “SuperPDL Puts Software Systems Design On-Line,” Dugital Revienw. pages

33-55 (August 24 1987).

. Goering, Richard. “Partnership Links CASE to Software Test.” Computer Design. page 35

(May 1 1988).

Goering, Richard. “Standardization Effort Targets Data Management for CASE Computes
Design. page 28 (October 1 1988).

;. Hartrum, Thomas C. System Development Documentation Guidelines and Standards 11att

4 Edition). Department of Electrical and Computer Engineering, Air Force Institute of Toch.
nology, January 2 1989.

Hawley, Sue Ann. *CASE For Sale,” DEC Professional, pages 52-34 (Devember 1987

. Jensen, Randall, et al. “ESML: An Extended Systems Modeling Language Based on the [

Flow Diagram.” Preliminary information distributed by Dr. Jensen 1n MPP RTAL Real Tone
Analysis. Hughes Aircraft Company, Ground Systems Group, Fullerton, Califorma . Novennher
2 1987.

Johnson, Capt Steven E. 4 Graphics Editor for Structured dnalysis wwoith o Data Doty
MS thesis, Air Force Institute of Technology. December 1957 (AD- A1DUB LN

Korth. Henry F. and Abraham Silbershatz. Dafabase Systems Concepts New York, NY oo
McGraw-Hill Book Company, 1986.

. Lamont. Gary B. “An Introduction to Big-O and His Friends.” Class handout for EENG 5xa,

Advanced Information Structures, Fall Quarter 1983

170




. Makinouchi. A. “A Consideration of Normal Form of Not-Necessarily-Normalized Refations

in the Relational Data Model,” Proc. 3rd VLDB, pages 447-453 (1977).

. Mankus, Capt Michael A. Design and Implementation of the Nested Relational Data Mol

Under the Exodus Ertensible Database System. MS thesis, Air Force Institute of Technology,
December 1939.

Marca, David A. and Clement L. McGowan. SADT Structured Analysis and Design Techurque
McGraw-Hill Book Company. 1988.

Materials Laboratory, Air Force Wright Aeronautical Laboratories, Air Force Systems Cow-
mand, Wright-Patterson AFB, OH 45433. Integrated Computer-Aided Manufacturing (1C A M)
Function Modeling Manual (IDEF;). June 1931.

26. Ozsoyoglu, Meral Z. and Li-Yan Yuan. "A New Normal Form for Nested Relations.” Ay

Transactions on Database Systems, 12(4):111-136 (March 1937).

. Pressman, Roger S. Software Engineering: A Practitioner’'s Approach. New York, NY lug2u.

McGraw-Hill Book Company, 1987.

. Relational Technology (now Ingres Corporation), Inc., Alameda, California 94501, J\-

GRES/Embedded SQL User’s Guide and Reference Manual, 1986,

Relational Technology (now Ingres Corporation). Inc., Alameda, California 94501, [\
GRES/SQL REFERENCE MANUAL, 1986.

. Ross, Douglas T. “Structured Analysis (SA): A language for Communicating [deas,” [EFEE

Transactions on Software Engineering, SE-3(1):16-34 (January 1976).

. Roth, Capt Mark A. Theory of Non-First Normal Form Relational Databuses. PLD disserta-

tion, University of Texas at Austin. May 1986.

. Roth, Mark, et al. “Extended Algebra and Calculus for Nested Relational Databases.” A}/

Transactions on Database Systems, 13(4):389-417 (December 19383).

3. Roth, Mark A., et al. "SQL/NF: A Query Language for =INF Relational Databases.™ Infor-

mation Systems, 12(1):99-114 (1987).

. Rubenstein. W. Bradley. "A Database Design for Musical Information.” AV SIGVOD,

16(3):479-490 (1987).

. Smith, Capt Nealon F. Implementation of SAtool II in Ada. MS thesis. Air Force Tnstitutre of

Technology. December 1989.

Stonebraker, Michael. Readings in Database Systems. San Mateo, CA: Morgan Naufimann,
1988

Technology, Index. “Index Technology Announces Excelerator CASE Link to Digital’s New
VAX CCD/Plus.” CASEnews, page 4 (July/August 1988).

Thomas, S.J. and P.C. Fischer. “Nested Relational Structures.” In by P. Kannellakis. Edired.
»ditor, Advances in Computing Research [/, The Theory of Databases. JAl Press. 1986

Vizard. Michael. “Interface Brings CASE Tool Links Close to Reality.” Digetal Revicrw. page
101 {March 21 1988).

. Ward, Paul. “The Transformation Schema: An Extension of the Data Flow Diagram to

Represent Control and Timing,” [EEE Transactions on Software Engicering, SE-[2{27 |9~
210 (February 1986).

Yourdon, Edward and Larry Constantine Structured Design New York, NY 10020 Yondon
Press, 1978




Vita

Captain Gerald R. Morris (i NG (- graduated
from high schéol in Norwalk, California, in 1972 and enlisted in the United States Air Force in May,
1973. He served T years as an electronic technician for a variety of cofnmunicationg equi'pmem,.
He was then accebted under the Airman Education and Commissioning Program and attended
The Ohio State University, from which he received the degree of Bachelor of Science in Electri-
cal Engineering (summa cum laude) in December, 1§8'2. Upon graduation he received a regular
commissionl in the USAF tiu'ough the USAF Officer Training School where he was a distinguished
graduate. He then served as an electrical engineer at the Defense Contract Administration Services
Plant Representative Office, Hughes Aircraft Company, Fullerton, California. In 1986 he received
the National Contract Ma.nag‘exjxent Associaéién’s ist Pia;ce Blanche Witte Award fdr specifying,
designing, and building a database management system to track government contracts. He eﬁtered

" the School of Eng‘i‘néering, Air Force Institute of Technology, in May, 1988.

172



X

'!llll" ;C’l":"?"
SECURITY (LASSF ATION OF "=1§ PAGE
FormrApproved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188
1a REPQU=" SECURITY CLASSIFICATION b RESTRICTIVE MARKINGS
UNCLASSIFIE

2a. SECURITY CLASSIFICATION AUTHORITY

3 DISTRIBUTION/AVAILABILITY OF REPORT
Approved for publ:c release;

2b. UZCLASSIFICATION  DOWNGRADING SCHECTWLE

distribution unlim:ted

AFIT/GCE/ENG/90M-2

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

S MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFCRMING ORGANIZATION

School of Engineering

6b. OFFICE SYMBOL

7a. NAME OF MONITORING ORGANIZATION
(f a Pplicable
fIT/EhG

tc. ~ODRESS (City, State, ang Z2IP Code)

Air Force Imstitute of Technology (
Wright-Patterson AFB, OH 45433-6583

7b ADDRESS (City, State, and ZIP Code)
AU)

8a. NAME OF FUNDING /SPONSORING
ORGANIZATION

8b

Strategic Defense
Tnitiative Organiza%tion

8¢. ADDRESS (City, State, and ZiP Code)

Room 1£149, The Pentagon
Washington, D.C. 20301-7100

OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
(If applicable)
SpIo/S/p1
10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO. NO ACCESSION NO

11 TITLE (Include Security Classification)

A Comparison ¢f a Relational and Ne

sted-Relational IDEFO Data Model

12. PERSONAL AUTHOR(S)
Gerald R. Morris, Captain, USAF

, 13a. TYPE OF REPORT 13b. TiME COVE
MS thesis FROM

15. PAGE COUNT

RED 14. DATE OF REPORT (Year, Month, Day)

T0 <RA

1990 March

16. SUPPLEMENTARY NOTATION

57 COsAT! CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by biock number)
FIELD GROUP SUB-GROUP software engineering, database management systems
05 02 databases, computer aided design,
12 05 computer aided manufacturing

...... acvisor:

Mark 4. Roth, Maj
Assistant Profess

19 ABSTRACT (Continue on reverse 1f necessary and identify by block number)

or, USAF

-

or of Electrical and Computer

-

Engineering

20 OTABLTION AVAILABILITY Of AgS™RACT
B nCcLaSSIFED UNUMITED [ SaME AS ROT

21 A?STRACT'EEC‘_URITY CLASSIFICATION
D STIC USEQS L.”\vLASS;.' IED

22a NANE T RESPONSIBLE INDIVIDUAL
Marz A. Rcth, Major, USAF

22¢ O SYWMBOL

AFIT/ENG

22D TELIP-ONE (inciuge Area Cooe)
(513)255-2276

DO Form 1473, JUN 86

S ]

Previous editions are obsolete SECURITY CL:SSFICAT'ON OF THIS PAGE

UNCLASSITIZD




(block 19 continued)

Abstract:

This thesis develops an abstract data model of a particular computer
aided software engineering (CASE) methodology, and compares the guery
complexity, database size, and speed of query execution of a relational
database management system (DBMS) implementation of the methodology
with a nested-relational DBMS implementation of the same CASE methodology.
In particular, the thesis considers the United States Air Force Integrated
Computer Aided Manufacturing (ICAM) program’s subset of Ross's Structured
Analysis (SA) language called ICAM Definition Method Zero (IDEF;).

Ingres Corporation’s relational DBMS, Ingres, is the implementation

media fcr the relational version. The University of VWisconsin’s extemsible
database, Exodus, is the implementation media for the-nested-relational
version.

The thesis provides background information on the development of
CASE methodologies and the development of database management systems.
Additionally, it provides an overview of the IDEF; analysis language,
and the Exodus extensible DBMS.

Inc._uded in the thesis is an abstract data model of the IDEF; language.
The model partitions IDEFp into an essential data model and a drawing
data model. This partitioned representation facilitates ongoing and
future research relative to syntax checking, generation of an executable
software specification, and automatic layout of SA diagrams. Since
IDEF; is the analysis methodology selected by the Strategic Defense
Initiative Organization, the abstract data model alone is of importance.

The abstract data model is mapped into a relational representation
and implemented within Ingres. The relational representation is mapped
into a nested-relational representation and implemented within Exedus.

The two implementations are compared to see if there are any advantages

to be gained by using a nested-relational DBMS for this type of application
(CASE tool data). The areas of comparison include query complexity,

size . the database, and speed of query execution.




