1. Abstract

A feedback extension procedure is developed for the numerical solution of a class of nonlinear boundary value problems associated with anti-plane shear or Hencky's theory of plasticity. This extends previous results using dimensional reduction in energy-asymptotic format.

2. Introduction

In an earlier paper [4], the method of dimensional reduction for quasilinear boundary value problems was introduced. A generalization was proposed which allows for the possibility of different order of dimensionally reduced models in different parts of the underlying domain. This paper is an attempt to fulfill that promise with the purpose of making the method of dimensional reduction still more efficient and robust.

As in [4], the basic idea is to find a minimiser \(u_N \) of the energy functional in a proper subspace \(V_N \) which is characterized by the basis functions \(\{ \psi_j \}_{j=1}^m \)

\[
V_N = \{ u \in W : u(\cdot, \eta) = \sum_{j=1}^m \psi_j(\eta) \phi_j(\eta) \}
\]

where \(\xi = x / \bar{x}, \eta = x / d, \bar{x} \in [-d, d], \) and \(d \) denotes the half thickness of the domain. Thus the model of order \(N \) of reduced dimension was introduced. See [4] for the choice of \(\{ \psi_j \}_{j=1}^m \) and related convergence properties (optimal rates) as \(d \to 0 \) or \(N \to \infty \).

Due to the singularities which can stem from the loading or the presence of corners, it is necessary for efficiency and accuracy to be able to introduce higher order models near these layers only. In this paper we propose a feedback extension procedure that facilitates this by allowing different orders \(N \), in different parts of \([0, 1]\).

3. Notation and Model Problem

We shall confine our study to the following class of problems. Find \(u \in W \) such that

\[
\begin{align*}
\forall \nu \in W, \quad A(u) &= \nu(u) \\
\nu &= \int_{s_1} P(\nabla u) \cdot \nabla u \, d\xi d\eta \\
G(u) &= d^{1,2} \int_{s_1} B(\xi) \left[u(\xi, 2) + u(\xi, -1) \right] d\xi \\
P(\xi) &= 1 + \psi, \quad n \in M, \quad \xi \in [0, 1) \\
\end{align*}
\]

where \(\mu \) characterizes three asymptotic ranges of loads : \(\mu = \infty \) - such that the limit traction on \(\Gamma_N \) as \(d \to 0 \) is zero for \(\mu < 0 \), finite for \(\mu = 0 \), and infinite for \(\mu > 0 \)

\[
\begin{align*}
\mu &= \pm \infty \\
\Gamma_N &= \{ [0, \infty] - 1 \} \\
\Gamma_0 &= \{ [0, \infty] - 1 \} \\
\Gamma_1 &= \{ [0, \infty] - 1 \} \\
W &= \sum_{j=1}^m \phi_j(\eta) \\
\nV_N &= \left\{ u \in W^1, \int_{s_1} \left(\frac{\partial u}{\partial \xi} \right)^2 + \left(\frac{\partial u}{\partial \eta} \right)^2 \, d\xi d\eta = 0 \right\}
\end{align*}
\]

This scalar problem corresponds to finding a minimiser in \(W \) for the energy in anti-plane shear and finite elasticity, and \(\mu \) and the torsion problem for a bar, see [8] and [9]. See [4].

We define the dimensionally reduced solution of order \(N \) to be the solution \(u_N \) in \(V_N \subset W \) for which

\[
\forall \nu \in V_N, \quad A(u_N)(\nu) = \nu(u_N)
\]

given \(V_N \) a subspace of \(W \) of the form

\[
V_N = \{ u \in W : u(\cdot, \eta) = \sum_{j=1}^m \psi_j(\eta) \phi_j(\eta) \}
\]

The family of subspaces \(\{ V_N \} \) is characterized by the choice of \(\{ \psi_j \} \).

In [4] these basis functions were selected to yield the optimal rate of convergence of \(\| u - u_N \|_N \) as \(d \to 0 \). Thus, one would have to select \(\psi_j \) to be a polynomial of degree \(j \). Importantly, the same choice is valid for all three ranges of loads (three signs of \(\mu \) in (3.5) and (3.3)). For \(P \) in (3.4) depending on \(\eta \), [4] indicated that this choice was made in order to be a nonpolynomial solution of a second order Sturm Liouville problem. (See also [5, Remark 3.9].)

Let \(\bar{x} \) be the \(N \)th partial sum in the formal asymptotic expansion as given in [4]. Let \(D_\ell \) be the operator defined by \(D_\ell : V \to W \) mapping \(\text{Dom}(D_\ell) = W \to W \) on \(\{ \psi_j \}_{j=1}^m \) as indicated in (4.4). We get for \(\mu \leq 0 \).

Theorem 3.1. Let \(\mu \leq 0 \) and \(n \in \mathbb{Z} \). Let \(u, u_N \in W \) be bounded independently of \(\mu \).

Then there exists \(C_\mu \) such that

\[
\| u - u_N \|_N \leq C_\mu \| u \|_{W^{1,2}}\|
\]

Since, for a given practical problem, we cannot depend on \(d \) being sufficiently small to ensure that a given tolerance criterion can be satisfied via the previous theorem, we have considered in [4] to increase \(N \). Again, optimal rates in this scenario (\(d \) fixed, \(N \) increasing) were established in [4]. From the computational experience in [4] and elsewhere, it became clear that it was unnecessary (read: wasteful) to increase \(N \) uniformly everywhere in \([0, 1]\). Rather, there were clearly defined layers near the boundary and/or rough spots in the load. We propose to increase \(N \) near these layers only as an extension procedure. Let \(I \) be \(\{ 0, 1 \} = I_0 \cup I_1 \), and \(\cap I_0 \cap I_1 = \emptyset, \mu \neq 0, j \in [1, m] \). Let \(N \) be \(N(\mu, \nu) \) be an \(m \times m \) matrix of nonnegative integers \(\nu \). Consider

\[
V_N(\nu) = \{ u \in W_N : u(\cdot, \eta) = 0 \forall \xi \in I_{\nu}, \eta \}
\]

a subspace of \(V_N \) of \(W_N \). Solving

\[
\forall \nu \in V_N(\nu), \quad A(u_N)(\nu) = \nu(u_N)
\]

we have the generalized dimensionally reduced Galerkin problem.

A key ingredient in the selection of the distribution of orders \(N \) - the local a posteriori estimates - will be developed in the following section.

4. Local A Posteriori Error Estimators

Define the estimator for \([0, 1] \) and \(\Omega \) as

\[
\mathcal{E}(\Omega) = \int_d d \xi d\eta
\]

where \(\gamma \) is \([0, 1] \). In the solution of

\[
\nu \in H(1; [0, 1]) = \int_0^1 \int_0^1 \frac{\partial v}{\partial \xi} \frac{\partial v}{\partial \eta} d\xi d\eta
\]

the right hand side being the residual \(\{ Au - \tilde{u} \} \). Although \(e \) is not well

\[
\tilde{u} = \mathcal{E}(\Omega)
\]

\[
\mathcal{E}(\Omega)
\]

the solution

\[
\nu \in H(1; [0, 1]) = \int_0^1 \int_0^1 \frac{\partial v}{\partial \xi} \frac{\partial v}{\partial \eta} d\xi d\eta
\]

the right hand side being the residual \(\{ Au - \tilde{u} \} \). Although \(e \) is not well

cf. (3.12) and (3.13). This condition is met for any choice of basis functions with optimal rates, see [4].
Similarly define the local error estimator
\[\text{Est}(K) = \left| \int_{-1}^{1} \left(\frac{\partial e}{\partial x} \right)^2 dxdy \right|, \quad 1 \leq i \leq m \] (4.5)

As in [2] we define upper (lower) error estimator to mean
\[\|u - u_k\| \leq (\geq) \text{Est} \]

Theorem 4.1 Let \(u \) and \(u_k \) be the exact and dimensionally reduced solutions (see (3.1) and (3.15)). Then \(\text{Est} \) as defined in (4.1) is an upper estimator, i.e.
\[\|u - u_k\| \leq \text{Est}(K) \]

Proof: Bound from above and below (\(Au - Au_k \|u - u_k\)).

In the language of [3], \(\text{Est} \) is a guaranteed U-estimator (G-estimator). Another attractive property of \(\text{Est} \) is that \(\text{Est}/\|u - u_k\| \) tends to 1 as \(d \) tends to zero for \(\mu < 0 \) and \(\beta \) sufficiently smooth.

Theorem 4.2 Let \(u \) and \(u_k \) be the exact and dimensionally reduced solutions (cf. (3.1) and (3.15)) and have gradients bounded uniformly in \(d \). Let \(\mu < 0 \) and \(\beta \) \(\in \text{Dom}(D^2) \). Then \(\text{Est} \) as defined in (4.1) is asymptotically exact:
\[\text{Est}(K) = \|u - u_k\|(1 + O(d)) \]

Proof: Due to restrictions in length, we merely mention that one can establish
\[\text{Est}(K) \leq \|u - u_k\| \|u - u_k\|(1 + O(d)) \]
and bound the middle factor on this right hand side from above.

5. Computational Aspects

From an implementational point of view, the nice mathematical properties of \(\text{Est} \) established in the previous section will not suffice, since finding \(\text{Est} \) as a solution of a second order O.D.E. might be too costly. Therefore we give now some formulae that can be used to compute \(\text{Est} \) and \(\text{Est} \) in practice.

First, let us introduce a basis in \(L^2(-1, 1) \) with which we will work:
\[\phi_j(x) = \begin{cases} 1 & j = 0 \\ \int_{-1}^{1} l_{j-1}(t) dt & j \geq 1 \end{cases} \] (5.1)

where \(l_j \) is the \(j \)th Legendre polynomial.

Lemma 5.1 The following formulae for \(\text{Est} \) defined in (4.8) hold:
\[\text{Est} = \sum_{j=1}^{m} \phi_j^2 \]
and furthermore
\[s_j = \left\{ \begin{array}{ll} 0 & \text{for } 1 \leq j \leq N \\ \frac{\partial}{\partial x} \int_{-1}^{1} L_{n} \phi_j \phi_j \, dx / \int_{-1}^{1} (\phi_j^2) \, dx & \text{for } j = N + 1, N + 2 \end{array} \right. \]
where \(L_n = \text{Dom}(D^2) \psi_n \).

Proof: \(s \in W_{N+2} \) so the first assertion is clear and \(\frac{\partial}{\partial x} = \sum_{j=1}^{m} \phi_j \phi_j \). Further, if we denote by \([\cdot] \) the inner product in \(L^2(-1, 1) \) we have \(s \in W_{N+2} \).

\[s_j = \int_{-1}^{1} \phi_j^2 \, dx = \int_{-1}^{1} \frac{\partial}{\partial x} \phi_j^2 \, dx = \int_{-1}^{1} \frac{\partial}{\partial x} \phi_j^2 \, dx = 0 \]
for \(1 \leq j \leq N \)

Hence, \(s = 0 \) for \(1 \leq j \leq N \) and the two remaining components are obtained in a similar fashion using now the definition of \(\text{Est} \) in the next to last line and the fact \(\phi_j(1) = \phi_j(-1) = 0 \) for \(j > 1 \).

The following formulae derived from the previous ones are still more useful:

Lemma 5.2 There exists a constant matrix \(A \) such that
\[\begin{pmatrix} s_{N+1} \\ s_{N+2} \end{pmatrix} = A \begin{pmatrix} s_{N+1} \\ s_{N+2} \end{pmatrix} \]
where \(s_{N+1}, s_{N+2} \) were defined in the previous Lemma.

Proof: Consider
\[-Lu_k = \frac{\partial^2}{\partial x^2} (1) = \frac{\partial^2}{\partial x^2} \left(\sum_{n=1}^{\infty} (\phi_n, \phi_n) \phi_n \right) \]
We denote by \(\langle \cdot, \cdot \rangle \) the inner product in \(L^2(-1, 1) \). Now let \(u = \phi_n \), then
\[0 = (\frac{\partial^2}{\partial x^2}, \phi_n(1) + \phi_n(-1) \rangle - (Au_k, \phi_n) \]
\[= (\frac{\partial^2}{\partial x^2}, \phi_n(1) + \phi_n(-1)) - (F(\|u_k^m\|)^2 \frac{\partial u_k}{\partial x}, \phi_n(1) + \phi_n(-1)) \]
\[= (\frac{\partial^2}{\partial x^2}, \phi_n(1) + \phi_n(-1)) - (F(\|u_k^m\|)^2 \frac{\partial u_k}{\partial x}, \phi_n(1) + \phi_n(-1)) \]
Next letting \(u = \psi_n \), we obtain similarly
\[0 = -(\psi_n(1) + \psi_n(-1) \rangle - (F(\|u_k^m\|)^2 \frac{\partial u_k}{\partial x}, \phi_n(1) + \phi_n(-1)) \]
for \(1 \leq j \leq 2 \). The matrix \(A \) is invertible into \(A \).

We next introduce the heuristic principle which will guide us to an efficient extension procedure based on the local a posteriori error estimators.

Heuristic 5.1 Let the error associated with the generalized dimensional reduction be estimated by
\[(\text{Est}^2(N))^{-1} \]
and the cost (work) be estimated by
\[(\text{Est}^2(N))^{-1} \]
Then we aim at achieving
\[\text{Est}^2(N) - \text{Est}^2(N, 1) \leq \text{W}(N, 1) \]
by increasing \(N \) by 1 where the error-cost quotient is maximal.

Reassembling: Minimizing the error at fixed cost with respect to \(N \), yields via Lagrange's multiplier and a backward difference approximation the proportionality sinned at in the Heuristic.

A typical choice for workestimate is
\[\text{W}(N, 1) = (\alpha, N + 1)^{1/4} \]
for some choice of positive \(\alpha \), \(\alpha = 1 \).

Note that we select the prime functions of Legendre polynomials as basis merely to be able to establish computational formulae; a change of basis within the same span merely requires a linear transformation in order to modify the formulae for the new choice of basis functions.

From the computational point of view it is rather important exactly which basis functions one selects. (This has to be done hierarchically).

6. Choice of Basis Functions

Let \(\Phi_N = (\phi_1, \ldots, \phi_m) \) and \(U = (\psi_1, \ldots, \psi_m) \) such that
\[u_N = U \cdot \Phi_N \]
The generalised Galerkin problem (3.16) transforms to the following system of O.D.E.
\[-\frac{d}{dx} (F(U, U') U') + \frac{d}{dx} Q(U, U') U = R \]
where \(P = Q = R \) are matrices defined by:

\[P_{ij} = \int_{\Omega} P(\nabla u, \nabla v) \delta_{ij} \, d\Omega \quad (6.2) \]
\[Q_{ij} = \int_{\Omega} Q(\nabla u) \frac{1}{2} \delta_{ij} \, d\Omega \quad (6.3) \]

for \(1 \leq i, j \leq N \). Since the system (6.1) is hard to analyze in its nonlinear form, we will bracket with linear ones. If \(P_{ij} \delta_{kl} \leq M \), then
\[(P^{\text{lin}} U', U') \leq (P(U, U') U', U') \leq 1 + M P^{\text{lin}} (P^{\text{lin}} U', U') \]
\[(Q^{\text{lin}} U', U') \leq (Q(U, U') U', U') \leq 1 + M Q^{\text{lin}} (Q^{\text{lin}} U', U') \]

where \(P^{\text{lin}} \) and \(Q^{\text{lin}} \) are defined as in (6.2) except with \(P = 1 \). This allows us to analyze some of the behavior of (6.1).

An elementary Saint-Venant principle holds for a related linear boundary value problem posed over the semi-infinite strip: \(\Omega^0 = (0, \infty) \times [-1, 1] \) with boundaries \(\Gamma_0^0 = (0, \infty) \times -1, 1] \) and \(\Gamma_1^0 \) which is defined analogously to (3.4) and (3.9) respectively. The function

\[w(x, y) = \sum_{n,j=0}^{\infty} \frac{C_{n}}{d^{n}} \exp \left(- \frac{y}{d} \right) \]

is the solution of

\[\Delta w = 0 \quad \text{in} \ O^0, \]
\[\frac{\partial w}{\partial n} = 0 \quad \text{on} \ \Gamma_0^0, \]
\[w = 0 \quad \text{on} \ \Gamma_1^0 \]

Here \(\lambda_n = \lambda_n^2 \), \(n \in \mathbb{N}_0 \), are the eigenvalues corresponding to the eigenfunctions given by the following B.V.P. (in the \(y \)-direction)

\[\phi_n + \lambda_n \phi_n = 0 \quad \text{in} \ (-d, d) \]
\[\phi_n \quad \text{at} \ \pm d \]

The eigenvalues may be characterized through the Rayleigh quotient:

\[\lambda_n = \inf_{\phi \in M(\lambda_n) \setminus \{0\}} \frac{\int_{-d}^{d} \phi''^2 \, dy}{\int_{-d}^{d} \phi^2 \, dy} \]

If we let \(\phi = \psi_n \), we can characterize the minimum positive eigenvalue of \(P^{-1} Q \):

\[\kappa_1 = \inf_{\phi \in M(\lambda_0) \setminus \{0\}} \frac{\phi^T Q \phi}{\phi^T P \phi} \]

where \(\phi_0 = (1, 0, \ldots, 0) \).

The following is well known, see [1]:

\[0 \leq \kappa_1 - \lambda_0 \leq C \left(\| \phi - \chi \| \right)^2 \]

where \(\phi = \epsilon \cdot \psi_n \) for some b

\[\phi \in M(\lambda_0), \quad \| \phi \| = 1 \]

where \(M(\lambda_0) \) is the eigenspace corresponding to \(\lambda_0 \).

From these observations, we conclude two things:

- The localization of the error estimator as defined in (4.5) can be founded on exponential decay of the solution away from "vertical" boundaries and/or rough spots in the load.
- A choice of basis functions is to be preferred over another if the first leads to a smaller minimum positive eigenvalue \(\kappa_1 \) (\(\kappa_1 = 0 = \lambda_0 \)), since such a choice leads to the use of less basis functions (a smaller \(N_1 \)) away from rough spots). That is evident from the following example.

There is an orthogonal matrix \(O \) such that \(O^T P^{-1} Q O = D \), being diagonal. Setting \(\tilde{U} = O V \) yields the following system of O.D.E.s

\[-V' + \frac{1}{d} DV = 0 \]

with the solution:

\[V_i(x) = A_i \sinh(\sqrt{\kappa_i} x) + \frac{d}{2\sqrt{\kappa_i}} \chi_i(x) \]
\[\psi_i(x) = \frac{1}{\sqrt{\kappa_i}} \int_0^x \cosh(\sqrt{\kappa_i} s) \, ds + \frac{1}{\sqrt{\kappa_i}} \int_0^x \sinh(\sqrt{\kappa_i} s) \, ds \]

for \(i \geq 1 \). If one for example takes \(\beta = \beta(x) \), the solution \(V_i \) involves terms of \(\sinh(\sqrt{\kappa_i} x) \) and \(\cosh(\sqrt{\kappa_i} x) \), where it becomes clear that a smaller \(\kappa_i \) improves localization.

For \(N = 2 \), choosing the basis functions as in (5.1) yields \(\kappa_2 = 0, \kappa_2 = 15 \), the latter approximating well the eigenvalue \(\lambda_i \) as \(x \) with respect to exponential decay. That is also the best one can do given the span for \(N = 2 \) (using \(\{1, n^2\} \)). In contrast, if one omits \(\phi_n \) as the first basis function, \(\kappa_0 = 0 = \kappa_2 \). For \(N > 2 \), the approximation of \(\lambda_i \) can not get any worse.

We therefore choose the basis functions as in (5.1).

Our initial computations support a practical confirmation and viability of many of the features described here of this method. It should be noted that we have not dealt with the issue whether or not this feed back method is adaptive, i.e. whether or not this feed back method is optimal with respect to some performance measure. It will be dealt with elsewhere.

7. Acknowledgements

The author wishes to take the opportunity to thank Prof. Ivo Babuška for many helpful discussions and much inspiration.

References

Accession For

NGA GRAFI
DTIC TAB
Unannounced
Justification

By
Distribution/
Availability Code

<table>
<thead>
<tr>
<th>Avail and/or Dist Special</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
</tr>
</tbody>
</table>