
uc,-

Ik



CONDITIONS OF RELEASE
0061790 BR-112707

COPYRIGHT (c)
1988

CONTROLLER
HMSO LONDON

...... ..., .,..... ... ... y

Reports quoted are not necessarily available to members of the public or to commercial
organisations.



Royal Signals and Radar Establishment

Memorandum 4334

TITLE: Object Orientated Simulation on Transputer Arrays using Time Warp

AUTHOR: P. Simpson

DATE: December 1989

SUMMARY

The successful application of Transputers to distributed event driven heterogeneous simulation
using the Time Warp methodology is demonstrated w"th tran-ruters and occam providiTrg a
natural vehicle for this class of simulation. The simulation technique basicall, comprises a
number of communicating simulation object processes, with appropriate action being taken to
ensure the correct chronological sequence of processed simulation events. Time Warp is
particularlv attractive, since it permits all parts of a distributed processor network to operate in
parallel (although some of the computation may later be undone). The need for hardware control
of memory management has not been identified, although the requirement for a deadlock free.
random point to point communications strategy has.

EJ

Copyright
©I t .~ 7;i7vLdt I

Controller HMSO London
1989

IAh



INTENTIONALLY BLANK



Contents

0 Abbreviations 6

1 Introduction 6

2 Distributed Event Driven Simulation

3 Time Warp Simulation 8

3.1 Rollback Mechanism ........ ............................. 8

3.2 Simulation Outp,,t ........ .............................. 9

3.3 Message Composition ......... ............................. 10

3.4 Reproducibiliiy . ........ .. ............................... 11

4 Transputer Array Implementation of Virtual Time Simulation 11

4.1 (ontroller Process (('P) Description ...... ..................... 12

4.1.1 Messages to the HP ......... .......................... 14

4.1.2 Output Options .......... ............................ 14

4.1.3 Graphics Output ......... ........................... 15

4.2 Detailed Host Pro~ess (HP) Description .................. I

4.2 Detailed Time Warp (ode Description .... ................... 16

4.3.1 Sequential Time Warp Process ...... .................... 16

4.3.2 Data Router .......... .............................. 16

4.3.3 Time Warp Process ........ .......................... 1I

4.3.4 Output event ........ ............................. IS

4.3.5 Process Event .......... ............................. 21

4.3.6 GVT Estimation ........ ........................... 22

4.3.7 Fossil Collection ......... ............................ 23

4.3.* Importan Noc .......... ............................ 23

5 Low Level Operations 24

•3 IIiI



5.1 Global Virtual Timne Estimiation .. .. ... .... .... ..... ..... 24

5.2 Fossil C'ollection. .. .. ... ..... .... .... ..... .... ... 25

5.3 Queue Data Structures. .. .. ....... ..... .... ..... .. 25

6 Message Passing Techniques 30

6.1 Message routing. .. .... ..... .... .... ........ ... 30

6.1.1 Routing Table setup. .. ... .... ..... .... ..... .. 30

6.1.2 Message Broadcasting .. .. ..... ... .... ........ 33

6.2 Low leve] miessage passing procedures .. .. ... .... .... ...... 34

6.2.1 Procedure route. .. .. ... ..... .... ..... ...... 34

6.2.2 Procedure arravinfourout .. .. .. ..... .... ..... ... 35

6.2,3 Procedure four.in.arraN..out....... .... . ... . .... .. .. ... 5

6.2.4 Procedure analysenetwork. .. .. ... .... .............

6.3 Queue Handling Procedures. .. ...... ..... .... ... .. 37

6.3.1 Procedure initialise.q. .. .. .... .... ..... .... ..... 37

6.3.2 Procedure find. pos.t o.inisert.in.queue ................

6.3.3 Procedure insert .in.q. .. .. ..... .... .... ..... ... 39

6.3.4 Procedure trytoannihilate.. .. .. .. .... .... .... .... 40

6.3.5 Procedure select next qevent .. ... .... ..... .... ... 43

6.4 Message Protocols .. ... .... ..... .... .... ..... ..... 44

6.4.1 Protocol ps.timne.warp .. .. ..... .... .... ..... ... 44

6.5 Libraries. .. .. .... ... ..... .... .... ..... ......

7 Error Conditions 49

8 Implementation Constraints 50

9 Race Track Traffic Flow Example 51

9.1 Input Data. .. .... .... ..... ... ................ 2

9.2 ('onfiguration. .. ... .... .... ..... .... ..... .... ...-

4



9.3 M em ory Requirem ents ............................ 53

10 The WNray Ahead 54

11 Conclusion 54

12 References 56

13 Appendix 57



0 Abbreviations

CP Control Process
GP Graphics Process
GVT Global Virtual Time
HP Host Process
ID Identification Number
IQ Input Queue
LVT Local Virtual Time
OQ Output Queue

1 PID Process Identification Number
SCP Switch Controller Process
SP Simulation Process
SPA Simulation Process Array
TDS Transputer Development System
TW Time Warp

1 Introduction

Simulations of large complex systems consume vast amounts of computing resources,
often reulting in simulations running unacceptably slower than real time. Therefore
the application of powerful parallel computer architectures to this problem area will be
extremely welcome to the simulationist.

Currently there are two prime simulation methodologies, time driven and event driven.
Time driven relies on the regular incremental update or time stepping of the simulation
clock, and simulating the system up to this new clock time. It has advantages where for
example the system has to be modelled essentially continuously, for example in the sim-
ulation of analogue circuits, and indeed greater accuracy may ensue with infinitely small
time steps. However many simulation scenarios are not amenable to this methodology,
in which for example the system may enter long periods of relative inactivity followed
b- much more intense activity periods. Here the time step would have to be tailored
for active simulation periods therefore resulting in gross inefficiencies during relatively
inactive periods.

The alternative approach to time driven is event driven simulation. Here the system
clock is incremented at irregular steps, corresponding to the time of the nextsystem
interaction activity (or event). Thus the clock advances through periods of simulation
inactivity allowing processing resources to be concentrated in regions of interest in the
simulation time domain. It is this methodology that we are particularly interested
in, being appropriate to battlefield, traffic flow and communication network simulation
scenarios.

It is widely accepted that parallel processing architectures offer significant increases
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in computational performance over serial machines. Here we examine how a specific
class of architecture based on reconfigurable arrays of transputers, the Supernode, can

be applied to event driven simulation. We have used a prototype of the Supernode,

known as the RSRE RAT (Reconfigurable Array of Transputers) cage for all algorithm

development work, which comprises 16 worker T414 transputers, a transputer acting E-

a switch controller processor and a graphics processor. The system is configurable to

any topology given the constraint of 16 transputers each with 4 communications links.
The machine is hosted by an Inmos B0t'L p~ocessor as part of an IBM PC system.

2 Distributed Event Driven Simulation

Conventional event driven simulation in a serial processor is implemented by selecting

chronologically events from a unique global event list, and activating and pro'essing

relevant objects according to the particular event. If necessary new generated events

are reinserted in this event list for future scheduling and processing. This concept lends

itself naturally to serial machines with global memory and a single thread of computer
control. However in distributed processing environments, such as transputer arrays.

where global memory is not provided, and we have multiple threads of process control

this cnventional approach is not possible.

To exploit parallel processing capabilities offered by a distributed architecture it is es-

sential to action the processing of more than one event simultaneously. We therefore

distribute simulation objects across the array and allow each object to advance its local

logical time, driven byv its own local event list. Objects requiring interaction with others

must therefore communicate with other objects, implanting events into their respective

local event list as appropriate.

Clearly, since the concept of global variables does not exist, the concept of a maintained

glo'bal time is not permitted, in general, each simulation object will have its own local

clock time, which in principle could be different to that of all other times in the system.

It is important however, to ensure that events occur in chronological order to secure

simulation correctness, such that a message corresponding to an interaction from an

object A say, with a local time of t. arrives at object B, such that t is not in the

simulation past of object B, (or if it does we must effectively undo any actions B may

have initiated during the intervening period).

Currently two techniques exist providing effective time synchronisation across processor

arrays. The first, known as null-message passing is a conservative process, relying on
regular exchanges of time stamped messages between all interacting objects providing

permi-sion for receiving objects to advance their own local clocks to the new time, guar-
anteeing that past events will not later arrive. Whereas the second approach, known

as Time Warping is based on optimistic processing, which makes no assumption about

events arriving in chronological sequence. And here if an event does arrive in the receiv-

ing object's past, then the process back tracks in time, undoing any actions it may have



already done before processing the new event. Each object's local time is permitted
to advance and etreat in time, hence the technique is often refered to as virtual time
simulation.

3 Time Warp Simulation

Time IAa,p ;s a technique developed by Jefferson 11] for efficiently exploiting paral-
lel distributeo processing computer architectures with event driven simulation. The
methodology his been adequately and elegantly described by Jefferson in the literature.
so here only an overview will be provided.

Essentially simulation objects are distributed across the processor array and interactions
between objects are triggered by passing relevant messages. Each object has associated
with it various state variables, including simulation time -Local Virtual Time (LVT),
which generally will be different for all simulation system objects. If an object decides
to interact with another at s specific time, it initiates a message communication with
the receiving object, sending information pertaining to the type of interaction, variables
associated with the interaction, and most important, the anticipated time of influencing
the receiver. Actually two time stamps are transmitted corresponding to this interaction
time and the old interaction time in the sending object - which is not used. It is also
permissible for an object to predict its own as well as other objects future events by
inserting event messages in its own IQ. The receiving object ,"ill therefore accept the
message with its interaction time and process it. This is fine if the requested interaction
time is later than the receiving object's LVT. but this is not guaranteed and so if a
message arrives wit h a time component earlier than the LVT of the receiving object. then
the time of that object must be rewound to this earlier time, ensuring that any incorrectly
initiated object interactions are undone. This mechanism is known as Rollback.

3.1 Rollback Mechanism

To activate Rollback and undo all po--ible incorrectly initiated actions it is necessary
for all objects to maintain a history of all received messages, sent messages and local
state variables. These are stored in data structures referred to as the input queue (IQ).
output queue (OQ) and state queues respectively. The IQ and OQ therefore contain
histories, arranged in chronological order of all received and sent messages respectively.
The State Queue contains a record of all states associated with that particular object.
In practice not all states will be required to be stored for memory economy reasons.
The IQ is therefore analogous to the event list in a traditional event driven simulator,
although here, distributed across the processor array with effectively each object having
its own local event list.

Thus when a message arrives at an object with a time later than its LVT. it is simply
inserted in the IQ to await future processing.



However if a message arrives with an earlier time than the current LVT, we must invoke
Rollback which entails inserting the received event in the IQ as normal, setting the
object's LVT to the new message time (hence 'Virtual' time) and resetting the object
state to this new time by extracting the appropriate state variables from the state queue.
This would be all that was required if the object had not already output messages to
other objects in the meantime. We must therefore examine the OQ to establish what
(if any) messages exist with timestamps later than the rollback trigger time and those
that have not yet been sent, are deleted. But the effects caused by messages already
sent must be undone using a concept of anti-messages. An anti-message is identical
to the corresponding normal message, except that it has a flag set signifying it to be

an antimessage. Whenever a positive and antimessage coexist at the same place they
annihilate each other leaving no record of their existence. So to undo actions which may

have been triggered by incorrect!y sent positive messages from the OQ, we form and
send their respective anti-messages to the appropriate objects which naturally leads to
their destruction in the receiving objects IQ.

On receipt of an anti-message, if 4he positive message is unprocessed, i.e. it still exists
in the IQ with a time late- the the current object LVT, then it annihilates leaving no
trace of the original message. If however the positive message has been processed, and
therefore actioned possible further incorrect actions, the message still annihilates with
the copy of the positive message in the 1Q. but. since its time will be earlier than the
current LVT. it triggers rollback just as receipt of a positive message earlier in time
would.

Since a rollback can never be triggered earlier than the earliest LVT in the system
this methodology guarantees that rollback are not infinite, and the overall system will
advance in simulation time.

3.2 Simulation Output

In any simIiatin it is necessary to output sequences of events as and when they occur.
Care has to be exercised with Time Warp to ensure that output events re valid ax,d
will not later be invalidated through a rollba k. We therefore introduce the concept of

Global Virtual Time (GVT). At any instant in the system there will be a numbe- of
objects, each with their oxn LVT, together with a number of time stamped messages
in transit. Since the receipt of a message will not trigger an earlie, rollback time, it is
guaranteed that there is a minimum time threshold to which rollbacks can occur. This is
GVT and is defined as the minimum of all object LVT's and time stamps of all messages
in transit (i.e messages sent but not yet received). Events in the system up to GVT
are all therefore valid and will never be rolled back upon, and can be used for output
purposes. Additionally these events can then and only then be deleted from tht .. ,'em

queue data structures if reqvired- releasing memory, a process known as fossil collection.

The Time Warp technique has been implemented fully on a Supernode prototype and
validated using the flow of vehicles on a ,imple road netAork as a demonstration example.



3.3 Message Compositior

Messages in his kind of distributed simulation system correspond with events in a tra-
ditional event driven simulator, with a significant difference however. If for exaxaple, an
event represents the interaction of two objects such as a 'n , ,id a missile, then the mis-
sile arrival event must also bear information such as missile speed and trajectory, so that
all relevant ta:k state information can be appropriately updated. Alternatively, if an
event is the collision between two vehicles, the event ;nessage must convey certain knowl-
edge of the colliding car such as velocity. Therefore, in the con' xt of Distributed Event
Driven Simulation, messages are not just even:s, but also contain relevant, sending ob-
ject information allowing the receiving object to update all its relevant state variables as
necessary. Remembering that this information is not directly accessible in a distributed
processing and distributed memory environr:ent.

In the race track example discussed in detail later and used as a test bed for virtual time
simulation, messages represent the passge of vehicles from one road segment object to
another. ano contain information such as vehicle velocity to determine future behaviour
in the next road segment together with states associated with the vehicle such as fuel
resources etc. This scenario could be represented iifferently by for example representing
the vehicles as objects.

(ons~ler a more complex interaction such as a tank firing a shell at another. This
is representable in more than one way - a possible scheme is to represent both tanks
as objects and the shell as message between them. Thus the message will contain
information such as trajectory velocity and so on. On arrival oi the shell with its
associated property states at the receiving tank relevant internal states are updated -
related to damage received perhaps. However ai, alternative modelling could use three
separate objects i.e 2 tanks and a shell object. Now when ti~nk 1 wants to initiate firing
it sends a mersage to the shell object, which then sends a message to to the second tank
object.

The choice of implementatio. depends largely on the availability and manageability of
avail, ble process resources. For example if each shell in the system (or perhaps cach
bu,.et ) were to be represented as separate objects, then for most of simulation time
many of the objects will be inactive. rhus :f objects can be dynamically create( and
destroyed and allocated to physical processors to balance processor load this approach
may be optimum, as opposed to treating these transient object types as individual
messages, with their own internal states.

Since memory management faci'ities, providing dynamic object creation and destruction
are not availhble on transputers, we have adopted the approach of messages represent ng
certain, more mobile or temporary object types, with messages containing all relevant
state variables (- which may L- updated by objects and information allowing receiving
objects to update their appropriate state variables).

Int



3.4 Reproducibility

It is important that event sequences produced by different simulation runs are identical
given identical initial conditions. We must therefore ensure that if more than one event

arrives with identical time components in a particular object, the logical time ordering

of events is deterministic and reproducible. To provide this facility we have introduced
a concept of micro time. This guarantees that event messages will have unique time

stamps for event scheduling even though they may have similar logical times. Microtime

is introduced by adding a unique fractional time component to all integer time stamps
in the system, which is used to maintain a unique chronological order within the time
warp input and output queue data structures.

4 Transputer Array Implementation of Virtual
Time Simulation

The current implementation of the Virtual Time Simulator on an array of transputers.
is as far as possible independent of processor array topology (which in our case is deter-

mined by the setting of a switch through which all transputer links are connected) and
the process : processor ratio. This independence is achieved through the user definition

of process connectivity tables and appropriate process placement at compile time.

The simulation system consists of 4 distinct process types; a host process (HP). a con-
troller process (('P). a graphics process (GP) and a time warp simulation process (SP)

arranged as shown in Figure 1. Any number of time warp processes can be used dis-
tributed over any number of available processors. the upper limit being controlled by'
available processor memory. In the race track implementation example given later, 36
time warp processes are configured over 15 processors.

The HP runs on the B004 transputer and handles all screen and file output together
with data input during simulation initialisation. Connected to the HP via the Switch
Controller Transputer (SCP). is the CP which is responsible for initialisation, controlling

Global Virtual Time (GVT) estimation within the simulation array, and routing simu-

lation output to the HP or Graphics Process (GP) running on an Inmos B007 system
as required. The remaining 15 RSRE Rat Cage Transputers may be configured in any

way and used to execute as many copies of the time warp process as the user application

demands.

The following subsections con' .n full specifications of each process type mapped onto

individual processors. BloK uagrams for the entire system structure, indicating the
heirarchy of processes etc are provided in the Appendix.
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Figure 1: Block Diagram of Main Processing Components

4.1 Controller Process (CP) Description

The Controller Process (('P) resides on processor number 16 and is primarily responsible
for acting as an interface between the SPA and the liP and GP, and for generating
appropriate interrupt sequences for GVT estimation and fossil collection. It is contained
within a separate compilation unit (SC Controller) and is the only process on this
processor. Its 4 I/O channels are mapped directly on to the processor links, with links
0 and 3 providing communication with the HP (via the SCP) and GP respectively, and
links 2 and 3 communication with the SPA.

Because in the current occam implementation it is more convenient to access distinct
channels (rather than arrays of channels) externally to the SC (because of easier configu-
ration) and arrays of channels internally, procedures array. in.four.out and four.in.array out
run in parallel within the SC to provide the necessary channel access conversions.

The CP first of all awaits a signal from the HP (start.and.analise), together with two run
time defined constants defining the extent of output (output.opt) and a user defined real
time delay - specified in milliseconds, between graphics display updates (graphics.dclay).
The CP acknowledges the HP with introductory messages and enters the message rout-
ing table setup procedure analis.nctwork, which synchronises with the corresponding
procedures running in each of the SP's. The routing vector for the CP is then sent
too, and displayed by the HP. Various other initialisation actiois then follow, firstly the
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graphics display backdrop is read in to the CP and passed on to the GP and displayed.
followed by the inilialising event list. which in the 'race track' example contains details
of all vehicles in the system. These are sent to the appropriate SP by a sub-process
running in parallel with the main message handling and array control process.

An occam PRI ALT construction provides the main message handling and simulation
array control functions. GVT estimation and fossil collection are controlled by the high
priority input process to generate interrupts every gvt.frcq milliseconds using occam
timer facilities, and the low priority inputs deals with those messages received back from
the SPA.

Currently the CP caters for the receipt of 10 message types (occam protocols) from the
SPA:-

gvt.req.broad.p : After a user defined timeout period (gt't.freq), the CP generates an
interrupt broadcast message requesting the array close down for GVT estimation
and fossil collection. As explained in Section 6.1.2 the broadcast procedure sends
messages down each connected channel and waits for the arrival of their 'echos' of
receipt. This simple protocol handles the receipt of this broadcast message echo
of the request to each SP to suspend output.

lvt.req.broad.p : This is the echo of the CP generated broadcast to each SP to send
their current LVT

gvt.broad.p : As above, but the echo of the broadcast of GVT to each SP in the
array.

ok.to.cont.broad.p : As above, but the echo of the broadcast giving permission for
all SP's to resume normal processing after fossil collection. (This is not strictly
necessary, although required here as the routing network is insufficiently robust)

gvt.pause.ack.p : Following successful event output suspension and acknowledge-
ment of receipt of all sent messages, each SP responds with the signal
'gvt.pause.ack.p' to the CP. The CP therefore awaits for signals from ALL SP's
and then broadcasts a request for each SP's LVT using the lt.req. broad.p protocol.

Ivt.ack.p : The LVTs from each SP return to the CP as part of the lvt.ack.p protocol.
When the complete set of LVTs from all SP have been received, the CP computes
GVT (GVT = min{LVT,}) and broadcasts it to the SPA with the gvt.broad.p
protocol.

fc.event.route.p Fossil collection commences in each SP on receipt of GVT, during
which time each SP empties its OQ of events earlier than GVT, routing them (via
the fc.cvcnt.routc.p protocol) to the CP for possible display and output. This input
option stores sequences of events from each SP in the array structure ctnf.history.
and if the appropriate output option is set also routes the 'raw' events back to the
HP.
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fc.end.of.event.p : This signal is generated by each SP to denote termination of fossil
collection in that particular SP. When the set of signals from all SPs has been
received, either the event history is ordered and sent to the HP or(and) sent to the
GP for display. Following either display or host output the signal ok.to.cont.broad.p
is broadcast back to the SPA, granting permission for each SP to resume normal
processing.

event.route.p : Currently events are routed throughout the SPA and CP using this
protocol. This process therefore provides the necessary routing capabilities, rout-
ing events from channel 1 to 2 or vice verca.

ps.prot.tt.out.string : This protocol is used to route diagnostic messages from the
SPA to the HP, although in the race track example is not used.

Within the CP all other message protocols are invalid, and receipt of which will result
in process termination (via a call to procedure crash).

4.1.1 Messages to the HP

Output messages to the HP are generated with derivatives of Inmos i/o routines
(ps.u'ritc.full.string, ps.nculine and ps.,ritc.int). These take identical parameters to
their Inmos counterparts, but strictly adhere to the protocol ps.prot. tt. out.string de-
fined in ps.timc.uarp, with which all main channels in the TW system are defined. The
need for these procedures arises because the Inmos routines assume channels with triv-
ial protocol definitions (CHAN OF BYTE) and are not compatible with more complex
protocols.

4.1.2 Output Options

Part of the initialisation procedure is the user definition of an output option defining
the extent of event output. In the current implementation this is a 32 bit integer with
individual bits set according to particular desired options as defined below:-

Bit 1 : (LSB) If set all events are sent from the CP to the HP for display. The events
are unordered, and sent to the HP in the order in which they are received by the
CP during fossil collection.

Bit 2 : If set, events are sent to the HP in time increasing order for each object in the
TW simulator.

Bit 3 : If set, events are displayed by the GP. in time increasirg order. (See Graphics
Output below)

14



All other bits have no effect

For example an output option of 5 will send unordered events on the HP and display
time ordered events on the GP

4.1.3 Graphics Output

Graphics output only occurs if bit 3 of the output option control word is set. Events are
selected from the event history array in increasing time order, and sent to the GP. The
user can define a delay (in milliseconds) between GP updates by setting graphics.delay
to a value greater than zero.

4.2 Detailed Host Process (HP) Description

The Host Process (HP) executes on the B004 transputer located within the host PC
system. The occam code is part of an 'EXE' code fold and is primarily responsible
for passing initialisation information to the SPA (via the SCP) and for intercepting.
displaying and storing returned diagnostic information.

Its functionality is shown in the Appendix and basically comprises an initialisation phase.
where file and keyboard data is read and a phase where all messages from the CP are
intercepted and displayed on the host screen and stored in an output file if required.

The initialisation provides the user with the opportunity to direct all output to a diag-
nostics file (TDS fold) as well as to the Host screen, and requests input for the values of
output.opt and graphics.delay. The output option is an integer with bits set according
to whether ordered or unordered events are to be displayed by the HP or whether events
are to be displayed by the GP (or any combination). And the user can if desired specify
a real time delay (in milliseconds) between graphics display updates by setting a positive
value to graphics.delay.

Finally 5 processes execute in parallel, three of which split all output to screen and file
driving processes, whereas the other two send and receive messages to and from the
network. All messages to the CP are all for initialisation, a start. and.analise signal to
trigger the commencement of network analysis (via procedure analise.netuwork), and data
corresponding to the graphics backdrop and initial event list - both of which are read in
from a file (TDS fold). The main data input process accepts data from the CP or from
the Host keyboard via an occam ALT construction. SPA data is routed to the screen
handling process and the filer process if required, whereas in the current implementation,
input from the keyboard triggers process termination. In future implementations this
interface could provide a mechanism for changing run time parameters, introducing new
events or changing output options and so on.
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4.3 Detailed Time Warp Code Description

The main TW occam code is encapsulated within an 'SC' compilation unit with the
descriptor ps.time.warp.objcct, containing procedure !w.object, Multiple process to pro-
cessor allocation is achieved by combining multiple calls of this separate compilation
unit, and is exemplified in the 'race track' example with 2 and 3 process to processor
allocations in procedures two.proc.process and three.proc.process respectively. Inter pro-
cess channels have to be declared by the user within these units, and care should be
taken to ensure agreement with the user set up conn.table connectivity table.

tw.object contains together with the main TW process, routines, executing in parallel
providing more convenient channel access, and a procedure for automatically generating
route tables (procedure analise.network). Network analysis and the main TW process
run sequentially, although both run in parallel with the channel access procedures.

The two channel access routines have been provided because at code levels above this, it
is more convenient to have access to district channels for configuration purposes, whereas
at lower levels, access to arrays of I/0 channels is more preferential.

4.3.1 Sequential Time Warp Process

This procedure is a combination of processes for data routing and the main TW process.
both of which execute in parallel.

4.3.2 Data Router

Two parallel processes form the data router, an input router and an output router.
Incoming messages are intercepted by the input router and either directed to the the
Time Warp process, if this is its intended destination, or passed to the output router
where decisions are made according to routc.table to establish the appropriate output
data channel. The input router also provides the functionality associated with data
broadcasting.

The output router therefore takes input from either the output channel of the TW
process, of from the input router and outputs to the appropriate output channel.

4.3.3 Time Warp Process

The main TW process executes in parallel with both the input and output router pro-
cesses, and has a main input channel from the input router and an output channel to
the output router. A block diagram of its functionality is given in the Appendix.

During each cycle through the main code section, any avdilable input is processed.
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else, if no input is available, other lower priority actions are taken. The structure is
implemented via an occam PRI ALT construction, with data input the high priority
process, and guarded clauses forming the remaining low priority processes.

Data Input : Data available on the input channel is always processed at high priority,
with various actions being taken according to the input data type. currently
there are 6 input data types, 4 of which are associated with GVT estimation, and
the remaining two correspond to event message arrival, and acknowledgements
to previously sent messages. It is important that this process should always be
available for input to prevent process blocking.

Event Message Arrival : Event messages arrive in the TW process from the input
router via the event.p protocol. On receipt, an immediate check is made to ensure
the event is at its correct destination - if not the transputer error flag is set (with
a call to procedure crash) and the system terminates. Assuming events have been
correctly routed, an ascknowledgement of receipt is generated and sent to the sender
via the output router with the event.rec.ack.p protocol.

in this implementation the CP injects initialising in to the SPA and does not
currently have the capability to receive event acknowledgements. Therefore to
prevent their generation the CP sets the sender and receiver message data fields
equal, and on receipt of event messages, the tw process checks for this equality.
and if so suppresses acknowledgement generation. This condition is only ever true
for initialising events, although in future implementations, this imposition may
be a restriction - if we require to route message events to the IQ of the sending
process for example. A simple fix would be to always generate acknowledgements
and provide the CP with the capability of receiving acknowledgements.

If the received message is an antimessage, an attempt is made to annihilate it with
its positive message in the IQ, assuming it exists, with a call to the procedure
try.to.annihilate. In the current implementation, the routing network will always
ensure that messages arrive in the order in which they are sent, therefore, when
an antimessage does arrive it must always annihilate with its positive message. If
the IQ empties after annihilation the flag waiting.for.more.input is set FALSE ,
to prevent repeated (and uncontrolled) selection attempts from an already empty
queue (see later). If a positive message arrives, and therefore does not annihi-
late, the event is inserted in the IQ in increasing chronological order via a call
to procedure find.pos.to.insert.in.q, and repeated calls to insert.in.q to store each
message component in the appropriate field of the IQ data structure. Both receive
and send time fields of the IQ structure are set to the receive time of the input
message - which is actually the send time component of the message as it left the
sending process. The current code will crash, if at this stage the IQ fills, although
this problem can be avoided be either adopting larger queue structures, estimating
GVT more frequently (hence activating fossil collection more often) or adopting
the flow control techniques as discussed by Jefferson 11].
The process will also crash during this input phase. if either an antimessage or
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a duplicate message is inserted in the IQ, These checks where incorporated for
debugging purposes only, and can be removed if performance becomes an import ant
issue.

Finally during the input phase, a test is made to establish if the receive time of
the inserted message is earlier than the current LVT, if so rollback is triggered by
setting rollback.flag TRUE, and resetting LVT to this new earlier time. In addition,
several pointers associated with the OQ are reset - these will be discussed later,
and any states associated with the TW object are restored to the position just
prior to this new LVT. (In the race track example, the only state is the number of
passing vehicles, given by by n.pass).

Event Receipt Acknowledgement Signal : Acknowledgements are generated im-
mediately by the receiving TW object and routed to the sender on receipt of an
event message via the ctnt.rec.ack.p protocol. The acknowledgement receiver
therefore simply decrements a counter - n.cn.route corresponding to the number
of sent events currently in transit.

GVT Estimation signal inputs : The remaining four input data protocols are con-
cerned with GVT estimation. At periodic intervals (given by gvt.freq) the CP
initiates a sequence of interactions to allow estimation of GVT. (see Section 5.1),

The first message received during GVT estimation requests that each TW object
process suspend outputting events and await receipt of al sent, but unacknowl-
edged messages. (via protocol gtt.req. broad.p). The input process immediately
sets gNt.pausc.req TRUE and ack.gv.pausc FALSE, the significance of which will
be discussed later.

The second signal from the CP occurs when all SP's have flushed their output
buffers and suspended output, and is the request for each object's current LVT.
The input process responds by sending LVT to the CP via the output router
process as part of the hvt.ack.p protocol.

Following receipt of all LVT's, the CP computes GVT, broadcasts this back to
each SP with the gtt.broad.p, where the flag fc.going is set TRUE, to trigger the
start of fossil collection (see below).

Finally when fossil collection has finished, the CP sends a signal to all SP's
(ok.to.cont.broad.p) to allow the resumption of normal processing by setting
gvt.pause.req to FALSE.

If no input data is available, then depending on the states of various flags, one of
four actions is occurs (if possible).

4.3.4 Output event

Events are output only if the ALT guard ok.1o.output is TRUE, which is reset at each
cycle through the code. It is incorrect to attempt to output events if the OQ is empty.
although if rollback is underway the code section should be entered to ensure that
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pointers are correctly reset, or if the number of events in transit (n.en.route) exceeds a
user defined threshold (given by maz.no.not.acked defined in library twlib.tsr - logical
name ps.twlib), or if GVT estimation has been triggered. ok.to.output is therefore a
function of various logical conditions, as given below.

Let A = ok.to.output
B = oq.empty TRUE if OQ is empty
C = rollback.flag TRUE if rollback is underway
D = n.en.route < max.no.not.acked

TRUE if number of messages in transit
is less than max.no.not.acked

E = gvt.pause.req TRUE if GVT estimation triggered
Then

A = (-'B v C) AD A E

If therefore the flag ok.to.output is TRUE and if no input action is possible, then an
output attempt is made, with different actions taken according to whether rollback has
been triggered or not.

The OQ contains events that have been previously sclected from the IQ, processed
and inserted in the OQ (see later), and has associated with it pointers correspond-
ing to the last sent event. Specifically output.q.nezt.cvent.pointer contains a reference
to ouiput.q.pointcr, the position of the last sent message whose time is given by out-
put.q.sel.timc.

If the rollback flag is not set, then an attempt is made to select the next chronological
event from the OQ with a call to procedure selct.next.q.etent. If an event is selected (i.e.
the previously selected event wasnot the last in the OQ), it is output to the output router
using the evcnt.p protocol. Pointers output.q.sel. time and output.q.nczt.event.pointer
are updated by the selection procedure. A flag associated with the OQ is set TRUE to
indicate the selected message has been sent, and the counter of the number of events in
transit is incremented. The event is not deleted from the OQ since it may be required
by a subsequent rollback. If an event is not selected the flag oq.empty is set TRUE,
which is a function of the flag ok.to.proces', to prevent repeated unsuccessful selection
attempts.

However, if rollback has been activated, a different course of action is required. In the
input process, rollback is triggered when an event arrives with a time earlier than the
current LVT. This process also sets rb.nzt.ptr to -1 and rb.sel.time to the time of the
message which triggered rollback, pointers which are now used to select rollback events
(antiznessages) from the OQ. Thus starting at the rollback time, events are successively
selected, and deleted forward in time to the final event in the OQ. If the selected event has
been sent (as indicated by the flag stored in the output.q.sent.flag array), its antimessage
is produced and output (n.en.route is incremented), else if the positive message has not
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e = stored event T
* = sent mesage output.q.sel.time

Figure 2:

yet been sent it is deleted only (using procedure try.to.annihilate). If for any reason the
annihilation procedure fails to delete the positive message selected from the OQ, the the
program will terminate via a call to procedure crash.

To resume outputting positive event messages at the correct position after rollback it
is necessary to store two reset pointers. These are rb.reset.time and rb.reset.ptr. Their
values depend on the location of the last output event in the OQ during non-rollback, as
given by the value of output.q.sel.time, with respect to the value of the rollback trigger
time (rb.timc). This is exemplified in Figure 2.

Consider rollback occurring at A ; it is necessary to delete all later OQ events and send
antimessages of events already sent (indicated by *) and then reset output.q.scl.timc to
the triggering rollback time. But if rollback B occurs, later events are deleted only, with
output.q.sel, time remaining as it is. Thus during event input, if rollback is triggered.
then the rollback time must be compared with the current value of output.q.sel. time, to
set rb.rcsct.time (and rb.reset.ptr) as appropriate.

The instruction flow through the code is such that after each attempt to output events
(i.e. ok.to.outptt is TRUE), control is always returned to test for any available inputs. It
is therefore possible for messages with earlier times to arrive and trigger a new rollback
during one already proceeding. This condition is dealt with by essentially permitting
rollback triggering events to cancel with each other, with the net result to use only the
earliest rollback time. As each new rollback is triggered (i.e. messages arrive with a time
less than the current LVT) we update rb.sel.time to this new value and set rb.next.ptr
to -1. As described above, we also check the relationship between the position of this
new rollback time with the current non-rollback event selection time (output.q.scl.tiinc)
and update rb.reset.time and rb.reset.ptr as appropriate.

As events are deleted from the OQ during rollback, it is necessary to examine the
position of the new vacancy with respect to rb.reset.fime - the time at which normal
selections occur after roilback, if it occurs before rb.reset.ptr then the pointer must be
decremented. The annihilation procedure automatically decrements the normal selection
pointer (output.q.scl.time) if necessary. but it is the user's responsibility to correctly reset
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other queue associated pointers.

Rollback terminates when the OQ selection procedure fails to select an event from the
OQ, for deletion and/or sending as an anti-message, because the selection has gone off
the queue end, at which point rollback.flag is set FALSE and the two pointers, out-
pu.q.sel.time and output.q.next.event.pointer, used to control normal event selection
reset to rb.resct.timc and rb.reset.ptr respectively.

4.3.5 Process Event

Events are selected and processed from the IQ, only if there is no available input data, or
output is currently inhibited (ok.to.output equal FALSE), and only if other conditions
used to define the flag ok.to.process are satisfied. Specifically attempts are made to
select events from the IQ for processing, only if IQ contains unprocessed events (i.e.
uaiting.for.rnore.input is FALSE), rollback is not in progress - it is undesirable to insert
events in the OQ during rollback - unless very special care is taken various reset pointers.
if fossil collection is not underway (see later) or if a request has not been received to
shut down for GVT estimation. In future implementations, it may be possible to relax
some of these conditions which have been imposed primarily for safety reasons.

Hence during each cycle through the code, the flag ok.lo.process is set being the logical
'AND' of the inverse of waiting.for.morc.input, rollback.flag, gvt .pausc.rec and fc.going.

i.e. Let A = ok.to.output
B = waiting.for.inore.input
C = rollback.flag
D = gvt.pause.req

E = fc.going

Then

A = -B A -,C A -D A -E

If ok.to.process is TRUE, the next unprocessed event is selected from the IQ via a
call to scect. next. q. event with selection pointers LVT and input.q. ncxt. etcnt.pointe r.

processed and inserted in the OQ. If the selection process goes past its last queue event
the flag waiting.for.more.input is set TRUE to prevent repeated abortive attempts at
unsuccessful selection. It is set FALSE on insertion of a new event in the IQ. Also, if
during event insertion in the OQ a duplicate event is detected, or the queue fills, program
termination will occur.

The processing phase represents the interaction of the event message with the object
represented by the proccss - in the race track example objects are road segments and
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Figure 3:

event messages represent vehicles. Thus in this example, the interaction processing is
trivial, just requiring the update of vehicle position, its send time i.e. the time at which
it leaves the road segment object and the next object destination field. The number of

vehicles which pass through the road segment - n.pass is incremenled, and stored the the

state data queue structure, this is the only state variable associated with the object in
this rather trivial example. In a more realistic simulation object, this processing phase

will dominate overall processing and there would probably be several tens of object state
variable to store.

Events are selected chronologically from the IQ and the object's LVT is updated imme-
diately to the receive time of this newly selected message. The process computes the

new send time (referred to in the code as output.h't), and the modified event inserted in
the OQ using the event receive time (RT) rather than its send time (ST), to maintain

chronological order. This is vital to allow easier event selection from the OQ during

rollback, as shown in the Figure 3. For example, if rollback is triggered with a time of

25, with RT ordering it is easier to select the correct events with RT's of 30 and 40 than
in the case with ST ordering.

4.3.6 GVT Estimation

On receipt of the CP generated signal in each SP to stop outputting event messages.
(gWt.req.broad.p), the flag gvt.paust.req is set TRUE. This has the immediate effect of

suspending output and further processing (ok.to.output and ok.to.process are set FALSEt.

At the start of each cycle through this part of the code, the flag ok.to.ock.pausc if defined,
and only becomes TRUE when the number of un-aknowledged messages (n.cn.routdO

is zero. This immediately triggers an acknowledgement back to the CP denoting close
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down of the SP (via gri.pausc.ack.p). and the flag ack.gct.pause is set TRUE to prevent
repeated generation of acknowledgements.

On receipt of the request for LVT from the ('P (h't.req.broad.p), and fc.going is set to
signify the commencement of fossil collection.

4.3.7 Fossil Collection

During fossil collection, events are successively selected from the OQ from the earliest
event to the event in the OQ prior to GVT, output to the CP and annihilate. As before
use is made of procedures slect.nczt.q.event and try.to.annihilate. Selection is made
with pointers fc.sU.ttmc and fc.etent.ponter, which are both initialised to -1 to allow
selection from the earliest event. Since foss"i collection can occur during the course of
rollback, it is necessary to update pointers rb.reset.pointcr and rb.nxt.ptr, if events are
annihilated from positions earlier in the OQ. In practice this will always be the case since
rollback times are guaranteed ,dways to be grealer .ban GV'I. and hence FC' selection
time.

The corresponding events are a o deleted from the IQ. and if for any reason selected
events are not annihilated processing will tc;mn*nate.

Note.

The current code assumes that there is always a one-t one correspondence btween
events in the IQ and OQ, if this condition. is not met, a more general IQ event selection
and deletion procedure must be developed

When all events up to (but not including) GVT have been output and removed from
the IQ and OQ. the fossil collection process sends a signia! (fc.cnd.of.ctcnt.p, to the

('P denoting fossil collection termination, -rd the flag re.going is set FALSE to prevent
further fossil collection selection attempts.

The (P. oi. receipt of all fc.cnd.of.ecnt.p signals from all SP's responds with
ok.to.brood-p which when received by the input process, resets gttpaus.rev to FALSE.
immediately allowing the recommencement of event output and processing - if poss:ble.

In future implementations it should be possible to resume normal processing (by setting
gtt.pausc.rcq to FALSE) immediately on fossil collection termination, although pract,-e
indicates the requirement for a more robust, deadlock free routing network.

4.3.8 Important Note

Extreme care should be exercised deleting events from the OQ, as the pointers
rb.rcsct.ptr, rbrcsetlzir, rb.nzt.ptr and rb.sd.ttmc may also require updating. These
are not updated by the procedure trty.to.annhiatr. This procedure updates only those
pointer associated directly with the queue structures.
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fc.end.of.event.p

ok.to.cont.broad.p SP's resume normal
> processing

Figure 4: GVT Estimation and Fossil Collection Protc col

5 Low Level Operations

5.1 Glbal Virtual Time Estimation

In order to accurately compute GV- , which is defined as the minimum of all simulation
process LVI s (assuming no unprocessed messages are in transit) it is necessary to bring
th- SPA to a controlled halt. The current implementation achieves this via a complex
message exchange between the CP and each of the SP's. In future implementations, it
may be more efficient to use the Supernode's control bus for example.

The GVT message exchange is gihcn in Figure 4, and is initiated by the CP after a
user defined timeout, given by the constant gtt.freq. (This is defined in library gt'r.tsr -
logical name ps.gvt). At this instant the CP bioadcasts a signal using the gvt.rcq.broad.p
protocol to all SP's. On receipt, each TW simulation process suspends outputting
event messages (by setting 9vt.pause.req to TRUE) although continues to receive and
acknowledge any input messages, and acknowledgements to previously sent messages.
When all sent messages have been acknowiedgcd (i.e. when flushcd becomes set TRUE) a
signal is returned to the controller, signifying that that particular process has successfully

suspended all output, and that all sent messages have been received at their respective
destinations (via the protocol gt.pouse.ack.p). Each process therefore suspends activity
in a controlled manner, guaranteeing that ,o messages become 'stuck' in transit.

The CP meanwhile awaits the set of g9t .pausc.ack.p's from the SPA and respond., with
a request to each SP to send its respective LVT. via the 10t.rq.broad.p protocol. Each
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SP responds to receipt of this broadcast signal with its own LVT (using the t't.ack.p

protocol). And in a similar manner as before, the CP awaits the set of LVT's, from which
it computes GVT (defined a the minimum of the set of received LVT's) and broadcasts
GVT back to the SPA via the 9rt.broad.p protocol.

GVT is the limit to which it is guaranteed that no further rollback in the system will

go beyond, thus any event stored in the system with a time earlier than GVT will

be valid and not later annihilated through a rollback mechanism. The broadcast of

GVT therefore acts a signal to commence fossil collection (fc.going is set TRUE), the

procedure in which event queues are purged to free memory and valid events are output
to the snapshot collector running in the CP. Normal processing is then resumed, when
all SP's have completed fossil collection. (gt.pausc.req is set FALSE).

5.2 Fossil Collection

Fossil collection is triggered on receipt of the latest GVT from the CP, and acts as a
mechanism for displaying and outputting valid events in the simulation system and also

provides a mechanism for releasing memory no longer required.

WVhen fossil collection is triggered, events are selected chronologically from the earliest
event to the event occurring prior to GVT from each of the OQ's and output using the

fc.rcnt.rou0.p protocol. The signal fc.cnd.of.nrcnt.p is then sent to the ('P to denote

that all events up to GVT have been sent by that particular SP. The CP meanwhile
awaits the set of all events from all SP's to commence snapshot generation. During

fossil collection, as events are selected and removed from each OQ, the corresponding

event is deleted also from the IQ. In this implementation a run time error will result if

the corresponding event is not located in the IQ. It is therefore important that there

should always be a one-to-one correspondence between events in the IQ and OQ. In

future implementations. if this constraint cannot be met for what ever reason, then I

more complex selection and deletion strategy will be required.

Following the receipt of the set of fc.end.of.ervcnt.p from each SP denoting that all events
up to GVT have been sent to the ('P and deleted from the state queues, the ('P broad.

casts ok.fo.cont.broad.p. which gives permission for each SP to resume normal processing.

To improve performance, it should be possible to resume normal TW processing imme-
diately it finishes fossil collection, rather than waiting for all processes to finish. This

has not been implemented as it requires a more robust, and totally non blocking message

routing system.

5.3 Queue Data Structures

Each queue is defined by a number of data arrays and scalars:-

x.queue.sizeIlNT x.q.rec.time
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nx.queue.size- INT x.q.send.time

Ix.queue.size] INT x.q.sender
[x.queue.szel INT x.q.recever
[x.queue.sizej INT x.q.sign

ix.queue.n.states) Ix.queue.size] INT x.q.state
[x.queue.size] INT x.q.pointer
lx.queue.size] INT x.q.free.list

INT x.q.last
INT x.q.next.free
INT x.q.next.event.pointer
BOOL x.q.full

where x is either input, output or state corresponding to queue data structures for the
input, output and state queues respectively. x.q.size is a constant set up at compile time
by definition in library tulib.tsr (logical name ps.twlib). z.queue.n.states are constants
defined in the same library, which in the current race track implementation are set equal
to 6.
The first 6 integer arrays define the input, output and state queue data contents.

*.q.rcc.tirnc and *.q.send.timc store event receive and send times respectively, and in

the IQ both fields are set equal to the event receive time, as at this point the send time

from the object is unknown. The next two arrays provide storage for the PID's of the
sender and receiver of the event (r.q.sendcr and z.q.recever). For the IQ the receiver
field should always be the PID of that object, and in the OQ the sender field will be
equal to the local PID. The sign of the message, which dictates whether the message
is an anti-message or not, is stored in z.q.sign, taking values of ±1 only. Finally any
information relating to the message object is stored in x.q.state, and where for example
in the race track code, the 6 states correspond to vehicle parameters. Specifically vehicle
ID, current vehicle PID location, the PID of the next object(not used), the current x
and y coordinates and the vehicle velocity respectively.

This structure is shown in Figure 5 for an OQ. Chronological order of events is actually
maintained with the array output.q.pointer. as described later.

The subsequent data structures maintain chronological order within the queues, and
store other housekeeping information. For example, the 0i value of *.q.pointcr stores
the location of the it, ordered event. Throughout the simulation, events are constantly
inserted and deleted from each of the queues, a link list is therefore provided contain-
ing pointers to the queue data fields, with entries corresponding to vacant positions in
the structure. (z.q.nct.f¢cc). As events are deleted from the queues, this list is up-
dated ensuring the released storage space becomes available for the next event insertion.
nezt.frfa. the head of the link list of free data structure positions, and z.q.last the ref-
erence to x.q.pointer containing the location of the final element in the queue are also
updated.
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Receive Time 2 5 9 101 131 141 16 221- - -

Send Time 3 7 1 10] 161 141 22 181 231- - - I

Sender 44 4 4 4 4 4 4I - -I-I-I

eceiver [2{5 6 3 3 5 5 64 ~ iz~ i
Sign + I +i + i +1 + 1 + I 1+'I

IState[O] ,I l l i l l
Statell) ( ' '' (
IState[2] I I I I I I I

State[2] I ! 1 1 I

• .I ( I I 1 1 1 i I11 1

Figure 5: Queue Data Structure

For example, the send time of the z h chronological event in the OQ is given by

output .q.send.timeiout put .q.pointer i

the sign of the latest event in the IQ is at

input .q.sign[input .q.pointer!input.q.last.'

and the position of the next available vacant slot in the OQ data structure is at

output.q.pointer[output .q.next .free ,

These structures are shown dynamically in the following example where for convenience

only the reccive time of the queue data structure will be shown. (- indicates undefined

values)

The queue structures are ;uxitialy set as in Figure 6.

An event arrives in the empty queue with a receive time of 100, which is inserted at the

position given by nert.free - Figure T.

Subsequently event 2 arrives with a receive time of 85 (Figure 8).

Events 3 and 4 arrive to give the structure depicted in Figure 9.
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Last Event j -11

Event Pointer I (see later)

Figure 6: Initial Queue Structure Values

1 0 11 2 33 4 1516 17 18 19 110111

Receive Time 1100 - I - - I - -I - I - - -I-I

IFree List I - 2 1 3 1 4 1 5 1 6 7 8 I1 9 101 11 121

iQueue Pointer 10I-I-I-I-I-I- - - -
J 1 -I , I J J

(Next Free I I
L ] (N.B. Only relavent values are given)
Last Event 10

lEvent Pointer I-

Figure 7:

l0 1 213 415 16 7r 8 l 9 10 11

(Receive Time 100 851 - - - - - -l-l-l-

-Free List I- 13 1 I I 6 6 7 I 8 I 9 i10 111 121

Queue Pointer 1I loll I I I I I

~Next Free 2T

ILast Event 1 i.e. last event at queue pointer[last event]

(Event Pointer -

Figure 8:
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0 1 12 3 4 5 6 7 1 8 1 9 1 101 llj

!Receive Time 11001 851 - 821 - I - I - F - I - I - I - I - I

Free List 4 1 - 1 5 1 6 I 7 1 8 9 1 101 1ii 121I I ] -l -l -i
Queue Pointer I3IlI I -I -I -I -I-I- -I-I

lNext Free 12

ILast Event I 2

Event Pointer I

Figure 10:
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The antimessage with receive time of 106 now arrives - this annihilates its positive
message resulting in Figure 10.

The next two subsequent events will be inserted at positions 2 and 4 respectively.

Using the technique, storage space released from deleted events is always given priority
for future use, therefore maintaining efficient use of the queue data structure memory
allocation.

6 Message Passing Techniques

Here the techniques to implement message routing and message broadcasting will be de-
scribed, together with a description of three low level routines used for message passing.

6.1 Message routing

6.1.1 Routing Table setup

Given an arbitrary network of M processes, each with up to L 1/0 channels (in this
implementation L = 4). it is required to set up a vector for each process such that the
11h element contains the address (0 - L) of the output channel on which data should be
sent to achieve a shortest path communication to process i. Therefore each intervening
process adopts a similar strategy, of analysing the message destination field and routing
as appropriate.

The definition of this route vector is easiest seen with reference to a simple example.
Rather than describing individual vectors for each process. for convenience each vector
will form part of a total routing table, such that the jf' row represents the rr-,ting vector
in the f' process.

In the current implementation the user is required to set up a table defining inter process
connectivity. This is referred to as corn.tablc and is defined in the library connccti.tsr
with logical name ps.connections.

For example, consider the following process network given in Figure 11.

This network has the following connectivity table (conn.table)
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I I I I I11
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The numbers in the boxes refer to PID's
I The numbers on the channels refer to

channel addresses(O-4)

Figure II: Example Processor Network

0 F T F F
1I T T F F

2 F T T T
3 F T T T
4 T T T F
5 T T F T
6 F T T T

Where the first column indicates the connectivity of the North channel and so on.

Initially each process will have an undefined route vector. These become defined it-
eratively (maximum of n.procs iterations), by repeatedly exchanging, in parallel, data
between all neighbouring processes along every connected channel (given by" tows in the
connectivity table), such that at the ?~

h iteration, each process has knowledge of 0l pro-

cesses at a distance of i steps from itself. An example of this given below. Each row of
the table represents the routing vector of the corresponding process.
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0 1 2 3 4 5 6
0 - * * * * *

1 * - * * * * *

Initial Conditions 2 * * - * * * *

3

05 *1* * * *, 1*

6 * * -* * *

I' TO

0 - * ***I

1 ! * - * 1 0 * *

Iteration 1 2 * - 1 * 2 3
3 * 13 * 21'

4'* 2 * * -10
5 * * 0 1 3 .t

6 3 * 1 * 2*

-- [ TO[

f 07 1 2 3 4 5 6

- 1 * 1 * 1

- 1 1 0 0 0
Iteration2 2 3 1 - 1 2 2 3

3 1 3 - 1 2 3

4 0 2 0 2 - 1 0
5 1 0 1 3 -I0

6 3 2 1 1 2  1

TO

0 . .- 1 1 -1
1 0o-[1 1 0 0 0

Iteration3 2 3 1 - 1 2 2 3

3 3 1 3 - 1 2 3
410 2 0 2 - 1 0

S0 1 0 1 3 - 0
613 2 1 1 2 1 -

At this point the route table is complete and the setup terminates (As the maximum
number of iterations is the maximum data path length, i.e. the network diameter). The
table is actually distributed over the process network, with each process having only

its own route vector (row from the above table), stored in the array variable routf.ah.
It should be noted that no attempt has been made to ensure an even distribution of
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messages throughout the network, certain channels may carry a high traffic load. Also
within the table setup procedure, channels are examined in numerical order, resulting
in certain preferential routes. For example in the above network, data from process 5 to
process 0 will always go via process 2 and not process 4, and similarly for data travelling
in the reverse direction. If a more even balance of communications is desired a more
intelligent routing table setup strategy will be needed.

A message routing sub process exists within each process, which either routes messages
on to adjacent processes, or routes the message to its own internal process. This requires
that each message carry a destination data field containing the process ID of the intended
message recipient. As messages are received the following action is taken:-

If
message.destination.field = PID

then
route message to own internal process

else
route message out on channel given by
route.tabimessage.destination.field]

This subprocess runs in parallel with the corresponding main internal process.

6.1.2 Message Broadcasting

Message broadcasting is essential to compute GVT at periodic intervals. A strategy has
been developed for message broadcasting. which although not efficient, is robust and
easy to implement. It is inefficient in that more than double the number of messages
are transmitted in the system than are theoretically required.

A data broadcast consists of a broadcast initiator (usually the CP) and broadcast data
recipients. In this simple implementation the broadcast strategy is common to both
initiator and recipient.

The broadcast requires M steps, where M is the diameter of the data network. At each
step, all processes await on receipt of the broadcast message, and if and when received.
re-transmits it, on all connected links, including the link along which it was received.
The processes then wait until one, and only one message has been transmitted and
received (although not necessarily in that order) along each connected link. When this
is complete for all connected channels for a process the message is transmitted to the
internal process and appropriate action taken.

An example of this data broadcast technique is given in Figure 12 where we assume
process 1 is the broadcast initiator. The numbers adjacent to each channel and process
refer to the iteration in which data is transmitted along each channel. Thus, for example.
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Figure 12: Data Broadcast Mechanism

,n iteration 1, data is transmitted along channel 0 (to the north) and channel 1 (east)
from process 1 and received in processes 3 and 4. At iteration 2 process 4 re-transmits
this data along channels 0, 1 and 2 (North. East and South) to processes 6, 5 and 1
respectively. The final iteration is the 'echo' of data received in process 0 back to process
6.

6.2 Low level message passing procedures

Three simple low level procedures to allow message buffering and different forms of
channel access are used extensively throughout the simulation code. These are store in
library nct.tsr, logical name ps.net.procs.

6.2.1 Procedure route

This routine is used from within the following two procedures and in the SCP. The
routine provides a channel buffer defined with the ps.time.warp protocol, and handles
all possible protocol combinations.

Parameters

1. CHAN OF ps.time.warp input
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Input channel to buffer procedure.

2. CHAN OF ps.time.warp output

Output channel from buffer process.

3. CHAN OF INT stop

On receipt of any integer down this channel, the procedure (process) terminates.

6.2.2 Procedure array.in.four.out

This procedure accepts data from an array of 4 input channels, and outputs to one of
four separately defined output channels. The procedure is used to convert output from
each time warp process (an array of channels) to 4 distinct channels, to allow easier link
and channel configuration. i.e. data on input[l is output on channel outputl and so
on. Each of the 4 internal data buffers run in parallel, so data blocking cannot occur.

Parameters

1. [4]CHAN OF ps.time.warp input

The array of 4 input channels

2. CHAN OF ps.time.warp outputO

3. CHAN OF ps.time.warp outputl

4. CHAN OF ps.time.warp output2

5. CHAN OF ps.time.warp output3

The four distinct output channels

6. CHAN OF INT stopper

On receipt of an integer along this channel, the procedure terminates.

6.2.3 Procedure four.in.array.out

This procedure is identical to the previous except that it has four separate input channels
and an array of four output channels.

Parameters

1. CHAN OF ps.time.warp inputO

2. CHAN OF ps.tirne.warp inputi
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3. CHAN OF ps.time.warp input2

4. CHAN OF ps.time.warp input3

5. [4]CHAN OF ps.time.warp output

6. CHAN OF INT stopper

As above.

6.2.4 Procedure analyse.network

This process is called from within each SP and the CP in the system, before entering
the simulation phase, and returns important information relating to message routing,
and process connectivity. It must not be called from the HP, GP or the SCP.

Parameters

1. VAL INT proc.id

This is a unique process ID of the calling process and must be greater than or
equal to zero. (Zero corresponds to the CP PID). It is used to address the user
defined connectivity table (conn.tabl6 - which is defined within library connecti.tsr
- logical name ps.conncctions. Unchanged on exit.

2. VAL INT n.proc

This is the total number of processes in the system, excluding the HP, the GP and
SCP. i.e it is the total number of SP's plus one (the CP).

3. [4]CHAN OF ps.time.warp in

These four channels are the inputs to the respective process. In the current im-
plementation, a maximum of 4 input and output channels have been permitted.
Although 4 channels are declared, not necessarily all are used.

4. [4]CHAN OF ps.time.warp out

As above, but the corresponding output channels.

5. []INT route

On return, the &i value of this vector, contains the channel reference (0-3), onto
which data should be transmitted to eventually arrive at the ith process. The

data packet must therefore contain the destination PID address so that intervening
processes can perform similar appropriate routing functions.

6. [4]BOOL active.links

On return, values in this boolean vector indicate the connectivity of the 4 communi-
cation channels. i.e a value of TRUE in the jfI position means that communication
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channel i is physically connected to another process. The vector is simpl- a copy
of the relevant row of the interprocess connectivity table given by array conn.tablc

as defined in the library connecti.tsr - logical name ps.conneclions.

6.3 Queue Handling Procedures

Five low level queue handling procedures have been produced providing facilities for
queue initialisation, event insertion and deletion, and queue event selection. in the

current implementation, the routines have not been written with efficiency in mind, if
performance does become a crucial issue in the future, then large gains could possibly

be made by rewriting these procedures.

These procedures reside in the library qprocs.tcr logical nqme ps.q.procs.

6.3.1 Procedure initialise.q

This procedure initialises the relevant queue pointers and is called once for each queue

data structure, before the simulation starts It has 7 parameters.

1. [lINT queue.time

This is the receil e time field of the queue data structure. and is returned with all
elements set to -1.

2. [lINT queue.pointer

On exit all elements of this array are set to zero.

3. [lINT queue.free.list

On exit, the ith element of this array is set equsl to i - 1, The final element is sel
to a constant identifying the end of list (,astan.frcc.list).

4. INT last

Returned with a value of -1.

5. INT next.free

Returned with a value of 0.

6. BOOL queue.full

Returned set to FALSE.

7. INT event.pointer

Returned with a value of -1.
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6.3.2 Procedure find.pos.to.insert.ia.queue

This procedure establishs the position in the queue data structure at which a new event

message is to be stored. New events are only inserted if the queue is not already full.
The routine primarily updates relevant queue pointers.

Parameters

1. VAL (lINT aneue.time

This array contai i-v the queue receive time. It is returned unchanged and is used

to ensure queue data structure events are maintained in chronological orcier.

2. (lINT queue.pointer

This array is used to store pointers to the chronological sequence of events in the

queue data structure. It is returned with values updated ensuring that the new
inserted event falls correctly in the chronological sequence of parameter 1.

3. VAL []INT queue.free.list

The appropriate value is taken from quceu.f.'-e.list to define the pointer to the
next available fr~e position in the queue data structure. The array is unchanged
on exit.

4. INT last

This is updated (incremented) to provide a reference to queue.pointer which points
to the final event in the queue data structure.

5. INT next.free

On entry this parameter contains a pointer to the next available vacant slot in the
queue data structure. On return, it takes the next value from the link list iven

in fret.list. i.e. on return it takes the value :-

next.free(return) := free.list next .free(entry)'

6. INT event.pointer

Throughout the simulation, events are selected from the IQ and OQ. TIe position

of this selection is given by event.pointer (A separate pointer for each que.' ). This
value is a reference to queue.pointer, and is updated (incremented by one) if the

new event insertion occurs earlier in the queue than the current selected event.

7. INT insert.pos

On return this integer contains a reference to queue-pointer containing the insertion

position in the queue data structure of the new event to maintain chronological
)rder.
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Figure 13: Event Message Insertion

8. INT new.time

On entry ncu'.imrc contains the receive time of the event to be inserted in the

queue data structure. The TW process requires events storage in chronological

order. In this implementation the procedure searches along the queue from the

earliest to the latest event to establish the correct insertion position. which may

be inefficient if the queues are particularly long. It may therefore be desirable to

rewrite this procedure if overall efficiency becomes important.

9. BOOL queue.full

This is set TRUE if the queue data structure is full after event insertion.

For Example

We wish to insert an event with a receive time of 3 in the following queue data structure.

where the current event selected has a receive time of 4 (i.e. event pointer = I). Before

insertion the queue data structure is as given in Figure 13 and after insertion as shown

in Figure 14.

6.3.3 Procedure insert.in.q

Having previously made a call to find.pos.to.inscrt.i .q, to locate the reference to the

insertion position via parameter 7(insert.pos), this procedure physically write the event

data into the queue data structure. It is called once for each data field in the queue data

structure. The procedure contains only one line of code, i.e.

queue position :- value
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Figure 14: Event Message Insertion

Parameters

1. []INT queue.field

This is the relevant field of the queue data structure in which 'value' is written.

2. INT position

This is the reference to the queue data structure at which point 'value' is to
be written. It is unchanged on exit. N.B. This is not the value returned in
inscrt.pos after the call to find.pos.to.inscrt.in.q, but is the value referenced by it

in quciuc.pointcr.

position := queue.pointer insert.pos

3. INT value

This is the actual data value written in the relevant field of the queue data struc-
t ure.

6.3.4 Procedure try.to.annihilate

This procedure is used to delete events from the queue data structures. In Time Warp

simulation, events are only deleted when an antimessage arrives in a queue already

containing its positive message, and during fossil collection. The procedure takes as
parameters the queue data structure and the antimessage, and sequentially searches
through the queue from the earliest to the latest event, until it finds the corresponding

positive message, for large queues this may be inefficient and it may be appropriate
to rewrite this procedure if efficiency ever becomes a prime concern. In this Time
Warp implementation. the positive message will always arrive in the queue before its
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corresponding antimessage, therefore events should always be annihilated. It is therefore
a sensible precaution to check that deletion i.e. annihilation has occurred after a call to
this routine.

During fossil collection, events earlier than GVT are deleted from the data queues. This
procedure is also used to achieve this by artificially forming the antimessage of the event
it is required to delete and calling this procedure. Again more efficient code could be
written to implement this.

Parameters.
I

1. ['INT queue.time

This array contains the receive time of the appropriate queue data structure, in
which it is required to annihilate an event. It is unchanged on exit, and as the
appropriate queue pointers are updated, there is no need to physically delete entries
from this field.

2. VAL []INT queue.from

As above, but contains the data field corresponding to the sender of the event.

3. VAL [lINT queue.sign

As above, but contains the data field corresponding to the sign of the message
(either ±1)

4. [lINT queue.pointer

On exit this array is updated to ensure that chronological order of events is main-
tained.

5. [lINT queue.free.list

On exit the relevant element of this array is set to the old 'next.free'. This effec-
tively adds the vacant position to the front of the link list referring the remaining
vacant positions in the queue structure.

6. INT last

On exit this parameter is decremented, provided an annihilation occurs. This
parameter references queue.pointer which returns the location of the last queue
value.

t 7. INT next.free

On exit this is set to the position of the annihilation, and is the position where
the next insertion will occur.

8. INT event.pointer

On exit, if an event is annihilated earlier than the current selected event given by
event.pointer. this is decremented by one.
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Figure 15: Event Message Annihilation

9. VAL INT new.time

This integer is the receive time component of the message to be annihilated. Un-

changed on exit.

10. VAL INT new.from

As above but this parameter is the sender field of the message to be removed.
Unchanged on exit.

11. VAL INT new.sign

Events will only be deleted if new.time and new.from exist within the queue data
structure and if new.sign has the opposite sign to that located in the queue data
structure. Unchanged on exit.

12. BOOL annihilated

This flag is set TRUE if a valid annihilation occurs, i.e. if new.time and new.from
are located within the queue data structure and new.sign has the opposite sign to
that located within the data structure.

13. INT ani.pointer

This returns the reference to queue.pointer, containing the location of the annihilated
event. It is used to reset a pointer during rollback at the OQ stage. For example we

wish to remove an event with a receive time of 4 as indicated in Figure 15, which results

in Figure 16.
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6.3.5 Procedure select.next.q.event

This function takes as part of its parameter list the current selected event, and returns
a pointer to the next chronological event. It is used to select events from the IQ for
processing and to select events from the OQ for output.

Parameters

1. VAL [lINT queue.time

This is the receive time field of the appropriate queue data structure. It is un-

changed on exit

2. VAL []INT queue.pointer

This is the pointer array providing chronological access to the queue data struc-
tures. Unchanged on exit.

3. VAL []INT queue.free.list

The array containing the link list of vacant positions in the queue data structure.
(N.B. This array is not used by this procedure and is returned unaltered).

4. VAL INT last

This integer acts as a reference to queue.pointer to the last event in the queue data
structure. Unchanged on exit.

5. VAL INT next.free

An integer pointing to the next free available position in the queue data structure.
(N.B. Not used in the current version of this routine)
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6. VAL INT this.lvt

On entry this parameter contains the current value of the event receive time. The
next event in the chronological sequence is returned. To select the first event in
the queue, this parameter and event.pointer should both be set to -1. (e.g. to
indicate the start of fossil collection).

7. INT event.pointer

On entry this parameter contains a pointer to the currently selected event. The
search for the next event starts from this event, making the procedure relatively
efficient. Without this parameter the search for the next event would have to start
from the beginning (or end) of the chronological sequence and work towards the
end (beginning). Also it is perfectly valid for events to exist in the event queues
with identical receive times, which without this pointer could result in events being
selected more than once. On exit this pointer is updated to point to the next event
in the queue data structure.

8. BOOL selected

This flag is set to TRUE if the procedure successfully selects the next event from
the queue data structure, else, if the selection goes off the end of the queue, is set
FALSE.

6.4 Message Protocols

Within the Time Warp simulation system, extensive use is made of occam 2 chan-
nel protocols. All interprocess messages conform to the complex protocol defined by
ps.time.uwarp. The definition of which is stored in the library protocol.tsr (logical name
ps.protocols).

6.4.1 Protocol ps.tine.warp

All transputer links and interprocess channels (within a processor) are given this general
protocol, which currently allows 30 message types. (A few are redundant or obsolete).

Note Changes to the protocol definition should be made sparingly, since it necessitates
recompilation of the entire time warp system.

In the following section, a description of each protocol is provided. Each protocol data
field will be referred to as P1, P2. etc corresponding to the first, second etc message
component of the respective protocol.

1. event.road.p ; INT ; INT ; INT ; INT ; INT

No longer used
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2. event.route.p ; TNT ; TNT ; TNT ; TNT ; TNT ; TNT :: [lINT

Every inter process simulation event message in the system obeys this protocol,
including positive and anti-messages. P1, P2, P3 , P4 and P5 correspond to the
sender PID, receiver PID, message send time, message receive time and message
sign (±1) respectively. The final vector structure, given by P6 and P7 allow
transmission of any special message components. For example in the 'race track'
example, P7 has 6 components corresponding to vehicle ID, vehicle source, vehicle
destination, vehicle position (x and y coordinates) and velocity.

This protocol is not used however between the time warp process and the message
router.

3. gvt.broad.p ; TNT ; TNT

This is used to broadcast GVT from the CP to each SP during the GVT estimation
phase. P1 signifies the ID of the process initiating the broadcast - in this case the
CP (ID = 0), and P2 is the computed GVT.

4. gvt.req.broad.p

Again a broadcast protocol which is part of the GVT estimation procedure. The
gvt.req.broad.p signal is generated by the controller at regular physical times (given
by g9t.frcq) and sent to all SP's, to request each to stop outputting and flush all
output buffers (i.e. await acknowledgements of all previously sent messages).

5. ok.to.cont.broad.p

Used by the controller to broadcast a signal to all SP's, allowing them to continue
normal processing following GVT estimation and fossil collection.

6. gvt.pause.ack.p ; TNT ; TNT

This signal is sent by each SP to the CP. to signify that the SP has ceased out-
putting events, and that all previously sent messages have been received. P1 and
P2 represent 'from' and 'to' fields of which 'to' is required by the data routing
processes. Here P1 is the sender PID and P2 is 0 (the CP PID).

7. lvt.ack.p ; TNT ; TNT ; TNT

Again part of the GVT estimation protocol, here used to send the LVT of each SP
back to the CP. Pl and P2 are the 'from' and 'to' message routing fields, and P3
the LVT.

8. lvt.req.broad.p

After all the SP's have suspended output following a gt .req.broad.p request, the
CP broadcasts this signal to all SP's to request their respective LVT's.

9. event.p ; TNT ; TNT ; TNT ; TNT ; TNT ; TNT :: [lINT

This is the message protocol used between the sequential TW process and the
1/O data router. Message components are as defined in the ct:nt.roufc.p protocol
above.
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10. fc.event.route.p ; INT ; INT ; INT ; INT ; INT ; INT :: [lINT

During Fossil Collection, events are deleted from each OQ in all the SP's up to
(but not including GVT). In addition these events are routed to the CP with this
protocol for snapshot generation. Here the message components are as defined in
event.route.p. Since to TW methodology guarantees that rollback will not occur
prior to GVT, the sign field should always be +1.

11. fc.end.of.event.p ; INT ; INT

Used by each SP to denote to the CP that all Fossil Collection events have been
transmitted. P1 and P2 are the 'from' and 'to' fields required for data routing.

12. il.p ; INT

Not Used.

13. i2.p ; INT ; INT

Used by the HP to send the output option (P1) and graphics delay (P2) to the
('P.

14. i3.p ; INT ; INT ; INT

Not used.

15. i4.p ; INT ; INT ; INT ; INT

Not used.

16. i5.p ; INT ; INT ; INT ; INT ; INT

Not used.

17. iv.p ; INT [lINT

This protocol is currently used to pass initialising events from the HP to the CP.
P1 is the size of P2, which in the current implementation contains initial vehicle
parameters. i.e. start time, vehicle type, source PID of vehicle, destination (set
equal to source), and velocity.

18. an.iv.p ; INT :: [lINT

This is used during the analyse network phase only (analise.network) to exchange
neighbourhood data between connected processes, to set up the message routing
tables.

19. an.il.p ; INT
Not used.

20. event.rec.ack.p ; INT ; INT

As each event message is received by the intended recipient an acknowledgement
of receipt is generated and returned to the message sendr,r. P1 and P2 are used
for message routing to indicate 'from' and 'to' fields with respect to the direction
of the message acknowledgement.
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21. mess.ack ; INT

Not used.

22. proc.term.p

Not used.

23. ps.prot.tt.out.string ; INT ::[]BYTE

This is used to pass data from the CP to the HP and host screen. Screen messages
are encoded using derivatives of the Inmos I/O routines (specifically ps.newline,
ps.write.int, ps .write.len.st ring and ps.write.full.string). These are necessary, since
the current occam io library routines do not permit the use of channels with
protocols.

24. ps.stop

Not used.

25. start.and.analise

This signal protocol is sent from the HP to the CP denoting permission for the
SPA to enter the initialisation and analysis phase to set up routing tables.

26. start.and.analise.ok

Not used.

27. start.of.event.Iist

A protocol signal sent by the HP to the CP to indicate that subsequent messages
along the channel are initialisation events.

28. end.of.event.list

As above, but signifies the end of the initialisation events.

29. gr.raster ; [512]BYTE

Used to transmit graphics data from the HP to the GP running in the B007
processor. This data is transmitted via the CP. In the race track example program,
the graphics backdrop is read to the GP with this protocol.

30. gr.setup.ok

A simple signal protocol used to indicate to the CP that the graphics backdrop
has been successfully sent and displayed on the GP.
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6.5 Libraries

The current implementation uses 8 libraries containing commonly used procedures and
various compile time parameters. Library access is via the #USE occam construction
with either the library physical file name or logical name as a parameter. Below is given
a description of each library with its contents.

1. protocols.tsr - logical name ps.protocols

Contains the definition of the protocol ps.time.warp only.

2. twlib.tsr - logical name ps.twlib

Contains constant definitions relating to the queue data structure sizes together
with other constants pertaining to the current time warp implementation. The only
constant s which may require change are etent.size, the number of states associated
with event messages - currently 6, host.event.size, the number of parameter used
to define initialisation events - currently 5 and maz.no.not.acked the maximum
number of un-acknowledged event messages permitted in transit from one process
to another. There is nothing to be gained by increasing this parameter, and under
no circumstances should it be increased beyond the number of inter TW buffers
which is currently two. Reducing it to zero may result in an overall decrease in
performance..

3. gvt.tsr - logical name ps.gvt

Contains the definition of gtt.freq only. i.e. the rate at which GVT estimation and
fossil collection should be undertaken. gHt.freq should be expressed in milliseconds.

4. roadlib.tsr - logical name ps.road.lib

This library contains the physical coordinates of the road network. In the race track
demonstration, the road is split into 38 straight line segments. The coordinates
defined in track represent road segment end coordinates.

5. q.procs.tsr - logical name ps.q.procs

This library contains the 5 occam procedures used for manipulating the time warp
queue data structures. Specifically find.pos.to.insert.in.q identifies the insertion
position of new events and adjusts pointers to maintain chronological order within
the structures. Procedure insert.in.q actually copies new events into the queue
data structure at the position returned by the previous procedure. Procedure
try.to.annihilate attempts to cancel an event message with its 'anti' counterpart
i.e the same message but with opposite sign. Initialise.q initialises the queue data
structures and associated pointer arrays. and procedure select.next.q.evcnt selects
the next chronological event (either for processing from the OQ or output from
the OQ) given the queue position and time of the previous event message.
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6. connecti.tsr - logical name ps.connections

This library contains the definition for the connection table conn.table providing
user defined data relating to the current configuration being used. It is extremely
important that this structure is set correctly as incorrect values will result in rout-
ing tables incorrectly defined causing unpredicted event message routing, probably
giving rise to deadlock. The table is arranged as a two dimensional structure with
each row containing 4 boolean entries, corresponding to the connectivity of each
of the 4 process channels. The & row is the connectivity for the ih TW process,
with the only constraint that the CP is process 0. Channels 0 and 3 of the CP
are connected to the HP and GP respectively and take no part in event message
routing. Therefore these corresponding entries MUST be set FALSE, even though
they are connected to other processes.

7. psuserio.tsr - logical name ps.userio

This library contains 4 procedures (ps.write.len.string, ps.write.full.string.
ps.newlinc and ps.writc.inf) that are identical to their Inmos counterparts
(i.e. without the ps. suffix) with the exception that output conforms to the
ps.proLtt.out.string protocol, which is part of the ps.time.warp complex protocol.

8. net.tsr - logical name ps.net.procs

This library contains various procedures associated with data routing. These are
route, array.in.four.out and four.in.array. out, used to provide either access to dis-

tinct channels or arrays of channels and analhse.network, used to set up routing
tables given process connectivity data as defined in structure conn.lablE.

7 Error Conditions

Certain checks are made throughout the time warp simulation process to trap invalid
conditions. Currently these conditions cause the transputer error flag to become set, via
procedure crash resulting in abnormal termination of the processor array. The location
of these errors, if they occur can readily be located using the TDS debugger. During
normal simulator use these error conditions will not occur.

Trapped Fatal Error Conditions

In the CP

A fatal error can only occur in the CP if a message is received with an unexpected
protocol.

In the SP's

Input router - an error will occur only if a message with a forbidden protocol
arrives.
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Time warp process - the following will cause the transputer error flag to become
set.

* If an incorrectly routed message arrives.

" If the IQ becomes full.

" If an attempt is made to insert an antimessage into the IQ - normally these
should annihilate with a previously stored positive message.

" If duplicate events occur in the IQ.

" If a selected rollback event is not annihilated from the OQ.

" If the OQ becomes full.

* If duplicate events occur in the OQ.

" If duplicate events are sent to the CP during fossil collection.

* If an event is not removed from the IQ during fossil collection.

" If an event is not removed from the OQ during fossil collection.

8 Implementation Constraints

The current Time Warp implementation has a number of restrictions. It would be
desirable, although not essential to remove these from future implementations (with the
exception of the first below).

* The current data routing algorithm is not robust, and deadlock will occur if events
are routed randomly within the processor array. In the current implementation all
event messages are routed to neighbouring processes, with returned acknowledge-
ments also therefore between neighbouring processes. This appears to be deadlock
free. During fossil collection all events are routed to a single destination (the CPJ
which also appears to be robust.

" Currently it is not possible to route a message back to the input of the originating
process. This can easily be implemented by providing a soft channel from the
output routing subprocess back to the input process.

" Currently logic has been inserted in the occam code that accepts messages. to
suppress the generation of acknowledgements to initialising events. A trivial fix to
this is to allow the CP to accept acknowledgements.

" The system will crash when either of the input, internal state or output queues fill.
Remedies to this are documented by Jefferson, e.g. returning messages if they can
not be inserted in an input queue. Alternatively. estimating GVT more frequently
will force more frequent fossil collection, or if memory prevails increasing the event
queue sizes.
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" During fossil collection, events are selected and deleted from the OQ and routed
to the CP. The corresponding event is then removci from the IQ. If however an

input event triggers two or more output messages, then currently the code will
attempt to locate these subsequent events in the IQ and fail, since they ar, not
there - resulting in the system stopping. Slightly more intelligent logic during event
removal from the IQ during fossil collection is required to prevent this occurring.

* The event history array in the CP, used to store events for display has a finite size.
If this fills, the system will terminate. It may be possible to dispense with this
large data structure completely, or alternatively computing GVT more frequently
will mean that fewer events are received during fossil collection.

" Currently the user has to manually configure the desired processor topology, allo-
cate processes to them and set up a connectivity tabl- It would be desirable to
do this automatically since it is extremely error prone.

" In future implementations the dynamic creation and deletion of simulation objects
would be highly desirable. It is unclear at the moment how this could be achieved.

" GVT estimation requires a complex message exchange protocol, to ensure that

all processes shut down in a controlled fashion. It may be possible to use the
Supernode's control bus to facilitate this.

9 Race Track Traf9c Flow Example

A demonstration example based on traffic flow modelling has been written to prove tile
time warp concept and validate the TW code. The example is based on vehicles travelling
at different velocities around a figure of eight race track, in which road segments are

represented as stationary objects resident in each SP and vehicles as event messages
moving from object to object. Associated with each event message therefore, are vehicle

properties including vehicle position and which is updated as vehicles move from road
segment to road segment and vehicle identification and velocity. It is assumed in this
demonstration that vehicles do not interact with each other, so that vehicles may coexist

at the same point in space and time, and are transparent to each other for overtaking

purposes.

Road segment objects therefore take event messages representing vehicles as input, mod-
ify vehicle states (e.g. position and time), together with local road state changes (e.g.
time) and output vehicles to the next process. Rollback is triggered each time a vehicle

arrives in a road process with a time less than the local virtual time associated with
that road segment process - which will be arrival time of its last vehicle. If vehicles with
differing veJocities are used for input, then considerable numbers of rollbacks will occur

allowing rigerous system testing.
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Figure 17: Race Track Processor Configuration

9.1 Input Data

Input data residing in a TDS fold consists of the graphics backdrop - a binary du,.p of
a figure of eight race track, and a fold contaii,ing initial vehicles in the system. Each
vehicle is represented by a line in this fold each having 5 integers, vehicle start time.

vehicl, ID, vehicle starling road segment, vehicle destination road sngment (not used;
and %ehicle velocity respectively. The fold end is indicated by -1 as the last entry.

Currently up to 1000 initial vehicles are permitted, although this limit can be in.-reased
by changing the value of the constant max.no.events, as defined in library tu'. ib.ts'r

logical name ps.tu'ib.

In the current implementation the coordinates of each of the 38 road segments defining
the figure of eight road system are provided in the library roadlib.tsr - logical name

ps.road.lib. In future implementations it may be more convenient to read this information

in at run time, as currently, any changes to the network necessitates recompilation of
the simulation system.

9.2 Configuration

The current ptu,:essor configuration is as shown below in Figure 17, where physical
transputer links 0. 1 , 2 and 3 are iepresented by lines from the upper, right, lower and

left edges respectively of the boxes representing processors. Basically the network is
configured as a circular ring with connetions from the CP to processors I an,] 6. Odd

and even numbered simulation transputers (1-15) contain 3 and 2 time warp simulation

at,., I
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Figure 18: Two Process Cluster

processes respectively, such that adjacent road segments are represented in adjacent sim-
ulation processes. Given a non-blocking communications system however, this condition
could be relaxed. The internal process configuration within processors for the 2 and 3
time warp simulation processes are shown in Figure 18 and Figure 19 respectively.

Entries in the process connectivity table conn.table refer to the connectivity with respect
to simulation processes not processors and is as shown in Figure 20.

9.3 Memory Requirements

The amount of transputer memory required depends largely on the queue data structure
array sizes. In this example, eac simulation process has queue structures defined with
capacities of up to 300 entries, and each requires about 60K Bytes of memory, permitting
a maximum of three simulation objects per processor in the rat cage implementation
where each transputer has 256K Bytes of memory. However the physical queue sizes
required will very much depend on the application, it may be possible to reduce their
size significantly. The CP requires 255K Bytes of memory with most of this taken up
with an array storing the event history, required to provide an ordered sequence of events
to the GP. If during normal use it is found that this array fills then it will be necessary
to estimate GVT more frequently. The HP, GP and SCP use 30K, 477K and 4K Bytes
respectively.
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10 The Way Ahead

This report has described the implementation of Jefferson's [1] Time Warp technique on
a distributed array of transputers. Section 8 however describes a few limitations of the
current system which should be addressed with varying priorities in future versions. The
major limitation currently is in the routing strategy used, which is not robust enough
to guarantee deadlock free operation for the random point to point communications
required in a general time warp implementation. Future work must address this issue,
which is also the topic of research in several laboratories. [2,31. Additionally, the current
version relies on a complex message protocol for estimating GVT. This could be sim-
plified in future versions by exploiting global communications paths provided on many
commercial transputer systems.

Longer term work must also address the need for a high level object orientated imple-
mentation language, and the interface between this and Time Warp and also investigate
ways of measuring efficiency and obtain performance comparisons with other simulation
techniques.

11 Conclusion

The successful application of transputers to distributed event driven simulation using
the Time Warp methodology has clearly been demonstrated with transputers and oc-
cam providing a natural vehicle for this class of simulation. The simulation technique
basically comprises a number of communicating simulation object processes, with ap-
propriate action being taken to ensure the correct chronological sequence of processed
simulation events. Time Warp is particularly attractive, since it permits all parts of
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Process channel
0 1 2 3

0 F T T F
1 F T T T
2 F T F T
3 F T F T
4 F T F T
5 F T F T
6 F T F T

7 F T F T
8 F T F T
9 F T F T

10 F T F T

11 F T F T
12 F T F T
13 F T F T
14 F T T T
15 F T F T

16 F T F T
17 F T F T
18 F T F T
19 F T F T
20 F T F T
21 F T F T
22 F T F T
23 F T F T

24 F T F T
25 F T F T
26 F T F T

27 F T F T
28 F T F T
29 F T F T
30 F T F T
31 F T F T

32 F T F T
33 F T F T
34 F T F T

35 F T F T
36 F T F T
37 F T F T
38 F T F T

Figure 20: Race Track Processor Connectivity Table
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a distributed network to operate in parallel (although some of the computation may
later be undone). The need for hardware control of memory management has not been
identified, although the need for a deadlock free, random point to point communications
strategey has.
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13 Appendix

The following block diagrams provide a complete breakdown of the entire time warp
system, including the HP, CP, GP and each CP.

Parallel and sequential processes are separated by vertical and horizontal lines respec-
tively. Where one of several options can occur, for example following input to an occam
ALT statement, options are separated with a dashed horizontal line.

The block diagrams are heirarcical, with composite processes rc-olved gradually into
their respective atomic processes.

TIME WARP SIMULATION - complete overview

I r

lHost CSwitch !Controller Time Warp Graphics
IProcess IController Process Simulation Process
I (HP) IProcess (CP) Processes (GP)

I (SCP) I I (SP's)

(Host B004) (Proc 0) Proc 16) J(Procs 1-15) (Proc 17)

TIME WARP SIMULATION - host process

IOutput Header Information
File Output?

Initialise Output Option

Initialise Graphics Delay

Route Route Multiplex Simulation Receive
Output Output jOutput initialisations messages
Ito Screen Ito File to File from

I and Simulation
Iscreen I Array



TIME WARP SIMULATION - HOST PROCESS - simulation initialisations

Send start.and.analise signal to array

Read in graphics backdrop and send to array

Read in initial event list

Display event list

Send event list to array

TIME WARP SIMULATION - Switch Controller Process

Route data from lRoute data froml
Host (HP) to lController (CP)j
lController (CP) to Host (HP)I I

TIME WARP SIMULATION - Controller Process

i i

iConvert 4 separate JConvert array of I Controller
linput channels to joutput channels to I Subprocess
jarray of input 14 separate output I
channels Ichannels

TIME WARP SIMULATION - CONTROL PROCESS - controller subprocess

istart.and.analyse

ISend introduction message to host(HP) I

Analyse network

I Display CP route vectorI ' I
Initialise Graghics process

Read backdrop from HP

Send data to GP

AI



JInitialise initial event list

IRead start.of.event.list from HP

IRead event list from HP

Read end.of.event.list from HP

Message Handler and Initialisation

Send event list Main Simulation
to SPA Controller

Main Simulation Controller

ALT Generate GVT estimation Interupt

IReceive acknowledgements from CP initiated broadcasts

Receive LVT's from SPA
I I ------------------------------------------------------

Receive acknowledgements that SP's have shut down
I Ifor GVT estimation

I I--------------------------------------------
Receive Fossil Collection data

I I --------------------------------------------
Receive any diagnostics data - routed to HP

GRAPHICS PROCESS

iData Formatter iGraphics Controller

I JInput and format I IDIsplay Graphics data
I !graphics Commands I I

TIME WARP SIMULATION PROCESS ARRAY

ITime Warp 'Time Warp Time Warp Time Warp
object Process object Process object Process object Process



Time Warp Object Process

IConvert 4 separate lConvert array of Analyse Network
input channels to loutput channels
array of input to 4 separate I Sequential Time
channels channels Warp Process

Analyse Network

Initialise variables

Ascertain connected channels

Compute routing table

Sequential Time warp process

SInitialisations

Routing Process i Sequential time warp subprocess

Routing Process

r 1
lInput Router IOutput Router II i I

SWait for input on I Wait for data from I
any input channel linput router or from I

I land act according Isequential time warp I
Ito message type. subprocess, and outputI
Pass data to output it on appropriate
router or sequential output channel
time warp subprocess



Sequential Time Warp Subprocess

lInitialisations

Compute Object Properties

Output next event

Process next event from 10
----------------------------
Acknowledgement for GVT shutdown

----------------------

Fossil Collection

Input to Time Warp Subprocess

event Send acknowledgement to sender
(event.p)

I Attempt to Annihilate from I0

If not annihilated the insert in IQ

Test for Rollback

event I Decrement counter of number of evcnts in transit
acknowedgement I (i.e. events sent but not received)
I(event.rec.ack.p) I

Irequest shutdown Set relavent flags
for GVT estimationI
l(gvt.req.broad.p)

Irequest for LVT send LVT to CP

receive GVT from Fossil Collection
CP

(gvt.broad.p)
---------------I
fossil collection Resume normal Processing
events received
by CP
(ok.to.cont.

broad.p)

_______________________



Output next event

I rollback flag Select and delete appropriate messages
is TRUE from O, and form and send appropriate

anti-messages

jelse jSelect next positive message and send it
Ito the output router

Process Event from 10

ISelect next unprocessed event from IQ

Process this event and store any local state changesI

jInsert processed event in O0

Acknowledgement that process has shut down for GVT estimation

ISend message to CP signifying that all sent messages have beenI
Ireceived, and that process has suspended outputting I

Fossil Collection

Select all events from 00 earlier than GVT

Send these events to CP

I Delete these events from O0I
I Delete corresponding events from I0

Send fc.end.of.event.p signal to CP to signify that allI
events have been sent I
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