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SECTION I

INTRODUCTION

1.1 OBJECTIVE

The objective of this project is to investigate the implementation of object oriented programming
in a large distributed memory Multiple Instruction Multiple Data stream (MIMD) processing system.
The amount of inherent parallelism in a program depends on the number of independent computational
units that can be executed concurrently. To increase parallelism, we must strive to increase the number
of these units.

An object oriented program consists of a collection of self-contained program units, called
objects, that communicate with each other by sending messages. An object encapsulates both the data
and the code necessary to manipulate the data. Thus, objects represent the independent computational
units that can enable parallelism within a program. By distributing the objects over multiple
processors, parallelism can be exploited to speed up program execution. Most importantly, this
encapsulation is a natural part of the object oriented model of computation. Therefore, object oriented
programming can provide the programmer with good conceptual tools to divide his software
application into elements that can be readily distributed among many processors.

1.2 BACKGROUND

MITRE -- through its Future Generation Computer Architectures (FGCA) program -- has
conducted research in parallel computing since 1983 [Harris85, Brando86, Brando87, Prelle87]. Our
original goals were to investigate both hardware and software techniques for realizing speedup through
parallelism. The kinds of programs we consider are completely general purpose. This means we must
be able to support dynamic memory allocation, automatic memory deallocation, and dynamic
communication patterns among heterogeneous asynchronous program elements. Our research has
evolved so that it is currently directed toward operating systems for massive distributed-memory
MIMDs (multiple instruction stream, multiple data stream machines) running general-purpose
programs.

Scalability and reliability are central to our research. By scalability, we mean a system can be
expanded incrementally, and the addition of processors always increases the processing power of the
system. By reliability, we mean application programs continue to run, and run correctly, in spite of
isolated hardware failures.

Distributed memory MIMD architectures can be applied to program solutions that generate
heterogeneous processes, but can permit the use of a large number of processors. To support the
goals of massive parallelism and fault tolerance to hardware failure, the Future Generation Computer
Architectures project designed a distributed memory MIMD architecture consisting of approximately a
million processors, each with its own local memory. The processors communicate by sending
messages to each other, this is the only intercommunications mechanism provided since neither global
communication nor shared physical memory is present [Harris85].

Associated with each computational processor is a special purpose routing processor. The
purpose of the routing processors is to free the computational processors from message routing
chores. The Ametek 2010, a commercially available distributed memory MIMD machine, uses routing
processors and employs a technique called wormhole muting to serve the same purpose [Dally87].

1- 1
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message-passing. The topology is based on a network of orthogonal buses, and is designed with
wafer-scale fabrication in mind. This topology provides so many redundant communication paths that
even a relatively simple message routing algorithm can successfully route messages in a physical
system where a large number of the processors have failed.

For the model of computation, object oriented programming was selected. This model has been
popular in the computer simulation and artificial intelligence communities for some time. Lately its
popularity has begun to spread to the general software engineering community because of the
modularity and code reusability it provides for software development. In this model, the data and
control functions are encapsulated in self-contained program units called objects. These objects
communicate with each other by sending messages. An object can be likened to a real-world entity. It
has a state that it maintains, represented by instance variables or memory locations. It responds to
stimuli, represented by the messages it receives. It exhibits behavior in response to the messages it
receives, represented by methods which are simply sets of program instructions. The object oriented
programmer must identify the appropriate objects to represent the elements of the system and the
appropriate tasks each object must perform to carry out work of the system.

The interface between the physical machine and the programmer's model of computation is the
operating system. Its job is to get application programs to run on the physical machine. The operating
system must provide for method execution associated with each message accepted by an object. It
must provide for dynamic allocation and reclamation of objects, that is, resource management. It must
provide for message routing between objects located on different processors, that is, object
communication. In our case, it must do this in a manner that is tolerant of hardware failures and that
does not require centralized control or access to global information.

In FY88, the Distributed Object Oriented Programming project developed a model of execution
for object oriented programs that allows concurrent execution of methods not requiring serialization,
while enforcing synchronization of methods that do. We can thus exploit the parallelism in object
oriented programs in ways that are transparent to the programmer. In addition, this model seems
capable of being extended to support fault tolerant execution of application programs.

We expect that objects will be dynamically allocated and deallocated as a program executes. We
can think of objects as representing units of work assigned to processors. Memory management must
provide a means of finding processors with sufficient free memory to store newly created objects.
Processor management must provide a means of dynamically balancing the load on the processors in a
relatively equitable manner. Since each object a processor is responsible for (at least potentially)
represents a unit of work, one processor should not have to be responsible for a large number of
objects while another is unused.

Consequently, we developed and simulated a resource management algorithm that meets these
requirements. An important feature of the scheme is that the objects are distributed among the
processors in the network in a relatively equitable manner at the time of their creation, and later
redistributed when one area of the processor fabric becomes too densely populated relative to another.

As part of our resource management scheme, we devised a means to reuse the physical memory
that had been freed as a result of object deallocation. The problem of deciding that an object is no
longer needed by a computation is the role of the garbage collector. In the Future Generation
Computer Architectures project, a distributed garbage collection scheme was developed and simulated.
In FY88, the Distributed Fault Tolerant Storage Reclamation project developed and simulated a more
efficient scheme.
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Object relocation can be used to provide load balancing, to minimize communications distance, or
to improve tolerance of hardware failure. However, the objects that need to send messages to
relocated objects must still be able to communicate with them. In the course of our investigations in
the Future Generation Computer Architecture project, we developed two schemes to manage object
communication.

1.3 ORGANIZATION OF THE PAPER

In section 2, we describe the concurrent model of execution. In section 3, we describe the
computation manager, which implements this model. In section 4, we describe the compiler, which
translates a subset of Common Lisp with the Flavors object oriented extension to code executable by
the computation manager. In section 5, we describe the fault tolerant resource management algorithms
and the simulation of the multiprocessor system that embodies these algorithms. In section 6, we
indicate our plans for future work.



SECTION 2

MODEL OF EXECUTION

2.1 INTRODUCTION

In order to develop an implementation of object oriented programming that exploits the
distributed nature of a massively parallel processing environment, we must determine an internal
representation for the three basic system objects: classes, instances, and contexts.

A class is a description of a set of application objects; it consists of the variables that represent the
state and the messages to which this type of object responds. Associated with each message is a
method, a set of program instructions, that represents the behavior of this type of object in response to
a particular message. An instance of a class represents a particular application element. In an instance,
the state variables have values that represent the state of an object at a particular time in a computation.
If an appropriate message is sent to an instance, it will respond by executing the associated method
encoded in the class definition of the instance. An instance is an object that maintains the state of a
particular application element.

A compiled method is the executable version of the source code method. A context is an object
that represents the execution state of a compiled method. It records such things as: whether the
method is suspended or runnable; the next instruction to execute; and the environment the method is
executing in, which includes the value of parameters passed to the method at invocation and the value
of the local variables of the method as execution proceeds.

Opportunities for concurrency can be discovered in several ways. The programmer can use
language constructs to explicitly identify program elements that can execute concurrently, e.g., Occam
PAR and ALT statements [Perrott87], or Ada tasks [Buhr84]. The programmer can rely on a compiler
to identify additional opportunities for concurrency, e.g., DO loops [Perrottg7], or vectorizing
[Hwang84]. However, there may be more opportunities for concurrency that can only be discovered
at execution time because they depend on the data itself.

In the following discussion, we describe a model of execution for object-oriented programming
that attempts to identify concurrency that can only be discovered during the actual execution of the
program. We do not describe any constructs that may be provided to the programmer to explicitly
generate concurrency. We do describe a mechanism that is completely transparent to the programmer
as one means of generating a great deal of concurrency. We also describe a mecha, .. , for managing
concurrency, regardless of how it is generated.

2.2 A CONCURRENT MODEL OF EXECUTION

The runtime behavior of a program with a given input data set can be represented as a directed
graph with cycles (figure 2-1). The circles in this figure represent objects, and the arrows represent
messages. When an object receives a message, the method associated with that kind of message
begins executing. If we execute tis program on a sequential processor, the labels on the arrows
represent the order in which the messages are processed. Every arrow represents a request for
processing. Associated with each request is a reply message that is not shown.
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Figure 2-1. Senal Execution of the Program

We may attempt to make this program execute faster by running it on a multiprocessor. If
objects do not reside in the same processor, it may be possible for them to process messages
concurrently. However, ve must ensure that the parallel execution yields the same result as the
original serial execution. This requirement places constraints on the way multiple messages are
handled by a single object.

Suppose we have an object A with state variables x, y, and z, and the method in figure 2-2.
Suppose the value of x is an object B, and the value of y is an object C. Then line I says "Send the
message :ml to B, and assign to x-result the value that B returns." Similarly, line 2 says "Send the
message :m2 to C, and assign to y-result the value that C returns."

(1) x-result send x :ml

(2) y-result send y :m2

(3) z := x.result + y-result

Figure 2-2. A Method

Since we do not need the results of these messages until line 3, it may be safe to send both
messages and have them processed concurrently. At line 3 we have to wait for both results to be
returned before the method can proceed.
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(1) x-result send x :m

(2) y-result send y :m2 (x-result)

(3) z := y.result

Figure 2-3. Another Method

Now consider another method (figure 2-3). In this method the value of x-result is passed as an
argument in the :m2 message to C. It appears the :m2 message cannot be sent to C until the reply from
the :m I message to B has been received. However, we can continue processing by using a special
kind of object called a future object that plays a role similar to Futures in Actors [Agha86], MultiLisp
[Halstead85] or MultiScheme [Miller87] A future object acts as a place holder for the result of a
computation. It has one state variable and two messages, :get-value and :set-value. In the method of
figure 2-3, A can still send both messages and have them processed concurrently. Before it sends the
first message, however, it creates a future object F md sets the value of x-result to F. When it sends
the :ml message to B, it passes a pointer to F in a special field of that message. Instead of returning its
result to A, B sends it to F in a :set-value message.

For some operations, C may be able to use the future without knowing its actual value. For
example, C may pass F as an argument in a message to another object, or it may assign F as the value
of one of its state variables.

If C needs the actual value of B's result to perform an operation, e.g., addition, then C must be
able to recognize it is holding a future. At that point, C sends a :get-value message to F. If F has not
received a :set-value message before it receives the :get-value message, F postpones responding until it
has received and processed the :set-value message.

2.3 A CORRECT MODEL OF EXECUTION

Let's return to figure 2-2. We have already observed that it appears to be safe to send the
messages in lines I and 2 to be prrcessed concurrently. But in fact this may not be true. If x and y
refer to different objects, say B and C, that do not send any messages when they process their
respective :m I and :m2 messages, it is safe.

On the other hand, if B and C send messages to another object (figure 2-4), it might not be safe.
Suppose B computes for a long time before sending the :m3 message, while C only computes for a
short time before sending the :m4 message. The :m4 message may arrive and be processed before the
:m3 message arrives. It might still be safe as long as neither message writes a state variable that is read
by the other. Otherwise, it may be important that the :m3 message be completely processed first.
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X Y
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Figure 2-4. Different Objects Refer to the Same Qoject

With recursion, it is not possible to finish processing one message before beginning another. In
figure 2-5, object A receives an :ml message. While processing that message it sends an :m2 message
to B. While processing the :n12 message, B sends an :m3 message to A. A cannot complete its :m I
processing until B completes its :m2 processing, and B cannot do that until A processes the :m3
message. A must process the :m3 message with its state variables having the same values as when it
sent the :m2 message to B. Furthermore, any computation A performs in its :ml method after it sends
the :m2 message must begin with its state variables having the same values as when the :m3 method
completed.

:m1

A

:m2 :m4
:m3

B

Figure 2-5. Recursion

2.3.1 Ideas from Distributed Simulation

To satisfy the constraints on how multiple messages are handled by a single object,we borrow an
idea from the world of distributed discrete event simulation. In object-oriented discrete event
simulation on a single processor, there is a set of objects that represent the real-world entitie being
simulated, and a single message or event queue that is kept in simulation time order (figure 2-6). An
entry in the message queue indicates what event is to occur, at what time, and to which object. A
message is taken from the head of the queue, the simulation clock is moved up to the time of the event,
and the appropriate method is executed. The execution of this method may cause its object's state to
change, add one or more messages to the message queue, or delete one or more messages from the
message queue.
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Simulation Clock

Message Queue

From To Message Time

C A :ml 2:20
B C :m2 3:45
C A :m3 4:10
A C :m4 4:15

Figure 2-6. Discrete Event Simulation Single Processor

Essentially two strategies have been proposed for synchronizing the execution of these
simulations on multiprocessors. In both strategies, objects and the associated parts of the message
queue are distributed among a number of processors (figure 2-7). Speedup comes from allowing more
than one object to process a message at a time. With a single simulation clock, only objects with
messages at the current simulation time can execute concurrently. It is assumed that more speedup
comes from giving each object its own simulation clock, and allowing different objects to concurrently
process messages at different simulation times.
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A's Message Queue

' rmTo Message Time[j ]
F A :ml 2:20 O's Message (loue

C A :m3 4:10

""__ _From To Message Time

Cs Message Queue

From To Message Time
B C :m2 3:45

A C :m4 4:15

Figure 2-7. Discrete Event Simulation Multi-Processor

Both strategies distribute the simulation clock and allow each object to keep track of its own
simulation time. In figure 2-7, for example, when A accepts the :ml message, it updates its clock to
2:20. If, at the same time, C accepts the :m2 message, it updates its clock to 3:45. However, if A's
:m I method causes A to send a message to be processed by C at 3 o'clock, and that message changes
the way C's 3:45 message is processed, then C has made a mistake in advancing to 3:45.

Misra, Chandy and others [Misra86J have suggested schemes that force C to block or suspend
until it is safe to go ahead. In order to avoid deadlock, or to resolve it when it occurs, these schemes
require that messages sent from the same source object be received in order, and that potential
relationships among the objects in the simulation be known in advance. C cannot advance to 3:45 if
some object may send it a 3 o'clock message.

The problem with this method is that, in order to avoid deadlock or to resolve deadlock when it
occurs, potential relationships among all objects must be known in advance. It may be possible to
know all relationships in a simulation, but in general-purpose computation, where objects may be
created dynamically, it may not.

Jeffer'on has suggested an optimistic technique called Time Warp [Jefferson82, 85, 87]. In
Time Warp, C processes messages as they arrive, but before processing a message it saves its state.
For example, when the 3:45 :m2 message arrives, C saves its 1:45 state and processes that message.
Now if a 3 o'clock message arrives, C rolls back to its 1:45 staLe, advances its clock to 3 o'clock,
processes the 3 o'clock message, saves a new 3 o'clock state, and then reprocesses the 3:45 message.
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The basic rollback mechanism uses three structures for every object: an input message queue, an
output message queue, and a state stack. The input queue contains messages sent to the object. It is
ordered by message receive timestamp (the time at which the message is to be processed). The queue
contains messages that have already been processed as well as those that have yet to be - the object's
clock identifies where it is in the input queue. When a message arrives with a timestamp earlier than
the object's current time, the object has to roll back to a time no later than the time of the new message,
process that message, and then reprocess all the intervening messages. The output queue contains
copies of all messages sent by the object. It is ordered by message send timestamp (the value of the
object's clock when it sent the message). When the object rolls back, it has to be able to undo state
changes it may have erroneously induced in other objects. It does that by sending what are called
anti-messages to cancel any output messages it has to roll back over. The state stack records the
object's state - its time, and the values of its state variables at that time - before each input message
that was processed. When the object has to roll back, the appropriate state is restored from this stack.

With Time Warp, messages need not be received in correct order, and potential relationships
among objects need not be known in advance. These features make it appealing as a means of
handling synchronization in distributed general-purpose computation. In a message-passing MIMD,
like the Intel iPSC, there may be overhead in ensuring that messages from the same source are
delivered in the order sent. But more importantly, in general-purpose computation we expect
relationships among objects to change frequently, new objects to be created dynamically, and even
classes of objects to be created or modified dynamically.

Jefferson suggests a mechanism to reduce the amount of old state information that need be
retained [Jefferson85]. Essentially, the computation is always moving forward; i.e., there is a
simulation time, called the global virtual time (GVT), past which the computation can never roll back.
According to Jefferson [Jefferson85],

"It can be proved that the theoretical definition of GVT for an instantaneous snapshot can
be characterized operationally as the minimum of (a) all virtual times in all local virtual
clocks in the snapshot, (b) all virtual send times in unreceived messages in the input
queues of the snapshot, and (c) all virtual send times in messages that have been sent but
not yet acknowledged (and may, therefore,be in transit at the moment of the snapshot)."

State information with timestamps earlier than GVT can be discarded. For example, if an object has
states with timestamps 1, 2, 3, 4, and 5 o'clock and GVT is 3:30, then the states with timestamps I
and 2 o'clock and messages with send times before 3:30 may be discarded.

GVT is also essential to knowing when to commit to exception handling and I/O. When the
execution of a method causes a runtime error to occur, that error should not abort the program as a
whole. The object that executed the method may yet receive a message with an earlier timestamp, be
rolled back to the earlier time, and not encounter the error condition again. The runtime system can
only commit to an error when it occurred at a time earlier than GVT.

Similarly, the runtime system cannot commit immediately to external program output. The user
should only be able to see the system at GVT - the only time at which it is guaranteed to be in a
consistent state. The program should only be able to affect the external world when it is fully
committed to its actions.

It is perhaps less intuitive that the user herself should not be allowed to inject messages into the
system at arbitrary times. If the user is permitted to send a message at a time earlier than GVT, an
object may have to roll back to a time earlier than the oldest state that is being saved. Thus, for an
interactive simulation, the user must be included in the decision process that determines when all
objects agree that GVT can be advanced.
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2.32 Computation Time

In simulation, the time at which actual events occur, relative to each other, is used to manage the
ordering of simulation events. In general-purpose computation, we need a substitute for time that can
be used to synchronize the computation. A set that is well ordered under the relation of lexicographical
ordering will serve our needs, for example, the set of character strings. Suppose an object W receives
a message with the timestamp "accb." Then every message W sends while processing that message
has a timestamp prefixed by "accb" but with at least one additional character appended, e.g., "accba".
For each message W sends, the character code of the appended character is increased to indicate that,
in terms of the computation, this event occurred after the former event. For example, if W sends one
message with timestamp "accba", the next message W sends has timestamp "accbb." These
timestamps form a well-ordered set that can be used to order multiple messages to individual oo4.;cts to
agree with a serial execution of the same program (compare figures 2-1 and 2-8).

Notice in figure 2-8 that F can decide which message (the one from B or the one from C) to
process first, since the timestamp on the message from B is "ab," the timestamp on the message from
C is "ba", and "ab" is less than "ba". Suppose F receives the "ba" message first and mistakenly
processes it. When it receives the "ab" message it rolls back, processes the "ab" message, saves a
state, and then reprocesses the "ba" message. Similarly, M can decide which message to process first
because "caa" is less than "cb".

C D

Figure 2-8. Timestamps

2.3.3 Handling Replies and Recursion

In Tume Warp [Jefferson87], there are two kinds of messages that can be sent - query messages
and event messages. A query message is simply a request for information. When an object receives a
query message, the method it executes may access, but not alter, the state variables of the object and
may send query, but not event messages, to other objects. When an object receives an event message,
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the method it executes may access (read) and alter (write) the state variables of the object, and may
send query or event messages to other objects. Thus, event messages may have side effects, query
messages may not.

Every query message returns a reply message to the object that sent the query. When a method
sends a query message, it suspends until the reply is received. Event messages do not return replies.
When a method sends an event message, it continues executing. Thus, the result of an event message
cannot be used later in the same method.

With every query message a method sends, the system automatically associates a receive
timestamp. A query's receive timestamp is equal to the current simulation time of the sending object,
the simulation time now. For every event message a method sends, the programmer must specify a
function to calculate a receive timestamp (the time at which a message is to be processed).

Query messages are always processed before event messages with the same receive timestamp.
That is, the reply to a query message with receive timestamp T reflects the state of the object before any
event messages with receive timestamp T have been processed.

In Time Warp, a cycle of recursive query messages all with the same receive timestamps is
allowed. However, a cycle of recursive event messages all with the same receive timestamps is
prohibited. The purpose of this restriction is to avoid Time Warp's equivalent of deadlock - infinite
rollback.

These restrictions may seem natural in the context of simulations of real-world situations;
however, they force a programmer to structure general-purpose programs in an unnatural way.
Consider the method associated with the message :mO in figure 2-9. Suppose we wish to translate this
simple method into the Time Warp programming model. If the processing of the :m I message has no
side effects, then the Time Warp translation in figure 2-10 does the job. The system will automatically
associate the receive timestamp now (the current simulation time of the sending object) with the query
message. After the method in figure 2-10 sends the query message :ml, it suspends processing until
the result of the query is returned.

define-method for the message :mO
R-result :a send R :ml
y := R-result + x

end.

Figure 2-9. A Simple Method

define-method for the message :mO
R-result :m query R :ml now
y : Rmsult + x

end.

Figure 2-10. Time Warp Translation for a Query
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Suppose the :m I message does cause side effects. Suppose it alters one of the receiving object's
instance variables and must report back on the new value. Since an evcm icssage canrot return a
result, the programmer might consider sending a query message (following the :m I message) to the
object R to retrieve the resuL But the system will associate a receive timestamp of now with this
query; thus, the reply to this query will reflect the state of the object R before the :ml event message
had been processed.

Another approach is for the programmer to break up the original method into two methods,
(figure 2-11), and alter the receiving object's method. In the first method, the :m I event message is
sent. When the receiving object completes the computation associated with :m 1, it sends an event
message :finish-mO, with the required result as an argument and with timestamp ater, to the object that
sent it the :m I message. When the object receives the message :finish-mO, it performs the rest of the
original :mO method.

define-method for the message :mO
event R :ml now

end.

define-method for the message :flnish-mO (R-result)
y := R-result + x

end.

Figure 2-11. Time Warp Translation for an Event

The problem with this approach is to decide how much later later should be than now. The
programmer might try to make later equal to now. In Time Warp, a cycle of query messages all with
the same receive timestamps is allowed. However, a cycle of event messages all with the same receive
timestamps is prohibited. So later must be later than now.

The programmer must be very careful in the selection of later to ensure that another event
message with a timestamp between now and later is not processed by the object (figure 2-12). An
intervening event message might change the state of the object so that the :finish-mO method is not
processed correctly. Thus, although it is possible for a programmer to work around the restriction on
event messages not sending replies, it is by no means trivial.
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Figure 2-12. Time Warp Event Replies

In Time Warp, a cycle of recursive query messages all with the same receive timestamps is
allowed. riowever, a cycle of recursive event messages all with the sane -,eiv, drnestamps is
prohibited. This restriction makes side-effecting recursion - which is a useful programming
technique - difficult to do. It requires the programmer to manage the timing of events so that no
intervening messages are processed while the recursion is in progress (figure 2-13). This is not an
easy task as it may be hard to predict (until execution time) the depth of a recursion and, hence, the
number of messages involved.

event 1:00
event 4:00

vent COvetO:1

, - t 200
- event 4:15 e event 3:45N

Figure 2-13. Time Warp Event Recursion
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In our model, a sending object can use the result of a side-effecting message it sent later in the
same method, and side-effecting recursion is fully supported. There are two reasons for this. First,
our model of execution controls time while the program is executing (not the programmer before the
program is run). Our computation time dynamically and automatically attains as fine a granularity as
necessary to support replies from side-effecting messages and side-effecting recursion (figure 2-12).
Second, our model allows method execution to be rolled back so that side-effecting recursion can be
handled correctly.

Figure 2-14. Timestamps with Recursion

In figure 2-14, we see that there are four objects that send messages to the object L: G, H, I and
M. Suppose that the processing of the message from H to L results in L sending a message to M, and
M's processing of that message causes M to send a message to L, that is, recursion occurs. However,
let us also assume that none of the other messages to L causes a recursion to occur.

L has to be able to identify three different situations: a message with an earlier timestamp than
the one it just processed or is currently processing; a message that indicates a recursion is about to take
place; and a message with a later timestaip that is not a recursion, if the timiestamp of the message L
is processing is greater than the timestamp of the incoming message, then L must rollback and process
the earlier message.

If the timestamp of the message L is processing is less than the timestamp of the incoming
message, then L must decide if the incoming message should be processed after the current message
has been completely processed or if recursion is taking place. When a recursion occurs, the
processing of the method associated with the current message is suspended at a point just after it sent
the message that initiated the recursion. The recursive message begins processing with the instance
variables in the state they were in just after the message that initiated the recursion was sent. The
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recursive message must be processed completely before the current message can continue processing.
When the current message resumes processing, the state of the instance variables must be as they were
at the completion of the recursive message.

In the example, suppose L is processing the "caa" message from H. If L receives the "bba"
message from G, L rollbacks. If it receives the "cba" message from I, L keeps the message queued
until it has completely processed the "caa" message. If L receives the "caaaa" message from M, it
recognizes that a recursion is occurring because the timestamp of the current message "caa" is a prefix
of the timestamp of the incoming message "caaaa."
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SECTION 3

COMPUTATION MANAGER

3.1 INTRODUCTION

Our model of execution uses both futures and rollback to synchronize elements of the
computation when necessary. The details presented here correspond reasonably well to our initial
implementation in a simulator used to test and experiment with the design as it develops.

To aid us in our understanding of the problems involved, we have developed code for a
computation manager based on our model of execution that runs on a simulation of a multiprocessor.
To ensure that the model of execution will have wide applicability, the simulation makes very few
assumptions about the multiprocessor system, except that message delivery is reliable, that is,
messages are always delivered correctly, but not necessarily in the order sent.

3.2 TIME MANAGED OBJECTS

An application object is an object defined in the programmer's code. A context object is an object
associated with a particular invocation of an application method. An application object or context
object that changes state as the computation proceeds, must be time managed by the computation
manager. (Read-only application objects do not require time management.) Every application or
context object that requires time management, is wrapped in a Time Warp object (figure 3-1). Each
Time Warp object has three instance variables: current-state, input-queue, and old-states stack. The
current-state and each element in the old-states stack is a State object with instance variables: time, the
application or context instance variables, the message-processed at this time (message receive-time
equals the state's time), a list of the messages-sent at this time (message send-time equals the state's
time).

Aplcto or otx

Figure 3-1. Tune Managed Objects

An application object has instance variables that include: the instance variables specified in the
application programmer's code, and a context stack that is used to manage the contexts associated with
messages currently being processed by the object. A context object has instance variables that include:
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the name of its associated Tune Warp application object, the instance variables specified in the
application programmer's code, the arguments associated with its method, a pointer to the array that
embodies the compiled code of the method, an instruction pointer into that array that indicates the next
instruction to be executed, variables for managing local environments established within a method, the
timestamp of the request message that initiated the context, the timestamp suffix for the next request
message to be sent by the context and a variable that indicates whether the context is waiting for the
value of a future object

Each time an object receives a request message, it creates a context object (wrapped in a Tune
Warp object as described above) to manage the execution of the application method associated with the
message.

3.3 DYNAMICS OF METHOD EXECUTION

As a result of method execution, one object may send a message to another object to request
processing. When an object receives a request message, it saves its state and creates a context to
manage the execution of the appropriate method. After creating a context, the object sends it a :start
message that contains the timestamp and argument values in the request message, and copies of the
object's state variables. When the context receives this :start message, it begins executing its method.
When the method completes executing, the context sends the object a :done message that contains new
values for the object's state variables. Until it receives this :done message, the object does not
normally accept additional messages with later timestamps: the first message must be processed to
completion before the next message is taken from the input queue. An exception to this rule is in the
case of recursion, as we shall explain later.

Figure 3-2 illustrates the dynamics of method execution. In this figure, object A receives a
request message with timestamp "j" (Q-j). It creates context A-C-U and sends it a :start message with
timestamp "j" (S-j). While executing its method, A-C-a sends request messages to objects B and C.
By the way we determine computation time, these messages am sent with timestamps "ja" and "jb." B
and C handle their messages similarly to the way A handles its Q-j message. When A-C-a has
completed executing its method, it sends a :done message (D-k) to A with new state variable values.
The timestamp on the :done message is the successor to the timestarnp on the :start message: A-C-U
begins executing its method at time "j" and finishes at time "k." When A receives the done message, it
updates its state variables and takes the next message from its input queue.

Before a method sends a request message to another object, the computation manager creates a
future object to hold the result of the computation performed by the processing of the message. Figure
3-2 also shows a future object, Fut-l, that is used to hold the result of B's computation. Before A-C-0
sends the request message (Q-ja) to B, the computation manager created the future object Fut- i. When
A-C-U sends the message to B it passes a pointer to Fut-I in a special field of the message. When
A-Ca) sends the request message (Q-jb) to C, it passes a pointer to Fut- I as an argumenL After
processing A-C-O's requcst. B-C-1 sends its result to Fut-I in a :set message (set-jaa). If C-C-2 ever
needs the actual value of its argument, it sends a :get message (get-jba) to Fut-1. If Fut-I has already
received the :set message from B-C-I when it receives the :get message from C-C-2, its value is
returned immediately to C-C-2 (R-jbb). If Fut-1 has not received the :set message from B-C-I, it
postpones sending a reply to C-C-2 until its value has been set.
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Figure 3-2. Method Execution

3.4 RECURSION

The mechanism described thus far is not capable of handling recursion, which requires an object
be able to suspend the execution of one method, receive another message, and execute to completion
the method that corresponds to the new message, before it continues the first method. Recursion
occurs if A is sent a request message by A-C-0, or by some other context as a result, direct or indirect,
of a request message sent by A-C-0. Figure 3-3 illustrates how recursive method execution is
performed. A-C-0 sends a request message with timestamp "ja" to A. Ordinarily, request messages
with timestamps greater than the current message remain in A's input queue until the method has
completed execution and A's state variables have been updated. But in this case, A can tell it is in a
recursion and should take the Q-ja message, because its current message timestamp, "j," is a prefix of
the new message's timestamp.

With recursion, an object must have more than one context active at the same time. To handle
this, every object maintains a stack of contexts as part of its state. When recursion occurs, the stack
contains a context for each level of recursion, as well as one for the original request message.

In figure 3-3, when A receives the recursive Q-ja message, it creates context A-C-I and pushes
the new context onto its context stack. Then A sends the context that was previously on the top of the
stack, A-C-0, a :send-values message with the timestamp 'Ja" (SV-ja) and a pointer to A-C-I.

When A-C-0 receives the SV-ja message, it rolls back to its state immediately after sending the
Q-ja message. It then sends A-C-I a :start message with the values that its copies of A's state variables
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had at that time. This ensures that the method A-C-I sees the correct initial values for A's state
variables. When A-C-I finishes executing its method, and sends A a :done message with new values
for its state variables, A forwards those values to A-C-0 in an :update-values message (UV-jb). After
rolling back to its "ja" state, A-C-0 blocks until it receives the UV-jb message from A. Then it
resumes its method with its copies of A's state variables correctly reflecting the complete processing of
the recursive message.

0-Ja D-k

Figure 3-3. Method Execution With Recursion

3.5 CURRENT STATUS OF THE COMPUTATION MANAGER

The computation manager was written in Common Lisp with the Flavors object oriented
extension. In addition to the assumptions mentioned previously with regard to the multiprocessor
system, it assumes that every processor in the multiprocessor machine has a Common Lisp runtime
system that supports the Flavors object oriented extension. This is not an unrealistic assumption given
that both the Ametek 2010 and the INTEL iPSC/2 plan to implement Common Lisp on their systems
by providing each node with a Common Lisp runtime system, and that Flavors is simply an extension
to Common Lisp given by macro definitions. The computation manager would run on top of this
runtime system.

We assume the application programmer is using a subset of Common Lisp with the Flavors
object oriented extension as the application language. Classes are defined by the application
programmer as Flavor definitions with associated methods written using Flavors method defining
macros.

One of our goals has been to investigate concurrency that the system can provide in a manner that
is completely transparent to the application programmer. At the present time no mechanisms in the
form of extensions to the application language are provided. For example, futures are generated and
managed exclusively by the operating system. It is not that we do not envision such extensions. It
would probably be useful to enhance the potential concurrency of a computation to have a statement
that would allow the application programmer to specify that a set of messages may be processed truly
simultaneously (tha is, with the same receive timestamp). It might be useful to allow the programmer
to ask questions about the state of future values; for example, an extension that allowed a computation
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to proceed as soon as one variable of a set of variables is not a future value. However, at the present
time we are simply not attempting to support such extensions. In part at least, because the program
might then be subject to concurrency generated errors that the computation manager is currently
protecting againsL

A compiled method is the executable version of the sourze code method. Compiled methods are
arrays of program instructions. Since we assume the runtime system is Common Lisp, these program
instructions are Common Lisp expressions.

There is nothing inherent in the Common Lisp language that makes it impossible to use another
language. It is simply that the language provides many features that are useful for rapid
implementation of prototype systems, and it is readily available on many different single processor
architectures and will soon be available on a number of multiprocessor systems. Currently the
computation manager runs on top of a simulation of a multiprocessor architecture on both the Sun
running Franz Common Lisp with Flavors and the Macintosh running Coral Common Lisp with
Flavors.

3.6 COMPUTATION MANAGER OVERVIEW

Before an application program can be run, it must be complied into a form executable by the
computation manager. Application methods are translated by the compiler into arrays of program
instructions. These instructions include application program instructions and special directives to the
computation manager. The directives are usually associated with context object methods, for example,
:send-request, :send-done, :push-local-variables, :pop-local-variables.

The multiprocessor simulation uses a message bag to simulate the communication system. When
an object sends a message to another object the message in added to the message bag. The simulated
operating system consists of a loop. First, one or more messages (user specified) are randomly
selected from the message bag and delivered to the appropriate Time Warp application or context
object's input queue. A message contains several fields that include: the object to which the message
is directed, the object that sent the message, the send timestamp, the receive timestamp, the message
type (for example, request, start, done, send-values, update-values), and another field that contains the
text of the message. Next, each Time Warp object is given an opportunity to process a message from
its input queue. Finally, each Time Warp context object is given an opportunity to execute a number of
instructions in its method. The number of instructions executed may be user specified. In the
simulation, this number is meant to represent the amount of processing a processor can perform
relative to the time it takes to send a message. A Time Warp application or context object saves its
current state on its old state stack before it p,: esses a message. In addition, if the execution of an
instruction causes a Time Warp context object to send messages to other objects or to establish or
disestablish a local environment, the context object will save its current state on its old state stack after
it processes the instruction.

When a Time Warp context object gets an :execute-instruction message from the simulated
operating system, it evaluates the element of the compiled method array that the instruction pointer is
pointing to in the scope of the instance variables of the context object. This instruction may include
operations that affect the instance variables of the object, arguments of the method, or currently active
local variables. In addition, the instruction may include operations that cause invocation of one of the
other methods associated with a context, for example, :send-request, :send-done,
:push-local-variables, :pop-local-variables. When the application method code requires that a message
be sent to another object, this request is handled by the invocation of the c. ',xt method associated
with the :send-request message. When the application method has completea executing, the context
method associated with the :send-done message handles notifying the object associated with the
context of the completion of the method and the current state of the object's instance variables.
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The :push-local-variables and :pop-local-variables context methods handle the establishment and
disestablishment of local environments within an application method. The :push-local-variables
context method defines a new class of context object that contains the newly defined, appropriately
initialized, local variables as insLance variables. In addition, the list of names of the new local variables
are stacked on a special context variable, current-locals. If a new local variable has the same name as a
currently active local variable or application instance variable, the name and old value pair is appended
to the nd-locals (another special context variable) list. The name of the old context class name is also
stac, - : on another special context variable, old-local-classes. The old context state is saved on the
old-states stack. A new context state is created that contains a new context object that is an instance of
the newly defined context class. This new context state becomes the current state.

The :pop-local-variables context method creates a new instance of the context class that was
operative before the last local environment was established, that is, before the last :push-local-variables
was executed. The name of this class is obtained by popping the old-local-classes stack. The names
of the last set of local variables that were stacked is obtained by popping the current-locals stack. The
old-locals list is searched to see if it contains any of the names in the last set of local variables. If it
does, the old variable's value is popped from the old-locals stack and made the value of the variable in
the new context object. The old context state is saved and the new state that contains the new context
object is made the current state.

3.7 RECOGNIZING FUTURE VALUES

A future object acts as a place holder for the result of a computation. A future can be assigned as
the value of a variable or passed as an argument in a message to another object. Only when the actual
value of the result of the computation is needed must it be retrieved from the future object.

For certain operati.ons, the Lisp runtime system will return an error if one or more of the
operands is a future value. For e:.ample, attempting to add a future value causes the system to signal
an error. Under other circumstances, this is not the case. For example, in the implementation of
Common Lisp on both the Sun and the Macintosh, the IF statement merely tests if its first argument is
not null.

In the current implement tion of the computation manager, if the Lisp runtime system signals an
error because a future value is iappropriately presented as the argument to a function, the computation
manager checks all the argumnts to the function (as specified by the compiler) and automatically sends
messages to all future objects that are associated with future values that appear as arguments. The
context is then put in a wait state until the actual values are available, and then the statement is executed
again.

For functions that do not generate errors when their arguments fail to meet type requirements, the
compiler generates code that allows the computation manager to test whether any of the arguments are
future values before the instruction is executed (:test-futures). When the actual values of all future
values have been received, the statement is then executed.

3.8 RECOGNIZING RECURSION SYNCHRONIZATION ERRORS

Because the computation is always pressing forward, values of variables may be the wrong type
when a statement is executed. Let us consider the following example. Suppose A is an instance of
my-class with instance variable iv 1, and B is another object, and A has the method given in figure 3-4.
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(detmethod (my-class :help)()
(1) (setq lvi 1)
(2) (send self :set-lvl B)

(3) (send lvi :hello)
)

Figure 3-4. Recursion Synchronization Errors

The first statement sets ivI to the value 1. In the second statement, the variable self contains a
pointer to the instance A itself. In Flavors, this variable is used to allow an instance to send a message
to itself to invoke the same or a different method. Thus, the second statement causes a recursion to
occur by sending a message to A that sets its instance variable iv I to an object B. Finally, the last
statement sends a :hello message to the object B that is the value of ivl.

This example may seem pathological since statement (2) could easily be replaced by the statement
"(setq iv I B)", which directly sets iv I to the object B. However, it illustrates how the side effect of a
recursive invocation may alter the values of instance variables. In addition, the recursion may not be
as obvious as an object sending a message to itself. It could have involved an object sending a
message to another object, which invokes the first object recursively by sending it a message.

When this method is executed on a sequential processor, no error is signaled because the
recursion is completely processed before the third statement is executed. However, the computation
manager tries to obtain concurrency in the computation by executing the third statement before the
results of the second statement are available. It uses rollback to straighten things out when the need
arises. Thus, the first time an attempt is made to execute the third statement, the value of ivl may be I
and not the object B. When the Lisp runtime system tries to execute this statement with iv I having the
value 1, it signals an error because the number I is the wrong tpe. The computation manager traps
this error, and puts the object in a wait state. Eventually, the object A processes the recursive
invocation, which causes a rollback, clearing the error condition. The second time statement (3) is
executed, ivI has the value B, and processing proceeds properly.

3.9 GLOBAL VIRTUAL TIME

Global Virtual Time can be used to decide when to commit to exception handling and I/O, as well
as allowing old states (and messages) to be discarded. At the present time, support for computing and
using Global Virtual Time has not been implemented in the computation manager. This is the next
implementation priority.
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SECTION 4

COMPILER

4.1 INTRODUCTION

We have designed and implemented a compiler that will translate a useful subset of Common
Lisp using the Flavors object oriented extension to code executable by the computation manager. Our
analysis of a number of object oriented Common Lisp programs showed that they use only a subset of
the language for branching, looping and establishing local environments. Accordingly, we have
targeted our initial implementation of the compiler for this subset.

4.2 OVERVIEW OF COMMON LISP

In Common Lisp, programs are written using combinations of forms. When a form is evaluated
by the Lisp run-time system, it usually returns a value (in some cases multiple values) and, in addition,
may cause side effects such as assigning a value to a variable. There are three types of forms:
self-evaluating forms, symbol forms, and list forms. A number or a character string is an example of a
self-evaluating form because it evaluates to itself. A symbol form evaluates to its value. In this sense,
a symbol form plays the same role as a variable in other programming languages. In Lisp, a list is an
ordered collection of elements (El E2 E3 ... En), where Ei is an element of the list. There are three
types of list forms: special forms,function forms, and macro forms. In a list form every element is
itself a form.

Common Lisp defines 24 special forms. They are constructs, each with their own syntax, which
allow such basic things as assignment, sequential execution, branching, iteration, and local variable
definition. The programmer cannot add new special forms. We will discuss some special forms in
more detail later.

Common Lisp provides hundreds of functions, and programmers can define additional ones.
They are written as (F AI A2 ... An) where Fis the name of a function and Ai is a form. Each Ai is
said to be an argument to the function F, and it is said that F is applied to its arguments. When a
function form is evaluated, each argument form is evaluated, left to right, and then the function is
applied to the returned values. While some functions require a fixed number of arguments, others
allow an indefinite number.

For example, the function form (CAR A-LIST) evaluates to the first element of A-LIST. The
symbol CAR has a function associated with it that takes one argument which must evaluate to a list. In
this example then, A-LIST must be a symbol whose value is a list. To add a number and several
symbols' values together, one could write

(+ 1000 COST-OF-MATERIAL COST-OF-LABOR SALES-COMMISSION).

The symbol + refers to the addition function and takes any number of numeric arguments.

The third subtype of list forms is the macro. Common Lisp macros, like those of other
languages, aid the programmer by providing high level constructs built from language basics. Also
like other languages, macros are replaced textually during evaluation or compilation, as opposed to
being linked as a subroutine or function. Common Lisp macros erpand into a form composed of
special forms and functions. Although a macro's expansion may contain other macros, it must
ultimately expand to a combination of special forms andVor functions. Common Lisp defines many
macros and like functions, the programmer may define additional ones.
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Since Common Lisp is such a large language and our goal was to prove concepts, not implement
a marketable compiler, it became apparent that supporting a subset of the language would suffice.
Clearly, we had to support self-evaluating forms and symbol forms. Macros, as noted above, expand
into special forms and functions. Therefore, by having our compiler use the Common Lisp function
MACROEXPAND, which expands macros, we did not further consider macros in general. However,
the Flavor extension macros DEFFLAVOR, DEFMETHOD, and SEND need special treatment for
reasons described later. Since all functions have the same general syntax, that is, a symbol denoting
the function followed by arguments all of which are evaluated, we needed only to support one generic
function. In order to choose which special forms to support, we conducted an analysis of several
object oriented programs. The results indicated that the following eleven special forms would be
required: BLOCK, DECLARE, GO, IF, LET, LET*, PROGN, QUOTE, RETURN-FROM, SETQ,
and TAGBODY. Any of these special forms may be used directly by a programmer, although there
are several that are rarely used by programmers directly because they do not support structured
programming practice. Rather, programmers prefer to use macros that support good style. However,
these macros use these forms when they are expanded.

These eleven special forms allow many programs to run because they supply the basic
programming constructs needed by any programming language. The following is a brief description
of the important aspects of these special forms.

(SETQ variable form) assigns to variable the result of evaluatingform. The value of form is
returned as the value of the SETQ special form.

(PROGNform1 ...formN) provides simple sequencing by evaluating each form, left to right.
The valueformN is returned as the value of the PROGN special form.

(IF test-form then-form [else-form]) is the basic branching form. First test-form is evaluated.
If it evaluates to non-NIL (not false or not empty in the case of data lists), then-form is
evaluated, and its value is returned as the value of the IF special form. If the value of test-form
is NIL then else-form is evaluated, and its value is returned as the value of the IF special form.
If the optional else-form is omitted and the value of test-form is NIL, NIL is returned as the
value of the IF special form.

(QUOTE object) simply returns object; it is used to prevent evaluation. This is useful for
defining constants. QUOTE is usually seen in its macro form, that is, 'object.

(LET (( variableI value I ) ... ( variableL valueL ))forml ... formN) establishes a local
environment in which the forms are evaluated. First, each of the value forms value, ... valueL,
is evaluated in that order, and their values are saved. Then all the variables variablel...
variableL are bound to the corresponding saved values, conceptually in parallel. Then the
forms form, ...formN are evaluated in order. The value of formN is returned as the value of
the LET special form.

(LET* ((variable value1) ... (variableL valueL))formI ... formN) establishes a local
environment in which the forms are evaluated. First value; is evaluated and its value is
assigned as the value of variablel; then value2 is evaluated, and its value is assigned as the
value of variable2 ; and so on. Then the formsformI ... formN are evaluated in order. The
value of formN is returned as the value of the LET* special form. LET* has the same syntax
as LET but allows the valuei form to refer to the variables variableI ... variablei.1 previously
bound in the LET*.
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(TAGBODY [tag I statement) *) supports iteration. Every element in the body of a tagbody
form is either a tag or a statement. A tag is a symbol or an integer. A statement is a form that
is neither a symbol nor an integer, usually it is a list form that is evaluated for its side effect.
Control is transferred to the part of the body labeled with this-tag when a (GO this-tag)
statement is evaluated. If the last form of the TAGBODY is evaluated, and it is not a GO, NIL
is returned. If it is a GO, control is transferred to the tag. Tagbody is rarely used by
programmers directly. However, the macros DOTIMES (provides iteration over the non-zero
integers) and DOLIST (provides iteration over the elements of a data list) are used frequently
by programmers. These macros both use tagbody in their exr:- iion.

(BLOCK name forml ... formN) is used for lexical non-local exits.
Most forms have only one exit and return the value of the last form evaluated. A block form
may have more than one exit. name must be a symbol. The formsform ... formN are
evaluated in order, and the value of formN is returned as the value of the block unless a
(RETURN-FROM name (form]) with the same name as the encompassing block's name is
evaluated. In that case, the value ofform is immediately returned as the value of the block and
execution "roceeds as if the block had terminated normally. If the form is omitted, NIL is
returned.

DECLARE {declaration-specification) * is used to advise the Common Lisp compiler of ways
to make the code more robust or efficient; with one exception - the SPECIAL declaration - it
may be ignored. DECLARE is not a form that falls into the category of basic constructs;
however, an iteration macro will sometimes use DECLARE in its expansion. Since SPECIAL
variables are not supported by the computation manager and efficiency is not a priority,
DECLARE was supported in such a way that SPECIAL declarations generate errors and all
others are ignored.

Three macro forms are provided by the Flavors extension. These allow the programmer to write
object oriented programs. The following is a brief description of the important aspects of these forms.

(DEFFLAVOR flavor-name (inst-varl ... inst-varN) (other-flavors*) options*) is used for
defining classes of objects used in an application program. Every instance of this flavor has
the instance variables inst-varl ... inst-varN. If there areother-flavors then the instance
variables and methods associated with those flavors are inherited by every instance of
flavor-name's class. The options that may be specified include gettable-instance-variables,
settable-instance-variables. When these options are specified they direct the Lisp compiler or
interpreter to automatically generate methods to access (get) and/or alter (set) the instance
variables.

(DEFMETHOD (flavor-name message-name) (argl ... argM)forml "" formN) is used to
define methods for instances offlavor-name's class. When an instance of this flavor receives
the message message-name with arguments arg; ... argM , the formsforml ... formN are
evaluated in order. The last form evaluated is returned as the value of the method execution.

(SEND object message-name formI ...formM) is used to send a message message-name to
instance object. form; ... formM are evaluated in order and their values are bound to the
arguments specified in the method definition. The method associated with this message is
executed within the scope of the object's instance variables and the arguments specified by the
method. The value of the SEND form is the value returned by the method execution.
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4.3 REQUIREMENTS

With this overview of the key elements of Common Lisp, it is possible to examine our compiler
in some detail. The compiler was needed because the model of execution supports future objects and
rolls back when messages are processed out of sequence. To illustrate these ideas, suppose the source
code fragment in figure 4-1 is part of a method for an object S.

(PROGN
(1) (SETO X 15)
(2) (SETQ Y (SEND R :ml X))
(3) (DECF Z X)

)

Figure 4-1. Code Fragment

In line (1), the variable X is set to the value 15. In line (2), the message :ml, with the value of X as an
argument, is sent to the object R; Y is set to the value of the result. In line (3) the variable Z is
decremented by the value of X.

Recall from section 3.3 that the computation manager creates a future object to hold the result of
the :ml message before sending the message to the object R. The message sent to the object R
contains a pointer to this future object in a special field of the message. While the :m I message is
being processed by R, S's method continues executing; this is the basis of the concurrency obtained by
the computation manager. When the :ml message completes its computation it sends the result to the
future object in a :set-value message. A pointer to the future object becomes the value of Y. When the
actual value of Y is required the future object is sent a :get-value message to retrieve it.

If the method associated with the :ml message sent to R were to send a message to the object S,
say a message :m2 message, this must be done prior to altering S's instance variables Y and Z In this
example, though, Y may have already been set to a pointer to a future object and Z may have already
been decremented before it has been examined. If :m2 altered the value of Z, then the computation
done in line (3) will not be done correctly unless the new value is available.

Accordingly, when an object (S) that is currently executing a method receives a message (:m2)
with a timestamp indicating recursion, the context associated with the currently executing method is
rolled back to the state just after sending the message (:m I) that originally initiated the recursive
invocation. This context is then suspended. A new context, associated with the recursive message
(:m2) is established. When the recursive context begins executing, the instance variables must be in
the state they were in just after the message (:m 1) was sent, but before any reply has been received. In
particular, this means that if the result of processing the message that originally initiated the recursive
invocation (:ml) is to be stored in an instance variable, the value of this variable (Y) must be the value
it had just before the message was sent. The recursive context is executed to completion before the
suspended context is allowed to continue executing. Because the recursion may alter the state of one
or more instance variables (Z), when the suspended context does continue it must resume with the
instance variables in the state following the completion of the recursive message.

In the application code, as shown above, a SEND form can occur within another composite form
(SETQ and PROGN) that contains forms that should be evaluated after the SEND form has been
evaluated. When the Lisp runtime system is presented with a composite form it evaluates each
sub-form in turn before returning control to the computation manager. If the computation manager
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were to present such a composite form to the Lisp runtime system, it would not be possible to handle
recursion properly. To support recursion, a SEND form must be in a separate composite form from
the forms that should be evaluated after it.

One purpose of the compiler is to reorganize the application method into a functionally equivalent
set of composite forms that can be presented to the Lisp runtime system by the computation manager
appropriately. To accomplish this task the source code is broken up into chunks of composite forms.
Each chunk becomes an element of a compiled method array. The instruction pointer is an index into
the array, and the code is executed by evaluating the individual array elements. The computation
manager manages the execution of a method by presenting the elements of this array to the Lisp
,-ntime system for evaluation. Disregarding futures, the compiler's output for the above PROGN
form code fragment is given in figure 4-2.

(SETF (AREF S-MO 2)
'(PROGN

(SETO %INSTR-PTR% 3)
(SETO X 15)
(SETO %RESULT% (GET-FUTURE))
(UST :SEND-REQUEST

(LIST(SEND R :TW-OSJECT-NAME) 'M1% X)
(SEND %RESULT% :FUTURE.OBJECT)
)

)

(SETF (AREF S-MO 3)
(PROGN

(SETO %INSTR-PTR% 4)
(SETQ Y %RESULT%)
(SETO %RESULT% (- Z X))
(SETO Z %RESULT%)
)

)

Figure 4-2. Compiled Code Fragment

Since the forms as the user wrote them are destroyed and the new forms are evaluated one chunk
at a time, this presents problems for forms such as LET and LET*. As previously mentioned, these
forms establish local environments. If in the body of a LET form there is a SEND form, the LET will
be broken up into several chunks by the compiler, but each chunk must still be evaluated within the
scope of the locally defined variables. To ensure that the evaluation is done correctly, the computation
manager's cooperation is required. When the compiler encounters a LET form, code is generated that
directs the computation manager to make the local variables available to all chunks that should be
evalu ted within the scope of the LET (:push-local-variables). After the last form of the LETs body,
the comipiler inserts a computation manager directive to make these variables unavailable
(:pop-local-variables).
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The TAGBODY and BLOCK forms are handled similarly because the tags and block names are
lexically scoped and the forms' bodies are broken up. In this case, however, no explicit
communication with the computation manager is necessary. Instead, the compiler uses a private stack
to keep track of each tag, GO, block name, and block RETURN-FROM. A GO or a
RETURN-FROM cannot only exit from the encompassing TAGBODY or BLOCK, but can also exit
from a LET or LET* form. Because of this, the stack is also used to remember where
disestablishment of local environments is required by these non-local exits. This mechanism solves
the problem that these control transfers can abnormally terminate the scope of LET, LET*,
TAGBODY, and BLOCK.

Breaking up forms into chunks also creates a problem regarding a form's returned value. Most
forms return one or more values. Take, for example, the PROGN form. The value returned by the
last form evaluated is returned as the value of the PROGN. But, as demonstrated in the code fragment
above, the original PROGN becomes distributed among more than one chunk. For this reason, the
returning of values must be handled in a way that is unconventional for Lisp. Our implementation uses
a reserved instance variable, %RESULT%, defined by the computation manager, to save returned
values between - and sometimes during - chunk evaluation. The result of the PROGN form that
appeared in the user's original code is the value of (DECF Z X). If that value is used by another form
that contains the PROGN it will be made available as the value of %RESULT%.

Another use of the %RESULT% instance variable is to provide a variable to hold a pointer to the
future object that will eventually hold the result of (SEND R :m I X). This pointer becomes the value
of Y, but not until the next chunk,because in case of recursion, the value of the variable Y must be
available to the recursively called method.

Another purpose of the compiler is to cooperate with the computation manager in the managing
of future objects. Future objects are created and managed by the computation manager -- not by the
programmer. Since futures are never explicitly declared, the value of almost every Common Lisp
symbol appearing as the argument of a function or special form is potentially a pointer to a future
object. Whenever such a symbol is encountered, the compiler identifies the context in which the
symbol is being used. There are three possibilities: the operation may be performed even if the value
of the symbol is a pointer to a future object; an error will be signaled if the value of the symbol is a
pointer to a future object; or the operation may return erroneous results if the value of the symbol is a
pointer to a future object. The first case occurs when the value of a future symbol is assigned to the
value of another symbol or passed as an argument in a SEND. The second case may be
implementation dependent, but usually occurs in functions that do type checking, such as arithmetic
functions. All other functions fall into the third category, along with the IF special form because of the
way the predicate (the test-form) is treated.

Depending upon the way the symbol is used, the compiler either does nothing, lets the error be
signaled, or ensures that the symbol is not a future. In the second case, the compiler generates code
that sets a computation manager variable %TRAP-FUTURES% to a list of symbols that could be
futures. After the variable is set, the computation is attempted. If an error is signaled, the computation
manager recovers, uses the list of potential futures to get their values, and then retries the computation.
The third case is handled similarly, but instead of setting a variable, the computation manager directive
:TEST-FUTURES is generated with the list of potential futures. The computation manager gets the
values of all futures in the list before attempting the computation. Next year, we plan to support
functions that are defined locally to a method. Consequently, functions will then be able to return
futures. The problems introduced by this are being investigated now.
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4.4 IMPLEMENTATION

The compiler accomplishes these tasks in two passes. Lisp, being both a recursive language and
defined recursively, is also conveniently compiled using a recursive program. This is the approach
taken by our compiler. The result is a compact compiler with just over 800 lines of code. In the first
pass, all macros except the Flavor extension macros SEND, DEFMETHOD, and DEFFLAVOR are
expanded into their special forms and function definitions.

As shown above in the sample compiled code, the SEND macro is translated by our compiler
into a form involving a future object and a form containing the computation manager directive
:send-request. In most implementations of Flavors, DEFMETHOD is compiled into a Common Lisp
function. Our compiler creates an array whose elements are Lisp forms. The computation manager
uses this compiled method array to manage the execution of the method. In addition, the method's
name and formal parameters are saved for use in the associated DEFFLAVOR, while the body is
processed like a PROGN form.

DEFFLAVOR is used to define classes in our system also. However, the application program's
DEFFLAVOR definitions must be modified by the compiler to suit our purposes. For example, an
instance variable is added for each method, so that the code array can be found and the method's
arguments known. Also, a Flavor definition may specify that methods should be automatically
generated that access and/or alter the instance variables (recall the options specifier of DEFFLAVOR
described previously). If the application DEFFLAVOR specifies any of these options, our compiler
creates compiled method arrays and names them according to Flavor conventions. They, like user
defined method definitions, are then processed during pass 2.

Each DEFMETHOD macro is converted into a compiled method array that the computation
manager uses to manage the execution of the method. Specifically, the compiler creates an array, each
element of the array is assigned a chunk of code. These chunks of code consist of up to three
components: flow control, user code, and computation manager directives. A method is executed by
evaluating the contents of certain elements of the code array. Flow control determines which elements
are evaluated and in what order. When a method is invoked, an instruction pointer is set to the first
element, and its associated code is evaluated. Part of the evaluated code must set the instruction
pointer to the next element to be evaluated. An important point is that the evaluation of a code chunk
can be viewed as an atomic action. That is, the entire chunk is evaluated by the Lisp runtime system
before control is returned to the computation manager.

The user code component, with perhaps a computation manager directive, is simply a
representation of the user's source code. Although the structure and Lisp forms are different from the
source, they accomplish the same thing. A directive, if present, must appear at the end of a chunk.
This implies that only one per chunk is allowed. These directives instruct the computation manager to
perform such actions as sending messages, controlling local variables, and notifying the object
associated with a context that the execution of the context is complete. These operations are performed
under the control of the computation manager by the context object methods associated with the
messages :SEND-REQUEST, :PUSH-LOCALS, :POP-LOCALS, and :SEND-DONE described in
section 3.2.

4.5 AN EXAMPLE

The following example should clarify the foregoing discussion. Because of the compiler's
voluminous output, the example has been kept short. Given the Flavor and method definitions of
figure 4-3, figure 4-4 shows the output of pass I when applied to the body of the DOLIST macro, and
figure 4-5 shows the code the compiler yields.
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In figure 4-3, the Flavor definition specified that the instance variable(s) must be "gettable," that
is, a method should be automatically generated that returns the value of the instance variables.
Therefore, at the top of figure 4-5, there is a compiled method to "get" or access the instance variable
MESSAGES-SENT. The compiled method OBJECT- I-MI is then shown which corresponds to the
user's method. Near the end of figure 4-5 is the context object Flavor definition based on the user's
Flavor definition. At the bottom of the figure is an uncompiled method generated by the compiler for
cxamining objects controlled by the computation manager.

It can be seen in figure 4-4 that any form requiring pass 2 processing has been marked with
*PASS2*. Also, the SEND macro has been replaced by a computation manager directive referencing
the context object method :SEND-REQUEST. Finally, the symbols THIS-OBJECT and
MESSAGES-SENT have been flagged as being potential Future objects.

(deflavor object-1
((messages-sent 0))
()
:gettable-instance-variables
)

(detmethod (object-I :ml) (object-list)
(dollst (this-object object-list)

(send this-object :m2)
(setq messages-sent(+ messages-sent 1))
)

)

Figure 4-3. Source Code
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((*PASS2" PROGN
(*PASS2 ° TEST-FUTURES (THIS-OBJECT))
(SETO %RESULT% (GET-FUTURE))
('PASS2" SEND-FLAG

LIST
:SEND-REOUEST
(LIST (SEND THIS-OBJECT :TW-OBJECT-NAME) 'M2%)
(SEND %RESULT% :FUTURE-OBJECT)
)

(*PASS2" PROGN
(*PASS2* PROON

(*PASS2 ° TRAP-FUTURES (MESSAGES-SENT))
(SETO %RESULT% (+ MESSAGES-SENT 1))
)

(SETO MESSAGES-SENT %RESULT%)
)

Figure 4-4. Pass 1 Output of DOLIST Body
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Figure 4-5. Compiled Methods and Conext Definitions

(DEFFLAVOR OBJECT- I
(TW-OBJECT-NAME)
NIL
:SETFABLE-INSTANCE-VARIABIES

(DEFPARAMETER OBJECT- I -MESSAGES-SENT (MAKE-ARRAY 3))

(SEWF (AREF OBJECT- I-MESSAGES-SENT 0)
'(PROGN

(SETQ %INSTR-PTR% 1)
(SETQ %ADR-POP-LOCALS% NIL)
(SETQ %RESULT% MESSAGES-SENT)
(LIST :SEND-REQLJEST

(LIST %REQUESTER% 'SET-VALUE (LIST 'QUOTE %RESULT%)) NIL)

(SEWF (AREF OBJECT- I -MESSAGES-SENT 1)
(PROGN

(SETQ %INSTR-PTR% 2)
'(:SEND-DONE)

(SEWF (AREF OBJECT-i1-MESSAGES-SENT 2)
'(PROGN

(FORMAT T "-s methd completely executed instr-ptr -s-V NAME %INSTR-PTR%)
(INCF %INSTR-PTR% 3)

(DEFPARAME TER OBJECT-I-Mi (MAKE-ARRAY 21))
(SEWF (AREF OBJECT-I-Mi 10)

'(PROGN
(SETQ %INSTR-PTR% 1)
(SETQ %ADR-POP-LOCALS% NIL)
'(:PUSH-LOCALS ((%COMIPILER2 NIL))

(SEWF (AREF OBJECT- I-MI I )
'(PROGN

(SETQ %INSTR-PTR% 2)
'(:PUSH-LOCALS ((%COMPILERO NIL))
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(SETF (AREF OB JECT-I-Mi 12)
'(PROGN

(SETQ %INSTR-PTR% 3)
(SETQ %COMP[LERO OBJECT-LIST)
'(:PUSH-LOCALS ((THIS-OBJECT NIL)))

(SETF (AREF OBJECT- I-M 13)
'(PROON

(SETQ %INSTR-PTR% 4)
(SETQ %TRAP-FUTURES% '(%COMPILERO))
(SETQ %RESULT% (CAR %COMPILERO))
(SETQ THIS-OBJECT %RESULT%)
NIL

(SETF (ARiEF OBJECT- I-M 14)
'(PROON

(SETQ %INSTR-PTR% 5)
'(:TEST-FUTURES (%COMPILERO))

(SETF (AREF OBJECT- I-M 15)
'(PROGN

(SETQ %INSTR-PTR% 6)
(SETQ %RESULT% (NULL %COMPLLERO))
(SETQ %COMPILER2 %RESULT%)
'(:TEST-FUTURES (%COMPILER2))

(SETF (AREF OBJECT- I-M 16)
X(PROGN

(SETQ %INSTR-PTR% (IF %COM[PILER2 7 8))

(SETF (AREF OBJECT- I-M 17)
PROC N

(PROGN
(SETQ %RESULT% NIL))

(SETQ %NUM-POP-LOCALS% 0)
(SETQ %RETURN-INSTR-PTR% %ADR-POP-LOCALS%)
(SETQ %INSTR-PTR% 15)

(SETT (AREF OBJECT- I-M 18)
'(PROON

(SETQ %INST-R-fPFR% 9)
(SETQ %RESULTo NIL)

(SETF (AREF OBJECT- I-M 19)
'(PROON

(SETQ %INSTR-PTR% 10)
'(:T*EST-FUTURES (THIS-OBJECT)

4-11



(SETF (AREF OBJECT-I-MI 10)
'(PROGN

(SETQ %INSTR-PTR% 11)
(SETQ %RESULTo (GET-FUTURE))
(LIST :SEND-REQIJEST

(LIST (SEND THIS-OBJECT :TW-OBJECT-NAME) 'M2%)
(SEND %RESULT% :FUTURE-OBJECT))

(SETF (AREF OBJECT- I-MI 11)
'(PROGN

(SETQ %INSTR-PTR% 12)
(SETQ %TRAP-FUTURES% (MESSAGES-SENT))
(SETQ %RESULT% (+ MESSAGES-SENT 1))
(SETQ MESSAGES-SENT %RESULT%)
(SETQ %RESULT%/ NIL)

(SETF (AREF OBJECT- I-Mi 12)
(PROGN

(SETQ %INSTR-PTR% 13)
(SETQ %TRAP-FUTURES% (%COM[PILERO))
(SETQ %RESULT% (CDR %COMPILERO))
(SETQ %COMPILERO %RESULT%)

(SETF (AREF OBJECT- I-MI1 13)
'(PROON

(SETQ %TRAP-FUTURES% '(%COM[PILER0))
(SETQ %RESULT% (CAR %COMPILERO))
(SETQ THS-OBJECT %RESULT%)
(SETQ %NUM-POP-LOCALS% 0)
(SETQ %RET URN-INSTR-P7R% %ADR-POP-LOCALS%)
(SETQ %INSTR-PTR% 4)

(SETF (AREF OBJECT-I1-Mi1 14)
'(PROGN

(SETQ %INSTR-PTR% 15)
(SETQ %RESULT% NIL)

(SETF (AREF OBJECT- I-MI1 15)
'(PROGN

(SETQ %INSTR-PTR% 16)
'(:POP-LOCALS)

(SETP (AREF OBJECT-i-Mi 16)
'(PROGN

(SETQ %INSTR-PTR% 17)
'(:POP-LOCALS)

(SETF(AREFOBJECT-I-Ml 17)
'(PROON

(SETQ %INSTR-PTR% 18)
'(:POP-LOCALS)
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(SETF (AREF OBJECT-1I-M 1 18)
'(PROGN

(SETQ %INSTR-PTR% 19)
(LIST :SEND-REQUEST

(LIST %REQUESTER% 'SET-VALUE (LIST -QUOTE %RESULT%)) NIL)

(SETF (AREF OBJECr-l-Ml 19)
X(PROGN

(SETQ %INSTR-PTR% 20)
'(:SEND-DONE)

(SETF (AREF OBJECT- I1-M 120)
'(PROGN

(FORMAT T "-s method completely executed instr-ptr -s-%" NAME %INSTR-P'R%)
(INCF %INSTR-PTR% 3)

(DEFFLAVOR %OBJECT-1%
((M I% (MAKE-INSTANCE '%ENVIRONMENT-CLASS%

:CODE OBJECT-I-MI
:ARGS '(OBJECT-LIST)

(%REAL-INST-VARS% '(MESSAGES-SENT))
(MESSAGES-SENT% (MAKE-INSTANCE '%ENVIRONMiENT-CLASS%

:CODE OBJECT-i -MESSAGES-SENT
:ARGS (QUOTE NIL))

(MESSAGES-SENT 0)

NIL
(:GETITABLE-INSTANCE-VARIABLES %REAL-INST-VARS%)

(DEFMETHOD (%OBJECT-1 %:EXPLAIN) (&OPTIONAL (N-BLANKS 0))
(FORMAT T "-vt -a = -s-%" N-BLANKS "MESSAGES-SENT' MESSAGES-SENT)
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SECTION 5

RESOURCE MANAGEMENT ALGORITHMS AND SIMULATION

5.1 INTRODUCTION

We expect that objects are dynamically created and discarded (when no longer needed) as a
program executes. We think of objects as representing units of work assigned to processors. Memory
management must provide a means of finding processors with sufficient free memory to store new
objects. Processor management must provide a means of dynamically balancing the load on
processors by distributing objects in a relatively equitable manner.

Together with the Fault Tolerant Storage Reclamation project, we have continued the
investigation of fault tolerant resource management begun in fiscal year 1987 under the Future
Generation Computer Architectures project. We have developed a resource management strategy that
meets these requirements. One feature of the scheme is that objects are distributed among processors
in an equitable manner when they are created. Another feature is that objects are dynamically
redistributed among processors to maintain a relatively equitable distribution.

The scheme uses a control hierarchy (figure 5-1). At each level of that hierarchy, decisions about
object creation and redistribution are made locally. Each level coordinates decisions that cannot be
made without crossing the boundaries of local regions at the next lower level. All decisions are made
using inexact information about current resource use. As a result, resource management algorithms
require less overhead to be able to tolerate hardware failures.

superagents{

agentA A A A A AAA

p P P P P P P P P P P PE]P p P P P P P P P P P P P

Figure 5-1. Resouce Management Hierarchy

The scheme is based on the use of resource agents -- operating system servers distributed
throughout the system. Each agent manages memory allocation for the processors in its local
communication neighborhood. Whenever the memory use in a processor crosses a predetermined
level (e.g., 10%, 20%, etc.), the processor reports to its local agent. Whenever the net memory use in
an agent's neighborhood crosses a predetermined level (e.g., 10%, 20%, etc.), the agent reports to a
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superagent -- another operating system server that oversees activity in several agents' neighborhoods.
In a similar manner, superagents themselves report to other superagents above them. In this sense, a
superagent's neighborhood is the union of its inferiors' neighborhoods.

5.2 ALLOCATION

Suppose an object needs to create an instance of a new object. Without specific information
about which objects will want to communicate with a new object, it is reasonable to create the object in
a processor that is as close as possible to the one containing the object that requests the creation. The
requesting object is initially the only one that knows about the existence of the new object, and,
therefore, the only one able to communicate with it.

A processor sends allocation requests for a specific number of memory units to its local agent
(figure 5-2). That agent assigns each request to whichever processor in its neighborhood it deems
most appropriate; if there is none, it forwards the request to its superagent. If the superagent has
another inferior that may be able to satisfy the request, it forwards the request to that inferior,
otherwise, it forwards the request to its own superagent.

50/

used 212 "m
free lIIII
/ If a level Is crossed

A

1 -... used! 42

Pnes 20 units free 5ot~i owJect #107
P1 needs 20 units t /
for object #1072

P1 3 P2

P2 allocate! spae for #107

Figure 5-2. Allocation Request

If the allocation of an object an a processor causes the memory use in the processor to cross a
predetermined level (for example, from below 40% to above 40%), the processor sends an update
message to its agent to repot its current level, the ammt of memory in use and the amount free (for
example, the processor elxxuts 42 units of memory in use, 58 units free). The agent uses this
information as the basis for selecting an appropiate processor as a candidate for future allocations.
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An agent only has approximate knowledge of the memory use on the processors in its
neighborhood; processors report only when they cross predetermined levels. Furthermore, these
messages may not arrive in a timely manner in addition to the possibility of lost messages, we make
no assumptions about the order of message delivery. Thus, an agent may attempt to assign an
allocation to a processor that cannot honor it because it does not have enough free memory. When this
happens, the processor sends a message to the agent refusing the allocation; this message also contains
information on the processor's current memory use. When an agent receives an allocation refusal, it
may attempt to assign the allocation to another processor in its neighborhood; if it does not have a
processor it deems appropriate, it passes the allocation request to its superagent.

Every time an agent receives updated information from one of its processors, the agent calculates
the net resource use in its neighborhood. If a predetermined level has been crossed, the agent sends an
update message to its superagent. Similarly, every time a superagent receives an update message from
one of its agents, the superagent calculates the net resource use in its neighborhood. If a
predetermined level has been crossed, the superagent sends an update message to its superior (that is,
its superagent).

Since we make no assumptions about the order of message delivery, every processor, agent, and
superagent numbers the update messages it sends. This allows a supenor to ignore earlier update
messages that are received out of sequence.

5.3 DEALLOCATION

When the garbage collector identifies an object as no longer needed by the application, the
Frocessor that is storing the object deallocates the object's space. If this causes the memory use in the
processor to cross a predetermined level (for example, from above 40% to below 40%), the processor
sends an update message to its agent (for example, the processor reports that its current level is 35
units of memory in use, 65 units free). We have already described what happens when an agent
receives an update message.

5.4 REDISTRIBUTION

For this scheme to work efficiently, an agent should be able to find a processor in its own
neighborhood that can satisfy an allocation requesL To this end, each superagent employs a
redistribution strategy to move objects from higher-density areas to lower-density areas within the
superagent's purview.

When a superagent receives an update message, it checks to see if the disparity in resource use
among its inferiors' neighborhoods exceeds a predetermined threshold. If it does, the superagent
directs the inferior with the highest level (by sending it a reduce message) to move objects to the
neighborhoods of those inferiors with which it differs by the threshold. The reduce message contains
a target level the inferior is to achieve, so that its disparity with the superagents other inferiors will be
below the threshold. For example, suppose memory use levels are reported each time an inferior
crosses a multiple of 10%, and the disparity threshold is 20%. Suppose superagent S has four
inferiors in its neighborhood SO, SI, S2, and 53 with memory use levels of 32%, 44%, 47%, and
31%, respectively. Now suppose S receives an update memory use message from S2 that indicates
that its current memory use is 58%. At this point the disparity between S2 and SO and the disparity
between S2 and S3 are both above the threshold. S sends a message to 52 to reduce its memory use
level to below 50% by sending objects from its neighborhood to SO's and S3's neighborhoods (figure
5-3). Agents use a similar strategy to redistribute objects among the processors in their
neighborhoods.
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Figure 5-3. Initiate Redistribution

When an inferior is told to move objects to some other neighborhood, it forwards that directive to
its own inferiors. The directive moves down the hierarchy until it reaches the agents. Agents that are
told to move objects tell their processors to select objects and move them to the destination
neighborhoods. When an object is moved, the same messages are used to find space for the object as
when an object is created (figure 5-4).
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used 53 PI needs 20 units free 72
free 47 for object #107

If a level Is 1 P2
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Figure 5-4. Move ObjeW Rquest

A processor continues to move objects until it reaches its target level; whenever it crosses a
memory use level it sends an update message to its agent. When the net memory use level in an
agent's neighborhood crosses a memory use level, it sends an update message to its superagent.
When the net memory use level in a superagent's neighborhood crosses a memory use level, it sends
an update message to its superagent. In this way updated resource use information is eventually
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reported up the hierarchy until the superior that originally initiated the redistribution is satisfied that a
reasonable balance has been achieved among its inferiors.

Whenever the superagent that initiated a redistribution receives an update message, it reevaluates
its redistribution decision. The superagent may decide that a different target level should be achieved,
or that objects should be moved to different neighborhoods, or that redistribution should be stopped; if
it does, it sends a new directive to its inferiors. Since we make no assumptions about the order of
message delivery, every superagent numbers the reduce messages it sends. This allows an inferior to
ignore earlier reduce messages that are received out of sequence.

Any superagent at any level in the hierarchy may decide to redisuibute objects to balance the load
in its neighborhood. Directives to redistribute from higher-level superagents supersede those of
lower-level superagents. Thus, if a superagent that is currently redistributing objects within its own
neighborhood receives a reduce message from its superior, it sends a new directive to its inferiors.
When an inferior receives a new directive from its superior, the old directive is discarded and the new
directive becomes the operative one.

5.5 SECONDARY STORAGE

We assume that some agents have secondary storage device controllers in their neighborhoods.
In addition to redistributing objects, each superagent employs a strategy for moving objects to
secondary storage when primary storage begins to saturate. When a superagent receives updated
resource information from its inferiors, it checks to see if the total resource use among its inferiors'
neighborhoods exceeds a predetermined threshold. If it does, and if the superagent has not received a
command to move objects to other neighborhoods, and if there are secondary storage controllers in its
neighborhood, it directs those inferiors that have secondary storage controllers in their neighborhoods
to move objects to secondary storage by sending them a ss-reduce message. The ss-reduce message
contains a target level the inferior is to achieve.

When an inferior is told to move objects to secondary storage, it forwards that command to those
of its own inferiors that have secondary storage controllers in their neighborhoods. The command
moves down the hierarchy until it reaches the agents. Agents that are told to move objects to
secondary storage tell their processors to select objects and move them to the secondary storage
controllers.

A processor continues to move objects from its memory to secondary storage until it has reached
(or exceeded) the resource use level it was directed to achieve. As a processor crosses a resource use
level it reports its updated resource use information to its agent. Similarly, an agent continues to direct
its processors to move objects until it has reached (or exceeded) the resource use level it was directed
to achieve. As an agent crosses a resource use level, it reports its neighborhood's updated resource
use level to its superior. In this way, updated resource use information is eventually reported up the
hierarchy until the superior that originally initiated the movement of objects to secondary storage is
satisfied that a sufficient amount of free primary storage is now available in its neighborhood. While
secondary storage movement is in progress, redistribution is also being performed to maintain a
reasonable balance of resource use.

Each time the superior that initiated a movement of objects to secondary storage receives an
update message, it reevaluates its secondary storage movement decision. The superagent may decide
that a different target level should be achieved or that movement to secondary storage should be
stopped; if it does, it sends a new directive to its inferiors. Since we make no assumptions about the
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order of message delivery, every superagent numbers the ss-reduce messages it sends. This allows an
inferior to ig n,.,.arlier ss-reduce messages that are .-,ceived out of scqucnce.

Any superagent at any level may decide to move objects to secondary storage to free primary
memory in its neighborhood. Directives to move objects to secondary storage from higher-level
superagents supersede those of lower level superagents. Thus, if a superagent that is currently
directing the movement of objects to secondary storage within its own neighborhood receives an
ss-reduce message from its superior, it sends a new directive to its inferiors. When an inferior
receives a new directive from its superior, the old directive is discarded and the new directive becomes
the operative one.

5.6 FAULT TOLERANCE

Reliability is especially important in a system as large as a million processors. Given the size and
complexity of such a system, individually reliable components are not sufficient to guarantee the
reliability of the system as a whole. Roughly speaking, a system comprised of millions of
components, each with a mean-time-between-failures (MTBF) of even hundreds of thousands of
hours, can expect to have a net MTBF of a few minutes. The development of large-scale
multiprocessors underscores the need for hardware fault tolerance.

The only kind of hardware failure we consider is catastrophic processor and communication link
failure. We assume that known techniques -- like the use of error-detecting and correcting codes,
comparison of duplicated operations, and protocol monitoring -- are used to ensure that processors that
function do so in a fault-free manner and that communication between processors is reliable
[Anderson85, Bernstein88).

We also assume the connectivity among processors is such that there is more than one path
between any pair of processors, and we assume the hardware or software that makes message-routing
decisions is sophisticated enough to make use of alternate paths to bypass failed processors or
communication links [Chow87]. As time passes and the number of failures throughout the system
increases, there will come a time when there is no path between a given pair of processors. This
violates our assumption about connectivity, and must not be allowed to occur. It is essential,
therefore, that failed hardware can be replaced with new hardware while the system is running, and
that the operating system can recognize new hardware and assimilate it into the running system.

When a processor fails, the objects and messages that are in that processor are lost. Some of
those messages may be operating system messages, and others application messages. In addition, we
lose any operating system services that were being provided by the dead processor. All subsequent
messages to the processor will be returned to the sender as undeliverable.

We only require that the system tolerate isolated hardware failures. By isolated, we mean there
must be a sufficient amount of time following a failure for the system to heal itself. There may be
other failures in other parts of the system, but those parts of the system that contribute to restoring
functionality after the first failure must not fail themselves, at least until they have completed their
failure-recovery tasks.

Our view of fault tolerance is an obviously probabilistic view -- as must be any view, whether or
not it is stated as such. When we say the system can tolerate isolated failures as we have defined them,
we are really saying that the probability of system failure is the probability of two failures occurring in
related parts of the system within a given time window.
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5.6.1 Lost Messages

Resource management must tolerate lost messages. If a processor sends an allocation request to
its agent and does not receive a response within a predetermined amount of time, it assumes that a
message was lost. When this happens, the processor sends the request message to its agent again.
This is repeated until the processor receives a response.

If no message was lost (requests that have to travel far outside the processor's neighborhood
may take longer than the time-out interval to be satisfied), the processor may receive a response to its
first request after it has repeated that request to its agent. The space identified by the first response
received is used for the object; subsequent responses are ignored -- they represent space that is
allocated, but not used. Eventually, the garbage collector recognizes that this space is not being used,
and deallocates it. We discuss ways to reduce the number of times lost messages cause redundant
memory allocation below.

Resource management must tolerate lost update messages. If the lost message was from a
processor to an agent, this may cause the agent to have a poor estimate of the processor's current
resource use. An underestimate may cause the agent to assign an alczation to a processor that cannot
satisfy it, because the processor does not have enough free memory. We addressed this possibility
above. An overestimate may cause the agent to stop assigning allocations to a processor that has
available memory. To recover from this situation, an agent that has not received an update message
from a processor in a sufficiently long time sends a message to that processor requesting an update.
(This message also allows the agent to check that the processor has not failed.) Similar statements
apply to lost update messages from agents to superagents, and from superagents to their superiors.

If an update message from a processor to an agent is lost, the agent may decide to redistribute
objects in its neighborhood. Depending on whether the agent underestimates or overestimates the
processor's resource use, it may direct that objects be moved to or from that processor. The amount of
incorrect redistribution that may take place depends on the spacing between levels at which processors
send update messages. When objects are being moved to or from a processor, at most one level's
worth of objects can be moved before the processor sends an update message to its agent. Thus, the
more closely spaced are the levels at which update messages are sent, the more quickly the agent can
reevaluate its decision to redistribute objects. Similar statements apply to lost update messages from
agents to superagents, and from superagents to their superiors.

Finally, resource management must tolerate lost reduce and ss-reduce messages. To address
this possibility, an agent or superagent periodically resends reduce or ss-reduce messages.

5.6.2 Lost Processors, Agents, and Superagents

Resource management must tolerate lost processors, agents, and superagents. If a message from
an agent to a processor is returned as undeliverable (because the processor has failed), the agent
removes that processor from the list of processors it is managing, recalculates the net resource use in
its neighborhood, and sends an update message to its superagent.

If a message from a processor to an agent is returned as undeliverable (because the agent has
failed), the processor must know of another processor to which it can send its allocation requests.
Thus, every agent and superagent is assigned a backup. Every agent knows the locations of its own
backup and its superagent's backup. Every superagent knows the locations of its own backup,
superior's backup, and inferiors' backups. An agent's backup knows its agent, superagent,
superagent's backup, and which processors are in its neighborhood, but nothing about the resource
use in those processors. A superagent's backup knows its own superagent, superior, superior's
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backup, inferiors' backups and which inferiors are in its neighborhood, but nothing about the resource
usc L-r the infcriors' ncighbrhoods (figure 5-5).

Figure 5-5. Superagents, Agents and Backups

Agents, superagents, and their backups communicate with each other occasionally to make sure
they are still functioning. When an agent or superagent fails, its backup is notified. The backup
performs the following: (1) it makes a new backup to take its place; (2) it informs its superior and
inferiors of its new status, and the location of the new backup; and (3) it receives status information
from its inferiors that enables it to continue managing resource use in its neighborhood (figure 5-6).
When a backup fails, the corresponding agent or superagent creates a new backup to replace the failed
one.
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Figure 5-6. Creating a New Backup Agent

Agents and superagents can be located on any processors. Ideally, an agent should be as close
as possible (in terms of communication distance) to the processors in its neighborhood. Likewise, a
superagent should be as close as possible to its inferiors. A backup should be located in the same
neighborhood as the agent or superagent it backs up. Superagents and their backups should be
distributed as uniformly as possible throughout the system.

Consider the situation when an agent fails and no functioning processor other than the agent's
backup exists in the agent's neighborhood. In this case it is not possible to establish a new backup for
the agent in its own neighborhood. Think of what this means: the agent's processor is the only one
lcft functioning in the agent's neighborhood. We believe the reasonable thing to do in such an extreme
case is for the agent to shut itself down. This means its processor hands over responsibility for
application objects and operating system services to other processors and goes into a restricted mode of
operation in which, perhaps, it only participates in message passing activities.
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5.7 ALGORITHM CONCLUDING REMARKS

Resource management decisions are made at the local level whenever possible. Superagents only
become involved in resource management when coordination is needed among lower level
neighborhoods. This reduces communication and decision-making bottlenecks at higher levels of the
superagent hierarchy. The scheme is, therefore, more amenable to implementation in larger systems.

As we have described, agents use inexact information about resource usc in their neighborhoods
to satisfy allocation requests, and backups have no information about resource use until they take over
for failed agents. This requires less message overhead than if agents and their backups are given exact
information. However, the less frequently processors report status changes, or the longer those
messages take to reach agents, the more out-of-date an agent's information can become, and the more
likely it is to assign a given request to a processor that cannot satisfy it, or to assign requests, so that
resource use is not as uniform as possible throughout the neighborhood. If this happens frequently, it
may be more efficient to lower the thresholds or to consider giving agents (and even their backups)
perfect knowledge of memory use.

We promised to discuss ways to reduce the number of times lost messages cause redundant
memory allocation. Redundant allocation can be avoided if an agent can remember which processor it
assigns to each allocation request, and a processor can remember which allocations it has been
assigned. However, agents and allocating processors cannot remember how allocation requests are
satisfied forever. One solution is to tell them when they can forget how a given request was satisfied.
If the rate of allocation requests is high, or if it takes a long time for agents and processors to be told
they can forget a particular request, then it may be impossible for them to remember everything
necessary. An alternative is to have them remember each request as long as possible -- in other words,
until they need memory to remember newer requests. Redundant allocation can be reduced in this
way, but not completely eliminated.

5.8 SIMULATION

Together with the Fault Tolerant Storage Reclamation project, we have continued development of
a fault tolerant resource management simulation begun in fiscal year 1987 under the Future Generation
Computer Architectures project. This simulation provides a testbed for our algorithms and ideas. The
simulation models resource management (processor and memory management) for a distributed
memory, message-passing MIMD system with a very large number of processors. Few assumptions
are made about the actual hardware; rather, the physical machine is simulated at an abstract level. The
simulation generates statistical information that may be used for analyzing and comparing algorithms.

The simulation permits the user to specify values for various characteristics of the processor
fabric as well as the simulated application objects Some of the characteristics of the processor fabric
the user may specify include the dimension of the processor fabric (say, 16 by 16 or 32 by 32
processors), amount of main memory in each individual processor, number and position of secondary
storage device controllers, number of processors in each agent's region, number of resource use
levels, as well as other characteristics related to the connectivity of the processors, and the
communication bandwidth.

For simulated application objects, the user may specify a set of object sizes and associate with
each size a relative probability of occurtrnce of that size object when a new one is created. For
example, suppose the user specifies three object sizes 1, 10, and 20 and associates the probabilities
60%. 20% and 10%, respectively. When an object is created, 60% of the time, the object will require
one unit of memory for allocation, 20% of the time it will require 10, and 10% of the time it will
require 20. The user may specify a set of object creation rates (the percentage of the time an object will
create another object when it is accessed) and associate with each rate a relative probability of
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occurrence of an object with that rate when a new one is created. For example, suppose the user
specifies two creation rates: 90% and 0% and associates the probabilities 5% and 95%, respectively.
Roughly speaking, this means that 5% of the objects will create another object 90% of the time they are
accessed, and 95% will not create another object when they are accessed. Thus, when an object is
created 5% of the time a creation rate of 90% will be associated with the object, while 95% of the time
a creation rate of 0% will be associated with the object.

As the simulation executes, data indicating how well the system as a whole is functioning are
gathered. The user specifies a data collection interval (for example, 200 ticks). At the end of each
interval, the number of messages of each type is recorded, as well as information gathered from each
processor that includes its resource use data (units of memory in use and free, number of objects, etc.)
and the number of, as yet, unprocessed messages in its input queue.

The data gathered can be examined directly or used as input to a graphical display tool. The tool
shows placement of agents and superagents in the network and displays an animation that shows the
changing processor resource use levels and processor queue lengths as a run of the simulation unfolds.

5.8.1 Initialization

A run of the simulation begins by prompting the user to specify values for various characteristics
of the processor fabric as well as the simulated application objects. Default values are provided for
many of the required inputs, so that the user need only enter those values that differ from the defaults.
After the user is satisfied with the parameter settings, the process of initializing the network begins.
The network is created as an array of simulated processor objects, and communication relationships are
established. Agents, superagents, and backups are assigned to specific processors in the network.
Initialization messages are sent between superagents and their inferiors, between agents and their
processors, and between backups and their associated superagents and agents. An initial set of
objects, specified by the user, is established in the network. Following initialization, the actual run of
the simulation begins.

5.8.2 Two-phase Time Step

The simulation is time driven. There are two phases to each tick of the simulation clock: the
computation phase and the communication phase. During the computation phase each processor in the
network is given an opportunity to process a number of messages, and service a number of objects
which reside in its local memory (this can be thought of as activating a process on the ready queue).
To provide for the asynchronous nature of each processor, the processors in the network are accessed
randomly.

During the communication phase, (after all processors have been given a turn), the
communication of all messages buffered during the computation phase takes place. Messages are
transferred between regions in the network. The processor-to-processor communication is simulated
at an abstract level and demonstrates two properties: (a) message latency , and (b) contention for
communication resources. In the simulation, a group of processors is associated with a message bag
(figure 5-7).
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Figure 5-7. Message Bags

When a message is sen rom one processor to another, the message is placed in the message bag
to which the processor is connected. The message bag accepts all messages it receives and queues
them internally during the computation phase. During the communication phase, the message bags are
randomly polled and each is given a turn to deliver a message. This polling may be done several times
(user-specifiable) before the next computation phase. Messages can be delivered to either the
destination processor (to which the bag must be connected), or to another bag (to which the bag is
connected). The bag can only deliver a certain number of messages to its processors within each
communication phase. In the same way, only a certain number of messages can travel across each
connection to another bag during each communication phase.

5.9 SIMULATION LESSONS LEARNED

5.9.1 Redistribution

We found that our redistribution mechanism works well to spread objects throughout the fabric
in an equitable manner. Even when the fabric is 75% full, most requests for object allocations can be
met by a processor in the same neighborhood as the processor requesting the allocation. The
approximate knowledge the superagents have about memory use in their neighborhood is adequate to
find the available (free) space in remote areas as the fabric becomes full.

The processor message queues are kept to a reasonable length, usually below ten unprocessed
messages at any given time. Even at certain "pressure points" (bottlenecks) in the resource
management hierarchy, the queue lengths grow periodically but recover quickly.
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5.9.2 Seondary Storage

We found that our strategy for moving objects to secondary storage when primary storage begins
to saturate, depends on the rate at which objects are added (either by creation or movement from
secondary storage) to primary storage and on the number of secondary storage devices attached to the
network. The higher the addition rate, the more secondary storage devices are needed to maintain a
reasonably constant memory use level between garbage collection cycles.

Our strategy for using secondary storage in this way does not work well. The number of
secondary storage devices that we consider reasonable does not seem to be adequate to maintain a
reasonably constant memory use level between garbage collection cycles. Although we have never run
our simulation with more than 1024 processors, it is not hard to understand where the diffic-Jty lies.

Let us assume that the time to move an object from a processor to secondary storage is
approximately the same as the time needed to add an object to the fabric -- either by creating the object
or by moving the object from secondary storage to a processor. To be able to use the secondary
storage devices to maintain a system wide memory use level (say, 75%) between garbage collections,
means that the number of objects added to the main memory of the system in a given time interval
cannot exceed the number of objects moved to secondary storage devices in that time interval. The rate
at which objects can be moved to secondary storage depends on the number of secondary storage
devices attached to the fabric.

5.9.3 Inexact Information

The number of messages to complete a request for resources must be minimized. The simulation
was used to evaluate two different allocation algorithms for resource management, and each
algorithm's impact on system performance (number of messages to complete allocation) under the
assumption that it is possible for messages to be lost in transit. In one algorithm, the agents have
perfect knowledge of each processor's memory use in their region. In the other, the agents have only
fuzzy knowledge, that is, estimates of each processor's memory use in their region. To obtain these
estimates, whenever a processor crosses a memory boundary (10%, 20%, etc.) it sends a message to
its agent reporting its new level.

In both schemes if a request cannot be satisfied in an agent's region, the request is passed up the
memory management hierarchy to a superagent. If a request can be satisfied in the agent's region, then
in the perfect knowledge scheme, a fault tolerant request always takes six messages to complete (figure
5-8). Three messages are needed to obtain a processor with sufficient memory to hold the new object.
In this scheme, agents and allocating processors remember the allocation messages they received and
processed previously, so that if the originating processor times out and resends the same request,
space will not be allocated a second time. However, agents and allocating processors cannot
remember how allocation requests are satisfied forever. One solution is to tell them when they can
forget how a given request was satisfied, which requires three additional forget messages. In the
fuzzy knowledge scheme, a fault tolerant request may take as few as three messages (figure 5-9), but
may take more because the agent's knowledge of processor memory use is not perfect. For example,
the agent may direct an allocation request to a processor which does not have enough free space to
store the object. In that case, the agent may have to try one or more other processors in the region
before the request can be satisfied, or before it is decided that the request cannot be satisfied in this
agent's region.

5-13



forget (P1 needs 20 A forget (P1 needs 20
units for object #107) 1 units for object #107)

P 1 needs 20 units
for object #107 

P1 needs 20 units 5
for object #107

units for object #107)

Figure 5-8. Allocation Request Perfect Knowledge
14

I P needs 20 units

1 n "7

P2for object #107

P1 needs 20unite

fo r o bject #1 07 
f o

3 ~P2 allocetedspteefor #1lO07

Figure 5-9. Allocation Request Fuzzy Knowledge

In evaluating these two algorithms, particular attention was paid to the number of messages sent,

number of objects created, and in the fuzzy knowledge scheme, the number of times the agent missed

(sent an allocation reuest to a processor that did not have enough space).

Befor fault tolerance and time-outs were implemented, preliminary results showed both

algorithms perform about equally when thresholds are set at 10% intervals and there is a low allocation

request rate, for example, five percent of the objects request the creation of another object in a given

simulation tick. However, when the allocation rate is high, for example, twenty percent of the objects

request the creation of another object in10 given simulatio tick, the fuzzy nowledge scheme has a

high miss ratio.
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WC uaue fuIzy knowledge scheme over the perfect knowledg:! scheme since it simplifies the
fault tolerant implementation of resource management. The perfect knowledge scheme requires more
control by the agent and makes fault tolerance more complicated.
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SECTION 6

FUTURE WORK

At the present time, the computation manager runs in a simulated multiprocessor environment.
Our current implementation of the compiler generates code for branching, looping, and establishing
local environments. Next year we plan to implement the computation manager on a
distributed-memory, parallel processing architecture and to establish the correctness of the model. In
addition, we plan to extend the model of execution and the computation manager to support fault
tolerant execution of application programs.

Currently, the resource management simulation includes algorithms for fault tolerant processor
and memory management. Before the end of the fiscal year, we plan to include in the simulation an
object addressing scheme. Next year we plan to integrate the storage reclamation simulation,
developed this year under the Storage Reclamation project (principal investigator T. J. Brando) and the
computation manager with the resource management simulation. The integrated simulation will be
used to observe the functioning of the operating system as a whole for object oriented programs.
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