
Technical Document 1342
Revision 2.0
Fobruary 1000

Engineer's Refractive Effects Prediction System (EREPS) Revislon 2.0

W. L. Patterson
C. P. Hattan
H. V. Hilney
R. A. Paulus
A. E. Barrlos
G. E. Lindem
K. D. Anderson

Approved for publlo relesse: alstribuition is unlimited.

$90 \quad 03 \quad 22069$

NAVAL OCEAN SYSTEMS CENTER San Diego, California 92152-5000

J. D. FONTANA, CAPT, USN
R. M. HILLYER Commander Technical Director

ADMINISTRATIVE INFORMATION

This project was performed by the Tropospheric Branch, Code 543, of the Naval Ocean Systems Center, San Diego. CA, with funding provided by the Office of Naval Technology, Arlington, VA 22217, under program element 0602435 N .

Released by
H. V. Hitney, Head

Tropospheric Branch
Under authority of
J. H. Richter, Head

Ocean and Atmospheric
Sciences Division

TABLE OF CONTENTS

1.0 Introduction 1
2.0 Background 4
2.1 Structure and Characteristics of the Earth's Atmosphere 4
2.2 Refraction 5
2.2.1 Index of Refraction 5
2.2.2 Refractivity and Modified Refractivity 5
2.2.3 Effective Earth Radius Factor 7
2.2.4 Refractive Gradients 8
2.2.5 Atmospheric Ducts 12
2.3 Standard Wave Propagation Mechanisms 16
2.3.1 Propagation Loss, Propagation Factor, Signal-to-Noise 16
2.3.2 Free-space Propagation 17
2.3.3 Standard Propagation 17
2.4 Anomalous Propagation Mechanisms 21
2.4.1 Subrefractive Layers 21
2.4.2 Superrefractive Layers 22
2.4.3 Surface-Based Ducts 23
2.4.4 Elevated Ducts 25
2.4.5 Evaporation Ducts 26
3.0 Getting Started 28
3.1 Hardware Requirements 28
3.2 Software Support 29
3.3 EREPS 2.0 Disk Organization 30
3.3.1 EREPS Distribution Diskette Files 30
3.3.2 EREPS 2.0 Support Files 31
3.3.3 EREPS Directory Structures 31
3.4 Program Execution 32
4.0 EREPS Programs and Routines 34
4.1 PROPR and PROPH 34
4.2 COVER 41
4.3 RAYS 47
4.4 SDS 56
4.5 FFACTR 60
5.0 Modes, Key Actions, and Input Parameters 61
5.1 Mode Definitions 61
5.2 Special Function Key Definitions 67
5.3 Edit Key Definitions 72
5.4 Input Parameter Defialtions 73
6.0 EREPS Limitations 87
7.0 EREPS Models 89
7.1 Propagation Models 89
7.1.1 Optical Interference Region Model: 92
7.1.2 Diffraction/Intermediate Region Models 103
7.1.3 Troposcatter Region Model 116
7.1.4 Water Vapor Absorption Model 120
7.2 Raytrace Models 121
\%. 3 Sea Clutter Models 125
7.4 Radar Models 131
7.5 ESM Models 134
7.6 Implementations of the Models 135
7.6.1 PROPR 135
7.6.2 PROPH 136
7.6.3 COVER 137
7.6.4 RAYS 138
7.6.5 FFACTR 139
8.0 Application Example 141
9.0 Glossary 149
10.0 References 156
Appendix A Sample EREPS products A1
Appendix B FFACTR program source code listing B1

LIST OF FIGURES

1. Refractivity N and modified refractivity M versus altitude for various refractive conditions. 9
2. Wave paths for various refractive conditions. 10
3. An example of extended detection/ESM intercept for a surface-based radar with its associated radar hole and height error. 13
4. M-unit versus height profiles for ducting conditions. 15
5. Incident ray and reflected ray illustrating equal angles of reflection. 19
6. Surface-to-air geometry illustrating direct and sea-reflected paths. 19
7. PROPR INIT mode page format. 35
8. PROPR EDIT mode, threshold direct specification. 36
9. PROPH EDIT mode, ESM threshold calculation. 37
10. PROPR EDIT mode, radar threshold calculation. 38
11. PROPH EDIT mode, signal-to-noise versus range. 39
12. COVER INIT mode page format. 42
13. COVER EDIT mode, free-space range specification. 43
14. COVER EDIT mode, transmitter parameter specification. 45
15. RAYS program simple raytrace. 48
16. RAYS program altitude error raytrace. 49
17. RAYS INIT mode page format. 51
18. RAYS ELIT mode, numerical environmental input. 52
19. RAYS EDI'I mode, graphical environmental input. 53
20. RAYS EDIT mode, characteristics environmental input. 54
21. RAYS EDIT mode, pressure, temperature and humidity environmental input. 55
22. SDS MAP mode, Marsden square world map. 58
23. SDS SUMMARY mode display 59
24. Two path optical interference region. 93
25. Example of 9.6 GHz height-gain curves. 112
26. Height-gain curve for surface-based duct of arbitary height. 115
27. Geometry for troposcatter loss calculations. 117
28. Raytrace Variables 124
29. SDS summary for Marsden square 142. 142
30. PROPR display for X band frequency and geometries in the Greek Island experiment within a non-ducting environment. 143
31. RAYS display for the frequency and geometries in the Greek Island experiment under surface-based ducting conditions. 144
32. PROPR display for the frequency and geometries of the Greek Island experiment under multiple evaporation ducting environments. 145

LIST OF TABLES

1. Relation of N and M gradients to refraction. 12
2. Propagation loss values from PROPR-versus-evaporation duct height for the Greek Islands experiment frequency bands and geometries described. A * indicates duct heights beyond those recommended for use in PROPR. 146
3. Percent of time propagation loss is exceeded for the Greek Islands experiment as calculated by EREPS from annual duct height distributions and as observed for all seasons measured at each frequency band. Geometries as stated in text.147

1.0 Introduction

The purpose of this manual is to introduce you to the contents and operation of the Engineer's Refractive Effects Prediction System (EREPS). EREPS is a system of individual
 assist an engineer in properly assessing electromagnetic (EM) propagation effects of the lower atmosphere on proposed radar, electronic warfare, or communication systems. The EREPS models account for effects from optical interference, diffraction, tropospheric scatter, refraction, evaporation and surface-based ducting, and water-vapor absorption under horizontally homogeneous atmospheric conditions.

EREPS revision 2.0 is an upgrade to revision 1.0 released in July 1988 (Hitney, 1988). There are two completely new programs in revision 2.0, COVER and PROPH, described below, and a user-callable propagation-factor source code subroutine that may be helpful to anyone who wants to integrate the EREPS propagation model into their own applications program. The propagation models have changed very little between revisions 1.0 and 2.0 , with the single exception of the sea-clutter model that now allows for evaporation ducting effects. Revision 2.0 also allows for transmitter antenna paterns other than omi-directional, which was assumed by PROPR revision lo. Because of this addition, the use of the term "pathloss" in revision lo has been replaced by "propagation loss" in revision 2.0 to avoid confusion with widely-accepted definitions.

EREPS is a continuing development. With new propagation models and computer technology, additional programs will become available and old programs will be refined or modified. This user's manual will limit its discussion to EREPS revision 2.0.

EREPS revision 2.0 consists of five executable programs and a program source code listing. These are

1. PROPR - PROPR generates agraphic display of propagation-loss, propagation-factor, or radar signal-to-noise ratio versus range under a variety of environmental conditions from which signal levels relative to a specified threshold or maximum free-space range can be determined.
2. PROPH - PROPH provides graphics similar to PROPR except the independent plot variable is receiver height rather than range.
3. COVER - COVER provides a height-versus-range graphic showing the crea where signal levels meet or exceed your specified thresholds.
4. RAYS - RAYS displays altitude-versus-range trajectories of a series of rays for your specified refractive-index profile, and includes an option to display altitude error relative to a standard atmosphere.
5. SDS - SDS displays an annual climatological summary of evaporation duct, surface-based duct, and other meteorological parameters for many 10 degree latitude by 10 degree longitude (Marsden) squares of the earth's surface. SDS may be used as a primary source of environmental data for the PROPR, PROPH, and COVER programs.
6. FFACTR - FFACTR is not an executable program but rather a program source code. It may be compiled external to the EREPS system to produce a stand-alone program or may be incorporated into your programs as a called subroutine, though the latter use might require you to translate FFACTR into another program language. FFACTR is structured as a subroutine that returns propagation factor in dB for specified environmental and EM system parameters.

EREPS contains many similarities to the Integrated Refractive Effects Prediction System (IREPS) described by Patterson et al. (1987) that has been used by the United States Navy and other organizations since 1978. IREPS was developed to provide operational performance assessment to wide variety of existing $E M$ equipments by means of in-situ measured environmental data. A large portion of IREPS is concerned with maintaining libraries of existing systems parameters and entering divergent sources of environmental data. Thus, IREPS is not well suited to comparing the performance of two sensors that may differ by only one parameter, such as radar pulse length; or to showing relative performance for a given system when only one environmental parameter, such as wind speed or evaporation duct height changes value. ERepS has been specifically designed for these comparative studies using interactive graphics displays. In addition, the "stardardized propagation model" of EREPS has been improved to give better results for low altitude applications.

Appendix A of this manual presents a number of products from PROPR, PROPH, COVER, RAYS, and SDS to illustrate a variety of features available from each program. As an aid in programming, the program sourca code of FFACTR is reproduced in appendix B.

2.0 Background

2.1 Structure and Characteristics of the Earth's Atmosphere

The earth's atmosphere is a collection of many gases tcgether with suspended particles of ifquid and solids. Excluding variable components such as water vapor, ozone, sulfur dioxide, and dust, the gases of nitrogen and oxygen occupy about 99 percent of the volt ne with argon and carbon dioxide being the next two most abundant gases. From the earth's surface to an altitude of approximately 80 kilometers, mechanical mixing of the atmosphere by heat-driven air currents evenly distributes the components of the atmosphere. At about 80 kilometers, the mixing decreases to the point where the gases tend to stratify in accordance with their weights.

The lower, well-mixed portion of the atmosphere is called the homosphere, while the higher, stratified portion is called the heterosphere. The bottom portion of the homosphera is called the troposphere

The troposphere extends from the earth's surface to an altitude of 8 to 10 kilometers at polar latitudes, 10 to 12 kilometers at middle latitudes, and up to 18 kilometers at the equator. It is characterized by a temperature decrease with height. The point at which the temperature ceases to decrease with height is known as the tropopause. The average vertical temperature gradient of the troposphere varies between 6 and 7 degrees Celsius per kilometer.

The concentrations of gas components of the troposphere vary little with height, except for water vapor. The water vapor content of the troposphere comes fromevaporation of water from oceans, lakes, rivers and other water reservoirs. Differential heating of land and ocean surfaces produces vertical and horizontal wind circulations which distribute the water vior
throughout the troposphere. The water vor content of the troposptere rapidly decreases with height. At an altitude of 1.5 kilometers, the water vapor content is approximately halfof the surface content. At the tropopause, the con ent is only a few thousandths of w': at it is at tne surface.

In 1925, the International Commission for Aeronavigation defined the "international standard atmosphere." This io a hypothetical atmosphere having an arbitrarily selected set of pressure and temperature characteristics reflecting an average condition of the real atmosphere.

2.2 Refraction

2.2.1 Index of Refraction

The term refraction refers to the property of medium to bend an electromagnetic wave as it passes through the medium. The degree of bending is determined by the index cf refrac ion, n, defined as the velocity, c, of propagation in free space (away from the influence of the earth or other objects) to the velocity, $v, i n$ the medium.

$$
\begin{equation*}
n=\frac{c}{v} \tag{1}
\end{equation*}
$$

2.2.2 Refractivity and Modified Refractivity

The normal value of n for the atmosphere near the earth's surface varies between 1.000250 and 1.000400 . For studies of propagation, the index of refraction is not a very convenient number, the: efore a scaled index of refraction, N, called refractivity, has been defined. At microwave frequencies, the
relationship between the index of refraction n and refractivity N for air which contains water vapor is given as

$$
\begin{equation*}
N=(n-1) 10^{6}=\frac{77.6 \mathrm{p}}{\mathrm{~T}}+\frac{3.73 \times 10^{5} \mathrm{e}}{\mathrm{~T}^{2}} \text {, } \tag{2}
\end{equation*}
$$

where e is the partial pressure of water vapor in millibars or

$$
\mathrm{e}=\frac{\mathrm{RH}}{100} \times 6.105 \exp (\mathrm{x})
$$

where

$$
\begin{aligned}
& x=25.22 \times \frac{(T-273.2)}{T}-5.31 \times \log _{e}\left(\frac{T}{273.2}\right) \\
& p=\text { atmosphere's barometric pressure in millibars } \\
& T=\text { atmosphere's absolute temperature in degrees Kelvin } \\
& R H=\text { atmosphere's relative humidity in percent }
\end{aligned}
$$

Thus, the atmospheric refractivity near the earth's surface would normally vary between 250 and 400 N units.

Since the barometric pressure and water-vapor content of the atmosphere decrease rapidly with height while the temperature decreases slowly with height, the index of refraction and therefore refractivity, normally decreases with increasing altitude.

As an rool in examining refractive gradients and their effect upon propagation, a modified refractivity, defined as

$$
\begin{aligned}
& M=N+0.157 h \quad \text { for altitude } h \text { in meters } \\
& M=N+0.048 h \quad \text { for altitude h in feet, }
\end{aligned}
$$

(4)
is often used in place of the refractivity.
2.2.3 Effective Earth Radius Factor

In free space, an electromagnetic wave will travel in a straight line because the index of refraction is the same everywhere. Within the earth's atmosphere however, the velocity of the wave is less than that of free space and the index of refraction normally decreases with increasing altitude. Therefore, the propagating wave will be bent downward from a straight line. It is frequently more convenient however, to compute refractive effects in terms of waves traveling in straight lines. This may be approximated by replacing the actual earth's radius with an effective earth radius and replacing the actual atmosphere by one that is homogeneous in nature.

The effective earth radius factor, k, is defined as the factor that is multiplied by the actual earth radius, a, to give
 earth radius factor k is the parameter used by PROPR, PROPH, and COVER to account for average refractive effectsin the optical region and is related to the average N or M unit gradient by

$$
k=1 /\left(1-10^{-6} a \mathrm{dN} / \mathrm{dz}\right)=1 /\left(10^{-6} \mathrm{a} \mathrm{dM} / \mathrm{dz}\right) \quad(5)
$$

where $d N / d z$ and $d M / d z$ are the N and M gradients, respectively, and z is in the same units as a. The mean earth radius, a, is generally taken to be 6.371×10^{6} meters. For standard refractivity conditions where $d N / d z=-0.039 \mathrm{~N}$-units per meter or $d M / d z=0.118$ M-units per meter, $k=1.33$ or four thirds.
2.2.4 Refractive Gradients
2.2.4.1 Standard and Normal

It has been observed that the refractivity distribution within the atmosphere is nearly an exponential function of height, Bean (1966). The exponential decrease of N with height close to the earth's surface (within lilometer) is sufficiently regular however, to allow an approximation of the exponential function by a linear function, a linear function which is assumed by the effective earth's radius model. This linear function is known as a standard gradient and is characterized by a decrease of 39 N-units per $k m$ or an increase of 118 M-units per km. The refractivity and modified refractivity profiles for this condition are illustrated in figure 1 . Figure 2 illustrates the wave path for a standard refractive gradient. Gradients that cause effects similar to a standard gradient but vary between 0 and - 79 N-units per $k m$ or between 79 and 157 M-units per km are known as normal gradients.

Figure $\quad 1$: Refractivity N and modified refractivity M versus altitude for various refractive conditions.
2.2.4.2 Subrefraction

If the motions of the atmosphere produce a situation where the temperature and humidity distribution creates an increasing value of N with height, the wave path would actually bend upward and the energy would travel away from the earth. This is termed subrefraction. Although this situation rarely occurs in nature, it still must be considered when assessing electromagnetic systems' performance. Figures 1 and 2 illustrate the refractivity profiles and the wave path, respectively, for subrefraction.

Figure 2: Wave paths for various refractive conditions.
2.2.4.3 Superrefraction

As discussed in section 2. 2.3 , a standard atmosphere has a refractivity gradient which causes waves to bend downward from a straight line. If the troposphere's temperature increases with height (temperature inversion) and/or the water vapor content decreases rapidly with height, the refractivity gradient will decrease from the standard. The propagating wave will be bent downward from a straight line more than normal. As the refractivity gradient continues to decrease, the radius of curvature for the wave path will approach the radius of curvature for the earth. The refractivity gradient for which the two radii of curvature are equal is referred to as the "critical" gradient. At the critical gradient, the wave will propagate at a fixed height above the ground and will lravel parallel to the earth's
surface. Refraction between the normal and critical gradients is known as superrefraction. Figures land 2 illustrate the refractivity profiles and the wave path, respectively, for superrefraction.

2.2.4.4 Trapping

Should the refractivity gradient decrease beyond the critical gradient, the radius of curvature for the wave will become smaller than that of the earth's and the wave will either strike the earth and undergo surface reflection, or enter a region of standard refraction and be refracted back upward, only to reenter the area of refractivity gradient which causes downard refraction. This refractive condition is called trapping since the wave is confined to a narrow region of the troposphere. The common term for this confinement region is a tropospheric "duct" or a tropospheric "waveguide." It should be noted that a tropospheric waveguide is not a waveguide in the true sense of the word since there are no rigid walls which prevent the escape of energy from the guide. Figures 1 and 2 illustrate the refractivity profiles and the wave path, respectively, for trapping.

Table 1 sumarizes the refractivity gradients and their associated refractive conditions.

Table 1 : Relation of N and M gradients to refraction.

	N-Gradient				M-Gradient			
Trapping		$<$	-157	N / km		$<$	0	M / km
			- 48	$\mathrm{N} / \mathrm{kft}$		$<$	0	$\mathrm{M} / \mathrm{kft}$
Superrefractive	-157	to	- 79	N / km	0	to	79	M / km
	$-+8$		- 24	$\mathrm{N} / \mathrm{kft}$	0	to	24	$\mathrm{M} / \mathrm{kft}$
Normal	- 79		0	N / km	79	to	157	M / km
	- 24		0	$\mathrm{N} / \mathrm{kft}$	24	to	48	$\mathrm{M} / \mathrm{kft}$
Subrefractive		>	0	N / km		$>$	157	M / km
		>	0	$N / k f t$		>	48	M/kft

2.2.5 Atmospheric Ducts

As defined in section 2. 2.4 .4 , a duct is a channel in which electromagnetic energy can propagate over great ranges. To propagate energy within a duct, the angle the electromagnetic system's energy makes with the duct must be small, usually less than one degree. Thicker ducts in general can support trapping for lower frequencies. The vertical distribution of refractivity for a given situation must be considered as wellas the geometrical relationship of transmitter and receiver to the duct in order to assess the duct's effect at any particular frequency.

Ducts not only give extended radar detection ranges for systems within the duct, they may also have a dramaticeffect upon transmitter/receiver systems which transcend duct boundaries. For example, an air target which would normally be detected, may be missed if the radar is within or just above the duct and the target is just above the duct. This area of reduced coverage is known as a radar or radio "hole" or shadow zone and
is illustrated by figure 3. It should be emphasized that although the duct acts like a waveguide for the energy, this waveguide does not have rigid and inpenetrable boundaries, except for the earth's surface in the case of surface-based ducts. Therefore energy is continually "leaking" from the duct. While the energy level within a radar hole may be insufficent for radar detection, it may be sufficient for ESM intercept of the radar.

Figure 3: An example of extended detection/ESM intercept for a surface-based radar with its associated radar hole and height error.

There are a number of meterological conditions which will lead to the creation of ducts. If these conditions occur aloft such that the base of the duct is above the surface, the duct is referred to as an elevated duct. Should these conditions occur close to or at the earth's surface such that the base of the duct is located at the surface, the duct is referred to as a surface duct. There are three catagories of surface ducts depending upon
the meteorological condition which creates the duct and the location of the trapping layer in relationship to the surface. These are a surface duct created from an elevated trapping layer, commonly referred to by $I R E P S$ and EREPS as a surface-based duct; a surface duct created from a surface-based trapping layer, and a surface duct created by a rapid decrease of relative humidity immediately adjacent to the air-sea interface. Because this latter duct is a nearly permanent world-wide feature, it iz referred to as an evaporation duct. EREPS provides for sperate inputs for the surface-based duct and the evaporation duct. EREPS models do not allow however, for a surface duct created from a surface-based trapping layer. Fifure 4 illustrates the modified refractivity profiles for surface, elevated, and evaporation ducting. Of particular note within figure 4 , is the distinction between the actual layer of the troposphere which constitutes the trapping gradient and the resultant duct.

(a) Surface duct created from an elevated trapping layer

(c) Elovated duct created from an elevated trapping layer

(b) Surface duct created from a surface trapping layer

(d) Surface duct (evaporation duct) created by a decrease of humidity immediately adjacent to the ses-suriace

Figure 4: M-unit versus height profiles for ducting conditions.

2.3 Standard Wave Propagation Mechanisms

2.3.1 Propagation Loss, Propagation Factor, Signal-to-Noise

PROPR and PROPH present their results in terms of propagation loss, propagation factor, or radar signal-to-noise ratio, all expressed in dB. The definitions of each term, as used within EREPS, is

Propagation loss: The ratio, expressed in dB, of the effective radiated power transmitted in the direction of maximum radiation of the antenna pattern to the power received at any point by an omnidirectional antenna.

Propagation factor: The ratio, expressed in dB, of the actual field strength at point to the field strength that would occur at the same range in free-space in the direction of maximum radiation.

Signal-to-noise ratio: The ratio, expressed in dB, of the signal received at the input of the radar receiver to the noise generated within the receiver itself. For the purposes of EREPS, the signal level is based upon the reflection from a target of specified radar cross-section, all the engineering parameters of the radar (such as radiated power, antennagain, losses, etc.), and the applicable propagation factors.

Propagation loss is used within EREPS 2.0 in place of the path loss used in revision 1.0 because directional antenna patterns are now allowed. Widely-used definitions of path loss are based on omnidirectional antennas. In PROPR and PROPH, propagation loss is equivalent to path loss when an omnidirectional antenna is specified. Propagation loss is closely related to many definitions of transmision loss. Transmission loss generally includes effects from both an antenna pattern and the absolute gain of the antenna, whereas propagation
loss only includes the pattern effects, with the gain normalized to 1 (i.e. 0 dB) in the direction of maximum transmission. Therefore, propagation loss would be equal to transmission loss plus the antenna gain in $d B$.

The EREPS definition of propagation factor is frequently referred to by others as pattern-propagation factor, to clearly indicate that antenna patterneffects are included. We chose to retain the term propagation factor because it is consistent with the term propagation loss. However, you should be aware that the EREPS propagation factor does include the effects of the antenna pattern.

2.3.2 Free-space Propagation

The simplest case of electromagnetic wave propagation is the transmission of a wave between a transmiter and a receiver infreespace. Free space is defined as a region whose properties are isotropic, homogeneous, and loss-free, i.e. away from the influences of the earth's atmosphere. In free space, the electromagnetic wave front spreads uniformly in all directions from the transmitter. If a particular point on a wave front is followed over time, the collection of point positions would define a ray. The ray would coincide with a straight line from the transmitter to the receiver. often wave propagation is illustrated with the aid of rays such as in figure 2.

2.3.3 Standard Propagation

Standard propagation mechanisms are those propagation mechanisms and processes that occur in the presence of atandard atmosphere. These propagation mechanisms arefreespace propagation, optical irterference (or surfacereflection). diffraction, and tropospheric scatter.

When an electromagnetic wave strikes a nearly smooth large surface, such as the ocean, a portion of the energy is reflected from the surface and continues propagating along a path that makes an angle with the surface equal to that of the incident ray, as illustrated by figure 5 .

The strength of the reflected wave is determined by the reflection coefficient, a value which depends upon the frequency and polarization \boldsymbol{f} fadiation, the angle of incidence, and the roughness of the reflecting surface.

For shiliow incidence angles and smooth seas, typical values of the reflection coefficient are near unity (i.e., the reflected wave is almost as strong as the incidence wave). As the wind speed increases, the ocean surface grows rougher and the reflection coefficient decreases. For a transmiter near the surface, the reflection process results in two pathsto a receiver within the line of sight, as illustrai. j by figure 6.

AS stated above, upon reflection, a portion of the energy is propagated in the direction of initial wave motion. A portion of energy is also reflected backward toward the transmitter This backward reflected energy is also received by the radar ald may interfere with the radar's ability to distinguish a desired target. This backward reflected energy is called clutter.

Figure 5: Incident ray and reflected ray illustrating equal angles of reflection.

Figure 6: Surface-to-air geometry illustrating direct and seareflected paths.

Not only is the magnitude of the reflected wave reduced, but the phase of the wave is also altered. For horizontally or vertically polarized waves at low grazing angles, the phase change upon reflection is approximately 180 degrees. Whenever two or more wave trains traveling over different paths intersect at a point in space, they are said to interfere. If two waves arrive at the same point in phase, they constructively interfere and the electric field strength is greater than either of the two component waves taken alone. If the two waves arrive together out of phase, they destructively interfere and the resultant field strength is weakened.

As the geometry of figure 6 changes, the relative lengths of the direct path and reflected path also change, which results in the direct and reflected wave arriving at the receiver in varying amounts of phase difference. The received signal strength, which is the vector sum of the signal strengths of the direct and reflected wave, may vary up to 6 dB above and 20 dB or more, below the free-space value.
2.3.3.2 Diffraction

Energy tends to follow along the curved surface of an object. Diffraction is the process by which the direction of propagating radiation is changed so that it spreads into the geometric shadow region of an opaque or refractive object which lies in the radiation field. In the earth-atmosphere system, diffraction occurs where the straight-line distance between the transmitter and receiver is just tangent to the earth's surface. For a homogeneous atmosphere, this point of tangency with the earth is referred to as the geometrical horizon. For a nonhomogeneous atmosphere (using an effective earth radius) and at radar and optical frequencies, this point of tangency is referred to as the radar and optical horizon, respectively.

The ability of the electromagnetic wave to propagate beyond the horizon by diffraction is highly dependent upon frequency. The lower the frequency, the more the wave is diffracted. At radar frequencies the wavelength is small when compared to the earth's dimensions and little energy is diffracted. At optical frequencies or very short radar wavelengths, the optical horizon represents the approximate boundary between regions of propagation and no propagation.

2.3.3.3 Tropospheric Scatter

At ranges far beyond the horizon, the propagation loss is dominated by troposcatter. Propagation in the troposcatter region is the resuit of scattering by smallinhomogeneities within the atmosphere's refractive structure as discussed in section 7.1.3.

2.4 Anomalous Propagation Mechanisms

A deviation from the normal atmospheric refractivity leads to conditions of subrefraction, superrefraction and trapping as explained in sections 2.2.4.2, 2.2.4.3, and 2.2.4.4 respectively. The term anomalous propagation, or non-standard propagation, applies to any of the above listed conditions but it is most often used when describing those conditions which lead to radar ranges beyond the normal. Many anomalous propagtion effects may be seen quite well with a raytrace program such as RAYS.

2.4.1 Subrefractive Layers

As stated in section 2. 2. 4. 2 , a subrefractive layer of the troposphere would cause the propagating energy to bend upward
or away from the earth's surface, thereby leading to decreased detection ranges and shortened radio horizons. Altitude errors for height-finding radars will also become evident in a subrefractive environment.

Subrefractive layers may be found both at the earth's surface or aloft. In areas where the surface temperature is greater than 30 degrees Celsius and relative humidities are less than 40 percent (i.e. large desert and steppe regions), solar heating will produce a very nearly homogeneous surface layer, often several hundreds of meters thick. Since this layer is unstable, the resultant convective processes tend to concentrate any available moisture near the top of the layer. This in turn creates a positive N gradient or subrefractive stratum aloft. This layer may retain its subrefractive nature into the early evening hours, especially if a radiation inversion develops, trapping the water vapor between two stable layers.

For areas with surface temperatures between 10 and 30 degrees Celsius and relative humidities above 60 percent, i.e. the western Mediterranean, Red Sea, Indonesian Southwest Pacific, etc., surface-based subrefractive layers may develop during the night and early morning hours. It is characteristicly caused by advection (blowing horizontally) of warm, moist air over a relatively cooler and drier surface. While the N gradient is generally more intense than that described above, the layer is often not as thick. Similar conditions may also be found in regions of warm frontal activity.

2.4.2 Superrefractive Layers

Superrefractive conditions, as defined in section 2.2.4.3, are largely associated with temperature and humidity variations near the earth's surface. Inversions aloft, due to large scale subsidence (slow sinking air) will lead to
superrefractive layers aloft. Superrefractive layers will lead to increased radar detection ranges and extensions of the radio horizon.

The effects of a super refractive layer upon a surface based system is directly related to its height above the earth's surface. For airborne systems, the effects of a superrefractive layer depend upon the position of the transmitter and receiver relative to the layer. Both of these factors are related to the electromagnetic wave's angle of layer penetration. The steper the penetration angle, the less of an effect the layer will have upon propagation. Trapping is an extension of superrefraction because the meteorological conditions for both are the same. Additional features of superrefractive layers will be presented in the following section.

2.4.3 Surface-Based Ducts

In a discussion of ducting conditions upon EM wave propagation, the usual concern is propagation beyond the normal horizon. Within the horizon however, ducting also has an effect. Ducting can alter the normal lobing pattern caused by the interference of the direct ray and the surfacereflected ray as illustrated in figure 6. The relative phase between the direct and reflected path may be changed as well as the relative amplitudes of the two rays. The effect of the duct on the line-of-sight propagation is to reduce the angle of the lowest lobe, bringing it closer to the surface.

Surface-based ducts occur when the air aloftis exceptionally warm and dry in comparison with the air at the earth's surface. There are several meteorological conditions which may lead to the formation of surface-based ducts.

Over the ocean and near land masses, warm dry continental air may be advected over the cooler water surface. Examples of this type of advection are the Santa Ana of southern California, the sirocco of the southern Mediterranean, and the shamal of the Persian gulf. This will lead to a temperature inversion at the surface. In addition, moisture is added to the air by evaporation, producing a moisture gradient to strengthen the trapping gradient. This type of meteorological condition routinely leads to a surface duct created by a surface-based trapping condition, a surface duct type not modeled within EREPS. However, as one moves from the coastal environment into the open ocean, this trapping layer may well rise from the surface, thereby creating the surface-based duct known by IREPS and EREPS. Surface-based ducts tend to be on the leeward side of land masses and may occur both during the day or at night. In addition, surface-based ducts may extend over the ocean for several hundred kilometers and may be very persistent (lasting for days).

Another method of producing surface-based ducting conditions is by divergence (spreading out) of relatively cool air under a thunderstorm. While this methodmay not be as frequent as the other methods, it may still enhance surface propagation during the thunderstorm activity, usually on the order of a few hours.

With the exception of thunderstorm conditions, surfacebased ducting is associated with fair weather, with increased occurrence of surface-based ducts during the warmer months, and in more equatorial latitudes. Any time the troposphere is well mixed, such as with frontal activity or with high wind conditions, surface-based ducting is decreased.

An interesting feature of surface-based ducts is the skip zone near the normal horizon, in which the duct has no influence. This skip zone is easily illustrated using a raytrace program such as RAYS, and a model to account for its efferts is included
in all the EREPS programs. It should be noted that the surface duat created fiom a surface-based trapping layer does not have this skip zone phenomenon and again, is not modeled within EREPS.

2.4.4 Elevated Ducts

Great semi-permanent surface high pressure systems, centered at approximately 30 degrees north and south latitude, cover the ocean areas of the world. Poleward of these systems lay the mid-latitude westerly winds and equatorward, the tropical easterlies or the "tradewinds." Within these high pressure systems, there is large scale subsidence of air which is heated as it undergoes compression. This leads to a layer of warm, dry air overlaying a cool, moist layer of air (often called the marine boundary layer). The resultant inversion is referred to as the tradewind inversion and may create a strong ducting condition at the top of the marine boundary layer. Elevated ducts may vary from a few hundreds meters above the surface at the eastern part of the tropical oceans to several thousand meters at the western part. For example, along the southern California coast, elevated ducts occur an average of 40 percent of the time with an average top elevation of 600 meters. Along the coast of Japan, elevated ducts occur an average of 10 percent of the time with an average top elevation of 1500 meters.

It should be noted that the meteorological conditions necessary for a surface-based duct are the same as thosefor an elevated duct. In fact, a surface-based duct may slope upward to become an elevated duct as warm, dry continental air glides over cool, moist marine air. The tradewind inversion may also intensify thereby turning an elevated duct into a surface-basf duct.

As can be seen from equation 2, a change in the moisture distribution without an accompanying temperature change can also lead to a trapping refractivity gradient. The air in contact with the ocean's surface is saturated with water vapor. A few meters above the surface, the air is not usully saturated so there is a decrease of water vapor pressure from the surface to some value well above the surface. The rapid decrease of water vapor initially causes the modified refractivity m, to decrease with height; but at greater heights the water vapor distribution will cause M to reach a minimum and, thereafter, increase with height, as illustrated in figure 4. The height at which M reaches a minimum is called the evaporation duct.

Evaporation ducts exist over the cean, to some degree, almost all of the time. The duct height varies from a meter or two in northern latitudes during winter nights to as much as 40 meters in equatorial latitudes during summer days. On a world average, the evaporation duct height is approximately 13 meters. It should be emphasized that the evaporation duct "height" is not a height below which an antenna must be located in order to have extended propagation, but a value which relates to the duct's strength or its ability to trap radiation. The duct strength is also a function of wind velocity. For unstable atmospheric conditions, stronger winds generally result in stronger signal strengths (or less propagation-loss) than do weaker winds.

Since the evaporation duct is much weaker than the surface-based duct discussed in section 2.4.3, its ability to trap energy is highly frequency dependent. Generally, the evaporation duct is only strong enough to affect electromagnetic systems above 3 GHz .

The proper assessment of the evaporation duct can only be performed by making surface meteorological measurements and inferring the duct height from the meteorological processes occurring at the air/sea interface, as demonstrated by Jeske (1965) and Paulus (1985). The evaporation duct height cannot be measured using a radiosonde or microwave refractometer. With the advent of newer, high resolution sondes which may be lowered to the surface from a ship, the impression is given that the evaporation duct may be measured directly. For practical applications however, this impression is false and a direct measurement should not be attempted. Due to the turbulent nature of the troposphere at the ocean-surface, a refractivity profile measured at one time would most likely not be the same as one measured at another time, even when the two measurements are seconds apart. Therefore, any measured profile would not be representative of the average evaporation ducting conditions, the conditions that an assessment system must consider.

The long-term statistical frequency distribution of evaporation ducts is readily available through the SDS program for most areas of the world.

3.0 Getting Started

3.1 Hardware Requirements

You may run EREPS 2.0 on an IBM PC, Personal Computer AT, PC/XT, or 100% compatible computer with a graphics capability (monochrome or color). EREPS 2.0 requires MS DOS release 2.0 or greater. Your computer must have a minimum of 150 kilobytes of free random access memory (RAM).

EREPS 2.0 is distributed on three double-sided, doubledensity, $51 / 4$ inch, 360 kilobyte, flexible diskettes. While not required for operation, an internal hard disk drive is recommended.

EREPS 2.0 does not contain any capability to dump graphics or text to a printer. Therefore a printer is not necessary for EREPS 2.0 operation. If you have a printer and want paper copies of an EREPS 2.0 output, there are many commercial graphics dumping programs available. For CGA graphics, the GRAPHICS command supplied by IBM and other vendors will work with Epson-compatible printers. A very good graphics dump program that works with CGA, EGA, and VGA adapters and a wide variety of printers is GrafPlus, availablefrom Jewel Technologies, Inc., 474044 th Ave. SW, Suite 203 , Seattle, WA 98116, (206) 937-1081, for a cost of approximately $\$ 50$.

EREPS 2.0 programs have been designed to support a mouse. In general, the mouse may be used in place of the arrow keys for controlling the movement of a cursor or crosshair. The program automatically senses the presence of a properly installed mouse.
3.2 Software Support

All of the EREPS 2.0 programs are written in Microsoft QuickBASIC version 3.0 and will be maintained by us. Copies of the EREPS 2.0 programs may be made and freely distributed within a working group. While EREPS 2.0 source code is available by special request, any code changes made by others will not be supported and we assume no responsiblity for any problems resulting from such modifications. Discrepancies in EREPS 2.0 products, difficulties encountered while running the programs, requests for special applications, and questions concerning the use of EREPS should be directed to

Commander
Naval Ocean Systems Center
Code 543
San Diego, CA 92152-5000

Autovon: 553-1428 or commercial 619-553-1428
Fax: 619-553-1417
Electronic mail: 543 @nosc.mil

To help us provide technical support for EREPS 2.0, an ASCII file, REGISTER.DOC is provided on the EREPS 2.0 distribution disk. This file contains a registration form which may be filled out and mailed to us at the above address. Registration of your EREPS 2.0 disks will insure your receipt of any future upgrades of the EREPS software, newsletters, or technical supporting documentation. Please limit registration to one per physical location or working group.
3.3 EREPS 2.0 Disk Organization
3.3.1 EREPS Distribution Diskette Files

EREPS revision 2.0 consists of five executable program files, one ASCII program file, three binary and one ASCII data files, an ASCII registration file, and a Microsoft QuickBASIC run-time module. These are

PROPR.EXE - propagation loss versus range program.

PROPH.EXE - propagation loss versus height program.

COVER.EXE - height versus range coverage program.

RAYS.EXE - raytrace program.

SDS.EXE - surface ducting climotology program.

BRUN 30 . EXE - A Microsoft QuickBASIC run-time module containing the necessary subroutines and functions for execution of any QuickBASIC program.

MSDIST.DAT - a binary data file containing the evaportion duct distribution statistics for the $S D$ program.

MSINDEX. DAT - a binary data file containing an index to the evaporation duct statistics with the MSDIST.DAT file.

RS.DAT - a binary data file containing the surface-based duct and miscellaneous meteorological parameters for the $S D$ program.

WLDMAP.ASC - a ASCII data file containing a world map used by the $S D S$ program.

FFACTR.BAS - An ASCII QuickBASIC source code listing to be compiled external to the EREPS system.

REGISTER.DOC - an ASCII file containing the EREPS registration form.

3.3.2 EREPS 2.0 Support Files

With the first execution of any EREPS program, a*.INI file is created which contains startup defaults for height and range units, color definitions, and path names. With the first execution of the $S D S$ program, one or two binary map files will be created depending upon the graphics adapter installed within the computer. For CGA graphics, this file is CGA.MAP. For EGA graphics, these files are SDSEGA1.MAP and SDSEGA2.map. The *.MAP file (s) will be used on subsequent $S D$ program executions to reduce the time needed to draw the world map. If any of these files are subsequently deleted, it will be regenerated with the next execution of the particular program.

A number of EREPS programs allow you to create customized data files for subsequent program execution. You are responsible for directory structures and file naming using the conventions defined by the version of MS-DOS being used.

3.3.3 EREPS Directory Structures

3.3.3.1 Floppy Diskettes

A necessary file for the execution of any EREPS program is the BRUN30.EXE support file. Because of disk space limitations, it was not possible to include this support file on all distribution diskettes. Therefore, unless the BRUN30. EXE file is in your directory path, you will not be able to execute
the EREPS programs directly from the distribution diskettes. We recommend you create a seperate diskettefor each program, insuring the appropriate files and the BRUN 30 . EXE are on the diskette. For example, to execute the COVER program, a diskette containing only the COVER.EXE and BRUN 30 . EXE file should be created. For the $S D S$ program, the supporting binary and ASCII data files described above must als be inc. fred on the diskette. In addition, it is always good p-actice to create working diskettes and then store the original diskettes in a safe place to use as a backup in case something happens to the copy diskettes.
3.3.3.2 Hard Disk

For ease of operation, allfiles from the EREPS distribution disk may be copied into one subdirectory using the MS-DOS copy command. A single directory structure has the advantage of being able to execute any program without changing directories. Since you have the capability of creating your own data files from any of the EREPS programs however, a single directory structure has the disadvantage of mingling COVER, PR \quad PR, and PROPH system files and RAYS and SDS environmental files. Mingling such files requires the use of a strict file naming convention to avoid later confusion. We recommend you create a separate subdirectory for each EREPS program and its support files.

3.4 Program Execution

Any EREPS 2.0 program may be executed by changing to the directory containing the program, typing the program name, and pressing the <Enter> key. You will be presented with a title page skowing the program name, revision number and date, a NOSC point of contact, and a brief description of what the program
does. From the title page, you will be asked to enter the path for user data. The default path is your current directory. If the <Enter> key is pressed without entering a path name, the program will assume that all user data files are contained within your current directory. Any entry of a path name will be stored in the *. INI file and used as the default path for subsequent program use.

To attact your attention to any prompt for input data, the input field is highlighted with inverse video. While this process does not impede the program flow, on slow computers (i.e. 4 MHz machines) there is a slight hesitation during the cursor movement. The inverse video may be turned off by appending a - S to the program name prior to pressing <Enter>. For example, to execute the CoVER program, you would type Cover - S and press <Enter>. The-S options has no effect upon the speed with which any graphic product is drawn.

4.0 EREPS Programs and Routines

All of the EREPS 2.0 programs are organized into sections or activities called modes. These modes allow for entering, editing, storing or retrieving data; customizing or displaying an output product; or customizing the EREPS program itself. While mode names are for the most part self-descriptive and would allow an inexperienced operator immediate access to the capability of the EREPS 2.0 programs, as you gain operation expertise the full range of EREPS 2.0 flexibility will be discovered. Many modes are common between EREPS 2.0 programs and as such, retain a common name and behavior. Within any particular mode, self. evident screen prompts will direct you through the mode's function. At any point within any program, a HELP mode is available by pressing the F2:HELP special function key. Section 5. 0 provides a complete discussion of the individual modes and their functioning.

4.1 PROPR and PROPH

PROPR and PROPH calculate and display propagation loss, propagation factor, or radar signal-to-noise ratio (section 7.l) in a dB versus range or height graphic, respectively. The propagation mechanisms considered within the programs are optical interference, diffraction, tropospheric scatter, evaporation ducting, surface-based ducting, and water-vapor absorption.

From the INIT mode, as illustrated in figure 7 , you may select the quantity to display in addition to the method of determining a threshold of electric field strength. Figure 8 illustrates the PROPR EDIT mode page for direct specification of a threshold. Figure 9 illustrates the PROPH EDIT mode page for calculating the threshold based upon ESM system parameters. Figure 10 illustrates the second of two PROPR EDIT mode pages for calculating the threshold based upon radar parameters. Figure 11

```
illustrates the first of two PROPH EDIT mode pages for the radar
signal-to-noise display.
```

1 - PROPAGATION LOSS or PROPAGATION FACTOR us. RANGE with up to 4 user def ined thresholds.
2 - PROPAGATION LOSS or PROPAGATION FACTOR us. RANGE with one threshold based on ESM parameters.
3 - PROPAGATION LOSS or PROPAGATION FACTOR us. RANGE with one threshold based on radar parameters.
4 - RADAR SIGNAL-TO-NOISE us. RANGE.
Display option 1
Propagation model INTERNAL Vertical axis PROPAGATION LOSS $d B$ Height units ft Range units nmi PROPAGATION LOSS dB
ft To set startup height and range units nmi to current units, press key F4.
Display option (1,4)1:KEYS 2:HELP 3:EDIMaximum range0
Number of lobes 2

Select one of the following displays:

Figure 8: PROPR EDIT mode, threshold direct specification.

Figure 9: PROPH EDIT mode, ESM threshold calculation.

1:KEYS 2:HELP 3:FILE 4:OPTIONS 5:LABEL 6:XHAIR 9:OUERLAY 10:PLOT
Figure 10: PROPR EDIT mode, radar threshold calculation.

Figure 11: PROPH EDIT mode, signal-to-noise versus range.

The electric field strength (system's performance) threshold is represented by horizontal line on the PROPR display and as a vertical line on the PROPH display. For the system to function, the propagation loss or the signal-to-noise ratio must not exceed the threshold. It is not possible for the system to function when the propagation loss or the signal-tonoise ratio exceeds the threshold. Up to four thresholds may be displayed simultaneously upon any one graphic with each threshold representing a different receiver sensitivity, transmitter power, probability of detection, target radar cross section, etc.

As seen on figures 8 and 11 , a free-space and detectibility factor reference line respectively, is provided. Drawing of the free-space reference line may be suppressed within the OPTIONS mode. Figure 11 illustrates the display of clutter. Clutter may be displayed as either an average clutter value (a single line or as an upper and lower clutter bound (double lines) (section 7.3). In cases where the signal strength exceeds clutter, the system should be able to function. Conversely, signal strengths below the clutter level will indicate performance degradation.

Figure 8 illustrates the use of the LABEL and XHAIR modes to add explanatory text to a graphic for display purposes. In this case, the words "interference lobe", a directing line, a reference mark, and loss/range value labels have been added.

Of particular interest is the Propagation model prompt. We are currently developing a parabolic equation model to approximate a solution to the Helmholtz full wave equation. Our model is named the Radio Parabolic Equation (RPE) model. In addition to mainframe computers, RPE will be hosted upon personal computers. RPE will be a stand-alone program which will generate an output data file consisting of a matrix of propagation loss values verses height and range. EREPS will be the display vehicle for these output data files. By responding to the

Propagation model prompt with INTERNAL, the EREPS models will be used to produce the desired graphic. Responding with RPE will cause EREPS to read RPE's independently generated data file and display the data in the fashion as indicated by the EREPS Display option. While RPE is not currently available for distribution, EREPS revision 2.0 will sense the presence of an RPE output file and will function properly when RPE becomes available.

You may also choose the parameters which determine the physical appearance of the loss or signal-to-noise graphic. You will also be able to display propagation loss versus height or range calculated with the RPE when it becomes available.
4.2 COVER

The COVER program calculates and displays contours of constant electric field strength in the vertical plane for surface-based systems. The propagation mechanisms considered within COVER are optical interference, diffraction, evaporation ducting, surface-based ducting, and water vapor absorption.

From the INIT mode of COVER, as illustrated in figure 12 , you may select from two methods of defining the threshold of electric field strength. The first methodis by specifying the threshold directly, either by free-space range in units of range or by propagation loss in units of dB. Up to four thresholds may be simultaneously displayed, each representing a different transmitter power, target radar cross section, receiver sensitivity, etc. Figure 13 illustrates the EDIT mode page for direct specification of the threshold.
Select one of the following displays:
1 - HEIGHT us. RANGE coverage with up to 4 user def ined thresholds
2 - HEIGHT us. RANGE coverage with one threshold based on radar parameters.

Display option	1	
Propagation model	INTERNAL	
Height units	ft	To set startup height and range units
Range units	nmi	to current units, press key F4.
Maximum height 58000 Maximum range 200 No. of lobes 6 Range axis C		

Display option (1,2)
1:KEYS 2:HELP 3:EDIT 4:SET DEFAULT 5:RESET 〈Esc〉:Quit

Figure 12: COVER INIT mode page format.

EDDIT MODE Frequency in $\mathrm{MHz}(100,28000)$
50k

Figure 13: COVER EDIT mode, free-space range specification.

The second method of defining the electric field threshold is by specifying the various electromagnetic system parameters of a radar and the characteristics of the target. Figure 14 illustrates the second of two EDIT mode pages for the system's parameters. Note that as each system parameter is changed, the appropriate freespace range value is immediately displayed.

You may also choose the parameters which determine the physical appearance of the cover graphic. For example, the Range axis prompt allows for a curved or flat earth presentation. You are cautioned about selecting the graphic height and range combinations employed with the curved earth display as improperly selected values may make the coverage display hard to interpret or misleading upon casual inspection.

The coverage diagram may be used for long-rangeair search radars, either 2 D or 3 D ; for surface-search radars when employed against low-flying air targets; and for surface-to-air communications. The coverage display should not be used for surface-search radars employed against surface targets or for any type of gun or missile fire-control radar unless you fully understand the limitations of the coverage models.

For surface-search radars, a major consideration in performance assessment is the target's radar cross section. A target's radar cross section is a function of the target's shape. Large, flat, smooth surfaces may reflect a large amount of energy, but the scatering will be primarily in one direction. Smaller, more angular surfaces may not reflect as much energy, but the area over which the energy is scattered may be very large indeed. It has been shown that the major energy return from a ship target is not from its smooth, large hull but from its superstructure with its highly angled and complicated structure. In addition, for very large targets, the radar cross section also becomes a function of viewing angle. The models employed in

EDIT MODE Frequency in MHz (100,20000)

Figure 14: COVER EDIT mode, transmitter parameter specification.
generating a coverage display make the assumption that the target is a point source target, independent of viewing angle and composed of only a single reflecting surface.

The very nature of fire-control radars dictates an antenna which trains both in azimuth and elevation. The coverage for an antenna aimed at the horizon will not be the same as the coverage for an antenna when aimed aloft. The coverage display is designed to show coverage of a radar with a fixed antenna elevation angle. If the fire-control radar is employed in a search or track mode at a single elevation angle, such as may be the case of a horizon search for low-flying missile targets, the coverage display will produce an accurate representation of the actual radar coverage. It must be understood however, that once the elevation angle changes, the existing coverage display is no longer valid and coverage must be recomputed based upon the new elevation angle. In addition to considering the antenna elevation angle, the amount of energy directed toward the target must also be taken into account since fire-control radars do not generally scan the target with a single pulse as the antenna rotates. This is accomplished through the use of the proper free-space range.

There are two limitations of the COVER program of which you should be aware. First, COVER uses a parallel ray approximation to the propagation model given in section 7.1. The approximation assumes that the direct and sea-reflected rays arrive nearly parallel at the receiver/target. This assumption is quite good at \quad ung ranges and higher heights. However, as ranges and heights decrease the assumption becomes poorer and the COVER program will be in error, with the error becoming worse as ranges and heights decrease. The PROPR and PROPH programs do not make the parallel ray assumption. If the results of the COVER program are suspect, they may be compared to those obtained from PROPR or PROPH which will be correct for all geometries.

Secondly, as frequency increases, the lobe spacing on a coverage diagram decreases (figure 13). For some combinations of freiuency, range, and altitude, the graphic routine used to shade the lobes will fail. For these cases, the shading problem may be corrected by increasing the scale and replotting the graphic.

4.3 RAYS

The RAYS program traces the paths, in height and range, of electromagnetic rays, figure ls, based upon a linearly segmented refractivity-versus-altitude profile. The ray tracing is accomplished using the alall angle approximation to Snell's law.

The RAYS primary graphic product, and the only product for CGA graphic computers, is a simple raytrace as illustrated in figure 15.

Height-finder radars determine altitude based upon a standard atmosphere ray path. For non-standard refractive conditions, the target's calculated height will be in error (figure 3). If your computer is configured for EGA or VGA graphics, a secondary graphic product of RAYS is a raytrace displaying this height error according to your specified height increment and color scheme. This product is illustrated by figure 16. This product is obtained by responding with a Y (yes) to the Alt Error prompt while in the inIT or OPTIONS mode. Refer to section 5.0 for a discussion on using the OPTIONS and COLORS modes to make ieight error color assignments and the LABEL and LEGEND modes to displa; the altitude error legend.

Move cursor to desired position and press F4 to relocate legend.

[^0]Figure 16: RAYS program altitude error raytrace.

From the INIT mode of RAYS, as illustrated in figure 17 , you may select from three methods of entering environmental data. You may also choose the parameters which determine the physical appearance of the raytrace graphic. Note that while the height and range units may be set globally with the Height units and Range units prompt, they may be changed independently for individual prompts such as Maximun height. You are advised to exercise caution with this fredom as mixing units may lead to later confusion.

Upon entering the EDIT mode with environmental input method (numerical/graphical height-refractivity levels) selected, the page illustrated in figure 18 will be displayed. Height and refractive unit values may now be entered from the keyboard. By pressing the $\left\langle P g U^{\prime}\right\rangle$ or $\langle P g D n\rangle$ key, the graphical edit page, figure 19, will be presented. The refractive profile may now be entered with the use of the arrow keys or the mouse.

Upon entering the EDIT mode with environmental input method 2 (refractivity profile characteristics) selected, the page illustrated in figure 20 will be displayed. Up to three refractive features may be specified by describing the features' height, strength, and nature. For example, figure 20 illustrates a surface-based duct with a top at 1,000 feet and a trapping layer from 900 to 1,000 feet; an elevated layer from 9,000 to 10,000 feet with a subrefractive M-unit gradient of $60 \mathrm{M} / \mathrm{kft}$; and an elevated layer from 17,000 to 18,000 feet with a superrefractive M-unit gradient of $15 \mathrm{M} / \mathrm{kft}$. While the second and third features are labeled as layers (LYR), their gradients may be specified as (trapping), thereby creating elevated ducts. Input bounds checking is performed which will prevent one feature being superimposed upon another. It is highly recommended that you do not override the bounds checking at this point.

INIT MODE

 RAYSSelect one of the following environmental input methods:
1 - Numerical/Graphical height-refractivity levels
2 - Refractivity profile characteristics
3 - Pressure, temperature, and humidity

Enter method

Height units		ft
Range units		nmi
Angle units		mrad
Refractivity un		M-units
Smoothness		3
Maximum height	ft	29808
Maximum range	nmi	208
Alt error		N

To set startup height and range units to current units, press key F4.

WDIT MODE Transmitter antenna height in ft (3,50000)

Press PgUp/PgDn for graphical input.

Use INS or ENTER to add levels to profile. Use DEL to delete levels from profile. Use arrow keys to move cursor.

EDIT MODE

Press PgUp/PgDn for numerical input. Dashed lines (standard gradient) are shown for reference.

Use INS or ENTER to add levels to profile. Use DEL to delete levels from profile. Use arrow keys to move cursor.

1:KEYS 2:HELP 3:FILE 4:0PTIONS 5:LABEL 7:COARSER 8:FINER 10:PLOT

Figure 19: RAYS EDIT mode, graphical environmental input.

Upon entering the EDIT mode with environmental input method 3 (pressure, temperature, and humidity) selected, the page illustrated in figure 21 will be displayed. Pressure values must be entered in decreasing order.

EDIT MODE Transmitter antenna height in ft (3,50000)

TRAN HT ft	100
NO. OF RAYS	50
MIN ANG mrad	-10
MAX ANG mrad	10
REFLECTED RAYS	Y
PROFILE	
CHARACIERISTICS	

DUCT TOP ft 1880
DUCT BTM ft \quad g
LYR THK ft 100
LYR TOP ft 18888
LYR BTM ft 9808
LYR TYPE B
LYR GRD M/kft 60
LYR TOP ft 18808
LYR BTM ft 17808
LYR TYPE $\quad P$
LYR GRD M/kft 15

EDIT MODE Transmitter antenna height in ft (3,50000)

	TRAN	ft	180
	NO. OF	RAYS	50
	MIN ANG	mrad	-10
	MAX ANG	mrad	10
	REFLEC	IED RAYS	Y
	SONDE	HT ft	8
	PROFILE		
	P (mbs)	TMP(C)	$H(\%)$
Use INe an ENTER to add levels to profile.	1013.2	15	80
Use DEL to delete levels from profile.	250	-52	8
Use arrow keys to move cursor.			

Figure 21: RAYS EDIT mode, pressure, temperature and humidity environmental input.

From any page within the EDIT mode, pressing the <PgUp> or <PgDn> keys will allow you to view the numerical values of height and refractivity units or the graphical display. The profile may only be edited with the method used to originally enter the data. Returning to the INIT page via the <Esc> key and selecting a different input method will reset the environment to the EREPS defaults. Once a raytrace graphic exists on the screen, the reminder text, i.e. "Use INS or ENTER to add..." will no longer appear on the screen. The editing keys will remain active however.

If the entered environmental profile does not extend to the height of the graphic display, a standard refractive gradient of $118 \mathrm{M} / \mathrm{km}(36 \mathrm{M} / \mathrm{kft})$ will be appendedto the profile. Additionally, if the transmitter height exceeds the graphic plot height, no rays will be drawn.
4.4 SDS

The $S D$ program displays an annal climatological surface duct summary for one or more Marsden squares.

The summary consists of an evaporation duct histogram showing the percent occurrence of the duct; a surface-based duct description which includes percent of occurrence, average thickness, radiosonde source locations, and number of observations; and a listing of miscellaneous information to include wind velocity, surface refractivity value, and effective earth radius factor.

The statistics displayed within SDS are derived from two meteorological data bases; the Radiosonde Data Analysis I I assembled by the GTE Sylvania Corporation and the DUCT63 assembled by the National Climatic Data Center. The GTE Sylvania analysis is based on approximately 3 million worldwide radiosonde
soundings taken during a 5 year period, from 1966 to 1969 and 1973 to 1974. The DUCT6 3 analysis is a 15 year subset of over 150 years of worldwide surface meteorological observations obtained from ship logs, ship weather reporting forms, published observations, automatic buoys, etc.

While the world is divided into 648 Marsden squares, the SDS climatology is provided for only 293 Marsden squares. This number was selected for two reasons. First, EREPS is specifically designed for maritime application. The 293 Marsden squares cover the open ocean and coastal waters. Second, a minimum of 100 valid observations per month within a square was imposed to reduce the effects of any spurious meteorological measurements on the distributions.

The square(s) of interest is (are) selected from a world map, figure 22, by positioning a cursor over the square(s) and highlighting it (them) with a special function key or a mouse key. As seen in figure 22 , as the cursor moves over the map, its latitude, longitude, and Marsden square position is displayed. For this example, Marsden squares 113 and 112 have been selected. The world average of all Marsden squares may be obtained by selecting the box labeled "World Average."

Figure 23 illustrates the summary obtained from Marsden squares 112 and 113 . In this example, the surface duct statistics were obtained from a single radiosonde source, a fixed oceanographic observing station located at 35° North latitude, 48° West longitude. If more than one radio.onde source is located within the selected squares, their averaged observations would be provided. If no radiosonde source is located within the selected square, the closest great-circle source would be used. For this reason, it is important to note the proximity of the source to the location of interest.

Figure 22: $S D S$ MAP mode, Marsden square world map.

Through the use of special function keys, other functions such as screen labeling or file manipulation may also be accomplished.

Figure 23: SDS SUMMARY mode display

FFACTR is a collection of models formed into a callable routine, written in Microsoft QuickBASIC, that will compute the pattern propagation factor in dB when provided certain EM system and environmental information. The intent of this routine is to allo. you to create your own application programs, incorporating the EREPS propagation models directly. Because this routine may be called in an arbitrary fashion, it may not be structured in the most efficient manner for your particular task. For example, if the loss at a constant height for varying range is desired, a common application, the initiali-ation subroutines need be called only once. They would be extracted from FFACTR and placed within the calling routine.

The FFACTR routine is well documented within the program code. Variables within the routine are passed via a common block and the input parameters are passed to the FFACTR routine through an argument list. A discussion of the FFACTR models appears in section 7.0 .

FFACTR is also provided with a demonstration driver program which shows the possible uses for the fFACTR routine. FFACTR may be compiled under Microsoft QuickBASIC 3.0 or 4.5 and executed as a normal program to observe the demonstration.
5.0 Modes, Key Actions, and Input Parameters

Maneurering between the various EREPS 2.0 program modes or performing actions within a mode is accomplished by pressing a special function key, an edit key, or a mouse button. Labels for the special function keys, Fl through Flo, are displayed at the bottom of the screen. Special function keys which are not applicable to a particular mode are not displayed. While special function key labels are to a great extent self-explanatory, their use will become clearer as you gain familiarity with the program. An attempt has been made to retain common special function key numbering assignments between all the EREPS 2.0 programs. In some cases however, this was not always possible. You must be careful therefore to read the labels prior to pressing a special function key.

A summary of the EREPS modes, a reference list of all special function and edit keys and mouse buttons, and a description of EREPS input parameters follows.

5.1 Mode Definitions

COLORS mode - In all EREPS programs except SDS, color is used to enhance the displays. While EREPS 2 . o colors wore chosen to give a pleasing visual impression, your special application may require a differing color assignment. Therefore, the colors mode presents apalette" of available colors from which to choose. Each color is assigned a letter and by specifying a particular letter you may chenge the color of the plot axes, text, overlays, cursors, etc. You may exit the COLORS mode, make color changes dermanent (by storing the color changes to the *. INI; or temporary (until you exit the EREPS 2.0 program) hy pressing the appropriate active special function key display on the bot tom line of the screen. Colors mode is available only for EGA and VGA systems.

CROSSHAIR mode - The CROSSHAIR mode displays a crosshair at the center of the screen (for the first call to CROSSHAIR) or at the crosshair's last position during the previous call to CROSSHAIR. It is available only when a graphic is displayed on the screen. The crosshair displayed is 5 pixels in the vertical direction by 5 pixels in the horizontal. The abscissand ordinate values at the center of the crosshair appear in the lower-right corner of the screen. The crosshair is positioned by using the arrow keys or a mouse. If the crosshair is moved beyond a boundary, it will wrap around to the opposite side. Wrapping will not be accomplished when using a mouse to move the crosshair. The <Home> key will place the crosshair in the center of the display. The <End> key will place the crosshair at the rightmost side of the display. The <Enter> key will place the crosshair at the leftmost side of the display. The <PgUp> and <PgDn> keys will place the crosshair at the top and bottom of the display, respectively.

EDIT mode - The EDIT mode serves as the primary data entry/edit point, although other modes may allow minor entry/edit capabilities. Within a mode, any data necessary for the EREPS 2.0 program's operation will je displayed upon the computer's screen. Each screen of data is called a page. The format of the page will vary depending upon the program and the quantity of data to display. Each individual piece of data is located upon the page within a field. A field may be called a unit fieldor a value field depending upon the data it contains. For example, a program input may be transmitter height. The unit of height, say feet, will appear within the unit field. The actual height, say 1000, will appear within the value field. The value field and its associated unit field (if units are appropriate to the value) w: ll appear adjacent to each other with the unit field to the left of the value field.

A unit or value may be selected for change by using an arrow, tab, reverst tab, backspace, space key, or mouse to position the flashing cursor over the item, typing the new value, ard then pressing the <Enter> key. As the cursor moves over the fields, an informational prompt will appear on the screen. The prompt will consist of a long title descripition of the item, an abbreviated title, a list of possible units if the item is numeric, and a range of valid responses. In addition, a default will appear within the field. All allowable units are preprogrammed and you will not be able to deviate from them. They may be selected by "toggling" through a list of choices by using the <space> bar. In some cases, no alternate choice of units will be possible. You have complete control of the values however, as you are allowed the option of overriding the recommended range of validity by simultaneously pressing <Ctrl> and <Enter>. Note! An entered value which is outside of the valid range may yield erroneous results, cause the program to abort with a runtime error, cause loss of computer memory, or cause some other undesirable consequence. You are encouraged therefore, to adhere to the recommended limits when changing a value.

You may exit the EDIT mode at any time by presing the <Esc> key which will return you to the INIT mode, or by pressing one of the active special function keys (Fl through fio) displayed on the bottom line of the screen.

FILE mode - The FILE mode allows you to save entered data to a disk file for future use, retrieve previously stored data, or delete a previously saved data file. In addition, you may change the directory in which files are to be stored, create new directories, or list the contents of existing directories. These filing operations are accomplished by pressing one of the active special functions keys (Fl through F10) displayed at the bottom
of the screen. Additional screen prompts will be provided as needed.

For PROPR, you may retrieve a file that was stored using EREPS revision 1.0. However, parameters not found but required by EREPS 2.0 will assume EREPS 2.0 default values. You cannot retrieve a RAYS file that was stored using EREPS revision 1.0 . In addition, any custom screen labeling you may have done under the LABEL mode or previous overlays of results will not be saved since it is only the current parameter values that are stored in the saved files. When changing directories, if the directory name you enter does not exist, it will be created.

EREPS 2.0 programs follow the conventions of MS-DOS file naming and do not add an extension to file names stored under the FILE mode. When listing files within a directory, data files may be easily distinguished from executable or other program files by adding a . DAT extension to the files. Another way to prevent file confusion is to crate a separate data file directory for each of the EREPS programs.

You may exit the FILE mode at any time by pressing the EXIT key or the <Esc> key which will return you to the INIT mode.

INIT mode - The INIT mode is the logical starting point for all EREPS programs, except SDS. This mode may be reached from any point within a program by pressing the <Esc> key. In this mode you may select a display type or method of data entry and set units (e.g., nmi or $k m$) and parameter values that control the physical appearance of the display. SDS does not have an INIT mode since there are no choices on the physical appearance of the display. The logical starting point for SDS is its MAP mode, described below.

Once units are selected from within the INIT mode, they are considered the default units for the remainer of the program session. If you usually work with units other than the defaults provided by EREPS 2.0, the units you enter may be saved for use as future default units by pressing a special function key. Units may be changed on various pages throughtout the entire program. Once changed, they will remain until changed again. Units stored by pressing the special function key will remain for future default use however.

You may exit the INIT mode at any time by pressing the <Esc> key which will terminate the program, or by pressing one of the active special function keys (Fl through flo) displayed on the bottom line of the screen. Upon pressing <Enter> at the last field on the page, you will be placed in the EDIT mode.

LABEL mode - The LABEL mode allows you to enter custom labels or to modify EREPS legends by typing any character at normal row/column positions anywhere on the screen, except the bottom line, which is reserved for special function key labels. You may use the arrow keys or a mouse to move the cursor. The key and <space> bar will both erase the current character. The <Backspace> key will move the cursor leftone column and erase the character in that column. The <Tab> key will move the cursor right to the next tab position (11, 21, 31 , etc.) or to the next row down if already past column 81. The <Enter> key will move the cursor to the left side of the screen and down one row. The $\langle P g U p\rangle$ and $\langle P g D n\rangle$ keys will place the cursor at the top and bottom of the screen respectively.

LEGEND mode - Within the RAYS program, if the Altitude Error option is chosen, the program will display a color legend in the center of the screen with a crosshair shown at the upper left corner of the legend box. Each colored segment of a ray
corresponds to the height difference, using the error increment specified, as compared to the same ray (equal launch angle) in a standard atmosphere. In addition, the legend may be moved anywhere on the screen by using the arrow keys or a mouse. The LEGEND mode is entered from the LABEL mode. Upon exiting the LABEL mode, the legend will disapper from the screen. This will preclude later confusion with an overlay should the legend also contain as a background, a portion of a previous raytrace.

MAP mode - Within the SDS program's MAP mode, a world map with a superimposed 10 degree latitude by 10 degree longitude Marsden square grid is displayed on the screen. A Marsden square defines an area from which climatological data may be retrieved. A single Marsden square or combination of squares may be selected (or a previously selected square unselected) by placing a crosshair, using the arrow keys or the mouse, within the square and pressing a special function key or a mouse button. For reference, each selected square will be highlighted by a change of color. When all desired squares have been selected, pressing the <Enter> or a special function key will produce the SDS climatological summary display. You may exit the MAP mode by pressing the <Esc> key whic! will exit the SDS program or perform other functions such as filing data by using the active special function keys displayed on the bottom line of the screen.

OPTIONS mode - The OPTIONS mode allows you to change the scale of the plot axes and other parameters that were initially prompted for in INIT mode. Prompts in OPTIONS and INIT mode are essentially equivalent, except in the OPTIONS mode, any previously created graphics display remains on the screen. other operations such as changing display colors, resetting EREPS defaults, etc. or exiting the OPTIONS mode may be accomplished by pressing one of the active special function keys displayed on the bottom line of the screen.

One special function key exception is the overlay key. You may not change the vertical or horizontal scales of a graphics display and then overlay the new display upon the previous dislay. Overlaying two graphics displays with differing scales is not allowed.

SUMMARY mode - Within the SDS program, the summary mode is used to display the evaporation duct height histogram and the surface-based duct climatology. You may exit the SUMMARY mode by pressing che MAP special function key or the <Esc> key, both of which will return you to the MAP mode.
5.2 Special Function Key Definitions

The special function keys used within EREPS 2.0 are

CHANGE PERMANENT: Active in COLORS mode. When pressed, any changes made to color definitions will be stored in the *. INI file for use as start-up defaults.

CHANGE THIS SESSION: ACtive in COLORS mode. When pressed, any changes made to color definitions will remain changed until you exit the program.

CHOOSE UPPER AIR: Active when in summary display of SDS. Allows selection of a single radiosonde station when multiple stations are used for the sumary of a given square.

COLORS: Active in OPTIONS mode. Places you in the COLORS mode whereby color definitions may be changed.

COARSER: Active whenever movement of a crosshair is required. It is used to increase the step sizefor arrow key movements. COARSER has no effect upon any mouse movements.

DELETE FILES: Active in the FILE mode. Allows deletion of previously stored data files.

EDIT: Active in the INIT mode. Places you in the EDIT mode whereby parameter values or units may be entered or changed.

EXIT: Active in all modes except INIT, COLORS, and EDIT. Exits from current mode to previous mode. For instance, if you enter the CROSSHAIR mode from the EDIT mode, pressing EXIT will return you to the EDIT mode.

EXIT W/O CHANGE: Active in the COLORS mode. Exits the COLORS mode, ignoring all color changes made.

FILE: Active in the EDIT mode. Places you in the FILE mode whereby parameter values may be saved or retrieved from files.

FINER: Active whenever movement of a crosshair is required. It is used to decrease the step size for arrow key movements. FINER has no effect upon any mouse movements.

GET FILE: Active in the FILE and MAP modes. Allows retrevial of previously stored data files.

HELP: Active in all modes. Displays definitions for all active special function keys within the current mode.

REYS: Active in all modes. It is used to remove the display of special function key labels from the bottom ine of the screen thereby allowing "clean" hardcopying for viewgraphs, etc.

LABEL: Active in the EDIT mode and in the summary display of SDS. Places you in the LABEL mode.

LEGEND: Active in the LABEL and LEGEND modes of RAYS when the altitude-error display option is chosen. From the LABEL mode, places you in the LEGEND mode.

LINE: Active in the CROSSHAIR mode. Will draw a ine from a previously defined point to the current cursor position. Pressing the LINE key or the right mouse button will signify the beginning point for a line. Moving the cursor with the arrow keys or mouse will activate a "rubberband" line. After the rubberband line is positioned as desired, pressing the LINE key or the right mouse button will draw a solid line from the beginning to the ending point of the rubberband line. The entire process must be repeated to draw a subsequent line segment.

LIST DIR: Active in the FILE mode. Displays a list of files in the current directory.

MAP: Active in the summary display of SDS. Places you in the MAP mode from which one or more Marsden squares may be selected.

MARK: Active in the CROSSHAIR mode. Draws a small marker on the screen at the crosshair's current position.

MOVE LEGEND: Active in the LEGEND mode. Will display the color legend at the cursor's current position.

NEW DIR: Active in the FILE mode. Allows you to create a new directory for data file storage.

OPTIONS: Active in the EDIT mode. Places you in the OPTIONS mode where scaling and other display-oriented parameters may be changed.

OVERLAY: Active in the EDIT mode. Superimposes a new graphics display upon a previous graphics display. Note! In the

COVER program, this function is not active when display option 1 is selected and more than one threshold is given.

PLOT: Active in the INIT, EDIT, and OPTIONS modes. Clears the current graphic from the screen and displays a new graphic. Note! The plot key will only display the graphics for the current set of input parameters. If you change a parameter and want to observe the effects of the change compared with those of the old parameter, use the overlay key.

REMOVE: Active in MAP mode. Unselects a Marsden square from the world map.

RESET: Active in the OPTIONS mode. Resets all current values to the EREPS' default values and places you in the EDIT mode.

SAVE FILE: Active in the FILE and MAP modes. Allows you to store data to a data file.

SELECT: Active in the MAP mode. Allows you to specify a Marsden square of interest for retrieving climatological information.

SET DEFAULT: Active in the INIT mode. Saves the current height and range units to the *. IN file for use as default units in subsequent program use.

SUMMARY: Active in the MAP mode. Displays annual surface-duct summary from selected Marsden squares.

XHAIR: Active in the EDIT mode. Places you in the CROSSHAIR mode such that graphics result values may be digitized.

The edit keys used within EREPS 2.0 are:

Backspace key - Moves the cursor one space to the left within a field and enters a blank character.

Ctrl Enter - Same as Enter, except no test is performed to insure that the entered value is within recommended limits.

De1 - Within the EDIT mode of the RAYS program, this key will delete the environmental level highlighted by the cursor.

Down arrow key - Moves the cursor to the next field below its present field position. If the present fieldis anit field, the cursor will move right to its associated value field. If the cursor is at the bottommost value field on the page, the cursor will wrap to the topmost value field on the page. The cursor will not enter a units field from above.

End key - Moves the cursor to the last value field on the page.

Enter key - Accepts the currently displayed unit or value if it's within acceptable limits and moves the cursor to the next field to the right or below. If a value is not within limits, a beep will sound and an error message will be displayed on the topmost line of the page. Note that Ctrl Enter will override the limit testing.

Esc key - When pressed from any page other than the INIT or MAP page, moves the cursor to the first value field on the INIT or MAP page. When pressed from the INIT or MAP page, the program will terminate.

Hone key - Moves the cursor to the first value field on the page.

Ins - Within the EDIT mode of the RAYS program, this key will allow you to insert an environmental level. A level line will be opened immediately above the current cursor position.

Left arrow key - Moves the cursor one character position to the left within a value field. If the cursor is in the left most position of a field, the cursor will move to the field immediately adjacent to the left (generally the unit field associated with the value field) or to the value field above if the value has no associated unit.

Mouse - May be used to position the cursor or the crosshair on the page. Within the MAP mode, clicking the left mouse button will select and the right mouse button will unselect a Marsden square. Within the CROSSHAIR mode, clicking the left mouse button will draw mark on the screen at the current crosshair position The right mouse button will simulate the LINE key. Within the LEGEND mode, clicking the left mouse button will draw the legend on the screen at the current crosshair position. Within the EDIT mode of the RAYS program when the environmental data is being entered graphically, clicking the left mouse button willenter an environmental level. Clicking the right mouse button will delete an environmental level.

PgUp/PgDn keys - Changes the page displayed on the screen to the next or previous page. If no additional pages are available, a beep will be heard.

Right arrow key - Moves the cursor one character position to the right within a field. If the cursor is in the rightmost position of a field, then the cursor will move to the next value field below. The cursor will not enter a unit field from the left.

Shift tab key - Moves the cursor to the next field to the left or above. This key may also be used to enter a unit field from an associated value field.

Spacebar - For numeric or character values, enters a blank. For fields which contain a limited number of specific choices, such as km, nmi, or sm for units of range, it will toggle between choices.

Tab key - Moves the cursor to the next field to the right or below. The cursor will not enter a unit field from the left.

Up arrow key - Moves the cursor to the next valuefield above its present field position. If the cursor is at the topmost field on the page, the cursor will wrap to the bottommost value field on the page.
5.4 Input Parameter Definitions

The following is a reference listing, in alphabetical order, of short titles, any associated units, and the default values for all input parameters within EREPS 2.0.

ABS HUM - absolute humidity. Units are fixed at g/m 3 (grams per cubic meter). Value must be ≥ 0 and ≤ 12. Default is 7.5.

ALTERROR - produce an altitude error display. This display is available only for computers equipped with an EGA or VGA card and 64 kilobytes or more of memory. Value must be Y (yes) or N (no). Default is N.

ANGLE UNITS - units associated with raytrace starting angle. The value may be degs (degrees) or mrads (milliradians). Default is mrads.

ANT GN - transmitter antenna gain. Units arefixed at dBi (decibel over isotropic). Value must be ≥ 0 and ≤ 100. Default is 32 for PROPR and PROPH, 21 for COVER.

ANT TYPE - transmitter antenna radiation pattern type. Values are

1. OMNI (omnidirectional)
2. $\operatorname{SINX} / X(\sin (x) / X)$
3. $\operatorname{CSC}-S Q$ (cosecant-squared)
4. HT-FIN (generic height-finder)
5. GAUSS (Gaussian)

Default is $S I N X / X$ for radar applications and OMNI otherwise. OMNI may not be used for radar applications (i.e. display options 3 or 4 in PROPR/PROPH or display option 2 in COVER).

CLTR TYPE - type of clutter model to use within calculations. This prompt appears only if display option 4 is chosen in PROPR or PROPH. Value may be AVERAGE or BOUNDS. Default is AVERAGE.

The clutter model incorporated in PROPR and PROPH is taken from the Georgia Institute of Technology (GIT) sea clutter model, modified by NOSC to account for ducting effects, and is thought to be accurate within $\pm 5 \mathrm{~dB}$ within the radar horizon. A value of AVERAGE will display the average clutter. A value of BOUNDS will display lower and upper clutter bounds (2 dashed lines) representing the minimum and maximum amount of clutter that may be present for a given range or height.

COMP PW - radar compressed pulse width. U.its may be ms (milliseconds), us (microseconds), ns (nanoseconds), or ps
(picoseconds). Value must be ≥ 0.1 and $\leq 9,999$. Default is 1.3 us.
dB BOTTOM - the propagation loss, propagation factor, or signal-to-noise ratio to appear at the bottom of the vertical ordinate for the PROPR graphic product. Units arefixed at dB. Valde must be ≥-200 and ≤ 300. For display of propagation ioss or signal-to-noise ratio, the default is 80. For display o: propagation factor, the default is 20 . Note! Normally, the dB scale is plotted with propagation loss increasing and propagation factor or signal-to-noise ratio decreasing toward the bottom on the ordinate. It is possible however to reverse the graphic by reversing the entries for top and bottom. If the top and bottom $d B$ values are equal, the $d B$ value at the bottom of the ordinate will default to 10 units different than the top.
dB TOP - the propagation loss, propagation factor, or signal-to-noise ratio to appear at the top of the ordinate for the PROPR grayhic product. Units are fixed at dB. Value must be ≥-200 and ≤ 300.
dB LEFT - the propagation loss, propagation factor, or signal-to-noise ratio to appear at the leftof the abscissafor the PROPH graphic product. Units are fixed at dB. Value mest be ≥-200 and ≤ 300. For display of propagation loss or signal-tonoise ratio, the default is 80. For display of propagation factor, the default is 20. Note! Normally, the dB scale is plotted with propagation loss increasing and propagation factor or signal-to-noise ratio decreasing toward the left on the abscissa. It is possible however to reverse the graphic by reversing the entries for left and right. If the left and right dB values are equal, the dB value at the left of the abscissa will default tu 10 units fifferent than the top.
dBRIGHT - the propagation loss, fropagation factor, or signal-to-noise ratio to appear at the right of the abscissafor
the PROPH graphic product. Units are fixed at dB. Value must be ≥-200 and ≤ 300.

DET FAC - detectability factor. Units arefixed at dB. Value must be ≥-25 and ≤ 25. Default is 0 .

DISPLAY OPTION -

For COVER the display options are

1. HEIGHT versus RANGE coverage with up to 4 user-defined thresholds.
2. HEIGHT versus RANGE coverage with one threshold based on radar parameters.
Default is 1 .

For PROPR and PROPH, the display options are

1. Display propagation loss or pattern propagation factor versus range or height with up to four user-defined thresholds.
2. Display propagation loss or pattern propagation factor versus range or height with one threshold based on ESM parameters.
3. Display propagation loss or pattern propagation factor versus range or height with one threshold based on radar parameters.
4. Display radar signal-to-noise versus range or height.
Default is 1 .

DUCT BTM - the bottom of a duct specified by Enter method 2 of the RAYS program. Units may be ft or m. The value must be less than that specified with DUCT TOP. The default is 0 .

DUCT TOP - the top of a duct specified by Enter method 2 of the RAYS program. Units may be ft or m. The value must be ≥ 0 and $<$ the maximum graphic height. The default is 1.000 ft.

ELEV ANG - transmitter antenna elevation angle. Units may be degs or mrads. Value must be ≥-10 and ≤ 10 degs or - 200 and 200. Default is 0 degs.

Enter method - For the RAYS program, the environmental input methods are

1. Numerical/Graphical height-refractivity levels. This method allows you to input an environmental profile numerically and/or graphically in height and refractivity levels. The default atmosphere obtained by this method is one with a standard gradient of 118 M-units/km.
2. Refractivity profile characteristics. Using this method enables you to describe a duct with its top and bottom height and thickness of its trapping layer in addition to two additional atmospheric layers. The two additional layers are described by their height, refractivity gradient, and relationship to any previously entered duct. The default atmosphere obtained by this method is one with a 1,000 foot surface-based duct formed by a trapping layer from 900 to 1,000 feet with a gradient calculated to produce the same M-unit value at 1,000 feet as at 0 feet; an elevated subrefractive layer from 9,000 to 10,000 feet with a gradient of $60 \mathrm{M} / \mathrm{kft}$; and an elevated superrefractive layer from 17,000 to 18,000 feet with a gradient of $15 \mathrm{M} / \mathrm{kft}$.
3. Pressure, temperature, and humidity. Using this method enables you to enter levels of pressure in millibars (mbs), temperature (C or F), and humidity (\%), from which an M-unit or N-unit versus height profile will be calculated. The default atmosphere obtained by this method is one with a standard gradient of 118 M-units/km.
Default method is 1 .

ENVIRO RANGE O - This is a screen label and not a prompt for an operator input. \quad RPE will allow multiple specifications of environment as a function of range. Each environment will be stored within itsown diskfile. If Propagation model is specified as RPE, the initial environmental file name will be listed under this label.

ERROR INCR - altitude-error increment. Defines the color scale of the altitude error display. Units may beftor m. Value must be ≥ 1 and $\leq 2,000$ ft or 1 and $1,000 \mathrm{~m}$. Default is 500 ft .

ESM SENS - ESM antenna and receiver sensitivity. Units are fixed at $d B m$ (decibel referred to 1 milliwatt). Value must be ≥-200 and ≤ 0. Default is -80 .

EVD HT - evaporation duct height. Units may be ft or m. Value must be ≥ 0 and ≤ 40 meters or 0 and 130 feet. Default is 0 m.

FREE-SPACE RANGE/dB THRESHOLD - a system's performance threshold either specified directly, calculated from radar parameters, or calculated from ESM parameters. Up to four thresholds may be specified. Units may be nmi, km, sm, or dB. For $P R O P R$ and $P R O P H$, the range value must be ≥ 0 and $\leq 99,999$ and the dB value must be between -200 and 300 . For COVER, the range value must be ≥ 0 and ≤ 400 and the dB value must be ≥ 0 and \leq 180. The defaults are $100,0,0$, and 0 nmi .

FREESPACEREF - display the free-space propagation loss reference line within PROPR and PROPH. Value must be Yor N. Default is Y.

FREQ - transmit frequency. Units may be MHz (megahertz) or GHz (gigahertz). Value must be ≥ 100 and $\leq 20,000 \mathrm{MHz}$ or 0.1
and 20 GHz . Default is $5,600 \mathrm{MHz}$ for PROPR and PROPH, 425 MHz for COVER.

H - relative humidity for environmental Enter method 3 of RAYS. Units are fixed at percent. Value must be ≥ 0 and ≤ 100. Within the atmosphere, a relative humidity of 0 is not a natural occurrence. By specifying o percent however, RAYS will be applicable to optical refraction. Two arbitrary defaults are provided which define a standard refractive gradient. The first is 80% at a pressure of 1013 . 2 millibars. The second is 8% at an average tropopause pressure of 250 millibars.

HEIGHT UNITS - For PROPR, PROPH, and COVER, the value may beft, m, kft (kilofeet), or km (kilometers). For RAYS, the value may be ft or m. Default is ft. This input will serve as the default units of height for other values such as transmiter height, receiver height, or environmental inputs.

HOR BH - transmitter horizontal beamwidth. Units may be degs or mrads. Value must be >0 and ≤ 360 degs or 0 and 6, 283 mrads. Default is 1.5 degs for PROPR and PROPH, 11 degs for COVER.

HORIZONTAL AXIS - the quantity displayed on the horizontal axis of a graphic. Value may be PROPAGATION LOSS dB or PROPAGATION FACTOR dB. Default is PROPAGATION LOSS dB.

INTEG TYPE - type of signal integration model used in calculations of radar free-spacerange. Value may be I (incoherent) or (coherent). Default is I.
K - effective earth radius factor. Value must be >1 and ≤ 5. Default is 1.333 (a standard 4/3's earth).

LYR BTM - the bottom altitude of a layer as defined with Enter method 2 of the RAYS program. Units may beftorm. The
value must be greater than or equal to any lower layer or duct top; less than any above layer or duct bottom; and less than its own layer top. The default is 9,000 and 17,000 ft for the first and second layer respectively.

LYR GRD - the gradient of refractivity or modified refractivity used within layers as defined with Enter method 2 of the RAYS program. Units may be $N / k f t, N / k m, M / k f t$, or $M / k m$. The value must be those defined within table l. The default for a subrefractive, standard, superrefractive, and trapping layer is $60 \mathrm{M} / \mathrm{kft}, 35.9 \mathrm{M} / \mathrm{kft}, 15 \mathrm{M} / \mathrm{kft}$, and $-10 \mathrm{M} / \mathrm{kft}$ respectively.

LYR THK - the thickness of the trapping layer used to create a duct as defined with Enter method 2 of the RAYS program. The units may be ft or m. The value may range from 0 up to but not including the height of duct TOP. The default is 100 ft .

LYR TOP - the tup height of a layer as defined with Enter method 2 of the RAYS program. Units may beftorm. The value must be less than or equal to any higher layer or duct bottom; greater than any lower layer or duct top; and greater than its own bottom. The default is 10,000 and 18,000 ft for the first and second layers respectively.

LYR TYPE - the type of refractive gradient used within layers as defined with Enter method 2 of the RAYS program. The value must be \quad (trapping), p (superrefractive), B (subrefractive), or (standard). The default is B and P for the first and second layers respectively.

MAX ANG - transmitting antenna's maximum elevation angle. Units may be degs or mrads. Value must be ≥-10 and ≤ 10 degs or -99 and 99 mrads. Default is 10 .

MAX HEIGHT - maximum graphics height. Units may beft, m, kft, or km. For COVER, the value must be > 0 and $\leq 99,999$ ft,
$25,000 \mathrm{~m}, 100 \mathrm{kft}$, and 25 km with a default of $50,000 \mathrm{ft}$. For RAYS, the value must be ≥ 100 and $\leq 50,000$ ft or 30 and $30,000 \mathrm{~m}$ with a default of 20,000 ft. For PROPH, the value must be ≥ 0 and $\leq 9,999$. If a value of 0 is entered, the graphic will self. scale to present a reasonable display. The default is 0 .

MAX RANGE - maximum graphics range. Units may be nmi, km, or sm. For COVER the value must be ≥ 10 and ≤ 500 with a default of 200 nmi. For RAYS, the value must be ≥ 10 and $\leq 5,000$ with a default of 200 nmi . For PROPR the value must be ≥ 0 and \leq 1,000. If a value of 0 is entered, the graphic will self-scale to present a reasonable display. Default is 0 .

MIN ANG - transmitting antenna's minimum elevation angle. Units may be degs or mrads. Value must be ≥-10 and ≤ 10 degs or -99 and 99 mrads. Default is - 2 degs or - 10 mrads, depending upon the units selected in Angle unit above.

MIN HEIGHT - minimum graphics height for PROPH. Units may beft, m, $f f t$, or $k m$. The value must be ≥ 0 and \leq the specified maximum height. The default is 0 ft.

MIN RANGE - minimum graphics range for PROPR. Units may be nmi, km, or sm. The value must be ≥ 0 ard \leq the specified maximum range. The default is 0 .

NO. OF LOBES - number of constructive interference lobes displayed within the optical region. For COVER, the value must be ≥ 1 and ≤ 10 with a default of 6 . For PROPR and PROPH, the value must be ≥ 1 and ≤ 100 with a default of 2 .

NO. OPRAYS - number of rays to draw on the RAYS graphic. The value must be ≥ 1 and ≤ 300. Default is 50 .

NSUBS - surface refractivity. The units are fixed to N. The value must be ≥ 0 and ≤ 450. Default is the world average of 339.

P - pressure for environmental Enter method 3 of RAYS. Units are fixed at mbs (millibars). Value must be ≤ 1100 and ≥ 250. Two standard atmosphere defaults are provided. The first is a world average earth's surface pressure of 1013.2 mbs . The second is 250 mbs which is an average tropopause pressure.

P WIDTH - transmitter pulse width. Units may be ms, us, ns, or ps. Value must be ≥ 0.1 and $\leq 9,999$. Default is 1.3 us for $P R O P R$ and $P R O P H, 60$ us for COVER.

PD - probability of detection. Value must be ≥ 0.1 and \leq 0.9 Default is 0.9 for PROPR and PROPH, 0.5 for COVER.

PFA - probability of false alarm exponent. Value must be ≤ 12 and ≥ 2 (e.g., probability of false alarm must be between 1 $\times 10^{-12}$ and 1×10^{-2}). Default is 8 .

PK POU - transmitter peak power. Units may be mW (milliwatts), W (watts), $k W$ (kilowatts), MW (megawatts), dBm (decibels referred to 1 milliwatt), or dBW (decibel referred to 1 Watt). Value must be ≥ 0.1 and $\leq 10,000$. Default is 285 kW for PROPR and PROPH, 200 kW for COVER.

Polarization - transmitter antenna polarization. Values are $H O R$ (horizontal), $\operatorname{VER~(vertical),~or~CIR~(circular).~Default~}$ is HOR.

PRF - pulse repetition frequency. Units may be Hz (Hertz) or $k H z$ (kilohertz). Value must be ≥ 1 and ≤ 999. Default is 650 Hz for PROPR and PROPH, 300 Hz for COVER.

PROPAGATION MODEL - electromagnetic wave propagation model used to generate the graphic. Value may be INTERNAL for the EREPS models or RPE for NOSC's Radio Parabolic Equation (RPE) model. When RPE is selected, propagation loss is read from previouly-stored files generated by the NOSC RPE program. (Note. EREPS 2.0 does not contain the RPE program. Refer to section 4.1.) Default is INTERNAL.

PULSES - number of pulses to integrate within the signal integration model. Value must be ≥ 1 and $\leq 99,999$. Default is 10.

RADAR CALCS - radar free-space range calculation technique. Value may be (simple), \quad (integration), or D (detectability). Simple calculation is used mainly for rotating pulse radars that use noncoherent pulse integration. By selecting S, the number of pulses integrated will be calculated from the antenna's horizontal beamwidth and horizontal scan rate and the transmitter's pulse repetition frequency. By selecting I, you must enter the nuber of pulses to integrate and if coherent or incoherent integration is used. By selecting D, you must enter the detectability factor, i.e., the minimum signal-tonoise ratio required for a given probability of detection and probability of false alarm. Default is S.

RANGE - receiver/target range. Units may be nmi, km, or sm. Value must be ≥ 1 and $\leq 10,000$. Default is 50 nmi.

RANGE AXIS - For COVER, determines the appearance of the range axis, either as a flat or curved earth graphic. For a curved-earth display, the radius of curvature is dependent on the earth's radius times the standard effective earth's radius factor of 4/3. Value may be F (flat) or (curved). Default is C.

RANGE UNITS - units may be nmi, $k m$, or sm. Default is nmi. This input will serve as the default unit of range for other values such as maximum graphics range or free-space range.

RCS - target's radar cross section. Units may be sqm (square meters) or dBsm (decibels above a square meter). Value must be >0 and $\leq 99,999$ sqmor ≥-30 and $\leq 50 \mathrm{dBsm}$. Default is 1 sqm.

REC NF - receiver noise figure. Units are fixed at dB. Value must be ≥ 0 and ≤ 100. Default is 14 for PROPR and PROPH, 5 for COVER.

REC/TRGT HT - receiver/target height. Units may beft, m, kft, or km. Value must be ≥ 3 and $\leq 30,000 \mathrm{ft}, 1$ and 30 kft , 1 and $10,000 \mathrm{~m}$, or 1 and 10 km . Default is 30 ft .

REFLECTED RAYS - display reflected rays within the RAYS graphics. Value may be N (no) or Y (yes). If ALT ERROR is Y, this entry is not applicable and the symbols N/A will appear within the input field. Default is Y.

REFRACTIVITY UNITS - Units of refractivity to be used for environmental input. Value may be N-units (refractivity) or Munits (modified refractivity). Default is M-units.

RESOLUTION - the method of displaying RPE output data upon the computer screen. Value must be PIXEL or FILE. By specifying PIXEL, the RPE data will be interpolated to produce a value corresponding to each screen pixel. Using this method, every screen pixel will be activated. By specifying FILE. uninterpolated data will be plotted at its proper pixel location under the specified graphics resolution. While this method of display is faster than that of PIXEL, for RPE files which contain data in a courser mesh than the number of pixels on the screen, a
> "spotty" display may result since not every screen pixel will be activated.

SBD HT - surface-based duct height. Units may beft or m. Value must be ≥ 0 and $\leq 1,000$ mor 0 and 3,000 ft. Default is 0 m .

SCAN RT - transmitter's antenna horizontal scan rate. Units are fixed at rpm (revolutions per minute). Value must be ≥ 1 and $\leq 9,999$. Default is 15 for PROPR and PROPH, 6 for COVER.

SMOOTHNESS - ray smoothness factor. This is the number of milliradians incremented at each new angle in performing the ray trace. Using angular increments allows you to vary the appearance of the rays by adjusting the smoothness factor, i.e., small increments making the rays appear very smooth and large increments making the rays appear more jagged. You should note that the smaller the smoothness factor, the smaller the angular increments and, therefore, the greater the time needed to perform the ray trace. Units are fixed at milliradians. The value must be ≥ 0.1 and ≤ 10. Default is 3 .

SONDE HT - radiosonde launch height. Units may beftor m. The value must be ≥ 0 and $\leq 30,000$ feet or 0 and 10,000 meters. Default is 0 .

SW CASE - Swirling case number. Value may be 0-STDY (steady) or l-FLCT (slowly fluctuating). Default is 1-FLCT.

SYS LOSS - system losses such as line, beamshape, etc. Units are fixed at dB. Value must be ≥ 0 and ≤ 100. Default is 8.4 for PROPR and PROPH, 6 for COVER.

TEMPERATURE UNITS - Units of temperaturefor environmental input. Value may be C (Celsius) or F (Fahrenheit). Default is C.

TMP - temperature for environmental Enter method 3 of RAYS. Units may be C or F. Value must be $\geq-80^{\circ}$ and $\leq 50^{\circ} \mathrm{C}$, and $\geq-110^{\circ}$ and $\leq 125^{\circ} \mathrm{F}$. Two standard atmosphere defaults are provided. Thefirst is a world average earth's surface temperature of $15^{\circ} \mathrm{C}$. The second is -5 $2^{\circ} \mathrm{C}$, which is $15^{\circ} \mathrm{C}$ reduced with a standard atmospheric lapse rate of $-6.5^{\circ} \mathrm{C} / \mathrm{km}$ to a pressure of 250 millibars.

TRAN/RADR HT - transmitter/radar height. Units may be ft or m. Value for COVER must be ≥ 3 and ≤ 250 ftor 1 and 100 m . The default is 100 ft. Values for PROPR and PROPH must be ≥ 3 and $\leq 300 \mathrm{ft}$ or 1 and 100 m . Default is 7 f f. Value for RAYS must be ≥ 3 and $\leq 50,000$ feet or 1 and 30,000 meters. Default is 100 fee:.

VER BH - antenna vertical beamwidth. Units may be degs or mrads. Value must be ≥ 0.5 and ≤ 45 degs or 9 and 785 mrads . Defallt is 10 degs for $P R O P R$ and $P R O P H, 19$ degs for COVER.

VERTICAL AXIS - the quantity displayed on the vertical axis of the graphic. This prompt is active only when PROPR Display option is 1,2 , or 3 . Value may be PROPAGATION LOSS dB or PROPAGATION FACTOR $d B$. Default is PROPAGATION LOSS dB.

WIND DIR - wind direction relative to upwind. Units may be degs or rads (radians). Value must be ≥ 0 and ≤ 180 degs or 0 and 2 rads. Default is 0 degs.

WIND SP - wind speed. Units may be kts (knots), m/s (meters/second), mph (miles per hour), or km/h (kilometers/hour). Value must be ≥ 0 and $\leq 100 \mathrm{kts}, 0$ and $50 \mathrm{~m} / \mathrm{s}, 0$ and 99 mph , or 0 and $99 \mathrm{~km} / \mathrm{h}$. Default is 10 kts .

6.0 EREPS Limitations

The limitations of the EREPS programs are as follows:
a. Frequency: 100 MHz to 20 GHz in PROPR, PROPH, COVER and FFACTR.
b. Over-water paths: With the single exception of troposcatter, the PROPR, PROPH, COVER, and FFACTR models apply only to over-water paths. The models are not valid for terrestrial paths.
c. Horizontal homogeneity: All models assume a horizontally homogeneous atmosphere. It is believed this limitation is justified at least 85\% of the time, as described by Hitney (1985).
d. Effective earth radius factor (K): The diffraction and evaporation duct models are not dependent upon K. Variations in K should only be used to study changes in the optical region nulls. Otherwise K should be kept at a value near 1.33.
e. Optical region: If a large number of lobes are requested, the elevation angles may exceed the smallangle assumptions, causing null locations to be in error. No check is made by the programs for these large angles.
f. Evaporation duct height: All the programs use a single-mode model of propagation for an evaporation duct and may be in error for duct heights greater than 30 meters at $3 \mathrm{GHz}, 22$ meters at 5 GHz , 14 meters at 10 GHz , and 10 m at 18 GHz . Below 2 GHz, all programs should give acceptable results for all ducts between 0 and 40 meters.
g. Surface-based ducts: All programs, except RAYS, use a single-mode empirical model to approximate surface-based duct
propagation which is best used to illustrate the skip zone effect and range extensions. This surface-based duct is one created from an elevated trapping layer and not from a surface-based trapping layer (see section 2.4.3) . An exact vertical refractivity profile would have to be provided to a full-wavesolution program in order to achieve accurate results, this is beyond the scope of the EREPS programs.
h. Model approximations: Cover uses a parallel ray approximation to the geometric model given in section 7.l. The approximation assumes that the direct and sea-reflected rays arrive nearly parallel at the receiver/target. This assumption is quite good at long ranges and higher heights. However, as ranges and heights decrease the assumption becomes poorer and the COVER program will be in error, with the error becoming worse as ranges and heights decrease. The PROPR and PROPH programs do not make the parallel ray assumption. If the results of the Co R program are suspect, they may be compared to those obtained from PROPR or PROPH.
i. Graphics shading routines: As the frequency or antenna height increase, the lobe spacing as shown by figure 13 , decreases. For some cases of the COVFR program, the spacing may become so small that the graphic routine used to shade the lobes will fail. For these cases, the shading problem may be corrected by increasing the scale and replotting the graphic.

The various models underlying the EREPS programs are described below in section 7.1 through 7.5. PROPR, PROPH, COVER, RAYS, and FFACTR are all based on these models; however, for considerations of speed and graphics presentation, each program is implemented somewhat differently. The implementations for each model are briefly described in Section 7.6 .

7.1 Propagation Models

The simplest case of electromagnetic wave propagation is the transmission of a wave between a transmitter and a receiver in free space. Free space is defined as a region whose properties are isotropic, homogeneous, and loss-free, i.e., away from the influences of the earth's atmosphere. In free space, the electromagnetic wave front spreads uniformly in ali directions from the transmitter.

While the total amount of energy transmited does not vary, i.e., no losses to absorption, etc., the energy is distributed over an ever enlarging surface. Thus the energy level along any one ray decreases inversely with the square of the sphere's radius. This is called the freespace path-loss. The power density, ($\mathrm{W} / \mathrm{m}^{2}$), over a sphere at any point in freespace, P_{a} is

$$
\begin{equation*}
P_{a}=\frac{P_{t}}{4 \pi r^{2}}, \tag{6}
\end{equation*}
$$

where P_{t} is the power radiated by the transmitter in Watts and r is the radius of the sphere in meters.

In free space, the power density at a loss-free, isotropic receiving antenna is the power density over the entire sphere's surface times the area of the sphere covered by the receiver antenna, also called the antenna's effective aperture, A_{e}. The effective aperture is related to the wavelength (λ) of radiation by

$$
\begin{equation*}
A_{e}=\frac{G \lambda^{2}}{4 \pi} \text {, } \tag{7}
\end{equation*}
$$

where G is the antenna's gain. For a loss-free, isotropic antenna, G is unity. Thus the power at the receiver, P_{r} is

$$
\begin{equation*}
P_{r}=P_{a} A_{e}=\frac{P_{t} \lambda^{2}}{(4 \pi r)^{2}} \tag{8}
\end{equation*}
$$

The free-space path loss is expressed as

$$
\begin{equation*}
L_{E s}=\frac{P_{t}}{P_{r}}-\frac{(4 \pi r)^{2}}{\lambda^{2}} \tag{9}
\end{equation*}
$$

where r and λ are in the same units. The free-space path loss expressed in terms of frequency is

$$
\begin{equation*}
\mathrm{L}_{\mathrm{fs}}=32.44+20 \operatorname{LOG}_{10}(\mathrm{r})+20 \operatorname{LOG}_{10}(\mathrm{f}) \tag{10}
\end{equation*}
$$

for r in kilometers and f in $M H z$

If non-isotropic antenna radiational paternsare considered within the loss calculations, the loss is refered to as propagation loss rather than path loss. The propagation loss can be described with the aid of the propagation factor which is defined as the ratio of the actual field strengthat a point in space to the field strength that would exist at the same range under free-space conditions with the beam of the transmitter directed toward the point in question. Symbolically this is

$$
\begin{equation*}
F=\frac{\mid E_{0}}{\left|E_{0}\right|} \tag{11}
\end{equation*}
$$

where E_{0} is the magnitude of the electric field under freespace conditions and E is the magnitude of the field to be investigated at the same point.

The propagation factor is a desirable quantity since it is an identifiable parameter in most radar-detection-range equations. It contains all the information necessary to account for such effects as sea-surface reflection, atmospheric refraction, scattering from inhomogeneties in the atmosphere, and diffraction from the bulge of the earth's surface. Thus, if the functional form of F is known then the propagation loss at any point can be determined since the calculation of the free-space field is quite simple. The propagation loss (in dB) including antenna patterns, is equivalent to

$$
\begin{equation*}
L=L_{f s}-20 \operatorname{LoG}_{10}(F) \tag{12}
\end{equation*}
$$

There are three distinct regions which require different methods for obtaining signal strength (or, equivalently, propagation loss) as a function of range. Thefirst region is
called the optical interference, or optical region. This region extends roughly from the transmitter to the radio horizon. In the optical region, propagation is dominated by two-path coherent interference between direct and surfacereflected waves. The other distinct region is the diffraction/troposcatter region which begins just beyond the radio horizon. A third region, called the intermediate region, lies between the optical and the diffraction region. The stgnal levels in this region are obtained by a linear interpolation between falues in the optical and diffraction regions.

In the discussion of the models all heights are in meters, all ranges are in kilometers, and angles in radians unless specifically stated otherwise.

7.1.1 Optical Interference Region Models

For naval EM systems operared near the earth's surface, the electric field at a receiving antenna or radar target is the vector sum of the field components which arrive at that point via the direct and sea-reflected paths as shown in figure 6. The phase component of the reflected ray will lag the phase of the direct path because of the difference in path lengths. The total phase lag, θ, of the reflected ray with respect to the direct ray is the sum of the path-length difference, δ, and the phase change, Φ, due to reflection from the surface. In EREPS the assumption is made that the direct and sea-reflected rays have very nearly the same spatial direction, such that the major factor in their addition is the phase difference. Kerr (1951) gives the following expression for F in the absence of abnormal absorption or refractive effects as

$$
\begin{equation*}
F=\left[f\left(\epsilon_{1}\right)^{2}+\left(f\left(\epsilon_{2}\right) D R\right)^{2}+2 D R f\left(\epsilon_{1}\right) f\left(\epsilon_{2}\right) \cos (\theta)\right]^{1 / 2} \tag{13}
\end{equation*}
$$

The $f\left(\epsilon_{i}\right)$ factors describe the (normalized to l) antenna pattern and the angles, ϵ_{i}, are shown in figure 24. Dis called the divergence factor and takes into account the spherical nature of the reflecting surface. R is the reflection coefficiani \quad f the reflecting surface (the ratio of the magnitudes of the reflected and incident fields). F varies from maximum to minimum as the total phase lag, θ, changes by π and can assume values between 0 and 2 .

Figure 24: Two path optical interference region.

The expression for F in equation 13 is valid for all values of θ such that the path-length difference, δ, is greater than or equal to one-quarter wavelength, or at which the grazing angle is equal to a limit given by Reed and Russell (1966) at which the spherical earth divergence factor becomes invalid. This limit is given by the expression

$$
\psi_{1 \mathrm{im}}=\operatorname{TAN}^{-1}\left[(.001 \lambda) /\left(2 \pi a_{e}\right)!^{1 / 3} \approx(.01957) /\left(\begin{array}{ll}
\mathrm{f}
\end{array}\right)^{1 / 3} \quad(14)\right.
$$

where ψ is the grazing angle, λ is the wavelength in meters, ae is the effective earth radius, and f is the frequency in $M H z$. a_{e} is defined as the earth radius times the effective earth radius factor k. The optical region maximum range is reduced from that calculated by the applicable optical region limit above if the evaporation duct is not zero. If the (scaled) evaporation duct height is less than 10.25 meters in height the end of the optical region is obtained by finding the range where the first optical region peak occurs $(\theta=2 \pi)$ and using the following formula

$$
\begin{equation*}
\theta_{1 \mathrm{im}}=1+(\Delta / 10.25)\left(2 \pi \cdot \theta_{1}\right) \tag{15}
\end{equation*}
$$

where θ_{1} represents the value of θ at the quarter wavelength or grazing angle limit, and Δ is the scaled evaporation duct height. Scaled evaporation duct heights greater than 10.25 meters use θ - 2π as the optical region maximum value.

For all programs except Cover, the path length difference, δ, in radians, between the direct and reflected rays is given by

$$
\begin{equation*}
\delta=2 \pi\left(2 \mathrm{H}_{\mathrm{t}} \cdot \mathrm{H}_{\mathrm{r}}^{\prime}\right) /(1000 \quad \mathrm{r} \lambda) \tag{16}
\end{equation*}
$$

Here r is the total ground range, and H_{t}, and H_{r}, the effective antenna heights. $H_{t}{ }^{\prime}$ and $H_{r}{ }^{\prime}$ are shown in figure 24 and are given by

$$
\begin{align*}
& H_{t}^{\prime}=H_{t}-\left(1000 r_{1}^{2}\right) /\left(2 a_{e}\right) \tag{17}\\
& H_{r}^{\prime}=H_{r}-\left(1000 r_{2}^{2}\right) /\left(2 a_{e}\right) \tag{18}
\end{align*}
$$

where H_{t} and H_{r} are the transmitter and receiver/target heights respectively. $\quad r_{1}$ and r_{2} are the reflection point ranges. $\quad r_{1}$ can be determined by solving the cubic equation

$$
\begin{gather*}
2 r_{1}^{3}-3 r r_{1}^{2}+\left(r^{2}-.002 a_{e}\left(H_{t}+H_{r}\right)\right) r_{1} \\
 \tag{19}\\
+.002 a_{e} H_{t} r=0 .
\end{gather*}
$$

This equation is frequently solved using a Newton-method iterative technique, but also has the formal solution ($H_{r} \geq H_{t}$)

$$
\begin{equation*}
\mathbf{r}_{1}=\mathbf{r} / 2-\mathbf{p} \cos ((\Phi+\pi) / 3) \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
p=\left[(4 / 3)\left(.001 a_{e}\left(H_{t}+H_{r}\right)+(r / 2)^{2}\right)\right]^{1},^{2} \tag{21}
\end{equation*}
$$

and

$$
\Phi=\cos ^{-1}\left[\left(.002 a_{e}\left(H_{r}-H_{t}\right) r\right) / p^{3}\right]
$$

The antenna patternfactors, f(ϵ_{i}), require angular information about the angles and β as shown in figure 24. The magnitude, R, and phase shift, Φ, require knowledge of the grazing angle, ψ. These angles, in radians, are

$$
\begin{align*}
& \alpha=.001\left(\mathrm{H}_{r}-\mathrm{H}_{t}\right) / \mathrm{r}-\mathrm{r} /\left(2 \mathrm{a}_{\mathrm{e}}\right), \\
& \boldsymbol{\alpha}=.001 \mathrm{H}_{t}^{\prime} / \mathrm{r}_{1}, \tag{24}\\
& \gamma=\mathrm{r}_{1} / \mathrm{a}_{\mathrm{e}}, \\
& \beta=-\gamma-\psi, \tag{26}
\end{align*}
$$

in terms of quantities shown in figure 24 . The divergence factor can be calculated using the equation

$$
\begin{equation*}
D=\left[1+\left(2 r_{1} r_{2}\right) /\left(r a_{e} \psi\right)\right]^{1 / 2} \tag{27}
\end{equation*}
$$

For the COVER program only, the path-length difference is based on the assumption that the direct and reflected rays are parallel. The path-length difference for this model is given by

$$
\begin{equation*}
\delta-(4 \pi / \lambda)\left[H_{t}^{2}+1000 a_{e}\left(1000 a_{e}+H_{t}\right) \gamma^{2}\right]^{1 / 2} \sin { }^{2}(\psi) \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=\left[\operatorname{TAN}^{2}(\alpha) / 9+2000 H_{t} /\left(3 a_{e}\right)\right]^{1 / 2}-\operatorname{TAN}(\alpha) / 3 \tag{29}
\end{equation*}
$$

The grazing angle for the cover program is calculated using

$$
\begin{equation*}
\psi=\alpha+\gamma \tag{30}
\end{equation*}
$$

and f, the launch angle of the reflected ray, is equal to

$$
\begin{equation*}
\beta=-\alpha-2 \gamma . \tag{31}
\end{equation*}
$$

The divergence factor is given in terms of the quantities of equations 29 and 30 as

$$
\begin{equation*}
D=[1+2 \gamma / \operatorname{Sin}(\psi)]^{1 / 2} \tag{32}
\end{equation*}
$$

The parallel ray assumption simplifies the determination of the cover contours since each contour is described by

$$
\begin{equation*}
r-R_{f s} F \cos (\alpha), \tag{33}
\end{equation*}
$$

for all angles a within the main beam of the antenna and greater than the lower angular limit of the optical region. Here R_{f} is the free-space range in kilometers.

The magnitude and phase shift of the reflected ray can be calculated as a function of the grazing angle \downarrow. The magnitude, R, and the phase shift, Φ, of the reflected ray for horizontal and vertical polarizations, respectively, are

$$
\begin{equation*}
\mathrm{R}_{\mathrm{H}}=1 \tag{34}
\end{equation*}
$$

$$
\begin{equation*}
\Phi_{H}=\pi \tag{35}
\end{equation*}
$$

$$
\begin{equation*}
R_{V}^{i \Phi_{V}}=\frac{n^{2} \sin (\psi)-\left[n^{2}-\cos ^{2}(\psi)\right] 1 / 2}{n^{2} \sin (\psi)+\left[n^{2}-\cos ^{2}(\psi)\right] 1 / 2} \tag{36}
\end{equation*}
$$

where n is the (complex) index of refraction and the subscripts H and V indicate the polarization. The reflection coefficient for circular polarization is calculated in terms of the horizontal and vertical coefficients

$$
\begin{align*}
& R_{C}=.5\left(R_{V}^{2}+R_{H}^{2}+2 R_{V} R_{H} \cos \left(\Phi_{H}-\Phi_{V}\right)\right)^{1 / 2}, \tag{37}\\
& \Phi_{C}=\Phi_{H}-\operatorname{SIN} \tag{38}\\
& { }^{-1}\left(R_{V} \operatorname{SIN}\left(\Phi_{H}+\Phi_{V}\right) /\left(2 R_{C}\right)\right) .
\end{align*}
$$

The magnitude of the reflected ray is also affected by the roughness of the reflecting surface. Surface roughness is included following the models of Ament (1953), Beard (1961), and Barrick (1971) using the formulas

$$
\begin{equation*}
R=R_{0} \operatorname{EXP}\left(-2([2 \pi h \operatorname{SIN}(\psi)] / \lambda)^{2}\right) \quad(h \psi) / \lambda<.110 \tag{39}
\end{equation*}
$$

$$
\begin{aligned}
& R=R_{0}\left(.5018913-\left(.2090248-\left(\begin{array}{r}
\left.\left.(h \nmid) / \lambda)-.55819)^{2}\right)^{1 / 2}\right) \\
.110 \leq(h \psi) / \lambda \leq .260,(40)
\end{array}\right.\right.\right. \\
& R=.15 R_{0} \quad(h \psi) / \lambda>.260,(41)
\end{aligned}
$$

where R_{0} is the reflection coefficient for a smooth surface, h is the root-mean-squared wave height and the wavelength. The rms wave height is obtained as a function of wind speed using the Phillips (1966) ocean-wave model

$$
\begin{equation*}
h=.0051 \mathrm{~W}_{\mathrm{s}}^{2} \tag{42}
\end{equation*}
$$

for wind speed $\left(W_{s}\right)$ in meters/sec.

The square of the index of refraction required to make the calculation of R and Φ for vertical and circular polarizations is given by

$$
\begin{equation*}
\mathrm{n}^{2}=\epsilon-\mathrm{i}(18000 \sigma) / \mathrm{f} \tag{43}
\end{equation*}
$$

where \quad and σ are the ordinary dielecticeonstant and conductivity, respectively, of sea water, and fis the EM system frequency in MHz. The constants themselves are obtained as a function of frequency using Blake's (1970) equations, as follows

Case 1: $\mathbf{f} \leq 1500$

$$
\begin{aligned}
\epsilon & =80 \\
\sigma & =4.3
\end{aligned}
$$

$$
(44)
$$

$$
(45)
$$

Case 2: $1500<\mathrm{f} \leq 3000$

$$
\begin{array}{lll}
\epsilon & =80-0.00733(\mathrm{f}-1500) \\
\sigma & =4.3+0.00148(\mathrm{f}-1500)
\end{array}
$$

Case 3: $3000<\mathbf{f} \leq 10000$

$$
\begin{align*}
& \epsilon=69-0.00243(\mathrm{f}-3000) \\
& \sigma=6.52+0.001314(\mathrm{f}-3000) \tag{49}
\end{align*}
$$

$$
(48)
$$

For frequencies greater than $10,000 \mathrm{MHz}$ the $10,000 \mathrm{MHz}$ values are used.

The remaining terms in equation $13, f\left(\epsilon_{i}\right)$, the normalized antenna pattern factors, are determined as a function of the antenna pattern type, beamwidth, and pointing angle. Five difterent antenna types are used in EREPS 2.0; omnidirectional, sin(x)/x, cosecant-squared, generic height-finder, and Gaussian beam. The simplest case is that of the omnidirectional antenna which, as its name implies, has a gain of unity in all directicns. That is, $f(\mu)=1$ for allangles μ.

The second case is the sin (x)/x antennatype. The radiation pattern of this antenna is symetric about the
elevation (pointing) angle of the antenna. The pattern factor for this antenna is given by Blake (1970) as

$$
f(\mu)=\operatorname{SIN}(x) / x \quad f(\mu) \geq 0.03, \quad-\mu_{\max } \leq \mu \leq \mu_{\max },(50)
$$

where

$$
\begin{equation*}
x-c \operatorname{SIN}\left(\mu-\mu_{0}\right) \tag{51}
\end{equation*}
$$

and μ_{0} and $\mu_{m a x}$ are the elevation angle and maximum angle in the main beam, respectively. The value of cis chosen so that $f(\mu)=$ 0.7071 when $\mu=\mu_{0} \pm B W / 2$, where BW is the beamwidth. This normalization ensures that the antenna half-power points $\quad 20$ $\left.\operatorname{LOG}_{10}(\mathrm{f}(\mu))=-3 \mathrm{~dB}\right]$ occur at $\mu=\mu_{0} \pm \mathrm{BW} / 2$, which is the usual definition of the beamwidth of the antenna. That is

$$
\begin{equation*}
\mathrm{c}=1.39157 / \mathrm{SIN}(\mathrm{BW} / 2) . \tag{52}
\end{equation*}
$$

Pattern factor calculations are limited to those angles within the main beam of the antenna down to the - 30 dB level (f μ) \geq 0.03). Angles greater than

$$
\begin{equation*}
\mu_{\max }=\mu_{0} \pm \operatorname{TAN}^{-1}\left(A /(1+A)^{1 / 2}\right) \tag{53}
\end{equation*}
$$

where $A=\pi / x$ are limited to a pattern factor of 0.03. This is equivalent to an antenna with its first sidelobes at - 30 dB , a condition easily achieved with modern antennas.

The generic height-finder antenna is a special case of the $\sin (x) / x$ antenna. Height-finder antennas typically swep the beam upward in elevation. This can be simulated by subsituting the direct ray ant e, μ, for the elevation angle μ_{0}. Then $f(\mu)$ 1 for all values, μ, of the direct ray set. As the antennabeam is swept upward the patcern factor for the reflected ray gradually tapers to the -30 dB level.

A fourth antenna type is the cosecant-squared antenna. This antenna pattern is not symmetric about the elevation angle. The pattern factor is calculated using

$$
f(\mu)=1
$$

$$
\begin{equation*}
\mu_{0} \leq \mu \leq \mu_{0}+B W \tag{54}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{f}(\mu)=\mathrm{SIN}(\mathrm{BW}) / \operatorname{SIN}(\mu) \quad \mu>\mu_{0}+\mathrm{BW} \tag{55}
\end{equation*}
$$

$$
\begin{equation*}
f(\mu)=\left[1-\left(\mu_{0}-\mu\right) / \mathrm{BW}\right] \quad f(\mu) \geq 0.03, \mu<\mu_{0} \tag{56}
\end{equation*}
$$

This antenna patern is different from the sin(x)/x or Gasian beam antennas since the beamwidth of this antenna does not coincide with the - 3 dB , or half-power, points of the antena. The orientation of the antenna given above is the one that would be used for shipboard radars. Cosecant-squared antennas used on an airborne radar are normally oriented in the reverse sense such that the first two equations above would describe the direct ray angles below the elevation angle μ_{o}. The third equation would then describe the beam taper above the elevation angle. The antenna orientation is not optional in FREPS, the antenna is always assumed to be that of a surface-based system.

The final antenna option is the Gassian beam antenna. The pattern factor for this antenna is symetric about the pointing angle and is given by

$$
\begin{align*}
& f(\mu)=\operatorname{EXP}\left[-W^{2}\left(P-P_{0}\right)^{2} / 4\right], \\
& f(\mu) \geq 0.03,-\mu_{\max } \leq \mu \leq \mu_{\max }, \tag{57}
\end{align*}
$$

where

$$
\begin{equation*}
P=\operatorname{SIN}(\mu), \tag{58}
\end{equation*}
$$

$$
\begin{equation*}
P_{0}=\operatorname{SIN}\left(\mu_{0}\right), \tag{59}
\end{equation*}
$$

$$
\begin{equation*}
w-\left(2 \log _{e}(2)\right)^{1 / 2} / \operatorname{Sin}(B W / 2), \tag{60}
\end{equation*}
$$

and where the normalization factor W is chosen such that $f(\mu)$ 0.7071 when $\mu=\mu_{0} \pm B W / 2$, similar to the $\sin (x) / x$ antenna. The maximum angle is calculated using equation 53 for a value of

$$
\begin{equation*}
A=\left[10.11779 \operatorname{SiN}^{2}(\mathrm{BW} / 2)\right]^{1 / 2} . \tag{61}
\end{equation*}
$$

7.1.2 Diffraction/Intermediate Region Models

Beyond the horizon, the chief contributions to the electric fieldare from diffraction and, at somewhat greater ranges, tropospheric scater. The diffraction field can be
represented as a sum over the possible number of modes which are the solution to the fundamental equation of mode theory. For a standard atmosphere, the series describing the field converges rapidly and only a single mode is necessary to adequately determine the field. A single mode may also describe the field in the presence of evaporation ducts or surface-based ducts due to elevated layers, especially the former. However, close to the horizon the series solution converges rather slowly. This is the "intermediate region" and a method of "bold interpolation" originally described by Kerr (1951) is used to estimate the field in this region. This method involves a linear interpolation on the logarithm of the pattern propagation factor from the last valid range in the optical region to the first range in the diffraction region.

The minimum range at which the diffraction field solutions are applicable and the intermediate region ends is given by Reed and Russell (1966) as

$$
\begin{equation*}
r_{d}=r_{\text {hor }}+230.2\left(k^{2} / f\right)^{1 / 3} \quad(k m) \tag{62}
\end{equation*}
$$

where the horizon range is given by

$$
\begin{equation*}
r_{\text {hor }}=3.572\left(\left(\mathrm{kH}_{\mathrm{t}}\right)^{1 / 2}+\left(\mathrm{kH}_{\mathrm{r}}\right)^{1 / 2}\right)(\mathrm{km}) \text {, } \tag{63}
\end{equation*}
$$

for H_{t} and H_{r} is meters. A minimum effective earth radius of $k=$ 1.33 is assumed for the calculation of r_{d}.

The diffraction/intermediate region models are used to determine path loss as a function of height and range for ranges and heights below the lower angular limit of the optical interference region. There are four models used to calculate
loss in this region. If the evaporation duct heightis zero, then the standard diffraction loss is calculated by the methods outlined by Blake (1970). If the evaporation duct height is not zero, then the least loss from standard diffraction or model derived from the NOSC waveguide program is used. If a surfacebased duct is present an empirical model is used to calculate loss. At somewhat greater ranges troposcatter loss is calculated using a model taken from Yeh (1960) which has been modified by the addition of a "frequency gain" factor from Rice, et al. (1965) that gives better values for low-altitude paths. The troposcater loss is calculated for all range height combinations beyond r_{d} and added to the standard diffraction or evaporation duct loss until the troposcatter loss is 18 dB less than the applicable loss. Beyond that point only the troposcatter loss is calculated.
7.1.2.1

Standard Diffraction Model

The total propagation loss due to standard diffraction is given by (from equation 12)

$$
\begin{equation*}
\mathrm{L}=\mathrm{L}_{\mathbf{f s}}-20 \operatorname{LoG}_{10}(\mathrm{~F})-\mathrm{L}_{\mathbf{d}}, \tag{64}
\end{equation*}
$$

in terms of previously defined quantities. The loss term L_{d} is determined using

$$
\begin{equation*}
\mathrm{L}_{\mathrm{d}}=20 \operatorname{LOG}_{10}(\mathrm{f}(\mu)) \tag{65}
\end{equation*}
$$

where the antenna pattern factor, $f(\mu)$, gives a measure of how much energy is directed toward this region and μ represents the lowest direct ray angle in the optical region. Blake's (1980)
standard diffraction model specifies the one-mode solution for F as

$$
\begin{equation*}
F=V(x)\left|U\left(z_{1}\right) U\left(z_{2}\right)\right| \tag{66}
\end{equation*}
$$

for a standard atmosphere. x, z_{1} and z_{2} are the receiver/target range, transmiting antenna height and receiver/target height, respectively, expressed in "natural units." The natural units scale factors of range, R_{s}, and height, H, are given by

$$
\begin{align*}
& \mathbf{R}_{\mathbf{s}}=190 \mathrm{f}^{-1 / 3}, \\
& \mathrm{H}=2129.4 \mathrm{f}^{-2 / 3}, \tag{68}
\end{align*}
$$

for R_{s} in kilometers, H in meters, and f in MHz. The natural range, x, is equal to r / R_{s} where r is the actual range, and the natural height, z_{1}, is equal to H_{t} / H. Similarly, $z_{2}=H_{r} / H$.

The $V(x)$ term is called the attenuation factor and is equal to

$$
V(x)=10.99+10 \operatorname{LoG}_{10}(x)-17.55 x
$$

(dB). (69)

The $U(z)$ are the height-gain functions and are calculated, in decibels, as follows

$$
\begin{equation*}
U(z)-20 \operatorname{LoG}_{10}(z) \tag{70}
\end{equation*}
$$

$$
z \leq 0.6
$$

$$
\begin{array}{ll}
U(z)=-4.3+51.04\left[\operatorname{LoG}_{10}(z / 0.6)\right] 1.4 & 0.6<z<1.0,(71) \\
U(z)=19.85\left(z^{0.47}-0.9\right) & z \geq 1.0 . \tag{72}
\end{array}
$$

Strictly speaking these equations are only valid for horizontal polarization and a perfectly conducting earth, but they are generally applicable to other polarizations at frequencies above 100 MHz .
7.1.2.2 NOSC Evaporation Duct Model

The evaporation duct loss (in dB) may be written as

$$
\begin{equation*}
\mathrm{L}=51.1+\Gamma-\mathrm{F}_{z \mathrm{t}}-\mathrm{F}_{\mathrm{zr}}+10 \operatorname{LOG}_{10}(\rho)+\alpha \rho-\mathrm{L}_{\mathrm{d}} \tag{73}
\end{equation*}
$$

L_{d} is defined by equation 65. $\quad \Gamma$ is the excitation factor, F_{z} and $F_{z r}$ the height-gain functions for the EM system transmitter and radar target/receiver, respectively, ρ the (scaled) range and a the attenuation rate. The specific values of these quantities are obtained as functions of the duct height. The functions which produce these values are the result of curve-fitting the various quantities to waveguide program solutions. Fis obtained by subsitution of equation 73 into equation 12 .

The waveguide solutions which were used to develop the evaporation duct model were made at a single frequency, 9.6 GHz . The evaporation duct solutions for other frequencies share a family resemblance, the height of the duct which produces a particular propagation characteristic varying inversely with the frequency. This fact allows the solutions at 9.6 GHz to be
scaled to other frequencies. All actual ranges and heights are multiplied by the scale factors

$$
\begin{equation*}
R_{N}=4.70510^{-2} f^{1 / 3} \tag{74}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{z}_{\mathrm{N}}=2.21410^{-3} \mathrm{f}^{2 / 3} \tag{75}
\end{equation*}
$$

respectively, to scale the solutions at other frequencies to the 9.6 GHz values. The coefficients ensure $R_{N}=Z_{N}=1$ when the frequency is set equal to 9600 MHz . Using these scalefactors, the actual evaporation duct, receiver, and transmiter heights are scaled to the 9.6 GHz equivalents and the range is similarly changed to conform to the 9.6 GHz requirements. For example, the scaled duct height, Δ, is equal to the actual evaporation duct height, δ, times Z_{N}. Similarly, if r is the actual range and H_{t} the actual $E M$ system transmitter height then the scaled range, ρ, is R_{N} times r and the scaled transmitter height, z_{t}, is given by Z_{N} times H_{t}.

The height-gains expressed as a function of scaled duct height are of two different forms, depending on whether or not the duct height is sufficient to support a well-trapped mode. The height gain function (in dB) for scaled duct heights less than 10.25 meters may be written as

$$
\begin{equation*}
F(z)=C 1 z^{C 2}+C 3 z^{C 4}+C 5 \quad z \geq 1.0, \tag{76}
\end{equation*}
$$

where z is the scaled height of either the EM system transmiter or the radar target/receiver. For well-trapped modes, scaled duct heights between 10.25 and 23.3 meters, two functions are necessary to obtain the height-gains in $d B$

$$
\begin{align*}
& F(z)=C 1 \operatorname{LOG}_{\mathrm{e}}\left[\operatorname{SIN}(\mathrm{C} 2(z / 4.72) \mathrm{C}\}+\mathrm{C} 4 \quad 1.0 \leq \mathrm{z}_{\mathrm{L}} \leq \mathrm{Z}_{\max },(77)\right. \\
& F(z)=C 5(z / 4.72)^{C 6}+C 7 \quad z>Z_{\text {max }} \tag{78}
\end{align*}
$$

In either case, the coefficients Ci are determined from the scaled duct height, z is the scaled height of the EM system transmitter or radar target/receiver and $Z_{\text {max }}$ is calculated using the formula

$$
\begin{equation*}
\mathrm{Z}_{\text {max }}=4 \mathrm{e}^{-.31(\Delta-10.0)}+6 \tag{79}
\end{equation*}
$$

where Δ is the scaled duct height. The coefficients for scaled duct heights less than 10.25 meters are calculated using the following formulas

$$
\begin{aligned}
& C 1=\left(-2.2 e^{-.244 \Delta}+17\right) .211864^{C 2}, \\
& C 2=\left(4.06236110^{4}-(\Delta+4.4961)^{2}\right)^{1 / 2}-201.0128,(80) \\
& C 3=\left(-33.9 e^{-.517 \Delta}-3\right) .211864^{C 4}, \\
& C 4=\left(1.4301210^{4}-(\Delta+5.32545)^{2}\right)^{1 / 2}-119.569,
\end{aligned}
$$

$$
\begin{equation*}
C 5=41 e^{-.41 \Delta}+61 \tag{84}
\end{equation*}
$$

The coefficients for scaled duct heights between 10.25 and 23.3 meters, are calculated using the following formulas

$$
\begin{align*}
& C 1=-.1189 \Delta+5.5495, \\
& C 2=\left(1.3291 \operatorname{SIN}\left(.218(\Delta-10)^{.77}\right)+.2171 \operatorname{LOG}_{\mathrm{e}}(\Delta)\right),(85) \\
& C 3=3 / 2, \\
& C 4=87-\left(313.29-(\Delta-25.3)^{2}\right)^{1 / 2}, \tag{88}\\
& C 5=\left(F_{\text {max }} /\left(\left(Z_{\text {max }} / 4.72\right)^{C 6}\right)\right), \tag{89}\\
& C 6=\left(Z_{\text {max }} / 4.72\right)\left(S / F_{\text {max }}\right) \tag{90}\\
& C 7=49.4 e^{-.1699(\Delta-10)}+30, \tag{91}
\end{align*}
$$

where

$$
\begin{equation*}
S=1.5 \mathrm{C} 1 \mathrm{C} 2\left(\mathrm{Z}_{\max } / 4.72\right)^{1 / 2} / \operatorname{TAN}\left(\mathrm{C} 2\left(\mathrm{Z}_{\max } / 4.72\right)^{3 / 2}\right) \tag{92}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{\max }-C 1 \operatorname{LOG}_{\mathrm{e}}\left(\operatorname{SIN}\left(C 2\left(\mathrm{Z}_{\max } / 4.72\right)^{3 / 2}\right)\right)+C 4-C 7, \tag{93}
\end{equation*}
$$

which are necessary to make the two functions $F(z)$ and their slopes continuous about $Z_{\text {max }}$. Using these cofficients in the equations will produce height-gain curves which increase with height for scaled duct heights below lo. 25 meters. The well-trapped modes have an initial increase with height for a limited range of z near the surface, peak and then decrease with height to some value, thereafter displaying very little variation with height. The minimum scaled height used for calculating the height-gains is 1.0 meter and heights below this are set equal to this value.

Scaled duct heights greater than 23.3 meters have more than one mode which can propagate in the guide. The effect of the multiple modes is to add constructively at some range/height combinations and destructively at others, a condition similar to the optical region interference. Since this variation is not predictable without using a waveguide program, the scaled duct heights greater than 23.3 meters are treated as 23.3 meter ducts. Examples of the height-gain curves for evaporation ducts are shown in figure 25.

Two factors fromequation 73 remain to be specified, Γ and α. The excitation factor, which is a measure of the relative strength of the mode, in $d B$ may be obtained using

$$
\begin{equation*}
\Gamma=216.7+1.5526 \Delta \quad \Delta \leq 3.8 \tag{94}
\end{equation*}
$$

Figure 25: Example of 9.6 GHz height-gain curves.

$$
\Gamma=222.6 \cdot 1.1771(\Delta-3.8) \Delta>3: 8
$$

The attenuation rate in $\mathrm{dB} / \mathrm{km}$ is

$$
a=\left(92.516-\left(8608.7593-(\Delta-20.2663)^{2}\right)^{1 / 2}\right),
$$

for values of $\alpha \geq 0.0009$, which is the lowest atenuation rate used. It is convenient to replace the attenuation rate term in equation 73 , $\alpha \rho$, with βr, where r is the actual range and

$$
\begin{equation*}
\beta=\alpha \mathrm{R}_{\mathrm{N}} \tag{97}
\end{equation*}
$$

The attenuation rates for the higher duct heights may be seval orders of magnitude smaller than the standard diffraction (zero meter duct height) rate.
7.1.2.3 NOSC Surface-Based Duct Model

The NOSC model for a surfacebased duct fromelevated layers is not as complex as the evaporation duct model. It is based on an empirical fit of experimental data. The loss (in dB) may be written

$$
\begin{equation*}
\mathrm{L}=\mathrm{C}-\mathrm{F}_{2 r}+20 \operatorname{LOG}_{10}(\mathrm{r})-\mathrm{L}_{\mathrm{d}} \tag{98}
\end{equation*}
$$

where $F_{z r}$ is the height-gain function for the receiver/target height and L_{d} is defined in equation 65. Here C (in $d B$) is given by $C=32.44+20 \operatorname{LOG}_{10}(f)$. The attenuation rate term is not used in this model and no range or height scale factors are used either. Similarly the only height-gain term used in equation 98 is the height gain of the radar target/receiver height. As the "guide" dimensions are normally on the order of hundreds of meters, these ducts affect frequencies of 100 MHz and below, unlike the evaporation duct which only affects frequencies greater than 1 GHz. This model has the disadvantage of being anisotropic with choice of terminal heights. The height-gain term used in EREPS for this model is always calculated for the terminal height specified as the radar target/receiver height. F is obtained by subsitution of equation 98 into equation 12.

The height-gain function for the surface-based duct model is calculated as a function of frequency and duct height for any arbitrary radar target/receiver height z :

Case 1: $100<f \leq 150$

$$
\begin{array}{ll}
F_{z r}=-60(z / D-.5)^{2} & z / D<.8, \\
F_{z r}=1.14(z / D)^{-6.26}-10 & z / D \geq .8 \tag{100}
\end{array}
$$

Case 2: $150<\mathbf{f} \leq 350$

$$
\begin{array}{ll}
F_{z r}=10-200(z / D-.5)^{4} & z / D<1.0 \\
F_{z r}=7.5(z / D)^{-13.3}-10 & z / D \geq 1.0 \tag{102}
\end{array}
$$

Case 3: f > 350

$$
\begin{array}{ll}
F_{z r}=10-200(z / D-.5)^{4} & z / D<1.0 \\
F_{z r}=12.5(z / D)^{-8}-15 & z / D \geq 1.0 \tag{104}
\end{array}
$$

Here D is the duct height. Examples of the height-gain curves produced by these formulas are given in figure 26 . The shapes of the heipht-gain curves are characteristic of well-trappedmodes as should be expected from a surfacebased duct.

Figure 26: Height-gain curve for surface-based duct of arbitary height

The surface-based duct model assumes a certain shape to the M-versus-height profile. The assumption is that the upper 10\% of the duct is a trapping layer and that the difference in modified refractivity between the top of the duct and the surface is zero. Below the trapping layer the refractivity gradient is equal to the inverse of the effective earth radius (dM/dh = $10^{-3} / a_{e}$). If both the transmitter and the radar target/reciever height are below the trapping laycr a ${ }^{n}$ skip-zonen is modeled. A minimum ray path between the two terminal heights is calculated and the resulting range is set as the minimum range at which full trapping by the duct exists (i.e, the far end of the skip zone).

At lesser ranges, an increase of loss is set as $1 \mathrm{~dB} / \mathrm{km}$ for all frequencies, based on measured data. At greater ranges, the model is given by equation 98 .

7.1.3 Troposcatter Region Model

At ranges sufficiently greater than the horizon scattering from irregularities in the troposphere begins to dominate the electric field. Yeh (1960) gives the troposcater loss in decibels as
$\mathrm{L}=114.9+0.08984\left(\mathrm{r}-\mathrm{r}_{\mathrm{hor}}\right) / \mathrm{k}+20 \operatorname{LOG}_{10}(\mathrm{r})$

$$
\begin{equation*}
+30 \log _{10}(\mathrm{f})-0.2 \mathrm{~N}_{\mathrm{s}}-\mathrm{L}_{\mathrm{d}}+\mathrm{H}_{\mathrm{o}} . \tag{105}
\end{equation*}
$$

Here r is the rango, $r_{\text {hor }}$ is the horizon range, N_{s} is the surface refractivity value, and H_{o} is the frequency-gain function from Rice et al. (1965). L_{d} is defined in equation 65. Fis obtained by subsitution of equation 105 into equation 12 . The troposcatter model can be effectively suppressed by setting $N_{s}=0$ if comparisons are desired with other models which do not account fur troposcatter.

The frequency gain function, H_{o}, $i . \quad$. imarily of importance for low antenna heights, especially if the system frequency is very low. The procedure for obtaining H_{o} requires a calculation of the effective scattering height, ho, which is equal to

$$
\begin{equation*}
h_{0}-(s r \theta) /(1+s)^{2} \tag{106}
\end{equation*}
$$

(km)
where r is the ground range, θ the scattering angle, as shown in figure 2\%, and s is defined by

$$
\begin{equation*}
s-5 / x \quad 10.0 \geq s \geq 0.10 \tag{107}
\end{equation*}
$$

Figure 27: Geometry for troposcatter loss calculations.

The angles from these equations are given by

$$
\begin{equation*}
\theta=\theta_{0}+\theta_{1}+\theta_{2}, \tag{108}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{0}=r / a_{e}, \tag{109}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{1}=r_{1} / a_{e} \tag{110}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{2}=r_{2} / a_{e} \tag{111}
\end{equation*}
$$

$$
\begin{equation*}
5=\theta / 2+\theta_{1}+\left(H_{t}-H_{r}\right) / r \tag{112}
\end{equation*}
$$

$$
\begin{equation*}
x=\theta / 2+\theta_{2}+\left(H_{r}-H_{t}\right) / r \tag{113}
\end{equation*}
$$

in terms of the effective earth radius, a the tangent ray ranges r_{1} and r_{2}, terminal heights H_{t} and H_{r}, and the total range, r, as shown in figure 27. The tangent ranges, r_{1} and r_{2}, are equal to

$$
\begin{align*}
& r_{1}=\left(.002 a_{e} H_{t}\right)^{1 / 2}(\mathrm{~km}) \tag{114}\\
& r_{2}=\left(.002 \mathrm{a}_{\mathrm{e}} \mathrm{H}_{\mathrm{r}}\right)^{1 / 2} \tag{115}
\end{align*}
$$

The frequency gain function is then defined as

$$
\begin{align*}
H_{0} & =H_{1}+\Delta H_{0} \\
& =\left[H_{0}\left(R_{1}\right)+H_{0}\left(R_{2}\right)\right] / 2+\Delta H_{0} \quad H_{0} \geq 0.0 \quad(d B) . \tag{116}
\end{align*}
$$

If ΔH_{0} is greater than H_{1} then H_{o} is equal to twice the value of H_{1}. The function H_{1} is calculated using

$$
\begin{align*}
& H_{0}\left(R_{1}\right)=c_{1}\left(R_{1}+c_{2}\right)^{-4 / 3}, \tag{117}\\
& H_{0}\left(R_{2}\right)=c_{1}\left(R_{2}+c_{2}\right)^{-4 / 3}, \tag{118}
\end{align*}
$$

where R_{1} and R_{2} are functions of the terminal heights and $E M$ system frequency, fin MHz ,

$$
\begin{equation*}
\mathrm{R}_{1}=0.0419 \mathrm{ff}_{\mathrm{t}}{ }^{\theta} \text {, } \tag{119}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{R}_{2}=0.0419 \mathrm{f}_{\mathrm{r}} \mathrm{H}^{\theta} \tag{120}
\end{equation*}
$$

and the terms c_{1} and c_{2} are defined as

$$
\begin{align*}
& c_{1}=16.3+13.3 \eta_{s}, \tag{121}\\
& c_{2}=0.40+0.16 \eta_{s} . \tag{122}
\end{align*}
$$

The factor η_{s} must be calculated as a function of h_{0}

$$
\eta_{s}=\left(0.5696 \mathrm{~h}_{\mathrm{o}}\right)\left(1+\left(0.031-0.00232 \mathrm{~N}_{\mathrm{s}}+5.67 \mathrm{~N}_{\mathrm{s}}^{2} 10^{-6}\right)\right.
$$

$$
\begin{equation*}
\left.\operatorname{ExP}\left(-3.8 h_{0}^{6} 10^{-6}\right)\right\} \quad 5.0 \geq \eta_{s} \geq 0.01 \tag{123}
\end{equation*}
$$

The remaining term, ΔH_{o}, is calculated using

$$
\begin{equation*}
\Delta H_{o}=6\left[0.60-\operatorname{LOG}_{10}\left(\eta_{s}\right)\right] \operatorname{LOG}_{10}(s) \operatorname{LOG}_{10}(q) \quad(\mathrm{dB}) \tag{124}
\end{equation*}
$$

where q is given by

$$
q=R_{2} /\left(\begin{array}{ll}
\mathrm{s} & \mathrm{R} \tag{125}
\end{array}\right) \quad 10.0 \geq \mathrm{q} \geq 0.10
$$

The correction term ΔH_{o} is zerofor $\eta_{s}=4.0, s=1.0$, or $q=1.0$ and has a maximum value of 3.6 dB for hi ghly asymmetrical paths when $\eta_{s}=1.0$.
7.1.4 Water Vapor Absorption Model

The loss attributable to water vapor absorption is added to all other losses computed by the models of section 7.1. The model is taken directly from CCIR Recommendations (1986) and is dependent on the absolute humidity in grams/cubic meter. A temperature of $15^{\circ} \mathrm{C}$ is assumed. The water vapor absorption loss is equal to

$$
\begin{equation*}
L_{w v}=r \alpha_{w v} \tag{126}
\end{equation*}
$$

where α_{w} is the water vapor attenuation rate. The water vapor attenuation rate in $d B / k m$ is

$$
\begin{equation*}
\alpha_{w v}=\left(0.067+\alpha_{w v 1}+\alpha_{w v 2}+\alpha_{w v 3}\right) f^{2} H_{a} 100.0 \tag{127}
\end{equation*}
$$

temperature of $15^{\circ} \mathrm{C}$ is assumed. The water vapor absorption loss is equal to

$$
\begin{equation*}
L_{w v}=r \alpha_{w v}, \tag{126}
\end{equation*}
$$

where $\alpha_{w v}$ is the water vapor attenuation rate. The water vapor attenuation rate in $d B / k m$ is

$$
\begin{equation*}
\alpha_{w v}=\left(0.067+\alpha_{w v 1}+\alpha_{w v 2}+\alpha_{w v 3}\right) f^{2} H_{a} 100.0 \tag{127}
\end{equation*}
$$

where H is the absolute humidity, fis the EM system frequency in MHz and

$$
\begin{align*}
& \alpha_{\text {wV1 }}=3 /\left((0.001 \mathrm{f}-22.3)^{2}+7.3\right), \tag{128}\\
& \alpha_{\text {wV2 }}=9 /\left((0.001 \mathrm{f}-183.3)^{2}+6\right), \tag{129}\\
& \alpha_{\text {WV }}=4.3 /\left((0.001 \mathrm{f}-323.8)^{2}+10\right) \tag{130}
\end{align*}
$$

For frequencies below about 10 GHz, this attenuation is negligible, but at the highest frequencies used in EREPS, 20 Ghz , the contribution can be quite noticeable, in particular at long ranges. No model is included for oxygen absorption, since the attenuation is negligible below 20 GHz .
an M-unit array with the corresponding M-unit value in a like-numbered array. A third array can be constructed from these two arrays which contains the gradient between adjacent layers. The general definition for this array is

$$
\begin{equation*}
d M d h_{i}=10^{-3}\left(M_{i+1}-M_{i}\right) /\left(H_{i+1}-H_{i}\right) \tag{131}
\end{equation*}
$$

where the M_{j} denote the M-unit array and the H_{j} denote the height array elements, respectively. Negative values of dMdhi are trapping layers. A standard atmosphere ($4 / 3$ earth) gradient is usually defined for the gradient above the highest height array element, that is $\mathrm{dMdh}_{j}=.000118$, where the j is the index of the last element in the H array. dMdh values of zero are not allowed, which is equivalent to not allowing the M-unit values of adjacent height values to be equal.

RAYS also allows you to input the M-profile in terms of pressure, temperature and relative humidity. The models that relate these terms to M are taken from Berry (1945), and Bean and Dutton (1968). M is equal to

$$
\begin{equation*}
M(z)=N+0.0157 z, \tag{132}
\end{equation*}
$$

where z is the height where N is determined from equation 2 of section 2.2.2.

A critical launch angle can be determined for transmitter heights within ducts. This critical angle is defined as the maximum (positive or negative) angle trappedin the duct. The positive critical angle is given by

$$
\begin{equation*}
\alpha_{c}-10^{-3}\left[2\left(M_{H t}-M_{m i n}\right)\right]^{1 / 2}, \tag{133}
\end{equation*}
$$

while the maximum negative critical angle is equal to - α_{c}. Here M_{H} is the M- unit value at the transmitter and Main is the minimum M- unit value at some height greater than H_{t}. H_{t} must be in the duct for equation 133 to be valid, though if H_{t} is above the duct, α_{c} would define the launch angle for a ray tangent to the top of the duct at some range. Rays launched with angles α_{c} $>\alpha<-\alpha_{c}$ will be trapped within the duct.

The general raytrace equations using the H, M and dMd arrays can be divided into three categories, rays with the terminal range known, rays with the terminal height known, and rays with the terminal elevation angle known. Figure 28 illustrates a ray with a positive launch angle, but the equations apply to negative launch angles also when proper care is taken with respect to the layer indices and sign of the launch angle. The equations given apply only to range and height values within individual layers. All heights are in meters and ranges in kilometers.

Case 1: h' known, $\alpha \neq 0$.

$$
\begin{align*}
& \alpha^{\prime}=\left(\alpha^{2}-0.002 \mathrm{dMdh}_{\mathrm{i}}\left(\mathrm{~h}^{\prime}-\mathrm{h}\right)\right)^{1 / 2} \tag{134}\\
& \mathrm{r}^{\prime}=\mathrm{r}+\left(\alpha^{\prime}-\alpha\right) / \mathrm{dMdh}_{\mathrm{i}}
\end{align*}
$$

Case 2: re known, $\alpha \neq 0$.

$$
\begin{equation*}
a^{\prime}=\alpha+\mathrm{dMdh}_{i}\left(r^{\prime}-r\right) \tag{136}
\end{equation*}
$$

$$
-H_{1}
$$

Figure 28: Raytrace Variables

$$
\begin{equation*}
h^{\prime}=h+\left(\alpha^{2}-\alpha^{2}\right) /\left(0.002 d M d h_{i}\right) \tag{137}
\end{equation*}
$$

Case 3: a^{\prime} known.

$$
\begin{equation*}
r^{\prime}=r+\left(\alpha^{\prime}-\alpha\right) / d M d h_{i} \tag{138}
\end{equation*}
$$

$$
\begin{equation*}
h^{\prime}=h+\left(\alpha^{, 2}-\alpha^{2}\right) /\left(0.002 d M d h_{i}\right) \tag{139}
\end{equation*}
$$

If the radicand of equation 134 is negative there is no solution for the given height h ' since the ray has reached a maximum (or,
in the case of downgoing ray, a minimum) height less (greater) than h^{\prime}. In this case the range and height of the ray maximum (minimum) are given by

$$
\begin{align*}
& r^{\prime}=r-\alpha / d M d h_{i} \tag{140}\\
& h^{\prime}=h-\alpha^{2} /\left(0.002 \operatorname{dMdh}_{i}\right)
\end{align*}
$$

while $\alpha^{\prime}=0$ at this range and height. One unique case not covered by the above equations is the special case $\alpha=0$. In this case if dMdh >0 the ray will become an upgoing ray, if $\mathrm{dMdh}_{i}<0$ the ray will become a downgoing ray. Equations 134 through 141 can be iteratively used to trace ray paths through the user-specified stratified atmosphere.

One of the user-selected options in RAYS is a display of altitude error. Altitude error is computed as the absolute value of the difference between a ray's height and the height at which a ray with the same elevation angle would be at the same range under standard conditions (i.e., a single gradientof $118 \mathrm{M} / \mathrm{km}$). Superrefractive and trapping gradients usually produce altitude errors such that apparent altitude is greater than the actual altitude.

7. 3 Sea Clutter Models

Sea-surface clutter is displayed in EREPS when using PROPR or PROPH graphics option 4. In this graphics option, the radar signal-to-noise level in decibels is ploted versus range or height. The sea cluter level is displayed by superimposing a plot of the ratio of clutter-to-noise power. Either the average clutter power or the average clutter power $\pm 5 \mathrm{~dB}$, the clutter
power bounds, can be displayed. The clutter-to-noise ratio in decibels is equivalent to $P_{c}-P_{n}$, where p_{c} is the clutter power in $d B$ and P_{n} is the noise power in $d B$. The average clutter power in decibels is given by
$P_{c}=-123.0+10 \operatorname{LOG}_{10}\left(P_{t} \lambda^{2} r^{-4} f(\alpha)^{4}\right)+2 G_{t}-L_{s}+\sigma_{c}$,
where P_{t} is the transmitted power in $k W$, λ is the wavelength in m, r the range in $k m, L_{s}$ is miscellaneous system losses in dB, and σ_{c} is the average clutter cross section in dB. G is the antenna gain in $d B$ and $f(\alpha)$ is the antenna pattern factor associated with the ray launch angle, α, that intercepts the sea surface. The noise power in decibels is

$$
\begin{equation*}
P_{n}=10 \log _{10}\left(4 /\left(r 10^{15}\right)\right)+N_{f} \tag{143}
\end{equation*}
$$

where N_{f} is the receiver noise figure in dB and r is the pulse width in microseconds. In PROPR this clutter-to-noise ratio is a function of range but for $P R O P H$ it is a constant.

Sea-surface clutter effects are included in EREPS using a iu $u S C$-modified version of the Georgia Institute of Technology (GIT) model (Horst, 1978). These models differ below 1° grazing angle for low sea states and ducting conditions. The GIT model is thought to be valid to $\pm 5 \mathrm{~dB}$. The NOSC modifications allow the clutter calculations to be extended beyond the normal horizon under evaporation ducting conditions. The NOSC model provides greater reflectivity than the GIT model for low grazing angle/evaporation ducting conditions. The sometimes dramatic effects of surfacebased ducts on the clutter power level are not modeled in EREPS.

The GIT model gives the clutter cross-section, in decibels relative to one-square meter, as

$$
\begin{equation*}
\sigma_{c}=\sigma^{0}+A_{c} \quad(\mathrm{dBsm}) \tag{144}
\end{equation*}
$$

where σ° is the average clutter cross section per unit area (dB) and A_{c} is the area of the radar resolution cell (dB). σ° is a polarization dependent variable, for a horizontally polarized radar

$$
\sigma_{H}^{\circ}=10 \operatorname{LOG}_{10}\left(.0000039 \lambda \psi^{0.4} A_{i} A_{u} A_{w}\right)(d B),(145)
$$

and for a vertically polarized radar

$$
\begin{align*}
\sigma_{\mathrm{V}}^{\circ}= & \sigma_{\mathrm{H}}^{\circ}-1.05 \operatorname{LOG}_{\mathrm{e}}\left(\mathrm{~h}_{\mathrm{avg}}+0.02\right)+1.09 \mathrm{LOG}_{\mathrm{e}}(\lambda) \\
& +1.27 \operatorname{LOG}_{\mathrm{e}}\left(\psi+10^{-4}\right)+9.70 \mathrm{f} \geq 3000 \tag{146}
\end{align*}
$$

or

$$
\begin{align*}
\sigma_{V}^{0}= & \left.\sigma_{\mathrm{H}}^{\circ}-1.73 \operatorname{LOG}_{e^{(h a v g}}+0.02\right)+3.76 \operatorname{LOG}_{\mathrm{e}}(\lambda) \\
& +2.46 \operatorname{LOG}_{\mathrm{e}}\left(\psi+10^{-4}\right)+22.2 \mathrm{f}<3000 \tag{147}
\end{align*}
$$

where ψ is the grazing angle, (see figure 24), havg is the average wave height in meters and λ is the wavelength. $\sigma^{\circ}{ }_{C}$ for a circularly polarized system is calculated following a suggestion by Nathanson (1969)

$$
\begin{equation*}
\sigma_{C}^{\circ}=\sigma_{\text {max }}^{\circ}-6, \tag{148}
\end{equation*}
$$

where σ° max is the larger of σ° H or $\sigma^{\circ} V$ as calculated above. A_{i} is the interference factor, A_{u} is the upwind/downwind factor and A_{w} is the wind speed factor. Equation 142 is applicable for grazing angles between 0.1° and 10°.

The dependence of σ° on sea state is more strongly a function of wind speed than wave height. However in EREPS, the wave height is assumed to be only a function of wind speed (a "fully arisen" sea). The average wave height is given by

$$
\begin{equation*}
h_{a v g}=\left(W_{s} / 8.67\right)^{2.5} \tag{149}
\end{equation*}
$$

where W_{s} is the wind speed in $m / s e c$. The wind speed factor, A_{w}, is determined using

$$
\begin{equation*}
A_{w}=\left[\left(1.9425 W_{s}\right) /\left(1+W_{s} / 15\right)\right]^{1.1(\lambda+0.02)^{-0.4}} \tag{150}
\end{equation*}
$$

The interference term, A_{i}, is defined as

$$
\begin{equation*}
A_{i}=\sigma_{\phi}^{4} /\left(1.0+\sigma_{\phi}^{4}\right) \tag{151}
\end{equation*}
$$

where σ_{ϕ} is a roughness parameter given by

$$
\begin{equation*}
\sigma_{\phi}=(14.4 \lambda+5.5)\left(\psi \mathrm{h}_{\mathrm{avg}}\right) / \lambda \tag{152}
\end{equation*}
$$

The upwind/downwind factor, A_{u}, is determined using

$$
\begin{equation*}
A_{u}=\operatorname{ExP}\left[0.2 \cos (\phi)(1-2.8 \psi)(\lambda+0.02)^{-0.4}\right] \tag{153}
\end{equation*}
$$

where ϕ is the angle between the radar antenna boresight and the upwind direction (0° to 180°). The area of the radar clutter resolution cell, A_{c}, is calculated using

$$
\begin{equation*}
A_{c}=10 \operatorname{LoG}_{10}\left[\left(1000 \quad r \quad \theta_{H} c \quad \tau_{c}\right) /\left(4 \operatorname{LOG}_{\mathrm{e}}(2)\right)\right] \tag{154}
\end{equation*}
$$

where r is the range in $k m$, c the speed of light in m/sec, ${ }^{r} c_{c}$ the radar system compressed pulse width in sec, and θ_{H} is the radar antenna horizontal beamwidth in radians.

For frequencies below 2 GHz the GIT model is used without alteration for grazing angles in the range 0.1° to 10°. The maximum range where equation 144 is applicable is determined using

$$
\begin{equation*}
\mathrm{R}_{1 \mathrm{im}}=0.5\left(-2 \psi \mathrm{a}_{\mathrm{e}}+\left(\left(2 \mathrm{a}_{\mathrm{e}} \psi\right)^{2}+.008 \mathrm{H}_{t} \mathrm{a}_{\mathrm{e}}\right)^{1 / 2}\right) \tag{155}
\end{equation*}
$$

where the grazing angle $\psi=.001745$ radians (0.1 ${ }^{\circ}$). The grazing angle for any range less than ${ }^{\text {n }}$ im is determined by

$$
\begin{equation*}
\psi=H_{t} /(1000 r)-r /\left(2 a_{e}\right) \quad(r a d i a n s) \tag{156}
\end{equation*}
$$

for all $\psi \leqslant 10^{\circ}$. The launch angle associated witheach of chese values of ψ is given by equation 23 with the H_{r} term equal to zero.

At radar frequencies of 2 GHz and greater, the maximum range analogous to equation 155 is determined using a raytace for the evaporation duct profile. The limiting ray for this case is the ray launched at the transmiter hefght that intersects the surface at the farthest possible range. This ray has a lanch angle equal to

$$
\begin{align*}
& \alpha=10^{-3}\left(2\left(M_{H t}-M_{m i n}\right)\right)^{1 / 2}-10^{-6} \quad H_{t}<\delta(\text { radians }), \tag{157}\\
& \alpha=-10^{-3}\left(2\left(M_{H t}-M_{m i n}\right)\right)^{1 / 2}-10^{-6} H_{t} \geq \delta(\text { radians }), \tag{158}
\end{align*}
$$

where $M_{H t}$ is the M-unit value at H_{t} and $M_{m i n}$ is the minimum value on the evaporation duct height profile (which occurs at the duct height, δ). The M-value at any height z for an evaportion duct is calculated using

$$
\begin{equation*}
M(z)=M_{s}+(z / 8)-(\delta / 8) \operatorname{LOG}((z+.00015) / .00015), \tag{159}
\end{equation*}
$$

where M_{s} is equal to the M-unit value at the surface and S is the cvaporation duct height. Thus $M_{m i n} i s$ determined using equarion 159 with $z=\delta$. The evaporation duct profile used in the raytrace is determined using equation 159 for heights z = 0.135, $0.368,1.0,2.7,7.4,20.1$ and 54.6 meters as well as $2=\delta$ and z $-H_{t}$ for $H_{t}<54.6$. If $H_{t}>54.6$ a standard atmospheric gradient of $118 \mathrm{M} / \mathrm{km}$ is added to the M-unit value at 54.6 meters. This piecewise-continuous profile of M versus height is used to trace
rays to determine range for all ranges less than $R_{1 i m}$ such that ψ $\leq 10^{\circ}$. The grazing angle associated with a is determined using

$$
\begin{equation*}
\psi=\left(\alpha^{2}-2\left(M_{H t}-M_{s}\right) 10^{-6}\right)^{1 / 2} \tag{160}
\end{equation*}
$$

for all ranges less than $\mathrm{R}_{1 \mathrm{im}}$.

The clutter level for ranges beyond $R_{1 i m}$ is determined using the average clutter cross section, σ°, at $R_{1 i m}$. The reflectivity at this limiting grazing angle is modified using the evaporation duct attenuation rate from equation 97. That is

$$
\begin{equation*}
\sigma^{\circ}=\sigma_{1 \mathrm{im}}-2 \beta \mathrm{r} \quad r>r_{1 \mathrm{~m}} \tag{161}
\end{equation*}
$$

where σ° lim denotes the value of σ° at the limiting grazing angle associated with $R_{1 i m}$ determined from equation 156 or 160 .

7.4 Radar Models

PROPR, PROPH and COVER all contain the ability to convert radar system parameters such as frequency, pulse length, etc., to free-space range for further use within the program. The models to do this conversion are taken from Blake (1980). Three types of radar calculations are allowed by the program "simple", "integration", and "visibility factor." A "simple" type calculation is normally used for a rotating, pulsed radar that uses noncoherent pulse integration to increase its sensitivity. The signal-to-noise ratio required for a given probability of detection and false alarm rate is known as either the visibility factor or the detectability factor, D_{0}. For a simple radar with a uniform-weight integrator and a square-law detector D_{0} is

$$
\begin{equation*}
D_{0}=\left[X_{0} /\left(4 N_{p}\right)\right]\left(1+\left[1+\left(16 N_{p} / X_{0}\right)\right]^{1 / 2}\right) L_{f} \tag{162}
\end{equation*}
$$

where

$$
\begin{align*}
& x_{o}=\left(g_{f a}+g_{d}\right)^{2}, \tag{163}\\
& g_{f a}=2.36\left[-\operatorname{LOG}_{10}\left(P_{f a}\right)\right]^{2}, \tag{164}\\
& g_{d}=1.23 t\left(1-t^{2}\right)^{1 / 2}, \tag{165}\\
& t=0.9\left(2 P_{d}-1\right) \tag{166}
\end{align*}
$$

Here N_{p} is the number of pulses integrated by the detector (hits per scan), L_{f} is the fluctuation loss, P_{d} is the probability of detection, and $P_{f a}$ is the probability of false alarms. For the simple radar

$$
N_{p}=\left(\theta_{H} f_{p}\right) /\left(\begin{array}{ll}
6 & \phi_{h} \tag{167}
\end{array}\right) \quad N_{p} \geq 1.0
$$

where θ_{H} is the horizontal beam width in degrees, f_{p} is the pulse repetition frequency in $H z$, and ϕ_{h} is the horizontal scan rate in rpm. The fluctuation loss, L_{f}, is for a Swerling Case 0 , nonfluctuating target. If a fluctuating target is selected L_{f} is calculated for a Swerling Case 1 , $k F=1$, chi-square target

$$
\begin{equation*}
L_{f}=\left[-\operatorname{LOG}_{e}\left(P_{d}\right)\left(1+g_{d} / g_{f a}\right)\right]^{-1} \tag{168}
\end{equation*}
$$

While equation 162 assumed a square-law detector, the difference between square-law detectors and the more commonly used linear detectors is generally less than 1 dB . D_{o} for the "integration" type radar where coherent integration is used

$$
\begin{equation*}
D_{0}=\left[X_{0} /\left(4 N_{P}\right)\right]\left\{1+\left[1+\left(16 / X_{0}\right)\right]^{1 / 2}\right) L_{f} \tag{169}
\end{equation*}
$$

where all quantities have been previously defined. If the radar calculation type is set to "visibility factor", then the user must supply the value of visibility factor to be used in place of equation 162 . This option may be the most useful to users dealing with modern sophisticated radar systemsthat use complicated signal processing schemes.

Blake's (1980) equation 1.34 is used to calculate the radar free-space detection range. The bandwidth correction factor, C_{b}, of equation 1.34 was arbitrarily set to 1 , and the system noise temperature set to $290^{\circ} \mathrm{K}$. With some algebra this equation becomes

$$
\begin{equation*}
\mathrm{R}_{\mathrm{fs}}=58.0\left[\left(\mathrm{P}_{\mathrm{t}} \sigma \quad r \quad \mathrm{Z}\right) / \mathrm{f}^{2}\right]^{1 / 4} \tag{170}
\end{equation*}
$$

where P_{t} is the transmitter power in $k W, \sigma$ is the target crosssection in square meters, \quad is the pulse width in $\mu \mathrm{s}$, fis the EM system's frequency in MHz, and Z is a function of several radar parameters. Z is given by

$$
\begin{equation*}
z=10^{\left[2 G-N_{f}-D_{0}-L_{s}\right] / 10} \tag{171}
\end{equation*}
$$

where G is the antennagain in $d B, N_{f}$ is the receiver noise figure in dB, D_{o} is previously defined, and L_{s} is the miscellaneous system losses in dB. All losses not specifically mentioned above must be accounted for in the system losses, such as transmission line loss, filter mismatch loss, signal processing loss, beam-shape loss, etc. The free-space range threshold for PROPH or PROPR can be obtained by subsituting the range from equation 170 into equation 12 of section 7.1 .

The radar target signal-to-noise ratio is derived from target signal power calculated from Blake's equation 1.18. The signal-to-noise ratio is equal to the target power received divided by the sytem noise power, which in $d B$ is

$$
\begin{equation*}
S / N=P_{r}-P_{n} \text {, } \tag{172}
\end{equation*}
$$

where P_{r} is the received target power in $d B W$ and P_{n} is the system noise power in dBW. The noise power is a function of the pulse width and the receiver noise figure given by equation 143 . The received target power in $d B W$ is

$$
\begin{equation*}
\mathrm{P}_{\mathrm{r}}=-73.4+10 \log _{10}\left[\left(\mathrm{P}_{\mathrm{t}} \sigma \mathrm{~F}^{4}\right) /\left(\mathrm{f}^{2} \mathrm{r}^{4} \mathrm{~L}_{\mathrm{f}}\right)\right]+2 \mathrm{G}-\mathrm{L}_{\mathrm{s}}, \tag{173}
\end{equation*}
$$

where r is the range in $k m, F$ is the patern propagation factor, and all other terms are as previously defined. The calculation of F is discussed in section 7.1 .

7.5 ESM Models

The propagation threshold for ESM systems is calculated as the decibel difference between the effective radiated power
and the ESM receiver sensitivity, as adjusted by appropriate system losses. For peak power P in $k W$, transmitter antenna gain G in dBi, ESM system sensitivity S in dBm, and system losses L_{s} in dB, the propagation threshold T in dB, is calculated as

$$
\begin{equation*}
T=10 \operatorname{LOG}_{10}(P)+60+G-S-L_{s} \tag{174}
\end{equation*}
$$

For example, if $P=100 \mathrm{~kW}, G=30 \mathrm{dBi}, \mathrm{S}=-80 \mathrm{dBm}$, and $L_{s}=5 \mathrm{~dB}$, then $T=185 \mathrm{~dB}$. Normally, ESM system sensitivity includes receiving antenna gain and line losses. Thus L_{s} would be used to account for the emitter's transmission line losses and other losses associated with the transmitter. Under PROPR display option 2 , the threshold loss it plotted on the propagation-loss display as a dashed line. Propagation losses less than the threshold correspond to intercept capability.

The same display option and system parameters may be used to assess communications systems. The only difference is that system sensitivity should be adjusted to account for the signal -to-noise ratio margin associated with a given level of communications quality.
7.6 Implementations of the Models
7.6.1 PROPR

The purpose of $P R O P R$ is to present propagation loss (or other quantities already described) versus range, showing sufficient detail to clearly define the structure of optical region lobes and other relevant propagation mechanisms. The program begins by determining the maximum range from the transmitter to the reflection point rlach that optical region calculations are valid. Computations for each lobe in the
optical region are performed to find the next smaller rid corresponding to a null using a Newton-method iteration. The rid interval between either the last null or the starting point and the next null is divided linearly into 8 points at which the propagation loss and corresponding total range are computed and plotted. The vectors connecting these loss and range points have been found to give sufficient resolution to the optical region without requiring excess computation. After the optical region computations are completed, the minimum valid range for diffraction models r_{d} is found. Linear interpolation of the propagation factor in $d B$ is used between the last point in the optical region and the first point in the diffraction region. For ranges at and beyond r_{d}, the applicable diffraction, ducting, and/or troposcatter models are used. For all ranges beyond the optical limit, surface-based duct loss is computed (for duct heights greater than zero) and is used when it is less than the loss from the other models. At all ranges within PROPR, watervapor attenuation loss is computed and added to the other losses. Of particular note in PROPR is the use of rlas the independent variable in the optical region, as already described, and the use of total range r for all other regions. At ranges beyond the optical limit, a range increment of $1 / 100$ th the total ploted range is used.
7.6.2

PROPH

PROPH generates a plot of loss versus receiver height at a fixed range. The first step is to determine the receiver height at the optical limit, in a similar manner as described for PROPR. Computations for each lobe in the optical region are made to determine the next higher receiver height corresponding to a null using a Newton-method iteration. The height interval between successive nulls is split into multiple segments for which loss is computed and ploted. For each height below the optical limit, a check is made to determine if the fixed range exceds
the minimum valid range for diffraction. If it is, the appropriate diffraction, ducting, andor troposcatter model is used. Otherwise. linear interpolation is used on the propagation factor in dB between the optical-limit maximum range and the diffraction-region minimum range at the current receiver height. As with PROPR, at heights below the optical limit, the lesser loss from the surface-based duct model (for non-zero duct heights) and the other models is used. At all heights, the water-vapor attenuation is added to the loss. Note that in PROPH the independent variable is receiver height for all calculations, with the increment being set to l/300th of the maximum plotted height in the optical region, $1 / 10 t h$ of the height between the optical and diffraction limits in the interpolation region, and the greater of 2 meters or $1 / 300$ th of the maximum plotted height otherwise.

7.6.3 COVER

The purpose of COVER is to generate an altitude-versus-range contour that defines an area within which propagation loss will always be less than a specified value. In the optical region, an assumption has been made that the ray path between the transmitter and receiver is parallel to the ray path from the reflection point to the receiver. This assumption is quite good at long ranges, but can be in substantial error at short ranges and low receiver altitudes. However, it results in the propagation factor being a constant for any elevation angle, which in turn permits fast and easy computation of the maximum range at that angle. When applying COVER to short ranges and low receiver heights, it is a good idea to check the results with PROPR. If there is a substantial difference in results, PROPR is the model to use.

The COVER algorithm begins by determining the elevation angle at the optical limit. In the optical region, a Newtonmethod iteration is used to find the next higher elevation angle corresponding to a predetermined phase angle between the direct and reflected paths. Fourteen such phase angles are used per lobe to give good definition to the shape of the lobes. After the required lobes have been completed, an "envelope" contour of the ranges at the maximum of all higher-angle lobes is drawn up to an angle that depends on the antenna pattern and beamwidth selected. For heights and ranges below the optical limit, the independent variable is receiver height. For ducting conditions, a sufficiently small height increment is used to give good definition to the vertical height-gain factors. Otherwise a height increment of $1 / 20$ th of the total plot height is used. All contours created by each lobe, the envelope region, and the over-the-horizon region are filled with a single shade and color. Water-vapor absorption is included in the optical region through an iterative solution of maximum range, and in the beyond-horizon region through addition of the absorption loss to the diffraction or ducting losses. Troposcatter effects are not considered in COVER, since they will almost always be at such high values as to not affect the coverage diagram.

7.6.4 RAYS

The purpose of RAYS is to calculate and plot a series of ray-path trajectories on a height-versus-range display. The user specifies the refractive-index profile, the transmitter height, the elevation angle limits, and number of rays desired. Each ray is traced based on a series of calculations that are performed within each linear-refractivity layer specified in the profile. To give the best compromise of sped and resolution, the independent variable in the raytrace is elevation angle along the ray. At each step, this angle is incremented and a new height and range are found within the current layer. If the ray leaves
the current layer, then the range is calculated at the layer boundary, and the elevation angle is incrementedin the layer above or below. As each layer is entered, the refractivity gradient must be examined to determine if the elevation angle in that layer will be increasing or decreasing. Tests must be included to determine where rays will reach a maximum or minimum height, to ensure that the corresponding elevation angle of zero is considered. For the last step only, a height is calculated at the maximum range within the current layer.

For the altitude-error option, a second raytrace for a standard atmosphere is computed at each point along the ray, such that the altitude difference between the actual and standard ray paths can be determined. The color of each ray segment is then determined based on the height difference and a user-defined scale.

7.6.5 FFACTR

The purpose of FFACTR is to return a single value of the propagation factor in dB for a series of specified system, geometry, and environmental parameters. Thefirst step is to calculate the optical limit range. If the specified range is less than the optical limit, a solution to the cubic equation to determine the reflection point in the optical region is performed along with all other optical region calculations to determine the propagation factor. If the specified range is greater than the optical limit, the minimum range for valid diffraction calculations is determined. If the specified range is between these two limits, linear interpolation of the propagation factor in dB versus range is performed to compute the desired result. For ranges beyond the minimum diffraction range, the appropriate diffraction, ducting, and/or troposcatter model is used. For all ranges beyond the optical limit, the lesser loss of the surfacebased duct model (for non-zero duct heights) and the other
applicable models is used. At all ranges, the loss from water vapor absorption is added.

8.0 Application Example

This application example is included co illustrate how PROPR and SDS may be used together to assess statistical propagation performance. The example is based on a propagation experiment performed between the Greek Islands of Naxos and Mykonos in 1972 and reported on by Richter and Hitney (1988) . On Naxos, transmitters at 1.0 GHz (L band), 3.0 GHz (S band), and 9.6 GHz (X band) were located at 4.8 m above mean sea level (msl). Also a transmitter at 18.0 GHz (Ku band) was located at 4.5 m above msl. Three receiving antennas were positioned at Mykonos for each frequency, at 19.2 m above msl for L, S, and X bands and at 17.8 m above msl for Ku band. The range separation was 35.2 km , corresponding to a somewhat over-the-horizon propagation path. Horizontal polarization was used at all four frequencies. Propagation loss was measured for four three-week periods in february, April, August, and November, except for $K u$ band which was measured only during August and November. All data were averaged over a 5 minute period and recorded every 15 minutes, 24 hours per day.

The first step in using EREPS to assess propagation effects is to obtain the climatology for the Greek Islands area, illustrated by figure 29. The evaporation duct height distribution shown indicates that evaporation ducting effects are quite strong.

The next step in this example is to use PROPR to investigate the sensitivity of propagation loss to environmental parameters. At X band for example, figure 30 indicates a propagation loss of 173 dB for the geometries of the Greek Islands experiment under standard atmospheric conditions.

Figure 29: SDS summary for Marsden square 142.

Note that while the XHAIR mode may be readily used to read the propagation loss values from the display, one user may read values that are slightly different than another due to display resolution. In any case, readings should be accurate to about 0.5 dB , which is better than the probable overall accuracy of the models. By using other EREPS programs or by varying one parameter at a time and using the overlay feature of PROPR, you can easily simulate various conditions and see the effectson

Figure 30: PROPR display for X band frequency and geometries in the Greek Island experiment within a non-ducting environment.
propagation loss over the given path. For example, figure 31 shows a RAYS product for a 117 m thick surface-based duct. For a receiver of 19.2 m , the skip zone from 25 to 68 km is quite evident, with the receiver located well within the skip zone. Therefore, one can conclude that surface-based ducts are not likely to affect the propagation loss in this case, even though such ducts will occur about 11 percent of the time (figure 29) in the Greek Is lands area. On the other hand, varying the evaporation duct height through the range of expected values
(figure 32), shows that propagation loss will vary substantily. This is particularly true for the higher fiequencies.

TRAN HI	4.8
NO. OF RAYS	188
MIN ANG deg	-18
MAX ANG deg	18
REFLECTED RAYS	4
PROFILE	
CHARACTERISIICS	

DUCT TOP $m \quad 117$ DUCT BTM m

Figure 31: RAYS display for the frequency and geometries in the Greek Island experiment under surface-based ducting conditions.

Figure 32: \quad PROPR display for the frequency and geometries of the Greek Island experiment under multiple evaporation ducting environments.

Table 2 shows the propagation loss from PROPR-versus evaporation duct height for the four frequencies and corresponding geometries with a * indicating duct heights beyond those recommended in section 6.0 for use in PROPR.

Table 2: Propagation loss values from PROPR-versus-evaporation duct height for the Greek Islands experiment frequency bands and geometries described. A $*$ indicates duct heights beyond those recommended for use in PROPR.

Comparing the duct heights from table 2 with the duct height distribution of figure 29 indicates that EREPS can yield statistical assessments of propagation loss at L and S bands, but will be questionable at X and $K u$ bands. The most useful
statistical presentation is often the accumulated frequency distribution of propagation loss, which can be quite easily determined from figure 29 and table 2. For example, at band, propagation loss will always exceed 130 dB. propagation loss greater than 140 dB occurs for duct heights less than 36 m , which from figure 29 is 99.6 percent. Propagation loss greater than 150 dB corresponds to duct heights less than 17 m, or 75.2 percent. The accumulated frequency distributions thus determined are presented in table 3 for all four frequency bands. Also shown are the observed distributions as given by Richter and Hitney (1988) .

Table 3: Percent of time propagation loss is exceeded for the Greek Islands experiment as calculated by EREPS from annual duct height distributions and as observed for all seasons measured at each frequency band. Geometries as stated in text.

Loss	1	L		1	S		1	X		1	Ku	
$d B$	1	EREPS	OBS	1	EREPS	OBS		EREPS	OBS	1	EREPS	OBS
120	I	100.0	100.0	1	100.0	100.0		100.0	100.0	1	100.0	100.0
130	1	100.0	95.8	1	100.0	80.6		100.0	94.3	1	100.0	100.0
140	1	99.6	89.5	1	84.6	65.3		83.6	74.1	1	100.0	98.9
150	1	75.2	64.5	1	40.1	39.3		41.6	38.5	1	81.3	70.5
160	1	0.0	9.5	1	8.8	3.9		7.1	4.7	1	64.5	27.3
170	I	0.0	0.0	\|	0.0	0.0		1.0	0.9	1	48.8	7.1
180	1	0.0	0.0	1	0.0	0.0		0.0	0.0	1	0.5	0.8
190	1	0.0	0.0	1	0.0	0.0	1	0.0	0.0	1	0.0	0.1

Examination of table 3 shows that L, S, and X band calculations are in reasonably good agrement with the observations, but $K u$ band calculations indicate substantially higher propagation loss values than were observed. This
disagreement is due to the frequent occurrence of duct heights in Marsden $S q u a r e l 42$ that are beyond the recommended limits of EREPS at $K u$ band. Note that X band agrees quite well in spite of some duct heights occurring beyond the recommended limit. For applications in other areas where duct heights are predominantly low, such as in the North Atlantic Ocean, the EREPS assessments would prove to be good even at the highest frequencies.

There is a substantial reduction in propagation loss attributable to the evaporation duct when compared to diffraction levels without an evaporation duct. For example, figure 30 shows that at X band the diffraction propagation loss is 173 dB and the free-space propagation loss is 143 dB . Interpolation of table 3 shows the propagation loss exceeded 50 percent of the time is 148 dB. Thus, the evaporation duct has resulted in a signal strength improvement of 25 dB over diffraction with the median observed (or calculated) propagation loss much closer to free space than to diffraction.

You should note that similar methods as those used in this example may be applied to maximum detection, communication, or ESM ranges. You would employ PROPR to determine maximum range versus duct height and then use the duct height distributions from $S D$ to compute distributions of maximum range. In addition, PROPR or PROPH could be used to estimate frequency distributions of propagation factor, or signal-to-noise ratio over a particular path.

The following is a glossary of all equation symbols used within the document. When appropriate, fFACTR source code variable names are enclosed within brackets, ire., [].
$\alpha \quad=\quad$ direct ray launch angle in radians. (see figure 24). Also used as attenuation rate in NOSC evaporation duct model. [alpha]
a $\quad=$ earth radius (6371) in kilometers.
$a_{e} \quad=\quad$ effective earth radius (k x a) in kilometers. [ae]
$A \quad=\quad$ a constant within the antenna pattern factor calculation.
$A_{c}=$ area of radar resolution cell in $d B$.

Ae $=$ antenna effective aperture.
$A_{w}=$ wind speed factor within the clutter model.
$\beta \quad=\quad$ reflected ray launch angle in radians. (see figure 24). (beta] Also used as scaled attenuation rate in NOSC evaporation duct model.

BW - transmitting antenna's beamwidth in radians. [bwidth - degrees; antbwr = radians]
c $\quad=\quad$ speed of 1 ight ($3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$). Also used as a constant in the antenna pattern factor.
$\Delta \quad=\quad$ scaled evaporation duct height in meters. [del]
dMd - modified refractivity gradient in M per $k m$.

D		divergence factor. [divfac] Also surface-based duct height in meters.
D_{0}		visibility factor within the radar model.
δ		path-length difference between direct and sea reflected rays in radians. Also used as evaporation duct height in meters. [delta]
ϵ	-	ordinary dielectric constant of sea water. [eps]
${ }^{\boldsymbol{i}}{ }_{\mathrm{i}}$	-	internal angles as seen in figure $24 .>$
e	$=$	ambient water vapor pressure in millibars.
E	$=$	electric field strength at a point.
E_{0}	-	electric field strength under free-space conditions.
F	=	propagation factor. [ff]
$F_{z r}$	$=$	receiver height-gain function within the NOSC evaporation duct model. [fzr]
$F_{z t}$	-	transmitter height-gain function within the NOSC evaporation duct model. [fzt]
f	=	transmitter's frequency in Megahertz or Gigahertz. [freq]
$\mathbf{f}_{\mathbf{p}}$		pulse repetition frequency in Hertz.
$\boldsymbol{\gamma}$		angle shown in figure 24. [gamma]

$\Gamma \quad=\quad$ excitation factor within the NOSC evaporation duct model. [tIm]

G $\quad=\quad$ antenna gain in $d B$.
 troposcatter model. [hsub0]

II \quad - scale factor for natural units of height in standard diffraction model. [fqterm]
$H_{a} \quad$ absolute humidity in grams per cubic meter. [humid]
$H_{0} \quad=\quad$ frequency gain function within the troposcater model. [ho]
${ }^{H} \quad=$ height of receiver/target in meters. [hr]
$H_{t} \quad=$ height of transmitter antenna in meters. [ht]
$h \quad$ = root-mean-squared wave height in meters. [bar]
$k \quad=\quad e f f e c t i v e$ earth radius factor. [ra]
$\lambda \quad=\quad$ wavelength in meters

L $\quad=\quad$ propagation loss in dB.
$L_{d} \quad$ diffraction field antenna pattern loss, a measure of how much energy is radiated toward the horizon. [expos]
$L_{f} \quad$ - radar target fluctuation loss in $d B$.
$L_{f s}=f r e e-s p a c e p a t h$ loss in $d B$.

```
L
M = modified refractivity.
N = refractivity
N
N
        model.
N = surface refractivity value. [nsubs]
\mu = an arbitrary angle.
n = complex index of refraction.
\psi = grazing angle in radians. (see figure 24). [psi]
\psi lim}=grazing angle limit in radians, Reed (1966).
        [psilim]
\Phi = reflection coefficient phase shift where
        subscripts C, H, and V stand for circular,
        horizontal, and vertical antenna polarization.
        [phi]
    \phi = angle betweena the radar antenna boresight and
        the upwind direction in degrees.
    \phi
        minute.
    P - a constant within the antenna pattern factor
        calculation.
```

```
Pa - power density in Watts per square meter.
P
P
P
P
Pr = power received in Watts.
\rho = a scaled range within the evaporation duct loss.
r = ground range in kilometers (see figure 24). [r]
r_ = range from transmitter to reflection point in
        kilometers. (see figure 24). [r1]
r 2 - range from reflection point to receiver/target in
        kilometers. (see figure 24). [r2]
rd = range to start of diffraction field in kilometers
        [rsubd]
    rnor = horizon range in kilometers. [horizn]
    R = reflection coefficient magnitude where subscripts
        o, C, H, and V stand for smooth reface,
        circular, horizontal, and vertical polarization.
        [rmag]
RN_= scale factor for range in the NOSC evaporation
```

```
R
    standard diffraction model. [fterm]
RH = relative humidity in percent.
Rfs = radar free-space range in kilometers.
\sigma = conductivity of sea water. [sigma\ Also target
        radar cross section in square meters.
oo = average clutter cross section per unit area in
        AP.
    \sigma
        model.
    0 = total path-length difference, in radians,
        between the direct and sea-reflected rays
        including the phase lag due to reflection.
        [theta] Also used as a scattering angle, in
        radians, within the troposcatter model.
    0
    S/N = signal-to-noise ratio in dB.
    r mulse width in microseconds. Also the compressed
        pulse width in seconds.
    T = temperature in degrees Kelvin. Also used as a
        threshold level in the ESM models.
    U = height-gain functions in dB. [fzt or fzr for
        evaporation duct transmitter and receiver
        respectively. fofz for surface-based duct]
```

```
v = attenuation factor in dB. [tlvx]
W = antenna pattern normalization factor.
W = surface wind velocity in meters per second. [wind]
x = a constalit within the antenna pattern factor.
z = an arbitrary height in meters.
ZN}=\mp@code{scale factor for height within the NOSC
    evaporation duct model. [zfac]
```

10.0 References

Ament, W.S., "Toward a Theory of Reflection by a Fough Surface", Proc. IRE, vol. 41, pp. 142-146, 1953.

Barrick, D.E., "Theory of $H F$ and VHF propagation across a rough sea, 2, application to $H F$ and VHF propagation above the sea", Radio Science, vol. 6, pp. 527-533, 1971.

Bean, B.R. and E.J. Dutton, Radio Meteorology, Dover Publications, Inc., New York, 1968.

Beard, C.I., "Coherent and Incoherent Scattering of Microwaves from the Ocean", IRE Trans. Antennas Propagat., vol. AP-9, pp. 470-483, 1961.

Berry, F.A., E. Bollay, and N.R. Beers, Handbook of Meteorology, McGraw-Hill Book Company, Inc., New York, 1945.

Blake, L. V., "Machine Plotting of Radar Vertical-Plane Coverage Diagrams", Naval Research Laboratory Report 7098, 25 June 1970.

Blake, L.V., Radar Range Performance Analysis, Lexington Books, D.C. Heath \& Co., Lexington, MA., 1980.

CCIR, "Propagation in Non-ionized Media", Recommendations and Reports of the CCIR, 1986 , Vol. V, International Radio Consultative Committee, Geneva, 1986.

Hitney, H.V., J.H. Richter, R.A. Pappert, K.D. Anderson, and G.B. Baumgartner, Jr., "Tropospheric Radio Propagation Assessment", Proc. IEEE, vol. 73, no. 2, Feb 1985.

Horst, M.M., F.B. Dyer and M.T. Tuley, "Radar Sea Clutter Model". Proc. IEEE International Conference on Antennas and Propagation, pp 6-10, London, November 1978.

Jeske, H, \quad Die Ausbreitung elektromagnetischer Wellen im cm-bis m-Band ueber dern Meer unter besonderer Beruecksichtigung der meteorologischen Bedingungen in der maritimen Grenzschicht", Hamburger Geophysikalische Einzelschriften, Hamburg, 1965.

Kerr, D.E. Propagation of Short Radio Waves, McGraw-Hill Book Company, Inc., 1951.

Nathanson, F.E., Radar Design Principles, McGraw Hill, New York, 1969.

Patterson. W.L., C.P. Hattan, H.V. Hitney, R.A. Paulus, K.D. Anderson, and G.E. Lindem, "IREPS 3.0 User's Manual", NOSC TD 1151, September 1987.

Paulus, R.A., "Practical application of an evaporation duct model", Radio Science, vol. 20, no.4, pp 887-896, July-Aligust 1985.

Phillips, O.M., Dynamics of the Upper Ocean, Cambridge University Press, London, 1966.

Reed, H.R. and C. M. Russell, Ultra High Frequency Propagation, Boston Technical Publishers, Inc. Cambridge, MA., 1966.

Rice, P.L., A.G. Longley, K.A. Norton, and A. P. Barsis, "Transmission Loss Predictions for Tropospheric Communication Circuits", vols. $1 \& 2$, U.S. Department of Commerce, National Bureau of Standards, Technical Note 101, 1965.

Richter, J.H. and H.V. Hitney, "Antenna Heights for the Optimum Utilization of the Oceanic Evaporation Duct, Part III: Results from the Mediterranean Measurements", Naval Ocean Systems Center TD 1209. vol. 2, Jan 1988.

Yeh, L. P., "Simple Methods for Designing Troposcatter Circuits", IRE Trans. CS-8, pp. 193-198, 1960.

Appendix A

The following EREPS products fro PROPR, PROPH, COVER, RAYS, and SDS illustrate a variety of features available from each program. Each sample was generated with an EGA-equipped computer and a Laserjet Series II printer with l Megabyte of additional memory using the GRAFLASR program supplied with GRAFPLUS from Jewell Technologies, Inc. This combination of hardware and software yields a resolution of 300 dots per inch.

ESM Intercept Range versus Evaporation Duct Height

FREO	GHz	9.2
POLARIZATION	HOR	
IRAN HI	ft	75
REC HI	ft	75
ANI IYPE		GAUSS
UER BH	deg	3
ELEU ANG	deg	8

EVD HI as noted
SBD HI $n \quad 8$
$K \quad 1.333$
NSUUBS 339
$\begin{array}{llr}\text { ABS HMH } & g / n 3 & 7.5 \\ \text { UIND SP } & k+s & 0\end{array}$
PK POW kH 180
ANI CN dBi 38
SYS LOSS dB $\quad 18$
ESH SENS dBM -88
FREE SPACE
ESM INTERCEPT
290 THRESHOLD
PROPLOSS dB 180.0

S-Band Radar, Standard Atnosphere, 10 Knots Hind

ECO	M1tz 5680
POLARIZA	IION HOR
RADR HI	n 25
TRGT HT	ก 5
ANI TYPE	SINXXX
VER BU	deg 18
ELEU ANG	deg
PK PON	kH 285
P WIDIH	us 1.3
COMP PL	us 1.3
ANI CN	dBi 32
SYS LOSS	dB 8.4
REC NF	dB
HOR BH	deg 1.5
PRF	Hz 658
SCAN RT	rpm 15
RCS	sqn . 1
PD	0.5
PFA	1.8E-8
SH CASE	1-FLCI
DET FACTOR	
CLUITER	
FS RAMCE kn	

S-Band Radar. Standard Atmosphere, $2 月$ Knots Hind
1080.

Range Extension from a Surface-based Duct

TRAN HT n 180
NO．OF RAYS 200
MIN ANG deg－3
MAX ANG deg
3
REFLECTED RAYS N／A
PROFILE
HEICHT（ n ）M－UNITS
0358
$300 \quad 385$
480330
1008481

Appendix B

Subroutine: FFACTR Date: 02/01/90

Process:

For electromagnetic systems, computes the pattern propagation factor in decibels for a specified range. Positive values indicate a signal level above the free-space field strength. Negative values indicate a signal level below free-space field strengta.

Subroutines:
Functions:
QuickBASIC functions antpar antpat dconst difint dloss gtheta hgain opconst opffac opticf oplimit rliter ref
ruff
sbd
skipzone tropo

FNAMAX
FNAMIN
FNUZ
abs
atn
cos exp log (natural) sin sqr swap tan case variable names for the returned parameters.

Input parameters:
Electromagnetic system:
antyp\$ - Antenna type
OMNI - Omnidirectional
SINX/X - SIN(X)/X
GAUSS - Gaussian beam
CSC-SQ - Cosecant-squared
HT-FINDER - Generic height finder
bwidth - Antenna beam width (0.5-45.0 degs)
elevat - Antenna elevation angle (-10.0 to +10.0 degs)
0o is horizontal normal pointing angle for
shipboard radar systems
freq - Frequency 100 - 20000 MHz
hr - Receiver/target height (1 - 10000 m)
ht - Transmitter antenna height (1-10000 m)
one of the above terminal height should
be $<100 \mathrm{~m}$ for pulsed systems
polar\$ - Antenna polarization
H - horizontal
V - vertical
C - circular
r - Desired range for F-Factor (1-1000 km)
Environmental:
delta - Evaporation duct height (0-40 m)
humid - Absolute humidity (0 - 14 grams/m^3)
rk - Effective earth radius factor (1.0-5.0)
4/3 is a "standard" atmosphere
rnsubs - Surface refractivity (0 - 450)
World average is 339 N-units
sbdht - Surface-based duct height (0-1000 m)
wind - Surface wind velocity (0 - 100 KNOTS)

Output parameter:
ff - $20 *$ LOG10(Pattern propagation factor) in $d B$ ff values that are positive indicate a sigral level above the free-space field at that range. Negative values indicate signal levels below the free-space field.

The following program is a demonstration driver for the FFACTR subroutine. It is included to show possible uses for the FFACTR subroutine. The FFACTR subroutine is structured to return a value (in $d B$) representing the ratio of the actual field strength at a range, to the free-space field strength at that same range. Because the FFACTR subroutine may be called in any arbitrary fashion, it is not the most efficient structure for producing a product such as a loss. versus-range (or height). If only the range is to be varied, with constant terminal heights, a $=0 \mathrm{mmom}$ application, the OPCONST and the DCONST subroutine calls should be made only once at the start of the application program. This would necessitate removing them from the FFACTR subroutine and placing them in the calling program.

Three sets of input parameters and resulting pathloss and propagation factors are provided below for testing of this subroutine after a language conversion. This demonstration program calls FFACTR only with the first input set:

Set 1 input parameters and output values - standard atmo
Enivronmental: Electromagnetic system:

Delta $=0.0$
!iumid $=7.5$
Rnsubs $=339.0$
$R k=4 . / 3$.
Sodht $=0.0$
Wind $=10.0$

Antypes = "SINX/X"
Bwidth $=2.0$
Elevat $=0.0$
Freq $=5600.0$
$\mathrm{Hr}=20.0$
$\mathrm{Ht}=20.0$
Polars = "H"

Set 2 input parameters and output values - 10 m evap duc: Enivronmental:

Delta $=10.0$
Humid $=7.5$
Rnsubs $=339.0$
$R k=4.13$.
Sbdht $=0.0$
Wind $=0.0$

Electromagnetic system:
Antypes = "CSC-SQ"
Bwidth $=4.0$
Elevat $=0.0$
Freq $=9600.0$
$\mathrm{Hr}=100.0$
$\mathrm{Ht}=10.0$
Polars = "V"

```
    Range (km) Propagation loss (dB) Propagation factor (dB)
        55.0 145.28
        50.0 143.66
    141.96
    140.14
    140.90
    142.73
    137.51
    133.03
    2.42
    3.21
    3.99
    2.08
    -1.09
    2.54
    5.09
Set 3 input parameters and output values - l00m sbd
    Enivronmental:
        Delta=10.0
        Humid = 7.5
        Rnsubs=339.0
        Rk
        Rk = 2.1 
        Wind =20.0
    Electromagnetic system:
    45.0
    40.0
    35.0
    30.0
    25.0
    20.0
        AntypeS = "GAUSS"
    Bwidth = 4.0
    Elevat =0.0
    Freq = 400.0
    Hr=50.0
    Ht = 10.0
    Polar$ = "C"
    Range (km) Propagation loss (dB) Propagation factor (dB)
\begin{tabular}{cr} 
ange \((\mathrm{km})\) & Propagation \\
55.0 & 110.61 \\
50.0 & 115.61 \\
45.0 & 120.61 \\
40.0 & 125.61 \\
35.0 & 130.61 \\
30.0 & 127.63 \\
25.0 & 123.65 \\
20.0 & 119.31
\end{tabular}
loss (dB)
Propagation factor (dB)
Range (km) Propagation
110.61
\(50.0 \quad 115.61\)
69
2.86
\(45.0 \quad 120.61\)
\(-3.05\)
40.0
125.61
-9.08
\(30.0 \quad 127.63\)
\(-15.24\)
\(25.0 \quad 123.65\)
119.31
-13. 59
-11.19
\(-8.80\)
Start demonstration program
defint i-n
const \(\mathrm{Pi}=3.14159\)
const revision \(\$=" 1.00 "\)
const rev.date \(\$=" 01\) FEB 1990"
```

```
    common shared / comffactr / ae, ae2, aeth, alpha, antbwr
    common shared / comffactr / antelr, antfac, antyp$, atten
    common shared / comffactr / bwidth, cl, c2, c3, c4,c5,c6, c7
    common shared / comffactr / del, delta, difac, dtot, elevat
    common shared / comffactr / elmaxr, exloss, f3, fofz,freq
    common shared / comffactr / fsloss, fsterm, fterm, hl, h2
    common shared / comffactr / hl4pil, h24pil, h24ae2, hbar
    common shared / comffactr / hbfreq, hdif, hlm, hmin, horizn
    common shared / comffactr / horiznl, hr, ht, humid, opmaxd
    common shared / comffactr / opmaxl, patd, patrfac, polar$, psi
    common shared / comffactr / rllim, rlmin, rk, rmag, rmax
    common shared / comffactr / rn2.imag, rn2.real, rns2, rnsterm
    common shared / comffactr / rnsubs, rsbd, rsbdloss, rsubd
    common shared / comffactr / sbdht, tfac, thefac, tsubl, tsub2
    common shared / comffactr / twoae, wind, wv.atten, zfac
    antyp$ = "SINX/X"
    bwidth = 2.0
    elevat = 0.0
    freq=5600.0
    hr = 20.00
    ht = 20.00
    polar$ = "H"
    delta = 0.0
    humid = 7.5
    rk=4./3.
    rnsubs=339.0
    sbdht = 0.0
    wind = 10.0
    fsterm = 32.45 + 8.686*LOG(freq)
    dr=5.0
    r = 60.0
    for i = 1 to 8
        r=r - dr
        callffactr(freq,ht,hr,polar$,antyp$,bwidth,elevat,delta,_
            sbdht,humid,rk,rnsubs,wind,R,FF)
        rloss=fsterm + 8.686*LOG(r) - ff
        print r,rloss,ff
    next i
END
- End of demonstration program
```

```
, NOSC defined functions
DEF FNAMAX(eleml, elem2)
- function to find maximum of two constants
    IF eleml >= elem2 THEN FNAMAX = eleml
    IF eleml < elem2 THEN FNAMAX - elem2
END DEF
DEF FNAMIN(eleml,elem2)
, function to find minimum of two constants
    IF eleml < e lem2 THEN FNAMIN = eleml
    IF eleml > elem2 THEN FNAMIN = elem2
END DEF
DEF FNU(z)
    function to define standard atmosphere height-gain: U(z)
    IF Z<=.6 THEN FNU = 8.686*LOG(Z)
    IF Z<1 AND Z>.6 THEN FNU = 15.88*LOG(Z/.6)^1.4 - 4.3
    IF Z>=1 THEN FNU = 19.85*(Z^.47..9)
END DEF
```

```
SUB FFACTR(freq, ht, hr, polar$, antyp$, bwidth, elevat, delta,
                sbdht, humid, rk, rnsubs, wind, r, FF) static
    h1 = ht
    h2 = hr
    IF hl > h2 THEN swap h1,h2 swap antenna heights
    initialize optical region constants
    call opconst
, initialize diffraction/troposcatter region constants
    call dconst
    wvloss = wv.atten * r water vapor absorbtion loss
    Initialize antenna parameters
    call antpar
    Calculate range to skipzone if surface-based duct present
    IF sbdht > 0 THEN call skipzone
    Calculate free-space loss value
    fsloss=fsterm + 8.686* LOG(r)
    rlmin = 0.0l*r*h1 / (hl +h2) , approximate rl at 1% of range
    call oplimit(OPMAXD, OPMAXL), max range in optical region
    IF r >= rsubd THEN
        call dloss(r, DIFF)
        IF sbdht > 0.0 THEN
            call sbd(r, SBDLOSS)
            dfloss= = bdloss - fsloss
            IF dfloss < diff THEN diff= dfloss
        END IF
        ff=diff
    ELSE
        IF r > opmaxd THEN
            call difint(opmaxd, opmaxl, r, FF)
        ELSE
            IF r<= opmaxd THEN call opticf(r, FF)
        END IF
    END IF
    ff=-(ff+wvloss)
END SUB
```

SUB antpar static

- Process: Initialize antenna parameters
- Inputs from common block: antyp\$, bwidth, elevat
, Outputs to common block: antbwr, antelr, antfac, elmaxr,patrfac
- Subroutines called: None
- Subroutine called by: FFACTR
antbwr $=1.745 \mathrm{e}-2$ * bwidth
antelr $=1.745 \mathrm{e}-2$ * elevat
elmaxr $=1.047$
IF antyps <> "OMNI" THEN
IF antyps = "GAUSS" THEN
antfac $=-\operatorname{LOG}(2.0) /\left(2.0 \star \operatorname{SIN}(a n t b w r / 2.0)^{\wedge} 2.0\right)$
patrfac = SIN(antelr) amax $=S Q R\left(10.11779 * \operatorname{SIN}(a n t b w r / 2.0)^{\wedge} 2.0\right) ~$ elmaxr $=$ antelr $+\operatorname{ATN}(a m a x / S Q R(1.0-a m a x 2))$
ELSE
IF antyp $=$ "CSC-SQ" THEN
elmaxr $=$ antelr +0.78525
antfac $=$ SIN(antbwr)
ELSE
IF (antyps="SINX/X") or (antyp\$="HT-FINDER") THEN antfac $=2.39157 / S I N(a n t b w r / 2.0)$
amax $=$ PI/antfac
patrfac $=-\operatorname{ATN}\left(\operatorname{amax} / \mathrm{SQR}\left(1.0-\operatorname{amax}^{\wedge} 2\right)\right.$)
IF antyp $=$ "SINX/X" THEN elmaxr = antelr-patrfac END IF
END IF
END IF
END IF
END SUB

```
SUB antpat(angle, PATFAC) static
    Process: Calculate the pattern factor
    Inputs from common block: alpha, antbwr, antelr, antfac
        antyp$, patrfac
    Inputs from argument list: angle
    Outputs to common block: None
    Outputs to argument list: patfac
    Subroutines called: None
    Subroutine called by: opffac
    patfac= = 1.0
    IF antyp$ <> "OMNI" THEN
        IF antyp$ = "HT-FINDER" AND angle > antelr THEN
        alpha0=alpha
        ELSE 'SINX/X or CSC-SQ or GAUSS
        alpha0 = antelr
        END IF
        apat = angle - alpha0
        IF antypS = "CSC-SQ" THEN
            patfac = FNAMIN(1.0, FNAMAX(0.03, 1.0 + apat/antbwr))
        IF apat>antbwr THEN patfac=SIN(antbwr)/SIN(ABS(apat))
        ELSEIF antyp$ = "GAUSS" THEN
            patfac= EXP(antfac* (SIN(angle) - patrfac)^2.0)
            IF patfac< < 0.03 THEN patfac=0.03
        ELSE 'SIN(X)/X
            IF apat<>0.0 THEN
                IF angle <= alpha0 + patrfac THEN
                patfac=0.03
            ELSE
                    ufac = antfac * SIN(apac)
                        patfac= FNAMIN(1.0, FNAMAX(0.03, SIN(ufac)/ufac))
            END IF
        END IF
        END IF
    END IF
END SUB
```

Process: Initialize variables for the diffraction and troposcatter region
Inputs from common block: ae, delta, freq, fsterm, h1, h2 rk, rnsubs
Outputs to common block: atten, cl, c2, c3, c4, c5, c6, c7 del, difac, dtot, fterm, f3, h14pil, h24pil, hlm hmin, horizn, rnsterm, rns2, rsubd, tfac, csubl tsub2, zfac
Subroutines called: hgain
Subroutine called by: FFACTR
tsubl $=S Q R(h 1 * a e / 500.0) / a e$
tsub2 $=S Q R(h 2 * a e / 500.0) /$ ae
hl4pil $=\mathrm{hl} * 0.0419 * \mathrm{freq}$
h24pil $=\mathrm{h} 2 * 0.0419 *$ freq
rnsterm $=0.031-0.00232 *$ rnsubs $+5.67 E-6 *$ rnsubs^2
horizn $=3.572 *(S Q R(r k * h 1)+S Q R(r k * h 2))$
tfac $=0.08984 / r k$
$\mathrm{f} 3=\mathrm{freq}^{\wedge} 3$
rns2 $=0.2$ * rnsubs
Diffraction region constants
qrfreq $=\mathrm{freq}^{\text {(}}(1.0 / 3.0)$
fterm = qrereq/190.0
fqterm $=$ qrifeq^2/2129.94
uht $=F N U($ fqterm*h1)
uhr $=$ FNU(fqterm*h2)
dtot $=$ fsterm - uht - uhr
rkmin $=r k$
IF rkmin <1.3333 THEN rkmin $=1.3333$
horiznmin $=3.572 *(\operatorname{sqr}(r \min * h 1)+s q r(r k m i n * h 2))$
rsubd $=$ horiznmin $+230.2 *(r k m i n \wedge 2 / f r e q)^{\wedge}(1.0 / 3.0)$

```
IF delta=0 THEN , no evaporation duct height
    del = 0
ELSE
```

 Following terms for NOSC evaporation duct model
 rfac \(=0.04705 *\) qrfreq
 zfac \(=0.002214 * \operatorname{qrfreq}{ }^{\wedge} 2\)
 hmin \(=1.0\)
 \(21=h 1 * z f a c\)
 IF hmin \(>\mathrm{zl}\) THEN zl=hmin
 \(z 2=h 2 * z f a c\)
 IF hmin \(>z 2\) THEN \(z 2=h m i n\)
 del-delta* zfac
 IF del \(>23.3\) THEN del \(=23.3\)
 IF del \(>=10.25\) THEN
 Duct height greater than 10.25 meters
c1 $=-0.1189 *$ del +5.5495
c $3=1.3291 * \operatorname{SIN}\left(0.218 *(\operatorname{del}-10.0)^{\wedge} 0.77\right)+0.2171 * \operatorname{LOG}($ del $)$
$\mathrm{c} 4=87.0-\mathrm{SQR}\left(313.29-(\mathrm{del}-25.3)^{\wedge} 2\right)$
hlowmax $=4.0 * \exp (-0.31 *(d e 1-10.0))+6.0$
hlm $=$ hlowmax/4.72
$\arg =\mathrm{c} 3 * \mathrm{hlm} 1.5$
slope $=c 3 * c 1 * 1.5 * S Q R(h 1 m) / T A N(a r g)$
$c 7=49.4 * \exp (-0.1699 *(d e l-10.0))+30.0$
$\mathrm{fmax}=c 1 * \operatorname{LOG}(S I N(\arg))+c 4-c 7$
c6 $=\mathrm{hlm} *$ slope/fmax
$\mathrm{c} 5=\mathrm{fmax} / \mathrm{hlm} \mathrm{c} 6$
ELSE

$$
\begin{aligned}
& \text { Duct height less than } 10.25 \text { meters } \\
& c_{2}=\operatorname{SQR}\left(40623.61-(\mathrm{del}+4.4961)^{\wedge} 2\right)-201.0128 \\
& \mathrm{cl}=(-2.2 * \exp (-0.244 * \mathrm{del})+17.0) * 4.72 \text { (} \mathrm{C}=(2) \\
& c 4=S Q R\left(14301.2-(\mathrm{del}+5.32545)^{\wedge} 2\right)-119.569 \\
& \mathrm{c} 3=(-33.9 * \exp (-0.5170001 * \mathrm{del})-3.0) \times 4.72 \text { (}-\mathrm{C} 4) \\
& c 5=41.0 * \exp (-0.41 * d e l)+61.0
\end{aligned}
$$

END IF
determine the height-gain function for the evaporation duct. Note! The variable "DUMMY" contains the heightgain function for a surface-based duct which is not used in this subroutine.
call hgain(hl, DUMMY, FZT)
call ngain(h2, DUMMY, FZR)
Note. The \# symbol is QuickBASIC double precision notation atten $=92.516-\operatorname{SQR}(8608.7593 \#-(d e l-20.2663) \wedge 2)$ IF atten <0.0009 THEN atten $=0.0009$
atten $=$ atten $* \mathrm{rfac}$
IF del $<=3.8$ THEN $t 1 m=216.7+$ del * 1.5526
IF del >3.8 THEN $t \mathrm{~lm}=222.6-(\mathrm{del}-3.8) * 1.1771$ difac $=51.1+t l m-f z t-f z r+4.343 *$ LOG (rfac)
END IF
END SUB

SUB difint (opmaxd, opmaxl, r, FF) static

- Process: Calculates 20 times the natural logarithm for the , propagation factor within the intermediate region, i.e. for ranges greater than opmaxd and less than rsubd.
, Inputs from common block: fsloss, rsubd, sbdh
, Inputs from argument list: diff, opmaxd, opmaxl, r, sbdloss
- Outputs to common block: None
, Outputs to argument list: ff, r, rsubd
, Subroutines called: dloss, sbd
, Subroutine called by: FFACTR
call dloss(rsubd, DIFF)
deltaf $=(r$ - opmaxd) $*(o p m a x l-d i f f) /(o p m a x d-r s u b d)$
$\mathrm{ff}=$ opmaxl + deltaf
IF sbdht >0.0 THEN
dloss $=\mathrm{ff}+\mathrm{fsloss}$
call $\operatorname{sbd}(r, \quad$ SBDLOSS)
IF sbdloss < dioss THEN dloss $=$ sbdloss
$\mathrm{ff}=\mathrm{d}$ loss -fsloss
END IF
END SUB

```
SUB dloss(r, DIFF) static
    Process: Calculate the diffraction region loss
    Inputs from common block: atten, delta, difac, dtot, fsterm
                    fterm
    Inputs from argument list: r, tloss
    Outputs to common block: None
    Outputs to argument list: diff, r
' Subroutines called: tropo
, Subroutine called by: FFACTR, difint
C Calculate diffraction region loss using Kerr's model
    x = fterm * r
    tlvx = 10.99 + 4.343* LOG(x) - 17.55* x
    diff=dtot + 8.686* LOG(r) - tlvx
    IF delta <> 0.0 THEN
        diffe=difac + 4.343* LOG(r) + atten * r
        IF diffe< difi
            Use lesser of Kerr and NOSC models
            diff= diffe
        END IF
    END IF
    diff=diff+exloss
    call tropo(r, TIOSS)
, Add the troposcatter loss to the diffraction loss
    dif = diff tloss
    IF dif >= 18.0 THEN
        diff=tloss
    ELSEIF dif >- - 18.0 THEN
        diff=diff - 4.343* LOG(1 + EXP(dif/4.343))
    END IF
, Return 20*LOG(F) at range = r in diffraction region
    diff=diff - fsterm - 8.686*LOG(r)
END SUB
```

- Process: Calculates optical fhase-lag difference angle,
- theta, from reflection point range, rl.
' Inputs from common block: ae2, aeth, h1, h2, h24ae2, rl thefac
' Inputs from argument list: p\$, rl, phi
' Outputs to common block: psi
, Outputs to argument list: p\$, psi
- Subroutines called: ref

Subroutine called by: oplimit, rliter
$h 1 p=h 1-r 1^{\wedge} 2 / a e 2$
rkpsi $=h 1 p / r l$
$\mathrm{psi}=0.001 \times \mathrm{rkpsi}$
$\mathrm{r} 2=\left(\mathrm{sqr}\left(\mathrm{rkpsi} \mathrm{A}^{2}+\mathrm{h} 24 \mathrm{ae} 2\right)\right.$-rkpsi) * aeth
$r=r 1+r 2$
$h 2 p=h 2-r 2^{\wedge} 2 / a e 2$
call ref(pS, psi, PHI)
theta $=p h i+t h e f a c * h 1 p * h 2 p / r$
END SUB

```
SUB hgain (h, FZBDl, FZBD2) STATIC
    Process: Calculates height-gain factor in dB for a specified
                    height
    Inputs from common block: cl, c2, c3, c4, c5, c6, c7, del
            freq, h, hlm, hmin, sbdht, zfac
    Inputs from argument list: h
    Outputs to common block: None
    Outputs to argument list: fzbdl, fzbd2
    Subroutines called: None
    Subroutine called by: dconst, skipzone
```

 fzbdl \(=0\)
 \(\mathrm{fzbd} 2=0\)
 Surface-based duct height-gain factor
 IF (sbdht \(>0\)) THEN
 \(z 1=h / s b d h t\)
 IF ((Freq <- 150!) AND (zl<.8)) THEN_
 izbdl \(=-60!*(z 1-.5) \wedge 2\)
 IF (Freq \(<=150\) !) AND (zl \(>=.8\))) THEN
 fzbdl=1.14*z1^(-6.26) - 10 !
 IF ((Freq > 150!) AND (z1<1.0)) THEN
 \(\mathrm{fzbdl}=10!-200 *(z 1-.5) \wedge 4\)
 IF ((Freq > 150!) AND (Freq \(<=350!\)) AND (z1 \(>=1!)\)). IEN_
 \(\mathrm{fzbdl}=7.5 * 21^{\wedge}(-13.3)-10!\)
 END IF
 IF ((Freq > 350!) AND (zl >= 1!)) THEN_
 \(\mathrm{f} z \mathrm{bdl}=12.5 * \mathrm{zl}\) (\(-8!\)) - \(15!\)
 Evaporation duct height-gain factor
 IF (del \(>0\)) THEN
 \(z 2=h * z f a c\)
 IF \(z 2<h m i n\) THEN \(z 2=h m i n\)
 \(z 2=z 2 / 4.72\)
 IF (Del \(>=10.25\)) THEN
 IF (z2 \(>\mathrm{hlm}\)) THEN
 \(\mathrm{fzbd} 2=\mathrm{C} 5 *(\mathrm{z} 2 \wedge \mathrm{C} 6)+\mathrm{C} 7\)
 ELSE
 \(\mathrm{fzbd} 2=C 1 * \operatorname{IOG}(S I N(C 3 *(z 2 \wedge 1.5)))+C 4\)
 END IF
 ELSE
 \(\mathrm{fzbd}=\left(\mathrm{C} 1 \star \mathrm{z} 2^{\wedge} \mathrm{C} 2\right)+\left(\mathrm{C} 3 * \mathrm{z} 2^{\wedge} \mathrm{C} 4\right)+\mathrm{C} 5\)
 END IF
 END IF
 END SUB

```
Process: Initializes constants for optical region
Inputs from common block: antype$, freq, h1, h2, hr, ht
                    humid, polar$, rk, wind
Outputs to common block: ae, ae2, aeth, fsterm, h24ae2, hbar
                        hbfreq, hdif, horiznl, rllim, rn2.imag, rn2.real
                        thefac, wv.atten
    Subroutines called: None
    Subroutine called by: FFACTR
Variables for REF subroutine
IF polar$ <> "H" THEN
    IF freq <= 1500 THEN
        eps=80 'salt water permittivity
        sigma=4.3 'salt water conductivity
    ELSEIF freq <= 3000 THEN
        eps = 80-0.00733* (freq - 1500)
        sigma = 4.3 + 0.00148* (freq - 1500)
    ELSEIF freq <= 10000 THEN
        eps = 69-0.00243*(freq - 3000)
        sigma = 6.52 + 0.001314* (freq - 3000)
    ELSE
        eps=51.99
        sigma = 15.718
    END IF
    real & imaginary part of square of index of refraction
    rn2.real = eps
    rn2.imag = (-18000) * sigma/freq
    END IF
    Variables for RUFF subroutine
    hbar = 0.0051 * (0.51477*wind)^2 'rms wave height
    hbfreq = 0.02094 * freq * hbar '(hbar* 2*Pi)/wavelength
    Variables for miscellaneous subroutines
    ae =rk * 6371 ' effective earth radius - km
    twoae = 2.0 * ae
    aeth=rk * 6.371
    ae2 = aeth * 2.0
    h24ae2 = h2 * 4.0/ae2
    thefac = freq * 4.193E-5 , 4*Pi / wavelength
    hdif = (hr - ht) * 1.0E-3
    fsterm = 32.45 + 8.686 * LOC(freq) , free space loss term
    freqg = freq/ 1000.0, frequency in GHz
    wv1 = 3.0/((freqg-22.3)^2 + 7.3)
    wv2 = 9.0 / ((freqg-183.3)^2 + 6.0)
    wv3 = 4.3 / ((freqg-323.8)^2 + 10.)
    water vapor attenuation rate in dB/km
    wv.atten = (0.067 + wvl + wv2 + wv3) * freqg^2 * humid/10000.0
```

```
    Variable for RlITER subroutine
    horiznl = 3.572* (SQR(rk*hl))
, Variables for OPLIMIT subroutine Note: rllim= rl at psilim
    psilim=0.01957/(rk*freq)^(1./3.)'grazing angle limit
    rkpsi = 1000 * psilim
    rllim=(SQR(rkpsi*rkpsi + hl*4/ae2) - rkpsi)*aeth
END SUB
SUB opffac (gamma, range, psi, r1, r2, PATD, DR) static
Process: Calculates parameters used to determine the pattern propagation factor, \(F\), in the optical region. Calculate antenna pattern factor for direct ray, alpha, and reflected ray, beta.
Inputs from common block: ae, hdif, patfac, patrfac, psi rmag, twoae
Inputs from argument list: gamma, patfac, range, rl, r2, ruf
- Outputs to common block: alpha
, Outputs to argument list: alpha, beta, sinpsi, patd, dr
, Subroutines called: antpat, ruf
Subroutine called by: oplimit, opticf
patfac \(=1\)
alpha = (hdif/range) - (range/twoae)
sinpsi=SIN(psi)
CALL antpat (alpha, PATFAC)
patd \(=p a t f a c\)
beta \(=-(g a m m a+p s i)\)
CALL antpat(beta, PATFAC)
- Calculate surface roughness coefficient
call ruff(sinpsi, RUF)
divfac \(=1 /(\operatorname{sqr}(1.0+(2.0 * r 1 * r 2 / a e) /(r a n g e * s i n p s i)))\)
\(d r=p a t f a c * r u f * d i v f a c * r m a g\)
END SUB
```

Process: Calculates the optical path-length difference angle, theta, by solving a cubic equation for the reflection point range, rl.
Inputs from common block: ae, aeth, ae2, h1, h2, ht, hr polars, thefac
Inputs from argument list: dr, patd, phi, r
Outputs to common block: psi
Outputs to argument list: ff, gamma, polar\$, psi, r, rl, r2
Subroutines called: opffac. ref
Subroucine called by: FFACTR
$r 1=(h 1 /(h 1+h 2)) * r$
$t=-1.5 * r$
$v=.5 * r * r-a e t h *(h 1+h 2)$
$w=a e t h * r * h l$
epsr $=0.050$
dd $=2 . *$ epsr
$j k=1$
WHILE $j k<10$ AND abs(dd) $>e p s r$

$$
j k=j k+1
$$

$$
f r 1=r 1^{\wedge} 3+\left(t * r 1^{\wedge} 2\right)+(v * r 1)+w
$$

$$
\operatorname{fpr} 1=(3.0 * r 1 \wedge 2)+(2.0 * t * r 1)+v
$$

$$
d d=f r l / f p r l
$$

$r 1=r 1-d d$
IF $r 1<0.0$ OR $r 1>r$ THEN $r I=r / 2.0$
WEND
$r 2=r-r 1$
$h t p=h 1-r 1 * r 1 / a e 2$
hrp $=\mathrm{h} 2$ - r2*r2/ae2
psi $=1 . e-3 * h t p / r l$
call ref(polar\$, psi, PHI)
theta $=($ thefac *htp *hrp/r) +phi
IF ht >= hr THEN
gamma = $2 / a e$
ELSE
gamma $=r 1 / a e$
END IF
call opffac (gamma, r, psi, r1, r2, PATD, DR)
fsqrd $=\operatorname{patd}^{\wedge} 2+\mathrm{dr}^{\wedge} 2+(2.0 * \mathrm{dr} * p a t d * \operatorname{COS}($ theta))
IF fsqrd<1.e-7 THEN fsqrd=1.e.7
$\mathrm{ff}=-4.343 * \operatorname{LOG}(\mathrm{fsqrd})$
END SUB
, Process: Calculates the maximum range, opmaxd, in the optical region and the loss at opmaxd.
Inputs from common block: ae, ae2, del, hr, ht, pi, polars
rllim, rlmin
Inputs from argument list: dr, patd, r, rl, r2, theta
thetalim
Outputs to common block: exloss, rlifm, rlmin
Outputs to argument list: gamma, opmaxd, opmaxl, polar\$, r, rl
r2, thetalim
Subroutines callea: gtheta, opffac, rliter Subroutine called by: FFACTR

Initial guess for rl (for wavelength/4 limit based ongrazing angle limit, rlifm). rl = rliim
theta value at $1 / 4$ wavelength limit, horizontal polarization rtheta $=1.5 * \mathrm{Pi}$
call rliter("H", rtheta, R1, R2, R)
IF rllim > rl THEN rl = rlim grazing angle limit applies
rllim=rl
IF rllim < rlmin THEN rlmin $=0.5 * r l i m$
IF del >0 THEN
call gtheta(polar§, rlim, R, THETALIM, R2)
thetalpk $=2.0 * \mathrm{Pi}$
call gtheta(polar§, rlmin, R, THETA, R2)
IF thetalpk $>$ theta THEN thetalpk = theta
IF del < 10.25 THEN
thetalim = thetalim + del/10.25 * (thetalpk - thetalim)
ELSE
thetalim $=$ thetalpk
END IF
call rliter (polar\$, thetalim, R1LIM, R2, R)
END IF
r1 = rllim
call gtheta(polar\$, r1, R, THETA, R2)
IF ht $>=\mathrm{hr}$ THEN
gamma $=r 2 / a e$
ELSE
gamma $=r 1 / a e$
END IF

```
    call opffac(gamma, r, psi, rl, r2, PATD, DR)
    fsqrd = patd}\mp@subsup{}{}{\prime}2+\mp@subsup{drr}{}{\wedge}2+(2.0* dr* patd * COS(theta))
    IF fsqrd< 1.e-7 THEN fsqrd-1.e.7
    opmaxd = r
    opmaxl = - 4.343* LOG(fsqrd) , - 20* LOG10(F)
    exloss =-8.686* LOG(patd)
END SUB
```

```
SUB rliter(p$, rtheta, Rl, R2, R) static
```

 Process: Finds reflection point range "rl" corresponding to
 an angle "rtheta"
 Inputs from common block: horiznl
 Inputs from argument list: f, fl, \(\mathrm{f} \$ \mathrm{r}, \mathrm{r}, \mathrm{rl}\), r2, rtheta
 Outputs to common block: None
 Outputs to argument list: \(p \$, r, r 1, r 2\),
 Subroutines called: gtheta
 Subroutine called by: oplimit
 irlmda \(=0\)
 \(\mathrm{dd}=\mathrm{rl}\)
 WHILE abs(dd) > 0.001 AND irlmda < 100
 call gtheta(p\$, r1, R, F, R2)
 call gtheta(p\$, r1+0.001, R, F1, R2)
 \(\mathrm{f} p=(\mathrm{f} 1-\mathrm{f}) / 0.001\)
 \(\mathrm{dd}=(\) rtheta -f\() / \mathrm{f} p\)
 irlmda \(=\) irlmda +1
 IF \(d d>-r l\) THEN
 IF dd \(+r l<=\) horiznl THEN
 \(r l=r 1+d d\)
 ELSE
 rl \(=(\) rl horiznl \() / 2.0\)
 END IF
 ELSE
 \(r 1=r 1 / 2.0\)
 END IF
 WEND
 END SUB

```
SUB ref(p$, psi, PHI) static
```

Process: Calculates magnitude, rmag, and phase lag, phi, of the reflection coefficient
Inputs from common block: pi, rn2.imag, rn2.real
Inputs from argument list: $p \$$, psi
Outputs to common block: rmag
Outputs to argument list: phi
Subroutines called: None
Subroutine called by: gtheta, opticf
rmag $=1.0$
phi $=P I$

sinpsi $=$ SIN(psi)
$y=r n 2 . i m a g$
$x=r n 2 . r e a 1-\cos (p s i)^{\wedge} 2$
rmagroot $=\left(x^{\wedge} 2+y^{\wedge} 2\right)^{\wedge} 0.25$
angroot $=\operatorname{ATN}(y / x) / 2.0$
root.real $=$ rmagroot $* \operatorname{COS}(a n g r o o t)$
root.imag $=$ rmagroot * SIN(angroot)
at $=r n 2 . r e a l * \operatorname{sinpsi}$ - root.real
ct $=$ rn2.real * sinpsi + root.real
$b t=r n 2$.imag * sinpsi - root.imag
$d t=r n 2 . i m a g *$ sinpsi + root.imag
refv.real $=(a t * c t+b t * d t) /\left(c t^{\wedge} 2+d t^{\wedge} 2\right)$
refv.imag $=(b t * c t-a t * d t) /\left(c t^{\wedge} 2+d t^{\wedge} 2\right)$
rcv $=\mathrm{sqr}\left(r e f v . r e a l^{\wedge} 2+r e f v . i m a g \wedge 2\right)$
IF refv.real $<>0.0$ THEN phiv = ATN(refv.imag/refv.real) IF refv.real <0.0 THEN phiv $=$ phiv + PI
ELSE
IF refv.imag < 0.0 THEN phiv $=-\mathrm{PI} / 2.0$
IF cefv.imag >0.0 THEN phiv $=P I / 2.0$ IF refv.imag $=0.0$ THEN phiv $=0.0$
END IF
phiv = -phiv
IF phiv -0.0 THEN phiv $=$ phiv $+2.0 * P I$
rmag $=r c v$
phi $=$ phiv
IF $\mathrm{P} \$=$ "C" THEN $r x=S Q R\left(1.0+r c v^{\wedge} 2+(2.0 * r c v * \operatorname{COS}(P I-p h i v))\right)$ rmag $=r x / 2.0$ $a=r c v * S I N(p h i v+P I) / r x$ $a=\operatorname{ATN}\left(a / \operatorname{SQR}\left(1-a^{\wedge} 2\right)\right)$ phi $=P I$ - a phi $=-\quad \mathrm{rh} i$ IF phi <0.0 THEN phi $=p h i+2 * P I$
END IF
END IF
END
SUB

SUB ruff(sinpsi, RUF) static
, Process: Calculates the surface-roughness coefficient as a
function of psi
, Inputs from common block: hbar, hbfreq, psi
, Inputs from argument list: sinpsi
, Outputs to common block: Nonne
, Outputs to argument list: ruf
, Subroutines called: None
, Subroutine called by: opffac
$r u f=1.0$
IF hbar $\langle>0.0$ THEN
hfpsi = hbfreq * psi *. 159155
IFhfpsi $<=0.11$ THEN
ruf $=E X P((-2) \star(h b f r e q * s i n p s i) \wedge 2)$
ELSEIF hfpsi $<=0.26$ THEN
ruf $=0.5018913-\operatorname{SQR}\left(0.2090248-(h f p s i-0.55189)^{\wedge} 2\right)$
ELSE
$r u f=0.15$
END IF
END IF
END SUB

SUB sbd(r, SBDLOSS) static

- Process: Calculate surface-based duct loss
, Inputs from common block: exloss, fofz, rsbd, rsbdloss, sbdht
- Inputs from argument list: r
' Outputs to common block: None
- Outputs to argument list: sbdloss
' Subroutines called: None
Subroutine called by: difint, FFACTR
IF sbdht $=0.0$ THEN
sbdloss $=1000.0$
ELSE
IFr<rsbd THEN
sbdloss $=$ rsbdloss $+(r s b d-r)+e x l o s s$
ELSE
sbdloss $=\mathrm{fsterm}+8.686 * \log (r) \cdot \mathrm{fof} z+$ exloss
END IF
END IF
END SUB

```
SUB
    Yrocess: Jalculates skip-zone range if a surface-based duct
            is present and calculates the rauge to the start
                    of the diffraction region.
    Inputs from common block: ae, fsterm, rlmin, sbdht
    Inputs from argument list: fofz
    Outputs to common block: rsbd, rsbdloss, rsubd
    Outputs to argument list: h2
    Subroutines called: hgain
    Subroutine called by: FFACTR
    rsbd = 0
    och = 0.9 * sbdht
    IF hl < och AND h2 < och THEN
        dmdh = 0.001 / ae
        delm2 =och * dmdh * 2.0
        gtrap =och * dmdh / (0.l*sbdht)
        alpha0 = sqr(delm2)
        ray0 = alpha0 / gtrap
        alphat = sqr(delm2 - (och-hl) * 2.0 * dmdh)
        rayl = ray0 + (alpha0 - alphat)/dmdh
        alphar = sqr(delm2 - (och-h2) * 2.0 * dmdh)
        ray2 = ray0 + (alpha0 - alphar) / dmdh
        rsbd = (rayl + ray2)/ 1000 'SBD start range, km
        IF rsbd < rlmin THEN rsbd = rlmin
        determine the height-gain function for surface-based
        duct. Note! The variable "DUMMY" contains the height.
        gain function for an evaporation duct which is not used
        in this subroutine
        call hgain(h2, FOF2, DUMMY)
        rsbdloss=fsterm+8.686*log(rsbd) - fofz
    END IF
END SUB
```

```
, Process: Calculate the troposcatter loss based upon Yeh with
                    frequency-gain factor, h0, from NBS 101
    Inputs from common block: ae, exloss, f3, h1, h14pil, h2
            h24pil, horizn, rns2, rnsterm, tfac, tsubl, tsub2
    Inputs from argument list: r
    Outputs to argumint list: tloss
    Subroutines called: None
    Subroutine called by: dloss
    tsub0 = r / ae
    ttot = tsub0 - tsubl - tsub2
    zeta = ttot/2.0 + tsubl + (h1 - h2) / (1000.0*r)
    chi= ttot/2.0 + tsub2 + (h2 - hl)/(1000.0*r)
    rsubl = hl4pil * ttot
    rsub2 = h24pil * ttot
    IF rsubl < 0.1 THEN rsubl = 0.1
    IF rsub2 < 0.1 THEN rsub2 = 0.1
    s = zeta / chi
    IF s > 10.0 THEN s = 10.0
    IF s<0.1 THEN s}=0.
    q=rsub2 / (s*rsubl)
    IF q > 10.0 THEN q = 10.0
    IF q}<0.1 THEN q = 0.1
    hsub0 = (s * r * ttot) / (1 + s)^2
    etas = 0. 5696*hsub0 * (1 + rnsterm * EXP(-3.8e-6 * hsub0^6))
    IF etas > 5.0 THEN etas = 5.0
    IF etas < 0.01 THEN etas = 0.01
    csubl = 16.3 + 13.3 * etas
    csub2 = 0.4 + 0.16 * etas
    h0rl=csubl* (rsubl + csub2)^-1.333
    h0r2 = csub1 * (rsub2 + csub2)^-1.333
    h0 = (h0rl + h0r2) / 2.0
    de1h0 = 1.13* (0.6-0.434*LOG(etas)) * LOG(s) * LOG(q)
    IF delh0 > h0 THEN h0 = 2.0 * h0 ELSE h0 = h0 + delh0
    IF h0 < 0.0 THEN h0 = 0.0
    tloss=114.9+tfac*(r-horizn) + 4. 343*LOG(r^2*f3) - rns2 + h0
    tloss=tloss+exloss
END SUB
```


[^0]: 1:KEYS 2:HELP 3:EXIT 4:MOUE LEGEND

