
To appear in: H.-D. Ebbinghaus et &l. (*do.) Proc. Logic Colloquium'87, ONorth-Holland, 1989.° 1 V
General Logics*

To Jose Meseguer
0N SRI International, Menlo Park, CA 94025, and

Center for the Study of Language and Information
Stanford University, Stanford, CA 94305

Dedicated with affection to my father, Francisco Meseguer, who died
unexpectedly a few weeks after the Granada Logic Colloquium - /

STATEJENT "A" per Dr. Andre' Van Tilberg ; . C::d/or

ONE/Code 1133 Dist p Special
TELECON 3/20/90 VG P |

1 Introduction

The connections between logic and computer science are growing rapidly and are
becoming deeper. Besides theorem proving, logic programming, and program specifi-
cation and verification, other areas showing a fascinating mutual interaction with logic
include type theory, concurrency, artificial intelligence, complexity theory, databases, '4

operational semantics, and compiler techniques. The concepts presented in this paper
are motivated by the need to understand and relate the many different logics currently
being used in computer science, and by the related need for new approaches to the

rigorous design of computer systems. Logic programming is of course one of the areas
where logic and computer science interact most strongly. The attempt to better un-
derstand the nature of this interaction, as well as its future prospects, motivates the
following basic question:

What is Logic Programming?

This paper tries to make precise the meaning of this question, and to answer it in
terms of general axioms which apply to a wide variety of different logics. In doing so,
we are inevitably led to ask the more fundamental question:

What is a Logic?

That is, how should general logics be axiomatized? This is because an axiomatic notion
of logic programming must necessarily rest on an axiomatic notion of logic itself. Most

*Supported by Office of Naval Research Contracts N00014-82-C-0333 and N00014-86-C-0450, NSF
Grant CCR-8707155 and by a grant from the System Development Foundation.

10 0" 33

m*

of the paper will be devoted to the second question. With an axiomatic notion of logic
already in place, it will then answer the first.

Beyond their application to logic programming, the axioms for general logics given
here are sufficiently general to have wide applicability within logic and computer sci-
ence. Thus, this work has goals that are in full agreement with those of J.A. Goguen
and R. Burstall's theory of institutions [27,261; however, it addresses proof-theoretic
aspects not addressed by institutions. In fact, institutions can be viewed as the model-
theoretic component of the present theory. The main new contributions include a gen-
eral axiomatic theory of entailment and proof, to cover the proof-theoretic aspects of
logic and the many proof-theoretic uses of logic in computer science; they also include
new notions of mappings that interpret one logic (or proof calculus) in another, an
axiomatic study of categorical logics, and the axioms for logic programming.

Logic has of course a long tradition of reflecting upon itself. In the process of seeking
the present axiomatization, I have reviewed a variety of previous axiomatizations of
logic. In essence, they tend to fall within two main approaches:

" a model-theoretic approach that takes the satisfaction relation between models
and sentences as basic, and

" a proof-theoretic approach that takes the entailment relation between sets of
sentences as basic.

I have found that neither of these approaches is by itself sufficient to axiomatize logic
programming, and that similar difficulties remain for many other computer science
applications. The axioms presented here unify both approaches, and yield as one of
their fruits the desired axioms for logic programming.

The entailment relation asserts provability, but says nothing about how a sentence
is actually proved. To account for proofs and for their internal structure, I also present
a new axiomatic notion of proof calculus that is very general and does not favor any
particular proof theory style. The computer science counterpart of a proof calculus is
the notion of an "operational semantics." The flexibility of the axioms given for proof
calculi permits putting them and operational semantics on a common abstract basis.
This offers the possibility of a more intense mutual interaction between the two fields.
As a fi-uit of this interaction, operational semantics could be placed on a firmer logical
basis and proof theory could be enriched with new, more flexible, proof systems. The
value of establishing a closer link between proof theory and operational semantics has
been recognized by many authors, and has led to specific proposals such as the one by
G. Plotkin [57]; it is also emphasized in the recent work of J.-Y. Girard [20].

The methods of category theory have taught us that the crucial mathematical
properties of a given subject do not reside in the structures in question, and even less
in the particular representations chosen for those structures. Rather, they reside in
the mapping, that preserve those structures. In our present case, the structures are
logics themselves and the mappings should be natural ways of interpreting one logic, or
one proof calculus, into another. Although instances of such interpretations abound
in logic, and are of great practical importance in computer science, most existing
axiomatic treatments of general logics, with the exception of Goguen and Burstall's
theory of institutions [27,26] and work related to institutions, do not include a formal
treatment of such mappings. In this paper, mappings of this sort play a central

2

role. New general notions of mapping between entailment systems, between logics,
and between proof systems, are given and illustrated with examples. The mappings
in question are far more general than syntactic mappings translating languages in
one logic into languages in another; they can also map languages into theories, or
even perform theory transformations of a more general nature. In addition, they also
provide a systematic way of relating models in different logics. Such notions of mapping
should have wide applicability in logic. They also have many potential applications in
computer science.

Axiomatic treatments such as "abstract model theory" usually come with a built-in
notion of structure, such as a set-theoretic structure with functions, relations, etc. Al-
though very useful within their own scope, such approaches lack the flexibility needed
to deal with logics such as nonclassical and higher order logics, for which the appropri-
ate notion of "model" may be widely different from traditional set-theoretic structures.
For many of these nonstandard logics the categorical approach initiated by F.W. Law-
vere (45,46] is ideally suited. In particular, there is at present a thriving interest in
categorical logics in connection with applications of constructive, type theory to pro-
gramming languages and to concurrent systems. To demonstrate the flexibility of the
axioms proposed in this paper, I give a general definition of categorical logic, discuss
examples, study their main properties, and show how any such logic is a particular
instance of a logic in the sense proposed here. I reexamine this topic in connection
with the axioms for logic programming, in order to show how in this way functional
programming languages based on type theory can be naturally unified with logic pro-
gramming.

The main purpose of this paper is to propose new concepts that I believe can be
useful in many areas of computer science and also in logic. Given this purpose, there are
more definitions and examples than there are theorems; this situation should of course
be reversed in the future. Indeed, the paper as a whole is in a sense more a promise of
things to come than an actual fulfillment of that promise. The concept of a logic as a
harmonious relationship between entailment and satisfaction is particularly simple and,
once the observation is made, seems the obvious thing to do. The concept of a proof
calculus is less obvious and is perhaps one of the main new contributions; I believe that
for computer science applications one needs to have great flexibility about what counts
as a "proof;" therefore, I have avoided making any commitments to particular proof
theory styles in the proof calculus axioms. Many future computer science applications
of these ideas will heavily use mappings between logics, between proof calculi, etc. I
believe that mappings may prove to be the most important concept. They play a key
role in relating different logics and.different computer systems, and such relationships
are conceptually and practically very important. Also, experience with them may
suggest new methods for the rigorous design and development of computer systems.
Two topics with more particular scopes but still quite important are categorical logics
-specially in their applications to type theory and to concurrency- and the axioms
for logic programming, because of the new possibilities for language design that they
suggest.

The paper assumes an acquaintance with elementary concepts of category theory,
such as: category, subcategory, functor, natural transformation and natural equiva-
lence, horizontal and vertical composition of natural transformations, pullbacks and
pushouts, and adjoint functors. All the relevant concepts are clearly explained in Mac

3

Lane's book [471.

1.1 General Logics

As already mentioned, one can speak of two approaches to the axiomatization of
general logics, a model-theoretic approach that focuses on the satisfaction relation

between a model M and a sentence (o, and a proof-theoretic approach that seeks to
axiomatize the entailment relation

between a set of sentences r and a sentence p derivable from r. The model-theoretic
approach is exemplified by Barwise's axioms for abstract model theory [31 (see also
[16] and the volume [21 for a good survey of this field). The framework of institutions
of Goguen and .Burstall [27,26] also belongs to this model-theoretic approach, but it
achieves much greater generality by using category theory and avoiding a commitment
to particular notions of "language" and "structure." The proof-theoretic' approach
has a long tradition dating back to work of Tarski [69] on "consequence relations" and
of Hertz and Gentzen on the entailment relation I-. This approach owes much to the
work of Dana Scott [621 and other authors. The recent work of Fiadeiro and Sernades
[17] belongs to this proof-theoretic tradition, but uses methods from the theory of
institutions; however, that work does not propose a common axiomatization connecting
model theory and proof theory. In my attempt to axiomatize logic programming
languages, I have found that neither of these two approaches is enough by itself to yield
a satisfactory axiomatization. This paper proposes a unified approach that integrates
model-theoretic and proof-theoretic aspects into a single axiomatization of a logic.
The axiomatization in question is quite simple. It consists of an "entailment system",
specifying an entailment relation I-, together with a 'satisfaction system" (specifically,
an institution in the Goguen-Burstall sense) specifying a satisfaction relation . The
entailment and satisfaction relations are then linked by a soundness axiom. Therefore,
institutions provide the model-theoretic component of a logic in the precise sense given
to this term in this paper. As done in the theory of institutions, the axioms for a logic
are expressed in a categorical way, to avoid building in particular choices of structures
or languages. As a consequence, they are very C

1.2 Proof Calculi

The entailment relation I- says nothing about the internal structure of a proof. To have
a satisfactory account of proofs, we need the additional concept of a 'proof calculus"
P for a logic £. The definition of a proof calculus is very general, and does not favor
any particular style of proof theory. The same logic may of course have many different
proof calculi. Therefore, when wishing to include a specific proof calculus as part of
a logic, the resulting logic plus proof calculus is instead called a logical system. The
axioms for a proof calculus P state that each language (also called a signature) in
the logic Z has an associated space of proofs, which is an object of an appropriate

'This is an oversimplification, since semantic considerations are also included in it.

4

category. From such a space we can then extract the actual set of proofs supporting a
given entailment r i- P.

We actually need the more general concept of a "proof subcalculus" where proofs
are restricted to some given class of axioms and conclusions are also restricted to some
given class of sentences. It is by systematically exploiting such restrictions that the
structure of proofs can be simplified; for example, we can in this way arrive at proof
theories that are efficient and can be used in practice as the operational semantics of a
logic programming language. For programming and other purposes we need not just
proof subcalculi, but effective ones.

1.3 Relating Logics

Interpretations mapping one logic, or one proof theory, into another are very common
in logic. They permit the transfer of results between different logics and serve to
provide a relative foundation for a logical system by reducing it to a simpler one.
In computer science there are compelling practical reasons for establishing similar
mappings. Even if not explicitly recognized as such, the need for mappings of this sort
manifests itself in a variety of ways. For example, for programming languages it may
take the form of trying to combine language features from different languages based
on different logics, or of trying to compile an inefficient operational semantics into an
efficient one. Since the need is there, like a river that nobody can stop, something of
the sort will be done. However, if the approach taken lacks a logical basis to serve
as a criterion for correctness the result may be quite ad hoe and unsatisfactory, it
will probably involve a good deal of costly engineering trial and error, and may in
the end lack a clear intellectual content, making it impossible to be transmitted as a
lasting scientific contribution. Also, since the development of computer systems is a
very expensive and labor intensive activity, there is a great need for reusing systems as
much as possible. One may for example want to use a theorem prover in one logic to
prove theorems in a different logic, and the soundness of such a procedure must then
be justified by an appropriate map of logics.

This work proposes a general axiomatic theory of mappings that is flexible enough
to encompass and unify the maps used in logic and the maps needed in computer sci-
ence. The most promising computer science application of this theory is proba'ly not
to the a posteriori justification of computer science practice, but to the development
of new methods for the rigorous design of computer systems. For the mode!-theoretic
component, the maps are similar to the institution morphisms of Gogue-. and Burstall
[27,26], which provided the original inspiration. In addition, the following other types
of mappings are defined:

* Maps of entailment systems, relating languages in different logics and preserving
the entailment relation.

" Maps of proof calculi, which in addition relate proofs in different logics.

" Maps of logics, that map their underlying entailment systems and their under-
lying institutions.

" Maps of logical systems, that map botn logics and their corresponding proof
calculi.

5

As already mentioned, these mappings permit very general translations. They are not
restricted to translating one language into another, but allow complex transformations
between theories in different logics that also occur in practice.

1.4 Categorical Logics

Axiomatizing a notion always presents a dilemma. In trying to achieve generality, an
axiomatization can become too weak and somewhat vacuous in its results. Yet, if the
axiomatization is too specific, it will fail to include relevant examples and, furthermore,
it may hinder subsequent developments. The goal of Section 5 is to show by example
that the proposed notion of logic has, indeed, a wide applicability. I axiomatize a
large and important class of logics, namely categorical logics, as particular instances
of the general notion of logic proposed in this paper, show that they have remarkably
nice model-theoretic properties, and prove a general structure-semantics adjointness
theorem.

The basic insight provided by categorical logic in the sense of Lawrere is that the
essential aspects of a logic, independently of particular syntactic choices that must be
made to talk about it, are categorical properties. For example, the key categorical
property behind the linguistic notion of an equation is the existence of finite products.
Semantics can then be made functorial, by reinterpreting theories as categories with
appropriate structure and viewing models as functors that preserve that structure.

1.5 Axioms for Logic Progr *mm ng

The logic programing dream has only begun to be realized. So far, the overwhelming
majority of work in this area has dealt with the Horn clause fragment of first order logic
but the idea is obviously much broader, and its potential in other contexts remains
to a good extent unexploited. This paper tries to contribute to a scientific discussion
of logic programming concepts in as broad a context as possible. It does so by using
the concepts proposed for general logics as the basis for an axiomatic notion of logic
programming. The axioms proposed are a further step in a series of attempts to
make precise a broad view of logic programming shared with Joseph Goguen. This
view was expressed informally in the joint paper (32], and formally by Joseph Goguen
using the notion of an institution [24]. Logic programming presents a very interesting
combination of proof theory and model theory; the axioms that I propose try to cover
and relate both aspects. I also include a discussion of different logic programming
languages and styles. Within first order logic there are already several possibilities
that are quite different from the traditional Prolog style. A direct fruit of the study of
categorical logics undertaken in Section 5 is the establishment of a precise connection
between the very active research area of functional programming languages based on
constructive type theory and higher order instances of logic programming.

1.6 Acknowledgements

I wish to thank the organizers of the Logic Colloquium'87 for having given me the
opportunity of presenting these ideas in the magic city of Granada and for having made

6

the meeting such a wonderful experience. I specially thank Hainz-Dieter Ebbinghaus
and Josh F. Prida for their kindness, and for their patience as editors with my delays.

Regarding my ideas on general logics, I am particularly indebted to the pioneering
work of Joseph Goguen and Rod Burstall on institutions, and indeed the reader will
find this paper much in the same spirit as theirs. I have been fortunate to learn from
them many ideas about logic, and to be present, always as an enthusiastic observer
and often as a commentator, at the moment when those ideas were developed.

The axiomatization of logic programming presented in Section 6 articulates a broad
view of logic programming that I have shared with Joseph Goguen over the past nine
years, and has its roots in our joint work on the OBJ, Eqlog, FOOPS and FOOPlog
languages, as well as in previous attempts, some joint, some by Goguen himself, to
make this view precise.

I also wish to express my gratitude to Joseph Goguen and Rod Burstall in a special
way for their kind encouragement and their important technical suggestions along the
maturing process that these ideas have undergone since they were first presented at the
Logic Colloquium in Granada. Joseph Goguen provided also very helpful comments
to the final draft.

It is a pleasure for me to express my warmest thanks to F. William Lawvere with
whom I have discussed the ideas of this paper in many conversations; beyond his many
important suggestions, I owe to him a crucial influence in my ways of understanding
logic and mathematics that goes back to my years as a graduate student and has been
a permanent inspiration ever since.

An earlier version benefited from very valuable suggestions by Jon Barwise, Keith
Clark, Brian Mayoh, Gordon Plotkin, Johan van Benthem and an anonymous referee
that have led to substantial improvements and I am indebted to them for their kind
criticism. Narciso Marti-Oliet deserves special thanks for having suggested numerous
improvements to several drafts and for his generous help with the preparation of the
IATEX diagrams.

2 General Logics

The proof-theoretic and model-theoretic approaches to general logics are unified in the
following way. First, I introduce the notion of an entailment system that formalizes the
provability relation; the axioms are similar to those of Scott [621, but they also account
for translations across different signatures. Given an entailment system, we can define
the notions of a theory and a theory morphiam. The model-theoretic aspects of a logic
are covered by Goguen and Burstall's notion of an institution [27,26]. The notion of a
logic is then obtained by combining an entailment system with an institution in such
a way that a soundness condition (relating provability and satisfaction) holds. The
logic is called complete if, in addition, satisfaction implies provability. I also show how
a complete logic can naturally be associated with an entailment system or with an
institution.

7

2.1 Entailment Systems

Consider the familiar example of first order logic. We usually fix a particular signature
E, consisting of a pair (F, P) where F is a ranked alphabet of function symbols and
P a ranked alphabet of predicate symbols. Relative to such a signature, we have a
notion of a sentence. The rules of first order logic then specify for us an entailment
relation,

which holds between a set of sentences r and a sentence V when V is derivable from
r. For the moment, we shall make abstraction of the particular rules used to generate
the relation H" and concentrate on the relation itself. Indeed, the entailment relation
plays a more central role, since it remains the same across the many different proof
calculi that exist for first order logic.

The first order entailment relation I- satisfies three basic properties that can. more
generally be justified on intuitive grounds as properties that any reasonable entailment
relation should indeed satisfy. These are:

* reflexiity, i.e., we can always prove a sentence if we can assume it;

* monotonicity, i.e., we can always prove with more assumptions what we can
prove with fewer, and

* transitivty, i.e., -using as an additional assumption something already proved
should not give us more conclusions than those already entailed by our original
assumptions.

We may at times wish to change the signature E and move to a new signature E'.
The signature E' may just be an enlargement of our original syntax. In other cases,
E' may be a genuinely different signature so that a translation of the old symbols to
the new ones must take place. In any event, the general form of such translations H :
E --- + E, called signature morphism., consists, for first order signatures, of a pair of
rank-preserving functions, one for function symbols and another for predicate symbols,
both used for mapping the old symbols into the new ones. Therefore, signatures form a
category Sign with signatures as objects and signature morphisms as morphisms. Any
signature morphism H induces a corresponding translation at the level of sentences,
so that we can associate to each E-sentence V a corresponding E'-sentence H(p) by
systematically replacing the old symbols by the new ones, according to the signature
morphism H. All this can be expressed in a compact way by saying that the process
associating to each signature E its set of sentences .en(E) is in fact a functor sen :
Sign -- + Set from the category of signatures to the category of sets. We of course
have no problem accepting the fact that entailments are stable under translation by
signature morphisms: i.e., if we were able to prove a conclusion from some axioms,
we are then able, for any translation H, to prove the translated conclusion from the
translated axioms.

Definition 1 An entailment system is a triple 6 = (Sign, sen, -) with Sign a category
whose objects are called signatures, sen a functor2 sen : Sign --- + Set and - a function

2 By convention, the function sen(H) associated by the functor sen to a signature morphism H will

also be denoted by H.

8

associating to each E in Sign a binary relation -E _ P(sen(E)) x sen(E) called E-
entailment such that the following properties are satisfied:

1. reflexivity- for any V E sen(E), {V) H- V

2. monotonicity, if r l-E p and r, D r then r, l-E P;

3. transitivity- if r -orr i E I, and r u {pi I i E II - k, then r H-E I;

4. -- trmnslation: if r HE V, then for any H : E --- E' in Sign, H(r) -E, H(o).

In addition, an entailment system is called compa.t if whenever r l-E V, then we
can find a finite o C such that o l -o. 0

Remarks-

1. The reflexivity, monotonicity and transitivity axioms are similar to those given
by Scott in [62]. However, the present formulation avoids any compactness as-
sumptions.

2. The entailment relation I- induces a function mapping each set of sentences r to
the set 1* = {P I r - P}. We call rP the set of theorems provable from r. It
follows easily from the reflexivity, monotonicity and transitivity axioms that the
assignment 1 '-* " is a closure function, i.e., it satisfies:

(a) r c r"

(b) r c r' = r'c r"
(c) r" = re

Tarski's original axioms [69] were given in terms of this closure.

3. I am indebted to Joseph Goguen for pointing out to me that the recent work of
Fiadeiro and Sernades on ",r-institutions" [17] proposes a notion quite similar
to entailment systems. Their notion is expressed in terms of a closure operator
and includes a compactness assumption. a

4. The -- translation axiom can be equivalently expressed by saying that - is a
functor F- : Sign -+ Set, that is a subfunctor of the functor mapping each
signature E to the set P(sen(E)) x sen(E).

5. One should keep in mind that the entailment relation - is independent of any
rules for its generation. Therefore, the reflexivity, monotonicity and transitivity
conditions should be viewed as abstract properties of -, and should not be con-
fused with particular rules of a specific proof calculus for generating -, so that,
say, reflexivity would then be understood as an axiom scheme, monotonicity as a
weakening rule, and transitivity as a cut rule. In fact, it may very well be the case
that an entailment system satisfying the reflexivity, monotonicity and transitiv-
ity conditions is generated by a proof calculus that rejects most structural rules
and imposes restrictions on cut. For example, in linear logic [221 weakening and
contraction are forbidden so that the calculus is in a sense "nonmonotonic." We
have the sequent A --- A as an axiom, but we cannot derive either A, B --- A or

9

even A, A --+ A as consequences. The point is that, for E a linear logic signature,
the elements of sen(E) should not be identified with formulas but with sequents.
Viewed as a way of generating sequents, i.e., identifying our I- with the closure of
the horizontal bar relation among linear logic sequents, the entailment of linear
logic is indeed reflexive, monotonic and transitive. The idea that sequents are
a good choice for a notion of sentence in linear logic is very much in keeping
with Girard's intuition of a sequent A --I B as an action from A to B; it is also
supported by recent work on categorical models for linear logic [64,14,56].

2.2 Theories

Given a signature E, a theory is presented by a set r of E-sentences called its axioms.
We can therefore define a theory as a pair T = (E, r). For some purposes, one deals not
with the original axioms r but rather with their closure under entailment r*, so that it
is tempting to call T = (E, r) a presentation bf the theory T = (E, r). However, the
view of theories as presentations allows us to make finer distinctions that are important
for both proof-theoretic and computational purposes. We can, for example, distinguish
between a sentence that is a basic axiom and another that is a derived theorem. Also,
although (E, r) and (E, r*) are isomorphic in the general category Th of theories, they
are not isomorphic in a more restricted but useful category of axiom-preserving theory
morphisms.

Definition 2 Given an entailment system e, its category U- of theories has as objects
pairs T = (E, r) with E a signature and r C sen(E). and as morphisms, H : (E, r) -+
(Er,r,), called theory morphisms, signature morphisms H : E -+ E' such that if
P E r, then r, H-., H(w).

A theory morphism H : (E, r) -+ (E', v) is called aziom-presering iff it satisfies
the condition that H(r) g r'. This defines a subcategory Tho with the same objects
as Th but with morphisms restricted to be axiom-preserving theory morphisms. Since
given an arbitrary theory morphism H : (E, r) - (E', r) the theories (E, , r') and
(E', rU H(r)) are always isomorphic, the restriction to Tho is not very serious. Notice
that the category Tho does not depend at all on the entailment relation -, i.e., any
other entailment system with identical signatures and sentences will yield the same

Remarks

1. Projection to the first component yields a forgetful functor sign : Th -+ Sign :
(E, r) '-, E. Associating to each signature E the theory (E, 0) yields a functor F :
Sign -- T left adjoint to sign, i.e., such that there is a natural isomorphism
Tj(F(E2),T) 5_- Sign(E~sign(T)).

2. The category Th is equivalent to the full subcategory determined by theories of
the form T = (E, r). Theory morphisms H : (E,r-) ---+ (E,,r'*) are always
axiom-preserving, i.e., they satisfy: H(r*) g r'. This corresponds to the dis-
tinction between entailment closed theories and presentations mentioned above.

10

3. By composing with the forgetful functor sign : Th -- Sign, we can extend
the functor sen : Sign -- Set to a functor sen : Th ----+ Set, i.e., we define
sen(T) = sen(sign(T)).

4. The assignment to each theory T = (E,r) of the set r° of its theorems is a
functor thm : Th ---i Set. Indeed, thm is a subfunctor of the functor sen just
defined for theories.

5. We can extend the functor I- Sign -- Set to a functor -: Th -b Set by
defining A F-(Er) o iff A u r - o. The original F- : Sign --. Set is then
recovered by composing with the functor F : Sign -# Th.

2.3 Institutions

In first order logic, given a sign. . we associate to it a category Mod(). Its
objects, called E-models (or E-structures), consist of a set together with an interpreta-
tion of each n-ary function symbol as an n-ary operation and of each n-ary predicate
symbol as an n-ary predicate. Its morphisms are functions that preserve the opera-
tions and the predicates. Given a E-model M and a E-sentence Vp we have the notion
of satisfaction of the sentence (p by the model M, written M j=E V.

A signature morphism H : E -- E' allows us to view a V'-model M' as a E-model
Hb(M), just by giving to each function symbol f in E the interpretation of H(f) in M',
and doing the same for predicate symbols. This extends trivially to homomorphisms,
so that we have a functor Hb : Mod(E') -- i Mod(E). Globally, this means that Mod
is actually a functor Mod : Sign"') Ca, from the dual of the category of signatures
(same objects, reversed direction for morphisms) to the category of categories, where
we have adopted the notation Mod(H) = H . It follows easily from the definition of
the satisfaction relation that satisfaction is invariant under the process of changing
signatures, i.e.,

Hb(M) 'p iffM' u H(p).

Definition 3 An institution [27,26] is a quadruple I = (Sign, sen, Mod, j=) with Sign
a category whose objects are called signatures, sen : Sign i Set a functor associating
to each signature a set of sentences, Mod : Sign*P -- + Cat a functor associating to
each signature a corresponding category of models, and - a function associating to
each signature E a binary relation =E g IMod(E)I x sen(E), called satisfaction, where
JMod(E) I denotes the class4 of all objects in the category Mod(E) in such a way that
the following property holds for any M' E Mod(E'), H : E - E', 'P E sen(E):

J=-invariance: H'(M') E W iff M , H(p).

0

-As before, on morphisms we adopt the notation Mod(H) = H .

'We shall not worry about foundational issues here. Let whoever worries take refuge in a
Grothendieck universe!

11

Given a set of E-sentences r, we define the category Mo(,7) as the full sub-
category of Mod(E) determined by those models M E Mod(E) that satisfy all the
sentences in r, i.e., M =E jo for each (o E r. We can define a relation between sets of
sentences and sentences, also denoted , as follows:

r =E i M , V for each M E Mo(E,r).

The naturalness of the definition of entailment system given in Section 2.1 is rein-
forced by the fact that any institution yields an entailment system.

Proposition 4 For I = (S.gn, sen,Mo.,) an institution, the triple I+ = (Sign,
sen, =), with now denoting the associated relation between sets of sentences and
sentences, is an entailment system. C-

Of course, since this entailment system has been defined by entirely model-theoretic
methods, we should not in general expect to find an effective proof calculus to generate
it. However, for I the first order logic institution, the completeness theorem assures
us that I+ coincides with the entailment system for first order logic already discussed
in Section 2.1; this of course can be generated from a variety of effective proof calculi.

We shall denote by Th the category of theories associated to the entailment system
I+ . Let H : (E, r) - (E,, r') be a theory morphism in The; given p E r we have
r, m=, H(p) by definition of theory morphisms. Therefore, for any M' E Md(E', r')
we have M j=E, H(W) which is equivalent to Hb(M) I=E p and consequently Hb(M) E
Mo(E,r). This shows that the functor b : M (E) --- Mod(E) restricts to a
functor:

H : Mo(',v MdC:J, r).
Globally, this means that we can extend our original functor Mod : Sign ' --. + Cat to

a functor:

Mod: Th-- - Cat.

We shall call an institution I liberal [27,26] if for any theory morphism H : T ---r
in Th the functor H' : M'od() ---+ M-(T) always has a left adjoint, denoted H',
i.e., there is a natural isomorphism Mod(T)(H*(M),M) 2! Md(T)(MH6 (M)).
First order logic is not liberal, but (first order) equational logic and Horn logic are.
Liberality of an institution is an abstract measure of a logic's algebraic character.
Lawvere showed in his thesis [45 that all the usual free constructions of algebra are
direct consequences of the general fact that equational logic is a liberal institution.
For example, for T the theory of commutative monoids, T the theory of commutative
rings, and H : T --+ T, the theory morphism that interprets the monoid operation as
ring multiplication, the functor H', left adjoint to H, is the monoid-ring construction
that, for free commutative monoids, specializes to the polynomial ring construction.

We say that an institution I admits initial models if for any theory T E Th the
category Mod(T) has an initial object, denoted IT. The general definition of initial
objects is as follows.

Definition 5 In any category A an object I is said to be initial if for any object X in
Athere is a unique morphism I --. X in A. C0

12

We shall call an institution I exact if the functor Mod : Th'* P --- Cat preserves
pullback diagrams.

The institution of first order equational logic is exact and admits initial models,
which are the relatively free algebras on an empty set of generators. For example, for
the theory of rings, the initial algebra is the ring of integers. In Section 5 we shall
encounter many other logics whose underlying institutions are liberal, admit initial
models and are exact.

2.4 Logics

We are now ready to give axioms that cover both the provability and the model-
theoretic sides of a logic. The solution is very simple: a logic has two components
consisting of an entailment system and an institution that share the same signatures
and sentences. In addition, the logic must be sound, i.e., we must have

For comp ete logics, such as first order logic, this implication is actually an equivalence.

Definition 6 A logic is a 5-tuple Z = (Sign, sen, Mod,-,) such that:

1. (Sign, sen, H) is an entailment system;

2. (Sign, sen, Mo.d, =) is an institution, and

3. the following soundness condition is satisfied: for any E E Sign, r C sen(E) and
E sen(E),

A logic is complete if, in addition,

r -rE P 4 P

A logic is compact if its underlying entailment system is so. Similarly, a logic is
liberal, admits initial models or is exact if its underlying institution is so. Given a logic
£, its underlying entailment system will be denoted ent(£); similarly, its underlying
institution will be denoted inst(Z£). 0

Remarks:

1. In Section 2.3 I presented the original definition of an institution as given by
Goguen and Burstall [27,261. More recently, Goguen and Burstall [281 have
added the proof-theoretic requirement that the set sen(E) is a category, whose
morphiss p - 0 are understood as proofs. By postulating additional as-
sumptions, such as compactness and existence of conjunction for sentences, one
could associate to proofs in this sense an entailment relation F I- V. However,
it does not seem possible to treat in this way the general case of an arbitrary
institution.

5 Strictly speaking, for an incomplete logic, compactness can be a property of either H, or of
(i.e., the relation between sets of sentences and sentences induced by satisfaction). Therefore, we could
speak of }=-compactness and v-compactness for a logic. In practice, however, if anything is going to be
compact at all, it will probably be -.

13

2. Notice that the inclusion H' is natural in E. Therefore, the soundress
axiom can be equivalently expressed by saying that the functor I-: Sign -- S.
is a aubfunctor of the functor =: Sign --- Set and the completeness axiom by
saying that the two functors are identical.

3. A logic Z determines two categories of theories that have the same objects,
but in general have different morphisms. One, Th, comes from its underlying
entailment system; the other, Thl, comes from its underlying institution. The
soundness axiom gives us a subcategory inclusion T -_ , and completeness
makes the categories identical.

2.5 Going to Extremes

Both entailment systems and institutions provide one-sided accounts of logic. The
general notion of logic given in Section 2.4 has the pleasing flexibility of allowing us
to regard an entailment system or an institution as a full logic of a special kind. In
this way, the proof-theoretic and model-theoretic opposites are reconciled. In the end,
from this abstract perspective, each can claim to have in some measure what the other
contended it lacked.

From our discussion in Section 2.3 we immediately obtain the following,

Proposition 7 An institution I determines a complete logic having 7+ as its under-
lying entailment system and having I itself as its underlying institution. By abuse of
language, this logic is also denoted I + . 0

A somewhat surprising fact is that, thanks to the generality of the axioms for a
logic, we can pull a logic out of the proof-theoretic thin air of an entailment system.
Fiadeiro and Sernades (171 associate an institution to a 7r-institution in a somewhat
similar way. The notion of a slice category is used in the proof of Proposition 9 and will
appear several other times in this paper. Slice categories are an instance of Lawvere's
[45] "comma category" construction (see [47]).

Definition 8 For B an object in a category C, the slice category B/C has as objects
morphisms f : B -- + A and as morphisms from, say, f : B -- A to g : B -- C those
h : A C in C such that h o = g; morphism composition is exactly as in C. Dually,
the slice category C/B has as objects morphisms f : A ---+ B and as morphisms from,
say, f : A --- + B to g : C --- B those h : A ---+ C in C such that g o h = f; again,
morphism composition is as in C. 03

Proposition 9 We can associate to any entailment system e a logic et that has e
as its underlying entailment system. Besides, 6 t is complete, exact, and admits initial
objects. If Th has pushouts, et is also liberal.

Proof: For E a signature we define Mod(E) as the slice category (E, O)/ITh. A
signature morphism H: E -- + V induces a functor H' : Mod() -- + Mod(E) which
is just composition with H, i.e., H'(G') - G' o H. Given (G : (E,0) - (E',F')) E
Mod(E) satisfaction is defined by G r p iffr, ' -, G(po). Therefore, G satisfies a set of
E-sentences r iff there is a theory morphism G : (E, r) -+ (E, r'). Thus, for T E T,

14

Mod(T) can be identified with the slice category TITh. The logic is complete, since
the identity theory morphism lr(,) E Mod(E,r) is such that l(Er) 1=E V if" r HE p.
Any slice category B/C has 1B as its initial object and therefore V¢ admits initial
models, with IT = 1T. When Th has pushouts, exactness and liberality follow easily
from the elementary properties of a pushout; in the latter case, for G E Mod(T) and
H : T -- T" a theory morphism, we define H" (G) as the pushout of G along H. 0

3 Proof Calculi and Logical Systems

A reasonable objection to the above definition of logic is that it abstracts away the
structure of proofs, since we know only that a set r of sentences entails another sentence
Vp, but no information is given about the internal structure of such a r H V entailment.
This observation, while entirely correct, may be a virtue rather than a defect, because
the entailment relation H- is precisely what remains invariant under the many equivalent
proof calculi that can be used for a logic. For example, in first order logic we have
many different proof calculi: Hilbert styled, sequent, natural deduction, etc., each
leading to a different notion of proof. However, the logic always remains the same,
first order logic, precisely because all proof calculi yield the same entailment relation
H. Therefore, rather than building a particular proof calculus into the definition of
a logic, it seems more satisfactory to axiomatize separately a proof calculus P for a
logic L, so that many different such calculi can be used in connection with the same
logic. This point is directly relevant to computer science, because it shows that we
can change the operational semantics (i.e., the proof calculus) of a logic programming
language without altering its mathematical semantics, provided that the old and the
new operational semantics have the same entailments. If we want to choose a specific
proof calculus for a logic, we call the resulting logic plus proof calculus a logical system.
In usual practice, and specially in logic programming applications, we often find proof
calculi where certain restrictions are placed on the signatures, the sentences used
as axioms, and on those used as conclusions. This leads to the notion of a proof
aubcalculu. In addition, we must introduce the notion of an effective proof subcalculus.

The basic idea of a proof calculus is that we can associate to each theory T a
proof-theoretic structure P(T) consisting of all proofs that use the sentences of T as
axioms. The structure of P(T) will typically relate such proofs in some algebraic
manner. For example, P(T) may be a multicategory6. However, the general axioms of
a proof calculus to be given below will not impose any particular structure; they will
postulate that P(T) has some structure, by declaring it an object of some category of
structures.

Definition 10 A multicategory consists of a set 0 of basic objects together with a
category C whose objects are finite strings r = A1, ...,A. of elements of 0, and such
that, denoting by r, A the concatenation of two strings and denoting by 0 the empty
string, the morphisms of C have a monoid structure, with the multiplication of two
morphiss a : -* 1 AI and /3 : r 2 -+ A 2 denoted a,/f and being of the form
a, : r,,r2 -I AI,A 2. In addition, the multiplication a,# is actually a functor

61 take ample liberties with this notion, due to Lambek [441, and give a definition that is not

equivalent to Lambek's but allows viewing multicategories in Lambek's sense as a particular case.

15

C -- C, i.e., it preserves identities and composition. For readers familiar with
monoidal categories, we can rephrase the definition by saying that a multicategory is
a strict monoidal category [471 whose monoid of objects is free. The general notion of
homomorphism between multicategories is that of a functor that preserves the monoid
operation -, - on the nose, i.e., a strictly monoidal functor. However, I shall impose the
additional restriction that the functor maps basic objects to basic objects. I denote by
MultCat the category with objects multicategories and with morphisms the strictly
monoidal functors that satisfy this additional restriction. 0

Example 11 (Natural Deduction) Given a theory T = (E, A) in, say, first order logic,
we can associate to it a multicategory P(T) with sen(E) as its set of basic objects 7 and
with morphisms8 a : AI,..., A. -- B1 ,..., B consisting of sequences a = a1,m...,am
with ai a natural deduction proof tree of Bi whose leaves only involve formulas among
those in A and in A1, ... , An. The identity idA,..., , is the sequence A1, ... , A,, viewed as
a sequence of proof trees; the multiplication a, # is the concatenation of the two strings
of proof trees. Composition of a : A1, ... , A, - B1 , ..., B with 6 : B1 , ..., Bm --- +
C1, ..., C1 is a sequence - = -f1, ..., 'yk with y the proof tree obtained from the tree Oi
by glueing the tree a, at each leaf occurrence of B i . '

We would like to view P as a functor Th -+ MuItCat. However, some caution
is required. The problem is that, given a theory morphism H : (E, r) -- (E,, r') a
sentence v E r is mapped by H to an element of r,, but H(V) does not necessarily
belong to r'. In seeking a natural translation of proof trees to define a morphism
P(H) : P(E,r) -- P(E,r') in MultCat. we run into a problem of indeterminacy.
This problem appears when we try to map the proof 0 -+ V, of an axiom V E r,
which consists of the one node tree 1, to a proof 0 -- H(p), of H(V), since when
H(() is not in r, many different proofs may be possible. This difficulty has an easy
solution by restricting our attention to the subcategory Tho -- Th of axiom-preserving
theory morphisms. In this way, we get a fumctor TA0 -- + MultCat.

We can forget about the compositionality of proofs, and extract from P(T) the set
of all proofs of theorems of T, proofs(T) = (a 0 ---+ v in P(T) I v E aen(T)}. We
can obtain proofs(T) as the set Pr(P(T)), where Pr is a functor Pr : MultCat -I Set
sending each multicategory (0, C) to the set Pr(O, C) = {a : 0 --- + A in C I A E 0}.
The way in which the proof calculus and the entailment system are linked is quite
natural; it is given by the function 7rT : proofs(T) - sen(T) mapping each proof
a : 0 -. V to its corresponding theorem W. Therefore, the inverse image 7ri (P)
yields the set of all proofs of W; if p is not a theorem this is the empty set. It is then
easy to check that irT is a natural transformation 7r : Pr o P = sen.

Definition 12 A proof calculus is a 6-tuple P = (Sign, sen, I-, P, Pr, 7r) with:

1. (1 n, aen, I-) an entailment system;

7Actually, we want the basic objects to be formuli rather than sentences; however, this is a minor
point, since we may assume that sen(E) has been defined as consisting of formulas, and the notion of
satisfaction extends easily to formulas.

'Notice that the sequences of sentences have conjunctive meaning in both the domain and the
codomain of a morphism a.

16

2. P : Tho -- * Structp a functor; for each theory T, the object P(T) E Structp is
called its proof-theoretic structure;

3. Pr : Structp ---+ Set a functor; for each theory T, the set Pr(P(T)) is called its
set of proofs. We shall denote by proofs the composite functor Pr o P : Th
Set;

4. ir : proofs = sen a natural transformation, such that for each theory T = (E, r),
the image of rT : proofs(T) -- sen(T) is the set r. The map IrT is called the
projection from proofs to theorems for the theory T.

A proof calculus P is called compact iff its underlying entailment system, denoted
ent(P), is compact. C

We are now ready to axiomatize the notion of a logical system, consisting of a logic
together with a choice of a proof calculus for it.

0

Definition 13 A logical system is an 8-tuple S = (Sign, senMo_, -od , P, Pr, ir) such
that:

1. (Sign, sen, Mod, , is a logic, and

2. (Sign, sen, I-, P, Pr, 7r) is a proof calculus.

A logical system is called complete, compact, liberal, exact, or is said to admit initial
models iff the corresponding properties hold for its underlying logic. Given a logical
system S, its underlying logic will be denoted log(S); similarly, its underlying proof
calculus will be denoted pcalc(S). C3

3.1 Proof Subcalculi

It is quite common to encounter proof systems of a specialized nature. In these calculi,
only certain signatures are admissible as syntax, e.g., finite signatures, only certain
sentences are allowed as axioms, and only certain sentences (possibly different from the
axioms) are allowed as conclusions. The obvious reason for introducing such calculi
is that proofs are simpler under the given restrictions. This may serve technical or
esthetical and expository purposes in logic; in computer science, however, the choice
between an efficient and an inefficient calculus may have dramatic practical conse-
quences. For logic programming languages, such calculi do (or should) coincide with
what is called their operational semantics, and mark the difference between a hopeless
theorem prover and a very efficient programming language. Indeed, one of the main
tasks of logic programming is finding efficient proof calculi by imposing judicious re-
strictions on the choice of axioms and conclusions. For example, the language Prolog
emerged from the realization that resolution could be made much more efficient when
the axioms are restricted to Horn clauses, and equational programming languages such
as OBJ [19,29] exploit the fact that term rewriting, which is complete for equations
that are Church-Rosser and terminating, is enormously more efficient than unrestricted
equational deduction.

Definition 14 A proof subcalculus is a 9-tuple Q = (Sign, sen, F-, Signo, ax, concl, P,
Pr, ir), with:

17

1. 1 sen, F) an entailment system.

2. S a subcategory of Sign called the subcategory of admiible signatures. We
denote by seno the restriction of the functor sen to the subcategory Sign0 .

3. ax : Sign -+ fe a subfunctor of the functor obtained by composing sen0 with
the powerset functor, i.e., there is a natural inclusion a(E) _; P (sen(E)) for each
E E Signo. Each r E a.(E) is called a set of admissible axion specified by Q.
This defines a subcategory Th. of TI& whose objects are theories T = (E, r)
with E E Signo and r E ax(E), and whose morphisms are axiom-preserving
theory morphisms H such that H is in Signo.

4. concl : Signo -- Set a subfunctor of the sen0 functor. The sentences v E
conl(E) are called the admissible conclusions specified by Q.

5. P : Th.. -+ Struct a functor; for each T E Th, the object P(T) E Strct
is called its proof-theoretic structure.

6. Pr : Structo -- + Se a functor; for each T E Th.., the set Pr(P(T)) is called
its underlying set of proofs of admissible conclusions. We denote by proofs the
composite functor Pr o P.

7. 7r : proofs =:, seno a natural transformation, such that for each T = (E, r) E
Th. the image of 7rT : proofs(T) -+- sen(T) is the set r" n concl(.). The map
irT is called the projection from proofs to admissible theorems for the theory T.

Given a proof subcalculus 2, ent(Q) will denote its underlying entailment system.
03

Notice that when no restrictions at all are placed on signatures, axioms and con-
clusions, i.e., when Sigo = Sign, ax(E) = P(aen(E)) and concl(E) = sen(E), a proof
subcalculus is the same thing as a proof calculus.

We can, finally, axiomatize the notion of a logical subsystem, consisting of a logic
together with a choice of a proof subcalculus for it.

Definition 15 A logical subsystem is an li-tuple S = (fi n, sen, _g, F, , Signo, ax,

concl, P, Pr, r) such that:

1. (Si gn, sen, Mod, F-, -) is a logic, and

2. (Sign, sen, -, Signo, ax, conci, P, Pr, 7r) is a proof subcalculus.

Given a logical subsystem S, its underlying logic will be denoted log(S); similarly, its
underlying proof subcalculus will be denoted pscalc(S). 0

3.2 Effective Proof Subcalcul

This section gives additional axioms for proof calculi that are effective in the intuitive
sense of being mechanizable by an (idealized) computer. The axioms are not as expres-
sive or as general as possible9 ; however, they will suffice for many purposes, including
our axiomatization of logic programming in Section 6.

'For example, they only consider theories with a finite set of axioms, and proof-theoretic structures
are involved only indirectly, through their underlying set of proofs.

18

The challenge in a topic like this is to avoid boring and annoying the reader (and
the writer!) with horrible encodings of everything into the natural numbers. To this
purpose, I will follow the axiomatic approach to computability outlined by Shoenfield
in [66]. The basic notions are that of a finite object, a apace of finite objects, and
an algorithm. In Shoenfield's own words, a finite object is an "object which can be
specified by a finite amount of information;" computer scientists would call this a finite
data structure. A space is "an infinite class X of finite objects such that, given a finite
object z, we can decide whether or not z belongs to X." Computer scientists would
call this a data type. Given spaces X and Y, a recursive function f : X -+ Y is then a
(total!) function that can be computed by an algorithm, i.e., by a computer program,
when we disregard space and time limitations; more generally, if the algorithm may
not terminate for some inputs, we call the corresponding f a partial recursive function
from X to Y. An r.e. subset of a space Y is a subset of the form f(X) for some partial
recursive function f : X -+ Y. Spaces and recursive functions form a category Space,
and there is an obvious forgetful functor U: Space -- + Set to the category of sets and
functions. Notice that if X is a space, then the set Pf,1 (X) of finite subsets of X is also
a space. We are now ready to axiomatize effective proof calculi. Since proof subcalculi
generalize proof calculi, only effective proof subcalculi are defined. The reader may
keep in mind the case of first order deduction for theories with a finite signature and
a finite set of axioms -possibly with additional restrictions on the axioms and on
the theorems that we wish to prove- as a standard example. Another interesting
example is the effective proof subcalculus of equational logic provided by Church-
Rosser and terminating term rewriting systems, in which the admissible signatures are
finite signatures, and the sets of admissible axioms are finite sets of Church-Rosser
and terminating equations, with proofs being performed by term rewriting. Note that
the Church-Rosser property is a property of an entire set of equations, not of the
individual equations. Many other examples of effective proof subcalculi are discussed
in Section 6.
Definition 16 An effective proof subcalculus is a 10-tuple Q = (Sign, sen, -, Signo,

seno, ai, concl, P, Pr, ir), such that:

1. (Sign, sen, '-) is an entailment system.

2. Signo is a subcategory of Sign called the subcategory of admissible signatures.
We denote by J the subcategory inclusion functor Signo - Sign.

3. seno : Signo - Space is a functor such that U o seno = sen o J.-
4. ax : Signo -* Space is a subfunctor of the functor obtained by composing

seno : Signo - Space with the functor P, : Space -- Space, that sends each
space to the space of its finite subsets. This defines a subcategory Th.. of Tho
whose objects are theories T = (E, r) with E E Signo and r E ax(E), and whose
morphisms are axiom-preserving theory morphisms H such that H is in Signo.

5. concl : Signo -- + Space is a subfunctor of the functor seno : Sign ---- Space.

6. P : Th.. -- StructQ is a functor.

7. Pr : StructQ - Space is a functor. We denote by proofs the composite functor
Pro P.

19

8. i: proofs = seno is a natural transformation.

9. Denoting also by az, concl, Pr, and 7r the results of composing with U each
of the above functors and the natural transformation 7r, the 9-tuple U(2) -

(Sign, sen, I-, Sign, ax, conci, P, Pr, 7r) is a proof subcalculus.

Notice that if Q is an effective proof subcalculus, for each theory T E Th there
is an associated partial recursive function searchT : concL(T) x IN -+ Pf,.(proof8(T))
such that for each pair (p, n), consisting of an admissible conclusion So and a natural
number n, search . (p, n) is undefined if irl (o) has cardinality strictly less than n, and
otherwise yields a subset of n elements in 7'rz((o) such that, when v'j'(w) is infinite,
we have iril((p) = U.Nat search. (io, n). An algorithm to compute searchT can be
obtained as follows: since all spaces are isomorphic [66), there is a listing of proofs(T),
i.e., a bijective recursive function a: IN -+ proofa(T). We define search'r(W, n) = 0;
to compute searchr(po, n + 1), we just scan through the listing a until we find the first
n + 1 proofs a(ii),..., a(i,+i) such that lrT.(a(ii)) = W. At times, it is possible to do
better than this, and provide an algorithm that behaves like the above searchT when
searchT is defined, but such that for some of the inputs (o, n) for which searchT is
undefined, it yields the value 0, understood as positive failure in finite time to find a set
of n proofs. We shall call any such function a search function for T in the subcalculus
Q.

4 Relating Logics
In this section, different notions of map are introduced and motivated with examples for
the different logical structures, i.e., for entailment systems, institutions, logics, proof
(sub)calculi, and logical (sub)systems. Each such type of logical structure together
with its corresponding maps determines a category, and those categories are then
related by forgetful functors and by adjoint functors. In all cases there is a notion of
substructure, such as a subentailment system, a sublogic, etc., that is always expressed
as a map satisfying special properties, thus giving an axiomatic expression to the
corresponding intuitive notion.

4.1 Mapping Entailment Systems

The intuitive idea is simple enough: we want to map the syntax and the sentences
between two entailment systems in a way that is consistent, i.e., such that it preserves
entailments.

Example 17 Consider the relationship between the entailment systems ent(Eqtl) of
equational logic and ent(Foi) of first order logic with equality. We map a functional
signature, consisting of a ranked alphabet F of function symbols, to the first order
signature 0$(F) = (F, 0) with same function symbols and with no predicate symbols.
Similarly, we can define a map a sending an equation t = e' to the first order sentence
Vzl...Vxz t = t' where zl,...,z,, are the variables occurring in either t or t. For r a set

20

of equations and a(r) the set of its corresponding first order sentences we of course
have r - t = t' o.aft) a(t = t').

Indeed, we actually have an equivalence rather than just an implication between the
two entailments, so that this particular map is conservative. 0

Maps of entailment systems that send a signature to another signature are called
plain. However, there are natural examples of maps that are not plain.

Example 18 Let VFol denote the fragment of first order logic without equality con-
sisting of sentences that are the universal quantification of a quantifier free formula.
Let VFnFolr be the fragment of two-sorted first order logic with equality having
signatures that involve only function symbols, and with sentences also restricted to
universal sentences. We shall use the symbol u to denote one of the sorts, and the
symbol bool to denote the other. The idea of viewing every predicate as a characteristic
function yields a map relating the entailment systems of these two logics. However, an
unsorted signature (F, P) should not be mapped to another signature, but to a theory
4(F, P) whose signature consists only of the following function symbols:

1. for each n-ary function symbol f E F there is a function symbolf : ut' u;

2. for each n-ary predicate symbol p E P there is a function symbol pa un
- bool;

3. there are constants true, false, a unary operation not and binary operations and,
or, implies, all with sort boot for their arguments and their result.

The axioms of the theory -(F, P) are those needed to force the interpretation of the
sort bool to be a two-element boolean algebra. The key axioms are true 0 false and
(Vb : bool) (b = true) V (b = false). In addition, we must give equational axioms forcing
not, and, or and implies to have the standard meaning.

We can now define a translation a between sentences in the expected way. We
translate a quantifier free formula V into a term V° of sort boot as follows. An atomic
formula p(tl, ..., t) is translated into the term p*(tl, ... , t,), and the connectives are
translated in the obvious way, e.g., V A is translated into and(o*, 0*), etc. We then
translate a sentence Vzx1 ...Vz,, v with V quantifier free into the equational sentence
Vzl ...Vx,, ° = true. As in the previous example we have

r ,P >afr) [_() iV

and, indeed, the implication is also in this case an equivalence. The map from signa-
tures to theories is in fact a functor' t : Signvpu - Thvp.F.Io, and the translation
a is a natural transformation a : senvi ==* senVpnpogi 0 .o

Another interesting example of a map of entailment systems that is not plain is
furnished by the translation of the second order lambda calculus into Martin-Lf type
theory described in (52].

Notice that any functor $: Sign - Th'o together with a natural transformation
a : sen ==> sen' o 4D can easily be extended to a functor $: Tho -- Th'o, called

1°As before, we denote by Tho the subcategory of Th whose theory morphisms map axioms to axioms.

21

the &-eztension to theories of the original functor, by mapping a theory T = (E, r)
to the theory O(T) with same signature as that of O(E) and with axioms those of
O(E) together with the axioms am(r). Notice also that the natural transformation
a : sen =fi sen' o 0 can be similarly extended to a natural transformation a : sen ==*
sen! o 9 between the functors sen : Tho - 5 St and sen' o I : Tho ---+ Set. we just
define a(Er) = aE. Therefore, we may as well view 9 as a functor 0 : o
mapping theories to theories, and call a functor %P : Z -* T a-.imple iff it is in
fact the a-extension to theories of a functor IF : Sign T&. In addition, we call
* a-plain if it is the a-extension to theories of a functor * that factors through the
functor F : Sign' ----+ Th sending each signature E' to the theory (E',0), i.e., if it is
the a-extension to theories of a functor mapping signatures to signatures.

This way of relating entailment systems is already quite general, but is it general
enough? The answer is "no." There are natural and interesting examples of maps
between entailment systems that map theories in a more subtle way.

Example 19 (Unfailing Knuth-Bendix Completion) Consider the entailment system
of equational logic ent(Eqtt). By using an unfailing Knuth-Bendix algorithm [11, we
can associate to an equational theory T = (E, r) a (possibly infinite) Knuth-Bendix
completion KB(T) = (E, KB(r)) so that equational deduction in T can be treated by
term rewriting in KB(T). This can be viewed as a functor, KB : ThEquo - ThEqtO
which is not a simple functor. Since T and KB(T) are isomorphic theories we have

r -T t = te 4=1 r -B(T) t = .

After defining the notion of a mapping of entailment systems we shall be able to
see that the functor KB, together with the identity natural transformation 1,,. from
sen to itself, give us an entailment system map (KB, L,) : ent(Eqtl) -+ ent(Eqtl).
0

An even simpler example is provided by closure under entailment.

Example 20 (Entailment Closure) Given an entailment system 4 = (Sign, sen, -),
the functor (_)" : Tho -* Tho mapping a theory T = (E,r) to the theory To = (E, r-),
together with the identity natural transformation 1.,, from sen to itself, will give us
an entailment system map ((_)0, 1..,) : r -- + 6. [

Notice that the functors KB and (" map theories having the same signature to
theories having the same signature; actually, in these two examples signatures are left
unchanged. Let us denote by (EI, r') the image obtained by applying to a theory (E, r)
a functor 9 : Tho - ThO that maps theories with the same signature to theories
with the same signature. In particular, we denote by (E', 0') the theory $(Z, 0). If the
functor 9 is a-simple, we have the following property:

r° = O'u a(r).

This is not satisfied by KB and (-)*; however, they satisfy the weaker condition

(v) o= (0' u aE(r)).

These functors, although more general, are "sensible" in the following sense.

22

Definition 21 Given entailment systems 6 = (Sign, sen, F-) and ' = (Sign',sen',
F'), a functor § : Th ---* Th; and a natural transformation a : sen ==* sen' o 4, we
call I a-sensible iff the following conditions are qatisfied:

1. There is a functor V : Sign - Sign' such that sign' o V = 0 o sign.

2. (r') = (0'u aE(r)).

a-sensible functors have the nice property that their natural transformation a only
depends on the signatures, not on the theories. This is a consequence of the following
lemma.

Lemma 22 Given entailment systems 6 = (Sign, sen, -) and ' = (Sign', sen', '),
and a functor 4 : Th - Tho satisfying condition (1) in Definition 21, then any
natural transformation a : sen ==* sen' o4 can be obtained by horizontal composition
with the functor sign : Tho ----+ Sign from a natural transformation a* : sen =
sen' 0 o.

Proof: Again, we use the notation o(E,r) = (E',r'). What we have to show is
that for any T = (E,r), T 2 = (E, A) in Tho, we have aT1 = aT2 . Then, we can
define a* = aT1. Notice that, for any T2 = (E, A), we have a theory morphism
1E (E, 0) -+ (E, A) in Th0 . Therefore, it is enough to establish this property when
T1 - (E,0). Since 4 satisfies condition (1), we must have:

-§(1E : (EA) ---+ (E.,A)) = (1, : (F"',0')) (WAT

Therefore, we have sen(1E) = 1 ,,,(E), and sen'(4(1E)) = sen'(l*) = len,(E,). The
naturality of a then forces aT, = aT2, as desired. C3

By abuse of language, in the following we shall drop the "diamond" and write aE
instead of al.

Definition 23 Given entailment systems 6 = (Sign, sen, -) and ' = (Sign', sen',
F'), a map of entailment systems (4, a) : & -- ,V consists of a a natural transforma-
tion a : sen ==> sen' o D and an a-sensible functor 4 : Tho -* Th' satisfying the
following property:

r F-E P aE(r) F ,0(,) a (o).

We call (4, a) conservative if in addition we have,

r E P * ar(r) (E,0) aE(P).

We call (4, a) plain if 4 is a-plain, and, similarly, we call (4, a) simple if t is
a-simple.

A subentailment system is a map (t, a) : e -- ' of entailment systems that is
plain, conservative, with 0 faithful and injective on objects, and with a injective. We
write (t, a) : V - 6' to denote a subentailment system. 0

23

Example 17 shows that the entailment system of equational logic is a subentailment
system of that of first order logic. Note that in that example neither 4 nor a are actual
inclusions; they are only injecticns.

The following lemma follows easily from the basic properties of sensible functors
ana is left as an exercise.

Lemma 24 For (6, a) : 6 - 4' a map of entailment systems, the following property
is satisfied:

r F(EA) P # ax(r) *(E,A) aE(P).

Furthermore, if (0, a) is conservative, the above implication is actually an equivalence.

Given maps of entailment systems (41, a,) : 6 ' and (42, a2) :' - £ we
can define their composition (02,a 2) o (1 1, al) : -+ " as the pair (4:, as) with
'03 = t2 o 1 and with a3 the natural transformation obtained by pasting together the
two cells

Th0 0 T40 02

8en jaen en"

Set

Using Lemma 24, it is easy to check that this composition is itself also a map of
entailment systems and that, therefore, we have a category Ent whose objects are
entailment systems and whose morphisms are maps between them.

The following lemma is left as an exercise.

Lemma 25 The composition of conservative maps of entailment systems is conser-
vative. Furthermore, if for (41,a,) : - - 6' and (' 2,a 2) : ' -- V maps of
entailment systems the composition (tw, a2) o (41, a,) :C -- 4" is conservative, then
(4, a,) : - - ' is conservative. [

4.2 Mapping Institutions

The idea of a map of institutions is somewhat counterintuitive. Although the syntax
part is mapped just as for entailment systems, the models are mapped in the opposite
direction. This can be best illustrated by an example.

Example 26 Let EqtL be equational logic, and let MSEqtl be many-sorted equational
logic. The process of "omitting sorts" should map the underlying institution of MSEqtl
to the underlying institution of Eqti. A many-sorted theory is a pair (S, F) with S a
set of sorts, and F an alphabet of function symbols, each with a rank consisting of a
pair (w, s) with w E S" giving the sorts of the arguments and a the sort of the result.
By omitting sorts, we map such a signature to the signature F such that f has rank n

24

iff, in its original rank (w, s), w had length n. This defines a functor I : Sign, ,
Sign... from many-sorted to unsorted signatures. In many-sorted equational logic,
the number and sort of the variables being quantified in an equation must be made
explicit [31], but this is not required for unsortk I equational logic. Omitting sorts and
explicit quantification transforms a many-sorted equation into an unsorted equation,
and we can view this as a natural transformation a : senszS ==€ senEqL o . However,
for (5, F) a many-sorted signature, there is no natural way of associating an unsorted
F-algebra to a many-sorted (S, F)-algebra. What is natural is to associate to the
F-algebra A the (S, F)-algebra 6(A) with carrier {A,},cs such that A. = A for all
s E S, and such that each function symbol f with rank (w, s) such that w has length n
is interpreted by the same function A1 : A" - A that interpreted f in the F-algebra
A. This gives us a functor /(p,s) : Mod lq(I(F, S)) - Modmsp4 (F, S), and globally
defines a natural transformation 8 : Mod tJ 0 ==q Mo0d$.By definition of P3(A),
for any many-sorted signature (S, F) and any (S, F)-equation o we have,

A = ()iff #(A) (F p

Notice, finally, that instead of restricting ourselves to equational logic we could just
as well have considered unsorted first order logic and many-sorted first order logic. 3

Definition 27 Given institutions I = (Sign, sen, Mod,) and I = (Sign', sen',
Mod', k'), a map of institutions (0, a, /) : I ---+ 2 consists of a natural transforma-
tions a : sen ==*- sen' o $, an a-sensible functor 1 0 : Tho ---- Tho, and a natural
transformation # : Mod o P == Mod such that for each E E Sign, wp E sen(E), and
M' E Mod_(b (E, 0)) the following property is satisfied:

M =ign((,O)) aIE('P) ifF/3(E,)(M) I=E 'p.

We call (0, a, #) plain iff 4D is a-plain, and similarly call (D, a, /) simple if" $ is
a-simple.

A subinstitution is a map (4, a, /) : I - I' of institutions that is plain, with $
faithful and injective on objects, with a injective, and with 3 a natural isomorphism.
We write (t, a, /) : 2 - I' to denote a subinstitution. For example, equational logic
is a subinstitution of first order logic. 0

Given maps of institutions (tia l ,1) : V _. 2" and ($2 ,a2 ,32) : I' - I" we
can define their composition (4N,a 2 ,0 2) o ($0,a,S 1) : I -+ " as the pair (3, a 3,/03)
with 13 = (D o i and with a3 the natural transformation obtained by pasting together
the two cells

Tho (D __40T (--1T4

sen se en"

Set

"The functor 0 is a-sensible for the entailment systems (Sign, sen, =) nd (Sign', aen', c') associ-
ated to 2 and 2'. Since the categories Th=o and Th 0 do not depend at all on the entailment relations

and ', we write Tho and Th, instead.

25

and 0 the natural transformation obtained by pasting together the two cells

Tho. T0_.P ,,, 0. g TOP

M ~od' d

Cat

It is easy to check that this composition is itself a map of institutions. Therefore,
we have a category Inat whose objects are institutions, and whose morphisms are maps
between them. Recall now that, Oy Proposition 4, every institution I has an associated
entailment system I*. This is just the object part of a functor (_) Inast -+ Ent,
as shown by the following lemma.

Lemma 28 If (0, a,#) : I -- I' is a map of institutions, then (0, a) : I+ : V +

is a map of entailment systems.

Proof: We have to show

which, rephrased in terms of the closures and adopting the notation t(E, r) = (E,, r'),
reads

but V E r" iff for each M E Mod(E,r) we have M Ir o. Notice that, since (D is
a-sensible, we have -(iE : (E,0) -- (E,r)) = 1Ei: (V,0') - (Er) and therefore
0C_ r' so that Mod(E', r) g Mod(E', 0). Now consider the functor

A mu:od(E,r) --. o(E)

by naturality of 0 this is just the restriction of the functor

(E,,) : Mod'(E', 0') - Mod (E, 0).

This implies that for each M' E Mocf ('(E, r)), 01(,,)(M') r s, which is equivalent
to M' =, am(p). This shows am(O) E r"; and since - is a-sensible this is equivalent
to am (so) E (0 U am(r))e, as desired. r-

Remark. Although closely related and inspired by them, the maps of institutions
defined above are different from what Goguen and Burstall call institution morphisms
[27,26]. These are of the form (0, a,,8) : I ---* T', with $: Sign --- Sign' a functor,
and a : sen'o == sen, 3 : Mod ==* Mo o VOP natural transformations satisfying
a condition entirely similar to the one above. Besides their restriction to a "plain"
4, the main difference is that their a and 3 go in exactly the opposite direction than
mine. Since the I still goes in the same direction, the concepts are not dual and
their relationship is not entirely clear unless special properties, such as adjointness,

26

are assumed for 4. Both notions of mapping will probably be needed to account
for all relevant examples. In this presentation, I have favored the notion of a map
of institutions because it fits well many natural examples and permits flexible ways
of mapping theories. Also, one of the motivations for defining maps of institutions
is to introduce the concept of a subinstitution as a map of institutions that satisfies
additional properties; this does not seem possible using institution morphisms.

4.3 Mapping Logics

Mapping logics is now easy. We just map their underlying entailment and institution
components.

Definition 29 Given logics £ = (Sign, sen, Mod I-, =) and V' = (Sign', sen', Mod',
;_1, =) a map of logics (4, a,/3) : --- ' consists of a functor 12 :Th0 --- h
and natural transformations a : sen ==* sen' o 4 and #3 : Mod o 4) ==. Mod such that:

1. (0,a,/3) : inst(Z) -- + inst(') is a map of institutions, and

2. (4, a) : ent(.) -- ent(V') is a map of entailment systems.

Therefore, we have a category Log whose objects are logics and whose morphisms are
maps of logics, and there are forgetful functors inst : Log ---* Inst and ent : Log-
Ent yielding the underlying institution and the underlying entailment system of a logic
respectively.

We call (4, a,3) plain iff 0 is a-plain, and, similarly, call (4, a, /3) simple iff
is a-simple. We call (-§, a,/3) conservative iff (-l, a) is so as a map of entailment
systems' 3.

A sublogic is a map (P, a,/3): £ V L' of logics that is both a subinstitution for
the underlying institutions and a subentailment system for the underlying entailment
systems. We write (t, a,3) : £ - C' to denote a sublogic. [

Example 30 All the previous examples of maps of entailment systems and maps of
institutions were fragmentary descriptions of maps of logics:

1. Example 17 comes from a sublogic Eqtl -+ Fol= that views equational logic as
a fragment of first order logic with equality.

2. Omitting sorts is a (plain) map of logics MSEqtl -o Eqtl (or more generally,
MSFo= -* Fol-). The paper [311 shows that this map is not conservative, and
characterizes the largest subcategory of Signe5SE for which omitting sorts is
conservative.

3. Notice that, viewing each unsorted equational signature a.3 a many-sorted sig-
nature with one sort gives us a sublogic Eqtl -. MSEqtl, that when composed
with the above "omitting sorts" map MSEqtl -- Eqtl yields the identity map
on Eqtl; therefore, omitting sorts is a retract map.

12 Notice that, since Th does not depend on the entailment relation, we have Tho = Th' 0, so that,

indeed, the domain and codomain of 0 are not altered by viewing 4D as a map of entailment systems
or, alternatively, as a map of institutions.

13Strictly speaking, for a noncomplete logic we could distinguish between i--conservative and -

conservative maps. However, conservativeness of the underlying map of entailment systems seems the
most important notion.

27

4. The encoding of predicates as characterstic functions is a conservative map of

logics VFo -- + VFnFoI which is not plain.

[

The construction given in Section 2.5 of the logic I + associated to an institution I
is actually a functor (_)+ : I ---+ Log. This follows easily from Lemma 28. Actually,
we have two natural ways of associating a logic to an institution, one associates the
most complete logic, and the other associates the least complete one.

Proposition 31 The forgetful functor inst : Log -+ Inst has both a left and a right
adjoint.

Proof: The right adjoint is precisely (_), and the unit map of the adjunction is the
sublogic Z --+ (int(C))+ . The left adjoint is the functor ()- : Inat -- * Log sending
an institution I to the logic having I as its underlying institution and such that r I- o
iff w E r. The counit of this adjunction is the sublogic (inst(C))- -+ Z. E]

The construction given in Section 2.5 of the logic V associated to the entailment
system t does not seem to correspond to a functor (-)t :Ent --.- Log. Given a map
(t, a) : -- ', the natural choice for a transformation # for the models seems
to go in the wrong direction, since it sends a model H : T --- + V' in t to a model
O(H) : O(T) -- 4(7) in 40. There are several possible choices for the directions
of the natural transformations a and / corresponding to different notions of "map"
betwen entailment systems and between institutions, and this construction happens
to be functorial for a different choice of directions.

4.4 Mapping Proof Calculi

The intuitive idea is very simple. Given two proof calculi, a mapping between them
must first of all involve a map (4, a) of their underlying entailment systems. In
addition, we want to map a proof p of a theorem V of a theory T E Th to a proof
-y(p) of the theorem a(Wo) of the theory I(T).

Example 32 Consider the subentailment map (4, a) : ent(Eqti) - ent(Fol=) from
the entailment system of equational logic to the entailment system of first order logic
with equality described in Example 17. We can associate to the equational entailment
system the proof calculus Pqtj with P : Th -- + Cat the fuctor sending each equa-
tional theory T = (E, F) to the category P(T) whose objects are E-terms, and whose
morphisms are chains of elementary steps of equational deduction using equations in
r. Morphism composition is chain concatenation. The functor Pr : Cat - Set sends
each small category C to the set of triples Pr(C) = {(A,f,B) I f : A - B in C}.
Therefore, the functor proofs sends T to the set of triples of the form (t, p, e) with t, t
E-terms and p a chain of elementary steps of equational deduction using the equations
in T. The projection function 7r forgets about the proof p and yields the equation t = t.
Consider now a proof calculus PF1=t associated to ent(FoI=). We can for example have a
natural deduction proof calculus extended with rules for equality, and give to its proofs
the structure of a multicategory. A map of proof calculi PEUtj -- + P,= compatible with
the subentailment (4, a) : ent(Eqtl) -- + ent(Fol=) now consists of a systematic way of

28

translating a chain of elementary equational deductions p : t -+ t' using axioms in T
into a natural deduction proof -y(t, p, e') of the theorem a(t = t) = (v, ...Vz, t = t')
for the theory 4Z(T), i.e., in a family of functions,

IT: proo/sEqU(T) -+ p fFo = C (IT(T)).

Of course, "systematic" means that the maps -yT should be independent of changes in
syntax, i.e., that they should form a natural transformation 1 : proofsEqtj ==, proofsF=.
The fact that proofs of one theorem go to proofs of its translation by a has a concise
expression in terms of natural transformations, as explained below. C

Definition 33 Given proof calculi P = (Sign, sen, F-, P, Pr, 7r) and P' = (Sign', sen',
F-', P', Pr, r'), a map of proof calculi ('i, a, "y) : P - P' consists of a map (§, a) :
ent(P) --+ ent(P') of the underlying entailment systems together with a natural
transformation -1 : proofs ==, proofs' o P such that the following cells are identical:

proofs proofs

Tho sen - = Thk 4 1 Set

4a proofs

T/4k0 2 sere• sen'

An embedding" of proof calculi is a map of proof calculi (t, a, -f) : P --* P' such
that (4, a) : ent(P) -- ent(P') is a subentailment system and 'y is injective. We write
(,a,') : P '-* P' to denote an embedding. C

Another good example of a map of proof calculi is the translation of proofs in
the sequent calculus into natural deduction proofs. Basically, a proof in the sequent
calculus can be viewed as a set of directions for constructing a natural deduction proof
in normal form (see [59], Appendix A).

Given maps of proof calculi (§ 1 ,a 1 ,'yi) : P --+ P' and (§2, a2 , 12) : P' -+ P" we
can define their composition (02, a2,12)o(b1, al, 11) : P - P" as the triple (43, as, Y3)
with (4s, a3) the composition of the underlying maps of entailment systems, and Y3

the natural transformation obtained by pasting together the two cells,

Tho - I -- Tk 42 - Th

proo s proofs,

Set

"Since the term "proof subcalculus" has already been used with a specific technical meaning, I use
the term "embedding" instead.

29

Checking that (0s, as, 1s) is itself a map of proof calculi, and that composition is
associative, is an easy cell pasting exercise. Therefore, we have a category Male
having proof calculi as its objects and having maps of proof calculi as its morphisms.
There is of course a forgetful functor ent : PCa1c ---+ Ent sending each proof calculus
to its underlying entailment system.

Proposition 34 The functor ent : Calc -- + Ent has a right adjoint (. Ent
Peac.

Proof: Given an entailment system t = (Sign,sen,i-), the proof calculus 61 is the
6-tuple 61 = (Sign, aen, ?-, thm, ls_ ,j) with thin the functor sending each theory to
the set of its theorems described in Section 2.2, and j the natural subfunctor inclusion
thin C sen. The unit of the adjunction for a proof calculus P = (Signsen, He , P, Pr, 7r)
is the map (lsign,l,,ir) : P -+ (ent(P)) I , where " is now viewed as a natural
transformation ir : proofs thin. 0

Since proof subcalculi generalize proof calculi, the above definition of a map of
proof calculi generalizes to the following definition.

Definition 35 Given proof subcalculi P = (Sign, sen, H, Signo, ax, concl, P, Pr, 7r)
and P' = (Sign', scm', P, Sigr4o, a&, coneP', P', Pr, -r'), a map of proof subcalcuii (4, a, -y)
: P --- 0 P' consists of a map (0, a) : ent(P) -- + ent(P') of the underlying en-
tailment systems such that the functor 0 : Tho -- + Th, restricts to a functor15

4 : Th.. -- Th'. together with a natural transformation -y : proofs ==* proofd o I
such that the following cells are identical:

proofs proofs

Th. sen Set = Th. Set

An embedding of proof subcalculi is a map of proof subcalculi (0, a, -f) : P -- P'
such that (0, a) : ent(P) -- ent(P') is a subentailment system and -y is injective. We
write (0, a,-f) :P -+ P' to denote an embedding. 0

Composition of maps of proof subcalculi is defined as for proof calculi, and we
get a category PSCale with objects proof subcalculi and morphisms maps of proof
subcalculi. We then have a forgetful functor ent : PSCalc -. Ent sending each proof
subcalculus to its underlying entailment system.

By replacing everywhere the category Set by the category Space and considering
effective proof calculi as objects we can define in an entirely similar way the notion of
an effective map of proof calculi. This gives us a category EffPSCalc and a forgetful
functor U : EffPSCaIc - PSCale.

"Ilntuitively, this says that -0 transforms theories using only Signo signatures and ax axioms into
theories that only use Sign signatures and az' axioms.

30

4.5 Mapping Logical Systems

We can now gather everything together and obtain notions of a map of logical systems
and a map of logical subsystems.

Definition 36 Given logical sytems S = (Sign,sen, Mo__d, ',P, Pr,7r) and S' =
(Sign',sen',Mo.__, "-',',P',Pr, r) a map of logical sysems (0,a, 0, -) : $ - 5'
consists of a functor 4 and natural transformations a, 1, -y such that:

1. (1,a,3) : log(S) - log($') is a map of the underlying logics, and

2. (40, a,-y) : peal/(S) ---- pcalc(S') is a map of the underlying proof calculi.

This defines a category LogSys whose objects are logical systems and whose morphisms
are maps of logical systems, and we have forgetful functors log : LogSys - Log and
pcalc : LogSys ---+ PCalc.

An embedding of logical systems is a map (4, a,f1,,-1) $ -* S' of logical systems
such that (, a, 1) is a sublogic and (4, a, -y) is an embedding of proof calculi. We
write (4 , a, #, -1) : S --+ S' to denote an embedding of logical systems. C:

The following result is entirely analogous to Proposition 34 and is left as an exercise.

Proposition 37 The functor ent : LogSya -- Log has a right adjoint (_) : Log
LogSys. C

Maps of logical subsystems are defined in an entirely analogous manner.

Definition 38 Given logical subsystems S = (Sign, sen, Mod, I-, , Signo, ax, concl,
P, Pr, 7r) and S' = (Sign', sen', Mod', H', =', Sign', ax', conal', P', Pr', 7r') a map of log-
ical subsystems (4 , a, 1, -/) : S 5' consists of a functor 4 and natural transforma-
tions a,#, -y such that:

1. (t,a,13) : log(S) --+ log(S') is a map of the underlying logics, and

2. (4, a, -y) : pscalc(S) -+ pscaic(S') is a map of the underlying proof subcalculi.

This defines a category LogSSys whose objects are logical subsystems and whose mor-
phisms are maps of logical subsystems, and we have forgetful functors log : LogSSys --
Log and pscalc : LogSSys i PSCalc.

An embedding of logical subsystems is a map (4, a,3, -y) : S ---+ 5' of logical subsys-
tems such that (t, a, 3) is a sublogic and (4, a, -y) is an embedding of proof subcalculi.
We write (4, a,13, -y) : S - 5' to denote an embedding of logical subsystems. [

We can summarize the relationships between the different categories of entailment
systems, institutions, logics, proof (sub)calculi and logical (sub)systems by the follow-
ing commutative diagram, where for simplicity only the forgetful functors are included.
The several adjoints already described as well as the category of effective proof subcal-
culi are omitted, but they should be kept in mind to obtain a more complete summary.

31

................. LogSSYa

C log scaic

LogPCalc c PSCale

ant

5 Categorical Logics

Categorical logics give us great model-theoretic flexibility, since their models are not
restricted to the traditional set-theoretic structures with functions, predicates, etc.,
that are assumed as basic even in axiomatic approaches such as abstract model theory.
In fact, the question "What is a model?" is far from settled for the many higher
order logics of interest to logicians and computer scientists. Some of the proposed
models have a somewhat ad hoe character, and may fail to reflect adequately the basic
intuitions. Nevertheless, models are essential to semantic understanding. Category
theory, and in particular the categorical approach to logic originating in the wide and
seminal work of F.W. Lawvere, has much to offer in this regard. This is probably quite
widely recognized and in some cases, such as the relationship between the typed A-
calculus and cartesian closed categories, or between intuitionistic set theory and topos
theory, well understood. However, the potential of the categorical point of view has
yet to be fully exploited.

There is no better way to begin our discussion of categorical logics than by quoting
some words from a fundamental paper published by F.W. Lawvere in 1969 [461. The
paper begins with the following words:

"That pursuit of exact knowledge which we call mathematics seems
to involve in an essential way two dual aspects, which we may call the
Formal and the Conceptual. For example, we manipulate algebraically a
polynomial equation and visualize geometrically the corresponding curve.
Or we concentrate in one moment on the deduction of theorems from the
axioms of group theory, and in the next consider the classes of actual groups
to which the theorems refer. Thus the Conceptual is in a certain sense the
subject matter of the Formal."

and ends with the following paragraph:

"Finally, in Foundations there is the familiar Galois connection between
sets of axioms and classes of models, for a fixed set of relation variables
R,. Globalizing to an adjoint pair allows making precise the semantical
effect, not only of increasing the axioms, but also of omitting some relation

32

symbols or reinterpreting them, in a unified way. And if we deal with
categories of models, allows the latter to determine their own full sets of
natural relation variables, thus giving definability theory a new significance
outside the realm of axiomatic classes. To do this for a given species -
equational, elementary, higher-order, etc.- of, say, I-sorted theories, one
defines an adjoint situation

Theories"' semantics (Cat, [Sets'
structure

in which the right hand side denotes a category whose morphisms are
commutative triangles

C C1

\ Sets'I

of functors with C and C' more or less arbitrary categories. The invariant
notion of theory here appropriate has, in all cases considered by the au-
thor, been expressed most naturally by identifying a theory T itself with a
category of a certain sort, in which case the semantics (category of Models)
of T is a certain subcategory of the category of functors T --- Sets. There
is then a further adjoint situation

Formal __ _ Theories

describing the presentation of the invariant theories by means of the for-
malized languages appropriate to the species. Composing this with above,
and tentatively identifying the Conceptual with categories of the general
sort (Cat, [Setsfl), we arrive at a family of adjoint situations

Formal" Conceptual

(one for each species of theory) which one may reasonably hope consitute
the fragments of a precise description of the duality with which we began
our discussion."

The use of the category Sets' is more an illustration for the case of classical set-
theoretic models than a necessary requirement. The version axiomatized below has a
category I" of categories with structure instead of Sets1 . The relationship with the
axiomatic definition of logic presented in Section 2 is as follows:

* The category that Lawvere calls "Formal" coincides with the category Tho0 for
a logic L in our sense.

33

" A thoyr in Lawvere's sense is a category C with a certain structure. That
structure is meant to capture the essential aspects of a logic Z, so that the
category C can be understood as an abstract "theory" that is independent of
both a choice of syntax for Z and a particular presentation of the axioms. In
fact, such categories can be viewed both as abstract "theories," and as "generic"
models. For example, a typed lambda calculus theory (E,E) generates a free
cartesian closed category 7(E,E), which is the abstract theory in Lawvere's
sense, and also the generic "term" model of the theory (E, E).

" To avoid confusion between concrete and abstract theories, I identify Lawvere's
category Theorie. with a category I whose objects are categories with some ad-
ditional structure, and whose morphisms are functors preserving that structure.
For example, in the case of the typed A-calculus, _ = CCCa , the category of
cartesian closed categories, with morphisms functors that strictly preserve the
cartesian closed structure [431.

Example 39 (General Equational Logic) Equatjofial logic was the first instance of
a categorical logic considered by Lawvere in his doctoral dissertation [45]. Lawvere
restricted his analysis to classical set-theoretic models. Given an equational theory
(E,E), he exhibited a category with finite products T(E,E) such that E-algebras
A that satisfy the equations E can be put into 1-1 correspondence with functors
A: I'(E, E) -+ fSt that strictly preserve products; i.e., chosen products in I (E, E)
are mapped to cartesian products in &t.

The category F(E, E) is easy to describe. Its objects are the natural numbers.
A morphism It] : n --. 1 is the equivalence class modulo the equations E of a E-
term t whose variables are among Zi,...,z,,. A morphism n -- + m is an m-tuple
of morphism n - 1. Morphism composition is term substitution. For example,
[z + zJ o ([X7 * ZXJ, [Z4 + z]) = [(Z4 + z) + (Z7 * X3)]. It is then easy to see that
the object n is the nth product of the object 1 with projections [Zi], ... , [X4; and, more
generally, that the product of the objects n and m is n + m. The functor A associated
to the algebra A sends the morphism It) : n -* I to the derived operation An --- A
associated to the term t. Under this correspondence between algebras and fumctors,
an equation t = t' is satisfied by a (E, E)-algebra A iff ;i([tJ) = A([t']). The analogous
case of many-sorted equational logic was studied by Bdnabou in his thesis [4]. The
category I(E, E) is constructed as in the unsorted case, but now it has as its set of
objects the free monoid S ° generated by the set S of sorts.

In the many-sorted case, we can view the construction of '(E, E) as a functor
I : Th0 -* x Cat where the theories in Tho are many-sorted equational theories,
x Cat is a category whose objects are small"6 categories with chosen finite products
and whose morphisms are functors that strictly preserve the chosen finite products.
The functor I is the left adjoint of a functor U : x Cat --- + Tho that associates to each
category with (chosen) finite products C the many-sorted equational theory U (C) whose
set of sorts is the set IC I of objects of C, whose ranked set of operations has as constants
of sort A the morphisms a: 1 -- A, with 1 the chosen final object, as unary operations
of type A -* B the morphisms f : A -- B in C, and as n-ary operations of type

"6I will not worry much about foundations; later examples will also involve 'large' categories. Al
concerns can be resolved using universes.

34

A,... A. -- + C, for n > 1, symbols fA..., one for each f : B = A, x ... x A. -- C C
in C as well as new operations ViA 1.. :A A. -- B for each B = A, x ... x A,.
The equations of U (C) include the equations (/A..A.(A, (x),..., r.()) = x, for •
A, x ... x A, A, the chosen jth projection in C, the equations fAi..A. (ZX1,... , zX) =

f(VA..A ... XI , Xn)), and all other equations satisfied when interpreting the VA,..4.A's
as identitities and the f's and fA,...i's by their corresponding morphisms in C. For
example, if h: C -) D with D = A x B is the unique morphism in C induced by
morphisms f: C -- + A, and g : C - B, then we have an equation LiAB(f(z),g(z))

h(z).
The great conceptual advantage of viewing a T-algebra as a product preserving

functor 7(T) --- ' Set is that the concept generalizes immediately to that of a T-algebra
in any category with finite products. Thus, for TGp the theory of groups, a topological
group can be regarded as a product preserving functor F(TGp) -- + Top landing in
the category Top of topological spaces, and a sheaf of groups on a topological space
X can be viewed as a product preserving functor F(TGp) -- Sheaves(X) landing
in the category Sheaves(X) of sheaves on X. Therefore, we can in general define a
group in a category with finite products C as a product preserving functor 7(TGp) -- +
C. Since 7(TGp) is also a category with finite products, we can consider the group
lT(T0 ,,) : 7(TG1 .) - 7(TG.), which can be understood as the generic group. By
construction, this group satisfies the equation t = t' iff [t] = [t'], iff the equation
t = t' is a theorem of group theory. By using product preserving functors, we can
even relate groups in different categories. For example, we can relate a sheaf of goups
g9: 7 (Trp) -)- Sheaves(X) to its group of global sections r(g) by composing with the
global sections functor r (-) : Sheaves (X) -- + Set, which can therefore be understood
as a homomorphism l7 between those two groups. Thus, we can structure all the
possible groups in all possible categories and the product preserving functors that

relate them as the slice category 7(Tp) / x Cat. C1

Definition 40 A logic Z is called a categorical logic on I if there is a category I"
with pushouts and with a faithful functor 7 --- + Cat such that:

1. There are functors U : 7 - Th 0 and I : Th 0 -- + Z with 7 left adjoint to U.

2. The functor Mod : Tho -- + Cat is naturally isomorphic"8 to the functor

Yho, "o rPL Cat,

where the functor -/7 sends an object 1" C E Z to the slice category C/I.

3. For any theory T = (E, r) and sentence p E sen(E) we have:

r -E Pa * 13() E P-.

C]
17A more general notion of homomorphism that specializes to the usual one when all the groups are

in the category Set is discussed in Remark (2) at the end of this section.
"5 To simplify the discussion, in what follows I ignore this isomorphism and identify Mod(T) with

7(T)/.
"We think of C as a category with a certain structure, and of 7' as the category of all categories

with that type of structure.

35

Example 41 The general equational logic example where x = Cat has already
been discussed in detail. Here are a few other additional examples:

1. C the logic of the typed lambda calculus, where Z = CCCat is the category of

cartesian closed categories; see [431 and Section 6.2.

2. Z higher order intuitionistic logic, where I_ = Topoaea is the category of elemen-
tary Lawvere-Tierney toposes; see [6].

3. Z the logic of Martin-L6f type theory with equality types, where . = LCCCat
is the category of locally cartesian closed categories; see [65] and Section 6.2.

4. Z the logic of Martin-L6f type theory without equality types, where Z is ei-
ther Cartmell's category of contextual categories, or the category RCCCat of
relatively cartesian closed categories; see [10,411.

5. Z the logic of the Girard-Reynolds polymorphic lambda calculus [21,60], where
_ = PLCat is Seely's category of PL-categories; see [63] and Section*6.2.

6. Z the logic of the Girard-Reynolds polymorphic lambda calculus [21,60], where
Z = RCCCat is the category of relatively cartesian closed categories; see [521
and Section 6.2.

7. Z Girard's linear logic [22], where Z" is Seely's category of linear categories; see
[64,56], and the related [14].

0

Categorical logics have very nice model-theoretic properties indeed, as expressed
in the following theorem.

Theorem 42 Any categorical logic Z is complete, liberal, exact, and admits initial
models.

Proof: Completeness is clear from condition (3), since we have

r = W == I (Er) z P == r 'E P.

For any C E -L the map ic : C --# C is obviously an initial object in the slice
category C/1. Therefore, 1'(T) is an initial object in 7(T)/IT and as a consequence
Mod(T) has an initial model.

Liberality is a direct consequence of the following well known lemma.

Lemma 43 Let A be a category with pushouts, and f : C -- C' a morphism in
A. Then, the "composition along f" functor f/A : C'/A - C/A mapping each
h : C' --* D to h o f : C --* D has a left adjoint given by "pushout along f" that maps
each g : C --+ E to the map C' --+ E' in the pushout diagram

E f -El

C f C'

36

For exactness, notice that, since I : Th0 -- _ is a left adjoint, by duality TP
Tho'.._ --+ IT*P is a right adjoint. Since right adjoints preserve limits (see [471, Theorem
V.5.1) and Mod (-/I) o FOP, we only have to show that -/I" preserves finite limits.
This follows from the easy lemma below.

Lemma 44 For any category A, the functor /A : A* ---+ Cat preserves pullbacks.

0

In the passage of Lawvere's paper [461 cited above, Lawvere mentions a structure-
semantics adjointness result. This result appeared in his thesis [45] for the case of
algebras on the category of sets and has since then been generalized in many directions.
However, I am not aware of other formulations with the degree of generality of Theorem
45 below.

Notice that the functor -/7 : TP --* Cat factors as:

70' . Cat//T -+ Cat,

where:

" Cat//l is the full subcategory of the slice category Cat/I given by those func-
tors A. -- T- such that A has an initial object IA that we assume chosen once
and for all;

" the functor sem sends C to the projection functor C/Il - 7": (C -f D) -* D,
and

" the functor CatIl. --- + Cat is the projection functor (A. ---- T) "- A.

Theorem 45 For Z a categorical logic on T, the functor sem :_ --- Cat//I is
full and faithful, and has a left adjoint str : Cat//TZ ---, T P.

Proof: The functor sem is clearly faithful since, given f, f" : C -+ C' in T" with
f 0 f', we have (f/l)(1c,) = f f'= (f'/l)(lc,).

To see that it is full, let H : C'/TVI C/7 be a functor such that

c'/ H .c/7"

\I /

commutes. Then H has to send the object lc, to a map f : C -. C' in T. We claim that
H = f'/7T. Indeed, since H commutes the triangle, and there is a morphism g : lc, -+ g
in C'/I for any g : C' -+ D, we must have a morphism H(g) = g : f -+ H(g) in C/1
and therefore H(g) = g o f, so that H and f./I coincide on the objects. H and f/I
coincide trivially on the morphisms, since for any h : g -- g' in C'/7 we must have
H(h) = h = (f/Il)(h), because both H and f/Il commute the triangle.

37

The left adjoint str: go//T -- I-*. sends an object A : A --+ T to the object
A(IA) E -L and a morphism H: A - B to the morphism B(h) : B(Ij) -- A(IJ) in
_L for h: Ii -, H(I) the unique morphism in B; functoriality then follows from the
initiality of each Ix in its category X.

The functor A: A --- Z factors through A(I)/. as

A-"- A(I,/I --- I_

with Y7A(X) = A(h): A(IA) -+ A(X), for h: IA --+ X the unique morphism in A, and
qA(g) = A(g) for g : X --o Y. This yields our desired map 17A : A -* sem(str(A)).

Let now D : A --+ jem(C) be a morphism in Cat//I and assume that there is a
morphism 2 : sem(str(A)) ---+ em(C) such that o SIA = D. Then, since we have
shown that sem is full and faithful, we must have V = f/. : A(I_/I. --- C/I. for a
unique f : C -+ A(IA). But the equation 2 0 7 A = D forces

U(,?A VA) = V(1A(A)) = (f/I.T)(1A(,)) = f = D(IA)

and makes D, if it exists, unique, namely, -D = D(IAIT. Since D(IJI is the
identity on morphisms, and D sends g : X --+ Y in A to A(g) : D(X) --+ D(Y) with
D(Y) = A(g) o D(X), to show that indeed D(IA)IT o 17A = D it is enough to check it
on the objects. But, for any X E A, we have

D(X) = A(h) o D(IA) = ??A(X) o D(IA) = (D(IJAII.)(7A(X)),

for h : IA -- X the unique morphsm in . 0

Corollary 46 For any C in I_ there is a natural isomorphism C - atr(sem(C)).

Proof: This follows directly from sem full and faithful right adjoint; see [47], T1- orem
rV.3.1. 0

The structure-semantics adjointness theorem makes clear why Lawvere calls _Z the
category of (abstract) theories. We can think of 7(T) as the abstract, presentation
independent, theory specified by the presentation T. Indeed, we can establish an
equivalence relation among theories T, T7, E Tho by defining T =V 2 iff there is an
isomorphism:

that is, T - T iff the corresponding categories of models are isomorphic in a way that

is consistent with their projection functors to I.. We then have,

Corollary 47 T - ' ff 7(T) - C7(T).

Proof: The "if" part is clear. For the "only if" part, let T T'. Then sem(7(T))
sem(7(T')), and applying the functor str we get

T'(T) ~-- str(semC FCT))) ~str(aem(F'C')))~ 7T7),

as desired. 0

38

Remarks:

1. In some instances, the class of models is restricted by restricting the class of
categories C on which a model M : F(T) -- * C of a theory T can land. For
example, in the original treatment of equational logic given by Lawvere [45], the
category C must be the category _L. More generally, one could restrict the
class of categories by requiring that they belong to the image of a functor V :
V_) -o j_. For example, all topos models of the polymorphic lambda calculus are
obtained by restricting the corresponding relatively cartesian closed categories to
be toposes, i.e., to belong to the image of the forgetful functor V : Toposes --
RCCCat [52]. Therefore, given a functor V : W -- + Z and a categorical logic

on T, we can define the V-restriction C IV of C to V as the logic with same
entailment system as f and such that, for T a theory, Mod(T) is the "comma
category" [471 7(T)/V whose objects are pairs (M : 7(T) - V(D),P), with
M: F(T) V(D) in T and D E V, and with morphisms H: (M : I(T) ---*
V(D),D) - (M' : 7(T) -+ V(D'),D') morphisms H : D ---* D' in)k such
that V(H) o M = M'. Satisfaction is defined as before, i.e., (M, D) - p in
£ lv iff M - o in Z. This notion of V-restriction includes the case when C is
constrained to be just one category: in that case, we take as our V the functor
from the one morphism category 1 to I that picks up the category C. For any
"restriction functor" V there is an associated map of logics Z -- LIv, called its
restriction map. The case when V : 1) -- + _ has a left adjoint K is particularly
interesting, since then, the comma category 7(T)/V is isomorphic to the slice
category K(r(T))/.L. Therefore, if the unit map 777(T) : 7(T) -- * V(K(7(T)))
is such that r - o * 277(T) p, then it follows easily that the logic Z Iv is in
fact a categorical logic on 14).

2. The definition of categorical logic given above is satisfactory and general for
the models. Such models are functors of the form M : 7(T) - C, for T the
theory in question, that satisfy the additional properties of morphisms in T.
However, the notion is too restrictive for homomorphisms. The only homomor-
phisms permitted between two models M : 7(T) - C and M' : F(T) --- C'
are functors H : C --- C' in T such that M = H o M. Consider the equational
logic case already discussed in Example 39, where ordinary E-algebras A satis-
fying equations E were placed in a 1-1 correspondence with product-preserving
functors A : I(., E) -)- Set. Under such correspondence, E-homomorphisms
f A --- B can be put into 1-1 correspondence with natural transformations
f : A ==. B. Therefore, in order to give a full account of homomorphisms we
should allow for natural transformations in our definition. The point is that T
should be not just a category, but a 2-category [47], and the forgetful functor
" -+ Cat should be a 2-functor. This leads to the definition of a 2-categorical

logic. The details of this definition will be given elsewhere.

6 Axiomatizing Logic Programming

What does programming in a logic mean? We can begin to answer this question by
stating informally some of the requirements that a logic programming language should

39

satisfy. I call the view represented below the "weak" view.

Weak Logic Programming. A program P in a logic programming lan-
guage is a theory in a logic Z. After entering the program P into the
machine, the user can ask questions about his/her program. Such ques-
tions, called queries, belong to a specified clas of sentences in the language
of P. When the user submits a query V, if it is the case that V is a prov-
able consequence of the axiom-v in P, then the machine will return a set
of answers justifying the truth of io. We can view each of these answers
as different proofs of the truth of Vo; such "proofs" may reasonably omit a
good part of the information that a completely detailed proof would pro-
vide. If the query p is not provable from P, two things can happen: either
the machine stops after a finite amount of time with the answer "failure,"
or otherwise the machine loops forever. Therefore, two things are made
equivalent: computation in the machine, and deduction in the logic.

One should of course add that in some pragmatic sense the implementation in the
machine should be reasonably efficient so that for a broad enough class of applications
the language can in fact be used in practice; otherwise such a system should be better
described as a theorem prover. We could summarize the weak view with the slogan

Computation = Deduction.

Although this view is probably the most commonly held, I do not take it as primary.
The problem with it is that it makes no reference to the models that the theory is a
linguistic device for. A theory may in principle have many models. However, when
solving a particular problem, such as computing a numerical function or sorting a list
of names, we usually have a specific model in mind, such as the integers, the real
numbers, or the set of all sequences of expressions of a certain kind. Such a model is
then the intended or standard model of the theory, and its conceptual importance is
primary; the theory serves only a secondary role as a linguistic device for describing
the model. In the logic programming literature, the standard model is referred to as
the "closed world" that the program describes. In a wide variety of cases this standard
model can be characterized as an initial model.

Let us denote by Ip the model intended by our program P. In the context of such
a model, the meaning of a query p acquires a new significance. Our primary interest
is not in truths that are generally valid for all models. Rather, our interest is in the
facts that are true about our model. In other words, we are primarily interested in
the satisfaction of the query V by the model Ip and only secondarily in the provability
of p from the axioms in P. The theory P is a linguistic device through which such
satisfaction may be verified, since if the query is provable, it must be true in all models
and therefore it should be a true fact about Ip. The most satisfactory way of exploiting
provability as a method of settling facts about our model is to restrict our attention
to queries for which, conversely, if the query is true in the intended model Ip, then it
is provable from P. Otherwise, in cases when the query cannot be proved, we would
be left with the doubt as to whether or not it is true in our model. As we shall see,
this is a widely exploited property that I call "query completeness." It leads us to the
following stronger requirements for a logic programming language,

40

Strong Logic Programming. A program P in a logic programming
language is a theory in a logic Z. The mathematical semantics of the pro-
gram P is a model Ip of the theory P that is standard in an adequate
sense. After entering the program P into the machine, the user can ask
questions about what properties hold in his/her model. Such questions,
called queries, belong to a specified class of sentences in the language of
P and have the property that for sentences V in that class the standard
model Ip satisfies V if and only if w is provable from the axioms of the
theory P. When the user submits a query V, if it is the case that p is a
provable consequence of the axioms in P, then the machine will return a
set of answers justifying the truth of V. We can view each of these answers
as different proofs of the the truth of p; in other words, the operational
semantics of the language is given by some proof theory. If the query P is
not provable from P two things can happen: either the machine stops after
a finite amount of time with the answer "failure," or otherwise the machine
loops forever. Therefore, three things are made equivalent: computation
in the machine, deduction in the logic, and satisfaction in the standard
model.

Of course, the efficiency requirement applies exactly as before, and provides the
pragmatic boundary between theorem proving and logic programming. We can sum-
marize the strong view of logic programming under the slogan

Computation = Deduction = Satisfaction in the standard model.

I have already mentioned that the weak view of logic programming, being exclu-
sively proof-theoretic in nature, is unsatisfactory. Nevertheless, weak logic program-
ming seems to have the advantage of having a broader range of applicability, so that
it could cover certain examples of logic programming languages for which strong logic
programming might prove too restrictive. However, we have already seen in Proposi-
tion 9 that, thanks to the generality of the axioms for a logic, we can always associate
a model theory to an entailment system so that the entailment system becomes a com-
plete logic with initial models. This shows that there is no need for carrying along two
different notions. Surprisingly enough, we can actually understand the weak view of
logic programming not as a broader notion, but rather as a special case of the strong
notion, one for which the models are proof-theoretic structures. This suggests making
strong logic programming our basic notion. This is a richer, conceptually and seman-
tically more satisfactory notion, yet in the sense just explained it is the notion that is
most broadly applicable.

Definition 48 axiomatizes the strong logic programming view. This definition is a
further step in a series of previous attempts by J.A. Goguen and the author to articu-
late a broad view of logic programming open to many logics and languages. The paper
J32J presented this view and used it as a natural way to unify two logic programming
language paradigms, the functional and the relational, by unifying their logics. It also
argued that every program should have an initial model as its mathematical seman-
tics, and showed that this was the case for first order functional programming, first
order relational programming with Horn clauses, and their unification. This -iew was
made formal in a paper by J.A. Goguen [241 using institutions. Goguen proposed that

41

logic programming languages should have an underlying institution so that the state-
ments of the language were sentences in that institution, the operational semantics
was given by an efficient form of deduction in that institution, and the mathematical
semantics was given by a class of models, preferably initial; the paper [281 by Goguen
and Burstall also proposed this formalization. The definition below is very much in
the same spirit, but it combines the proof-theoretic and model-theoretic aspects of the
issue using the concepts developed in this paper to suggest two new conditions. One
is a query completeness requirement with the explicit demand that what is provable
should coincide with what is true in the initial model; the other is a formal definition
of an operational semantics as an effective proof subcalculus. Also, the use of initial
models for the mathematical semantics is here made mandatory.

Definition 48 A logic programming language £P is a 4-tuple ZP = (Z, Signo, stat,

quer) with:

1. Z = (Sign, sen, Mod, - a logic.

2. Signo a subcategory of Sign.

3. stat : Sign --- Set a subfunctor of the functor obtained by composing sen
with the finite powerset functor, i.e., there is a natural inclusion stat(s) C
Pf, (sen(E)) for each E E Sign. Each r E stat(E) is called a set of E-statements
in CP. This defines a subcategory Th~t of Tho whose objects are theories P =
(E, r) with E E Signo and r E stat(E), and with morphisms axiom-preserving
theory morphisms H such that H E Signo. Each such theory P E Th,tt is called
a program in ,P.

4. quer : Sign -- Set a subfunctor of the sen functor. The sentences p E quer(E)
are called the E-queries of £P.

In addition, the following properties are satisfied:

Mathematical Semantics: Each program P E Thtt, has an initial model Ip. The
denotation function

P,-.. Ip

is called the mathematical semantics of ZCP.

Query Completeness: For each program P = (E, r) and query p E quer(E) we
have

-Pp (* IP =E P.

Operational Semantics: There is an effective proof subcalculus of the form 0 =
(Sign, sen, -, Signo, seno, stat, quer, P, Pr, 7r), i.e., having ent(L) as its underly-
ing entailment system, Signo as its category of admissible signatures, stat as its
axioms, and quer as its conclusions.

The effective proof subcalculus 0 is not assumed to be unique. Any such 0 is
called an operational semantics for the logic programming language LP.

42

Notice that, as pointed out at the end of Section 3.2, given an operational semantics
0 for a logic programming language £P, every program P has an associated partial
recursive search function

searchp : quer(P) x IN --- + Pf,,(proofs(P)),

so that we can ask for as many answers to a query V as we desire, and then we
get back the answers if they exist, or otherwise either information about failure in
finite time or no answer at all. One way in which the operational semantics of the
logic programming language ca. change is by changing the mode of computation; for
example, in a debugging mode answers should be much more informative than in a
standard mode. The axioms for an effective proof subcalculus are very flexible; they
allow expressing different notions of "proof" suitable for different purposes as different
subcalculi.

This finishes our axiomatization of logic programming languages. However, the
above definition has the drawback of not taking into account efficiency considerations.
In practice, we would nut be willing to use a logic programming language if answers to
queries were to take an inordinate amount of time compared with the time that it would
take to compute the solution to the problem using a more conventional language. We
might be willing to accept the system implementing the language as a theorem prover,
but not as a programming language. Therefore, some pragmatic line must be drawn
between theorem provers and programming languages. It may be impossible to settle
this issue once and for all, for the following reasons:

Emergence of increasingly more efficient operational semantics: Linear res-
olution made it possible to develop interpreters for Horn clause logic, and term
rewriting allowed equational logic programming interpreters. Present compila-
tion techniques for Horn clauses and for functional languages permit developing
compilers that make the efficiency of these languages entirely acceptable com-
pared with more conventional languages run on the same sequential machines.

New models of parallel computation and new architectures: These can dras-
tically alter the mathematical complexity of many problems and make possible
computations that were not feasible with previous technology. Logic program-
ming languages, thanks to their declarative character, can, in fact, play a leading
role in the discovery of such new models and architectures.

Advances in hardware technology: For the moment, these show a dramatic
increase in computing speed and a decrease in device size, although the laws of
physics will eventually pose a hard boundary to such advances.

However, there are intrinsic complexity theory bounds that no technological advance
can reverse. Therefore, one of the most important tasks in logic programming is to
find efficient proof subcalculi for those entailment systems that have them.

In practice, we can observe a migration process. First, certain logics exist; then,
some theorem provers are developed to mechanize their deduction; and, finally, some of
these theorem prover techniques are found to be efficient and give birth to programming
language interpreters. Each new language in turn suggests new models of computation,

43

new compilers, and new architectures. In first order logic programming this is clearly
the trend, and in type theory a similar trend is apparent for higher order logics. Of
course, historical developments are not logical necessities, and in the future we may
find more and more language designers in the role of producers rather than consumers
of new logics.

6.1 First Order Logic Programming

The logic programming ideas historically originated from the tradition of first order
resolution theorem proving [42,721 and were first embodied in the Prolog language
[111. The Prolog culture has been so successful that for many researchers the part
-i.e., Horn clause relational programming in its different variants, or perhaps first
order logic programming for the truly ambitious- seems to become identified with
the whole. This of course may be styfling. A different theorem proving tradition,
namely equational theorem proving, has existed alongside and provided term rewriting
techniques that were recognized by several researchers in the late seventies as a very
good basis for designing and giving semantics to functional programming languages.
Pioneering work in this direction includes that of J.A. Goguen, who created the OBJ
language [23,25], and M.J. O'Donnell's thesis [55]. In the 1980's it became gradually
apparent that these two styles of first order logic programming, the relational based
on Horn clauses and the functional based on equations, should be unified and several
proposals emerged. The Eqlog language [33] was the first proposal suggesting that
this unification could best be achieved by unifying both logics into Horn clause logic
with equality, and giving an initial model semantics for the resulting programs.

What follows is a discussion of a variety of first order logic programming styles.
The emphasis is on the particular choices of statements, queries and proofs. I mention
some languages only to give a few examples. There are of course many other languages
that could be mentioned, but this is not a survey. To simplify the exposition, I present
the ideas in an unsorted first order logic notation; however, all that I say generalizes
to many-sorted and order-sorted first order logic.

Horn Clause Logic Programming

In this case, the signatures are finite first order signatures, and the sets of statements
are finite sets of Horn clauses, i.e., of sentences of the form

VE A --# Bl, ..., B,

where A, Bl,...,B,, are atomic formulas that do not involve an equality predicate.
The queries are existential sentences of the form

3iCj..., Cft

with C1 , ..., C. atomic formulas not involving equality. The initial model of a program
P = (E, r) is its Herbrand model TE,r, whose functional part consists of the term
algebra Tp on the function symbols F of E, and for each n-ary predicate symbol p and
t E Tp we have,

44

Query completeness is a direct consequence of Herbrand's theorem. The standard
operational semantics is Horn clause resolution [42]. A proof of a query 3i C1 , ..., C',
for a program P is a substitution 0 such that -p 9(C1), ..., 9(C,). Although Prolog [11]
is the most popular Horn clause logic programming language, its extralogical features,
the incompleteness of its search strategy and its nonstandard unification make it fall
short of the logic programming ideal.

Equational Logic Programming

In this case, signatures are finite functional signatures, and the sets of statements are
finite sets of Church-Rosser and terminating equations2'. The mathematical semantics
of a program P = (F, E) is given by the initial algebra Tp,E in the class of all models
of the theory (F, E). For any set E of F-equations, the initial algebra TF,R has a very
simple construction as the quotient algebra of the term algebra Tp by the congruence
relation -E defined by

t -=E t' iff E HF t = t'.

See the original ADJ paper [371, or the survey [531 for a detailed proof of the initiality
of Tp/ =E. The operational semantics is term rewriting, i.e., equational deduction
using the equations only from left to right. Since the equations are Church-Rosser and
terminating, each term t rewrites after a finite number of steps to a unique canonical
form canE(t) that cannot be further simplified by the equations. The term canE(t) is
the unique canonical representative of the =-E-equivalence class [t]. Therefore, an iso-
morphic (but computationally more intuitive) representation of the initial algebra TFE
can be given as the set CanF,E whose elements are ground terms of the form canE (t);
this set has an obvious F-algebra structure making it isomorphic to Tp/ =E, namely
for f E F,, and tl,...,tn E CanP,E we define fc¢n,.m(ti,...,t,n) = canE(f(tl,...,t,)).
Two basic computations that can be performed by term rewriting are: reduction of
a ground term t to canonical form, and deciding when two ground terms t and t' are
made equal by the equations. They give rise to two types of queries:

1. 3zt=z

2. t =t

where the sentence 3x t = x is always true (since we could choose x to be t itself) but
we are interested in the most informative proof possible, namely one where z is chosen
to be canE(t). Therefore, for queries p of type (1) query completeness is trivial; for
queries of type (2) it follows trivially from the definition of =-E.

An example of a logic programming language of this type based on untyped equa-
tional logic is the language of Hoffmann and O'Donnell [39,54]. The OBJO language
was also untyped [251, but subsequent versions have all been typed. OBJ2 and OBJ3
[19,291 are based on order-sorted equational logic [351, where types can be related by
a partial order subtype relation, e.g., Nat < Int, and operations can have several

2 This condition can be relaxed, e.g., by dropping the termination property. O'Donnell [541 does not
require termination, but imposes sufficient conditions to ensure the Church-Rosser property. In any
event, Church-Rosser and terminating equations are powerful enough to specify all total computable
functions [51.

45

typings, e.g., natural, integer, rational and complex addition, all with the same re-
striction to subtypes; this makes OBJ programs very expressive. The expressiveness
of OBJ programs is also increased by the use of conditional equations, so that the whole
discussion above should be understood as taking place in the context of conditional
equational logic.

One of the great advantages of logic programming languages is that they are declar-
ative and make no commitments to a particular execution sequence. Therefore, they
can be used to design and program entirely new parallel architectures. In the case
of equational logic programming, one such architecture is the Rewrite Rule Machine
that Goguen, Leinwand, Winkler, Aida and I are building at SRI [361. Its model of
computation is a new operational semantics for equational logic programming based
on concurrent term rewriting [301.

Horn Clause Logic Programing with Equality

Horn clause logic programming is relational, whereas equational logic programming is
functional. Each approach has its own, somewhat complementary, strengths. For a
problem where searching is crucial, the relational approach is ideal. However, many
computations are functional in nature and do not require any search or backtracking;
for those, term rewriting is best. In [32] Goguen and I suggested that the functional
and relational approaches to logic programming could be combined by combining the
corresponding logics. The combination is of course Horn clause logic with equality.
In this logic programming style, the signatures are finite first order signatures, and
the sets of statements are finite collections of Horn clauses that now may involve
the equality predicate and such that the clauses for equality are Church-Rosser and
terminating in a suitable sense2". The mathematical semantics is an initial model
semantics that generalizes Herbrand models and initial algebras. Given a first order
signature E = (F, P) and a set r of Horn clauses -possibly involving equalities- the
initial model TErX has a functional part consisting of the quotient algebra of the term
algebra T, under the congruence relation Er dcr.!ned by

t =r t if r i-E t= e

and a relational part given by

([tj, ... , [4.]) E pT.,, iff r H p(t1, ... , t,)

for each p E P, in P. See [341 for a detailed proof of the initiality of TE,r in the
general case of order-sorted logic, that contains unsorted logic as a sublogic. Queries
are existential sentences of the form

with C1 , ..., C, atomic formulas but now some of them can be equations. Query com-
pleteness is a direct consequence of Herbrand's theorem; see 134] for a proof in the
general case of order-sorted logic. Solving queries is done in a fashion entirely similar
to ordinary Horn clause resolution; the only difference is that standard unification is

2 1Since we have Horn clauses, the equations may be conditional and even have predicates other than
equality in their conditions.

46

replaced by unification modulo the equations of the program. By the Church-Rosser
and terminating assumptions, this can be done by some complete strategy for narrow-
ing [40]. As before, the answers to queries are substitutions that make the instance of
the query provable. The Eqlog language (32] is an example of a language in this style
of logic programming; its logic is order-sorted Horn clause logic with equality. Other
approaches encode predicates as functions [18,15] or functions as predicates [711.

Logic Programming in other Fragments of First Order Logic

Although Horn clause logic with equality is in a sense the end of the road for fragments
of first order logic admitting initial models [48], we can still view the kind of weak
logic programming that is possible in any fragment of first order logic as an instance
of strong logic programming for a logic Z that has the same entailment system as
first order logic, but has a different underlying institution admitting initial models.
There are several such possible institutions. One is given by Theorem 9, which in a
sense is the ideal model theory for people with a strong proof-theoretic bias; another
such institution could have hyperdoctrine models such as "logical categories" [731. As
a model theory, such choices seem preferable to standard first order logic where one
would have to worry about many different models, none of them initial.

6.2 Higher Order Logic Programming

Although type theory and logic programming share a vital connection with logic, they
have developed in relative isolation from each other. Much can be gained at both
the conceptual and practical levels from an attempt to understand the relationships
between these two fields. Conceptually, logic programming can be saved from becoming
parochial and losing important new opportunities, and type theory may gain new logic
and model-theoretic insights. At the practical level, what can be gained is a much
better understanding of how to design powerful new languages that integrate such
features as generic modules, higher order functions, logical variables and subtypes,
and yet have a clear and rigorous semantics based on logic. Categorical logic plays a
key role in relating type theory and logic programming, so that functional languages
based on type theory can be understood as logic programming languages in the strong
sense of our axiomatization.

One of the greatest strengths of categorical logics is that they unify proof theory
and model theory in a particularly illuminating way. Given a theory T, the associated
free category F(T) is at the same time an abstract theory, providing a notion of
equivalence of proofs, and the initial model of the theory. The logic programming
axioms underscore the importance of these free or "term" models, because in them
mathematical and operational semantics are interlocked as two aspects of the same
reality. Being initial, these models are in a sense the most general, and being generated
by the rules of the logic, they wear their operational semantics on their sleeves.

Type theories can be used to define programming languages with powerful type
mechanisms. They can also be used as formal frameworks to reason about programs
or to automatically generate correct programs from their specifications. Although, of
course, it is one of the great advantages of type theory that formal reasoning about
a program written in it can be carried out in the type theory itself, for the purposes

47

of this paper, I concentrate on the first use. I consider three well-known examples
of type theory: the typed lambda calculus, the Girard-Reynolds polymorphic lambda
calculus, and Martin-Lf type theory. All of these calculi are higher order equational
logics, and all have a notion of reduction entirely similar to term rewriting in first
order equational logic. Therefore, in all three cases programs are finitary equational
theories whose equations are Church-Rosser and terminating in the given calculus, and
operational semantics is given by reduction to canonical form. Queries are similar to
those of the first order equational case, i.e., they are sentences of the form:

1. 3zt=z

2. t =e

with t and t terms in the appropriate syntax".

The Typed Lambda Calculus

The typed lambda calculus is a categorical logic on CCCat, the category of cartesian
closed categories. The mathematical semantics of a program P = (E, E) is given by
its initial model 17(Ez), where Y(E, E) is'the free cartesian closed category generated
by P = (E, E) (see [43] 1.10-11 for a detailed description of such theories, called there
'typed lambda calculi" and the T(E, E) construction; note that they assume a weak
natural numbers object in their theories, but this is not an essential requirement).
Query completeness is trivially satisfied. A particularly elegant operational semantics
is provided by Curien's categorical combinators [13].

The ML language [381 is closely related to the typed lambda calculus, but it is
instead based on the polymorphic lambda calculus; expressions in general do not have
one type, but a family of types that are the instances of a unique type expression
involving type variables. Categorical combinators can be used to provide a simple and
efficient ML implementation [12].

The Girard-Reynolds Second Order Polymorphic Lambda Calculus

This calculus, proposed by Girard [211 and discovered independently by Reynolds
[60], is more powerful than the usual polymorphic lambda calculus; it allows universal
quantification of type variables inside type formulas. There are two possible categorical
semantics. One, based on a type of hyperdoctrines called PL-categories, was given
by Seely [631; the other, called the "universe model semantics," is based on relatively
cartesian closed categories and was proposed in [52]. These two categorical semantics
are related by a map of logics that is the identity on the underlying entailment system
and that for each theory T provides a forgetful functor from its universe models to
its PL-category models. The PL-category models provide only names for the types,
but not the types themselves; the universe models, however, provide type extensions
as objects of a category. Again, query completeness is trivial and the operational
semantics is given by reduction of expressions to normal form.

221n some caes, for example in Martin-Lf type theory, we can have similar queries for type ezpres-

sions, for which there is also a normal form.

48

From the point of view of applications, there are compelling reasons to extend the
second order polymorphic lambda calculus in various ways. Although all the provably
terminating functions can be expressed in the basic calculus, not all the algorithms for
computing a function of this kind are expressible, and therefore it is more expressive
to have full recursion. Also, to do programming-in-the-large, it is very useful to be
able to compute with modules as values, i.e., to assume that Type:Type. Extensions
of the universe model semantics that provide a categorical semantics for the second
order polymorphic lambda calculus with full recursion and/or with Type:Type are
given in [52]; for Type:Type, a categorical semantics was given in [70]; proof rules for
extensions of this kind are given in [8]. The language Pebble [7] has full recursion,
Type:Type as well as other features; the Quest language [91 is also in this category,
and in addition provides subtypes.

Martin-Lof Type Theory

Martin-LWf type theory [49,50] provides powerful type constructions with both uni-
versal and existentWi quantification, equality types, etc. Normalization of expressions
is Church-Rosser and terminating both for terms and for type expressions and pro-
vides the operational semantics. The work of Seely [65] has shown how Martin-L~f
type theory can be viewed as a categorical logic on LCCCat, the category of locally
cartesian closed categories. If equality types are dropped, the categorical semantics
can be broadened in several closely related ways such as contextual categories [101, or
relatively cartesian closed categories [41].

7 Concluding Remarks

The main focus of this paper has been on basic concepts and definitions. Once the
basic framework is set up, general results about logics satisfying some additional con-
ditions should be investigated. Results of this nature are obtained in the context of
traditional set-theoretic structures by the methods of abstract model theory [2], and
several such results have already been obtained for general institutions by Tarlecki
[67,68] and by Sannella and Tarlecki [61]. Some of the additional conditions that one
may want to impose have to do with properties of the category of signatures and the
functor of sentences that can have a natural formulation in terms of the "charters"
and "parchments" of Goguen and Burstall [281.

The satisfaction relation between sentences and models can be seen as a charac-
teristic function taking the value true or false. B. Mayoh [51] suggested interesting
applications in which one would like to broaden the notion of "truth value" and pro-
posed a generalization of institutions called galleries. Goguen and Burstall [28] gave
a nice categorical formulation of institutions as a pair of functors together with an
extranatural transformation or "wedge" [47] involving the truth value category 2 with
objects true and false and only one nonidentity morphism from false to true; they then
suggested a notion of a generalized institution that can be obtained replacing 2 by a
category V of truth values in their categorical formulation. They argued that Mayoh's
galleries could, after some modifications, be seen as generalized institutions. A sub-
stantial portion of the present theory could have been developed in the more general

49

setup of a truth value category other than 2, and the implications of that possibility are
an interesting topic of future research. However, having the notion of a proof calculus
available may decrease the need for the extra generality. What is needed is a study of
examples to see how naturally they can be expressed in the different frameworks. The
ideas of Poigni [581, who has proposed another way of generalizing institutions should
also be taken into account.

The study of mappings between the different logical structures should be further
developed. Those mappings consist of a functor relating the two categories of theories
and of one or more natural transformations; for each of those transformations one
could in principle choose between a "forward" and a "backward" direction. However,
not all possible combinations may behave well or have interesting examples. I have
presented particular choices that seemed natural, had interesting examples and per-
mitted defining a notion of logical substructure. However, such choices should not
exclude other possibilities that may be equally useful. More experience with examples
is needed to ascertain what choices should be favored; computer science can provide a
rich source of examples and applications.

Computer science applications have provided the original stimulus for the develop-
ment of the theory; with the basic concepts now in place, one of the main tasks ahead
is to bring the abstract concepts to bear on specific problem areas within computer
science. For logic programming, Section 6 has given just the beginnings of an applica-
tion, but several other important issues, such as compilation, or the use of mappings
between logics to design new programming languages with more powerful features have
not been discussed. Type theory and concurrency are also areas where many applica-
tions are possible; the paper [52] gives a particular type theory application, and the
joint paper [561 with N. Marti-Oliet gives an application to concurrency. Applications
to other computer science areas such as artificial intelligence and automated deduction
also seem very natural. I hope that other researchers will find the methods useful and
will undertake many of those applications themselves.

References

[1] L. Bachmair, N. Dershowitz, and J. Hsiang. Orderings for equational proofs.
In Proceedings of the Symposium on Logic in Computer Science, pages 346-357,
IEEE, June 1986.

[2] J. Barwise and S. Feferman (eds.). Model-Theoretic Logics. Springer-Verlag, 1985.

[3] K. J. Barwise. Axioms for abstract model theory. Ann. Math. Logic, 7:221-265,
1974.

[4] Jean Bnabou. Structures algdbriques dana les categories. Cahiera de Topologie
et Giomctrie Diffirentiele, 10:1-126, 1968.

[5] Jan Bergstra and John Tucker. Characterization of computable data types by
means of a finite equational specification method. In J. W. de Bakker and J.
van Leeuwen, editors, Automata, Languages and Programming, Seventh Collo-
quium, pages 76-90, Springer-Verlag, 1980. Lecture Notes in Computer Science,
Volume 81.

5o

[6] A. Boileau and A. Joyal. La logique des topos. J. Symbol. Logic, 46(1):6-16,
1981.

[7] R. Burstall and B. Lampson. A kernel language for abstract data types and
modules. In G. Kahn, D.B. MacQueen, and G.D. Plotkin, editors, Semantics of
Data Types, pages 1-50, Springer Lecture Notes in Computer Science 173, 1984.

[8] L. Cardelli. A polymorphic A-calculus with Type:Type. Technical Report, DEC
System Research Center, Palo Alto, Ca, 1985.

[91 L. Cardelli. A Quest Preview. Technical Report, DEC System Research Center,
Palo Alto, Ca, 1988.

[10] J. Cartmell. Generalised algebraic theories and contextual categories. Annals
Pure Appl. Logic, 32:209-243, 1986.

[11] A. Colmerauer, H. Kanoui, and M. van Caneghem. Etude et Rialisation d'un
Systeme Prolog. Technical Report, Groupe d'Intelligence Artificielle, U.E.R. de
Luminy, Universit4 d'Aix-Marseille II, 1979.

[121 G. Cousineau, P.-L. Curien, and M. Mauny. The categorical abstract machine.
Science of Computer Programming, 8:173-202, 1987.

[131 Pierre-Louis Curien. Categorical Combinators, Sequential Algorithms and Func-
tional Programming. Pitman, London, 1986.

[14] Valeria C.V. de Paiva. The Dialectica Categories. PhD thesis, Mathematics
Department, University of Cambridge, 1988.

[15] Nachum Dershowitz and David A. Plaisted. Equational programming. In J.
Richards, editor, Machine Intelligence 11: The logic and acquisition of knowledge,
pages 21-56, Oxford University Press, 1988.

(16] H.-D. Ebbinghaus. Extended logics: the general framework. In J. Barwise and S.
Feferman, editors, Model- Theoretic Logics, pages 25-76, Springer Verlag, 1985.

[17] J. Fiadeiro and A. Sernades. Structuring Theories on Consequence. Technical
Report , INESC/IST, Lisbon, 1988?

[18] Laurent Fribourg. Oriented equational clauses as a programming language. Jour-
nal of Logic Programming, 1(2):179-210, 1984.

[19] Kokichi Futatsugi, Joseph Goguen, Jean-Pierre Jouannaud, and Jose Meseguer.
Principles of OBJ2. In Brian Reid, editor, Proceedings of 12th ACM Symposium
on Principles of Programming Languages, pages 52-66, ACM, 1985.

[20] Jean-Yves Girard. Towards a geometry of interaction. In J.W. Gray and A. Sce-
drov, editors, Proc. AMS Summer Research Conference on Categories in Com-
puter Science and Logic, Boulder, Colorado, June 1987, American Mathematical
Society, 1988.

51

[21] J.Y. Girard. Interpritation Fonctionele et Elimination des Coupures dana
l'Arithmitique d'ordre Supirieure. PhD thesis, Univ. Paris VII, 1972.

[221 J.Y. Girard. Linear Logic. Theoretical Computer Science, 50:1-102, 1987.

[231 Joseph Goguen. Abstract errors for abstract data types. In Peter Neuliold, ed-
itor, Proceedings of First LFIP Working Conference on Formal Description of
Programming Concepts, pages 21.1-21.32, MIT, 1977. Also published in Formal
Description of Programming Concepts, Peter Neuhold, Ed., North-Holland, pages
491-522, 1979.

[24] Joseph Goguen. One, none, a hundred thousand specification languages. In H.-
J. Kugler, editor, Information Processing '86, pages 995-1003, Elsevier, 1986.
Proceedings of 1986 IFIP Congress.

[25] Joseph Goguen. Some design principles and theory for OBJ-0, a language for
expressing and executing algebraic specifications of programs. In Edward Blum,
Manfred Paul, and Satsoru Takasu, editors, Proceedings, Mathematical Studies of
Information Processing, pages 425-473, Springer-Verlag, 1979. Lecture Notes in
Computer Science, Volume 75; Proceedings of a Workshop held August 1978.

[26] Joseph Goguen and Rod Burstall. Institutions: Abstract Model Theory for Com-
puter Science. Technical Report CSLI-85-30, Center for the Study of Language
and Information, Stanford University, 1985. Also submitted for publication.

[271 Joseph Goguen and Rod Burstall. Introducing institutions. In Edmund Clarke
and Dexter Kozen, editors, Logics of Programs, pages 221-256, Springer-Verlag,
1984. Lecture Notes in Computer Science, Volume 164.

[28] Joseph Goguen and Rod Burstall. A study in the foundations of progra mmg
methodology: specifications, institutions, charters and parchments. In David
Pitt, Samson Abramsky, Axel Poigne, and David Rydeheard, editors, Proceed-
ing., Conference on Category Theory and Computer Programming, pages 313-
333, Springer-Verlag, 1986. Lecture Notes in Computer Science, Volume 240;
also, Report Number CSLI-86-54, Center for the Study of Language and Infor-
mation, Stanford University, June 1986.

[29] Joseph Goguen, Claude Kirchner, Heline Kirchner, Aristide M~grelis, and Jos6
Meseguer. An introduction to obj3. In Jean-Pierre Jouannaud and Stephane
Kaplan, editors, Proceedings, Conference on Conditional Term Rewriting, Orsay,
France, July 8-10, 1987, pages 258-263, Springer-Verlag, Lecture Notes in Com-
puter Science No. 308, 1988.

[30] Joseph Goguen, Claude Kirchner, and Jos6 Meseguer. Concurrent term rewriting
as a model of computation. In Robert Keller and Joseph Fasel, editors, Proceed-
ings, Graph Reduction Workshop, pages 53-93, Springer-Verlag, 1987. Lecture
Notes in Computer Science, Volume 279.

[31] Joseph Goguen and Josi Meseguer. Completeness of many-sorted equational
logic. Houston Journal of Mathematics, 11(3):307-334, 1985. Preliminary ver-
sions have appeared in: SIGPLAN Notices, July 1981, Volume 16, Number 7,

52

pages 24-37; SRI Computex Science Lab Technical Report CSL-135, May 1982;
and Report CSLI-84-15, Center for the Study of Language and Information, Stan-
ford University, September 1984.

[32] Joseph Goguen and Jose Meseguer. Eqlog: equality, types, and generic modules
for logic programming. In Douglas DeGroot and Gary Lindstrom, editors, Logic
Programming: Functions, Relations and Equations, pages 295-363, Prentice-Hall,
1986. An earlier version appears in Journal of Logic Programming, Volume 1,
Number 2, pages 179-210, September 1984.

[331 Joseph Goguen and Jos6 Meseguer. Equality, types, modules and generics for
logic programming. In S.-A. Tirnlund, editor, Proc. 2nd Intl. Logic Programming
Conf., Uppsala, July 2-6, 1984, pages 115-125, Uppsala University, 1984.

[34] Joseph Goguen and Jos6 Meseguer. Models and equality for logical programming.
In Hart/hut Ehrig, Giorgio Levi, Robert Kowalski, and Ugo Montanari, editors,
Proceedings, 1987 TAPSOFT, pages 1-22, Springer-Verlag, 1987. Lecture Notes
in Computer Science, Volume 250; also, Technical Report, Center for the Study
of Language and Information, Stanford University.

[35] Joseph Goguen and Jose Meseguer. Order-Sorted Algebra I: Partial and Over-
loaded Operations, Errors and Inheritance. Technical Report to appear, SRI In-
ternational, Computer Science Lab, 1989. Given as lecture at Seminar on Types,
Carnegie-Mellon University, June 1983.

[361 Joseph Goguen, Jose Meseguer, Sany Leinwand, Timothy Winkler, and Hitoshi
Aida. The Rewrite Rule Machine. Technical Report to appear, SRI International,
Computer Science Lab, 1989.

[371 Joseph Goguen, James Thatcher, and Eric Wagner. An Initial Algebra Approach
to the Specification, Correctness and Implementation of Abstract Data Types.
Technical Report RC 6487, IBM T. J. Watson Research Center, October 1976.
Appears in Current Trends in Programming Methodology, IV, Raymond Yeh, Ed.,
Prentice-Hall, 1978, pages 80-149.

[38) Robert Harper, David MacQueen, and Robin Milner. Standard ML. Technical
Report ECS-LFCS-86-2, Dept. of Computer Science, University of Edinburgh,
1986.

[39] Christoph M. Hoffmann and Michael O'Donnell. Programming with equations.
Transactions on Programming Languages and Systems, 1(4):83-112, 1982.

[40] Jean-Marie Hullot. Canonical forms and unification. In Wolfgaig Bibel and
Robert Kowalski, editors, Proceedings, Fifth Conference on Automated Deduc-
tion, pages 318-334, Springer-Verlag, 1980. Lecture Notes in Computer Science,
Volume 87.

[41] J.M.E. Hyland and A. Pitts. The theory of constructions: categorical semantics
and topos-theoretic models. In J.W. Gray and A. Scedrov, editors, Proc. AMS
Summer Research Conference on Categories in Computer Science and Logic, Boul-
der, Colorado, June 1987, American Mathematical Society, 1988.

53

[42] Robert Kowalski. Logic for Problem Solving. Technical Report DCL Memo 75,
Department of Artificial Intelligence, University of Edinburgh, 1974. Also, a book
in the Artificial Intelligence Series, North-Holland Press, 1979.

[431 J. Lambek and P.J. Scott. Introduction to Higher Order Categorical Logic. Cam-
bridge Univ. Press, 1986.

[441 Joachim Lambek. Deductive systems and categories ii. In Category Theory,
Homology Theory and their Applications I, Springer Lecture Notes in Mathematics
No. 86, 1969.

[45] F. William Lawvere. Functorial semantics of algebraic theories. Proceedings,
National Academy of Sciences, 50, 1963. Summary of Ph.D. Thesis, Columbia
University.

[461 F.W. Lawvere. Adjointness in foundations. Dialectica, 23(3/4):281-296, 1969.

[471 Saunders MacLane. Categories for the working mathematician. Springer, 1971.

[481 J.A. Makowski. Why Horn Formulas Matter in Computer Science: Initial Struc-
tures and Generic Ezamples. Technical Report 329, C.S. Dept, Technion, July
1984.

[49] P. Martin-L6f. An Intuitionistic Theory of Types: Predicative Part. In H.E. Rose
and J.C. Shepherdson, editors, Logic Colloq. '73, Noth-Holland, 1973.

[50] P. Martin-L6f. Intuitionistic Type Theory. Bibliopolis, 1984.

[51] Brian H. Mayoh. Galleries and Institutions. Technical Report DAIMI PB-191,
Computer Science Dept., Aarhus University, 1985.

[52] J. Meseguer. Relating Models of Polymorphism. In Proc. POPL'89, pages 228-
241, ACM, 1988.

153 Jos6 Meseguer and Joseph Goguen. Initiality, induction and computability. In
Maurice Nivat and John Reynolds, editors, Algebraic Methods in Semantics,
pages 459-541, Cambridge University Press, 1985.

[54] M. O'Donnell. Equational Logic as a Programming Language. MIT Press, 1985.

[55] Michael J. O'Donnell. Computing in Systems Described by Equations. Springer-
Verlag Lecture Notes in Computer Science 58, 1977.

[56] Narciso Marti-Oliet and Jose Meseguer. From Petri Nets to Linear Logic. Tech-
nical Report SRI-CSL-89-4, C.S. Lab., SRI International, March 1989.

[571 Gordon D. Plotkin. A Structural Approach to Operational Semantics. Technical
Report DAIMI FN-19, Computer Science Dept., Aarhus University, 1981.

[58] Axel Poign6. Foundations are rich institutions, but institutions are poor founda-
tions. 1986. Imperial College.

[59] Dag Prawitz. Natural Deduction. Almqvist and Wiksell, Stockholm, 1965.

54

[60] J.C. Reynolds. Towards a Theory of Type Structure. In B. Robinet, editor,
Programming Symposium, pages 408-425, Springer Lecture Notes in Computer
Science 19, 1974.

[61] Donald Sannella and Andrzej Tarlecki. Specifications in an arbitrary institution.
Information and Computation, 76:165-210, 1988.

[62] D. Scott. Completeness and axiomatizability in many-valued logic. In L. Henkin
et al., editor, Proc. Tarski Symp., pages 411-435, AMS, 1974.

[63] R.A.G. Seely. Categorical semantics for higher order polymorphic lambda calcu-
lus. J. Symbol. Logic, 52(4):969-989, 1987.

[64] R.A.G. Seely. Linear logic, *-autonomous categories and cofree coalgebras. In
J.W. Gray and A. Scedrov, editors, Proc. AMS Summer Research Conference on
Categories in Computer Science and Logic, Boulder, Colorado, June 1987, AMS,
1988.

[651 R.A.G. Seely. Locally cartesian closed categories and type theory. Math. Proc.
Camb. Phil. Soc., 95:33-48, 1984.

[66] Joseph R. Shoenfield. Degrees of Unsolvability. North-Holland, 1971.

[67] Andrzej Tarlecki. On the Existence of Free Models in Abstract Algebraic Insti-
tutions. Theoretical Comp,,ter Science, 37:269-304, 1985.

[68] Andrzej Tarlecki. Quasi-varieties in abstract algebraic institutions. Journal of
Computer and System Sciences, 33:333-360, 1986.

[69] A. Tarski. On some fundamental concepts of metamathematics. In Logic, Se-
mantics, Metamathematics, pages 30-37, Oxford U.P., 1956.

[70] P. Taylor. Recursive Domains, Indexed Category Theory and Polymorphism. PhD
thesis, Mathematics Department, University of Cambridge, 1987.

0

[71] Maarten H. van Emden and Keitaro Yukawa. Equational Logic Programming.
Technical Report CS-86-05, University of Waterloo, March 1986.

[72] M.H. van Emden and R.A. Kowalski. The semantics of predicate logic as a
programming language. Journal of the Association for Computing Machinery,
23(4):733-742, 1976.

[73] H. Volger. Completeness theorem for logical categories. In F.W. Lawvere, C.
Maurer, and G.C. Wraith, editors, Model Theory and Topoi, Springer Lecture
Notes in Mathematics No. 445, 1975.

55

