
UNCLASSIFIED WcDtntrd'A A 9 4 1
SEulfCLASSIICA110w Of IM4ISPAE(hnATnere D21 4 13

REPORT DOCUME NTAT ION PAGE 3rroAi cov..TMC..I ON.

1. RPORTNUMBR 1. GOVT ACCESSIOj NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subitle) . - -.- 10% 5 YEO EOT9PRO OEE

Ada Compiler Validation Summary Report:Loral /Rolm 04 Aug. 1989 to 01 Dec. 1990
Mil-Spec Computers ADE, Revision 3.01, MV -10000 (Host) to ______________

HAWK/32 (Target), 89080wSl.10141 6. PERFORMING.'bRG. REPORT NUMBER

7. A&JTHORs) a. CONTRACT OR 6RANT NUMBER(s)

National Institute of Standards and Technology
Gaithersburg, Maryland, USA
9. PERFORMNG ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PRC.IECT. TASK

National Institute of Standards and Technology AREA & WORK UNIT NUMBERS

Gaithersburg, Maryland, USA

It. CONTROLLING OFFICE NAME AND APDRESS 12. REPORT DATE
Ada Joint Program Office
United StatesCDepartment of Defense 13 NU~MU AL
Washington, DC 20301-3081

14. MONITORING AGENCY NAME & ADORESSifdifferenfrom Cntroling Office) 15. SECURITY CLASS (of thiS repot)

National Institute of Standards and Technology 15a. UCLSFIEIND0~~D
Gaithersburg, Maryland, USA K 51 N/A

1S. DISTRIBUTION STATEMENT (of thisfieport)

Approved for public release; distribution unlimited.

17. DISTRIjT ION STATEMENT (of the abstract entfredin Block 20 If different, from Report)

UNCLASSIFIED DTIC
Ei-ECTE

1S. SUPPEE*,TA~ NOTESMA 51

10. KE YWORDS (Continue on reverse sidf if necessary and odentify by block number)

Ada Prograr-ning language, Ada Compiler Validation Summzary Report, Ada
Com~piler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MAIL-STD-
l8lSA, Ada Joint Program Office, AJPO

20. ABSTRMACT (Continue on reverse side of necessary and identify by block number)

Loaral/Rolm Mil-Spec Computers, Gaithersburg, Maryland, ADE Revision 3.01, MV 10000
under AOS/VS 7.64 (Host') to HAWK/32 under AOS/VS 7.64 (Target), ACVC 1.10.

DD I 11 1473 EDITION OF I NOV 65 IS OBSOLETE
I JAN 7) S/N 0102-LF-O14-6S01 UNCLASSIFIED

SECURITY CLASSIVICATIO4 OF IMIS PAGE (wthcn Data Entered)

AVF Control Number: NIST89ROL535_1 1.10

PRE-VALIDATION: 19 JULY 1989

ON-SITE: 04 AUGUST 1989

LAST REVISION: 14 DECEMBER 1989

LAST REVISION: 04 JANUARY 1990

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 890804S1.10141

Loral/Rolm Mil-Spec Computers

ADE, Revision 3.01

MV 10000 Host and HAWK/32 Target

Completion of On-Site Testing:
4 August 1989

Prepared By:

Software Standards Validation Group

National Computer Systems Laboratory

National Institute of Standards and Technology

Building 225, Room A266

Gaithersburg, Maryland 20899

Prepared For:

Ada Joint Program Office

United States Department of Defense

Washington DC 20301-3081

(m 03"14 041

AVF Control Number: NIST89ROL535_11.10

Ada Compiler Validation Summary Report:

Compiler Name: ADE Revision 3.01

Certificate Number: 890804SI.10141

Host: MV 10000 under AOS/VS 7.64

Target: HAIWK/32 under AOS/VS 7.64

Testing Completed 4 August 1989 Using ACVC 1.10

This report has been reviewed and is approved.

& Ada' alldatrlon Facility Ada Validation Faci'liy
Dr', David K. Jefferson Mr. L. Arnold Johs
Chief, Information Systems Manager, Software9tandards
Engineering Division Validation Group
National Computer Systems Engineering Division
Laboratory (NCSL) National Computer Systems

National Institute of Laboratory (NCSL)
Standards and Technology National Institute of

Building 225, Room A266 Standards and Technology
Gaithersburg, MD 20899 Building 225, Room A266

Gaithersburg, MD 20899

Accesioti For

tNTIS CF?,&,F
DrIC TAB Q

Ada Vatidation Oganization U
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311 y

Cl A', ,, :lor
D~ly

Ada Joint Program Office Di iml

Dr. John Solomond
Director I
Department of Defense
Washington DC 20301

It

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2

1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED2-1

2.2 IMPLEMENTATION CHARACTERISTICS2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1

3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1

3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2

3.4 WITHDRAWN TESTS 3-2

3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS 3-8

3.7 ADDITIONAL TESTING INFORMATION 3-8

3.7.1 Prevalidation 3-8
3.7.2 Test Method 3-8
3.7.3 Test Site 3-9

APPENDIX A CONFORMANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

APPENDIX E COMPILER OPTIONS AS SUPPLIED BY

Loral/Rolm Mil-Spec Computers

CHAPTER I

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a

specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly

reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented

according to the Ada Standard, and any implementation-dependent features

must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that

is not in the Standard.,

Even though all validated)Ada compilers conform to the Ada Standard, it
must be understood t4at some differences do exist between

implementations. The .da Standard permits some implementation
dependencies- -for exampl, the maximum length of identifiers or the

maximum values of intege types. Other differences between compilers
result from the charac eristics of particular operating systems,
hardware, or implementati n strategies. All the dependencies observed

during the process of testing this compiler are given in this report.

The informacion in this re ort is derived from the test results produced
during validation testing. The validation process includes submitting a

suite of standardized tests \the ACVC, as inputs to an Ada compiler and

evaluating the results. The purpose of validating is to ensure
conformity of the compiler to the Ada Standard by testing that the

compiler properly implements legal language constructs and that it
identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent, but is permitted
by the Ada Standard. Six classes of tests are used. These tests are

designed to perform checks at compile time, at link time, and during

execution.

i-I

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the vaiidation testing performed on an

Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by GEMMA Corp under the direction
of the AVF according to procedures established by the Ada Joint Program
Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 4 August 1989 at Loral/Rolm Mil-Spec
Computers.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. In the United

States, this is provided in accordance with the "Freedom of Information
Act" (5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and complete, or that the subject compiler has no
nonconformities to the Ada Standard other than those presented. Copies
of this report are available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Software Standards Validation Group
Institute for Computer Sciences and Technology

National Bureau of Standards
Building 225, Room A266

Gaithersburg, Maryland 20899

1-2

Questions regarding this report or the validation test results should be

directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to
the Ada programming language.

Ada An Ada Commentary contains all information relevant to
the Commentary point addressed by a comment on the Ada
Standard. These comments are given a unique
identification number having the form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and

1-3

technical support for Ada validations to ensure
consistent practices.

Compiler A processor for the Ada language. In the context of
this report, a compiler is any language processor,
including cross-compilers, translators, and
interpreters.

Failed test An ACVC test for which the compiler generates a result
that demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the
test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer which executes the code generated by the
compiler.

Test A program that checks a compiler's conformity regarding
a particular feature or a combination of features to the
Ada Standard. In the context of this report, the term
is used to designate a single test, which may comprise
one or more files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be
incorrect because it has an invalid test objective,
fails to meet its test objective, or contains illegal or
erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce errors
because of the way in which a program library is used at link time.

Class A tests ensure the successful compilation and execution of legal
Ada programs with certain language constructs which cannot be verified
at run time. There are no explicit program components in a Class A test

1-4

to check semantics. For example, a Class A test checks that reserved
words of another language (other than those already reserved in the Ada
language) are not treated as reserved words by an Ada compiler. A Class
A test is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
compiler.

Class C tests check the run time system to ensure that legal Ada
programs can be correctly compiled and executed. Each Class C test is
self-checking and produces a PASSED, FAILED, or NOT APPLICABLE message
indicating the result when it is executed.

Class D tests check the compilation and execution capacities of a
compiler. Since there are no capacity requirements placed on a compiler
by the Ada Standard for some parameters--for example, the number of
identifiers permitted in a compilation or the number of units in a
library--a compiler may refuse to compile a Class D test and still be a
conforming compiler. Therefore, if a Class D test fails to compile
because the capacity of the compiler is exceeded, the test is classified
as inapplicable. If a Class D test compiles successfully, it is
self-checking and produces a PASSED or FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the
Ada Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is
rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is
attempted. A Class L test passes if it is rejected at link time--that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated. In some cases, an
implementation may legitimately detect errors during compilation of the
test.

Two library units, the package REPORT and the procedure CHECKFILE,
support the self-checking features of the executable tests. The package
REPORT provides the mechanism by which executable tests report PASSED,

1-5

FAILED, or NOT APPLICABLE results, It also provides a set of identity

functions used to defeat some compiler optimizations allowed by the Ada

Standard that would circumvent a test objective. The procedure

CHECK FILE is used to check the contents of text files written by some

of the Class C tests for Chapter 14 of the Ada Standard. The operation

of REPORT and CHECK FILE is checked by a set of executable tests. These

tests produce messages that are examined to verify that the units are

operating correctly. If these units are not operating correctly, then

the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended

to ensure that the tests are reasonably portable without modification.

For example, the tests make use of only the basic set of 55 characters,

contair lines with a maximum length of 72 characters, use small numeric

values, and place features that may not be supported by all

implementations in separate tests. However, some tests contain values

that require the test to be customized according to

implementation-specific values--for example, an illegal file name. A

list of the values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and

demonstrate conformity to the Ada Standard by either meeting the pass

criteria given for the test or by showing that the test is inapplicable

to the implementation. The applicability of a test to an

implementation is considered each time the implementation is validated.

A test that is inapplicable for one validation is not necessarily

inapplicable for a subsequent validation. Any test that was determined

to contain an illegal language construct or an erroneous language

construct is withdrawn from the ACVC and, therefore, is not used in

testing a compiler. The tests withdrawn at the time of this validation

are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under
the following configuration:

Compiler: ADE Revision 3.01

ACVC Version: 1.10

Certificate Number: 890804S1.10141

Host Computer:

Machine; MV 10000

Operating System: AOS/VS 7.64

Memory Size: 16 MBytes

Target Computer:

Machine: L.RMSC HAWK/32

Operating System: AOS/VS Revision 7.64

Memory Size: 8 MBytes

2-1

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior
of a compiler in those areas of the Ada Standard that permit
implementations to differ. Class D and E tests specifically check for
such implementation differences. However, tests in other classes also
characterize an implementation. The tests demonstrate the following
characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing
723 variables in the same declarative part. (See test
D29002Y.)

(2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55AO3A..H (8
tests).)

(3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes test:. containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined
types SHORTINTEGER (B86001V) and LONGFLOAT (B86001U) in
the package STANDARD. (See tests B86001T..Z (7 tests).)

c. Based literals.

(1) An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR when a value exceeds SYSTEM.MAX INT. This
implementation raises NUMERICERROR during execution. (See
test E24201A.)

d. Expression evaluation.

The order in which expressions are evaluated and the time
at which constraints are checked are not defined by the
language. While the ACVC tests do not specifically attempt
to determine the order of evaluation of expressions, test
results indicate the following:

(1) None of the default initialization expressions for record
components are evaluated before any value is checked for

2-2

membership in a component's subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same
precision as the base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision
and uses all extra bits for extra range. (See test
C35903A.)

(4) NUMERICERROR is raised when an integer literal operand in
a comparison or membership test is outside the range of the
base type. (See test C45232A.)

(5) No exception is raised when a literal operand in a
fixed-point comparison or membership test is outside the
range of the base type. (See test C45252A.)

(6) Underflow is not gradual. (See tests C45524A..Z (26
tests).)

e. Rounding.

The method by which values are rounded in type conversions is
not defined by the language. While the ACVC tests do not
specifically attempt to determine the method of rounding, the
test results indicate the following:

(I) The method used for rounding to integer is round away from
zero. (See tests C46012A..Z (26 tests).)

(2) The method used for rounding to longest integer is round
away from zero. (See tests C46012A..Z (26 tests).)

(3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See test
C4AO14A.)

f. Array types.

An implementation is allowed to raise NUMERICERROR or
CONSTRAINTERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

(1) Declaration of an array type or subtype declaration with
more than SYSTEM.MAX INT components raises no exception.
(See test C36003A.)

(2) NUMERIC ERROR is raised when 'LENGTH is applied to an array
type with INTEGER'LAST + 2 components. (See test C36202A.)

2-3

(3) NUMERICERROR is raised when 'LENGTH is applied to an array
type with SYSTEM.MAXINT + 2 components. (See test
C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding
INTEGER'LAST raises STORAGE ERROR) when the array objects
are declared. (See test C52103X.)

(5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises STORAGE ERROR when the array
objects are declared. (See test C52104Y.)

(6) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

(7) In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINTERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

g. A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However,
lengths must match in array slice assignments. This
implementation raises no exception. (See test E52103Y.)

h. Discriminated types.

(1) In assigning record types with discriminants, the
expression is evaluated in its entirety before
CONSTRAINTERROR is raised when checking whether the
expression's subtype is compatible with the target's
subtype. (See test C52013A.)

i. Aggregates.

(I) In the evaluation of a multi-dimensional aggregate, the
test results indicate that all choices are evaluated before
checking against the index type. (See tests C43207A and
C43207B.)

(2) In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised after all choices are evaluated
when a bound in a non-null range of a non-null aggregate

2-4

does not belong to an index subtype. (See test E43211B.)

j. Pragmas.

(1) (The pragma INLINE is supported for functions or
procedures. (See tests LA3004A..B (2 tests), EA3004C..D (2
tests), and CA3004E..F (2 tests).)

k. Generics.

(1) Generic specifications and bodies cannot be compiled in
separate compilations. (See tests CAI012A, CA2009C,
CA2009F, BC3204C, and BC3205D.)

(2) Generic subprogram declarations and bodies cannot be
compiled in separate compilations. (See tests CA1012A and
CA2009F.)

(3) Generic library subprogram specifications and bodies cannot
be compiled in separate compilations. (See test CAI012A.)

(4) Generic non-library package bodies as subunits cannot be
compiled in separate compilations. (See test CA2009C.)

(5) Generic non-library subprogram bodies cannot be compiled in
separate compilations from their stubs. (See test
CA2009F.)

(6) Generic unit bodies and their subunits cannot be compiled
in separate compilations. (See test CA3011A.)

(7) Generic package declarations and bodies cannot be compiled
in separate compilations. (See tests CA2009C, BC3204C, and
BC3205D.)

(8) Generic library package specifications and bodies cannot be
compiled in separate compilations. (See tests BC3204C and
BC3205D.)

(9) Generic unit bodies and their subunits cannot be compiled
in separate compilations. (See test CA3011A.)

1. Input and output.

(1) The package SEQUENTIAL_10 cannot be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE2101C,
EE220ID, and EE2201E.)

(2) The package DIRECT 10 cannot be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE2101H,

2-5

EE2401D, and EE2401G.)

(3) Modes INFILE and OUTFILE are supported for SEQUENTIALI0.
(See tests CE2102D..E, CE2102N, and CE2102P.)

(4) Modes INFILE, OUT_FILE, and INOUT FILE are supported for
DIRECT I0. (See tests CE2102F, CE21021..J (2 tests),
CE2102R, CE2102T, and CE2102V.)

(5) Modes INFILE and OUTFILE are supported for text files.
(See tests CE3102E and CE31021..K (3 tests).)

(6) RESET and DELETE operations are supported for
SEQUENTIAL IO. (See tests CE2102G and CE2102X.)

(7) RESET and DELETE operations are supported for DIRECTIO.
(See tests CE2102K and CE2102Y.)

(8) RESET and DELETE operations are supported for text files.
(See tests CE3102F..G (2 tests), CE3104C, CE311OA, and
CE3114A.)

(9) Overwriting to a sequential file does not truncate the
file. (See test CE2208B.)

(10) Temporary sequential files are given names and deleted when
closed. (See test CE2108A.)

(11) Temporary direct files are given names and deleted when
closed. (See test CE2108C.)

(12) Temporary text files are given names and deleted when
closed. (See test CE3112A.)

(13) More than one internal file can be associated with each
external file for sequential files when writing or reading.
(See tests CE2107A..E (5 tests), CE2102L, CE2110B, and
CE2111D.)

(14) More than one internal file can be associated with each
external file for direct files when writing or reading.
(See tests CE2107F and CE2110D.)

(15) More than one internal file can be associated with each
external file for text files when writing or reading. (See
tests CE3111A, CE31111D..E (2 tests), and CE3114B.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 572 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for
201 executable tests that use floating-point precision exceeding that
supported by the implementation. Modifications to the code, processing,
or grading for one test was required to successfully demonstrate the
test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B 'C D E L

Passed 124 1129 1768 15 21 44 3101

Inapplicable 5 9 547 2 7 2 572

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

3-1

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 -8 9 10 _ 12 13 14

Passed 194 573 533 245 172 99 158 331 131 36 250 90 289 3101

Inapplicable 18 76 147 3 0 0 8 1 6 0 2 279 32 572

Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at the time
of this validation:

A39005G B97102E C97116A BC3009B CD2A62D CD2A63A CD2A63B
CD2A63C CD2A63D CD2A66A CD2A66B CD2A66C CD2A66D CD2A73A
CD2A73B CD2A73C CD2A73D CD2A76A CD2A76B CD2A76C CD2A76D

CD2A81G CD2A83G CD2A84M CD2A84N CD2Bl5C CD2DIIB CD5007B
CD50110 CD7105A CD7203B CD7204B CD7205C CD7205D CE21071

CE3111C CE3301A CE3411B E28005C ED7004B ED7005C ED7005D
ED7006C ED7006D

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of

features that a compiler is not required by the Ada Standard to support.
Others may depend on the result of another test that is either

inapplicable or withdrawn. The applicability of a test to an
implementation is considered each time a validation is attempted. A
test that is inapplicable for one validation attempt is not necessarily

inapplicable for a subsequent attempt. For this validation attempt, 572

tests were inapplicable for the reasons indicated:

The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than

SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)

3-2

G35706L. .Y (14 tests) G35707L. .Y (14 tests)
G35708L. .Y (14 teqts) C35802L..Z (15 tests)
C45241L. .Y (14 tests) C45321L. .Y (14 tests)
G45421L. .Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
G45641L. .Y (14 tests) G46O12L. Z (15 tests)

The following 4 tests are not applicable because the tests
require a source line of characters which is greater than the
120 character source line which this implementation does
support:

C24113H. .K (4 tests)

The following 34 tests are not applicable because 'SIZE
representation clauses for enumeration types are not supported:

A39005B CD1009B CD1009P CD2A2lA CD2A2lB
GD2A2lC CD2A2lD CD2A2lE CD2A22A GD2A22B
GD2A22G CD2A22D CD2A22E CD2A22F GD2A22G
CD2A22H CD2A22I CD2A22J CD2A23A CD2A23B
CD2A23G CD2A23D CD2A23E CD2A24A GD2A24B
GD2A24C CD2A24D CD2A24E CD2A24F CD2A24G
CD2A24H CD2A24I CD2A24J ED2A26A

C34006D is not applicable because use of record descriptors for
arrays gives larger 'SIZE for array.

C35702A and B86001T are not applicable because this
implementation supports no predefined type SHORT_FLOAT.

The following 14 tests are not applicable because 'STORAGESIZE
not supported:

A39005C C87B62B CD1009J CD1009R CD1009S
CDlC03C GD2BllB CD2BllC CD2BllD GD2BllE
CD2BllF CD2BllG CD2B1SB CD2Bl6A

The following 7 tests are not supported because 'SMALL
representation clauses are not supported:

A39005E C87B62C CD1009L CDlCO3F CD2DllA
CD2DllB CD2Dl3A

The following 16 tests are not applicable because this
implementation does not support a predefined type LONGINTEGER:

C45231C C45304C C45502C C45503C G45504C
G45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55B07A B55B09C B86001W
CD7101F

3-3

C455311..P (8 tests) and C455321..P (8 tests) are not applicable
because the value of SYSTEM.MAXMANTISSA is less than 11.

C4AO13B is not applicable because the evaluation of an
expression involving 'MACHINE_RADIX applied to the most precise.
floating-point type would raise an exception; since the
expression must be static, it is rejected at compile time.

D4AO02B and D4A004B use 64-bit integer calculations which are
not supported by this compiler.

B86001X, C45231D, and CD710IG are not applicable because this
implementation does not support any predefined integer type with
a name other than INTEGER or SHORTINTEGER.

B86001Y is not applicable because this implementation supports
no predefined fixed-point type other than DURATION.

B86001Z is not applicable because this implementation supports
no predefined floating-point type with a name other than FLOAT
or LONGFLOAT.

The following 24 tests are not applicable because 'SIZE
representation clauses for integer types are not supported:

C87B62A CDIOO9A CD1O090 CDlC03A CDIC04A
CD2A3lA CD2A3lB CD2A3lC CD2A31D CD2A32A
CD2A32B CD2A32C CD2A32D CD2A32E CD2A32F
CD2A32G CD2A32H CD2A321 CD2A32J CD2A64B
CD2A64D CD2A65B CD2A65D CD2A74B

C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

CAI012A, CA2009C, CA2009F, CA3011A, BC3204C, BC3204D, LA5008M
and LA5008N are not applicable because this implementation does
not permit compilation in separate files of generic
specifications and bodies or of specifications and bodies of
subunits of generic units.

The following 16 tests are not applicable because 'SIZE
representation clauses for floating-point types are not
supported:

CD1009C CD2A41A CD2A41B CD2A41C CD2A41D

CD2A41E CD2A42A CD2A42B CD2A42C CD2A42D
CD2A42E CD2A42F CD2A42G CD2A42H CD2A421
CD2A42J

The following 31 tests are not applicable because 'SIZE
representation clauses for fixed-point types are not supported:

3-4

CD1009D CDl009Q CDlC04C CD2A51A CD2A51B
CD2A5lC CD2A5lD D2AKIE CD2A52A CD2A52B
CD2A52C CD2A52D CD2A52G CD2A52H CD2A521
CD2A52J CD2A53A CD2A53B CD2A53C CD2A53D
CD2A53E CD2A54A CD2A54B CD2A54C CD2A54D
CD2A54G CD2A54H CD2A541 CD2A54J ED2A56A
ED2A86A

The following 21 tests are not applicable because 'SIZE
representation clauses for array types are not supported:

CD1009E CD1009F CD2A61A CD2A61B CD2A61C
CD2A61D CD2A6lE CD2A61F CD2A61G CD2A61H
CD2A61I CD2A61J CD2A61K CD2A61L CD2A62A
CD2A62B CD2A62C CD2A64A CD2A64C CD2A65A
CD2A65C

The following 16 tests are not applicable because 'SIZE
representation clauses for record types are not supported:

CDlOO9G CD2A71A CD2A71B CD2A71C CD2A71D
CD2A72A CD2A72B CD2A72C CD2A72D CD2A74A
CD2A74C CD2A74D CD2A75A CD2A75B CD2A75C
CD2A75D

The following 1 test is not applicable because 'SIZE
representation clauses for private types are not supported:

CD1009H

The following 1 test is not applicable because 'SIZE
representation clauses for limited private types are not
supported:

CD1O091

The following 22 tests are not applicable because 'SIZE
representation clauses for access types are not supported:

CD2A81A CD2A8lB CD2A81C CD2A8lD CD2A8KE
CD2A8lF CD2A83A CD2A83B CD2A83C CD2A83E
CD2A83F CD2A84B CD2A84C CD2A84D CD2A84E
CD2A84F CD2A84G CD2A84H CD2A841 CD2A84K
CD2A84L CD2A87A

The following 5 tests are not applicable because 'SIZE
representation clauses for task types are not supported:

CD2A9lA CD2A91B CD2A91C CD2A9lD D2A9E

The following 12 tests are not applicable because of

3-5

restrictions on the use of enumeration types for which an
enumeration representation clause has been given:

GD3014A CD3014B CD30l4D CD30l4E CD3015A
CD30l5B CD3015D CD3015E CD3015G CD3015I
CD3015J CD3015L

CD4O3lA, CD4OSIC, and CD405lD are not applicable because record
representation clauses are not supported for record types with
discriminant parts.

The following 46 tests are not applicable because, for this
implementation, SYSTEM.ADDRESS clauses for variables are not
supported:

CD5003B. .I (8 tests) CD5011A CD5011C CD5011E
CD50IG CD5011I CD5011K CD5011M CD5011Q
CD5Ol2A. .B CD5Ol2E. .F CD5Ol2I. .J CD5012M CD5013A
CD5013C CD5013E CD5013G CD50131 CD5013K
CD5013M CD50130 CD5013S CD5014A CD5014C
CD5014E CD5014G CD5014I CD5014K CD5014M
CD50140 CD5014S. .T CD5014V CD5014X. .Z (3 tests)

The following 30 tests are not applicable because, for this
implementation, SYSTEM.ADDRESS clauses for constants are not
supported:

CD5011B CD5011D CD5011F CD5011H CD5011L
CD5011N CD5011R CD5011S CD5012C CD5012D
CD5012G CD5012H CD5012L CD5013B CD5013D
CD5013F CD5013H CD5013L CD5013N CD5013R
CD5014B CD5014D CD5014F CD5014H CD5014J
CD5014L CD5014N CD5014R CD5014U CD5014W

AE2lOIC, EE22OlD, and EE2201E use instantiations of package
SEQUENTIAL_-10 with unconstrained array types and record types
with discriminants without defaults. These instantiati-ons are
rejected by this compiler.

AE2l0lH, EE24OlD, and EE240IG use instantiations of package
DIRECT_-10 with unconstrained array types and record types with
discriminants without defaults. These instantiations are
rejected by this compiler.

CE2102D is inapplicable because this implementation supports
CREATE with INFILE mode for SEQUENTIAL_10.

CE2102E is inapplicable because this implementation supports
CREATE with OUTFILE mode for SEQUENTIAL_10.

CE2102F is inapplicable because this implementation supports
CREATE with INOUTFILE mode for DIRECT_10.

3-6

CE2102I is inapplicable because this implementation supports
CREATE with INFILE mode for DIRECTIO.

CE2102J is inapplicable because this implementation supports
CREATE with OUTFILE mode for DIRECTIO.

CE2102N is inapplicable because this implementation supports
OPEN with INFILE mode for SEQUENTIAL_10.

CE21020 is inapplicable because this implementation supports
RESET with INFILE mode for SEQUENTIALIO.

CE2102P is inapplicable because this implementation supports
OPEN with OUTFILE mode for SEQUENTIALIO.

CE2102Q is inapplicable because this implementation supports
RESET with OUTFILE mode for SEQUENTIAL_10.

CE2102R is inapplicable because this implementation supports
OPEN with INOUTFILE mode for DIRECTIO.

CE2102S is inapplicable because this implementation supports
RESET with INOUTFILE mode for DIRECTIO.

CE2102T is inapplicable because this implementation supports
OPEN with INFILE mode for DIRECT_10.

CE2102U is inapplicable because this implementation supports
RESET with INFILE mode for DIRECTIO.

CE2102V is inapplicable because this implementation supports
OPEN with OUTFILE mode for DIRECTIO.

CE2102W is inapplicable because this implementation supports
RESET with OUTFILE mode for DIRECT_10.

CE2107G, CE2107H, CE2111H, CE3111B, and CE3115A are not
applicable because they wrongly assume that input operations are
not buffered.

CE3102E is inapplicable because text file CREATE with INFILE
mode is supported by this implementation.

CE3102F is inapplicable because text file RESET is supported by
this implementation.

CE3102G is inapplicable because text file deletion of an
external file is supported by this implementation.

CE31021 is inapplicable because text file Cause text file CREATE
with OUTFILE mode is supported by this implementation.

3-7

CE11O2J is inapplicable because text file OPEN with INFILE mode
is supported by this implementation.

CE3102K is inapplicable because text file OPEN with OUTFILE
mode is not supported by this implementation.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

it is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases
where legitimate implementation behavior prevents the successful
completion of an (otherwise) applicable test. Examples of such
modifications include: adding a length clause to alter the default size
of a collection; splitting a Class B test into subtests so that all
errors are detected; and confirming that messages produced by an
executable test demonstrate conforming behavior that was not anticipated
by the test (such as raising one exception instead of another).

Modifications were required for one test CC1223A. CC1223A was modified
according to AVO instructions to replace the expression
"2**T'MANTISSA-I" at line 262 with "2**(T'MANTISSA-l)-l)"; the original
expression raised an exception because 2**T'MANTISSA exceeds
SYSTEM.MAX INT.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10
produced by the ADE Revision 3.01 compiler was submitted to the AVF by
the applicant for review. Analysis of these results demonstrated that
the compiler successfully passed all applicable tests, and the compiler
exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the ADE Revision 3.01 compiler using ACVC Version 1.10 was
conducted on-site by a validation team from the AVF. The configuration
in which the testing was performed is described by the following
designations of hardware and software components:

Host computer: MV 10000
Host operating system: AOS/VS 7.64
Target computer: HAWK/32
Target operating system: AOS/VS Revision 7.64

A tape containing all tests except for withdrawn tests and tests

3-8

requiring unsupported floating-point precisior was taken on-site by the
validation team for processing.

The contents of the tape were loaded directly onto the host computer.
After the test files were loaded to disk, the full set of tests was
compiled, linked, and all executable tests were run on the HAWK/32
under AOS/VS 7.64. Results were printed from the MV 10000 computer.

The compiler was tested using command scripts provided by Loral/Rolm
Mil-Spec Computers and reviewed by the validation team. See Appendix E
for a complete listing of the available compiler options for this
implementation. The only option invoked during this validation was:

MAINPROGRAM.

Tests were compiled, linked, and executed (as appropriate) using one
host computer, the MV 10000, and one target computer, the HAWK/32 under
AOS/VS 7.64. Test output, compilation listings, and job logs were
captured on tape and archived at the AVF.

3.7.3 Test Site

Testing was conducted at Loral/Rolm Mil-Spec Computers and was completed
on 04 August 1989.

3-9

APPENDIX A

DECLARATION OF CONFORMANCE

Loral/Rolm Mil-Spec Computers has submitted the following

Declaration of Conformance concerning the

HOST: MV 10000

TARGET: HAWK/32 under AOS/VS 7.64.

Attachment 4

DECLARATION OF CONFORMANCE

Compiler Implementer: Loral/Rolm Mil-Spec Computers
Ada Validation Facility: Institute for Computer Sci.and Techn.
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: ADE Revision: 3.01
Host Architecture - ISA: MV 10,000 OS&VER # AOS/VS 7.64
Target Architecture - ISA: HAWK/32 OS&VER #: AOS/VS 7.64
Target Architecture - ISA: HAWK/32 OS&VER #: ARTS/32 2.71

Derived Compiler Registration

Derived Compiler Name: ADE Revision: 3.01
Host Architecture - ISA: MV Family OS&VER #: AOS/VS 7.64
Target Architecture - ISA: MV Family OS&VER #: AOS/VS 7.64
Target Architecture - ISA: HAWK/32 OS&VER #: AOS/VS 7.64
Target Architecture - ISA: HAWK/32 OS&VER #: ARTS/32 2.71

Owner / Implementer's Declaration

I, the undersigned, representing Rolm Mil-Spec Computers
have implemented no deliberate extensions to the Ada Language
Standard ANSI/MIL-STD-1815A in the compiler(s) listed in this
declaration. I declare that Rolm Mil-Spec Computers is the owner
of record of the Ada language compiler(s) listed above and, as
such, is responsible for maintaining said compiler(s) in
conformance to ANSI/MIL-STD-1815A. All certificates and
registrations for Ada language compiler(s) listed in this
declaration shall be made only in the owner's corporate name.

J iliott - -Software Product Manager Date

Owners Declaration

I, the undersigned, representing /-- /Wz
agree that as part of the joint Marketing Agreement between Rolm
Mil-Spec and Data General for the Ada Development Environment,
Data General has the responsibility to maintain the Base Compiler
listed above. I declare that all of the Ada language compilers
listed, and their host/target performance are in compliance with
the Ada Language Standard ANSI/MIL-STD-1815A.

Date -

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation aependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of the ADE Revision 3.01
compiler, as described in this Appendix, are provided by Loral/Rolm Mil-
Spec Computers. Unless specifically noted otherwise, references in this
appendix are to compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are not
a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2_147_483_648 .. 2_147_483_647;
type SHORTINTEGER is range -32768 .. 32767;

type FLOAT is digits 6 range
-16#0.10000000000000# * 16 **(-64) .. 16#0.FFFFF# * 16 **(63);
type LONG FLOAT is digits 15 range
-16#0.10000000000000# * 16 **(-64)..16#O.FFFFFFFFFFFFFF# * 16 **(63);

type DURATION is delta 2.0**(-9) range -2**22 .. 2**22;

end STANDARD;

B-1

Addendum to
the ANSI Reference Manual for

the AdaO Programming Language

086-00 70-02

Thus addendum updae maual 069-000073-00.
See updating instructions inside.

Ordering No.086-00070
Rev. 02. December 1988
Copyiht* Somuzic Software, Inc., 1984, 1988
Copyright 0 Data General Corporaton. 1984. 1988
All Rights Reserved
Printed in the United States of America

Notice
DATA GENERAL CORPORATION (1)M HAS PREPAR.ED THIS DOCUMENT FOR US!E BY DGC PE-
SONNEL CUSTOMERS. AND PROSPECTIVE CUSTOMERS. THE INFORIMATION CONTAINED
HEREIN SHALL NOT NE RIEPODUCED IN WHOLE OL IN PART WITHOUT DGC*S PMI WRITTEN
APPROVAL.

DOC reserves hte righ to make changes in specications and other informanon contained in
this ddcument without prior noace. and the reader should in all cases consult DOC to deter-
mine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE
PRODUCTS AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF
THOSE SET FORTH IN THE WRITTEN CONTRACTS BETWEEN DGC AND ITS CUS.
TOMERS. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CON.
TAINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED TO STATEMENTS
REGARDING CAPACITY. RESPONSE-TIME PERFORMANCE. SUITABILITY FOR
USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED
TO BE A WARRANTY BY DGC FOR ANY PURPOSE. OR GIVE RISE TO ANY LI-
ABILITY OF DGC WHATSOEVER.

IN NO EVENT SHALL DOC BE LIABLE FOR ANY INCIDENTAL. INDIRECT. SPECIAL
OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO
LOST PROFITS) ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE IN-
FORMATION CONTAINED IN IT. EVEN IF DOC HAS BEEN ADVISED. KNEW OR
SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH DAMAGES.

CEO. DASHER. DATAPREP. DESETOP GENERATION. ECLIPSE. ECLIPSE MVI4000.
ECLIPSE MVi6000, ECLIPSE MV/S000, GENAP. INFOS. mlcroNOVA. NOVA.
PRESENT. dPROXI. SWAT, and TRENDVIEW are U.S. registered trademarks of Data
General Corporation; and AOSMAGIC. AOS/VSMAGIC. AROSE/PC. ArrayPlus.
BuslGEN, BusPEN. BusITEXT. CEO Connection. CEO Drawing Board. CEO DXA.
CEO Light. CEO MAILI. CEO PXA. CEO Wordvtew, CEOwltte. COSOL/SMART,
COMPUCALC. CSMAGIC. DASHER/One. DASHER/286. DASHER/386. DASHER/LN,
DATA GENERAL/One, DESIXTOP/UX. DG/SO, DG/AROSE, DGConncmt, DG/DBUS,
DG/Fontstyles. DG/GATE. DG/GEO. DG/L. DG/LtBRARY. DG/UX. DG/XAP.
ECLIPSE. MV/1400. ECLIPSE MVI2000. ECLIPSE MVIIS00. ECLIPSE MV/7800.
ECLIPSE MV/I10000. ECLIPSE MVII$000. ECLIPSE MVI20000. ECLIPSE MVI40000.
FORMA-TEXT. GATEKEEPER. GDC1000. GDC/2400. microECLIPSE. microMV.
MV/UX. PC Liaison. RASS. REV-UP. SLATE. SPARE MAIL. TEO. TEO/3D.
TEO/Electronica. TURBO14. UNITE, and XODIAC are trademarks of Data General
Corporation.

Ada is a registered trademnark of he U. S. Government (AJPO). ROLM is a registered trade-
mark and ADZ is a trademak of ROLM Corporaion.

Addendum to the ANSI Reference Manual for the Ada* Programmng Language

086-000070-02

Elfective with. AOS/VS ADSL Rev. 3.00

Please ien Appendix P in your copy at the ANSI Reference MwaA for the Ada
Programming Language.

ANSI/MIL.STM.ISI1SA AdAFPWence Manua1

Appendix F:
Implementation-Dependent

Characteristics

The DOC Ada Compiler is disuibuted as part of the Ad& Development Eaiviroumew (AD E).
DOC Ada is a validated implementatiou of Ada chat confrm to the &gl ANSI/MIL.STD. t11A
standard. *The ANSI standard allow individual imPlementations to set or define certain Wanuage
Characz es-s such u pragm Ik restrictions on rep Iemnatiou clauses and capaiy ULmts

This appendix desaibe the lanuag characemimi defined by the DOC implemengazion. version
3.00 or highe. In this appendix, the ANSI RtfWacu Manua* fop Uw Ada prorwnwung Language is
referred to as the LRM.

This appendix contain the following information:

ADE-Defized Pam~
Pragm That Have No Effect0-
Prasuas Implemen ed. in the ADS F-

ELABORATE

ETR POTOG SIZE
Pakae YSEM
Re MMen AauCau

Length Cams

Ln ADecked
MAInur N CE D DEALOATIN.7.

PRIORITY F-22

ANSI/MIL.SMO-lSI LA Ad& Pfmeflnc M~nual

ADE-Defined Pragmas
Pragma tell the compiler how to process your program at compile trm. They do oc affect the
semantics of a Propa.. but they allow you to exercise some conurol over how the compiler
process" Yaw program&

The ANS I Reren#c MmauW for die Ada F, rwmning Lan (LIM) describes die standard
pragmas and their use. Other pragmas are defined by dw various implementations of the
languag& Tb secon provides additional iniormation on those standard pragmu and defines the
pragmas thature ,=ique to DGC Ada.

This section contains two pru. The first part lists prapu= tha are sc unphmenzed ia the
current version of the ADE. The second part lists the implenwaDd proas in alphabetical order,

describes them and provides eximpies of their use.

m.2 ,u ... -73--

ANSI/MIL.STCOi a iSA APl* P0ncs A&Iualh

Pragmas That Have No Effect

The following Ada pranas ae no impiemented in the current version of the ADE:

CONTROLLED This praga is = needed becaus the compiler does not
reaim, unus.d storage automatically. To deallocate strae

picitly, use the generic procedure
UNCHECKED DEALLOCATION. Refer to the LRM,
Saio 13., and the ADE Usei's MwuiW for more information
about thi procedu.

MEMORYZSU Te package SYSTEM defines the MEMORY-SIZE cosa
u 2 29 wrds. Use the/MTOP switch on he ADALINK
command to adjus the maximum virtual memory size. Refer to
the AD Use"s Mmuwi for mom information about the
ADAL24X command

OPTIMZ The compiler do= ax currently ue time or space optnizaon

PACK Thi pragma has no effect in the curren version

SHARED The compiler does n=C implement Wdisible divc read and
updat operations for ny object therefore. there are no objects
to wich you can apply this pragma Refer to the LRM Section
9.11.

STORAGE UNIT The package SYSTEM curre.ty deflnes the storage unit as a
164it word You can ot redefine i.

SYSTEM-NAME Te package SYSTEM defines this as an object of enumeration
type NAME, for which only one literal is allowed.

F-3

AN~l/MILSTD- i8Si A Ad& P4.qunce mAaiua

Pragmas Implemnented in the ADE
The foonw*n paps describe, in alphabetical order, the ADE-specific pragmas.

pragma ELABORATE
Specifies which library unit bodies (secondary units) to elaborate
before the current compilation unit.

Format

pregma ELABORATE (library unit (,HbRaryuritJ);

Where

Ibrar ig Specifies, the simple name of the library unit whose body you
want elaboraed before the current compilation unit.

Description

Pragma ELABORATE tell the compiler to elabrat the body of the specifid libary unit or
units before elaborating the cuna compilation unit. If the -,- mm compilation unit is a subunit.
the compiler elaborates the body of the specified Uibrar unit befor elaborating the unit that ai the
ancestor of the current compilation. subunit.

Pragma ELABORATE must appear after the omux clams for the current compilation unit. and
it mumt specify a library unit named in that contm darn. The specified library unit must have a
body.

For more information. refer to the LRM, Section 10.5.

Example
with EARTH OATA;
pragma EIAC ORATE (EARTH DATA):
procedure SOLAR SYSTEM li

iANTH4OATA.TRAM-ORSI;

w~SOLAR -SYSTEM;

p.4 updWOMIMOM3O

AN4SI/MIL-STO- IS iA Ads PAfnoe Mai

pragma ENTRYPOINT

Associates an Ada subprogram name wtth a specific entry point label
so foreign language routines can call or be called by Ada
subprograms.

Format

pregme ENTRY-POINT (subprogram name. "ery__pointname);

subprogram name Species the unique name of an Ada subprogam defined in the
deciantim purt of t. cirent compiation wf=. Do not use dot

matim to specify ubpropmname.

y ame Specifies the STRING Uteral denawng the actual enema) laeL
Use uppercue le enclosed in quots, for =wmpie,
"FRTNLIBNAME.

Descripton

You can use this pr a in either of Mv wqc

" A sWu ro writ= in anoth ngap can refer to an Ada subpropam using the entry

pon defined by this prawna

" An Ada subpropam can call a lbrry roudne wintten in another languae by Siving the name
of the routn as an entry poL in this case you must also use pr-gma irERFACE to
specify the Wlu of the lbrary routine.

Pragma ENTRY POINT must appear in the declarative part of a block, in a package specification.
or aftr a compilati unit. You must specfy both apments

Example

p ocedie MAIN Is
funcon FRTN OP (X: INTEGER) rmum BOOLEAN;
p'gm INTE-FACE (F77. FRTN OP):

pru~ENTRY-POINT (FRTN OSP. TRTN-UBNAMEJ;

eW MAIN;

aqsOUSCm 2.G F-5

AAML.STO t1 M Ad A*~Werc6 Mwai

pragma INUNE
Speciffes the subprograms and generic units that you want expanded
Inline at each call whenever possible.

Format

pragml INUNE (mime [, nameJ);

where

nIWT Speczfs the subpropam or seneric unit you want inlned at
ead calL The subp o or .enc unit must be d.zaed
before prapma MINE La the decaradve part of the program.

Description

Pragma MINE tails the compler to insrt code for the body of the subpropam each time the
sunpworm is aled If the umed subprovam is a genec um the compr insers code for the
bodies of all subprograms that arm Wazadm of that genric uik.

The folowing rtricdo apply to pragma IINE

* Te nesting level of clined procedures canan exceed 100.
* A propm thi Wines a funcdou thai return an UcOwsmise oljecz will nt work correcdy.

The ADE will noc inre the foilowin:

* Remsiac ve -
* SMbroAms c an = epioa haders
* Any unk that decares a task, task type, or access to a task type

p14 uemmm Oe7G

At4SI/MIL.ST. I $I A A44 FWI~wonce m.i&mui

pragma INLINE (continued)

Example

This ~mple shos mv assembly (.SR) filMes for the following source code. The &un asembly file
shows the source code compied with pragna M L.N The second exampe shows the assembly
(e wkhout the pragma.

Source Code

in the folowing emaple, prama NLINE applie to all tb calls to SQUARE in WrrH INLINF.

procedure WITH INUNE Is
FIRST, SECONO: INTEGER:
funcon SQUARE (S: INTEGER) return INTEGER:
ping INUNE (SQUARE);

hxxgw SQUARE (S: INTEGER) return INTEGER Is

return S * S.
end SQUARE:

FIRST aSQUARE (27:
SECONO - SQUARE (SQUARE (FIRST)):

end WITHINUNE

qwUMmOW72.Co F-7

A NS1/M1L4STO.I1S1SA Ads POesce Maaiua

pragma INLINE (continued)

Asembly File wfth Pragma INUNE

Each time SQUARE is cagled. the compiler Wwts code for dwa finaioa. In LIM fGowUog
exmpla. SQUARE 4 caed duw times. The last eight Lines am the iined subprogam.

begi
;FIRST: a SQUARE (2):

S : consant INTEGER: a 2:
r;turmS" S - Irst in*expanion

NLDAI 4,0
XWSTA 0.12..3 ;: FIRST

SECONO • SQUARE (SQUARE (FIRST))-
S constam INTEGER: a SQUARE (FIRST);
S : constant INTEGER: - FIRST;
rm S, * - second inWine
XWMUL 0.19.3 ;;S
XWSTA 0.17..3

;;tur.nS S - thiirdifne wqxinsion
XWMUL 0,17.,3 ;; 3
XWSTA 0,14..3 ;SECONO
WRTN

;; end

: uneon SQUARE (S: INTEGER) return INTEGER is
.begin

;;return S S;
XWLA 0.@-12..3
XWMUL 0.0-1Z.3

XWSTA 0,-..3
WRTN

,.end

14 -o~ -l~m

AS4M1L.ST.D;8i SA,.a ~ M~

pragma INUNE (continued)

Assembly File Wifthout Pragma INUNE

:: begin
;:FIRST: - SQUARE (2):

LPEF L3 - pus uhffecteaddrs s(L31-2
LCALL L2.1.1 - firs =9 to SQUARE
XWSTA 0,12..3

:; SECONO - SQUARE (SQUARE (FIRST)):
XWSTA 0,17.,3
XPF 17..3 - push eoecdv addruu (171.4
LCALL L2.1,1 - secar'd cad to SQUARE
XWSTA 0,19.3
XPEF 19.3 - push dfecve addru 1191- 16

LLU L2.1. - third cal to SQUARE
XWSrA 0.14..3
WRTN

:; ftn SQUARE (S: INTEGER) rutum INTEGER Is::;begin

L2: - b"irnning d te caded fucon
XWLDA 0.0-12.3
XWMUL 0.@-12.,3
XWSTA 0.4.3
WRTN

; end - erl ot the caded hacto

L, 2
.NO

ulm cw F-O

ANSI/MIL-STO- 181SA Aaa Petwerme Mnuai

pragma. INTERFACE
Specifies another language (and calling conventions) for Interfacing
with an Ads program.

Format

pmm WNTWACE (larguage ram subprogrm ~nam)-,

language am SpeCaife the language of the called subprogram

subpogram-nme Specifies the name of the cailed subprognam The subprogram
must be declared eagler in the program.

Description

Pragma 242ERACE allows you to calL program units written in other languages (foreign
subprograms). A specificaton for the named subprogram must be wuitten in Ada. The body of
the subprogram can be writen in another language

Pragma INTERFACE must be in the declarative part or package specification of the Ada unit that
calls the subprogram Thie subprogram you specify as an argument muat be declared earlier in the
same declarative part or package specification.

Your program must include the following prama LOAD statements in the order shzown:

pnagma LOAD ("ADS ROOT?:RUNTUMtE:ITrFACE-LRT-TRIGGGER);
prugm LOAD (LANGRTLB1;

YL4.: must be able to access LANG RT.LB through one of the Mie access methods provided by the
system such as search fists or links. The IMPORT command links LANG RT.LB automaticaly.
Use it to import routines written in F77, C, or PASCAL

Ada supports the calling of subprograms written in F77, PASCAL. C, MASK. and ASSEMBLY.
[n addition, you can call any language thaz obeys the common callng conventions of DGC
l-anags but you willreceie a compiler warning that the lanuage is not explicitl suprported.

The Adia rmae inerface trap any runtime errors in the called routine and raises the
PROGRAM ERROR apscpion in the caling program The interface also suspend Ada tasking
during the cal to the so*-Ada subroutine.

ANSI/ MIL.STO.1 iai sA Ada pateone ~mwuaM

pragma INTERFACE (continued)

General Notes
* Ciaracters within constructs arm packed according to DGC alpmiem requirements for the

called language

* Booleans. arrays. and records are aot packed. Booleans are passed one per word.

* Retur values are not checked for validity.

* Procedure and function calls to other languages do not support type conversions. You must
do type conversions explicitly.

* You can pass ACCESS types. but exercise caution when changing Ada data structures Data
General may chan data formats in a future revision. After receiving any revisions of the
ADE, test thoroughly all programs that depend on specific data format.

* LANGRT performs the exception handling for foreign subprogams If a foreign
subpropam has an error, that error is propagated to the calling Ada propam as a
PROGRAMERROR.

" Foreign subprogams must be n the same ring ax tie calling Ada proam.

* Foreign subprogams can perform [/0 operation., but it is the user's responsiity to use
pragma LOAD to load all the necessary runtime objects. Alternately, you can use the
template facility provided by ADALINK.

" The foreign code interface does not support Ada unconstrained types for any languages.

* AUl appropriate LB and 08 iles must be loaded into Ada programs that call foreig
programs. The IMPORT funion oy ensures that the OB containing your function and
LANOGRT ar loaded with pragma LOAD. If the foreign code requires additional runime
suppor, such as MULTr"ASKING.OB, you should add the names of all necessary 05 and
LB 'es to witofacejackagq B file. This ie is created by IMPORT or by ADALLNK
template.

ANWIML.STO-IGISA Ads Pak~=lc htaaua

pragma INTERFACE (continued)

Foreign Language Calling Conventions and Data Types

The folowing sections describe the calling conventions and/or the data types used by 0GC Ada to
call subprogams wrtea in foreig lanoiasab

MASM or ASSEMBLY
The MASM and ASSEMBLY options provide the standard Ada calfig conaions. Lf either is
spcidA the aged proram (which may or may mx be MASM or ASSEMBLY) is expected to
follow Ada aing conventions and to know how Ada data structures are formatted.

F77
F77 is supported as fallws:

F77 Data Type Ads Data Type

INTEGER-4 INTEGER
DITEGER2 SHORT DITEGER
REAL64 FLOAT
REALS LONG FLOAT
CHARACTER1 CHARACrER

RcrER N STRING(L.N)
ARRAY ARRAY

Not=l

* Array elements must be of a supported scalar type.
* Scalar parameters are passed co-in copy-out
SOne-dimensionl arays are passed by reference for copy-in copy-ouL

* Multidimensional arrays obey copy-in copy-out rules.

P.12Upd686OWMWc

ANSI/MIL.STD.I 8I1SA Ads Pgte..c. Mwaua

pragma INTERFACE (continued)

C
C is supported as foUows:

C Dat Type A" Da Type

SHORT Wr SHORT INTEGER
LONG &r LONG &EGER
SHORT FLOAT FLOAf
LONGFLOAT LONG FLOAT
CHARACTERCHRTE
POITr ACCESS
ENUMERATION ENUMERATION
ARRAY OF CHARACTER STRING
ARRAY ARRAY
STRUCTURE RECORD

No C aQUi conventions spe fy panss by value. Therefore. only copy- mode is aBwed for
scalar pameters and strus. The call =a&= n es pam by 'vabe for mnym

PASCAL
PASCAL is supported as foldow

PASCAL Data Tpe A" Dat Type

SHORT INTEGER SHORT ITEGER
LONGU4TEGER [NTEGiR
REAL FLOAT
DOUBLE REAL LONG FLOAT
BOOLEAA BOOLEA

MUM]ERATION ENUMERATION
PO E ACCESS
ARRAY ARRAY
PAOE ARRAY OF CHAR STRING
RECORD RECORD

Ne=
" Not supported RECORD VARIANTS, SET, FILE.
* Oue-dimmaioee arrm ae passed by refereace for cowpy-in copyuL
* Muiidimeamoni array, obey copy-W ia cpy-out ru

Scaai.C FP-13

ANSI/MPL.SlIDe SA Ada& ,WenC MaWua

pragma INTERFACE (continued)

PL/1
PL/1 is supported as foiUaw

ML/1 Dats Type Ada Data Type

FIXED BINARY (U) SHORT INTEGElt
FIXED BINARY (31) IrNTGt
FLOAT BINARY (?1) FLOAT
FLOAT BINARY (53) LONG FLOAT
PONTER ACCES
ARRAY ARRAY
RECORD RECORD

Not=
" PL/I is oC apfidy supported; however. the data types Usted aboms aa be used if al data

Maows standad LANG RT alipment and spa daracterbia Specifing PL/i produces
wrms messages when you compile the program

" Ow-dimensio1a arrM ae pm ed by refrenmc far copya copy-out

* MuitidiAmeuioua amy obey copy-ia cr-ort ruL

P,.14 Upim wO7rJ

NS/MLg.-S,-TO- lt iA Ada Pafaorw~ Mwua

pragma UST

Suspends or resumes the compiler listing file output.

Format

pragma UST (ON I OFF):

Des ription

The compiler always produces a Iiazng (.LST) Me uniess you do one of the followin

" Indd e e/ERRORS switch with the ADA command (and the compilation units contain no
aras)

* lecdue pranm UST (OFF); in the compilation uni.

PragrM UST (OFF); suspends the ouz in the .ST el during compladion.

PU"m LIST (ON): resumes .ST outpu

Example

In the toflowing =zmpie, the code for MEbCBERS is aom printed in the listing 6ile.

proceudt MAIN Is
type MEMBERS is private
paP, ure SORT (IST: in oA* MEMBERS);
funon HEAD (LI USnT) reurn MEMBERS;

prmim IUST (OFF);
type MEMBERS Is

;d MEMBERS:
Wem" UST (ON);

end MAIN:

.P-15

ANSI/ML4FO181 SA Ada PW~rm Manuai

pragma LOAD

Includes non-Ada object files In the linked program Ile.

Format

iagm LOAO (oblJieaf1@aMamW;

Where:

cos 1ut h Specifies the STRING Steral (in quota) that denotes th W
pathname of the mon-Ada objet e you warn to load. You do
not need to incude the .03 Glenam= ansio..

Description

Pragma LOAD alows you to include foreip (non-Ada) obet film in your proram. You can use
it wak ipagms INTERFACE and ENTRY.POINT to allow Ada procedures to cad no-Ada
subprop=m The Ada Linker includes the named objet , whe it builds the Ada propa
(.PR) S.

Pragma LOAD must appear at the head of a compilation for a body. When us* prapm LOAD
with compilation submits, akwa specfy the /READ SUBUNT switch on the ADALINK
command lIne. If you omi thu switch, you my reim this ror mat s from the Link=

Can't s (body] re for < propum unit name>

Now. Pragma LOAD does am guarantee the order of the loaded iles. If order is important, use
the /TEMPLATE switch with the ADALLNK co--mad

Example

In the folowig emample, the El SEVENUP..OB must be in the crrent direcory.

piagiu LOAD ("SEVEN UPI);
wit TE)(T 10;. ur TET 10;
procdw ADA C.AJJ 'AL Is

Pomdsm S6EN UPC out INTEGER);
p iu INTERPAdE (PUI, SEVEN UP);
paup. ENTRY-POINT (SEVEN UP. *SEVEN UP');
N: NTE01R,

SEVEN UP (N);
PUT (q

vW AQA CALLS PLI;

ANSI/MIL.TO-t $l8A A s Aefefence MAiiual

pragma MAIN

Indlcatu that a subprogram unit Is a main program.

Format

pramnu MAWN:

Description

Prmua MAIN desipiazos the main subpropam unit Place prapu MAIN immediately after che
su-r-,m you wast to be the main subpropam.

Example

The Wowing code desiataes IESI as the main procedui

Mrcedurs TEST Is

procedure F6RST JS

wW FIRST;

procedure SECONO is

"rd SECOND:

ur TEST;
pragm MAIN:

U sOm0 a F17

1451/W~m..STO. iSISA Ad P wc Mauuga

pragma MAIN (continued)

Ao t w to distinguish the main subpropam in a compiation un is to use an
/MA24_PROGRAM switch ou the ADE command line. For exampe, you can compile the
procedure TEST, loated in the source le TESTADA, u a mai program with this command:

.) ADA/MAINPROGRAM-TEST TEST

You must use the /MAf4-fROGRAM switch in each of the (oUowia m

" Th soura m. the ou an compiling contains more ,han one library uit

* You sped4 mor than one source Me with the same ADA command The comple assumes
that the first fie listed contaim the maim progum. If it does no yu must specy which
subrosram is the main popam with the /MLINPROGR.AM switch. For example, the
foilowig command compiles the source fies POO-ADA. FOODAL.WA, and TESTADA.
It comples the subpropam TEST.A.DA as the main propram:

-) AOA/MAIN.PROGRAM * TEST F0 "EST FOOSB

For moe iaformacon about the ADA command, refer to the A. E Ujse Mawa,.

II1 mm

ANSI/MIL-STO-161 SA Ad& eesic aia

pragma MAX-TASKS

specmes the maximum number of Ada tasks you want active
simultaneously.

Format

prumag MAX-TASKS (n):

M Specfies an intcpr vaWC reater than zro.

Oescriptlon

Pri a MAX-TASKS specfies th mmmum number of Ada tasks tha an be activea the same
tm& If you do sao specafy t number, tkw suam ov. you a mamum of .

TWh prau must appear at the head o(a companio . It applies to al unit in the compiton.

Example

Pnam MAX TASKS(40):
package body TASKS is

;aiONE is ...;
tauk TWO Is
taiuk THREE TO FORTY Is.
ci REMAININGTA3KS is

-my (3..40) , THREE TO FORTY:
MULTI-TASKS : REMAININ TASKS;

ord TASKS:

You cm also specify the =a=mum number of tasks by using the /MAX.,TASCS switch with the

ADALU41C cammamL For mpe:

4A AUK/MAX TASKS-4O objllename

If 7w qpciO a aismum number of Ada tasks with boch a wagma and a svitch, the praga takes
P m For mare inforumaoe. refer to the ADZ Us4W M uas.

-amm

ANSI/MIL.STO-18SIA Ada P e etrw Manuaa

pragma MVECS

Specifies the use of the Data General MV External Calling Sequence.

Format

pragma MVECS(unitname (.unit-na...I):

where

unit iame Specfies the name of to subprogram for which you need the
compdle to uaee MV ECS.

Oescrlptlon

To opt==z code quality, the compiler does not aways generate code that conforms to the Data
Gener MV Eemi Call;n Sequence (ECS). In some cases, howeve, you wil aed to tel the
compil tha MV ECS is nesary. Subrouram that meet any of the following citeria mus use
MV EM

* MACVE= CODE subroutines with formal arguments
* Suoutines called from ocher DGC lan s
* Subroutines that can be called from outer r.q.

Place pragma MVECS immediately after the subpror'am for which you want the compiler to
Pgeae MV ECS.

Example

procedure TEST is

procedure FIRST is

eM FIRST,

pocedur SECOND i

m;W SECOND;

or; TEST;
p11gn MV ECS(TEST);

Pa -. ouaea0smc

ANSI/ML4TOI l MA Ad& P.4@.EFCS Mai

pragma PAGE

Bgins a new page in tile compiler output listing file.

Format

pragma PAGE;

Oewulption

T'e cmpiler produces a Wing (.L.ST) rie unlem yu do one of the foilow

" lnaude the /ERRORS switch with the ADA command (and the compdation unit contains so

" Iandud pawg UST (OFF): in the compi ain uni

If the compiL is producing a listing ofthe compiladon, pragma PAGE causes the ten. fodiowing
the prava to appear on a new pag.

Example

In the fowing amuple, procedure SECOND would be printed on a pap by itselL

procedure FIRST is

end FIRST;

pragma PAGE
procedurI SECOND is

en SECOND;

pro" PAGE

0884MPRM

ANSI/MIL- 11 IAU Ada P t~nf MaMs

pragma PRIORITY

Specfles the priortty of a task or task type.

Format

progme PRIORITY (n):

wber

n Safe an integer value from I to 10. Lower values indicate
lower Prioritie.

Description

You can assp priorities to tasik or task ty by includ;n prgma PRIORTY within the
appropriate task speeca OuL

Assignn prioritea the system how to handle competing tass Wen more that one ta.sk its
eligble for ecutim a the same time, the system cuzes them in the order you speofy with
pruma PIORITY. Tasks that am ready for m a ar queued &rm by priority number and.
witha pririties by order of di ocmc m ,i the soue file (FIFO).

You can assig eac task or task type only one priority. If you ampg more than one priority, the
system recognies, the fist asinetand ignres the others.

A ssigning priorities is optional The default priority is S

Example

The following code assign a priority of 7 to TASK TYPE and a priority of 8 to NEXT-TASK.

procedure OUTER I

tak t"p TASK-TYPE I
pmuw PRIORITY (7);

or; TASK TYM

tas typ NWC TASK Is
pmg PRIOAITY (6);

and NETrTASK-.

W OUTER;

IP.22 Udil nSOU PW3.,

ANSl/MN..STO.191SA Ads "rsence mai

pragma SUPPRESS

Suppresses specified runtime, checks.

Format

pragma SUPPRESS (cho dwetW1 f. (ON,, 'I name)):

d ieldmw0lWr Specifies thw check y wu to suppress, Cbck identifier
namas we lsed in the desci pon that follows.

nwm Specifu the name of a ype subtype, object task unit. genric
unit, o subxosrom.

Oescriptlon

To mppr curtain runia checks plae praga SUPPRESS in the decauative put of a propam
unit ot block ot immediatety within a packase specificaion. For statements in a propam unit or
block, dik suppression adsa from tie prnpu saesnent to tho end of the declaive putt
associated with that progam uit or block. For tatmenms in a packag chec suppression
estde to the and at the scope o(the specfed ON> enty. You must delare that entty
imediately within rhe package spcificm

The following table shows the camen of check suppression far each named entity.

Chuck suppresion for Extends over

An unamed enaty (nam omitted) The remaining declativ region
An object All operations of the object
An object at te bus typ o subtype All opeations of the object or subtype
A k o task tpe activation of the taskA peark uoit All imamzanoas of the genric

A abpvpm Ad ca of the subpropam

upn4ggp4 .2

pragma-SUPPRESS (continued)
A~th wu it is a bear p r rnming pracus to have rume e =pdons raised automadcally, you
can suppres them if you need to deares runtime overhead. Wbea you suppress undime Checks.
you tur off ca= program emxiom. if an error arises after you have suppressed a check. your
compiled propam wil ac work correcly. The tolowing table dhw *id propm =e x as
you cure off whea you suppress checks:

Suppr sise Of thb Turs 0 this Whe proprm detacu this ruume
Chelk ldeeifier aepto error

ACCESS CHECK CONSTRAINT Selection or indexng applied to an
ERROR objec with a Qul value

DISCIMINANT CONSTRAINT VtoLation of discriminans constraint
CHECK ERROR

INDECRCHECK CONSTRAINT- Out-o-anag indez values
ERROR

LENGTH- CONSTRAWN Wrong nuiber of nde compon
ERROR

RAt4GECHEC CONSTRAINT- Values exeed rng coua uns or
ERROR r~w is incompatible with cooscran

DOVESION NUMERIC Ivsion, rem or mod by zeo
CHECK ERROR

OVERFLOW- NUMO.ERIC Operat on result =xcoeds implemented
CHECK ERROR ranw

ELABORA ON PROGRAM- Aeapt to c0 a uni before it is
CHECX ERROR elaboraze4

STOR.AGE STORAGE -Over-ailocauion of memory space
CHECK ERROR

F-4

A4SIWLST.181 SA mda P~.fsor'c Manulu

pragma SUPPRESS (continued)

Example

In tcM foiowi* cmpls, the pragca suppresses the checks on the indic of variables o(the type

TABLE. All e TABLE operatons us MAIN are affece. No ezcpoas are raised if X and Y

are no in the range of I to 8.

procedPurf MAIN Is
t COLOR Is (RED. 1LACX):
ype TABLE is arMy (1.. 1..8) t COLOR;

prarmu SUPPRESS (INDEX-CHECK(ON > TABLE);
X. Y: INTEGER:
BOARD: TA8LE

BARD (X. Y):- RED:

-end:

1I3

,m o'G~W'm e P.2

A lS/MIL4T0. 151 SA A4& Pterfce Men"

pragma TASK STORAGE SIZE

Specffies the amount of heap storage space to allocate for task
stacks.

Format
prugma TASK STORAGESIZE (n);

wthere

n Specif s the total number of 2-byte words you want to allocate
for ad actn task stacks. The variable a can be any in r
value, but only values pFeter than -1 have an effect.

Description

Pragma TASK STORAGE SIM almn you to reset the amount of heap space to allocate for aUl
task stacks. The amount of space you specify should eed the amount of storap you aed at one
time for all active casks. By default the sysem a'locates 1M K words.

The pra a must appear at the head of a compilatim It applies to the entir compilaion uni.

You can also ue the /TASK STORAGE SIZE switch on the ADALIN command lne to
coatro the maximum heap space allocated to activ task stacks. [you use both the pragma and
the command switch, the pragma tcakes priority.

Resetting MTOP

[fyou need to set TASK STORAGE SIZE to a value peater than the current virtual address
spMac allow*% you must reset the maxmum virtual address space by specifing the value of MTOP.
MTOP defines the maxmum virtua address for a proram. Use the /MTOP switch with the
ADALflNK command to specify how many megabytes your propram requires. The default value of
MTOP is 1 Mbyte.

For exmple, this command ream MTOP to 20 Mbyte:

.)ADA IMTOPao oqe=at

ANS/MIL.-ST0- I SA Ada Aed&fete Ancaueuli

pragma TASK STORAGESIZE (continued)

Individual Task Storage

By de'autr the sysem allocates 2048 words for cach acuve task stack. If you require a l4rWer or
small stack for a paticular task rt, use d e STORAGE SIZE represeaation clause. For
eample, the following clause tells dhe compiler to asa odatatask type BIG with a stack of size N:

for BIGSTORAGE SIZE use N;

The minimum stack siz that you can speelfy is 512 words.

Example

In the following COmpie. t value *Wn in rhe prpa Cw0eds the required for g sks
eanita at one time.

pragrn TASK STORAGIESIZE(56000)
pmcedure MAIN Is

tak type ONE is.-;
for ONESTORAGE SiZE use 1 000:

twk "yl TWO is_.;

for TWO'STORAGE SIZE use 2000;

task type TEN is.-;
for TEN'STORAGESIZE use 10000:

enc MAIN:

,oUm)O P.2?

MNSI aL-STO-1815A ,i Asterome Mwua

Package SYSTEM
Tbe predefine army package SYSTEM defines Certain types. subtypes. and objecs that are
specif to DCC Ada. The package SYSTEM is described in the LRM, Section 13.7.

SYSTEM contains the olowing dedavlion

pakae SYSTEM Ls

typeADORESS Is new INTEGER:
type NAME Is (MV);
SYSTEM NAME • constant : a NAME • MV:
STORA69E UNIT :consagu: 16:
MEMORY SIZE conswt: - 2 29;

MAX INT . constant : a (Z 3O) -I * (2*30);
MIN INT cor; : -:MAX INT* 1;
mAX IGIrS coad w a 15;
MAX MANTSSA • cormant: a 31:
RqNE-OELTA • constazn - 2.0 (-31):
TI - :coaStanrt: a 0.1:

aftype PRIORITY Is INTEGER rago I..10;

end SYSTEM;

The Wawa* table describes hese types and constants and pves the value of each.

Type or Constant Dufmds Explanacion

ADDRESS INTEOUE Address dauses and awtibute
(P"ADDRESS) return objecs of the
derived type ADDRESS.

NAME MV The enum ed_.on type NAME
declares one objew d literal MV.

SYSTEM-NAME V SYSTEM NAME is an objea of type
NAME ai is initialized to MV.

STORAGE UNrr 16 Denotes the number of bits per
storae unDL

MEMORY SEZE 2" Demotes the number of available
storage uuizs.

MAX nT (Deno).1 (2") Doces the ighes value of
n147483647 predefined INTEGER types.

ANh/ML4STO.iisA A& * @."wce mwua*

Try"O. a nta DfNed as I~zo

MU4 ~-MAX -Il4T I uDeomn the wing (Mau nepuin)
.214748364 vali. of prcdcdned INTEGER "mes

MAX DIGITS 15 Deo~te Wug number of
Snipacu dt a1d in a tloaing.

MAX-MANTISSA 31 Deomn the Wa allowed number
of baafydl4i incthe manissa of
mo"e numbers of a find-powm

FINE-DELTA 2.00*31) Demotasthe allest delta a&lowed in
a fid-powa coaiam tha has the
ramp coalaz -L0..1.0

TICK 0.1 Dam the besic dock period in
SIm

PRORITY Ifl Dodo= the ramp of valus you ca
mu an praqua PRIORITY

szmmou PRIORITY is a subtype
of the bans typ 24TEOEL.

P-2.

ANSI/MI.-STO- t6 S1A Ada ".fwln= Maua

Representation Clauses
T11s secto dewibes the use of represemon cLauses in the ADE. You can use represenatioa
clauses for eier of two purposes:

" To specify a more effident rpresentation of data in die underlying machine

* To communicate with features outside the domain of the Ada Wanage, for mmple
peri hardware.

The Ada programming language provides four classes of representation clauses:

Claue Class Spaicn"

ength lause The amount of storage you want assoaed
with a type.

Enumeration rem a The intema codes for the Neals of an
enumeranon qype.

Rtecord rpeeansThe storag order, relative powdmo. and smz of
reord compo

Address clause The required address in staora for an entity.
Address cianses ar am supported by the
AD!. To assip internal names use prapu
ENMYPONT wheneve posible.

The folwing parapaphs describe the use o each is of r m auses.

Length Clauses
You an use the 'STORAGE S1E atru only for resevn storag for acdaig a task CtYe.
For eaampie

BITS :conlrn u 1;
BYTES :ianINP 1024*SW S;

KIYI"ES :comst -1 024"8YTES;

ask typ MONITOR Is .. ;

for MONITOR'STORAGE.SlZI use 4-YTES"

The AD! dam not support the UZ and 'SMALL awibutes

l'4SI/MiLTO. 14 1 A Ad& R.Ewence MwwMa~

Enumeration Representations

TIe ADE s~pup t enumaxtion represemwin dausase as spedfied in the LRM, Sction L3.3. All
ennaernuon literals mun be provided with diszinc, static integer codes. The sequence of integer
codes spedfied (or the enumeraton type must conistently increas in value

There are two rearicin

" T7e rwng of internai codes must be a SHORT INTGER.

" Enmrwnm typ with represeuonm clauses ame not alwed a the index rype of a= arry
typ definition (refer to the LRM, Sectio 3.6).

Change of Representan

To champ the representmatin dam of a type, you can declare a scond type derivd &=romh
&wr.t ad assip the variables of the fint type to the second type. This proca is descried in the
LRM, Section 13A6

Operations oW Discrete Types

If) Mo w the aibUzM 'MO 'VAL. 'SUCCY and'flED 04mm tePWo~Mma involve
adiinlrunning overhead. Sim pocntalymoemaa internma n coesm be mapped to

po nuumbem ciazn the props. involv additional oha d if the arpMO is wontzc
or is a dicrete typ or subqyp whose ban typ is enumervm reprummam Refe to the LR.M
Setio 13.3 for mowe imformamen.

Conversions that Cause Overhead

E~apl wcnersion betee enwration types in which either base type has a representation
dam. my mm additoaW rumame overhead The arumnt iusedf and the method of conversion
both edimc tie moun of overhead.

You can perform ezplidzt conewaon between enumeration types by ius* an anbute such as
'P05 or 'SUCC to evaluat an aret and~ assig the resuts to a variable of the target type.
You an als perform ezlidt conersoms by usig the attribu and its argumenta the actual
pas amer in a subproprm caL. Each method of convering betwe type causes addiziona
ovead if the argament is nuawdm. la the latter case, Ada perform checks on the actual
parameter that may als add overhead.

Sections 3.5. 4A4 and &.4.1 of the LRM provie more informatin about euxlidi conversoms and
pwarew amoaba

u~ a~m~s F31

ANS/ML.ST0O.1I 1SA Ada POWmei= MMaIu

Case Statements

Uf te bam e of the cas satmen expremsson is an enumeraUion type with A reprentauo
dam. the rM ting code is oiizeL with respec to space rather than trme. The value of the
cue statemen uxpremago is compared with cas alternatives until a macch is found.

Can stemens with ty other thn enumeratno wth a repreuaon clause am unaffectd..

Loop Statements

FOR loops for which the ban type of the loop paameter is an enumeratou type with a
,.pr-ueanon clause causes addiinal runame overhead. (For more informaiou refer to the
LRM Secaon 3.5-.5.).

Loop satements for which the bas type is am an enumeration type with a clause
do am -aus additional overhead.

Record Representations

Repirestato. of recrd types ia the ADE is the same Us Standard Ada with cetain
raricaon Specificly, you cannot un remor repuatms clauses spocify alipanw and
axco m oatiom for the folowing:

* Record types wth dminaza
* Record types with variant parts
* Record types with army components.

Wen specfyig compoemen trage, you can cross only one 16.bit word boundary. You cannot
specify the storag for composim, FLOAT, or LONG-FLOAT components. For componnts of
these types, the compiler automically determines the sorap required. You can specify storage
for all the mma;ig component ty the same wy as in standard Ad .

P-32-

ANSisMI,.STO. I a IsA Ada Asfitrie Maual

ThM fllowing eample shows a valid record representation specifcatioa:

type IUFL Is
record-

RETURN FLAGS INTEGER range 0.. 15:
TERMINATION FIELD INTEGER range 0.. 7:
PROCESS/ : INTEGER range 1 255:

end record:
for IUFL use

raco
RETURN FLAGS at 0 range 0 .. 4;
TERMINATION FIELD at 0 range 5.. 7;
PROCESS 10 at 0 range 8.. 15;

and record;

These component dauses specify the order, position. and size of WJL fields relative to the start of
the .IJFL record, They also ensure that the [UFL fields match the strucure of the ?IUFL offset
(usr ag word) in a ?EPEC system cll

Field Field
Boundaries Coanets

0-4 RETURN FLAGS
5.7 TERMIN TION-IELD.
8-1 PROCESS ID

The ADE does noc allow components to overlap storas boundaries; that is, record fied" cau=n
M"e more than one 16.b word bounday.

Unchecked Programming
The ADE implements the predefined generic lbrary sWuropun
UNCHECKED DEALLOCATION and UNCHECKED CONVERSION. The following
sections cplain how to use then subpropams.

mP-3

ANS/.4Tr.ISIM Ma ftrGIM M&MM

Procedure U NCH ECKEDDEALLOCATION

You ca use the jeeric procedure UNCHEC1ED.DEALLOCATION to deallocate dynamic
objecs csgal thai are despasd by values of access types To deallocate dynami obects
expicilt, yaw proW m mus iatUanhli this proced for a prticula objea and access type. in
the promas body, a call to th inusaniated procedure speciries the dynamic object as a parametr.
Whoa that all is exzcued, the specified object is desilocaed, and its value is sa to nulL The
following emple shows how this works:

Example

In the follow*empe, the call to the procedure DISPOSE desiccates the dynamic object
desi ated by the access value ROOTI and rese zs ROOT1 to null However. if the enclosi
procedure uses d ocher access value, ROOT2 to desinate the same object as ROOTI, this code
causes a propm error because the object no onge em ts. You must wmtch for simila dangin
referen when usig the procedure UNCHE CED DEALLOCATION.

with UNCMECKED OEALLOCATION:
paciuge TREE LABEILER is

Mmp LABEL-TYPE is prrvate;-
type NODE;
type TREE Is acces NODE:
type NODE is recond

LABEL LABEL TYPE;
LEFT -TREE:
RIGHT TREE:

end recor:

procedure DISPOSE is new UNCHECKED.DEALLOCATION (NODE. TREE);

procedure LABELROOT (LABEL in LABEL TYPE.
ROOT in oa TREE:
LABELLED TREE : ou*TREE);

end TREE LABELER:

packasge body TREE LABELER is
procedure LABEL ROOT (LABEL In LABEL-TYPE:

ROOT in os TREE;
LABELLED TREE :ot TREE);
ROOTI, R(ObT2 NOOE.

DISPOSE (ROOTI);

erd LABEL ROOT:
end TREE LABELER:

F-34 updMs 0004OOO73O0

AM4/MIL4 141 SA Aa Pftmiwcs t

Function UNCHECKED-CONVERSION

te Smeric h:muno UNCHECKED.CONVERSZON agows you to return the value of a copy-ia

parmmtar as a value of a targa type. The actual bit pattcu corresponding to that parameter value

does not chanp.

The function UNCHECKED CONVERSION is a unit in the ADE SYSTEM 5brary. The visible

puart that function is listed below.

e SOURCE is Ited PrvaW:
type TARGET Is IWited priate
funcdtW UNCHECKED-CONVERSION (S : SOURCE) return TARGET:

funton UNCXECED CONVERSION (S: SOURCE) retun TARGET is
pragme SUPPRESS 'PANGECHECK);

begin
,rstun S;

end UNCHECKED CONVERSION:

For instandaions of this generic function, types SOURCE and TARGET must be of the same

class and the same lengh. SOURCE and TARGET cannot be arry ys

For more information about unchecked conversons, refer to the LRM, Section 13.10.

Example

The following emiple shows sourc code that uses the function UNCHECKEDCONVERS ION.

with UNCHECKED CONVERSION. ALPHA;
package BETA is
type TEST NAME is privat
type DATA is reo

IS VAUD BOOLEAN:
TE-ST OBJECT TEST-NAME:
edrecord:

fucbo CONVERT TO BETA DATA Is new
UNCHECKED CONVERSION (ALPHAINFO. DATA):

hinction CONVEr FROM BETA DATA Is now
UNCHECKED CONVERSION (DATA, ALPKL%.,NFO):

end BETA;

u0a0 Q - F-31

AttdS/M.4TO.t1SA a %ftoo Mwwu

Characteristics of ADE Input/Output Packages
The sandard iaput and output files in TEXT [0 correpond to the AOS/VS generic files
VNPUT and @OUTPUT, respecuvly. For more information about AOS/VS geneti rdes, refer
to the DGC manuaL Lwwwgr to Us Your AOS/ Syswm.

Wben you are using the ADE 1/O packaps, remember the foilowin

" The maimum value for TEXT.[O.COUNT and TEX IO.FELD is SYSTEM.MAX NT.

* The FORM parameter of the IEXTO.OPEN prcedure is woc used.

" Type TEX 1O.FLE -TYPE is an accss type.

For more information about input/output operations in the ADE, refer to the ADE Usdes Manual.

P-36udeoa07O

ANSZIML.S1.4llA Ad& PAwsCS MIJuAI

Maximum Size Limits In the ADE
The ADE places the following absolute limiu on the use of Ada Wnuage featu:res

MSximum

Compilation stop Languaw Feawrue or amount

Syntax pang Length of identifiers 20
Length of Un. 10

Semanues chercking Discriantns in 256trin
Associations in record aggmgat 256
Fields in record agpwgate 256
Form.Js in gZei 56
Nested contxs 25

Generating macbine code Indices in army aggpr te
Parameters in caU 128
Nesting depth of etpressions 100
Nesting depth of inlined xmWons 100
Nesting depth of packages with 0o

uUs .oooo F.37

Summary of the ADE Real Type Attributes
The follo"g secion lists the ame and value for each ADE specific real attribute.

Float Type Value

T'MA"CIUMRADOX 16

T'MACMIE MANTISSA 6 fo FLOAT
14 for LONG FLOAT
It is the number of T"MACO NE RADIX
(hez) digits inmais.

TIMACHINE E.MAX 63
It is the mammnum mxonent fer MV floating
types base 16

It is the minimum exponen for MV floating
types, base 16.

T'MACIMNE ROUNDS TRUE

TfMACINE OVERFLOWS TRUE

T"SAFEEMAX 252
The formula is

E.LMAX

T'sAFE SMALL z.0 (.flSAFE-EMAX - 1)

TSAFE LARGE 2.0 "TSAFE FMAX (L0- 2.0 s
(.T'IAS NANTISSA))

P.36 up 08s OIS7042

Iliad Typo Vidus

T'MACHWhE ROUNDS TRUE

rMACHMNEOVERFLOWS TRUE

TIWAE'SMALL * TSMALL

rwvSE'ANTIssA 31
(Same as SYSTEM.MAX MANISS)

'SAE-SMAI±. = TASE'SMALL

T'SAFE LARGE a TIWASFARGE

also

a(2 S TIWAMANTISSA - 1)

M3ASEIMALL

upm 0OW73M F-39

A14/MIL.ST0.ISI SA Ada Aetwoc Mu ,,

emaw Now

* All fixed-point numben are stored in 32-bit integer

* Floating-point rypes requiring 5 digiu or less of precision are stored in FLOAT; those

requiring 6 to 14 digits are stored ia LONGFLOAT.

* FLOAT and LONG FLOAT use I bit for the si and 7 bits for the eponent (of 16) in

xcen-64 noctaon. FLOAT has 24 bits available for the mantissa; LONG-FLOAT has 56.

* For FLOAT and LONG FLOAT, die smalleat number that can be repesemnted in the MV
architecturet is given by trw following formuLa

rMAOUNE-RADIX '- (r'MACHNEMIN - 1).

This is equal to 16 "" (-65) or 16#O0.lOOOOOOOO O# - 16 '- (.64).

* For FLOAT and LONG FLOAT, the largmest number that can be represented in the MV
uchi ecte is mve by the following formui

(LO - T'MACHNE RADIX - (-T" CII__MANTSSA))
(T-MACHn4_RADIX - T'MACHINEEMAX).

For FLOAT, this is equal to 16#0.FFFF# " 2"" (63).

For LONG-FLOAT, this is equal to the oiowing

16#O.rrrrrrrrrr# " 2 "" (63) for LONG-FLOAT.

F.40 updam oIS.o0o0

ANSI/ML-1"0-1TMISA A %O*40 MMua

Type Definitions In the ADE
The AD. defines the "e INTEGM. FLOAT, and DURATION as fodo- s:

Type DedUoe

TMER The set of zetpr, beins with the value MEN [NT and ends
with MAX INT. The formulas (or MIN [f land MAX [NT
are de nder -Package SYSTE

FLOAT The type FLOAT is defined by the values described in the notes
under "Summuy of the ADE Real Type Aaribues."

DURATION The type DURATION is defined as follow
2.0 "" (-9) rn .Z "" 2.- 2

End of Appendix

.ealmon~oof3 F-41

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,

such as the maximum length of an input line and invalid file names. A

test that makes use of such values is identified by the extension .TST

in its file name. Actual values to be substituted are represented by

names that begin with a dollar sign. A value must be substituted for

each of these names before the test is run. The values used for this

validation are given below.

C-1

m . Sm

-- MACRO.DFS -- ACVC VERSION 1.10

-- THIS FILE CONTAINS THE MACRO DEFINITIONS USED IN THE ACVC TESTS.
-- THESE DEFINITIONS ARE USED BY THE ACVC TEST PRE-PROCESSOR,
-- MACROSUB. MACROSUB WILL CALCULATE VALUES FOR THOSE MACRO SYMBOLS
-- WHOSE DEFINITIONS DEPEND ON THE VALUE OF MAX _IN_LEN (NAMELY, THE

VALUES OF THE MACRO SYMBOLS BIG IDi, BIG ID2, BIG ID3, BIG ID4,
BIG STRING1, BIGSTRING2, MAX STRING LITERAL, BIG-INT LIT,-

-- BIG REAL LIT, MAX LEN INT BASED LITERAL, MAX LEN REAL-BASED LITERAL,
-- AND-BLANKS). THEREFORE, KXY VALUES GIVEN IN-THI9 FILE FOR THOSE
-- MACRO SYMBOLS WILL BE IGNORED BY MACROSUB.

-- NOTE: THE MACROSUB PROGRAM EXPECTS THE FIRST MACRO IN THIS FILE TO

-- BE MAXINLEN.

-- EACH DEFINITION IS ACCORDING TO THE FOLLOWING FORMAT:

-- A. A NUMBER OF LINES PRECEDED BY THE ADA COMMENT DELIMITER, --.
-- THE FIRST OF THESE LINES CONTAINS THE MACRO SYMBOL AS IT APPEARS
-- IN THE TEST FILES (WITH THE DOLLAR SIGN). THE NEXT FEW "COMMENT"
-- LINES CONTAIN A DESCRIPTION OF THE VALUE TO BE SUBSTITUTED.
-- THE REMAINING "COMMENT" LINES, THE FIRST OF WHICH BEGINS WITH THE
-- WORDS *USED IN: 0 (NO QUOTES), CONTAIN A LIST OF THE TEST FILES
-- (WITHOUT THE .TST EXTENSION) IN WHICH THE MACRO SYMBOL APPEARS.
-- EACH TEST FILE NAME IS PRECEDED BY ONE OR MORE BLANKS.
-- B. THE IDENTIFIER (WITHOUT THE DOLLAR SIGN) OF THE MACRO SYMBOL,
-- FOLLOWED BY A SPACE OR TAB, FOLLOWED BY THE VALUE TO BE
-- SUBSTITUTED. IN THE DISTRIBUTION FILE, A SAMPLE VALUE IS
-- PROVIDED; THIS VALUE MUST BE REPLACED BY A VALUE APPROPRIATE TO
-- THE IMPLEMENTATION.

-- DEFINITIONS ARE SEPARATED BY ONE OR MORE EMPTY LINES.
-- THE LIST OF DEFINITIONS BEGINS AFTER THE FOLLOWING EMPTY LINE.

-- $MAX IN LEN
-- AN INTEGER LITERAL GIVING THE MAXIMUM LENGTH PERMITTED BY THE
-- COMPILER FOR A LINE OF ADA SOURCE CODE (NOT INCLUDING AN END-OF-LINE
-- CHARACTER).
-- USED IN: A26007A
.AXINLEN 120

-- $BIG ID1
-- AN IDENTIFIER IN WHICH THE NUMBER OF CHARACTERS IS $S.AX IN LEN.
-- THE MACROSUB PROGRAM WILL SUPPLY AN IDENTIFIER IN WHICH THE
-- LAST CHARACTER IS '1' AND ALL OTHERS ARE 'A'.
-- USED IN: C23003A C23003B C23003C B23003D B23003E C23003G
-- C23003H C230031 C23003J C35502D C35502F
BIG IDI 1

-- SBIG ID2
-- AN IENTIFIER IN WHICH THE NUMBER OF CHARACTERS IS SMAX IN LEN,
-- DIFFERING FROM $BIG IDi ONLY IN THE LAST CHARACTER. THE MACROSUB
-- PROGRAM WILL USE '27 AS THE LAST CHARACTER.
-- USED IN: C23003A C23003B C23003C B23003F C23003G C23003H
-- C230031 C23003J
BIG ID2 A

-- $BIG ID3
-- AN I5ENTIFIER IN WHICH THE NUMBER OF CHARACTERS IS SMAXINLEN.
-- MACROSUB WILL USE -3' AS THE 'MIDDLE" CHARACTER; ALL OTHERS ARE 'A'.
-- USED IN: C23003A C23003B C23003C C23003G C23003H C23003I
-- C23003J
BIG ID3 3AAAAAAIA

-- $BIG ID4
-- AN IDENTIFIER IN WHICH THE NUMBER OF CHARACTERS IS SMAX IN LEN,
-- DIFFERING FROM $BIG ID3 ONLY IN THE MIDDLE CHARACTER. RACROSUB
-- WILL USE '4' AS THE MIDDLE CHARACTER.
-- USED IN: C23003A C23003B C23003C C23003G C23003H C230031
-- C23003J
BIGID4 4AAA

-- $BIG STRING1
-- A STRING LITERAL (WITH QUOTES) WHOSE CATENATION WITH SBIG STRING2
-- ($BIG STRING1 & $BIG STRING2) PRODUCES THE IMAGE OF $BIGIDi.
-- USED TN: C35502D C75502F
BIG STRING1 "

-- $BIG STRING2
-- A STRING LITERAL (WITH QUOTES) WHOSE CATENATION WITH $BIG STRING1
-- ($BIG STRING1 & SBIG STRING2) PRODUCES THE IMAGE OF $BIGYDi.
-- USED IN: C35502D C35502F
BIGSTRING2 A

-- SMAX STRING LITERAL
-- A STRING LITERAL CONSISTING OF $MAX INLEN CHARACTERS (INCLUDING THE
-- QUOTE CHARACTERS).
-- USED IN: A26007A
MAX STRINGLITERAL AAA

-- SNEG BASED INT
-- A BASED INTEGER LITERAL (PREFERABLY BASE 8 OR 16) WHOSE HIGHEST ORDER
-- NON-ZER5 BIT WOULD FALL IN THE SIGN BIT POSITION OF THE
-- REPRESENTATION FOR SYSTEM.MAX INT, I.E., AN ATTEMPT TO WRITE A
-- NEGATIVE VALUED LITERAL SUCH XS -2 BY TAKING ADVANTAGE OF THE
-- BIT REPRESENTATION.
-- USED IN: E24201A
NEG BASED INT 8#37777777776#

-- SBIG INT LIT
-- AN INTEGER LITERAL WHOSE VALUE IS 298, BUT WHICH HAS
-- (SMAX IN LEN - 3) LEADING ZEROES.
-- USED IN:- C24003A
BIG INTLIT 00

-- SBIG REAL LIT
-- A UNIVF-SXL REAL LITERAL WHOSE VALUE IS 690.0, BUT WHICH HAS
-- ($MAX I9 LEN - 5) LEADING ZEROES.

USED IN: C24003B C24003C
BIGREALLIT 00

-- SMAX LEN INT BASED LITERAL
-- A BAgED YNTEGER LITERAL (USING COLONS) WHOSE VALUE IS 2:11:, HAVING
-- ($MAX IN LEN - 5) ZEROES BETWEEN THE FIRST COLON AND THE FIRST 1.
-- USED IN:- C2AO09A
MAX LENINTBASED LITERAL 2:00

-- SMAX LEN REAL BASED LITERAL
-- A BAgED REAL LITERAL (USING COLONS) WHOSE VALUE IS 16:F.E:, HAVING
-- ($MAX IN LEN - 7) ZEROES BETWEEN THE FIRST COLON AND THE F.
-- USED IN:- C2AO09A
MAXLENREALBASEDLITERAL 16:000

-- SBLANKS
-- A SEQUENCE OF ($MAX IN LEN - 20) BLANKS.
-- USED IN: B22001A 92201B B22001C B22001D B22001E B22001F

B22001G B22001I B22001J B22001K B22001L B22001M
B22001N

-K LIMITS OF SAMPLE SHOWN BY ANGLE BRACKETS

.AX DIGITS
N INTEGER LITERAL WHOSE VALUE IS SYSTEM.MAX_DIGITS.
SED IN: B35701A CD7102B
DIGITS 15

NAME
HE NAME OF A PREDEFINED INTEGER TYPE OTHER THAN INTEGER,
HORT INTEGER, OR LONG INTEGER.
IMPLEMIENTATIONS WHICH-HAVE NO SUCH TYPES SHOULD USE AN UNDEFINED
DENTIFIER SUCH AS NO SUCH TYPE AVAILABLE.)
SED IN: AVAT007 C45271D B8600X C7DIO1G

NOSUCHTYPEAVAILABLE

FLOAT NAME
HE NARE OF A PREDEFINED FLOATING POINT TYPE OTHER THAN FLOAT,
HORT FLOAT, OR LONG FLOAT. (IMPLEMENTATIONS WHICH HAVE NO SUCH
'YPES-SHOULD USE AN UNDEFINED IDENTIFIER SUCH AS NOSUCHTYPE.)
SED IN: AVAT013 B86001Z
TNAME NOSUCHTYPE

FIXED NAME
'HE NAME OF A PREDEFINED FIXED POINT TYPE OTHER THAN DURATION.
IMPLEMENTATIONS WHICH HAVE NO SUCH TYPES SHOULD USE AN UNDEFINED
.DENTIFIER SUCH AS NO SUCH TYPE.)
'SED IN: AVAT015 B83001Y-
:D NAME NO SUCH FIXEDTYPE

INTEGER FIRST
,N INTEGER LITERAL, WITH SIGN, WHOSE VALUE IS INTEGER'FIRST.
'HE LITERAL MUST NOT INCLUDE UNDERSCORES OR LEADING OR TRAILING

.LANKS.
JSED IN: C35503F B54BO1B
'GERFIRST -2147483648

3NTEGER LAST
'i.N INTEGER LITERAL WHOSE VALUE IS INTEGER'LAST. THE LITERAL MUST
IOT INCLUDE UNDERSCORES OR LEADING OR TRAILING BLANKS.
SED IN: C35503F C45232A B45B0lB
GER LAST 2147483647

3INTEGER LAST PLUS 1
kN INTEGER LITERAL-WHOSE VALUE IS INTEGER-LAST + I.
JSED IN: C45232A
EGERJLAST PLUSi 2147483648

SMIN INT
AN INTEGER LITERAL, WITH SIGN, WHOSE VALUE IS SYSTEM.MIN INT.
THE LITERAL MUST NOT CONTAIN UNDERSCORES OR LEADING OR TRAILING
3LANKS.
USED IN: C35503D C35503F CD7101B
INT -2147483648

SMAX INT
AN INTEGER LITERAL WHOSE VALUE IS SYSTEM.MAX INT.
THE LITERAL MUST NOT INCLUDE UNDERSCORES OR LEADING OR TRAILING
BLANKS.
USED IN: C35503D C35503F C4AO07A CD7101B
fINT 2147483647

-- $TASK SIZE
-- AN INTEGER LITERAL WHOSE VALUE IS THE NUMBER OF BITS REQUIRED TO
-- HOLD A TASK OBJECT WHICH HAS A SINGLE ENTRY WITH ONE INOUT PARAMETER.
-- USED IN: CD2A91A CD2A91B CD2A91C CD2A91D CD2A91E
:ASK-SIZE 32

-- SMINTASKSIZE
-- AN INTEGER LITERAL WHOSE VALUE IS THE NUMBER OF BITS REQUIRED TO
-- HOLD A TASK OBJECT WHICH HAS NO ENTRIES, NO DECLARATIONS, AND "NULL;-
-- AS THE ONLY STATEMENT IN ITS BODY.
-- USED IN: CD2A95A
AIN.TASKSIZE 32

-- SNAME LIST
-- A LIST OF THE ENUMERATION LITERALS IN THE TYPE SYSTEM.NAME, SEPARATED
-- BY COMMAS.
-- USED IN: CD7003A
NAME LIST MV

-- SDEFAULT SYS NAME
-- THE VALUE OF-THE CONSTANT SYSTEM.SYSTEM NAME.
-- USED IN: CD7004A CD7004C CD7004D
DEFAULT SYS NAME MV

-- $NEW SYS NAME
-- A VALUE 5F THE TYPE SYSTEM.NAME, OTHER THAN SDEFAULT SYS NAME. IF
-- THERE IS ONLY ONE VALUE OF THE TYPE, THEN USE THAT VXLUE7
-- NOTE: IF THERE ARE MORE THAN TWO VALUES OF THE TYPE, THEN THE
-- PERTINENT TESTS ARE TO BE RUN ONCE FOR EACH ALTERNATIVE.
-- USED IN: ED7004B1 CD7004C
NEW SYSNAME MV

-- SDEFAULT STOR UNIT
-- AN INTEGER LITERAL WHOSE VALUE IS SYSTEM.STORAGE UNIT.
-- USED IN: CD7005B ED7005D3M CD7005E
DEFAULT STORUNIT 16

-- $NEW STOR UNIT
-- AN INTEGER LITERAL WHOSE VALUE IS A PERMITTED ARGUMENT FOR
-- PRAGMA STORAGE UNIT, OTHER THAN SDEFAULT STOR UNIT. IF THERE
-- IS NO OTHER PERMITTED VALUE, THEN USE THE VALUE OF
-- $SYSTEM.STORAGE UNIT. IF THERE IS MORE THAN ONE ALTERNATIVE,
-- THEN THE PERTINENT TESTS SHOULD BE RUN ONCE FOR EACH ALTERNATIVE.
-- USED IN: ED7005C1 ED7005D1 CD7005E
NEWSTORUNIT 16

-- SDEFAULT MEM SIZE
-- AN INTEGER LITERAL WHOSE VALUE IS SYSTEM.MEMORYSIZE.
-- USED IN: CD7006B ED7006D3M CD7006E
DEFAULTMEM SIZE 536870912

-- SNEW MEM SIZE
-- AN INTEGER LITERAL WHOSE VALUE IS A PERMITTED ARGUMENT FOR
-- PRAGMA MEMORY SIZE, OTHER THAN SDEFAULT MEM SIZE. IF THERE IS NO
-- OTHER VALUE, THEN USE SDEFAULT MEM SIZE7 If THERE IS MORE THAN
-- ONE ALTERNATIVE, THEN THE PERTINENT TESTS SHOULD BE RUN ONCE FOR
-- EACH ALTERNATIVE. IF THE NUMBER OF PERMITTED VALUES IS LARGE, THEN
-- SEVERAL VALUES SHOULD BE USED, COVERING A WIDE RANGE OF
-- POSSIBILITIES.
-- USED IN: ED7006C1 ED7006D1 CD7006E
NEW MEMSIZE 536870912

" SLOW PRIORITY
- AN IRTEGER LITERAL WHOSE VALUE IS THE LOWER BOUND OF THE RANGE
FOR THE SUBTYPE SYSTEM.PRIORITY.
USED IN: CD7007C

.OW PRIORITY 1

SHIGH PRIORITY
AN INTEGER LITERAL WHOSE VALUE IS THE UPPER BOUND OF THE RANGE
FOR THE SUBTYPE SYSTEM.PRIORITY.
USED IN: CD7007C

IIGHPRIORITY 10

-- $MANTISSA DOC
-- AN INTEGER LITERAL WHOSE VALUE IS SYSTEM.MAX-MANTISSA AS SPECIFIED
-- IN THE IMPLEMENTOR'S DOCUMENTATION.

USED IN: CD7013B
IANTISSADOC 31

$DELTA DOC
-- A REAL-LITERAL WHOSE VALUE IS SYSTE!4.FINEDELTA AS SPECIFIED IN THE
-- IMPLEENTOR'S DOCUMENTATION.
-- USED IN: CD7013D
)ELTADOC 2.0**(-31)

-- STICK
-- A REAL LITERAL WHOSE VALUE IS SYSTEM.TICK AS SPECIFIED IN THE
-- IMPLEMENTOR'S DOCUMENTATION.
-- USED IN: CD7104B
TICK 0.1

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to

the Ada Standard. The following 44 tests had been withdrawn at the time

of validation testing for the reasons indicated. A reference of the

form AI-ddddd is to an Ada Commentary.

A39005G

This test unreasonably expects a component clause to pack an array

component into a minimum size (line 30).

B97102E
This test contains an unintended illegality: a select statement

contains a null statement at the place of a selective wait alternative

(line 31).

C97116A
This test contains race conditions, and it assumes that guards are

evaluated indivisibly. A conforming implememtation may use interleaved

execution in such a way that the evaluation of the guards at lines 50 &

54 and the execution of task CHANGING OF THEGUARD results in a call to

REPORT.FAILED at one of lines 52 or 56.

BC3009B

This test wrongly expects that circular instantiations will be detected

in several compilation units even though none of the units is illegal
with respect to the units it depends on; by AI-00256, the illegality

need not be detected until execution is attempted (line 95).

CD2A62D

This test wrongly requires that an array object's size be no greater
than 10 although its subtype's size was specified to be 40 (line 137).

CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests]

These tests wrongly attempt to check the size of objects of a derived

type (for which a 'SIZE length clause is given) by passing them to a
derived subprogram (which implicitly converts them to the parent type

(Ada standard 3.4:14)). Additionally, they use the 'SIZE length clause

and attribute, whose interpretation is considered problematic by the WG9
ARG.

CD2A8IG, CD2A83G, CD2A84N & M, & CD50110

These tests assume that dependent tasks will terminate while the main

program executes a loop that simply tests for task termination; this is

D-1

not the case, and the main program may loop indefinitely (lines 74, 85,
86 & 96, 86 & 96, and 58, resp.).

CD2BI5C & CD7205C
These tests expect that a 'STORAGESIZE length clause provides precise
control over the number of designated objects in a collection; the Ada
standard 13.2:15 allows that such control must not be expected.

CD2DllB
This test gives a SMALL representation clause for a derived fixed-point
type (at line 30) that defines a set of model numbers that are not
necessarily represented in the parent type; by Commentary AI-00099, all
model numbers of a derived fixed-point type must be representable values
of the parent type.

CD5007B
This test wrongly expects an implicitly declared subprogram to be at the
address that is specified for an unrelated subprogram (line 303).

ED7004B, ED7005C & D, ED7006C & D [5 tests]
These tests check various aspects of the use of the three SYSTEM
pragmas; the AVO withdraws these tests as being inappropriate for
validation.

CD7105A
This test requires that successive calls to CALENDAR.CLOCK change by at
least SYSTEM.TICK; however, by Commentary AI-00201, it is only the
expected frequency of change that must be at least SYSTEM.TICK --
particular instances of change may be less (line 29).

CD7203B, & CD7204B
These tests use the 'SIZE length clause and attribute, whose
interpretation is considered problematic by the WG9 ARG.

CD7205D
This test checks an invalid test objective: it treats the specification
of storage to be reserved for a task's activation as though it were like
the specification of storage for a collection.

CE2107I
This test requires that objects of two similar scalar types be
distinguished when read from a file--DATA ERROR is expected to be raised
by an attempt to read one object as of the other type. However, it is
not clear exactly how the Ada standard 14.2.4:4 is to be interpreted:
thus, this test objective is not considered valid. (line 90)

CE3111C
This test requires certain behavior, when two files are associated with
the same external file, that is not required by the Ada standard.

CE330IA
This test contains several calls to ENDOFLINE & ENDOFPAGE that have

D-2

no parameter: these calls were intended to specify a file, not to refer
to STANDARDINPUT (lines 103, 107, 118, 132, & 136).

CE3411B
This test requires that a text file's column number be set to COUNT'LAST
in order to check that LAYOUTERROR is raised by a subsequent PUT
operation. But the former operation will generally raise an exception
due to a lack of available disk space, and the test would thus encumber
validation testing.

E28005C
This test expects that the string "-- TOP OF PAGE. --63" of line 204
will appear at the top of the listing page due to a pragma PAGE in line
203; but line 203 contains text that follows the pragma, and it is this
that must appear at the top of the page.

D-3

APPENDIX E

COMPILER OPTIONS AS SUPPLIED BY

Loral/Rolm Mil-Spec Computers

Compiler: ADE Revision 3.01

ACVC Version: 1.10

E-1

DATA GENERAL CORP TELE CON RTP
¢ t P.ei.

'The following compler switches are available for DG ADE 3.01:

" /ASSEMBLY Preserves the assembly lanquage for an Ada program
in a .SR file. If this switch is not given, the
assembly-language source may be deleted after the
compilation; this option is controlled by the ADE
configuration. (For details on ADE configuration,
see the ADE release notice.) When the user supplies
this switch, the Ada source code will appear as
comments in the .SR file. Use this switch for
machine-level debugging only.

/AUTOINLINflNG Tells the compiler to inline any subroutine called
n or fewer times. For the compiler to perform
automatic inlining on a subroutine, the subroutine
must not be visible outside its compilation unit, and
must also pass some implementation restrictions which
ensure the code will be duplicated no more than n
times. Automatic inlining will not occur when the
/NO INLINING switch is present. Do not use
/AUTO INLINING on a source which contains
MACHINE CODE subroutines which manipulate parameters,
because parameters are not passed on the stack to an
inlined subroutine. When /AUTO INLINING-0, the
compiler will not generate code-for unreferenced
subroutines which pass the automatic inlining
implementation restrictions.

/CONFIGURATION-configname

Generate code for the configuration whose source
text statements begin: "--/configname". You may give
multiple confignames by separating them with
underscores (for example:
/CONFIGURATION-configlconfig2config3).

/CPL-n Controls listing columns-per-line. The value of n
may be from 40 to 200, and includes eight columns per
line used by the compiler. Lines that are longer than
n columns are split so that indentation is preserved
when possible.

/DEBUG Compiles filename for use with the Ada Source Code
Debugger. (The Ada Debugger is sold separately with
the ADEX product and may not be available at your
site.) NOTE: Compiling with the /DEBUG switch will
increase the volume of generated code and decrease
runtime performance.

/ERRORS Inhibits a full listlng. Puts only error messag s (if
any) in the .LST. If thers are no errors, the listing
file will be empty.

/IDIR-dirname Specifies the directory where otherwise unqualified
input filenames may be obtained. When input Vathnames
include a directory prefix, the IDIR= switch is
ignored.

,. /LIBRARY-libname Names the target Ada library into which the source
is to be compiled. If omitted, ADE uses the current
directory's default library. All binaries output by
the compiler are placed in the same directory as the

"ATA GENERAL CORP TELE CCr- RTP

one in which the target library reside.

/LPP-n Controls listing lines-per-page, where n is an integer
in the range 0..66. A value of 0 disables page ejects
and headings. Default n is 66.

/?IN PROGRAM-name] Specifies the source is a main program. If the source
file contains more than one library unit, the
/MAIN PROGRAM-name keyword switch must be used.

/NO-SYSTEM Prevents automatic inclusion of Ada elytem library in
the library searchlist for this compile.

/NO INLINING Overrides /AUTO INLINING and pragma INLINE. Since
the Ada Source Code Debugger cannot debug inlined
subprograms, use of this switch will help in using
the Debugger.

/SUPPRESS SLppresses all run-time checking in the code output by
the compiler, including range checking and record
variant checking. This makes your compiled program
run faster, but also makes debugging more difficult.

/TABLE Generates information needed by the Ad Source Code
Debugger to view information, but not set breakpoints
nor step. You need not include this switch if the
/DEBUG switch is specified. NOTE: This switch
increases the generated code size and decreases
runtime performance, but not as much as the /DEBUG
switch.

