SECURITY CLASSIFICATION OF TWIS PAGE (When Data¥ntered’ AD.—A219 441

UNCLASSIFIED

RIAD DISTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETEING FORM
1. REPORT NUMBLR j2. GOVY ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

1
OTC FILE copy
4. TITLE (and Subtitie) C MR 5. TYPE OF REPORY B PELRIOD COVERLD

Ada Compiler Validation Summary Re?ort'LonﬂKRohJOQ Aug. 1989 to 0l Dec. 1990
Mil-Spec Computers ADE, Revision 000 (Host) to

HAWK/32 (Target), 89080wSl.10141 8. ’{l'ORlXNG)ﬂC. REPOAT MUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

National Institute of Standards and Technology
Gaithersburg, Maryland, USA

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PRCOECT, TASK

AREA & WORK UNIT NUMEERS
National Institute of Standards and Technology !

Gaithersburg, Maryland, USA

11. CONTROLLING OFFICE WAME AND ADDRESS 12. REPORT DATE

ada nggt Progéam Office ¢ Def

nite tates epartment o© elense s

Washington, DC 20301-3081 - WURSRR T FALLS
14, MONITORING AGENCY NAME & ADDRESS(/f different from Controliing Office) 15, SECURITY CLASS (of thisreport)
National Institut f Standard d Technolo LNCLASSIFIED

ational Institute o andards and Technology T58. DECLASSIFICATION, DOWNSRADING
Gaithersburg, Maryland, USA gﬁ&oufé

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMINT (of the abstract entered :n Biock 20 f oifferent from Report)

UNCLASSIFIED

18. SUPP._EMENTARY NOTES

19. KEYWORDS (Continue onreverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Cormpiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facxlxty, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRALT (Continue on reverse side if necessary and identify by biock number)

Laral/Rolm Mil-Spec Computers, Gaithersburg, Maryland, ADE Revision 3.01, MV 10000
under AO0S/VS 7.64 (Host) to HAWK/32 under AOS/VS 7.64 (Target), ACVC 1.10.

DD YU 1473 eDITION OF 1 WOV 85 1S OBSOLETE

13ax 73 S/N 0102-LF-014-8601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

AVF Control Number: NIST89ROL535_1 1.10

PRE-VALIDATION: 19 JULY 1989
ON-SITE: 04 AUGUST 1989
LAST REVISION: 14 DECEMBER 1989
LAST REVISION: 04 JANUARY 1990

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 890804S1.10141
Loral/Rolm Mil-Spec Computers
ADE, Revision 3.01
MV 10000 Host and HAWK/32 Target

Completion of On-Site Testing:
4 August 1989

Prepared By:

Software Standards Validation Group
National Computer Systems Laboratory
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, Maryland 20899

Prepared For:
Ada Joint Program Office
United States Department of Defense
Washington DC 20301-3081

AVF Control Number: NIST89ROL535_1 1.10

Ada Compiler Validation Summary Report:

Compiler Name: ADE Revision 3.01

Certificate Number: 890804S1.101l4l

Host: MV 10000 under AOS/VS 7.64

Targect: HAWK/32 under AO0S/VS 7.64

Testing Completed 4 August 1989 Using ACVC 1.10

This report has been reviewed and is approved.

/4 /[

4 N]
Ada Validation Faciiiy&
Mr. L. Arnold Johus
Manager, Software “Standards
‘Validation Group
Engineering Division
National Computer Systems

Laboratory (NCSL)

Ada/Validacion Facilicy
Dr’/ David K. Jefferson
Chief, Information Systems
Engineering Division
National Computer Systems
Laboratory (NCSL)
National Institute of

Standards and Technology
Building 225, Room A266
Gaithersburg, MD 20899

7

LAY e W

Ada Validation Otganization
Dr. John F. Kramer

Institute for Defense Analyses
Alexandria VA 22311

VLT,

Acda Joint Program Office
Dr. John Solomond
Director

Department of Defense
Washington DC 20301

National Institute of
Standards and Technology
Building 225, Room A266
Gaithersburg, MD 20899

Accesion For

— .
NTIS CRA&I

DTIC TaB 0
Unarionced |

b— - .. . P OV U VR |
Avamiepiniy (ndas

et e e v ————

LAV T or

o Clal

CHAPTER 1

el
VW

CHAPTER 2

w

CHAPTER

WWWwWwwwWwwwww

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

NN N N YW PO

w N =

TABLE OF CONTENTS

INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT
USE OF THIS VALIDATION SUMMARY REPORT
REFERENCES

DEFINITION OF TERMS

ACVC TEST CLASSES

CONFIGURATION INFORMATION

CONFIGURATION TESTED . .
IMPLEMENTATION CHARACTERISTICS

TEST INFORMATION

TEST RESULTS . .
SUMMARY OF TEST RESULTS BY CLASS .
SUMMARY OF TEST RESULTS BY CHAPTER .
WITHDRAWN TESTS
INAPPLICABLE TESTS .
TEST, PROCESSING, AND EVALUATION MODIFICATIONS
ADDITIONAL TESTING INFORMATION .
Prevalidation
Test Method
Test Site

CONFORMANCE STATEMENT
APPENDIX F OF THE Ada STANDARD
TEST PARAMETERS

WITHDRAWN TESTS

COMPILER OPTIONS AS SUPPLIED BY
Loral/Rolm Mil-Spec Computers

L]
O 00 00 00 00 N N MO =

W WWWwWwWwwwww
]

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that
is not in the Standard. .

\
Even though all validated)Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between
implementations. The da Standard permits some implementation
dependencies--for examplg, the maximum length of identifiers or the

maximum values of integer types. Other differences between compilers
result from the characlkteristics of particular operating systems,
hardware, or implementatipn strategies. All the dependencies observed

during the process of testling this compiler are given in this report.
The information in this report is derived from the test results produced
during validation testing. \The validation process includes submitting a
suite of standardized tests| the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of wvalidating is to ensure
conformity of the compiler to the Ada Standard by testing that the
compiler properly implements legal language constructs and that it
identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent, but is permitted
by the Ada Standard. Six classes of tests are used. These tests are
designed to perform checks at compile time, at link time, and during
execution.

[),'».

1-1

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT
This VSR documents the results of the vaiidation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by GEMMA Corp under the direction
of the AVF according to procedures established by the Ada Joint Program
Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed &4 August 1989 at Loral/Rolm Mil-Spec
Computers.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. In the United
States, this is provided in accordance with the "Freedom of Information
Act" (5 U.S5.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and complete, or that the subject compiler has no
nonconformities to the Ada Standard other than those presented. Copies
of this report are available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

OUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Software Standards Validation Group

Institute for Computer Sciences and Technology
National Bureau of Standards

Building 225, Room A266

Gaithersburg, Maryland 20899

1-2

Questions regarding this report or the validation test results should be

directed to the

1.3 REFERENCES

1. Reference
ANSI/MIL-S

AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

Manual for the Ada Programming Language,
TD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers’ Guide, SofTech,

Inc., Dece

4. Ada Compil

1.4 DEFINITION

ACVC

Ada

Ada Standard
Applicant

AVF

AVO

mber 1986.

er Validation Capability User’'s Guide, December 1986.
OF TERMS

The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to
the Ada programming language.

An Ada Commentary contains all information relevant to
the Commentary point addressed by a comment on the Ada
Standard. These comments are given a unique
identification number having the form AI-ddddd.

ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.
The agency requesting validation.

The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures

contained in the Ada Compiler Validation Procedures and

Guide e

The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for wvalidation of Ada
compilers. The AVO provides administrative and

1-3

technical support for Ada validations to ensure
consistent practices.

Compiler A processor for the Ada language. In the context of
this report, a compiler is any language processor,
including cross-compilers, translators, and
interpreters.

Failed test An ACVC test for which the compiler generates a result

that demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a

test compiler is not required to support or may legitimately
support in a way other than the one expected by the
test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer which executes the code generated by the
compiler.

Test A program that checks a compiler’s conformity regarding

a particular feature or a combination of features to the
Ada Standard. In the context of this report, the term
is used to designate a single test, which may comprise
one or more files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be
incorrect because it has an invalid test objective,
fails to meet its test objective, or contains illegal or
erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce errors
because of the way in which a program library is used at link time.

Class A tests ensure the successful compilation and execution of legal
Ada programs with certain language constructs which cannot be verified

at run time. There are no explicit program components in a Class A test

1-4

to check semantics. For example, a Class A test checks that reserved
words of another language (other than those already reserved in the Ada
language) are not treated as reserved words by an Ada compiler. A Class
A test is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
compiler.

Class C tests check the run time system to ensure that legal Ada
programs can be correctly compiled and executed. Each Class C test is
self-checking and produces a PASSED, FAILED, or NOT APPLICABLE message
indicating the result when it is executed.

Class D tests check the compilation and execution capacities of a
compiler. Since there are no capacity requirements placed on a compiler
by the Ada Standard for some parameters--for example, the number of
identifiers permitted in a compilation or the number of units in a
library--a compiler may refuse to compile a Class D test and still be a

conforming compiler. Therefore, if a Class D test fails to compile
because the capacity of the compiler is exceeded, the test is classified
as inapplicable. If a Class D test compiles successfully, it is

self-checking and produces a PASSED or FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the
Ada Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is
rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is
attempted. A Class L test passes if it is rejected at link time--that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated. In some cases, an
implementation may legitimately detect errors during compilation of the
test.

Two 1library units, the package REPORT and the procedure CHECK_FILE,

support the self-checking features of the executable tests. The package
REPORT provides the mechanism by which executable tests report PASSED,

1-5

FAILED, or NOT APPLICABLE results, It also provides a set of identity
functions used to defeat some compiler optimizations allowed by the Ada
Standard that would circumvent a test objective. The procedure
CHECK_FILE is used to check the contents of text files written by some
of the Class C tests for Chapter 14 of the Ada Standard. The operation
of REPORT and CHECK_FILE is checked by a set of executable tests. These
tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then
the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended
to ensure that the tests are reasonably portable without modification.
For example, the tests make use of only the basic set of 55 characters,
contair lines with a maximum length of 72 characters, use small numeric
values, and place features that may not be supported by all

implementations in separate tests. However, some tests contain values
that require the test to be customized according to
implementation-specific values--for example, an illegal file name. A

list of the values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable
to the implementation. The applicability of a test to an
implementation is considered each time the implementation is validated.
A test that is inapplicable for one validation is not necessarily
inapplicable for a subsequent validation. Any test that was determined
to contain an illegal language construct or an erroneous language
construct is withdrawn from the ACVC and, therefore, is not used in
testing a compiler. The tests withdrawn at the time of this validation
are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED
The candidate compilation system for this validation was tested under
the following configuration:
Compiler: ADE Revision 3.01
ACVC Version: 1.10
Certificate Number: 890804S1.10141
Host Computer:
Machine: MV 10000
Operating System: AOS/VS 7.64

Memory Size: 16 MBytes

Target Computer:
Machine: L.RMSC HAWK/32
Operating System: AOS/VS Revision 7.64

Memory Size: 8 MBytes

2-1

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior
of a compiler in those areas of the Ada Standard that permit
implementations to differ. <Class D and E tests specifically check for

such implementation differences. However, tests in other classes also
characterize an implementation. The tests demonstrate the following
characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing
723 variables in the same declarative part. (See test
D29002~..)

(2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55A03A..H (8
tests).)

(3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly prdcesses tests containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests D6400SE..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined
types SHORT_INTEGER (B86001V) and LONG_FLOAT (B86001U) in
the package STANDARD. (See tests B86001T..Z (7 tests).)

¢. Based literals.

(1) An implementation is allowed to raise NUMERIC_ERROR or
CONSTRAINT_ERROR when a value exceeds SYSTEM.MAX INT. This
implementation raises NUMERIC_ERROR during execution. (See
test E24201A.)

d. Expression evaluation,.

The order in which expressions are evaluated and the time
at which constraints are checked are not defined by the
language. While the ACVC tests do not specifically attempt
to determine the order of evaluation of expressions, test
results indicate the following:

(1) None of the default initialization expressions for record
components are evaluated before any value is checked for

2-2

membership in a component’s subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same
precision as the base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision
and uses all extra bits for extra range. (See test
C35903A.)

(4) NUMERIC_ERROR is raised when an integer literal operand in
a comparison or membership test is outside the range of the
base type. (See test C45232A.)

(5) No exception is raised when a literal operand in a
fixed-point comparison or membership test is outside the
range of the base type. (See test C45252A.)

(6) Underflow is not gradual. (See tests C45524A..Z (26
tests).)
Rounding.

The method by which values are rounded in type conversions is
not defined by the language. While the ACVC tests do not
specifically attempt to determine the method of rounding, the
test results indicate the following:

(1) The method used for rounding to integer is round away from
zero. (See tests C46012A..Z (26 tests).)

(2) The method used for rounding to longest integer is round
away from zero. (See tests C46012A..Z (26 tests).)

(3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See test
C4AOQL4A.)

Array types.

An implementation is allowed to raise NUMERIC_ERROR or
CONSTRAINT_ERROR for an array having a ‘LENGTH that exceeds
STANDARD . INTEGER'LAST and/or SYSTEM.MAX_ INT. For this
implementation:

(1) Declaration of an array type or subtype declaration with
more than SYSTEM.MAX INT components raises no exception.
(See test C36003A.)

(2) NUMERIC_ERROR is raised when 'LENGTH is applied to an array
type with INTEGER'LAST + 2 components. (See test C36202A.)

2-3

(3

(4)

(5)

(6)

(7

NUMERIC_ERROR is raised when 'LENGTH is applied to an array
type with SYSTEM.MAX INT + 2 components. (See test
C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding
INTEGER'LAST raises STORAGE_ERROR} when the array objects
are declared. (See test C52103X.)

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises STORAGE ERROR when the array
objects are declared. (See test C52104Y.)

In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression’s subtype is
compatible with the target’s subtype. (See test C52013A.)

In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT_ERROR is
raised when checking whether the expression’'s subtype is
compatible with the target’'s subtype. (See test C52013A.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC_ERROR or CONSTRAINT_ERRCR

either when declared or assigned. Alternatively, an
implementation may accept the declaration. However,
lengths must match in array slice assignments. This

implementation raises no exception. (See test E52103Y.)

Discriminated types.

(1) In assigning record types with discriminants, the
expression is evaluated in its entirety before
CONSTRAINT_ERROR 1is raised when checking whether the
expression’s subtype is compatible with the target’s
subtype. (See test C52013A.)

Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, the
test results indicate that all choices are evaluated before
checking against the index type. (See tests C43207A and
C43207B.)

(2) In the evaluation of an aggregate containing subaggregates,

(3

not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

CONSTRAINT_ERROR is raised after all choices are evaluated
when a bound in a non-null range of a non-null aggregate

2-4

-

does not belong to an index subtype. (See test E43211B.)
Pragmas.

(1) (The pragma INLINE is supported for functions or
procedures. (See tests LA3004A..B (2 tests), EA3004C..D (2
tests), and CA3004E..F (2 tests).)

Generics.

(1) Generic specifications and bodies cannot be compiled in
separate compilations. (See tests CA1012A, CA2009C,
CA2009F, BC3204C, and BC3205D.)

(2) Generic subprogram declarations and bodies cannot be
compiled in separate compilations. (See tests CAl0l12A and
CA2009F.)

(3) Generic library subprogram specifications and bodies cannot
be compiled in separate compilations. (See test CAl012A.)

(4) Generic non-library package bodies as subunits cannot be
compiled in separate compilations. (See test CA2009C.)

(5) Generic non-library subprogram bodies cannot be compiled in
separate compilations from their stubs. (See test
CA2009F.)

(6) Generic unit bodies and their subunits cannot be compiled
in separate compilations. (See test CA3011lA.) '

(7) Generic package declarations and bodies cannot be compiled
in separate compilations. (See tests CA2009C, BC3204C, and
BC3205D.)

(8) Generic library package specifications and bodies cannot be
compiled in separate compilations. (See tests BC3204C and
BC3205D.)

(9) Generic unit bodies and their subunits cannot be compiled
in separate compilations. (See test CA3011A.)

Input and output.

(1) The package SEQUENTIAL_IO cannot be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE2101C,
EE2201D, and EE2201E.)

(2) The package DIRECT_IO cannot be instantiated with
unconstrained array types and record types with

discriminants without defaults. (See tests AE2101H,

2-5

(3)

(4)

(5)

(6)

(7

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

EE2401D, and EE2401G.)

Modes IN_FILE and OUT_FILE are supported for SEQUENTIAL_IO.
(See tests CE2102D..E, CE2102N, and CE2102P.)

Modes IN_FILE, OUT_FILE, and INOUT_FILE are supported for
DIRECT_I0. (See tests CE2102F, CE2102I1..J (2 tests),
CE2102R, CE2102T, and CE2102V.)

Modes IN_FILE and OUT_FILE are supported for text files.
(See tests CE3102E and CE3102I..K (3 tests).)

RESET and DELETE operations are supported for
SEQUENTIAL_IO. (See tests CE2102G and CE2102X.)

RESET and DELETE operations are supported for DIRECT_IO.
(See tests CE2102K and CE2102Y.)

RESET and DELETE operations are supported for text files.
(See tests CE3102F..G (2 tests), CE3104C, CE3110A, and
CE31144A.) :

Overwriting to a sequential file does not truncate the
file. (See test CE2208B.)

Temporary sequential files are given names and deleted when
closed. (See test CE2108A.)

Temporary direct files are given names and deleted when
closed. (See test CE2108C.)

Temporary text files are given names and deleted when
closed. (See test CE3112A.)

More than one internal file can be associated with each
external file for sequential files when writing or reading.
(See tests CE2107A..E (5 tests), CE2102L, CE2110B, and
CE2111D.)

More than one internal file can be associated with each
external file for direct files when writing or reading.
(See tests CE2107F and CE2110D.)

More than one internal file can be associated with each

external file for text files when writing or reading. (See
tests CE3111A, CE31111D..E (2 tests), and CE3114B.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

%%
Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF

determined that 572 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for
201 executable tests that use floating-point precision exceeding that
supported by the implementation. Modifications to the code, processing,
or grading for one test was required to successfully demonstrate the
test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B c D E L
Passed 124 1129 1768 15 21 44 3101
Inapplicable 5 9 547 2 7 2 572
Withdrawn 1 2 35 0 6 0 44
TOTAL 130 1140 2350 17 34 46 3717

3-1

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 S 6 7 8 9 10 _11 _12 _13 _14

Passed 194 573 533 245 172 99 158 331 131 36 250 90 289 3101
Inapplicable 18 76 147 3 0 O 8 1 6 0 2279 32 572
Wdrn 1 1 0 0 o0 0o O 2 6 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at the time
of this validation:

A39005G B97102E C97116A BC3009B CD2A62D CD2A63A CD2A63B
CD2A63C CD2A63D CD2A66A CD2A66B CD2A66C CD2A66D CD2A73A
CD2A73B CD2A73C CD2A73D CD2A76A CD2A76B CD2A76C CD2A76D
CD2A81G CD2AB3G CD2A84M CD2A84N CD2B15C CD2D11B CD5007B
CD50110 CD7105A CD7203B CD7204B CD7205C CD7205D CE21071
CE3111C CE3301A CE3411B E28005C ED7004B ED7005C ED7005D
ED7006C ED7006D

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of
features that a compiler is not required by the Ada Standard to support.
Others may depend on the result of another test that is either
inapplicable or withdrawn. The applicability of a test to an
implementation is considered each time a validation is attempted. A
test that is inapplicable for one validation attempt is not necessarily
inapplicable for a subsequent attempt. For this validation attempt, 572
tests were inapplicable for the reasons indicated:

The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)

3-2

C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..2Z2 (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 4 tests are not applicable because the tests
require a source line of characters which is greater than the
120 character source line which this implementation does
support:

C24113H. .K (4 tests)

The following 34 tests are not applicable because ‘SIZE
representation clauses for enumeration types are not supported:

A39005B CD1009B CD1009P CD2A21A CD2A21B
CD2A21C CD2A21D CD2A21E CD2A22A CD2A22B
CD2A22C CD2A22D CD2A22E CD2A22F CD2A22G
CD2A22H CD2A221 CD2A22J CD2A23A CD2A23B
CD2A23C CD2A23D CD2A23E CD2A24A CD2A24B
CD2A24C CD2A24D CD2A24E CD2A24F CD2A24G
CD2A24H CD2A241 CD2A24J ED2A26A

C34006D is not applicable because use of record descriptors for
arrays gives larger 'SIZE for array.

C35702A and B86001T are not applicable because this

implementation supports no predefined type SHORT_FLOAT.

The following 14 tests are not applicable because 'STORAGE SIZE
not supported:

A39005C C87B62B CD1009J CD1OO9R CD1009S
CD1C03C CD2B11B CD2Bl1C CD2Bl11D CD2BllE
CD2B11F CD2B11G CD2B15B CD2Bl6A

The following 7 tests are not supported because ‘SMALL
representation clauses are not supported:

A39005E C87B62C CDI1OO9L CDICO3F CD2Dl1A
CD2D11B CD2D13A
The following 16 tests are not applicable because this

implementation does not support a predefined type LONG_INTEGER:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C€55B07A BSS5B0O9C B86001W
CD7101F

3-3

C455311..P (8 tests) and C455321..P (8 tests) are not applicable
because the value of SYSTEM.MAX MANTISSA is less than 1ll.

C4A013B 1is not applicable because the evaluation of an
expression involving ‘MACHINE RADIX applied to the most precise.
floating-point type would raise an exception; since the
expression must be static, it is rejected at compile time.

D4AOO2B and D4AOQ4B use 64-bit integer calculations which are
not supported by this compiler.

B86001X, C€45231D, and CD7101G are not applicable because this
implementation does not support any predefined integer type with
a name other than INTEGER or SHORT_INTEGER.

B8600lY is not applicable because this implementation supports
no predefined fixed-point type other than DURATION.

B86001Z is not applicable because this implementation supports
no predefined floating-point type with a name other than FLOAT
or LONG_FLOAT.

The following 24 tests are not applicable because 'SIZE
representation clauses for integer types are not supported:

C87B62A CD1009A CD10090 CD1CO3A CD1lcO4A
CD2A31A CD2A31B CD2A31C CD2A31D CD2A32A
CD2A32B CD2A32C CD2A32D CD2A32E CD2A32F
CD2A32G CD2A32H CD2A32I CD2A32J CD2A64B
CD2A64D CD2A65B CD2A65D CD2A74B

C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

CA1012A, CA2009C, CA2009F, CA3011A, BC3204C, BC3204D, LAS008M
and LAS008N are not applicable because this implementation does
not permit compilation in separate files of generic
specifications and bodies or of specifications and bodies of
subunits of generic units.

The following 16 tests are not applicable because 'SIZE
representation clauses for floating-point types are not
supported:

CD1009C CD2A41A CD2A41B CD2A41C CD2A4L1D
CD2A41E CD2A42A CD2A42B CD2A42C CD2A42D
CD2A42E CD2A42F CD2A42G CD2A42H CD2A42I
CD2A42J

The following 31 tests are not applicable because ’'SIZE
representation clauses for fixed-polint types are not supported:

3-4

CD1009D CD1009Q CD1CO4C CD2A51A CD2A51B
CD2A51C CD2A51D CD2AS1E CD2A52A CD2AS52B
CD2A52C CD2A52D CD2A52G CD2A52H CD2A52I
CD2A52J CD2A53A CD2A53B CD2AS3C CDb2A53D
CD2A53E CD2A54A CD2AS4B CD2AS4C CD2AS54D
CDZA54G CD2A54H CD2A541 CD2A54J ED2A56A
ED2A86A

The following 21 tests are not applicable because 'SIZE
representation clauses for array types are not supported:

CD1009E CD10OS9F CD2A61A CD2A61B CD2A61C
CD2A61D CD2A61lE CD2A61F CD2A61G CD2A61H
CD2A611 CD2A61J CD2A61K CD2A61L CD2A62A
CD2A62B CD2A62C CD2A64A CD2A64C CD2A65A
CD2A65C

The following 16 tests are not applicable because 'SIZE
representation clauses for record types are not supported:

CD1009G CD2A71A CD2A71B CD2A71C CD2A71D
CD2A72A CD2A72B CD2A72C CD2A72D CD2A74A
CD2A74C CD2A74D CD2A75A CD2A75B CD2A75C
CD2A75D

The following 1 test 1s not applicable because 'SIZE
representation clauses for private types are not supported:

CD100%H

The following 1 test 1s not applicable because 'SIZE
representation clauses for limited private types are not
supported:

CD10091

The following 22 tests are not applicable because 'SIZE
representation clauses for access types are not supported:

CD2A81A CD2A81B CD2A81C CD2A8B1D CD2AS81E
CD2A81F CD2A83A CD2A83B CD2A83C CD2A83E
CD2A83F CD2A84B CD2A84C CD2A84D CD2ASB4E
CD2A84F CD2A84G CD2A84H CD2AS84I CD2A84K
CD2A84L CD2A87A

The following 5 tests are not applicable because 'SIZE
representation clauses for task types are not supported:

CD2A91A CD2A91B CD2A91C CD2A91D CD2A91E
The following 12 tests are not applicable because of

3-5

restrictions on the use of enumeration types for which an
enumeration representation clause has been given:

CD3014A CD3014B CD3014D CD3014E CD301sa
CD3015B CD3015D CD3015E CD3015G CD30151
CD3015J CD3015L

CD4031A, CD4051C, and CD40S5S1D are not applicable because record
representation clauses are not supported for record types with
discriminant parts.

The following 46 tests are not applicable because, for this
implementation, SYSTEM.ADDRESS clauses for variables are not
supported:

CD5003B..I (8 tests) CD5011A CD5011C CDSO11E
CDS5S011G CD50111I CD5011K CDSO11M CD5011Q
CD5012A. .8 CDS5012E..F CD5012I..J CD5012M CD5013A
CD5013C CD5013E CD5013G CD50131 CD5013K
CD5013M CD50130 CD5013S CD5014A CD5014cC
CD5014E CD5014G CD50141 CD5014K CD5014M
CD50140 CD5014S..T CD5014V CD5014X..Z (3 tests)

The following 30 tests are not applicable because, for this
implementation, SYSTEM.ADDRESS clauses for constants are not
supported:

CD5011B CD5S011D CD5011F CD5011H CD5011L
CDSO011N CD5011R CD5011s CD5012C CD5012D
CD5012G CD5012H CD5012L CD5013B CD5013D
CD5013F CD5013H CD5013L CD5013N CD5013R
CD5014B CD5014D CD5014F CD5014H CD5014J
CD5014L CD5O0L4N CD5014R CD5014U CD5014W

AE2101C, EE2201D, and EE2201E use instantiations of package
SEQUENTIAL IO with unconstrained array types and record types
with discriminants without defaults. These instantiations are
rejected by this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package
DIRECT IO with unconstrained array types and record types with
discriminants without defaults. These instantiations are
rejected by this compiler.

CE2102D 1is inapplicable because this implementation supports
CREATE with IN_FILE mode for SEQUENTIAL_IO.

CE2102E 1is 1inapplicable because this implementation supports
CREATE with OUT_FILE mode for SEQUENTIAL IO.

CE2102F 1is 1inapplicable because this implementation supports
CREATE with INOUT_FILE mode for DIRECT_IO.

3-6

CE2102I 1is 1inapplicable because this implementation supports
CREATE with IN_FILE mode for DIRECT_IO.

CE2102J 1is inapplicable because this implementation supports
CREATE with OUT_FILE mode for DIRECT_IO.

CE2102N is inapplicable because this implementation supports
OPEN with IN_FILE mode for SEQUENTIAL_IO.

CE21020 is inapplicable because this implementation supports
RESET with IN_FILE mode for SEQUENTIAL IO.

CE2102P is inapplicable because this implementation supports
OPEN with OUT_FILE mode for SEQUENTIAL IO.

CE2102Q is 1inapplicable because this implementation supports
RESET with OUT_FILE mode for SEQUENTIAL_IO.

CE2102R is inapplicable because this implementation supports
OPEN with INOUT_FILE mode for DIRECT_IO.

CE2102S 1is inapplicable because this implementation supports
RESET with INOUT_FILE mode for DIRECT_IO.

CE2102T is inapplicable because this implementation supports
OPEN with IN_FILE mode for DIRECT_IO.

CE2102U 1is inapplicable because this implementation supports
RESET with IN_FILE mode for DIRECT_IO.

CE2102V is inapplicable because this implementation supports
OPEN with OUT_FILE mode for DIRECT_IO.

CE2102W 1is inapplicable because this implementation supports
RESET with OUT_FILE mode for DIRECT_IO.

CE2107G, CE2107H, CE2111H, CE3111B, and CE3115A are not
applicable because they wrongly assume that input operations are

not buffered.

CE3102E is inapplicable because text file CREATE with IN_FILE
mode is supported by this implementation.

CE3102F is inapplicable because text file RESET is supported by
this implementation.

CE3102G 1is 1inapplicable because text file deletion of an
external file is supported by this implementation.

CE3102I is inapplicable because text file Cause text file CREATE
with OUT_FILE mode is supported by this implementation.

3-7

CE?102J is inapplicable because text file OPEN with IN_FILE mode
is supported by this implementation.

CE3102K 1is inapplicable because text file OPEN with OUT_FILE
mode is not supported by this implementation.
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate

implementation behavior. Modifications are made by the AVF in cases
where legitimate implementation behavior prevents the successful
completion of an (otherwise) applicable test. Examples of such

modifications include: adding a length clause to alter the default size
of a collection; splitting a Class B test into subtests so that all
errors are detected; and confirming that messages produced by an
executable test demonstrate conforming behavior that was not anticipated
by the test (such as raising one exception instead of another).

Modifications were required for one test CC1223A. CC1223A was modified
according to AVO instructions to replace the expression
"2+%*T'MANTISSA-1" at line 262 with "2*%%(T'MANTISSA-1)-1)"; the original
expression raised an exception because 2**T'MANTISSA exceeds
SYSTEM.MAX INT.

3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation

Prior to wvalidation, a set of test results for ACVC Version 1.10
produced by the ADE Revision 3.01 compiler was submitted to the AVF by
the applicant for review. Analysis of these results demonstrated that
the compiler successfully passed all applicable tests, and the compiler
‘exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the ADE Revision 3.01 compiler using ACVC Version 1.10 was
conducted on-site by a validation team from the AVF. The configuration
in which the testing was performed is described by the following
designations of hardware and software components:

Host computer: MV 10000
Host operating system: AOS/VS 7.64
Target computer: HAWK/32

Target operating system: AOS/VS Revision 7.64
A tape containing all tests except for withdrawn tests and tests

3-8

requiring unsupported floating-point precisior was taken on-site by the
validation team for processing.

The contents of the tape were loaded directly onto the host computer.
After the test files were loaded to disk, the full set of tests was
compiled, linked, and all executable tests were run on the HAWK/32
under AOS/VS 7.64. Results were printed from the MV 10000 computer.

The compiler was tested using command scripts provided by Loral/Rolm
Mil-Spec Computers and reviewed by the validation team. See Appendix E
for a complete listing of the available compiler options for this
implementation. The only option invoked during this wvalidation was:

MAIN_PROGRAM.
Tests were compiled, linked, and executed (as appropriate) using one
host computer, the MV 10000, and one target computer, the HAWK/32 under
AOS/VS 7.64. Test output, compilation 1listings, and job logs were
captured on tape and archived at the AVF.

3.7.3 Test Site

Testing was conducted at Loral/Rolm Mil-Spec Computers and was completed
on 04 August 1989,

3-9

APPENDIX A

DECLARATION OF CONFORMANCE

Loral/Rolm Mil-Spec Computers has submitted the following
Declaration of Conformance concerning the

HOST: MV 10000

TARGET: HAWK/32 under AOS/VS 7.64.

A-1

Attachment 4

DECLARATION OF CONFORMANCE

Compiler Implementer: Loral/Rolm Mil-Spec Computers
Ada Validation Facility: Institute for Computer Sci.and Techn.
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: ADE Revision: 3.01

Host Architecture - ISA: MV 10,000 OS&VER # AQOS/VS 7.64
Target Architecture - ISA: HAWK/32 OS&VER #: AQOS/VS 7.64
Target Architecture - ISA: HAWK/32 OS&VER #: ARTS/32 2.71

Derived Compiler Registration

Derived Compiler Name: ADE Revision: 3.01

Host Architecture - ISA: MV Family OS&VER #: AQS/VS 7.64
Target Architecture - ISA: MV Family OS&VER #: AOS/VS 7.64
Target Architecture - ISA: HAWK/32 OS&VER #: AOS/VS 7.64
Target Architecture - ISA: HAWK/32 OS&VER #: ARTS/32 2.71

Owner / Implementer's Declaration

I, the undersigned, representing Rolm Mil-Spec Computers
have implemented no deliberate extensions to the Ada Language
Standard ANSI/MIL-~-STD-1815A in the compiler(s) listed in this
declaration. I declare that Rolm Mil-Spec Computers is the owner
of record of the Ada language compiler(s) listed above and, as
such, is responsible for maintaining said compiler(s) in
conformance to ANSI/MIL-STD-1815A. All certificates and
registrations for Ada language compiler(s) listed in this

declaration shall be made only in the owner's corporate name.
l'd

Ay LT | 70757

5??‘Eliiott - Software Product Manager Date

Owners Declaration

I, the undersigned, representing ?ﬂﬁsmg (Mﬂ(ﬂzm
agree that as part of the joint Marketing Agreement between Rolm

Mil-Spec and Data General for the Ada Development Environment,
Data General has the responsibility to maintain the Base Compiler
listed above. I declare that all of the Ada language compilers
listed, and their host/target performance are in compliance with
the Ada Language Standard ANSI/MIL-STD-1815A.

~Telonpdn Lef 1 M 5%

Date

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of the ADE Revision 3.01
compiler, as described in this Appendix, are provided by Loral/Rolm Mil-
Spec Computers. Unless specifically noted otherwise, references in this
appendix are to compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are not
a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2_147_483 648 .. 2_147_483_647;
type SHORT_INTEGER is range -32768 .. 32767;

type FLOAT is digits 6 range
-16#0.10000000000000# * 16 **(-64) .. 16#0.FFFFF# * 16 **(63);

type LONG_FLOAT is digits 15 range
-16#0.10000000000000# * 16 **(-64),.16#0 .FFFFFFFFFFFFFF# * 16 **(63);

type DURATION is delta 2.0%*(-9) range -2*%22 .. 2%%22;

end STANDARD;

e

Addendum to
the ANSI Reference Manual for

~ the Ada® Programming Language

086-000070-02

This addendum updates manual 069-000073-00 .
See updating instructions inside.

Ordering No.086-000070

Rev. 02, December 1988

Copyright © Semantic Software, Inc., 1984, 1988
Copyright © Data General Corporation, 1984, 1988
All Rights Reserved

Printed in the United States of America

Notice

DATA GENERAL CORPORATION (DCGC) HAS PREPARED THIS DOCUMENT FOR USE BY DGC PER-
SONNEL,, CUSTOMERS, AND PROSPECTIVE CUSTOMERS. THE INFORMATION CONTAINED
HEREIN SHALL NOT BE REPRODUCED IN WHOLE OR IN PART WITHOUT DGC'S PRIOR WRITTEN
APPROVAL.

DGC reserves the right to make changses in specifications and other informadion contained in
this ddcument without prior notics. and the reader shouid in ail cases consuit DGC to deter-
mune whether any such changes have besnn made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE
PRODUCTS AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF
THOSE SET FORTH IN THE WRITTEN CONTRACTS BETWEEN DGC AND ITS CUS-
TOMERS. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CON-
TAINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED TO STATEMENTS
REGARDING CAPACITY. RESPONSE-TIME PERFORMANCE, SUITABILITY FOR
USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED
TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY LI-
ABILITY OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL
OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO
LOST PROFITS) ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE IN-
FORMATION CONTAINED IN IT, EVEN IF DGC HAS BEEN ADVISED, KNEW OR
SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH DAMAGES.

CEO, DASHER, DATAPREP. DESKTOP GENERATION, ECLIPSE, ECLIPSE MV/4000,
ECLIPSE MV/6000, ECLIPSE MV/8000, GENAP, INFOS, microNOVA, NOVA,
PRESENT, dPROXI, SWAT, and TRENDVIEW are U.S. reginered trademarks of Data
General Corporation: and AOSMAGIC, AOS/VSMAGIC, AROSE/PC, ArrayPlus,
BusiGEN, BusiPEN, BusiTEXT. CEQ Connection, CEO Drawing Board, CEQ DXA,
CEO Light, CEO MAILIL, CEO PXA, CEO Wordview, CEQwrite, COBOL/SMART,
COMPUCALC, CSMAGIC., DASHER/One. DASHER/286, DASHER/386, DASHER/LN,
DATA GENERAL/One, DESKTOP/UX. DG/500, DG/AROSE, DGConnect. DG/DBUS.
DG/Fontstyles, DG/GATE, DG/GEOQ, DG/L, DG/LIBRARY. DG/UX. DG/XAP,
ECLIPSE, MV/1400, ECLIPSE MV/2000, ECLIPSE MV/2500. ECLIPSE MV/7800.
ECLIPSE MV/10000. ECLIPSE MV/15000, ECLIPSE MV/20000, ECLIPSE MV/40000,
FORMA-TEXT, GATEKEEPER, GDC/1000, GDC/2400. micrcECLIPSE, microMV,
MV/UX, PC Liaison. RASS, REV-UP, SLATE. SPARE MAIL, TEO, TEO/3D.
TEO/Electronics, TURBO/4, UNITE, and XODIAC are trademarks of Data General
Corporation.

Ada is a registsred trademark of the U. S. Government (AJPO). ROLM is a registered trade-
mark and ADE is a cademark of ROLM Corporation.

Addendum to the ANSI Refersnce Manual for the Ada® Programming Language

086-000070-02 ‘
Elfective with: AOS/VS ADE, Rev. 3.00

Please insert Appendix F in your copy of the ANS/ Reference Manual for the Ada
Programming Language.

ANSI/MIL-STD-1813A AGa Reference Manual

Appendix F: |
Implementation-Dependent
Characteristics

The DGC Ada compiler is distributed as part of the Ada Development Eaviroament (ADE).
DGC Ada is a validated impiementation of Ada that conforms to the full ANSI/MIL-STD-1815A
standard. The ANSI standard allows individual implementations t0 set or define certain language
characteristics, such as pragmas, restrictions oa representation clauses, and capacity limits.

This appendix describes the language characteristics defined by the DGC implementation, version
3.00 or higher. In this appendix, the ANSI Reference Manual for the Ada Programming Language is

referred to as the LRM.
. This appeadix contains the following information:
ADE-Defined Pragmas.

F-2

Pragmas That Have No Effect F-3
Pragmas Implemented in the ADE F4
ELABORATE F4
ENTRY_POINT F-§
INLINE F6
INTERFACE F-10
LIST. F-15
LOAD - F-16
MAIN F-17
MAX TASKS F-19
MV _ECS F-20
PAGE F-2
PRIORITY. F-22
SUPPRESS.. F-3
' TASK _STORAGE SIZE F-26
Package SYSTEM F-28
Represeatation Clauses F-30
Length Clauses F-30
Enumeration F-31
Record Representation F-32
Unchecked Programming. F-33
Procedure UNCHECKED DEALLOCATION F-34
Function UNCHECKED CONVERSION F-35
Characteristics of ADE Input-Output Packages F-36
Maximum Sizes Limits in the ADE F-37
Summary of the ADE Real Typs Attributes F-38
Typs Definitioas in the ADE F41
08800007002

B-1

ANSI/MIL-STD-1815A Ada Reference Manual

ADE-Defined Pragmas

Pragmas tell the compiler how to process your program at compile time. They do not affect the
semantics of a program, but they allow you to exercise some control over how the compiler

processes your programs.

The ANSI Reference Manual for the Ada Programming Language (LRM) describes the standard
pragmas and their use. Other pragmas are defined by the various implementations of the
language. This section provides additional information on those standard pragmas and defines the
pragmas that are uniqus to DGC Ada.

This section contains two parts. The first part lists pragmas that ars not implemeated in the

current version of the ADE. The second part lists the implemented pragmas ia alphabetical order,
describes them, and provides exampies of their use.

.2 updutes ORB-000073-00

ANSI/MIL-STD-1813A Ada Reterence Manual

Pragmas That Have No Effect

The following Ada pragmas are not impiemented in the current version of the ADE:

Explasados

CONTROLLED

MEMORY _SIZE

OPTIMIZE

PACK
SHARED

STORAGE_UNIT

SYSTEM_NAME

This pragma is ot aceded because the compiler does not
reclaim unussd storage automatically. To deallocate storage
explicitly, use the geaeric procedure

UNCHECKED DEALLOCATION. Refer to the LRM,
Section 13.10, and the ADE User'’s Manual for more information
about this procedure,

The package SYSTEM defines the MEMORY _SIZE coastant
as 2 ** 29 words. Use the /MTOP switch on the ADALINK
commaand to adjust the maximum virtual memory size. Refer to
the ADE User's Manual for more information about the
ADALINK command.

The compiler does not curreatiy use time or space optimization
L

This pragma has no effect in the current version.

The compiler does not implement indivisible direct read and
update operations [or any object; therefore, there are no objects
to which you can apply this pragma. Refer to the LRM, Section
9.11

The package SYSTEM currently defines the storage unit as a
16-bit word. You can not redefine it.

The package SYSTEM defines this as an object of eaumeratioa
type NAME, for which only one literal is allowed.

F-3

ANSI/MIL-STD-1815A Ada Reference Manual

Pragmas Implemented in the ADE
The following pages describe, in alphabetical order, the ADE-specific pragmas.

pragma ELABORATE

Specifies which library unit bodies (secondary units) to elaborate
before the current compiiation unit.

Format
pragma ELABORATE (library_unit (.library_unit]);

where:

library_unit Specifies the simples name of the library unit whose body you
want elaborated before the current compilation uait,

Description

Pragma ELABORATE teils the compiler to elaborate the body of the specified library unit or
units before elaborating the cucrent compilation unit. If the current compilation unit is a subunit,
thmpdammnhdydmemq&dﬁbrmmbdmmemmuum
ancestor of the curreat compilation subunit.

Pragma ELABORATE must appear after the context clause for the curreat compilation uaie, and
it must specify a library unit named in that context clause. Ths specified library unit must have a
body.

For more information, refer to the LRM, Section 10.5.

Example

with EARTH_DATA;

pragma ELABORATE (EARTH _DATA);

procsdure SOLAR_SYSTEM is
EAA'H-!_DATA.TRACK_ORBH‘:

end SOLAR_SYSTEM:

F4 updass 088-000073-00

ANSI/MIL-STD-1813A Ads Reference Manual

pragma ENTRY_POINT

Associates an Ada subprogram name with a specific entry point label
$0 foreign language routines can cail or be called by Ada
subprograms.

Format

pragma ENTRY_POINT (subprogram_name, “entry_point_name’);

subprogram_name Specifies the unique name of an Ada subprogram defined in the
deciarative part of the currenat compilation unit. Do not use dot

notation (0 specify subprogram_name.

enuy_point_name Specifies the STRING literal denoting the actual external label
Use uppercase letters enclosed in quotes, for example,
‘FRTN_LIBNAME".

Description
You can use this pragma in cither of (wo ways:

¢ A subprogram writtea in another language can refer to an Ada subprogram using the eatry
point defined by this pragma.

e An Ada subprogram can call a library routine writtea in another language by giving the name
of the routine as an entry point. In this case, you must also use pragma INTERFACE t0

specify the language of the library routine.

Pragma ENTRY_POINT must appear in the declarative part of a biock, in a package specification,
or after a compilation unit. You must specify both argumeants.

Example

procedure MAIN is
function FRTN_OP (X: INTEGER) retum BOOLEAN;
pragma INTERFACE (F77, FRTN_OP);
pragma ENTRY_POINT (FRTN_OP, ‘FRTN_UBNAME");

begin
and MAIN:

ANSI/MIL-STO-1813A Ada Referencs Manyasl

pragma INLINE

Specifies the subprograms and generic units that you want expanded
inline at each call whenever possible.

Format

pragmas INUNE (name [, namej);

where:

name Specifies the subprogram or geaeric unit you want inlined at
cach call. The subprogram or generic unit must be defined
before pragma INLINE in the deciarative part of the program.

Description

Pragma INLINE tells the compiler to insert code for the body of the subprogram ecach time the
subprogram is called. If the named subprogram is a generic unit, the compiler inserts code for the
bodies of ail subprograms that are instantiations of that generic unit.

The following restrictions apply to pragma INLINE:

¢ The aesting level of inlined procedures cannot exceed 100.
e A program that inlines a function that returns an uncoastrained object will not work correctly.

The ADE will not inline the following:

¢ Recursive subprograms
e Subprograms containing exception handlers
¢ Any unit that declares a task, task type, or access to a task type.

ANSI/MIL-STO-1813A Ada Reference Manuas

pragma INLINE (continued)

Example

This example shows two assembly (.SR) files for the following source code. The first assembly file
shows the source code compiled with pragma INLINE. The second exampie shows the assembly
file without the pragma.
Source Code

In the following example, pragma INLINE applies to all the calls to SQUARE ia WITH_INLINE.
procedure WITH_INLINE is

FIRST, SECOND : INTEGER:

function SQUARE (S : INTEGER) retum INTEGER:

pragma INUNE (SQUARE);

function SQUARE (S : INTEGER) retum INTEGER is

- retumS*S;
end SQUARE;

begin
FIRST := SQUARE (2);

SECOND : = SQUARE (SQUARE (FIRST));
end WITH_INUNE

upeeNs 08500007300 E-7

ANSI/MIL-STD-181SA Ada Reference Manual

pragma INLINE (continued)

Asgembly File with Pragma INLINE

Each time SQUARE is calied, the compiler inserts code for that function. [a the following
example, SQUARE is cailed three times. The last eight lines are the inlined subprogram.

.+ begin
;: FIRST . » SQUARE (2);
0 S constant INTEGER ;= 2;

sretums8*S - first inline axpansion
NLDAI 40
XWSTA 0.12.3 . FIRST

;» SECONO : = SQUARE (SQUARE (FIRST));
. S : constant INTEGER : = SQUARE (FIRST);
. S : constant INTEGER : « FIRST;

sretumS*S -~ sgcond iniine expansion
XWMUL 0.,19..3 =8
XWSTA 9,173]
sretumS*S - third inline expansion
XWMUL 0.17.3 n S
XWSTA 0.14.3 s SECONO
WRTN
:: ond
.« function SQUARE (S : INTEGER) return INTEGER is
;» begin
sretumS*S;
XWLDA 0.@-12..3
XwMuL 0.@-12.3
XWSTA 0,9.3
WRTN
;v end

ANSI/MIL-STC- 8154 .aa Ryierenze Manua

pragma INLINE (continued)
Assembly File Without Pragma INLINE

:» begin
.. FIRST :» SQUARE (2);

LPEFE (I | - push effective address (L3] =2
LCALL 21,1 ~ first call to SQUARE
XWSTA 0.12..3

:: SECOND := SQUARE (SQUARE (FIRST));
XWSTA 0.17.3
XPEE 17.3 - push effective acdress [17] =4
LCALL 21,1 -~ sgcand call to SQUARE
XWSTA 0.,19..3
XPEF 19..3 - push effective address (19] =16
LCALL L2.1, - third cail to SQUARE
XWSTA 0.14.3
WRTN

1 ond

1 function SQUARE (S : INTEGER) retum INTEGER is

nrsumsSeSs;

2 - beginning of the catied function
XWLDA 0.8-12..3
XWMUL 0.@-12.3
XWSTA 9,8..3
WRTN

o end - and of the cailed function

3 2
END

F-9

ANSI/MIL-STD-1813A Ada Reference Manual

pragma INTERFACE

Specifies another language (and cailing conventions) for interfacing
with an Ada program.

Format

pragma INTERFACE (anguage_name, subprogram_name);

where:

language_name Specifies the language of the cailed subprogram.

subprogram_name Specifies the name of the called subprogram. The subprogram
must be declared carlier in the program.

Description

WNYERFACEanmmtoqnpmuduwﬁueninom«hw(fm
subprograms). A specification for the named subprogram must be written in Ada. The body of
the subprogram can be writtea in another language.

Pragma INTERFACE must be in the declarative part or package specification of the Ada unit that
cails the subprogram. The subprogram you specify as an argument must be deciared earlier in the
same declarative past or package specification.

Your program must inciuds the following pragma LOAD statements in the order shown:

pragma LOAD ("TADE_ROOT?:RUNTIMES:INTERFACE_LRT TRIGGGER");
pragma LOAD ('LANG RT.LB");

Yo« must be able to access LANG_RT.LB through ane of the file access methods provided by the
system, such as search lists or links. The IMPORT command links LANG_RT.LB automatically.
Use it to import routines writtea in F77, C, or PASCAL.

Ada supports the calling of subprograms written in F77, PASCAL, C, MASM, and ASSEMBLY.
In addition, you can cail any language that obeys the common calling conveations of DGC
languages, but you will receive a compiler warning that the language is not explicitly supported.

mAummaﬁummynmmemnmmeancdwwnemdmme

PROGRAM _ERROR exceptioa in the calling program. The interface also suspends Ada tasking
during the call to the nca-Ada subroutine.

g-10 updates 089-000073-00

ANSI/MIL:-STD-1813A Ada Reterence Manual

pragma INTERFACE (continued)

General Notes

Characters within constructs are packed according to DGC alignmeat requirements for the
called language.

Booleans, arrays, and records are aot packed. Booieaas are passed one per word.
Return values are not checked for validity.

Procedure and function calls to other languages do not support type conversions. You muu'
do type coaversions explicitly.

You can pass ACCESS types, but exercise caution when changing Ada data structures. Data
Geaeral may change data formats in a future revision. After receiving any revisions of the
ADE, test thoroughly ail programs that depead on specific data formars.

LANG_RT performs the exception handling for foreign subprograms. If a foreign
has aa error, that error is propagated (0 the calling Ada program as a
PROGRAM_ERROR.

Foreign subprograms must be in the same ring as the calling Ada program.

Foreign subprograms can perform [/O operations, but it is the user’s respoasibility to use
pragma LOAD to load all the necessary runtime objects. Alternately, you can use the
template facility provided by ADALINK.

The foreign code interface does not support Ada unconstrained types for any languages.

All appropriate LB and OB files must be loaded into Ada programs that call foreign

The IMPORT function oniy ensures that the OB containing your function and
LANG_RT are loaded with pragma LOAD. If the foreign code requires additionai runtime
support, such as MULTITASKING.OB, you should add the sames of ail necessary OB and
LB files to interface_package B file. This file is created by IMPORT or by ADALINK
templates.

updates 089-000073-00 F-11

ANSI/MIL-STO- 1815A Ada Reterence Manual

pragma INTERFACE (continued)

Foreign Language Calling Conventions and Data Types

The following sections describe the cailing conventions and/or the data types used by DGC Ada o
cail subprograms written ia foreign languages.

MASM or ASSEMBLY
The MASM and ASSEMBLY optioas provide the standard Ada calling conveations. If either is
specified, the cailed program (which may or may not be MASM or ASSEMBLY) is expected to
follow Ada cailing coaveations and to kaow how Ada data structures are formatted.

F77
FT7 is supported as follows:
F77 Data Type Ada Dats Type
INTEGER*4 INTEGER
INTEGER®2 SHORT_INTEGER
REAL°s FLOAT
REAL"'S LONG_FLOAT
CHARACTER*1 CHARACTER
CHARACTER®N STRING(1L..N)
ARRAY ARRAY

Notes:

e Array clements must be of a supported scaiar type.

Scalar parameters are passed copy-in copy-out.

One-dimensional arrays are passed by referenace for copy-in copy-out.
Muitidimeasional arrays obey copy-in copy-out rules.

F12 vpdems 089-000073-00

ANSI/MIL-STD-1813A Agg Reterence Manual

pragma INTERFACE (continued)

o
C is supported as follows:
C Data Type Ada Data Type
SHORT_INT SHORT_INTEGER
LONG_INT LONG_INTEGER
SHORT_FLOAT FLOAT
LONG_FLOAT LONG_FLOAT
CHARACTER CHARACTER
POINTER ACCESS
ENUMERATION ENUMERATION
ARRAY OF CHARACTER STRING
ARRAY ARRAY

RECORD

STRUCTURE

Notsz C calling conveatioas specify pass by value. Therefore, only copy-in mode is allowed for
scalar parameters and structures. The call interface saforces pass by valus for arrays.

PASCAL
PASCAL is supported as follows:

PASCAL Dats Type

Ada Data Type

SHORT_INTEGER

SHORT_INTEGER

LONG_INTEGER INTEGER
REAL FLOAT
DOUBLE _REAL LONG_FLOAT
BOOLEAN BOOLEAN
CHAR CHARACTER
ENUMERATION ENUMERATION
POINTER ACCESS
ARRAY ARRAY
PACKED ARRAY OF CHAR STRING
RECORD RECORD
Notss: .

o Not supported: RECORD VARIANTS, SET, FILE.
¢ One-dimensional arrays are passed by referencs (or copy-in copy-out.
e Muitidimensioaal arrays obey copy-ia copy-out rules.

F-13

ANSI/MR.-STD-1815A Ada Reference Manuas

pragma INTERFACE (continued)

PL/1
PL/1 is supported as follows:
PL/1 Data Type Ada Data Type
FIXED BINARY (19) SHORT_INTEGER
FIXED BINARY (31) INTEGER
FLOAT BINARY (21) FLOAT
FLOAT BINARY (53) LONG_FLOAT
POINTER ACCESS
ARRAY ARRAY
RECORD RECORD

Notes:

e PL/1is not explicitly supported; however, the data types listed above can be used if all data
follows staadard LANG_RT alignment and space characteristics. Specifying PL/1 produces
warning messages whea you compile the program.

¢ One-dimensional arrays are passed by reference for copy-ia copy-out.
¢ Multidimeasional array obey copy-in copy-out rules.

P14 updass 0B9-000073-00

ANSI/MIL-STD-1819A Ada Reference Manual

pragma LIST
Suspends or resumes the compiler listing file output.

Format
pragma LIST (ON | OFF);
Description
The compiler always produces a listing (.LST) file unless you do one of the {ollowing:

e Iaclude the /ERRORS switch with the ADA command (and the compilation units contain no
errors)

o [aciude pragma LIST (OFF); in the compilation unit,
Pragma UST (OFF); suspeads the output i the .LST file during compilation.
Pragma UIST (ON); resumes LST output.
Example
[n the following example, the code for MEMBERS is oot printed in the listing file.
procsdure MAIN is

type MEMBERS is private;

procedure SORT (LIST: in oyt MEMBERS);
function HEAD (L. LIST) retum MEMBERS;

pm UST (OFF);
typs MEMBERS is

end MEMBERS;
pragma LIST (ON);
begin
ond MAIN:

upudamms 09-000073-00 P18

ANSI/MA.-STD-1813A Ads Reference Manual

pragma LOAD
Includes non-Ada abject tiles in the linked program file.

Format
pragma LOAD ("object_fle_pathrame”);
where:
obfect_fle_pathname Specifies the STRING literal (in quotes) that deaoces the fuil
pathname of the non-Ada object fle you want to load, You do
aot need to include the .OB filename extension.
Description

Pragma LOAD allows you to include foreign (noa-Ada) object files in your program. You can use
it with pragmas INTERFACE and ENTRY_POINT to allow Ada procedures to call aon-Ada
subprograms. mwmmmmmmmeummAamm
(PR) fils.

Pragma LOAD must appear at the bead of a compilation {or a body. When using pragma LOAD
with compilation subunits, always specify the /READ _SUBUNITS switch on the ADALINK
command line. If you omit that switch, you may receive this error messags from the Linker:

Can't get (body] tree for <program_unit_oame>

Note: Pragma LOAD does not guarantes the order of the loaded files. If order is important, use
the /TEMPLATE switch with the ADALINK command.

Example
[n the following examplie, the file SEVEN_UP.OB must be in the curreat directory.

pragma LOAD ("SEVEN_UP7);
with TEXT_IO; use TEXT_IO;
procedurs ADA_CALLS PL1 is
MUSEVEN UPO!.«:INT!GER)
pragma INTERFACE (PL1, SEVEN _UP);
pragma ENTRY_POINT (SEVEN _ UP, *SEVEN _UP?);
N : INTEGER;

begin
SEVEN_UP (N);
PUT (N);

end ADA_CALLS PLI;

(3]] updame 08900007300

ANSI/MIL-STO- 18154 Aga Reterence Manua

pragma MAIN
indicates that a subprogram unit is a main program.

Format
pragma MAIN;
Description

Pragma MAIN designates the main subprogram unit. Place pragma MAIN immediately after the
subprogram you want to be the main subprogram.

Example

The following code designates TEST as the main procedure.
- procedure TEST Is

procedure FIRST is

end FIRST;

procedure SECOND is

end SECOND:
begin

end TEST;
pragma MAIN;

g7

ANSI/MIL-STD-1815A Ads Reference Manual

pragma MAIN (continued)

Asother way to distinguish the main subprogram ia a comgilation unit is to use the

/MAIN_PROGRAM switch oa the ADE command line. For example, you can compile the

procedure TEST, located in the sourcs file TEST.ADA, as 2 main program with this command:

-) ADA/MAIN_PROGRAM =TEST TEST

You must use the /MAIN-PROGRAM switch in cach of the flollowing cases:

¢ The source fils that you are compiling coatains more (han oae library uait

¢ You specily more than one source file with the same ADA command. The compiler assumes
that the first file listed coatains the main program. If it does not, you must specify which
subprogram is the main program with the /MAIN_PROGRAM switch. For example, the
following command compiles the source {iles FOO.ADA, FOOBARADA, and TESTADA.
It compiles the subprogram TEST.ADA as the main program:
-) ADA/MAIN_PROGRAM = TEST FCQ TEST FOOBAR

For more information about the ADA command, refer to the ADE User's Manual.

r-18 updases 089-000073-00

ANSI/MIL-STD- 18194 Ada Reterence Manual

pragma MAX_TASKS

Specifies the maximum number of Ada tasks you want active
simuitaneously.

Format
pragma MAX_TASKS (n):
where:
n Specifies an integer value greater than zero.
Description

Pragma MAX_TASKS specifies the maximum aumber of Ada tasks that can be active at the same
time. If you do aot specify the sumber, the system gives you a maximum of 50.

This pragma must appear at the head of a compilation. It applies to al units in the compilation.
Example T
pragrma MAX_TASKS(40);
paciage body TASKS is

M ONEis ...

task TWO is ...

task type THREE_TO_FORTY is ...

type REMAINING_TASKS is

array (3..40) of THREE _TO_FORTY;

MULTI_TASKS : REMAINING TASKS;
cnd TASKS;
You caa also specify the maximum anumber of tasks by using the /MAX TASKS switch with the
ADALINK command. For exampie:
<) ADALINK/MAX TASKS =40 object_fiename

If you specily a maximum aumber of Ada tasks with boch a pragma and a switch, the pragma takes
precedence. For more information, refer to the ADE User's Manual.

wpeaNse 08500007300 k19

ANSI/MIL.STD-1815A Ada Reference Manual

pragma MV_ECS
Specifies the use of the Data Generai MV Externai Calling Sequence.

Format

pragma MV_ECS(unit_name (.unit_name...]);

where:

unit_name Spedifies the aame of the subprogram (or which you aeed the
comptler to generue MV ECS.

Description

To optimize code quality, the compiler does aot always geaerate code that conforms to the Data
General MV External Calling Sequence (ECS). [a some cases, however, you will aeed to teil the
compiler that MV ECS is necessary. Subroutines that meet any of the following criteria must use
MVECG:

¢ MACHINE_CODE subroutines with {ormai arguments

¢ Subroutines called from other DGC languages

e Subroutines that can be called from outer rings.

Place pragma MV _ECS immediately after the subprogram for which you waat the compiler to
geaerate MV ECS,

Example

procedure TEST is
procedure FIRST is
ond FIRST:
procsdure SECONO is

end SECOND:
begin

ond TEST:
pragma MV_ECS(TEST)

r-20 updates 099-000073-00

ANSI/MIL-STO- 18134 Ada Reference Manual

pragma PAGE
Begins a new page in the compiier output listing tile.

Format
pragma PAGE;
Description
The compiler produces a listing (.LST) file unless you do oae of the following:

o Iaclude the /ERRORS switch with the ADA command (asd the compilation unit contains ao
errors)

¢ Include pragma LIST (OFF); ia the compilatioa unit.

If the compiler is producing a listing of the compilation, pragma PAGE causes the text following
the pragma to appear on a aew page.

Exampie

In the following example, procedure SECOND would be printed on a page by itself.
procedure FIRST is |

end FIRST;

pragma PAGE:
procsdure SECONO is

end SECOND:

pragma PAGE;

updaims 089-000073-00 . £-21

ANSI/MIL-STD-1813A Ada Reference Manual

pragma PRIORITY
Specifies the priority ot a task or task type.

Format
pragma PRIQRITY (n);

where:

n Specifies an integer value from 1 to 10. Lower values indicate
lower priorities.

Description

You can assign priorities to tasks or task types by including pragma PRIORITY within the
appropriate task specifications.

Assigning priorities teils the system bow to handle competing tasks. Whea more that one task is
eligible for execution at the sams time, the system executes them ia the order you specily with
pragma PRIORITY. Tasks that are ready for execution are queued first by priority aumber and,
within priorities, by order of their occurrencs in the source file (FIFO).

You can assign each task or task type only one priority. If you assign more than one priority, the

Assigning priorities is optional. The default priority is 5.

Example
The following code assigns a priority of 7 to TASK_TYPE and a priority of 8 to NEXT _TASK.
procedure OUTER is

task type TASK TYPE is
pragrma PRIQRITY (7);

ond TASK_TYPE:

task type NEXT TASK is
pragma PRICAITY (8);

end NEXT_TASK:
ond OUTER;

22 updesss 089-000073-00

ANS!/MIL.STO-1815A Ads Reference Manual

pragma SUPPRESS
Suppresses specified runtime checks.

Format
pragma SUPPRESS (check_identifier [, (ON = >| namel):

where:

check_identfler Specifies the check you want to suppress. Check ideatifier
aames are listed in the description that follows.

name Specifies the name of a type, subtype, object task unit, generic
unit, of subprogram.

Description

To suppress certain runtime checks, place pragma SUPPRESS in the declarative part of a program
unit or block or immediately within 3 package specification. For statements ia a program unit or
block, check suppression extends from the pragma statement to ths ead of the declarative part
associated with that program uait or block. For statements in a package, check suppressioa
extends to the ead of the scope of the speciied ON = > eatity. You must declare that eatiry
immediately within the package specification.

Ths following table shows the extent of check suppression for cach named entity.

Check suppressioa lor Extends over

An unnamed eatity (ame omitted) The remaining declarative region

An object All operatioas of the object

Aa object of the base type or subtype All operations of the object or subtype
A task or task (yps All activations of the task

A generic unit All instantiations of the generic

A subprogram All cails of the subprogram
08800007002

updame 09-000073-00 F-23

ANSI/ME.STD- 18154 Ada Reference Manual

pragma SUPPRESS (continued)

Although it is a better programming practice to have ruatime exceptions raised automaticaily, you
can suppress them if you aeed t0 decrease runtime overhead. Whea you suppress runtime checks,
you tura off certain program exceptioas, [f an error arises after you have suppressed a check, your
compiled program will aot work correctly. The following table shows which program excaptions

you turn off when you suppress checks:

Suppressioa of this Turns off inis Whes program detects this ruatime
check identifler exception etTor
ACCESS_CHECK CONSTRAINT _ Selection or indexing applied to an
ERROR object with a aull value
DISCIMINANT _ CONSTRAINT _ Violation of discriminant constraint
CHECX ERROR
INDEX CHECK CONSTRAINT_ Qut-of-range index values
ERROR
LENGTH_ CONSTRAINT Wrong aumber of index compenents
CHECX ERROR
RANGE_CHECX CONSTRAINT _ Values exceed range coastraint, or
ERROR type is incompatible with coastraint
DIVISION_ NUMERIC_ Division, rem, or mod by zero
CHECX ERROR
OVERFLOW_ NUMERIC Gperation result exceeds implemented
CHECK ERROR range
ELABORATION PROGRAM Antempt to call a unit before it is
CHECX ERROR elaborated
STORAGE STORAGE_ Over-allocation of memory spacs
CHECK ERROR
0s-00x070-02
F-24 updasss 0BI-000073-00

ANSI/MIL-STD-1812A Ada Reterencs Manual

pragma SUPPRESS (continued)

Example

la the following example, the pragma suppresses the checks oa the indices of variables of the type
TABLE. All type TABLE operations in MAIN are affected. No exceptions are raised if X and Y
are aot in the range of 1 t0 8.

MAIN is
type COLOR is (RED. BLACK);
type TABLE is array (1..8, 1..8) of COLOR:
pragma SUPPRESS (INDEX_CHECK, ON= > TABLE);
X, Y : INTEGER:
8OARD : TABLE;
begin

BOARD (X. Y) : = RED:

see

- ond;

r-28

ANSI/MIL-STD-181SA Ada Reterencs Manual

pragma TASK_STORAGE_SIZE

Specifies the amount ot heap storage space to allocate for task
stacks.

Format
pragma TASK_STORAGE_SIZE (n);

where:

n Specifies the total aumber of 2-byte words you want to allocate
for all active task stacks. The variabie n can be any integer
value, but only values greater than -1 bave an effect.

Description

Pragma TASK _ STORAGE _SIZE allows you to reset the amount of heap space to allocate for all
task stacks. Themomofspacsyouspeafyshoddmedthemomofstonyyouneedatone
tme for all active tasks. By defauit, the system allocates 128 K words.

The pragma must appear at the head of a compilation. [t applies to ths eatire compilation unit.
You can also use the /TASK_STORAGE _SIZE switch on the ADALINK command fine to
cootrol the maximum heap space allocated to active task stacks. [f you use both the pragma and
the command switch, the pragma takes priority.

Resetting MTOP
If you need to set TASK_STORAGE_SIZE to a value greater than the current virtual address
space allows, you must reset the maximum virtual address space by specifying the value of MTOP.
MTQP defines the maximum virtual address for a program. Use the /MTOP switch with the
ADALINK command to specify how many megabytes your program requires. The defauit value of
MTOP is 1 Mbwe.
For exampie, this command resets MTOP to 20 Mbytes

3 ADALINK/MTOP =20 object_fle

26 vpdams 089-000073-00

ANSI/MIL-STO- 18134 Aga Reference Manual

pragma TASK_STORAGE_SIZE (continued)

individuai Task Storage

By defaule, the system allocates 2048 words for each active task stack. If you require a larger or
smaller stack for a particular task type, use the STORAGE _SIZE represeatation clause. For
example, the following clause tells the compiler to associats task type BIG with a stack of size N:

for BIGSTORAGE _SIZE use N;
The minimum stack size that you can spealfy is 512 words.
Example
h&.foﬂoﬁngq:nph.&cﬂugimh&emm&emmqwmnﬂm
executing at oge time.

pragma TASK_STORAGE_SIZE(S8_000)
procsdure MAIN is

task type ONE is ...
for ONE'STORAGE_SIZE use 1_000;

task type TWQ Is ... :
for TWO'STORAGE _SIZE use 2_000;

task type TEN is ..
for TEN'STORAGE_SIZE use 10_000;

end MAIN;

r-27

ANSI/MIL-STD-1815A Ada Reterence Manual

Package SYSTEM

The predefined library package SYSTEM defines certain types, subtypes, and objects that are
specific 1o DGC Ada. The package SYSTEM is described in the LRM, Sectioa 13.7.

SYSTEM contains the following declarations:

pacikage SYSTEM is
type ADDRESS Is new INTEGER:
type NAME is (MV);
SYSTEM_NAME : constant .= NAME = MV;
STORAGE_UNIT : constanmt ;= 16;
MEMORY _SIZE :constant := 2 ** 29;
MAX INT : constart := (2**30) - 1 + (2°*30);
MIN_INT :constant ;= -MAX_INT - 1;
MAX_OIGITS : constant ;= 18;
MAX MANTISSA : constant := 31;
FINE_DELTA . constart .= 2.0 ** (-31);
TIcK : constant ;= Q.1;

suttype PRIORITY (g INTEGER range 1..10;
end SYSTEM;
The following table describes these types and constants and gives the value of each.

Type or Coastant Defined as Explanatioa

ADDRESS INTEGER Address clauses and attributes
(P"ADDRESS) retura objects of the
derived type ADDRESS.

NAME MV The cnumeration type NAME
declares one object: the literal MV.

SYSTEM_NAME MV SYSTEM_NAME is an object of type
NAME aad is initialized to MV.

STORAGE_UNIT 16 Denotes the aumber of bits per
storage unit.

MEMORY _SIZE 2 Deaotes the aumber of available
storage units.

MAX INT (2°°30)-1+(2°°30) Denotes the highest value of

= 2_147_483 647 predefined INTEGER types.

ANSI/MIL-STD-1815A Aga Reter ence Manual

Type or Coastant Defined as Explanatioa
MIN _INT -MAX INT-1 = Denotes the lowest (most aegative)
-2_147_483 648 valus of predefined INTEGER types.

MAX DIGITS 15 Denotes the largest sumber of
significant decimal digits ia a floating-
poinat coastraint.

MAX_MANTISSA n ‘Denotes the largest allowed aumber
of binary digits in the mantissa of
model aumbers of a fixed-point
subtype.

FINE_DELTA 20°(-31) Denotes the smallest delta allowed in
a fixed-point constraint that has the
range coastraint -1.0..1.0.

TICK 0.1 Denotes the basic clock period in
seconds.

PRIORITY 110 Declares the range of values you can
uss oa pragma PRIORITY
siatements. PRIORITY is a subtype
of the base typs INTEGER.

08800007002

updatss 08900007300 k.29

ANSI/MIL-STD-181SA Ada Refersnce Manual

Representation Clauses

This section describes the use of representation clauses in the ADE. You can use representation
clauses (or either of two purposes:

o To specify a more efficient representation of data in the underlying machine

¢ To communicate with features outsids the domain of the Ada language, for example,
peripheral hardware.

The Ada programming language provides four classes of representation clauses:

Clause Class Specifles

Leagth clause The amouat of storage you want associated
with a type.

Enumeration representation The internal codes (oe the literals of an
caumeratica fype.

Record represeatation Ths storage order, relative position, and size of
record components.

Address clause The required address ia storage for aa entity.

Address clauses are not supported by the
ADE. To assign internai names, use pragma
ENTRY_POINT whenever possibie.

The following paragraphs describe the use of each class of represeatation clauses,

Length Clauses

You can use the 'STORAGE _SIZE attributs only for reserving storage for activating a task type.
For exampie:

arrs ‘constant = 1;

8YTES ‘constant: = 8*8ITS;
KBYTES :constant: = 1024*8YTES;
task type MONITOR is ...;

for MONITOR'STORAGE _SIZE use 4*KBYTES;
The ADE does a0t support the 'SIZE and 'SMALL acributes.

ANSI/MIL-STD-1815A Aga Reterence Manual

Enumeration Representations

The ADE supports enumeration representation clauses as specified ia the LRM, Section 133. All
esumeration literals must be provided with distinct, static integer codes. The sequence of integer
codes specified for the caumeration typs must coasistently increase in value,

There are two restrictions:
¢ The rangs of internal codes must be a SHORT INTEGER.

¢ Eaumeration types with representation clauses are act allowed as the index type of an array
typs definiticn (refer to the LRM, Section 3.6).

Change ot Representation

To changs the represeatation clauss of a type, you can deciare a second type, derived from the
first, and assign the variables of the first type to the second type. This process is described in the
LRM, Section 13.6.

Operations ot Discrete Types

If you use the attributes 'PQS, 'VAL, SUCC, aad 'PRED, executing the program may iavolve
additicnal runtime overhead. Since potentially aoncoatiguous ianternal codes must be mapped to
position sumbers, executing the program iavolves additional sverbead if the srgument is nonstatic -
or is a discrets type or subtype whoss bass type is eaumeration represeatation. Refer to the LRM,
Section 133 for more informatioa.

Conversions that Cause Overhead

Explicit conversions betwesa eaumeration types in which either base type has a representation
clauss may causs additional runtime qverhead. The argument itself and the method of coaversion
both effect the amount of overhead.

You can perform explicit conversions berween caumeration types by using an antribute such as
"POS or 'SUCC to evaiuate an argument and assign the resuits to a variable of the target type.
You can aiso perform explicit coaversions by using the actribute and its argument as the atual
parameter in a subprogram call Each method of converting berweea types causes additional
overhead if the argument is noastatic. [a the latter case, Ada performs checks oa the actual
parameter that may also add overbead.

Sections 3.5.5, 4.4, and 6.4.1 of the LRM provide more information about explicit coaversions and
parametsr associations.

ANSI/MIL-STO-1815A Ada Reterencs Manuat

Case Statements

If the bass type of the case statement expressios is an eaumeration type with a representation
clause, the resulting cods is optimized with respect to space rather than time. The value of the
case statement expression is compared with case alternatives undl a match is found.

Case statements with types other than esumeration with a represeatation clause are unaffected.

Loop Statements

FOR loops for which the base type of the loop parameter is an esumeration type with a
ion clause causes additional runtime overhead. (For more information refer to the

LRM, Sectioa 3.535.).

Loop statements for which the base type is got aa eaumeration type with & represeatation clause
do oot cause additionai overhead.

Record Representations

RmdeumeubmamMMWhm
restrictions. Specifically, wnmmwdnmmmmwm
component locations for the {ollowing:

¢ Record types with discriminants
o Record types with variant parts
¢ Record types with array compoaents.

Whea specifying component storage, you can cross cnly ons 16-bit word boundary. You caanot
specify the storage for composite, FLOAT, or LONG_FLOAT componeats. For compoaents of
these types, the compiler automatically determines the storage required. You caa specify storage
foe all the remaining component types the same way as in standard Ada.

ANSI/MIL.STD-1815A Ada Reference Manua

The following exampie shows a valid record representation specification:

type (UFL is
record
RETURN_FLAGS : INTEGER range 0 .. 15;
TERMINATION_FIELD :INTEGER range 0 .. 7;
PRQCESS_ID : INTEGER range 1 .. 255;
end record;
for IUFL use
record
RETURN_FLAGS at0range0 .. 4;
TERMINATION_FIELD atOrangeS..7:
PRQCESS_IO at0range8 .. 1S;
end record;

These component clauses specify the order, position, and size of [UFL fields relative to the start of
the [UFL record. They also ensure that the [UFL fields match the structure of the 2IUFL offset
(user flag word) ia a ?IREC system cail:

Fleld Fleld

Boundaries Coatents

04 RETURN_FLAGS

$-7 TERMINATION _FIELD.
8-15 PROCESS_ID

The ADE does not allow components to overlap storage boundaries; that is, record fields cannot
cross more than ons 16-bit word boundary.

Unchecked Programming

The ADE implemeats the predefined, generic library subprograms
UNCHECKED_DEALLOCATION and UNCHECKED CONVERSION. The following
sections explain how t0 use these subprograms.

ANSI/MIL-STD-1813A Ada Refarence Manual

Procedure UNCHECKED_DEALLOCATION

You can use the geaeric procedure UNCHECKED DEALLOCATION to deallocate dynamic
objects explicitly that are designated by values of access types. To deallocate dynamic objects
cwﬁddy.mmmmmmmkpmdmfoupudctduobjecundacmrype.ln
the program body, a cail to the instantisted procedure specifies the dynamic object as a parameter.
Whea that cail is executed, the specified object is deallocated, and its value is set to quil. The
following example shows how this works:

Example

In the following exampie, the call to the procedure DISPOSE deallocates the dynamic object
designated by the access vaiue ROOT] and resets ROOT1 to nuil. However, if the eaclosing
procdmumm«hamvdukoontodammcmeobjwnkmmhmde
causes 3 program error because the object 80 longer exists. You must watch for similar dangling
refereaces whea using the procedure UNCHECKED _DEALLOCATION.

with UNCHECKED OEALLOCATION;
package TREE_LABELER is

type LABEL_TYPE is private;

types NOOE;

type TREE is access NODE;

type NCOE is record
LABEL : LABEL_TYPE;
\EFT : TREE;
RIGHT : TREE:;

end record;

procedure DISPOSE is new UNCHECKED DEALLOCATION (NOOE. TREE),
procedure LABEL_ROOT (LABEL 1 in LABEL_TYPE;
ROOT : in ot TREE:
LABELLED TREE :out TREE)
end TREE_LABELER;
package body TREE_LABELER is
procedure LABEL_ROOT (LABEL : In LABEL _TYPE;
ROOT : in out TREE;
LABELLED TREE : out TREE),
ROOT!, ROQT2 :NQOOE;

begin
OISPOSE (ROOT1):

end LABEL_ROOT:
end TREE_LABELER:

F-34 updates 089-000073-00

ANSI/MR.-STD- 1813A Ada Reterence Manual

Function UNCHECKED CONVERSION

The generic function UNCHECKED CONVERSION allows you to return the vajue of a copy-in
parameter as & value of a target type. The actual bit pattern corresponding to that parameter value

does not change.

The function UNCHECKED _CONVERSION is a unit in the ADE SYSTEM library. The visible
part of that functioa is listed below:

generic

type SOURCE is fimited private:

type TARGET Is limited private;

function UNCHECKED_CONVERSION (S : SOURCE) return TARGET.

function UNCHECKED _CONVERSION (S : SOURCE) retum TARGET is
pragma SUPPRESS (RANGE_CHECK),

begin
return S;

end UNCHECKED _CONVERSION:

For instantiations of this geaeric function, types SOURCE and TARGET must be of the same
class and the same leagth. SOURCE and TARGET cannot be array types.

For more information about unchecked cogversioas, refer to the LRM, Section 13.10.

Example

The following example shows source code that uses the function UNCHECKED _CONVERSION.
with UNCHECKED_CONVERSION, ALPHA;

package BETA is

type TEST_NAME is privats:
type OATA is record

IS_VALID : BOOLEAN:
TEST OBUECT : TEST_NAME:
end record:;

function CONVERT_TO_SETA_DATA is new
UNCHECKED _CGNVERSION (ALPHA.INFO, DATA);

tunction CONVERT_FROM_BETA_DATA is new
UNCHECKED _CONVERSION (DATA, ALPHA.INFO);

end BETA:

ANSI/MR-STD-181SA Ada Reference Manual

Characteristics of ADE Input/OQutput Packages
The standard input and output files ins TEXT _[O correspond to the AOS/VS generic files
@INPUT and @OUTPUT, respectively. For more information about AOS/VS geaeric files, refer
to the DGC manual, Learning ro Use Your A0S /VS Sysiem.

When you are using the ADE [/0 packages, remember the following:

¢ The maximum value for TEXT_[O.COUNT and TEXT_IOFIELD is SYSTEM.MAX_INT.

¢ The FORM parameter of the TEXT_[O.OPEN procedure is aot used.

e Type TEXT_IO.FILE_TYPE is an access type.

For more information about input/output operations in the ADE, refer to the ADE User's Manual.

£-30 updstes 089-000073-00

ANSI/MIL-STD- 18134 Ada Reference Manual

Maximum Size Limits in the ADE'

The ADE places the following absolute limits on the use of Ada language (eatures:

Maximum

Compilation step Languags Feature or amount
Syutax parsing Length of ideatifiers 120
Length of line 120
Semantics checking Discriminants in constraint 256
Associations in record aggregate 256
Fields in record aggregate 256
Formals in generic 256
Nested contexts 250
Geanerating machine code Indices in array aggregate 128
Parameters in cail 128
Nesting depth of expressions 100
’ Nesting depth of inlined expressioas 100
' Nesting depth of packages with tasks 100

088-000070-02

F-37

ANS!/MIL-STD-1813A Ada Reference Manual

Summary of the ADE Real Type Attributes

The following sectioa lists the name and value for each ADE specific real auribute.

Float Type Value
TMACHINE_RADIX 16
T"MACHINE_MANTISSA 6 for FLOAT

14 for LONG_FLOAT
It is the sumber of TMACHINE_RADIX

(hex) digits in mantissa.
TMACHINE_EMAX 63
It is the maximum exponent for MV floating
types, base 16.
TMACHINE_EMIN 64
It is the minimum exponent for MV floating
types, base i&.
TMACHINE_ROUNDS TRUE
TMACHINE_OVERFLOWS TRUE
TSAFE_EMAX 252
The formuia i
log, (TMACHINE_RADIX) *
CHINE_EMAX
TSAFE_SMALL 20 ** (-TSAFE_EMAX - 1)
TSAFE_LARGE 20 ** TSAFE_EMAX * (1.0-20°°
(-TBASE'MANTISSA))

ANSI/MR,-STD- 1813A Ads Reference Manual

Fixed Types Value
TMACHINE_ROUNDS TRUE
TMACHINE_OVERFLOWS TRUE
TBASE'SMALL = TSMALL
TBASE'MANTISSA k) §
(Same as SYSTEM.MAX MANTISSA)
TSAFE_SMALL = TBASE'SMALL
TSAFE_LARGE = TBASE'LARGE
also
® (2°° TBASE'MANTISSA - 1) *
TBASE'SMALL
Q88-000070-02

F-39

ANSI/MIL-STD-1815A Ada Reference Manual

General Notes
o All fixed-point aumbers are stored in 32-bit integers.

o Floating-point (ypes requiring § digits or less of precisioa are stored in FLOAT; thoss
requiring 6 to 14 digits are stored in LONG_FLOAT.

e FLOAT and LONG_FLOAT use 1 bit for the sign and 7 bits for the exponeat (of 16) ia
excess-64 aotation. FLOAT has 24 bits available for the mantissa; LONG_FLOAT has $6.

e For FLOAT and LONG_FLOAT, the smallest number that can be represeated in the MV
architecture is givea by the following formula:

TMACHINE_RADIX ** (TMACHINE_EMIN - 1).
This is equal to 16 ** (-65) or 164#0.10000000000000# ° 16 *¢ (-64).

e For FLOAT and LONG_FLOAT, the largest aumber that can be represented in the MV
architecture is given by the following formuia:

(L0 - TMACHINE_RADIX *°* (-TMACHINE_MANTISSA)) ¢
(TMACHINE_RADIX °** TMACHINE_EMAX).

For FLOAT, this is equal to 16#0.FFFFF# * 2 ** (63).
For LONG_FLOAT, this is equal to the following:
16#0 FFFFFFFFFEFFEF# * 2 ** (63) for LONG_FLOAT.

£40 updates 089-00007300

ANSI/MR.-STD- 1813A Ada Referencs Manual

Type Definitions in the ADE

The ADE defines the types INTEGER, FLOAT, and DURATION as follo~ &:

Type Deflnition

INTEGER The set of integers begins with the value MIN _ Mmdends
with MAX INT. The formulas for MIN_ INT and MAX INT
aredumbedunda'?uhgeSYS‘l'EM.

FLOAT The type FLOAT is defined by the values described in the notes
under “Summary of the ADE Real Type Attributes.”

DURATION The type DURATION is defined as follows:
20 °* (-9) range -2 ** 2.2 **2%

Ead of Appeadix

F-41

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,
such as the maximum length of an input line and invalid file names. A
test that makes use of such values is identified by the extension .TST
in its file name. Actual values to be substituted are represented by
names that begin with a dollar sign. A value must be substituted for
each of these names before the test is run. The values used for this
validation are given below.

C-1

== MACRO.DFS -= ACVC_VERSION_1.10

-- THIS FILE CONTAINS THE MACRO DEFINITIONS USED IN THE ACVC TESTS.

-- THESE DEFINITIONS ARE USED BY THE ACVC TEST PRE-PROCESSOR,

-- MACROSUB. MACROSUB WILL CALCULATE VALUES FOR THOSE MACRO SYMBOLS

-- WHOSE DEFINITIONS DEPEND ON THE VALUE OF MAX_ IN LEN (NAMELY, THE

-- VALUES OF THE MACRO SYMBOLS BIG_ID1, BIG_ID2,; BIG_ID3, BIG_ID4,

-- BIG_STRINGl, BIG_STRING2, MAX_ STRING_LITERAL, BIG_INT_LIT,

-- BIG_REAL LIT, MAX LEN INT BASED LITERAL, MAX_LEN REAL BASED LITERAL,
-- AND BLANES). THEREFORE, ANY VALUES GIVEN IN THI3 FILE FOR THOSE

-- MACRO SYMBEOLS WILL BE IGNORED BY MACROSUB.

-- NOTE: THE MACROSUB PROGRAM EXPECTS THE FIRST MACRO IN THIS FILE TO
-- BE MAX_IN_LEN.

-- EACH DEFINITION IS ACCORDING TO THE FOLLOWING FORMAT:

-- A. A NUMBER OF LINES PRECEDED BY THE ADA COMMENT DELIMITER, =--.

- THE FIRST OF THESE LINES CONTAINS THE MACRO SYMBOL AS IT APPEARS
- IN THE TEST FILES (WITH THE DOLLAR SIGN). THE NEXT FEW "COMMENT"
- LINES CONTAIN A DESCRIPTION OF THE VALUE TO BE SUBSTITUTED.

-- THE REMAINING "COMMENT" LINES, THE FIRST OF WHICH BEGINS WITH THE
- WORDS "USED IN: * (NO QUOTES), CONTAIN A LIST OF THE TEST FILES
- (WITHOUT THE .TST EXTENSION) IN WHICH THE MACRO SYMBOL APPEARS.
- EACH TEST FILE NAME IS PRECEDED BY ONE OR MORE BLANKS.

-- B. THE IDENTIFIER (WITHOUT THE DOLLAR SIGN) OF THE MACRO SYMBOCL,

-- FOLLOWED BY A SPACE OR TAB, FOLLOWED BY THE VALUE TO BE

-— SUBSTITUTED. IN THE DISTRIBUTION FILE, A SAMPLE VALUE IS

-- PROVIDED; THIS VALUE MUST BE REPLACED BY A VALUE APPROPRIATE TO
- THE IMPLEMENTATION.

-- DEFINITIONS ARE SEPARATED BY ONE OR MORE EMPTY LINES.
-- THE LIST OF DEFINITIONS BEGINS AFTER THE FOLLOWING EMPTY LINE.

-- SMAX_IN _LEN

-- AN INTEGER LITERAL GIVING THE MAXIMUM LENGTH PERMITTED BY THE

-- COMPILER FOR A LINE OF ADA SOURCE CODE (NOT INCLUDING AN END-OF-LINE
-- CHARACTER).

-- USED IN: A26007A

4AX_IN_LEN 120

-- $BIG_ID1

-~ AN IDENTIFIER IN WHICH THE NUMBER OF CHARACTERS IS $MAX IN LEN.

-- THE MACROSUB PROGRAM WILL SUPPLY AN IDENTIFIER IN WHICH THE

-- LAST CHARACTER IS 'l' AND ALL OTHERS ARE 'A’'.

-- USED IN: C23003A (C23003B C23003C B23003D B23003E (C23003G

-—G C23003H (€23003I 230033 C€35502D (C35502F

3IG_ID1 AA

-=- $BIG_ID2 '

-- AN IDENTIFIER IN WHICH THE NUMBER OF CHARACTERS IS $MAX IN _LEN,
DIFFERING FROM $BIG_IDl ONLY IN THE LAST CHARACTER. THE MACROSUB
-- PROGRAM WILL USE '2' AS THE LAST CHARACTER.

USED IN: C23003A C23003B (C€23003C B23003F C23003G C23003H
C23003I C23003J

BIG_ID2

-= SBIG ID3

-- AN IDENTIFIER IN WHICH THE NUMBER OF CHARACTERS IS S$SMAX IN LEN.

-~ MACROSUB WILL USE '3‘' AS THE "MIDDLE" CHARACTER; ALL OTHERS ARE ‘'A'.
-- USED IN: Sgggggg C23003B (C23003C (C23003G C23003H (C23003r1

BIG_ID3

3AAAAAAAAAAA

-=- $BIG_ID4

-- AN IDENTIFIER IN WHICH THE NUMBER OF CHARACTERS IS SMAX_ IN_LEN,
-- DIFFERING FROM $BIG_ID3 ONLY IN THE MIDDLE CHARACTER. MACROSUB
-- WILL USE '4' AS THE MIDDLE CHARACTER.

-=- USED IN: C%ggggA C23003B C23003C C23003G C23003H C230031

C J

BIG_ID4

-- $BIG_STRING1
-- A STRING LITERAL (WITH QUOTES) WHOSE CATENATION WITH $BIG_STRING2
-- ($SBIG_STRING1 & $BIG STRING2) PRODUCES THE IMAGE OF $BIG IDI.

-- USED IN: (C35502D C35502F -
BIG_STRING1 -

-- $BIG STRING2
-- A STRING LITERAL (WITH QUOTES) WHOSE CATENATION WITH $BIG STRING1
-- ($BIG_STRING1 & $BIG_STRING2) PRODUCES THE IMAGE OF $BIG_IDI.

-- USED IN: €35502D C35502F

BIG_STRING2 "AAAAA

-- SMAX STRING_LITERAL

A STRING LITERAL CONSISTING OF $MAX_ IN_LEN CHARACTERS (INCLUDING THE

QUOTE CHARACTERS).

-~ USED IN: A26007A

MAX STRING_LITERAL "AAA

-- $NEG_BASED_INT

-- A BASED INTEGER LITERAL (PREFERABLY BASE 8 OR 16) WHOSE HIGHEST ORDER
-- NON-ZERQ BIT WOULD FALL IN THE SIGN BIT POSITION OF THE

-- REPRESENTATION FOR SYSTEM.MAX INT, I.E., AN ATTEMPT TO WRITE A

-- NEGATIVE VALUED LITERAL SUCH AS -2 BY TAKING ADVANTAGE OF THE

-- BIT REPRESENTATION.

-- USED IN: E24201A

NEG_BASED_INT 8#37777777776#

4AAAAAAAAAAA

-~ $BIG_INT LIT

-- AN INTEGER LITERAL WHOSE VALUE IS 298, BUT WHICH HAS

-- (SMAX IN LEN - 3) LEADING ZEROES.

-- USED IN:~ C24003A

BIG_INT LIT 00

-- $BIG_REAL LIT

-- A UNIVF SAL_REAL LITERAL WHOSE VALUE IS 650.0, BUT WHICH HAS

-~ (SMAX IN_LEN - S) LEADING ZEROES.

-- USED IN:™ C24003B (C24003C

BIG_REAL_LIT 00

-- SMAX_LEN_INT_BASED_LITERAL A

-- A BASED INTEGER LITERAL (USING COLONS) WHOSE VALUE IS 2:1l:, HAVING

-- (SMAX IN_LEN - S) ZEROES BETWEEN THE FIRST COLON AND THE FIRST 1.

-= USED IN:™ C2A009A

MAX LEN_INT_BASED_LITERAL 2:00

-- S$MAX LEN_REAL BASED_LITERAL

A BASED REAL LITERAL (USING COLCNS) WHOSE VALUE IS 16:F.E:, HAVING

(SMAX IN_LEN - 7) ZEROES BETWEEN THE FIRST COLON AND THE F.

-- USED IN:™ C2A009A

MAX_LEN_REAL_ BASED_LITERAL 16:000

-=- S$BLANKS
== A SEQUENCE OF 6$MAX IN_LEN - 20) BLANKS.
-- USED IN: B22001A B22001B B22001C B22001D B22001E B2200lF

B22001G B22001I B22001J B22001K B22001L B22001M

B22001N
< LIMITS OF SAMPLE SHOWN BY ANGLE BRACKETS >
KS <«
MAX DIGITS

N INTEGER LITERAL WHOSE VALUE IS SYSTEM.MAX DIGITS.
SED IN: B35701A CD7102B
DIGITS 15

NAME -~

HE NAME OF A PREDEFINED INTEGER TYPE OTHER THAN INTEGER,

HORT _INTEGER, OR LONG_INTEGER.

IMPLEMENTATIONS WHICH HAVE NO SUCH TYPES SHOULD USE AN UNDEFINED

DENTIFIER SUCH AS NO_SUCH_TYPE_AVAILABLE.)

SED IN: AVATO007 C45231D B86001IX C7D101G
NO_SUCH_TYPE_AVAILABLE

FLOAT NAME
HE NAME OF A PREDEFINED FLOATING POINT TYPE OTHER THAN FLOAT,
HORT FLOAT, OR LONG FLOAT. (IMPLEMENTATIONS WHICH HAVE NO SUCH
'YPESSHOULD USE AN UNDEFINED IDENTIFIER SUCH AS NO_SUCH_TYPE.)
SED IN: AVATO13 B860012

T_NAME NO_SUCH_TYPE

FIXED NAME

'HE NAME OF A PREDEFINED FIXED POINT TYPE OTHER THAN DURATION.
IMPLEMENTATIONS WHICH HAVE NO SUCH TYPES SHOULD USE AN UNDEFINED
.DENTIFIER SUCH AS NO_SUCH_TYPE.)

"SED IN: AVAT01l5 BS8B001Y

:D_NAME NO_SUCH_FIXED_TYPE

'INTEGER_FIRST
\N INTEGER LITERAL, WITH SIGN, WHOSE VALUE IS INTEGER'FIRST.
'HE LITERAL MUST NOT INCLUDE UNDERSCORES OR LEADING OR TRAILING
JLANKS .

JSED IN: C35503F B54B01B

GER_FIRST =-2147483648

SINTEGER_LAST

AN INTEGER LITERAL WHOSE VALUE IS INTEGER'LAST. THE LITERAL MUST
IOT INCLUDE UNDERSCORES OR LEADING OR TRAILING BLANKS.

JSED IN: C35503F C45232A B45B0O1B

IGER_LAST 2147483647

SINTEGER_LAST_ PLUS_1
AN INTEGER LITERAL WHOSE VALUE IS INTEGER'LAST + 1.
JSED IN: C45232A

ZGER_LAST_PLUS_1 2147483648

SMIN INT
AN INTEGER LITERAL, WITH SIGN, WHOSE VALUE IS SYSTEM.MIN_ INT.
THE LITERAL MUST NOT CONTAIN UNDERSCORES OR LEADING OR TRAILING
3LANKS .

JSED IN: C35503D C35503F CD7101B

CINT -2147483648

SMAX INT
AN INTEGER LITERAL WHOSE VALUE IS SYSTEM.MAX INT.

THE LITERAL MUST NOT INCLUDE UNDERSCCRES OR LEADING OR TRAILING
BLANKS .

USED IN: C35503D C35503F C4A007A CD7101B

_INT 2147483647

— — e o c—

-=- STASK SIZE

-- AN INTEGER LITERAL WHOSE VALUE IS THE NUMBER OF BITS REQUIRED TO

-- HOLD A TASK OBJECT WHICH HAS A SINGLE ENTRY WITH ONE INOUT PARAMETER.
-- USED IN: CD2§91A CD2AS1B CD2AS1C CD2AS1D CD2AS1E

JASK_SIZE 2

-- SMIN_TASK_SIZE
-- AN INTEGER LITERAL WHOSE VALUE IS THE NUMBER OF BITS REQUIRED TO

-- HOLD A TASK OBJECT WHICH HAS NO ENTRIES, NO DECLARATIONS, AND *NULL;"
-- AS THE ONLY STATEMENT IN ITS BODY.

-- USED IN: CD2A95A

MIN_TASK_SIZE 32

-~ $NAME_LIST

-~ A LIST OF THE ENUMERATION LITERALS IN THE TYPE SYSTEM.NAME, SEPARATED
-~ BY COMMAS.

-~ USED IN: CD7003A

NAME_LIST MV

-~ S$DEFAULT_SYS_NAME

-~ THE VALUE OF THE CONSTANT SYSTEM.SYSTEM_NAME.
-~ USED IN: CD7004A CD7004C CD7004D
DEFAULT_SYS_NAME MV

-~ $NEW_SYS_NAME

-- A VATUE OF THE TYPE SYSTEM.NAME, OTHER THAN SDEFAULT SYS_NAME. IF
-~ THERE IS ONLY ONE VALUE OF THE TYPE, THEN USE THAT VALUE-

-- NOTE: IF THERE ARE MORE THAN TWO VALUES OF THE TYPE, THEN THE

-- PERTINENT TESTS ARE TO BE RUN ONCE FOR EACH ALTERNATIVE.

-- USED IN: ED7004Bl CD7004C

NEW_SYS_NAME MV

-- SDEFAULT_STCR_UNIT

-- AN INTEGER LITERAL WHOSE VALUE IS SYSTEM.STORAGE_UNIT.
-- USED IN: CD7005B ED7005D3M CD7005E
DEFAULT_STOR_UNIT 16

-- SNEW_STOR_UNIT

-- AN INTEGER LITERAL WHOSE VALUE IS A PERMITTED ARGUMENT FOR

-- PRAGMA STORAGE _UNIT, OTHER THAN S$DEFAULT STOR _UNIT. IF THERE

-- IS NO OTHER PERMITTED VALUE, THEN USE THE VALUE OF

-- SSYSTEM.STORAGE _UNIT. IF THERE 1S MORE THAN ONE ALTERNATIVE,

-- THEN THE PERTINENT TESTS SHOULD BE RUN ONCE FOR EACH ALTERNATIVE.
- USED IN: ED7005C1 ED7005D1 CD700SE

NEW_STOR_UNIT 16

-~ $DEFAULT MEM SIZE

-- AN INTEGER LITERAL WHOSE VALUE IS SYSTEM.MEMORY SIZE.
-- USED IN: CD7006B ED7006D3M CD7006E
DEFAULT_MEM_SIZE 536_870_912

-~ $NEW_MEM_SIZE

-- AN INTEGER LITERAL WHOSE VALUE IS A PERMITTED ARGUMENT FOR

-- PRAGMA MEMORY SIZE, OTHER THAN SDEFAULT MEM SIZE. IF THERE IS NO
-- CTHER VALUE, THEN USE SDEFAULT MEM SIZE. IF THERE IS MORE THAN

-- ONE ALTERNATIVE, THEN THE PERTINENT TESTS SHOULD BE RUN ONCE FOR

-- EACH ALTERNATIVE. IF THE NUMBER OF PERMITTED VALUES IS LARGE, THEN
-- SEVERAL VALUES SHOULD BE USED, COVERING A WIDE RANGE OF

-- POSSIBILITIES.

-- USED IN: ED7006C1 ED7006Dl CD7006E

NEW_MEM_SIZE 536_870_912

- SLOW_PRIORITY

- AN INTEGER LITERAL WHOSE VALUE IS THE LOWER BOUND OF THE RANGE
- FOR THE SUBTYPE SYSTEM.PRIORITY.

-- USED IN: CD7007C

.OW_PRIORITY 1

-- $HIGH PRIORITY
.- AN INTEGER LITERAL WHOSE VALUE IS THE UPPER BOUND OF THE RANGE
.- FOR THE SUBTYPE SYSTEM.PRIORITY.

.- USED IN: CD7007C

{IGH_PRIORITY 10

-- S$MANTISSA_DOC
.- AN INTEGER LITERAL WHOSE VALUE IS SYSTEM.MAX MANTISSA AS SPECIFIED

-- IN THE IMPLEMENTOR'S DOCUMENTATION.
USED IN: CD7013B
4ANTISSA_DOC 31

-- $DELTA_DOC
-- A REALTLITERAL WHOSE VALUE IS SYSTEM.FINE_DELTX AS SPECIFIED IN THE

IMPLEMENTOR'S DOCUMENTATION.
-- USED IN: CD7013D
JELTA_DOC 2.0%*(=31)

-= STICK
-=- A REAL LITERAL WHOSE VALUE IS SYSTEM.TICK AS SPECIFIED IN THE

-- IMPLEMENTOR'S DOCUMENTATION.
-- USED IN: CD7104B
TICK 0.1

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to
the Ada Standard. The following 44 tests had been withdrawn at the time
of validation testing for the reasons indicated. A reference of the
form AI-ddddd is to an Ada Commentary.

A39005G
This test unreasonably expects a component clause to pack an array
component into a minimum size (line 30).

B97102E

This test contains an unintended illegality: a select statement
contains a null statement at the place of a selective wait alternative
(line 31).

C97116A

This test contains race conditions, and it assumes that guards are
evaluated indivisibly. A conforming implememtation may use interleaved
execution in such a way that the evaluation of the guards at lines 50 &
54 and the execution of task CHANGING OF THE GUARD results in a call to
REPORT.FAILED at one of lines 52 or 56.

BC3009B

This test wrongly expects that circular instantiations will be detected
in several compilation units even though none of the units is illegal
with respect to the units it depends on; by AI-00256, the illegality
need not be detected until execution is attempted (line 95).

CD2A62D
This test wrongly requires that an array object's size be no greater
than 10 although its subtype’s size was specified to be 40 (line 137).

CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests]

These tests wrongly attempt to check the size of objects of a derived
type (for which a 'SIZE length clause is given) by passing them to a
derived subprogram (which implicitly converts them to the parent type
(Ada standard 3.4:14)). Additionally, they use the ’'SIZE length clause
and attribute, whose interpretation is considered problematic by the WG9
ARG.

CD2A81G, CD2A83G, CD2A84N & M, & CD50110
These tests assume that dependent tasks will terminate while the main

program executes a loop that simply tests for task termination; this is

D-1

not the case, and the main program may loop indefinitely (lines 74, 85,
86 & 96, 86 & 96, and 58, resp.).

CD2B15C & CD7205C

These tests expect that a 'STORAGE_SIZE length clause provides precise
control over the number of designated objects in a collection; the Ada
standard 13.2:15 allows that such control must not be expected.

CD2D11B

This test gives a SMALL representation clause for a derived fixed-point
type (at line 30) that defines a set of model numbers that are not
necessarily represented in the parent type; by Commentary AI-00099, all
model numbers of a derived fixed-point type must be representable values
of the parent type.

CD5007B
This test wrongly expects an implicitly declared subprogram to be at the
address that is specified for an unrelated subprogram (line 303).

ED7004B, ED7005C & D, ED7006C & D [5 tests]

These tests check various aspects of the use of the three SYSTEM
pragmas; the AVO withdraws these tests as being inappropriate for
validation.

CD7105A

This test requires that successive calls to CALENDAR.CLOCK change by at
least SYSTEM.TICK; however, by Commentary AI-00201, it is only the
expected frequency of change that must be at 1least SYSTEM.TICK --
particular instances of change may be less (line 29).

CD7203B, & CD7204B
These tests use the 'SIZE 1length clause and attribute, whose
interpretation is considered problematic by the WG9 ARG.

CD7205D

This test checks an invalid test objective: it treats the specification
of storage to be reserved for a task’s activation as though it were like
the specification of storage for a collection.

CE2107I

This test requires that objects of two similar scalar types be
distinguished when read from a file--DATA_ERROR is expected to be raised
by an attempt to read one object as of the other type. However, it is
not clear exactly how the Ada standard 14.2.4:4 is to be interpreted:
thus, this test objective is not considered valid. (line 90)

CE3111C
This test requires certain behavior, when two files are associated with
the same external file, that is not required by the Ada standard.

CE3301A
This test contains several calls to END_OF LINE & END_OF_PAGE that have

D-2

no parameter: these calls were intended to specify a file, not to refer
to STANDARD_ INPUT (lines 103, 107, 118, 132, & 136).

CE3411B

This test requires that a text file’s column number be set to COUNT’LAST
in order to check that LAYOUT ERROR is raised by a subsequent PUT
operation. But the former operation will generally raise an exception
due to a lack of available disk space, and the test would thus encumber
validation testing.

E28005C

This test expects that the string "-- TOP OF PAGE. --63" of line 204
will appear at the top of the listing page due to a pragma PAGE in line
203; but line 203 contains text that follows the pragma, and it is this
that must appear at the top of the page.

D-3

APPENDIX E
COMPILER OPTIONS AS SUPPLIED BY

Loral/Rolm Mil-Spec Computers

Compiler: ADE Revision 3.01

ACVC Version: 1.10

E-1

= DATA GENERAL CORP TELE COM RTP

P.21

The following compiler switches are available for DG ADE 3.01l:

¥
Eu
F‘ /ASSEMBLY

JAUTO_INLINING=n

b,

/CPL=n

/DEBUG

| [

|

/ERRORS'

/IDIR=dirname

/LIBRARY=1ibname

. AgHIe~
. :P"l-\‘ﬁ.‘ .

/CONPIGURATION=configname

Preserves the assembly language for an Ada program
in a .SR file. 1If this switch is not given, the
assembly-language source may be deleted after the
compilation; this option is controlled by the ADE
configuration. (For details on ADE configuration,
see the ADE release notice.) When the user supplies
this switch, the Ada source code will appear as
comments in the .SR file. Use this switch for
machine-level debugging only.

Tells the compiler to inline any subroutine called

n or fewer times. For the compiler to perform
automatic inlining on a subroutine, the subroutine
must not be visible outside its compilation unit, and
must also pass some implementation restrictions which
ensure the code will be duplicated no more than n
times. Automatic inlining will not occur when the
/NO_INLINING switch is present. Do not use

/AUTO INLINING on a source which contains
MACHINE_CODE subroutines which manipulate parameters,
because parameters are not passed on the stack to an
inlined subroutine. When /AUTO_INLINING=0, the
compiler will not generate code for unreferenced
subroutines which pass the automatic inlining
implementation restrictions.

Generate code for the configuration whose source
text statements begin: "--/configname". You may give
multiple confignames by separating them with
underscores (for example:
/CONFIGURATION=configl_config2_config3).

Controls listing columns-per-~line. The value of n
may be from 40 to 200, and includes eight columns per
line used by the compiler. Lines that are longer than
n columns are split so that indentation is preserved
when possible.

Compiles filename for use with the Ada Source Code
Debugger. (The Ada Debugger is sold separately with
the ADEX product and may not be available at your
site.) NOTE: Compiling with the /DEBUG switch will
increase the volume of generated code and decrease
runtime performance.

Inhibits a full listing. Puts only error messages (if
any) in the .LST. 1If there are no errors, the listing
file will be empty.

Specifies the directory where otherwise unqualified
input filenames may be obtained. When input pathnames
include a directory prefix, the IDIR= switch is
ignored.

Names the target Ada library into which the source

is to be compiled. 1If omitted, ADE uses the current
directori's default library. All binaries output by
the compiler are placed in the same directory as the

4bATA GENERAL CoRP TELE CCN RTP

'/LPP-n
/XAIN_PROGRAM[=name]

/NO_SYSTEM

/NO_INLINING

/SUPPRESS

/TABLE

-l

one in which the target library reside.

Controls listing lines-per-pagae, where n is an integer
in the range 0..66. A value of 0 disables page ejects
and headings. Default n is 66.

Specifies the source is a main program. 1If the source
file contains more than one library unit, the
/MAIN_PROGRAM=name keyword switch must be used.

Prevents automatic inclusion of Ada =ystem librxary in
the library searchlist for this compile.

Overrides /AUTO_INLINING and pragma INLINE. Since
the Ada Source Code Debugger cannot debug inlined
subprograms, use of this switch will help in using
the Debugger.

S.ppresses all run-time checking in the code output by
the compiler, including range checking and recocrd
variant checking. This makes your compiled grogram
run faster, but also makes debugging more difficult.

Generates information needed bg the Add Source Code
Debugger to view information, but not set breakpoints
nor step. You need not include this switch if the
/DEBUG switch is specified. NOTE: This switch
increases the generated code size and decreases

runtime performance, but not as much as the /DERUG
switch.

