| l, UNCLASSIFIED

SECURITY CLASSIFICATION OF TH]S PAGE (Whenooutnumﬂ ' — Q)
REPORT DOCUMENTATION PAGE AD A219 438

BEFORE TOMP_ETEING Y UARY
. REPORT N R . 60Vl ESSION NO. . RECIPIENT'S CATA [] R
1. REPORT NUMBL I‘T'"n Gpnv ACC 0. 3. REC CATALOG MumsE
| ST 9l

4. TITLE (andSubtitie) i 5. TYPE OF REPORT B PERIOD COVERED
Ada Compiler Validation Summaty Regortzyngﬁ/&ﬂ 04 Aug. 1989 to Ol Dec. 199¢
Mil-Spec Computers ADE, Revision 3. MV 10000 (Hos e}
HSWK/32 (Target), 890804S1.10142 8. PERFORMING DRG. REPORT WUMEER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

National Institute of Standards and Technology
Gaithersburg, Maryland, USA

0. PERFORMING ORGANIZATION AND ADORESS 10. PROGRAM ELEMENT, PRCIECT, TASK
AREA & WORK UNIT NUMEERS

National Institute of Standards and Technology
Gaithersburg, Maryland, USA

CONTROLLING OFFICE WAME AND ADORESS 12. REPORT DATE
Ada Joint Program Office
United States Department of Defense

. T3, WORGtR UF PAGES
Washington, DC 20301-3081 ot
14, MONITORING AGENCY NAM: & ADDRESS(/f different from Controliing Office) 18, SECURITY CLASS (of thisreport)

UNCLASSIFIED

National Institute of Standards and Technology T5s. gésksaﬁ'IC‘YIO""DO'\:'RADXN"‘

Gaithersburg, Maryland, USA

16. DISTRIBUTION STATEMENT (of thus Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMINT (of the abstract entereg :nBlock 20 if gifferent from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

18. KEYWDRDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Aca
Corpiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facxlxty, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRALT (Continue on reverse side if necessary and dentify by biock number)

Loral/Rolm Mil-Spec Computers ADE, Revision 3.0l, Gaithersburg, Maryland, MV 10000 under
AOS/VS 7.64 (Host) to HAWK/32 under ARTS/32 Revision 2.71 (Target), ACVC 1.10.

DD TU™ 1473 to171i0n OF 1 WOV 65 1S OBSOLETE
1 Jax 73 $/N 0102-LF-014-6801 UNCLASSIFIED

SECURITY CLASSIFICATION OF THMIS PAGE (nWhenDats Entered)

AVF Control Number: NIST89ROL535_2 1.10

PRE-VALIDATION: 19 JULY 1989
ON-SITE: 04 AUGUST 1989
LAST REVISION: 14 DECEMBER 1989
LAST REVISION: 04 JANUARY 1990

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 890804S1.10142
Loral/Rolm Mil-Spec Computers
ADE, Revision 3.01
MV 10000 Host and HAWK/32 Target

Completion of On-Site Testing:
4 August 1989

Prepared By:

Software Standards Validation Group
National Computer Systems Laboratory
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, Maryland 20899

Prepared For:
Ada Joint Program Office
United States Department of Defense
Washington DC 20301-3081

AVF Control Number: NIST89ROLS35 2 1.10

Ada Compiler Validation Summary Report:

Compiler Name: ADE Revision 3.01

Certificate Number: 890804S1.10142

Host: MV 10000 under AOS/VS 7.64

Target: HAWK/32 under ARTS/32 Revision 2.71

Testing Completed 4 August 1989 Using ACVC 1.10

This report has been reviewed and is approved. B ™

S //1/(76;4/::i e

L iV]

AdaFVayigétfgﬁ Facility
Dr., Pavid K. Jefferson
Chief, Information Systems
Engineering Division
National Computer Systems
Laboratory (NCSL)
National Institute of
Standards and Technology
Building 225, Room A266
Gaithersburg, MD 20899

M/u 2 M/

Ada Validation Organization
Dr. John F. Kramer

Institute for Defense Analyses
Alexandria VA 22311

D Sk

Ada Joint Program Office
Dr. John Solomond
Director

Department of Defense
Washington DC 20301

\
t

s 7
1

LtV Gngmes

Ada-Validation FacilTty
Mr. L. Arnold Johnson
Manager, Software Standards
Validation Group
Engineering Division
National Computer Systems
Laboratory (NCSL)
National Institute of
Standards and Technology
Building 225, Room A266
Gaithersburg, MD 20899

CHAPTER 1

i

CHAPTER 2

CHAPTER

(¥%)

WWWWwwWwWwwwww

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

VW

(=]

NSNS LN

w N -

TABLE OF CONTENTS

INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT
USE OF THIS VALIDATION SUMMARY REPORT
REFERENCES

DEFINITION OF TERMS

ACVC TEST CLASSES

CONFIGURATION INFORMATION

CONFIGURATION TESTED . .
IMPLEMENTATION CHARACTERISTICS .

TEST INFORMATION

TEST RESULTS
SUMMARY OF TEST RESULTS BY CLASS
SUMMARY OF TEST RESULTS BY CHAPTER .
WITHDRAWN TESTS
INAPPLICABLE TESTS .
TEST, PROCESSING, AND EVALUATION MODIFICATIONS
ADDITIONAL TESTING INFORMATION .
Prevalidation
Test Method
Test Site

CONFORMANCE STATEMENT
APPENDIX F OF THE Ada STANDARD
TEST PARAMETERS

WITHDRAWN TESTS

COMPILER OPTIONS AS SUPPLIED BY
Loral/Rolm Mil-Spec Computers

W WwWWwwWwbwwww
[T T T T T T S
O 00 0000 00N NNM P

CHAPTER 1

INTRODUCTION

s /1,‘\9

This Validation Summary Report <VSRY describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1813A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capabilityf(AGVC)@i* An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that
is not in the Standard.

- y

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between
implementations. The Ada Standard permits some implementation
dependencies--for example, the maximum length of identifiers or the

maximum values of integer types. Other differences between compilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the dependencies observed

during the process of testing this compiler are given in this report.
The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. ~ The purpose of validating is to ensure
conformity of the compiler' to the Ada Standard by testing that the
compiler properly implements legal language constructs and that it
identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent, but is permitted
by the Ada Standard. Six classes of tests are used. These tests are
designed to perform checks at compile time, at link time, and during
execution.

1-1

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT
This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by GEMMA Corp under the direction
of the AVF according to procedures established by the Ada Joint Program
Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 4 August 1989 at Loral/Rolm Mil-Spec
Computers.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. In the United
States, this is provided in accordance with the "Freedom of Information
Act"” (5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and complete, or that the subject compiler has no
nonconformities to the Ada Standard other than those presented. Copies
of this report are available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

OUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Software Standards Validation Group

Institute for Computer Sciences and Technology
National Bureau of Standards

Building 225, Room A266

Gaithersburg, Maryland 20899

1-2

Questions regarding this report or the validation test results should be

directed to the

1.3 REFERENCES

1. Reference
ANSI/MIL-S

AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 MNorth Beauregard Street
Alexandria vA 22311

Manual for the Ada Programming Language,
TD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers’ Guide, SofTech,

Inc., Dece

4. Ada Compil

1.4 DEFINITION

ACVC

Ada

Ada Standard
Applicant

AVF

AVO

mber 1986.

er Validation Capability User’s Guide, December 1986.

OF TERMS

The Ada Compiler Validation Capability. The set of ada
programs that tests the conformity of an Ada compiler to
the Ada programming language.

An Ada Commentary contains all information relevant to
the Commentary point addressed by a comment on the Ada
Standard. These comments are given a unique
identification number having the form AI-ddddd.

ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.
The agency requesting validation.

The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures

contained in the Ada Compiler Validation Procedures and

Guidelines.

The Ada Validation Nrganization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and

1-3

technical support for Ada validations to ensure
consistent practices.

Compiler A processor for the Ada language. In the context of
this report, a compiler is any language processor,
including cross-compilers, translators, and
interpreters.

Failed test An ACVC test for which the compiler generates a result

that demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a

test compiler is not required to support or may legitimately
support in a way other than the one expected by the
test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer which executes the code generated by the
compiler.

Test A program that checks a compiler’s conformity regarding

a particular feature or a combination of features to the
Ada Standard. In the context of this report, the term
is used to designate a single test, which may comprise
one or more files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be
incorrect because it has an invalid test objective,
fails to meet its test objective, or contains illegal or
erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce errors
because of the way in which a program library is used at link time.

Class A tests ensure the successful compilation and execution of legal
Ada programs with certain language constructs which cannot be verified

at run time. There are no explicit program components in a Class A test

1-4

to check semantics. For example, a Class A test checks that reserved
words of another language (other than those already reserved in the Ada
language) are not treated as reserved words by an Ada compiler. A Class
A test is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that every
syntaxXx or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
compiler.

Class C tests check the run time system to ensure that legal Ada
programs can be correctly compiled and executed. Each Class C test is
self-checking and produces a PASSED, FAILED, or NOT APPLICABLE message
indicating the result when it is executed.

Class D tests check the compilation and execution capacities of a
compiler. Since there are no capacity requirements placed on a compiler
by the Ada Standard for some parameters--for example, the number of
identifiers permitted in a compilation or the number of units in a
library--a compiler may refuse to compile a Class D test and still be a

conforming compiler. Therefore, if a Class D test fails to compile
because the capacity of the compiler is exceeded, the test is classified
as 1inapplicable. If a Class D test compiles successfully, it is

self-checking and produces a PASSED or FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the
Ada Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is
rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is
attempted. A Class L test passes if it is rejected at link time--that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated. In some cases, an
implementation may legitimately detect errors during compilation of the
test.

Two library units, the package REPORT and the procedure CHECK FILE,
support the self-checking features of the executable tests. The package
REPORT provides the mechanism by which executable tests report PASSED,

1-5

FAILED, or NOT APPLICABLE results. It also provides a set of identity
functions used to defeat some compiler optimizations allowed by the Ada
Standard that would circumvent a test objective. The procedure
CHECK_FILE is used to check the contents of text files written by some
of the Class C tests for Chapter 14 of the Ada Standard. The operation
of REPORT and CHECK_FILE is checked by a set of executable tests. These
tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then
the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended
to ensure that the tests are reasonably portable without modification.
For example, the tests make use of only the basic set of 55 characters,
contain lines with a maximum length of 72 characters, use small numeric
values, and place features that may not be supported by all

implementations in separate tests. However, some tests contain values
that require the test to be customized according to
implementation-specific values--for example, an illegal file name. A

list of the values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable
to the implementation. The applicability of a test to an
implementation is considered each time the implementation is validated.
A test that is inapplicable for one validation is not necessarily
inapplicable for a subsequent validation. Any test that was determined
to contain an 1illegal language construct or an erroneous language
construct is withdrawn from the ACVC and, therefore, is not used in
testing a compiler. The tests withdrawn at the time of this validation
are given in appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under

the following configuration:

Compiler: ADE Revision 3.01

ACVC Version: 1.10

Certificate Number: 89080481.10142

Host Computer:

Machine:

Operating System:

Memory Size:

Target Computer:

Machine:

Operating System:

Memory Size:

MV 10000
AOS/VS 7.64

16 MBytes

HAWK/32
ARTS/32 Revision 2.71

8 MBytes

2.2 TIMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior
of a compiler in those areas of the Ada Standard that permit

implementations to differ. Class D and E tests specifically check for
such implementation differences. However, tests in other classes also
characterize an implementation. The tests demonstrate the following
characteristics:

a. Capacities.

(1" The compiler correctly processes a compilation containing
723 wvariables in the same declarative part. (See test
D29002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests DS5SSA03A..H (8
tests).)

(3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test DS56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests D6400SE..G (3 tests).)

b. Predefined types.

(1) This implementation supports the aaditional predefined
types SHORT_INTEGER (B86001V) and LONG_FLOAT (B86001U) in
the package STANDARD. (See tests B8600LT..Z (7 tests).)

¢. Based literals.

(1) An implementation is allowed to raise NUMERIC _ERROR or
CONSTRAINT_ERROR when a value exceeds SYSTEM.MAX INT. This
implementation raises NUMERIC_ERROR during execution. (See
test E24201A.)

d. Expression evaluation.

The order in which expressions are evaluated and the time
at which constraints are checked are not defined by the
language. While the ACVC tests do not specifically attempt
to determine the order of evaluation of expressions, test
results indicate the following:

(1) None of the default initialization expressions for record
components are evaluated before any value is checked for

2-2

membership in a component’s subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same
precision as the base type. (See test J35712B.)

(3) This implementation uses no extra bits for extra precision
and uses all extra bits for extra range. (See test
C35903A.)

(4) NUMERIC_ERROR is raised when an integer literal operand in
a comparison or membership test is outside the range of the
base type. (See test C45232A.)

(5) No exception is raised when a literal operand in a
fixed-point comparison or membership test is outside the
range of the base type. (See test C45252A.)

(6) Underflow is not gradual. (See tests C45524A..Z (26
tests).)
Rounding.

The method by which wvalues are rounded in type conversions is
not defined by the language. While the ACVC tests do not
specifically attempt to determine the method of rounding, the
test results indicate the following:

(1) The method used for rounding to integer is round away from
zero. (See tests C46012A..Z (26 tests).)

(2) The method used for rounding to longest integer is round
away from zero. (See tests C46012A..Z (26 tests).)

(3) The method used for rounding to integer in static universal
real expressions 1is round away from =zero. (See test
C4AQ0144A.)

Array types.

An implementation is aliowed to raise NUMERIC_ERROR or
CONSTRAINT _ERROR for an array having a ’'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX INT. For this
implementation:

(1) Declaration of an array type or subtype declaration with
more than SYSTEM.MAX INT components raises no exception.
(See test C36003A.)

(2) NUMERIC ERROR is raised when 'LENGTH is applied to an arrayv
type with INTEGER'LAST + 2 components. (See test C36202A.)

2-3

(3)

(4)

(3

(6)

(7

NUMERIC_ERROR is raised when 'LENGTH is applied to an array
type with SYSTEM.MAX INT + 2 components. (See test
C36202B.)

A packed BOOLEAN array having a ‘LENGTH exceeding
INTEGER'LAST raises STORAGE_ERROR] when the array objects
are declared. (See test C52103X.)

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises STORAGE ERROR when the array
objects are declared. (See test C52104Y.)

In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT_ERROR is raised
when checking whether the expression’s subtype is
compatible with the target’s subtype. (See test C52013A.)

In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT_ERROR is
raised when checking whether the expression’s subtype is
compatible with the target's subtype. (See test C52013A.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC_ERROR or CONSTRAINT_ ERROR

either when declared or assigned. Alternatively, an
implementation may accept the declaration. However,
lengths must match in array slice assigmments. This

implementation raises no exception. (See test E52103Y.)

Discriminated types.

(L)

In assigning record types with discriminants, the
expression is evaluated in its entirety before
CONSTRAINT_ERROR 1is raised when checking whether the
expression’s subtype 1is compatible with the target’s
subtype. (See test C52013A.)

Aggregates.

(1)

(2)

(3)

In the evaluation of a multi-dimensional aggregate, the
test results indicate that all choices are evaluated before
checking against the index type. (See tests C43207A and
C43207B.)

In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for

identical bounds. (See test E43212B.)

CONSTRAINT _ERROR is raised after all choices are evaluated
when a bound in a non-null range of a non-null aggregate

2-4

j-

does not belong to an index subtype. (See test E43211B.)

Pragmas.

(1) (The pragma INLINE is supported for functions or
procedures. (See tests LA3004A..B (2 tests), EA3004C..D (2
tests), and CA3004E..F (2 tests).)

Generics.

(1) Generic specifications and bodies cannot be compiled in
separate compilations. (See tests CA1012A, CA2009cC,
CA2009F, BC3204C, and BC3205D.)

(2) Generic subprogram declarations and bodies cannot be
compiled in separate compilations. (See tests CAl0l2A and
CA2009F.)

(3) Generic library subprogram specifications and bodies cannot
be compiled in separate compilations. (See test CA1012A.)

(4) Generic non-library package bodies as subunits cannot be
compiled in separate compilations. (See test CA2009C.)

(5) Generic non-library subprogram bodies cannot be compiled in
separate compilations from their stubs. (See test
CA2009F.)

(6) Generic unit bodies and their subunits cannot be compiled
in separate compilations. (See test CA3011A.)

(7) Generic package declarations and bodies cannot be compiled
in separate compilations. (See tests CA2009C, BC3204C, and
BC3205D.)

(8) Generic library package specifications and bodies cannot be
compiled in separate compilations. (See tests BC3204C and
BC3205D.)

(9) Generic unit bodies and their subunits cannot be compiled
in separate compilations. (See test CA301l1A.)

Input and output.

(1) The package SEQUENTIAL_IO cannot be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE2101C,
EE2201D, and EE2201E.)

(2) The package DIRECT_IO cannot be instantiated with
unconstrained array types and record types with

discriminants without defaults. (See tests AE2101H,

2-5

(3

(4)

(3)

(6)

(7)

(8)

(9

(10)

(1)

(12)

(13)

(14)

(15)

EE2401D, and EE2401G.)

Modes IN_FILE and OUT_FILE are supported for SEQUENTIAL_IO.
(See tests CE2102D..E, CE2102N, and CE2102P.)

Modes IN _FILE, OUT_FILE, and INOUT_FILE are supported for
DIRECT_IO. (See tests CE2102F, CE2102I..J (2 ctests),
CE2102R, CE2102T, and CE2102V.)

Modes IN_FILE and OUT_FILE are supported for text files.
(See tests CE3102E and CE3102I..K (3 tests).)

RESET and DELETE operations are supported for
SEQUENTIAL_IO. (See tests CE2102G and CE2102X.)

RESET and DELETE operations are supported for DIRECT_IO.
(See tests CE2102K and CE2102Y.)

RESET and DELETE operations are supported for text files.
(See tests CE3102F..G (2 tests), CE3104C, CE3110A, and
CE3114A.)

Overwriting to a sequential file does not truncate the
file. (See test CE2208B.)

Temporary sequential files are given names and deleted when
closed. (See test CE2108A.)

Temporary direct files are given names and deleted when
closed. (See test CE2108C.)

Temporary text files are given names and deleted when
closed. (See test CE3112A.)

More than one internal file can be associated with each
external file for sequential files when writing or reading.
(See tests CE2107A..E (5 tests), CE2102L, CE2110B, and
CE2111D.)

More than one internal file can be associated with each
external file for direct files when writing or reading.
(See tests CE2107F..H (3 tests), CE2110D and CE2111H.)

More than one internal file can be associated with each
external file for text files when writing or reading. (See
tests CE3111A..B (2 tests), CE31111D..E (2 tests), CE3114B
and CE3115A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

ek
Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF

determined that 567 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for
201 executable tests that use floating-point precision exceeding that
supported by the implementation. Modifications to the code, processing,
or grading for one test was required to successfully demonstrate the
test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 124 1129 1773 15 21 44 3106

Inapplicable 5 9 542 2 7 2 567

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

3-1

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 S 6 7 8 9 _10 _11 _12 _13 _1¢&

Passed 194 573 533 245 172 99 158 331 131 36 250 90 294 3106
Inapplicable 18 76 147 3 0 0 8 1 6 0 2279 27 567
Wdrn 1 i1 0 o 0 O O 2 o0 O 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at the time
of this validation:

A39005G B97102E C97116A BC3009B CD2A62D CD2A63A CD2A63B
CD2A63C CD2A63D CD2A66A CD2A66B CD2A66C CD2A66D CD2A73A
CD2A73B CD2A73C CD2A73D CD2A76A CD2A76B CD2A76C CD2A76D
CD2A81G CD2A83G CD2A84M CD2A84N CD2B15C CD2D11B CD5007B
CD50110 CD7105A CD7203B CD7204B CD7205C CD7205D CE21071
CE3111C CE3301A CE3411B E28005C ED7004B ED7005C ED7005D
ED7006C ED7006D

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of
features that a compiler is not required by the Ada Standard to support.
Others may depend on the result of another test that is either
inapplicable or withdvawn. The applicability of a test to an
implementation is considered each time a validation is attempted. A
test that is inapplicable for one validation attempt is not necessarily
inapplicable for a subsequent attempt. For this validation attempt, 567
tests were inapplicable for the reasons indicated:

The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L. .Y (14 tests)

3-2

C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L. .Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L. .2 (15 tests) C45621L..2 (15 tests)
C45641L. .Y (14 tests) C46012L..Z (15 tests)

The following 4 tests are mnot applicable because the tests
require a source line of characters greater than the 120
character source line which this implementation does not
support:

C24113H. .K (4 tests)

C34006D is not applicable because use of record descriptors for
arrays gives larger ’'SIZE for array.

C35702A and B86001T are not applicable because this
implementation supports no predefined type SHORT_FLOAT.

The following 34 tests are not applicable because 'SIZE
representation clauses for enumeration types are not supported:

A39005B CD1009B CD1009P CD2A21A CD2A21B
€D2a21cC CD2A21D CD2A21E CD2A22A CD2A22B
CD2A22C CD2A22D CD2A22E CD2A22F CD2A22G
CD2A22H CD2a221 CD2a22J CD2A23A CD2A23B
CD2A23C CD2A23D CD2A23E CD2A24A CD2A24B
CD2A24C CD2A24D CD2A24E CD2A24F CD2A24G
CD2A24H CD2A241 CD2A24J ED2A26A

The following 14 tests are not applicable because 'STORAGE_SIZE
not supported:

A39005C C87B62B CD1009J CD1009R CD1009S
CD1C03C CD2B11B CD2Bl1C CD2B11D CD2B11E
CD2B11F CD2B11G CD2B15B CD2BléA

The following 7 tests are not supported because 'SMALL
representation clauses are not supported:

A39005E C87B62C CD10OSL CD1CO3F CD2D1l1lA
CD2D11B CD2D13aA

The following 16 tests are not applicable because this
implementation does not support a predefined type LONG_INTEGER:

C45231C €45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55B07A B55B09C B86001W
CD7101F

3-3

C45531I..P (8 tests) and C45532I..P (8 tests) are not applicable
because the value of SYSTEM.MAX MANTISSA is less than 11.

C4A013B is not applicable because the evaluation of an
expression involving 'MACHINE RADIX applied to the most precise
floating-point type would raise an exception; since the
expression must be static, it is rejected at compile time.

D4A002B and D4AOO4B use 64-bit integer calculations which are
not supported by this compiler.

B86001X, C45231D, and CD7101G are not applicable because this
implementation does not support any predefined integer type with
a name other than INTEGER or SHORT_ INTEGER.

B86001Y is not applicable because this implementation supports
no predefined fixed-point type other than DURATION.

B86001Z is not applicable because this implementation supports
no predefined floating-point type with a name other than FLOAT
or LONG_FLOAT.

The following 24 tests are not applicable because ‘SIZE
representation clauses for integer types are not supported:

C87B62A CD1009A CD10090 CDICO3A CD1C0O4A
CD2A31A CD2A31B CD2A31C CD2A31D CD2A32A
CD2A32B CD2A32C CD2A32D CD2A32E CD2A32F
CD2A32G CD2A32H CD2A32I CD2a32J] CD2A64B
CD2A64D CD2A65B CD2A65D CD2A74B

C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

CA1012A, CA2009C, CA2009F, CA3011A, BC3204C, BC3204D, LA5008M
and LAS008N are not applicable because this implementation does
not permit compilation in separate files of generic
specifications and bodies or of specifications and bodies of
subunits of generic units.

The following 16 tests are not applicable because 'SIZE
representation clauses for floating-point types are not
supported:

CD1009C CD2A41A CD2A41B CD2A41C CD2A41D
CD2A41E CD2A42A CD2A42B ch2a42¢C CD2A42D
CD2A42E CD2A42F CD2A42G CD2A42H CD2a421
CD2A42J

The following 31 tests are not applicable because 'SIZE
representation clauses for fixed-point types are not supported:

3-4

CD1009D CD1009Q CD1C04C CD2451A CD2AS1B
CD2A51C CD2A51D CD2AS1E CD2A52A CD2AS2B
CD2A52C CD2Aa52D CD2A52G CD2A52H CD2AS521
CD2A52J CD2A53A CD2AS3B CD2A53C CD2A53D
CD2A53E CD2A54A CD2AS4B CD2A54C CD2AS4D
CD2A54G CD2A54H CD2A541 CD2A54J ED2A56A
ED2A86A

The following 21 tests are not applicable because 'SIZE
representation clauses for array types are not supported:

CD1009E CD10O9F CD2A61A CD2A61B CD2A61C
CD2A61D CD2A61E CD2A61F CD2A61G CD2A61H
CD2A611I CD2A61J CD2A61K CD2A61L CD2A62A
CD2A62B CD2A62C CD2A64A CD2A64C CD2A65A
CD2A65C

The following 16 tests are not applicable because 'SIZE
representation clauses for record types are not supported:

CD1009G CD2A71A CD2A71B CD2A71C CD2A71D
CD2A72A CD2A72B CD2A72C CD2A72D CD2A74A
CD2A74C CD2A74D CD2A75A CD2A75B CD2A75C
CD2A75D

The following 1 test 1is not applicable because ‘SIZE
representation clauses for private types are not supported:

CD1009%H

The following 1 test is not applicable because ‘SIZE
representation clauses for limited private types are not
supported:

CD10091

The following 22 tests are not applicable because 'SIZE
representation clauses for access types are not supported:

CD2A81A CD2A81B CD2A81C CD2A81D CD2A81E
CD2A81lF CD2A83A CD2A83B (CD2A83C CD2A83E
CD2A83F CD2AS84B CD2Aa84C CD2A84D CD2AB4E
CD2A84F CD2A84G CD2A84H CD2A841 CD2A84K
CD2A84L CD2A87A

The following 5 tests are not applicable because 'SIZE
representation clauses for task types are not supported:

CD2A91A CD2A91B CD2A%91C CD2A91D CD2AS1E
The following 12 tests are not applicable because of

3-5

restrictions on the use of enumeration types for which an
enumeration representation clause has been given:

CD3014A CD3014B CD3014D CD30Ol4E CD3015A
CD30158 CD3015D CD3015E CD3015G CD30151
CD3015J CD3015L

CD4031A, CD4051C, and CD40S1D are not applicable because record
representation clauses are not supported for record types with
discriminant parts.

The following 46 tests are not applicable because, for this
implementation, SYSTEM.ADDRESS clauses for variables are not
supported:

CD5003B..I (8 tests) (CD501lla CD5011C CD5011E
CD5011G CD50111 CD5011K CD5011M CD5011Q
CD5012A..B CD5012E..F CDS5S012I..J CD5012M CD5013A
CD5013C CD5013E CD50136G CD50131 CD5013K
CD5013M CD50130 CD5013S CD5014A CD5014C
CDS5014E CD5014G CD50141 CD5014K CD5014M
CD50140 CD5014S..T CD5014V CD5014X..Z (3 tests)

The following 30 tests are not applicable because, for this
implementation, SYSTEM.ADDRESS clauses for constants are not
supported:

CD5011B CD5011D CD5011F CD5011H CDSO011L
CD5011N CD5011R CD5011s CD5012C €D5012D
CD5012G CD5012H CD5012L CD5013B CD5013D
CDSO013F CD5013H CD5013L CD5013N CD5013R
CD5014B CD5014D CDS5014F CD5014H CD5014J
CD5014L CD5014N CD5014R CDS014U CD5014W

AE2101C, EE2201D, and EE2201E use instantiations of package
SEQUENTIAL IO with unconstrained array types and record types
with discriminants without defaults. These instantiations are
rejected by this compiler.

AE2101H, EE2401D, and EE2401G wuse instantiations of package
DIRECT_IO with unconstrained array types and record types with
discriminants without defaults. These instantiations are
rejected by this compiler.

CE2102D 1is 1inapplicable because this implementation supports
CREATE with IN_FILE mode for SEQUENTIAL_IO.

CE2102E 1is inapplicable because this implementation supports
CREATE with OUT_FILE mode for SEQUENTIAL 10.

CE2102F 1is 1inapplicable because this implementation supports
CREATE with INOUT_FILE mode for DIRECT_IO.

3-6

CE2102I 1is inapplicable because this implementation supports
CREATE with IN_FILE mode for DIRECT_IO.

CE2102J 1is inapplicable because this implementation supports
CREATE with OUT_FILE mode for DIRECT_IO.

CE2102N 1is inapplicable because this implementation supports
OPEN with IN_FILE mode for SEQUENTIAL_IO.

CE21020 1is inapplicable because this implementation supports
RESET with IN_FILE mode for SEQUENTIAL IO.

CE2102P is inapplicable because this implementation supports
OPEN with OUT_FILE mode for SEQUENTIAL_ IO.

CE2102Q 1is 1inapplicable because this implementation supports
RESET with OUT_FILE mode for SEQUENTIAL_IO.

CE2102R 1is inapplicable because this implementation supports
OPEN with INOUT_FILE mode for DIRECT_IO.

CE2102S 1is inapplicable because this implementation supports
RESET with INOUT_FILE mode for DIRECT_IO.

CE2102T 1is 1inapplicable because this implementation supports
OPEN with IN_FILE mode for DIRECT_IO.

CE2102U is inapplicable because this implementation supports
RESET with IN _FILE mode for DIRECT_IO.

CE2102V is inapplicable because this implementation supports
OPEN with OUT_FILE mode for DIRECT_IO.

CE2102W 1is 1inapplicable because this implementation supports
RESET with OUT_FILE mode for DIRECT_IO.

CE3102E is inapplicable because text file CREATE with IN_FILE
mode is supported by this implementation.

CE3102F is inapplicable because text file RESET is supported by
this implementation.

CE3102G 1is inapplicable because text file deletion of an
external file is supported by this implementation.

CE3102I is inapplicable because text file Cause text file CREATE
with OUT_FILE mode is supported by this implementation.

CE3102J is inapplicable because text file OPEN with IN_FILE mode
is supported by this implementation.

3-7

CE3102K is inapplicable because text file OPEN with OUT_FILE
mode is not supported by this implementation.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate

implementation behavior. Modifications are made by the AVF in cases
where legitimate implementation behavior prevents the successful
completion of an (otherwise) applicable test. Examples of such

modifications include: adding a length clause to alter the default size
of a collection; splitting a Class B test into subtests so that all
errors are detected; and confirming that messages produced by an
executable test demonstrate conforming behavior that was not anticipated
by the tes= (such as raising one exception instead of another).

Modifications were required for one test CC1223A. CCl223A was modified
according to AVO instructions to replace the expression
"2%%T'MANTISSA-1" at line 262 with "2%%(T'MANTISSA-1)-1)"; the original
expression raised an exception because 2**T'MANTISSA exceeds
SYSTEM.MAX INT.

3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10
produced by the ADE Revision 3.0l compiler was submitted to the AVF by
the applicant for review. Analysis of these results demonstrated that
the compiler successfully passed all applicable tests, and the compiler
exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the ADE Revision 3.01 compiler using ACVC Version 1.10 was
conducted on-site by a validation team from the AVF. The configuration
in which the testing was performed is described by the following
designations of hardware and software components:

Host computer: MV 10000
Host operating system: AQOS/VS 7.64
Target computer: HAWK/32

Target operating system: ARTS/32 Revison 2.71

A tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing.

3-8

The contents of the tape were loaded directly onto the host computer.
After cthe test files were loaded to disk, the full set of tests was
compiled, linked, and all executable tests were run on the HAWK /32
under ARTS/32 Revision 2.71. Results were printed from the MV 10000
computer.

The compiler was tested using command scripts provided by Loral/Rolm
Mil-Spec Computers and reviewed by the validation team. See Appendix E
for a complete listing of the available compiler options for this
implementation. The only option invoked during this validation was:

MAIN_PROGRAM.
Tests were compiled, linked, and executed (as appropriate) using one
host computer, the MV 10000, and one target computer, the HAWK/32 under
ARTS/32 Revision 2.71. Test output, compilation listings, and job logs
were captured on tape and archived at the AVF,

3.7.3 Test Site

Testing was conducted at Loral/Rolm Mil-Spec Computers and was completed
on 04 August 1989.

3-9

APPENDIX A

DECLARATION OF CONFORMANCE

Loral/Rolm Mil-Spec Computers has submitted the following
Declaration of Conformance concerning the

HOST: MV 10000

TARGET: HAWK/32 under ARTS/32 Revision 2.71.

A-1l

Attachment 4

DECLARATION OF CONFORMANCE

Compiler Implementer: Loral/Rolm Mil-Spec Computers
Ada Validation Facility: Institute for Computer Sci.and Techn.
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: ADE Revision: 3.01

Host Architecture - ISA: MV 10,000 OS&VER # AOS/VS 7.64
Target Architecture - ISA: _HAWK/32 OS&VER #: AOS/VS 7.64
Target Architecture - ISA: HAWK/32 OS&VER #: ARTS/32 2.71

Derived Compiler Registration

Derived Compiler Name: ADE Revision: 3.01

Host Architecture - ISA: MV Family OS&VER #: AOS/VS 7.64
Target Architecture - ISA: MV Family OS&VER #: AOS/VS 7.64
Target Architecture - ISA: _HAWK/32 OS&VER #: AOS/VS 7.64
Target Architecture - ISA: HAWK/32 OS&VER #: ARTS/32 2.71

Owner / Implementer's Declaration

I, the undersigned, representing Rolm Mil-Spec Computers
have implemented no deliberate e'..easicns to the Ada Language
Standard ANSI/MIL-STD-1815A in che compiler(s) listed in this
declaration. I declare chat Rolm Mil-Spec Computers is the owner
of record of the Ada language compiler(s) listed above and, as
such, is responsible for maintaining said compiler(s) in
conformance to ANSI/MIL-STD-18134. All certificates and
registrations for Ada language compiler(s) listed in this
declaration shall be made only in the owner's corporate name.

2 70T 9T

J lliott - Software Product Manager Date

Owners Declaration

I, the undersigned, representing ?ﬂé(i@’dmg (Mﬁ(ﬁﬂ‘cﬂ/(
agree that as part of the joint Marketing Agreement between Rolm

Mil-Spec and Data General for the Ada Development Environment,
Data General has the responsibility to maintain the Base Compiler
listed above. I declare that all of the Ada language compilers
listed, and their host/target performance are in compliance with
the Ada Language Standard ANSI/MIL-STD-1815A.

T lenpt Llef 7 Moo 5%

Date

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of the ADE Revision 3.0l
compiler, as described in this Appendix, are provided by Loral/Rolm Mil-
Spec Computers. Unless specifically noted otherwise, references in this
appendix are to compiler documentation and not to this report.

Implementation-specific portions of the package STANDARD, which are not
a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2_147 483 648 .. 2_147_483_647;
type SHORT_INTEGER is range -32768 .. 32767;

type FLOAT is digits 6 range

-16#0.10000000000000# * 16 **(-64) .. 16#0.FFFFF# * 16 **(63);

type LONG_FLOAT is digits 15 range

-16#0.10000000000000# * 16 **(-64)..16#0. FFFFFFFFFFFFFF# * 16 *%(63);

type DURATION is delta 2.0%*(-9) range -2%%*22 .. 2%%22;

end STANDARD;

B-1

[Lad

Addendum to
the ANSI Reference Manual for

the Ada® Programming Language

086-000070-02

This addendum updates manual 069=-000073-00 .
See updating instructions inside.

Ordering No.086-000070
Rev. 02, December 1988
Copyright © Semandc Software, [ne., 1984, 1988

Copyright ® Data General Corporation, 1984, 1983
All Rights Reserved

Printed in the United States of America

Notice

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE 8Y DGC PER-
SONNEL, CUSTOMERS. AND PROSPECTIVE CUSTOMERS. THE INFORMATION CONTAINED
HEREIN SHALL NQT BE REPRODUCED IN WHOLE OR IN PART WITHOUT DGC'S PRIOR WRITTEN
APPROVAL.

DGC reserves the right to make changes in specifications and other information contained in
this ddcument without prior notcse. and the reader should in all cases consuit DGC to deter-
mine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE
PRODUCTS AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF
THOSE SET FORTH IN THE WRITTEN CONTRACTS BETWEEN DGC AND ITS CUS-
TOMERS. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CON-
TAINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED TO STATEMENTS
REGARDING CAPACITY. RESPONSE~-TIME PERFORMANCE, SUITABILITY FOR
USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED
TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY LI
ABILITY OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL. INDIRECT, SPECIAL
OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO
LOST PROFITS) ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE IN-
FORMATION CONTAINED IN IT, EVEN IF DGC HAS BEEN ADVISED, KNEW OR
SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH DAMAGES.

CEO. DASHER. DATAPREP. DESKTOP GENERATION, ECLIPSE, ECLIPSE MV/4000.
ECLIPSE MV/6000. ECLIPSE MV/8000, GENAP, INFOS, microNOVA. NOVA,
PRESENT, dPROXI, SWAT, and TRENDVIEW are U.S. regitsred trademarks of Daca
General Corporation; and AOSMAGIC, AOS/VSMAGIC, AROSE/PC, ArrayPlus.
BusiGEN, BusiPEN, BusiTEXT, CEO Conaection, CEO Drawing Board. CEO DXA.
CEQ Light, CEQ MAILI. CEQ PXA. CEQ Wordview, CEOwritse, COBOL/SMART,
COMPUCALC, CSMAGIC. DASHER/One, DASHER/286, DASHER/386, DASHER/LN,
DATA GENERAL/One, DESKTOP/UX, DG/$00. DG/AROSE, DGConnect, DG/DBUS,
DG/Fontstyles, DG/GATE, DG/GEO, DG/L., DG/LIBRARY, DG/UX. DG/XAP,
ECLIPSE. MV/1400, ECLIPSE MV/2000, ECLIPSE MV/2500., ECLIPSE MV/7300.
ECLIPSE MV/10000. ECLIPSE MV/15000, ECLIPSE MV/20000, ECLIPSE MV/40000.
FORMA-TEXT, GATEKEEPER. GDC/1000, GDC/2400, microECLIPSE, microMV,
MV/UX, PC Liaison. RASS. REV-UP, SLATE, SPARE MAIL. TEO, TEOQ/3D,
TEO/Electronics. TURBO/4, UNITE, and XODIAC are trademarks of Data General
Corporadon.

Ada is a registered trademark of the U. §. Government (AJPQ). ROLM is a registered wrade-
mark and ADE is a mademark of ROLM Corporadon.

Addendum to the ANSI Refersnce Manual for the Ada® Programming Language

086-000070-02 '
Elfecdve with: AQS/VS ADE, Rev. 3.00

Please insert Appandix F in your copy of the ANSI Reference Manual for the Ada
Programming Language.

ANSI/ MIL-STS- 18194 AGa Reterence ManLa:

Appendix F:
Implementation-Dependent
Characteristics

The DGC Ada compiler is distributed as part of the Ada Development Eaviroameant (ADE).
DGC Ada is a validated implementation of Ada that coaforms to the full ANSI/MIL-STD-1815A

standard. The ANSI standard allows individual implementatioas tq set o¢ define certain language
characteristics, such as pragmas, restrictions 0n represeatation clauses, and capacity limits.

This appeadix describes the language characteristics defined by the DGC impiementation, version
3.00 or aigher. In this appeadix, the 4NS! Reference Manual for the Ada Programumung Language is

referred to as the LRM.

. This appeadix contains the foilowing information:

F2

ADE-Defined Pragmas.
Pragmas That Have No Effect F-3
Pragmas [mplemented ia the ADE F
ELABORATE F4
ENTRY_POINT. F.
INLINE F6
INTERFACE F-10
LIST F-15
LOAD - F-16
MAIN F17
MAX TASKS F-19
MV ECS F-20
PAGE F-21
PRIORITY F2
SUPPRESS) o
TASK_STORAGE SIZE F-26
Package SYSTEM £
Representation Clauses F-30
Length Clauses F-30
Enumeration Representations F-31
Record Represeatation F.32
Uachecked Programming F-33
Procedure UNCHECKED DEALLOCATION F-34
Fuactios UNCHECKED CONVERSION F-35
Characteristics of ADE [nput-Output Packages F-36
Maximum Sizes Limits in ths ADE F.37
Summary of the ADE Real Type Attributes F.38
Type Defiaitions is the ADE Fa
088-000070-02

F-1

ANSI/MIL.STD-1819A Ada Reterence Manual

ADE-Detined Pragmas

Pragmas tell the compiler how to process vour program at compile time. They do not affect the
semantics of a program, but they allow you to exercise some contral over how the compuer

processes YOur programs.

The ANSI Reference Manual for the Ada Programming Language (LRM) describes the standard
pragmas and their use. Other pragmas are defined by the various impiementations of the
language. This section provides additional information on those standard pragmas and defines the

pragmas that are unique to DGC Ada.
This section coutains two parts. The first part lists pragmas that are oot impiemented in the

current version of the ADE. The second part lists the impiemented pragmas in alphabetical order,
describes them, and provides examples of their use.

£.2 updEIe +J-0000T3-00

cwm

ANSH MIL-3T3-1315A Aga Reterence Manyai

Pragmas That Have No EHfect

The foilowing Ada pragmas are noc implemented ia the current version of the ADE:

Explanstion

CONTROLLED

MEMORY _SIZE

OPTIMIZE

PACK
SHARED

STORAGE_UNIT

SYSTEM_NAME

This pragma is aot needed because ths compiler does not
reclaim unussd storage automatically. To deallocate storage
explicitly, use the generic procedure

UNCHECKED DEALLOCATION. Refer ta the LRM,
Section 13.10, and the ADE User's Manuas for more information
about this procedure.

The package SYSTEM defines the MEMORY _SIZE coastaat
as 2 ** 29 words. Use the /MTOP switch on the ADALINK
command to adjust the maximum virtual memory size. Refer to
the ADE User's Manual for more information about the
ADALINK command.

The compiler does aot curreatly use time or space optimizatioa
"

This pragma has 00 effect in the current version.

The compiler does not implement indivisible direct read and
update operations for any object; therefore, there are no objects
to which you can apply this pragma. Refer to the LRM, Section
9.1L

The package SYSTEM currendy defines the storage unit as a
16-bit word. You can not redefine it.

The package SYSTEM defines this as an object of eaumeration
type NAME, for which only one literal is allowed.

F-3

ANSI/MIL-STO-1815A Aga Reference Manual

Pragmas implemented in the ADE
The iollowing pages describe, in alpbaberical order, the ADE speaific pragmas.

pragma ELABORATE

Specities which library unit bodies (secaondary units) to elaborate
_ betore the current compilation unit.

Format
pragma ELABORATE (library_unit [.library_unit]);

where:

library_unit Specifies the simple aame of the library unit whose body you
want elaborated before the curreat compilation unit.

Description

Pragma ELABORATE teils the compiler to elaborate the body of the specified library unit or
units before claborating the current compilation unit, If the curreat compilatioa unit is a subunit,
mgmpduehbomawebodyofmespeqﬁedlibmmbefmewm“umaume
ancestor of the current comptlation subunit.

Pragma ELABORATE must appear after the context clause {or the current compilation unit, and
it must specify a library unit named in that coatext clause. The specified library unit must have a
body.
For more information, refer to the LRM, Section 10.5.
Example
with EARTH_CATA;
pragma ELABORATE (EARTH _DATA);
procedure SOLAR_SYSTEM is
EARTH _OATA.TRACK_ORSI(T;

end SOLAR_SYSTEM;

F-4 updates 088-000073-00

-

ANSI/MIL-STD-1813A Ads Reterencs Man.al

pragma ENTRY_POINT

Associates an Ada subprogram name with a specific entry point label
so foreign language routines can call or be cailed by Ada
subprograms.

Format

pragma ENTRY_PQINT (subprogram_namae, “entry_point_name");

where:

subprogram_name Specifies the unique name of an Ada subprogram defined in the
declarative part of the curreat compilation unit. Do not use dot
notation to speaify subprogram_same.

entry_point_name Specifies the STRING literal denoting the actual external label.
Use uppercase letters caciosed in quotes, for exampie,
‘FRTN_LIBNAME",

Description

You can use this pragma in cither of two ways:

® A subprogram written in another language can refer to an Ada subprogram using the satry
point defined by this pragma.

. AnAdasubptogmmanalibfmroummneainano(herluguagebyp’vingthenme
of the routine as an eatry point. n this case, you must also use pragma INTERFACE to

specify the language of the library routine,

Pragma ENTRY_POINT must appear in the declarative part of a block, in 2 package speaification,
or after a compilation unit. You must specify both arguments.
Example
procedure MAIN is

function FRTN_OP (X: INTEGER) return BOOLEAN;

pragma INTERFACE (F77, FRTN_OP);

pragma ENTRY_POINT (FRTN_OP, “FRTN_LIBNAME);
Degin
ond MAIN;

ANSH/MIL.STD-1813A Ada Reterencs Manual

pragma INLINE

Specifies the subprograms and generic units that you want expanded
inline at each cail whenaever possible.

Format

pragma INUNE (name [, namaej);

where:

name Specifies the subprogram or geseric unit you want inlined at
cach call. The subprogram or geaeric unit must be defined
before pragma INLINE in the declarative part of the program.

Description

Pragma INLINE tells the compiler to insert code for the body of the subprogram each time the
subprogram is cailed. If the named subprogram is a geaeric unit, the compiler inserts code for the
bodies of all subprograms that are instantiations of that geaeric unit,

The following restrictions apply to pragma INLINE:

¢ The aesting level of inlined procedures cannot exceed 100.
* A program that inlines a function that returas an unconstrained object will aot work correctly.

The ADE will not inline the following
¢ Recursive subprograms

¢ Subprograms containing exception handlers
e Any unit that declares a task, task type, or access t0 a task type.

r-e upames 08800007 3-00

ANSI MIL-STC- 1818 Aga Reterencs var.a

pragma INLINE (continued)

Exampile

This example shows two assembly (.SR) files (or the following source code. The first assembly file
shows the source code compiled with pragma INLINE. The second example shows the assembly

file without the pragma.
Source Code
In the following example, pragma INUINE appiies to all the calls to SQUARE ia WITH_INLINE.

procedure WITH_INUNE is
FIRST, SECOND : INTEGER:
function SQUARE (S : INTEGER) retum INTEGER:
pragma INLINE (SQUARE);

funquon SQUARE (S : INTEGER) retum INTEGER Is

retum S * S:
end SQUARE;
begin
FIRST = ST UARE Y
SECCC .= SQUARE (SQUARE (FIRST));
end “"ITH_INUNE

as-000070-02
F-7

ANSIH/MIL-STO-1813A Ada Reterencs Manual

pragma INLINE (continued)

Assembly File with Pragma INLINE
Each ime SQUARE is called, the com ilez inserts code for that function. L the following
example. SQUARE is cailed (hree times. The last eighr lines are the iniised subprogram.

.. begin
- FIRST : » SQUARE (2);
" S : constant INTEGER ' = 2.

crumS*S - first infine expansion
NLDA! 40
XWSTA 0.12.3 - FIRST

- SECOND :» SQUARE (SQUARE (FIRST));
- §: constant INTEGER : = SQUARE (FIRST).
.- § : constant INTEGER : = FIRST:

creumS*S - secand inline expansion
XWMUL 0.19.3 w3
XWSTA 0.17.3 S
sreumS*S - third Injine expansic
XWMUL 0.17.3 -]
XWSTA 0.14..3 .- SECONO
WRTN
end
- funetion SQUARE (S : INTEGER) retum INTEGER is
.. begin
craeumS*S;
XWLDA 0.@-12..3
XwMuL 0.@-12.3
XWSTA 0,4.3
WRTN
;; and

Fs updame 0B8-000073-0C

ANSHMIL 372 3154 ~08 Rerarente Var.

pragma INLINE (continued)
Assembiy File Without Pragma INLINE

;; begin
- ARST :» SQUARE (2):

\PEF 3 - push effective address (3]=2
LCALL 21,1 ~ first cail 10 SQUARE
XWSTA 0,12.3

.- SECOND : = SQUARE (SQUARE (FIRST)):
XWSTA 0.17.3
XPEF 17.3 - push effective address (17] =4
LCALL 21,1 ~ sacond call to SQUARE
XWSTA 0.19..3
XPEF 19.3 ~ push effective address (19] =18
LCALL 2.1, ~ third call to SQUARE
XWSTA 0.14..3
WRTN

end

- function SQUARE (S : INTEGER) retumn INTEGER Is
sreem3T S
2 - beginning ot the called function
XWLDA 0.@-12.3
XWMUL 9.@-12.3
XWSTA 0,-8..3
WRTN
; end - and of the cailed function

(e
END

Y]

F-9

ANSI/MIL.STT-1819A Ada Reterence Manua

pragma INTERFACE

Specifies another language (and calling conventions) for intertacing
with an Aca program.

Format

pragma INTERFACE (language_name. subprogram_name);

where:

lanquage_name Specifies the language of the cailed subprogram.

subprogram_name Specifies the name of the called subprogram. The subprogram
must be declared earlier in the program.

Description

Pragma INTERFACE allows you to call program units written in other languages (foreign
subprograms). A specification for the samed subprogram must be written in Ada. The body of

the subprogram can be written in another language.

Pragma INTERFACE must be in the declarative past or package specification of the Ada unit that
cails the subprogram. The subprogram you specify as an argument must be declared earlier in the
same declarative part or package specification.

Your program must inciude the following pragma LOAD statements in the order shown:

pragma LOAD ("ADE_ROOTY:RUNTIMES:INTERFACE LRT TRIGGGER");
pragma LOAD ('I.ANG RT.LB%;

You must be able to access LANG_RT.LB through one of the file access methods provided by the
system, such as search lists or links. The IMPORT command links LANG_RT.LB automaticaily.
Use it to import routines writtea in F77, C, or PASCAL.

Ada supports the cailing of subprograms written in F77, PASCAL, C, MASM, and ASSEMBLY.
In addition, you can call any language that obeys the common calling coaveations of DGC
languages, but you wiil receive a compiler warning that the language is aot explicitly supported.

mAamemeﬂmmgmymmecnonmmmdmmeandraisazhe

PROGRAM_ERROR exceptica in the cailing program. The interface also suspeads Ada tasking
durmgmcqntothcaon-Adasubrouune.

£.10 updass 0B-000073-00

ANSI/MIL-STT-181SA Ada Reterencs Manua

pragma INTERFACE (continued)

General Notes

¢ Characters withia coastructs are packed according to DGC alignment requiremeats for the
called language.

e Booleans, arrays, and records are not packed. Booleans ars passed ons per word.
¢ Return values are not checked for validity.

¢ Procedure and function cails to other languages do aot support type conversions. You must
do (ype coaversioas explicitly.

* You can pass ACCESS types, but exercise caution whea changing Ada data structures. Data
Generai may change data formats in a future revision. After receiving any revisions of the
ADE, test thoroughly all programs that depead on specific data formacs.

¢ LANG _RT performs the exception handling for foreign subprograms. If a foreiga

subprogram has an error, that error is propagated to the cailing Ada program as a
PROGRAM_ERROR.

o Foreign subprograms must be in the samse ring as the cailing Ada program.

¢ Foreign subprograms can perform [/O operations, but it is the user’s respoasibility o use
pragma LOAD to load all the necessary runtime objects. Alternately, you can use the
template facility provided by ADALINK.

o The foreign code interface does not support Ada unconstrained types for any languages.

e All appropriate LB and OB files must be loaded into Ada programs that call foreign
programs. The IMPORT function oniy easures that the OB containing your function and
LANG _RT are loaded with pragma LOAD. If the foreign code requires additional runtime
support, such as MULTITASKING.OB, you should add the names of all necessary OB and
LB files to interface_package B file. This file is created by IMPORT or by ADALINK
tempiates.

upaase 0S8-000UT3-00 F-11

ANSIH/MIL-STT-1815A Aaa Reterence Manual

pragma INTERFACE (continued)

Foreign Language Calling Conventions and Data Types

The following sections describe the calling coaventions and/or the data types used by DGC Ada to
call subprograms writtea in foreign languages.

MASM or ASSEMBLY
The MASM and ASSEMBLY options provide the standard Ada calling coaventions. If either is
specified, the called program (which may or may not be MASM or ASSEMBLY) is expected to
foilow Ada calling coaveations and to know how Ada data structures are formarted.

F77
F77 is supported as follows:
F77 Data Type Ada Data Type
INTEGER*4 INTEGER
INTEGER®2 SHORT_INTEGER
REAL°s FLOAT
REAL*S LONG_FLOAT
CHARACTER*1 CHARACTER
CHARACTER®N STRING(L.N)
ARRAY ARRAY

Notes

Array elements must be of a supported scalar type.

Scalar parameters are passed copy-in copy-out.

One-dimensional arrays are passed by refereace for copy-in copy-out.
Muitidimeasional arrays obey copy-in copy-out rules.

F-12 voaams 08-000073-00

-

ANSI/MIL-373-181SA Ada Reference Manua

pragma INTERFACE (continued)

C
C is supported as foilows:
C Data Type Ads Data Type
SHORT_INT SHORT_INTEGER
LONG_INT LONG_INTEGER
SHORT _FLOAT FLOAT
LONG_FLOAT LONG_FLOAT
CHARACTER CHARACTER
POINTER ACCESS
ENUMERATION ENUMERATION
ARRAY OF CHARACTER STRING
ARRAY ARRAY
STRUCTURE RECORD

Note: C calling coaventions specify pass by value. Therefore, oaly copy-in mods is allowed for
scaiar parameters and structures. The call intsrface saforees pass by valus for arrays.

PASCAL
PASCAL is supported as follows:

PASCAL Data Type

Ada Data Type

SHORT_INTEGER

SHORT _INTEGER

LONG_INTEGER INTEGER
REAL FLOAT
DOUBLE_REAL LONG_FLOAT
BOOLEAN BOOLEAN
CHAR CHARACTER
ENUMERATION ENUMERATION
POINTER ACCESS
ARRAY ARRAY
PACKED ARRAY OF CHAR STRING
RECORD RECORD
Notas: :

e Not supported: RECORD VARIANTS, SET, FILE.
¢ One-dimensional arrays are passed by reference for copy-in copy-out.
¢ Multidimeasionai arrays obey copy-ia copy-out rules.

F-13

ANSI/MIL-STD-1813A Ada Reference Manual

pragma INTERFACE (continued)

PL/1
PL/1 is supported as follows:
PL/1 Data Type Ada Data Type
FIXED BINARY (15) SHORT_INTEGER

FIXED BINARY (31) INTEGER
FLOAT BINARY (21) FLOAT
FLOAT BINARY (53) LONG _FLOAT
POINTER ACCESS
ARRAY ARRAY
RECORD RECORD
Notes:

e PL/1is not explictly supported; however, the data types listed above can be used if al data
follows standard LANG_RT alignment and space characteristics. Specifying PL/1 produces
warning messages whea you compile the program.

e Oae-dimensional arrays are passed by refereace for copy-ia copy-out.

e Multidimensional array obey copy-in copy-out rules.

F-14

ANSI/MIL-STO-1813A Aga Reterencs Manua

pragma LIST
Suspends or resumes the compiler listing file qutput.

Format
pragma LIST (ON | OFF);
Description
The compiler always produces a listing (.LST) file unless you do oas of the following:

o Inciude the /ERRORS switch with the ADA command (and the compilation units contain no
errors)

o Include pragma UST (OFF); ia the compilation unit.
Pragma LIST (OFF); suspends the output in the LST file during compilation.
Pragma LIST (ON): resumes .LST output.
Example
In the following exampie, the code for MEMBERS is not printed in the listing file.
procsdure MAIN Is

type MEMBERS Is private;

procedure SORT (LIST: in out MEMBERS);
function HEAD (L. LIST) return MEMBERS;

pragma UST (OFF):
type MEMBERS is

end MEMBERS:

pragma LIST (ON);
begin

m MAIN;

vpdams 085-000073-00 P18

ANSI/MIL-STD-1813A Aca Reference Manyal

pragma LOAD
Inciudes non-Ada object tiles in the linked program file.

Format
pragima LOAD (Cobject_file_pathname”);

where:

object_fle_pathname Specifies the STRING literal (in quotes) that deactes the fuil
pathname of the aon-Ada object file you waat to load. You do
aot aeed (o include the .OB fileaame extension.

Description

Pragma LOAD allows you to inciude foreign (non-Ada) object files in your program. You can use
it with pragmas INTERFACE and ENTRY_POINT to allaw Ada procedures to cail aon-Ada
subprograms. The Ada Linker includes the named object file whea it builds the Ada program
(PR) file.

Pragma LOAD must appear at the bead of a compilation for a body. Whea using pragma LOAD
with compilation subunits, aiways specify the /READ SUBUNTITS switch on the ADALINK
command line, If you omit that switch, you may recetve this error message from the Linker:

“Can't get [body] tree for <program_unit_same>°

Note: Pragma LOAD does oot guarantee the order of the loaded files. If order is important, use
the /TEMPLATE switch with the ADALINK command.

Example
[n the following example, the file SEVEN_UP.OB must be in the curreat directory.

pragma LOAD ("SEVEN_UP);
with TEXT _|O; usoTB(T 1Q;
procedure ADA _CALLS PL1 is
procedure SEVEN UP (X: out INTEGER);
pragma INTERFACE (PL1, SEVEN _UP);
pnq:mENTRY POINT (SEVEN_ UP, “SEVEN _UP);
N : INTEGER;

begin
SEVEN_UP (N):

PUT (N);
end ADA_CALLS_PLI;

F-16 ugdams 089-000073-00

ANSI/MIL-3TC. 18154 Ags Reterercs Vanrua

pragma MAIN
Indicates that a subprogram unit |s a main program.

Format
pragma MAIN:
Description

Pragma MAIN designates the main subprogram unit. Place pragma MAIN immediately after the
subprogram you waat to be the main subprogram.

Exampie
The foilowing code designates TEST as the main proczdure.
procsdure TEST Is

procsdure FIRST is

end FIRST;

procedure SECONO is

end SECOND:
begin

end TEST;
pragma MAIN;

F-\7?

ANSI/MIL-STD-181%A Ada Reference Manual

pragma MAIN (continued)

Another way to distinguish the main subprogram in a comgilation uait is {o use the

/MAIN_PROGRAM switch on the ADE command line. For example, you caa comptle the

procedure TEST, located in the source file TEST.ADA, as 2 maia program with this command:

-) ADA/MAIN PROGRAM=TEST TEST

You must use the /MAIN PROGRAM switch ig each of the following cases:

¢ The source file that you are compiling contains more than ons library unit

¢ You specify more than one source file with the same ADA command. The compiler assumes
thutheﬁmﬁlehsxedconummemmpm [f it does not, you muxt specify which
subprogram is the main program with the /MAIN_PROGRAM switch. For example, the
following command compiles the source files FOO ADA, FOOBARADA, and TESTADA.
It compiles the subprogram TEST.ADA as the main program:
-) ADA/MAIN_PROGRAM = TEST FOQ TEST FOOBAR

For more information about the ADA command, refer to the ADE User's Manuai.

PF-18 updaes 08500007300

ANSI/MIL-STS-1815A Aga Reterence Manual

pragma MAX_TASKS

Specifies the maximum number of Ada tasks you want active
simuitanecusly.

Format
pragma MAX_TASKS (n);
where:
n Specifies aa integer value greater than zero.
Description

Pragma MAX _TASKS specifies the maximum aumber of Ada tasks that caa be active af the same
time. If you do not specify the aumber, the system gives you a maximum of 50.

This pragma must appear at the head of a compilation. [t applies to all units in the compilation.
Example

pragma MAX_TASKS(40):
package body TASKS is

task ONE is ...,
task TWQ is ...
tychHREE TO_FORTYis..
type REMNNING TASKS is
array (3. 40)dTHREE TO_FORTY:
MULTI_TASKS : AEMAINING _TASKS;

end TASKS;

You can also specify the maximum aumber of tasks by using the /MAX_TASKS switch with the
ADALINK command. For exampie:

-) ABAUUNK/MAX_TASKS =40 object_flename

If you specify a maximum aumber of Ada tasks with both a pragma and a switch, the pragma takes
precedence. For more information, refer to the ADE User's Manual.

upgass 089-00007'3-00 F-19

ANSI/MIL.STO-1815A Aga Reference Manual

pragma MV_ECS
Specifies the use of the Data General MV Externai Calling Sequencae.

Format

pragma MV_ECS(unt_name {,unt_namae...});

where:

unit_name Specifies the name of the subprogram for which vou need the
compiler to generaze MV ECS.

Description

To optmize code quality, the compiler does aot aiways generate code that conforms ¢o the Data
Geaeral MV Externai Calling Sequeace (ECS). [a some cases, however, you will aeed to ceil the
compiler that MV ECS is aecessary. Subroutines that meet any of the {ollowing criteria must use
MV ECS:

s MACHINE CODE subroutines with formal arguments
¢ Subroutines cailed from other DGC languages
¢ Subroutines that can be called from outer rings.

Place pragma MV_ECS immediately after the subprogram for which you waat the comeiler to
geaerate MV ECS.

Example

procedure TEST is
procedure FIRST is
end FIRST:
procsdure SECOND is

and SECOND:
begin

ond TEST;
pragma MV_ECS(TEST);

#-20 updame QBB-00A0TI-00

\

ANSI/MIL-STD-1819A Ada Reterence Manual

pragma PAGE
Begins a new page in the compiier cutput listing file.

Format
pragma PAGE;
Description
The compiler produces a listing (.LST) file unless you do one of the foilowing:

¢ laciude the /ERRORS switch with the ADA command (and the compilatioa unit contains no
errors)

¢ Iacdude pragma LIST (OFF); in the compilation unit,

If the compiler is producing a listing of the compilation, pragma PAGE causes the text following
the pragma to appear on a new page.

Exampie

In the following example, procedure SECOND would be priated on a page by itself.
procsdure FIRST is

end FIRST;

pragma PAGE;
procedurs SECOND is

end SECOND:

pragma PAGE:

updams 085-000073-00 F-21

ANSI/MIL-STD-1815A Ada Reterence Manual

pragma PRIORITY
Specifies the priority ot a task or task type.

Format

pragma PRIQRITY (n);

where:

n Specifies ag integer value from 1 to 10. Lower values indicate
lower priorities.

Description

You can assign priorities to tasks or task types by including pragma PRIORITY wichin the
appropriate task specifications.

Assigning priorities tells the system how to handle competing tasks, When more that one task is
cligible for execution at the same time, the system executes them in the order you specify with
pragma PRIORITY. Tasks that are ready for execution are queued first by priority aumber and,
withia pricrities, by order of their occurrence in the source fils (FIFO).

You can assign cach task or task type only one priority. If you assign more than one priority, the
system recoguizes the first assignmeat and ignores the others.

Assigning priorities is optional. The default priority is §.

Example
The foilowing code assigns a prionity of 7 to TASK_TYPE and a priority of 8 to NEXT_TASK.
procedure QUTER is

task type TASK_TYPE is
pragma PRIQR(TY (7);

end TASK_TYPE:

task type NEXT _TASK s
pragma PRICRITY (8);

and NEXT_TASK;
end QUTER:

£.22 updasee 089-000073-00

ANSI/MIL-ST3-1815A Aga Reterence Manua

pragma SUPPRESS
Suppresses specified runtime checks.

Format

pragma SUPPRESS (check_identifier [, [ON= >] name]);

where:

check_identifler Specifies the check you waat to suppress. Check ideatifier
names are listed in the description that follows.

name Specifies the name of a type, subtype, object task unit, genenc
unit, or subprogram.

Description

To suppress certain runtime checks, place pragma SUPPRESS in the declarative part of a program
unit or block or immediately within a package specification. For stacemeats ia 2 program uait or
block, check suppression extends from the pragma statement to the ead of the declarative part
associated with that program uait or block. For statements in a package, check suppression
extends to the ead of the scope of the specified ON= > eatity. You must declare that eatity
immediately within the package specification.

The following table shows the extenat of check suppression for cach named eatity.

Check suppressioa for Extends over

An unnamed eatity (name omitted) The remaining declarative regioa

An object All operatioas of the abject

Aa object of the base type or subtype All operations of the object or subtype
A task or task type All activations of the task

A geaeric unit All instantiatioas of the generic

A subprogram All calls of the subprogram
088-00007G-02

.

ANSI/MRL-STD-1815A Ada Reterence Manual

pragma SUPPRESS (continued)

Although it is a better programming practice to have ruatime exceptions ©~ .4 1wuamatically, you
can suppress them if you aeed to decreass ruaume overhead. Whea you suppress runtune checks,
you turn off certain program excepuioas. [f an error arises after you have suppressed 2 check, your
compiled program wil aot work correctly. The followtng table shows waich program exszpuoas

you tumn oif whea you suppress checks:

Suppressioa of this Turns off wis Whea program detects this ruacdme
check Idestifler exception error
ACCESS_CHECK CONSTRAINT_ Selectioa or indexing applied to an
ERROR object with a ouil vaiue
DISCIMINANT _ CONSTRAINT _ Violation of discriminant constraint
CHECX ERROR :
INDEX CHECK CONSTRAINT _ Qut-of-range index values
ERROR
LENGTH _ CONSTRAINT _ Wrong aumber of index components
CHECX ERROR
RANGE_CHECK CONSTRAINT _ Values exceed range coastraiat, or
ERROR type is incompatible with coastraint
DIVISION NUMERIC Division, rem, or mod by zero
CHECX ERROR
OVERFLOW_ NUMERIC Operation result exceeds implemented
CHECX ERROR range
ELABORATION_ PROGRAM _ Attempt 1o call a unit before it is
CHECK ERROR claberated
STORAGE _ STORAGE _ Over-allocation of memory space
CHECK ERROR

F.24

ANSI/MIL-STD-1815A Aga Reterence Manua

pragma SUPPRESS (continued)

Example

[a the following exampie, the pragma suppresses the checks on the indices of variables of the type
TABLE. All type TABLE operations in MAIN are affected. No exceptions are raised if X and Y
are aot in the range of 1 to 3.

procsdure MAIN is
type COLOR Is (RED. S8LACK);
type TABLE is array (1..8, 1..8) of CCLOR:
pragma SUPPRESS (INDEX_CHECK, ON= > TABLE),
X, Y : INTEGER;
BOARD : TABLE;

begin
8OARD (X, Y) : = RED:

- end;

F-28

ANSH/MIL-3TDO-1815A Aca Reference Manual

pragma TASK_STORAGE_SIZE

Specities the amount of heap storage space to aliocate for task
stacks.

Format

pragma TASK_STORAGE_SIZE (n);

where:

n Specifies the total number of 2-byte words you want to allocate
for all active task stacks. The variable n can be any integer
value, but only values greater thana -1 bave an effece.

Description

Pragma TASK_STORAGE _SIZE aliows you (o reset the amount of heap space to allocate for all
task stacks. The amount of space you specify should exceed the amouat of storage you seed at one
time for all active tasks. By default, the system allocates 128 K words,

The pragma must appear at the head of a compilation. It applies to the eatire compuation uait.

You can also use the /TASK_STORAGE _SIZE switch on the ADALINK command line to
control the maximum heap space ailocated to active task stacks. If you use both the pragma and
the command switch, the pragma takes priority.

Resetting MTOFE
If you need to set TASK_STORAGE_SIZE to a value greater than the current virtual address
space allows, you must reset the maximum virtual address space by specifying the value of MTOP.
MTQP defines the maximum virtual address for a program. Use the /MTOP switch with the
ADALINK command to specify how many megabytes your program requires. The default value of
MTOP is 1 Mbwte.
For example, this command resets MTOP to 20 Mbytes:

) ADALNK/MTCP =20 object fle

F.26 updates 089-00007-00

ANSI/MIL-3T3- 13 1SA Aaa Reterence Manuai

pragma TASK_STORAGE_SIZE (continued)

Individual Task Storage

By default, the system allocates 2048 words for each active task stack. If you require 2 larger or
smaller stack for a particular task type, use the STORAGE _SIZE represeatation clause. For
exampie, the following clause teils the compuer to assocate task type BIG with a stack of size N:

for BIG'STORAGE _SIZE use N;
The minimum stack size that you can specify is 512 words.
Exampile

In the following exampie, the vaiue given in the pragma exceeds the storage required for all tasks
executing at one tme.,
pragma TASK_STORAGE_SIZE(58_000)
procsdure MAIN is
“task typa ONE s ...
for ONE'STORAGE_SIZE use 1_000:

task type TWOQ is ...
for TWO'STORAGE_SIZE use 2_000:
task type TEN is ...
for TEN'STORAGE_SIZE use 10_000;

end MAIN;

uSdatse OSB-000073-00 F-a7

ANSIH/MIL-STD-1812A Aqx Reterence Manuas

Package SYSTEM

The predefined library package SYSTEM defines certain types, subtypes, and objects that are
speaific to DGC Ada. The package SYSTEM is described in the LRM, Sectioa 13.7.

SYSTEM contains the following declarations:
package SYSTEM is
type ADORESS is new INTEGER:

type NAME is (MV);

SYSTEM_NAME . constant : = NAME : = MV;
STORAGE_UNIT : constant ;= 16;

MEMORY _SIZE :constant 1= 2 °° 29;

MAX_INT constant @= (2°*30) - 1 « (2°*30);
MIN_INT : constant ;= -MAX _INT - 1;
MAX_DIGITS s constant ;= 15;

MAX _MANTISSA :constant ;= 31;

FINE_DELTA constant .= 2.0 ** (-31);

TIcK . constant : = Q.1;

subtype PRICRITY is INTEGER range 1..10;
end SYSTEM:
The following table describes these types and constants and gives the value of each.

Type or Constant Defined as Explanation
ADDRESS INTEGER Address clauses and artributes
(PPADDRESS) return objects of the
derived type ADDRESS.
NAME MV The enumeration type NAME
declares one object: the literal MV.
SYSTEM_NAME MV SYSTEM_NAME is an object of type
NAME and is initialized to MV.
STORAGE_UNTT 16 Deaotes the sumber of bits per
storage unit.
MEMORY SIZE 29 Denotes the aumber of available
storage units,
MAX INT (2°°30)-1+(2°*30) Deaotes the highest vaiue of
= 2_147_483 647 predefined INTEGER types.
08800007002
k.28 upaates 0B-00007300

ANSI/MIL-3TO- 18134 Agq Reterence Manua

Type or Coastans

Explaaadoa

MIN_INT

MAX_DIGITS

MAX_MANTISSA

FINE_DELTA

Ry (= 3

PRIQORITY

n

2.0°°(-31)

0.1

L.10

Deaotes the lowest (most acgative)
valus of predefined INTEGER types.

Denotes the largest aumber of
significant decimal digits in a {loating-
point coastraint.

Denotes the largest allowed sumber
of binary digits in the mantissa of
model aumbers of a fixed- point
subtype.

Deanotes the smailest deita allowed in
a fixed-point constraing that has the
range coastraing -1.0..1.0.

Denaces the basic clock period in
seconds.

Declares the range of values you can
uss on pragmma PRIORITY
statements. PRIORITY is a subtype
of the base type INTEGER.

updass 08800007300

F-29

ANSIH/MIL-STO-1815A Ada Reterence Manual

Representation Clauses

This section describes the use of represeantaton clauses in the ADE. You can use represeatation
clauses for either of two purposes:

¢ To specify a more efficent represeatation of data ia the underlying machine

o To communicate with features outside the domain of the Ada language, for example,
peripheral bardware.

The Ada programming language provides four classes of representation clauses:

Clause Class Specifles

Leagth clauss The amount of storage you want associated
with a type.

Eaumeration represeatation The internal codes for the literals of an
enumeration type.

Record representation The storage order, relative position, aad size of
record compoaeats.

Address clauss The requir=. address ia storags for aa entity.

Address clauses are not supported by the
ADE. To assign internal names, uss pragma
ENTRY_POINT whenever possible.

The following paragraphs describe the use of each ciass of representation clauses.

Length Clauses

You can use the 'STORAGE_SIZE attribute only for reserving storage for activating a task type.
For exampie:

8iTs constant: = 1;
BYTES :constant: =8°8(TS;
KBYTES ‘constant: = 1024*8YTES;

task type MONITCR Is ...,
for MONITOR'STORAGE _SIZE use 4°*XBYTES;
The ADE does not support the 'SIZE and 'SMALL attributes.

r-30 vpgates 089-000073-00

ANSI/MIL-3TS. 1815A Aqa Reference Manya

Enumeration Representations

The ADE supports eaumeration representation clauses as specified in the LRM, Section 13.3. All
esumeration literals must be provided with distinet, static integer codes. The sequeace of integer
codes specified {or the esumeration (ype must consistently increase ia value.

There are two restrictions:

¢ The range of internal codes zrust be a SHORT _INTEGER.

o Enumeration types with representation clauses are ao allowed as the index type of an array
type definition (refer to the LRM, Sectioa 3.6).

Change ot Representation

To change the represeatation clause of a type, you can deciare 2 second type, derived from the
first, and assign the variables of the first type to the second typs. This process is described in the
LRM, Section 13.6.

Operations ot Discrete Types

If you use the attributes 'POS, VAL, SUCC, and 'PRED, executing the program may iavoive
additional runtime overhead. Since potentiaily noncontiguous iaternai codes must by mapped to

position numbers, execuring the program iavolves additioaal overhead if the argument is noastatic
or is a discrete type or subtype whose base type is enumeration represeatation. Refer to the LRM,

Section 13.3 for more information.
Conversions that Cause Overhead

Explicit conversions between eaumeration types in which cither base type has a representation
clause may causs additional runtime qverhead. The argumens itseif and the method of conversion
both effect the amount of overhead.

You can perform explicit conversions between eaumeration types by using an attribute such as
"POS or 'SUCC t0 evaluate an argumeant and assign the resuils o a variable of the target type.
You can aiso perform explicit conversions by using the attribute and its argument as the actual
parameter in a subprogram cail. Each method of converting between types causes additional
overhead if the argument is noastatic. [a the larter case, Ada performs checks oa the actual
parameter that may also add overhead.

Sections 3.5.5, 4.6, and 6.4.1 of the LRM provide more information about explicit conversions and
parameter associations.

YeueIse OSB-G00073-00 F-3

ANSI/MIL-STO- 1 81SA Ada Reference Manual

Case Statements

£ the base type of the case statement expression is an caumeration type with a representation
clause, the resuiting code is optimized with respect to space rather than ume. The value of the
case statement expression is compared with case alternatives uaal 2 match is found.

Case statements with types other than eaumeration with a represeatation clause are unaffected.

Laop Statements

FOR loops for which the base type of the loop parameter is an eaumeration type with a
representation clause causes additional runtime overbead. (For more information refer to the
LRM, Sectioa 3.535.).

Loopswenmforwhich:hebueqpeisno(mennmmdontypewithuepresenuﬁondam
do sot cause additional averbead.

Record Representations

Representation of record types ia the ADE is the same as i standard Ada with certain
restrictions. Spedﬁaﬂy.youanmmmdmmuﬁmdammspedfyaﬁpnmmd
component locations for the following:

o Record types with discriminants
Record types with variant parts
e Record types with array compogeats.

Whea specifying component storage, you caa cross only ons 16-bit word boundary. You cannot
specify the storage for composite, ELOAT, or LONG_FLOAT components. For compoaents of
these types, the compiler automatically determines the storage required. You can specify storage
for all the remaining componeat types the same way as i standard Ada.

r-32 updates 08800007300

ANSI/MIL-STD-1815A Ada Reterence Manua

The (ollowing exampie shows a valid record representation specification:

type IUFL I8
recard
RETURN_FLAGS . INTEGER range 0 .. 15:
TERAMINATION_FIELD - INTEGER range 0 .. 7,
PROCESS_ID - INTEGER range 1 .. 258;
end record:
for IUFL use
record
RETURN_FLAGS atgrange Q.. &
TERMINATION_FIELD atQrangesS .. 7.
PRCCESS_ID at0range 8 .. 15
end record;

These component clauses specify the order, position, and size of TUFL fislds relative to the start of
the (UFL record. They aiso ensure that the [UFL fields martch the structure of the MTUFL offset
(user flag word) in 3 IREC system cail:

Fleld Fleld

Boundaries Coantents

o-4 RETURN_FLAGS

§-7 TERMINATION_FIELD.
8-15 PROCESS_ID

The ADE does got allow components to overlap storage boundaries; that is, record fields cannat
cross more thaa ons 16-bit word boundary.

Unchecked Programming

The ADE implements the predefined, geaeric library subprograms
UNCHECKED_DEAU.OC‘ATION and UNCHECKED_CON‘VERSION. The following
sections explain how to use these subprograms.

updamss 0BB-000073-00 F-33

ANSI/MIL-STD-1815A Ada Reterence Manual

Procedure U NCHECKED_DEALLOCATION

You can use the generic procedure UNCHECKED DEALLOCATION to deallocate dynamic
objects explicitly that are designated by values of access types. To deallocate dynamic objects
explicitly, your program must instantiate this procedure for a particular object and access type. [a
the program body, a call to the instantiated procedure specifies the dynamic object as a parameter.
When that call is executed, the specified object is deailocated, and its vaiue is set to auil The
following exampie shows how this works:

Example

In the following example, the call to the procedure DISPOSE deallocates the dynamic object
designated by the access value ROOT]I and resets ROOT1 ta null. However, if the eaclosing
procedure uses the other access value, ROOTY, to designate the same object as ROOTY, this code
causes a program error because the object no longer exists. You must watch for similar dangling
references when using the procedure UNCHECKED DEALLQCATION.

with UNCHECKED _DEALLOCATION:
package TREE_LABELER is

type LABEL TYPE is private:
type NCLE;

type TREE s access NODE;
type NQOCE is record

LABEL : LABEL_TYPE;
LEFT : TREE;
RIGHT : TREE;
end record:
procedure DISPOSE is new UNCHECKED OEALLOCATION (NCOE. TREE);
procedure LABEL_ROOT (LABEL :in LABEL_TYPE;
ROOT :in out TREE:

LABELLED TREE :out TREE);
end TREE_LABELER:

package body TREE_LABELER s
procedure LABEL_ROQT (LABEL :in LABEL _TYPE!
ROOT . in out TREE;

LABELLED TREE :out TREE);
AOOT1, ROOT2 : NOCE:

begin
DISPOSE (ROOT1);

end LABEL_ROOT:
ond TREE_LABELER:

F-34 updaes 089-000073-00

ANSI/MIL.3T0-1813A AQa Reference Manuas

Function UNCHECKED CONVERSION

The generic fuaction UNCHECKED CONVERSION allows you to return the value of a copy-in
parameter as a value of a target type. The actual bit pattern corresponding to that parameter value
does not change.

The fuaction UNCHECKED CONVERSION is a unit in the ADE SYSTEM library. The visible
part of that fuaction is listed beiow:

generic

type SQURCE is limited private;

type TARGET Is ilmited private;

function UNCHECKED _CONVERSION (S : SOURCE) return TARGET:

tunction UNCHECKED _CONVERSION (S : SOURCE) retum TARGET is
pragma SUPPRESS (RANGE CHECK);

begin
retum S,

end UNCHECKED_CONVERSICN:

For instantiations of this generic fuaction, types SOURCE and TARGET must be of the same
class and the same leagth. SOURCE and TARGET cannot be array types.

For more information about unchecked conversioas, refer to the LRM, Section 13.10.

Example

The following example shows source code that uses the function UNCHECKED _CONVERSION.
with UNCHECKED CONVERSION. ALPHA;

package BETA is

type TEST_NAME is private;
type DATA is record

IS_VALID : BOOLEAN:
TEST OBUECT :TEST_NAME:
end record;

function CONVERT TO_BETA_DATA is new
UNCHECKED CONVERS!ON (ALPHA.INFO, DATA);

function CONVERT FROM_BETA_DATA is new
UNCHECKED CONVERSION (DATA, ALPHA.INFO);

end BETA;

updaes 089-000073-00 F.38

ANSI/MIL.STD-1813A Ada Raterance Manual

Characteristics of ADE input /Output Packages
The standard input and output files in TEXT 10 carrespond to the AQS/VS generic files
@INPUT and @OUTPUT, respecuvely. For more information about AQS/ VS generic files, refer
to the DGC manual, Learrung (@ Use Your AOS/VS System.

Whea you are usiag the ADE 1/0 packages, remember the following:

¢ The maximum value for TEXT_[0.COUNT aad TEXT_[O.FIELD is SYSTEM.MAX [NT.
e The FORM parameter of the TEXT_[O.OPEN procedure is oot used.

o Type TEXT_{O.FILE_TYPE is an access type.

For more information about input/output operations in the ADE, refer to the ADE User’s Manuai.

F-38 wpomes O83-000073-00

ANSI/MIL-372.1815A Aga Reterence Manvai

Maximum Size Limits in the ADE

The ADE places the following absolute limits on the use of Ada language features:

Maximum
Compilation step Language Feature or amount
Syntax parsing Leagth of ideatifiers 120
Length of line 120
Semantics checking Discriminants in constraint 256
Associations in record aggregate 56
Fields in record aggregate 256
Formals in generic 26
Nested contexts 250
Generating machine code Indices in array aggregate 128
Parameters in cail 123
Nesting depth of expressions 100
Nesting depth of inlined expressions 100
Nesting depth of packages with tasks 100
088-000070-02
upGases 0B3-000073.00 F.37

ANSI/MIL-STO-1815A Ads Feterence Manual

Summary of the ADE Real Type Attributes

The following section liscs the aame and value for each ADE specific real atnbute.

Float Type Value
TMACHINE_RADIX 16
T'MACHINE_MANTISSA 6 for FLOAT

14 for LONG_FLOAT
It is the aumber of TMACHINE_RADIX
(hex) digits in mantissa.

TMACHINE_EMAX 63
It is the maximum exponent for MV floating
types, base 16.
TMACHINE_EMIN 64
It is the minimum expoueat for MV (loating
types, base 16.
TMACHINE_ROQUNDS TRUE
TMACHINE_OVERFLOWS TRUE
TSAFE_EMAX 32
The formula is:
log, (TMACHINE RADIX) *
CHINE_EMAX
TSAFE_SMALL 20 °** (-T'SAFE EMAX - 1)
TSAFE_LARGE 20** TSAFE_EMAX * (1.0- 20 e
(-T'BASE'MANTISSA))

F-38 upastee 08800007300

ANSI/MIL-STD- 18124 Ads Reterence Manual

Fixed Types Value
TMACHINE_ROUNDS TRUE
TMACHINE O VERFLOWS TRUE
TBASE'SMALL = TSMALL
TBASE'MANTISSA

T'SAFE_SMALL

TSAFE_LARGE

i’ém 18 SYSTEM.MAX_MANTISSA)
« TBASE'SMALL

« TBASE'LARGE

also

« (2°* TBASEMANTISSA - 1) *
TBASE'SMALL

F-39

ANSI/MIL-STS-1815A Aaa Reference Manusl

General Notes
o All fixed-point aumbers are stored i 32-bit integers.

¢ Floating-point types requiring 3 digits or less of precisioa are stored ia FLOAT; those
tequiring 6 to 14 digits are stored ia LONG_FLOAT.

e FLOAT and LONG_FLOAT use 1 bit for the sign and 7 bits for the exponent (of 16) in
excess-64 notation. FLOAT has 24 bits available for the maatissa; LONG_FLOAT has 56.

o For FLOAT and LONG_FLOAT, the smailest aumber that can be represented in the MV
architecture is givea by the following formuia:

TMACHINE_RADIX ** (T MACHINE _EMIN - 1).
This is equal to 16 ** (65) of 16#0.10000000000000# * 16 ** (-64).

e For FLOAT and LONG_FLOAT, the largest aumber that can be represented in the MV
architecrure is given by the following formula:

(10- TMACHINE RADIKX *° (-TMACHINE _MANTISSA)) *
(TMACHINE RADIKX ** TMACHINE_EMAX).

For FLOAT, this is equal to 16#0.FFFFE# * 2 ** (63).
For LONG_FLOAT, this is equal to the folfowing.

1640 FFFFFFFFEFEFFE# ° 2 °* (63) for LONG_FLOAT.

F40 updstes 0B8-00007300

ANSI/MIL-STO-1815A Aca Reterence Manual

Type Definitions in the ADE

The ADE defines the types INTEGER, FLOAT, and DURATION as follows:

Type Deflnition

INTEGER The set of integers begins with the value MIN_INT and ends
with MAX INT. The formulas for MIN_[INT and MAX _INT
are described under "Package SYSTEM.”

FLOAT The type FLOAT is defined by the vaiues described in the noces
under “Summary of the ADE Real Type Attributes.”

DURATION The type DURATION is defined as follows:
20 ** (-9) range -2 ** 2.2 **2%;

Ead of Appendix

updaIss 089-000073-00 F-41

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,
such as the maximum length of an input line and invalid file names. A
test that makes use of such values is identified by the extension .TST
in its file name. Actual values to be substituted are represented by
names that begin with a dollar sign. A value must be substituted for
each of these names before the test is run. The values used for this

validation are given below.

c-1

-~ MACRO.DFS -- ACVC_VERSION_1.10

-~ THIS FILE CONTAINS THE MACRO DEFINITICNS USED IN THE ACVYVC TESTS.

-~ THESE DEFINITICNS ARE USED BY THE ACVC TEST PRE-PRCCESSOR,

-~ MACRCSUB. MACROSUB WILL CALCULATE VALUES FOR THOSE MACRO SYMBCLS

-~ WHOSE DEFINITIONS DEPEND ON THE VALUE OF MAX IN_LEN (NAMELY, THE

-~ VALUES OF THE MACRO SYMBOLS BIG_ID1l, BIG_ID2, BIG_ID3, BIG_ID4,

-- BIG_STRINGl, BIG_STRING2, MAX STQING LITERAL, BIG_INT_LIT,”

-~ BIG_REAL LIT, MAX LEN INT BASED LITERAL, MAX LEN REAL BASED LITERAL,
-~ ANDTBLANKS). THEREFORE, ANY VALUES GIVEN INTTHIS FILE FCR THCSE

-~ MACRO SYMBOLS WILL BE IGNORED BY MACROSUB.

-~ NOTE: THE MACROSUB PRCGRAM EXPECTS THE FIRST MACRO IN THIS FILE TO
- BE MAX_IN_LEN.

-~ EACH DEFINITION IS ACCORDING TO THE FOLLOWING FORMAT:

-~ A. A NUMBER OF LINES PRECEDED BY THE ADA CCMMENT DELIMITER, --.

-~ THE FIRST OF THESE LINES CONTAINS THE MACRO SYMBOL AS IT APPEARS
- IN THE TEST FILES (WITH THE DOLLAR SIGN). THE NEXT FEW "COMMENT"
- LINES CONTAIN A DESCRIPTION OF THE VALUE TO BE SUBSTITUTED.

- THE REMAINING "COMMENT" LINES, THE FIRST OF WHICH BEGINS WITH THE
- WORDS "USED IN: " (NO QUOTES), CONTAIN A LIST OF THE TEST FILES
-~ (WITHOUT THE .TST EXTENSION) IN WHICH THE MACRO SYMBOL APPEARS.
- EACH TEST FILE NAME IS PRECEDED BY ONE OR MORE BLANKS.

-~ B. THE IDENTIFIER (WITHOUT THE DOLLAR SIGN) OF THE MACRO SYMBCL,

- FOLLOWED BY A SPACE OR TAB, FOLLOWED BY THE VALUE TO BE

-- SUBSTITUTED. 1IN THE DISTRIBUTION FILE, A SAMPLE VALUE IS

- PROVIDED; THIS VALUE MUST BE REPLACED BY A VALUE APPROPRIATE T
- THE IMPLEMENTATION.

-~ DEFINITIONS ARE SEPARATED BY ONE OR MORE EMPTY LINES.
-- THE LIST OF DEFINITIONS BEGINS AFTER THE FOLLOWING EMPTY LINE.

-~ $MAX IN_LEN
-- AN INTEGER LITERAL GIVING THE MAXIMUM LENGTH PERMITTED BY THE
-~ COMPILER FOR A LINE OF ADA SOURCE CODE (NOT INCLUDING AN END-OF-LINE

-~ CHARACTER) .
-- USED IN: A26007A
MAX_IN_LEN 120
-- $BIG_IDI

-~ AN IDENTIFIER IN WHICH THE NUMBER OF CHARACTERS IS $MAX IN LzZD
-- THE MACROSUB PRCGRAM WILL SUPPLY AN IDENTIFIER IN WHICH THEZ

-- LAST CHARACTER IS 'l' AND ALL QOTHERS ARE 'A°.

-- USED IN: C23003A C23003B (€23003C B23003D B23003E C23003G
- C230Q03H C23003I C23003J5 (C35502D C35502F

BIG_ID1 AAﬂ

-~ $BIG _ID2

-- AN IDENTIFIZR IN WHICH THE NUMBER OF CHARACTERS IS $MAX IN LEN,

~- DIFFERING FRCM SBIG_IDl ONLY IN THE LAST CHARACTER. THE MACROSUB

~- PRCGRAM WILL USE '2' AS THE LAST CHARACTER.

-- USED IN: (C23003A C23003B C23003C B23003F (€23003G <C23002H
C230031 C230037

BIG ID2 AAS

-- $SBIG_ID3

-- AN IDENTIFIER IN WHICH THE NUWBER OF CHARACTERS IS $MAX_IN LEN,.

-- MACROSUB WILL USE '3’ AS THE "MIDDLE" CHARACTER; ALL OTHERS ARE ‘A~
-- USED IN: C23003A C23003B €23003C <c23003G C23003H C23003I

-- $BIG_ID4

-= AN IDENTIFIER IN WHICH THE NUMBER OF CHARACTERS IS $MAX IN LEN,

-- DIFFERING FRCM $BIG_ID3 ONLY IN THE MIDDLE CHARACTER. EAC?OSUB

WILL USE '4' AS THE MIDDLE CHARACTER.

-- USED IN: (C23003A C23003B C23003C (C23003G (C23003H 230031
c23003J

BIG ID4 AA4AAAAAAAAAN]

-- $BIG_STRINGI

-- A STRING LITERAL (WITH QUOTES) WHOSE CATENATION WITH SBIG_STRING2

-- ($BIG_STRINGl & SBIG_STRING2) PROCUCES THE IMAGE OF $BIG_IDI.

-- USED IN: (€35502D C35502F

BIG_STRING1 "AA"

-- $BIG_STRING2

-- A STRING LITERAL (WITH QUOTES) WHOSE CATENATION WITH $BIG_STRINGL
(SBIG_STRINGl & $BIG_STRING2) PRODUCES THE IMAGE OF $BIG_IDI.

-~ USED IN: (C35502D C35502F

BIG_STRING2 "AANAAANAAAAL"

-=~ S$MAX STRING_LITERAL
-~ A STRING LITERAL CONSISTING OF $MAX IN LEN CHARACTERS (INCLUDING THE
-= QUOTE CHARACTERS).
-- USED IN: A26007A
MAX STRING_LITERAL

-~ SNEG_BASED_INT
-~ A BASED_INTEGER LITERAL (PREFERABLY BASE 8 OR 16) WHOSE HIGHEST CRDER
-- NON-ZERO BIT WOULD FALL IN THE SIGN BIT POSITION OF THE
-~ REPRESENTATION FOR SYSTEM.MAX INT, I.E., AN ATTEMPT TQ WRITZ A
-- NEGATIVE VALUED LITERAL SUCH AaS -2 BY TARING ADVANTAGE CF THE
-~ BIT REPRESENTATION.
-~ USED IN: E24201A
NEG BASED_INT B#377777777764%

-~ SBIG_INT_LIT

-~ AN INTEGER LITERAL WHOSE VALUE IS 298, BUT WHICH HAS

~ (SMAX IN LEN - 3) LEADING ZEROES.

-~ USED IN:~ C24003A

BIG_INT_LIT 000C0C0OCGEC2C0OCOCC0O00

$BIG_REAL LIT

A UNIVERSAL REAL LITERAL WHOSE VALUE IS 650.0, BUT WHICH HAS
(SMAX_IN_LEN - 5) LEADING ZERCES.

-~ USED IN:~ C24003B (€24003C

BIG_REAL_LIT 00CCCCCCCCCTT0C0C000Y

-- SMAX LEN_INT_BASED _LITERAL

-- A BASED INTEGER LITERAL (USING COLCNS) WHOSE VALUE IS 2:1l:, HAVING
-- (SMAX_IN_LEN - 5) ZEROES BETWEEN THE FIRST COLON AND mHE "FIRST 1.

-- USED IN:™ C2A009A

MAX LEN_INT_BASED_LITERAL 2:00000000000000000000000000000000000C00C0000QQ

-- $MAX_LEN REAL _BASED_LITERAL

-- A BASED REAL LITERAL (USING COLONS) WHOSE VALUE IS 16:F.E:, HAVING
-- (SMAX_IN_LEN - 7) ZEROES BETWEEN THE FIRST COLCN AND THE F.

-~ USED IN:~ C2A009A

MAX_LEN _REAL_BASEZD_LITERAL 16:000000000000000000000000000000000CC000C0CCA(

-- $BLANKS
-- A SEQUENCE OF (SMAX_IN LEN - 20) BLANKS.
-- USED IN: B22001A B22001B B2200l1C B22001D B22001E B22001lF

B22001G B22001I B22001J B22001K B2200lL B22001M

B22001N
< LIMITS OF SAMPLE SHOWN BY ANGLE BRACKETS >
YKS <
SMAX DIGITS

AN INTEGER LITERAL WHOSE VALUE IS SYSTEM.MAX_DIGITS.
JSED IN: B35701A CD7102B
_DIGITS 15

SNAME

THE NAME OF A PREDEFINED INTEGER TYPE OTHER THAN INTEGER,

SHORT INTEGER, OR LONG_INTEGER.

(IMPLEMENTATIONS WHICH HAVE NO SUCH TYPES SHOULD USE AN UNDEFINED
IDENTIFIER SUCH AS NO_SUCH_TYPE_AVAILABLE.

USED IN: AVATO007 C45231D B8600IX C7D101G

B NO_SUCH_TYPE_AVAILABLE

SFLOAT_NAME
THE NAME OF A PREDEFINED FLOATING POINT TYPE OTHER THAN FLOAT,
SHORT FLOAT, OR LONG_FLOAT. (IMPLEMENTATIONS WHICH HAVE NO SUCH
TYPES SHOULD USE AN UNDEFINED IDENTIFIER SUCH AS NO_SUCH_TYPE.)
USED IN: AVATOl3 B86001

AT_NAME NO_SUCH_TYPE

SFIXED NAME

THE NAME OF A PREDEFINED FIXED POINT TYPE OTHER THAN DURATION.
(IMPLEMENTATIONS WHICH HAVE NO SUCH TYPES SHOULD USE AN UNDEFINED
IDENTIFIER SUCH AS NO_SUCH_TYPE.)

USED IN: 27ATQl5 B8&00lY

ED_NAME NO_SUCH_FIXED_TYPE

SINTEGER_FIPST

AN INTEGER LITERAL, WITH SIGN, WHOSE VALUE IS INTEGER'FIRST.
THE LITERAI MUST NOT INCLUDE UNDERSCORES OR LEADING OR TRAILING
BLANKS .

USED IN: CJ5503F BS4BO1B

'EGER_FIRST -2147483648

SINTEGER_LAST

AN INTEGER LITERAL WHOSE VALUE IS INTEGER'LAST. THE LITERAL MUST
NOT INCLUD: UNDERSCORES OR LEADING OR TRAILING BLANKS.

USED IN: (353503F C45232A B45B01B

'EGER_LAST 2147483647

SINTEGER_L..ST PLUS_l
AN INTEGER LITERAL WHOSE VALUE IS INTEGER'LAST + 1.
USED IN: C45232A

'EGER_LAST_PLUS_1 2147483648

SMIN_INT
AN INTEGER LITERAL, WITH SIGN, WHOSE VALUE IS SYSTEM.MIN INT.
THE LITERAL MUST NOT CONTAIN UNDERSCORES OR LEADING OR TRAILING
BLANKS .

USED IN: C35503D C35503F CD7101B

i_INT -2147483648

SMAX INT
AN INTEGER LITERAL WHCSE VALUE IS SYSTEM.MAX INT.

THE LITERAL MUST NOT INCLUDE UNDERSCCORES QR LEADING OR TRAILING

BLANKS.
USED IN: C35503D C35503F C4A007A CD7101B

._INT 2147483647

STASK_SIZE

AN INTEGER LITERAL WHOSE VALUE IS THE NUMBER OF BITS REQUIRED TO

-- HOLD A TASK OBJECT WHICH HAS A SINGLE ENTRY WITH ONE INOUT PARAMETER.
~- USED IN: CD2AS1A CD2AS1B (CD2AS1C CD2A91D CD2A91E

TASK_SIZE 32

~- SMIN_TASK_SIZE

-- AN INTEGER LITERAL WHOSE VALUE IS THE NUMBER OF BITS REQUIRED TO

-- HOLD A TASK OBJECT WHICH HAS NO ENTRIES, NO DECLARATIONS, AND "NULL;"
AS THE CONLY STATEMENT IN ITS BODY.

-- USED IN: CD2A95A

MIN _TASK_SIZE 32

-- $NAME LIST

-- A LIST OF THE ENUMERATION LITERALS IN THE TYPE SYSTEM.NAME, SEPARATED
-~ BY COMMAS.

-- USED IN: CD7003A

NAME_LIST MV

-- SDEFAULT SYS_NAME

-- THE VALUE OF THE CONSTANT SYSTEM.SYSTEM_NAME.
-- USED IN: CD7004A CD7004C CD7004D
DEFAULT_SYS_NAME MV

$NEW_SYS_NAME

A VALUE OF THE TYPE SYSTEM.NAME, OTHER THAN S$DEFAULT SYS_NAME. IF
THERE IS ONLY ONE VALUE OF THE TYPE, THEN USE THAT VALUE-

NOTE: IF THERE ARE MORE THAN TWO VALUES OF THE TYPE, THEN THE

- PERTINENT TESTS ARE TO BE RUN ONCE FOR EACH ALTERNATIVE.

-- USED IN: ED7004B1 CD7004C

NEW_SYS_NAME MV

-- SDEFAULT_STOR_UNIT

-- AN INTEGER LITERAL WHOSE VALUE IS SYSTEM.STORAGE_UNIT.
-- USED IN: CD7005B ED7005D3M CD7005E
DEFAULT_STOR_UNIT 16

-- $NEW_STOR_UNIT

-- AN INTEGER LITERAL WHOSE VALUE IS A PERMITTED ARGUMENT FOR

-- PRAGMA STORAGE_UNIT, OTHER THAN $DEFAULT STOR UNIT. IF THERE

-- IS NO OTHER PERMITTED VALUE, THEN USE THE VALOUE OF

-- SSYSTEM.STORAGE UNIT. IF THERE IS MORE THAN ONE ALTERNATIVE,

-- THEN THE PERTINENT TESTS SHOULD BE RUN ONCE FOR EACH ALTERNATIVE.
-- USED IN: ED7005C1 ED7005D1 CD7005E

NEW_STOR_UNIT 16

-- SDEFAULT MEM_SIZE

-- AN INTEGER LITERAL WHOSE VALUE IS SYSTEM.MEMORY SIZE.
-- USED IN: CD7006B ED7006D3M CD7006E
JEFAULT_MEM_SIZE 536_870_912

-- SNEW MEM SIZE

.- AN INTEGER LITERAL WHOSE VALUE IS A PERMITTED ARGUMENT FOR

-- PRAGMA MEMORY_SIZE, OTHER THAN $DEFAULT_MEM SIZE. IF THERE IS NO
.- OTHER VALUE, THEN USE SDEFAULT MEM SIZE. IF THERE IS MORE THAN

.- ONE ALTERNATIVE, THEN THE PERTINENT TESTS SHOULD BE RUN ONCE FOR

-- EACH ALT’RNATIVE. IF THE NUMBER OF PERMITTED VALUES IS LARGE, THEN
.- SEVERAL VALUES SHOULD BE USED, COVERING A WIDE RANGE OF

-- POSSIBILITIES.

- USED IN: ED7006C1 ED7006D1 CD7006E

IEW_MEM_SIZE 536_870_912

-- SLOW_PRIORITY

AN INTEGER LITERAL WHOSE VALUE IS THE LOWER BOUND OF THE RANGE
-- FOR THE SUBTYPE SYSTEM.PRIORITY.

-- USED IN: CD7007C

LOW_PRIORITY 1

-- SHIGH PRIORITY

AN INTEGER LITERAL WHOSE VALUE IS THE UPPER BOUND OF THE RANGE
-- FOR THE SUBTYPE SYSTEM.PRIORITY.

-- USED IN: CD7007C

HIGH_PRIORITY 10

$MANTISSA_DOC

-- AN INTEGER LITERAL WHOSE VALUE IS SYSTEM.MAX MANTISSA AS SPECIFIED
-- IN THE IMPLEMENTOR'S DOCUMENTATION.

-- USED IN: CD7013B

MANTISSA_DCC 31

$DELTA_DOC

-~ A REALTLITERAL WHOSE VALUE IS SYSTEM.FINE DELTA AS SPECIFIED IN THE
IMPLEMENTOR'S DOCUMENTATION.

-- USED IN: CD7013D

DELTA_DOC 2.0%*(-31)

-= STICK

~-- A REAL LITERAL WHOSE VALUE IS SYSTEM.TICK AS SPECIFIED IN THE
-- IMPLEMENTOR'S DOCUMENTATION.

-- USED IN: CD7104B

TICK 0.1

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to
the Ada Standard. The following 44 tests had been withdrawn at the time
of wvalidation testing for the reasons indicated. A reference of the
form Al-ddddd is to an Ada Commentary.

A39005G
This test wunreasonably expects a component clause to pack an array
component into a minimum size (line 30).

B97102E

This test contains an unintended illegality: a select statement
contains a null statement at the place of a selective wait alternative
(line 31).

C97116A

This test contains race conditions, and it assumes that guards are
evaluated indivisibly. A conforming implememtation may use interleaved
execution in such a way that the evaluation of the guards at lines 50 &
54 and the execution of task CHANGING_OF THE_GUARD results in a call to
REPORT.FAILED at one of lines 52 or 56.

BC3009B

This test wrongly expects that circular instantiations will be detected
in several compilation units even though none of the units is illegal
with respect to the units it depends on; by AI-00256, the illegality
need not be detected until execution is attempted (line 95).

CD2A62D
This test wrongly requires that an array object’s size be no greater
than 10 although its subtype’s size was specified to be 40 (line 137).

CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests]

These tests wrongly attempt to check the size of objects of a derived
type (for which a 'SIZE length clause is given) by passing them to a
derived subprogram (which implicitly converts them to the parent type
(Ada standard 3.4:14)). Additionally, they use the 'SIZE length clause
and attribute, whose interpretation is considered problematic by the WG9
ARG,

CD2A81G, CD2A83G, CD2A84N & M, & CDS0110
These tests assume that dependent tasks will terminate while the main
program executes a loop that simply tests for task termination; this is

D-1

not the case, and the main program may loop indefinitely (lines 74, 85,
86 & 96, 86 & 96, and 58, resp.).

CD2B15C & CD7205C

These tests expect that a ’'STORAGE_SIZE length clause provides precisg
control over the number of designated objects in a collection; the Ada
standard 13.2:15 allows that such control must not be expected.

CD2D11B

This test gives a SMALL representation clause for a derived fixed-point
type (at line 30) that defines a set of model numbers that are not
necessarily represented in the parent type; by Commentary AI-00099, all
model numbers of a derived fixed-point type must be representable values
of the parent type.

CDS007B
This test wrongly expects an implicitly declared subprogram to be at the
address that is specified for an unrelated subprogram (line 303).

ED7004B, ED7005C & D, ED7006C & D [5 tests]

These tests check various aspects of the use of the three SYSTEM
pragmas; the AVO withdraws these tests as being inappropriate for
validation.

CD7105A

This test requires that successive calls to CALENDAR.CLOCK change by at
least SYSTEM.TICK; however, by Commentary AI-00201, it is only the
expected frequency of change that must be at least SYSTEM.TICK --
particular instances of change may be less (line 29).

CD7203B, & CD7204B
These tests use the ‘SIZE 1length clause and attribute, whose
interpretation is considered problematic by the WG9 ARG.

CD7205D

This test checks an invalid test objective: it treats the specification
of storage to be reserved for a task’s activation as though it were like
the specification of storage for a collection.

CE21071

This test requires that objects of two similar scalar types be
distinguished when read from a file--DATA_ERROR is expected to be raised
by an attempt to read one object as of the other type. However, it is
not clear exactly how the Ada standard 14.2.4:4 is to be interpreted;
thus, this test objective is not considered valid. (line 90)

CE3111cC
This test requires certain behavior, when two files are associated with
the same external file, that is not required by the Ada standard.

CE3301A
This test contains several calls to END_OF_LINE & END_OF_PAGE that have

D-2

no parameter: these calls were intended to specify a file, not to refer
to STANDARD INPUT (lines 103, 107, 118, 132, & 136).

CE3411B

This test requires that a text file’'s column number be set to COUNT’LAST
in order to check that LAYOUT_ERROR is raised by a subsequent PUT
operation. But the former operation will generally raise an exception
due to a lack of available disk space, and the test would thus encumber
validation testing.

E28005C

This test expects that the string "-- TOP OF PAGE. --63" of line 204
will appear at the top of the listing page due to a pragma PAGE in line
203; but line 203 contains text that follows the pragma, and it is this
that must appear at the top of the page.

APPENDIX E
COMPILER OPTIONS AS SUPPLIED BY

Loral/Rolm Mil-Spec Computers

Compiler: ADE Revision 3.01

ACVC Version: 1.10

- [}

¥
g' /ASSEMBLY
.

¢

|

/AUTO_INLINING=n

DATA GEIERAL CCRP TZLE Clhi R7P

The following compiler switches are available for DG ADE 3.01:

Preserves the assembly lanquage for an Ada program
in a .SR file. 1If this switch is not given, the
assembly~language source may be deleted after the
compilation; this option is controlled by the ADE
configuration. (For details, on ADE configuration,
see the ADE release notice.'' When the user supplies
this switch, the Ada source code will appear as
comments in the .SR file. Use this switch for
machine-level debugging only.

Tells the compiler to inline any subroutine called

n or fewer times. For the compiler to perform
automatic inlinini on a subrcutine, the subroutine
must not be visible ocutside its compilation unit, and
must also pass some implementation restrictions which
ensure the code will be duplicated no more than n
times. Automatic inlining will not occur when the
/NO_INLINING switch is present. Do not use

/AUTO INLINING on a scurce which contains
MACHINE_CODE subroutines which manipulate parameters,
because parameters are not passed on the stack to an
inlined subroutine. When /AUTO_INLINING=0, the
compiler will not generate rcode for unreferenced
subroutines which pass the automatic inlining
implementation restrictions.

Generate code for the confijuration whose source
text statements beqgin: "--/configname". You may giva
multiple confignames by separating them with
underscores (for example:
/CONFPIGURATION=configl_config2_configl).

Controls listing columns-per-line. The value of n
may be from 40 to 200, and includes eight columns per
line used by the compiler. Lines that are longer than
n columns are split so that indentation is preserved
when possible.

Compiles filename for use with the Ada Source Code
Debugger. (The Ada Debugger is sold separately with
the ADEX product and may riot be available at your
site.) NOTE: Compiling with the /DEBUG switch will
increase the volume of generated code and decrease
runtime performance.

Inhibits a full listing. Puts only error messages (if
any) in the .LST. If there are no errors, the listing
file will be empty.

Specifies the directory where otherwise unqualified
input filenames may be obtained. When input pathnames
include a directory prefix, the IDIR= switch 1is
ignored.

Names the target Ada library into which the source
is to be compilad. 1If om. tted, ADE uses the current
directory's default libraxy. All binaries output by

% .
,r LY B
| '
/CONPIGURATION=configname
/CPL=n
A
/DEBUG
! '
/ERRORS |
/IDIR=dirname
. /LIBRARY=libname
2o
3
&

the compiler are placed in the same directory as the

/LPP-n
/MAIN_PROGRAM(=name]

/NO_SYSTEM

/NO_INLINING

/SUPPRESS

/TABLE

CRTAR GEMERAL CIRP Tz o - S

B -

one in which the target libr.ry reside.

Controls listing lines-per-page, whers n is an integer
in the range 0..66. A value cf Q disables page ejects
and headings. Default n is 6¢§.

Specifiss the scurce is 2 main program. If the source
file contains more than one library unit, the
/MAIN_PROGRAM=name keyword switch must be used.

Prevents automatic inclusion of Ada system library in
the library searchlist for this compile.

Overrides /AUTO_INLINING and pragma INLINE. Since
the Ada Source Code Debugger cannot debug inlined

subprograms, use of this svitch will help in using
the Debugger.

Suppresses all run-time checking in the coda output by
the compiler, including range checking and record
variant checking. This makes your compiled grogram
run faster, but also makes debugging more difficult.

Generates information needed by the Add Source Code
Debugger to view informaticn, but not set breakpoints
nor step. You need not include this switch if the
/DEBUG switch is specified. NOTE: This switch
increases the generated code size and decresases

runtime performance, but not as much as the /DEBUG
switch.

