
UNCLASSIFIED
SECURIT CLASSIFCATION, OF THIS PAGE (Wena r o Enered) A D-A 219 438

REPORT DOCUMENTATION PAGE

1. REPORT NUMBER Din . 60VT ACCESSION 1O. 3. RECIPIENT'S CATALOG NUbER

4. TITLE (end Subttle) f " 5 TYPE OF REPORT A PERIOD COVERED

Ada Compiler Validation Summary Report: or 04 Aug. 1989 to 01 Dec. 199(

4il-Spec Computers ADE, Revision 3.01,
MV l0000 (hosW ol

RSWK/32 (Target), 890804S1.10142 6. P[RFORMING'bRG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR &RANT NUMBER(s)

National Institute of Standards and Technology
Gaithersburg, Maryland, USA
9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PRCJ.ECT. TASKAREA & wORK U1IT NlUMBERS

National Institute of Standards
and Technology

Gaithersburg, Maryland, USA

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office
United States Department of Defense 13. Nu.v! Uf F6
Washington, DC 20301-3081

14. MONITORING AGENCY NAME & ADDRESS(fdifferent fromControllingOfice) 15. SECURITY CLASS (oftis repon)
C NC LASS!I ED

National Institute of Standards and Technology
IN. iS r
is. ECLASSIFICA,IONh'D~w% RA:INj

Gaithersburg, Maryland, USA M U N/A

15. DISTRIBUTION STATEMENT (oftha Report)

Approved for public release; distribution unlimited.

17. DISTRIB, Tjoh STATE.MNT (of the abstracr entered in Block 20 Ifdiferent from Repon)

UNCLASSIFIED
~DTIC

18. SUPP,EMENIARi NOTES
' A

V I
' -ju

13. KEY ORDS (Continue on reverse side ,fnecessary odidenti y by block number)

Ada Progran.ing language, Ada Compiler Validation Summary Report, Ada
Corpiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ASSTRAC T (Continue on reverse side if necesary md identif by block number)

Loral/Rolm Mil-Spec Computers ADE, Revision 3.01, Gaithersburg, Maryland, MV 10000 under

AOS/VS 7.64 (Host) to HAWK/32 under ARTS/32 Revision 2.71 (Target), ACVC 1.10.

DD ,UK. 1473 boITION O 1 NOV SS IS OBSOLETE
I JAN 73 S/N o10ZLF-014-601 UNCLASSIFIED

SECURITY CLASSIFICATION Of THIS PALE (vierw D Et frered)

AVF Control Number: NIST89ROL535 2 1.10
PRE-VALIDATION: 19 JULY 1989
ON-SITE: 04 AUGUST 1989
LAST REVISION: 14 DECEMBER 1989
LAST REVISION: 04 JANUARY 1990

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 890804S1.10142
Loral/Rolm Mil-Spec Computers

ADE, Revision 3.01
MV 10000 Host and HAWK/32 Target

Completion of On-Site Testing:
4 August 1989

Prepared By:
Software Standards Validation Group
National Computer Systems Laboratory

National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

AVF Control Number: NIST89ROL535_21.10

Ada Compiler Validation Summary Report:

Compiler Name: ADE Revision 3.01

Certificate Number: 890804S1.10142

Host: MV 10000 under AOS/VS 7.64

Target: HAWK/32 under ARTS/32 Revision 2.71

Testing Completed 4 August 1989 Using ACVC 1.10

This report has been reviewed and is approved.

AdaVadation FacilityAda-ValidationFTE
Dr,/ David K. Jefferson Mr. L. Arnold Johnson
Chief, Information Systems Manager, Software Standards
Engineering Division Validation Group
National Computer Systems Engineering Division
Laboratory (NCSL) National Computer Systems

National Institute of Laboratory (NCSL)
Standards and Technology National Institute of

Building 225, Room A266 Standards and Technology
Gaithersburg, MD 20899 Building 225, Room A266

Gaithersburg, MD 20899

Ada Validation Organization NTS V3
Dr. John F. Kramer L,
Institute for Defense Analyses U
Alexandria VA 22311-.

By

Ada Joint Program Office
Dr. John Solomond

I.: ji

Director
Department of Defense
Washington DC 20301 1

Yi

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES1-3
1.4 DEFINITION OF TERMS 1-3

1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1

3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS 3-2

3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . 3-8
3.7 ADDITIONAL TESTING INFORMATION 3-8

3.7.1 Prevalidation 3-8
3.7.2 Test Method 3-8

3.7.3 Test Site 3-9

APPENDIX A CONFORMANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

APPENDIX E COMPILER OPTIONS AS SUPPLIED BY

Loral/Rolm Mil-Spec Computers

CHAPTER 1

INTRODUCTION

This Validation Summary Report -(VSR) describes the extent to which a

specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.

This report explains all technical terms used within it and thoroughly
reports the results of t-eting this compiler using the Ada Compiler
Validation Capability-(ACVC)Qo - An Ada compiler must be implemented

according to the Ada Standard, and any implementation-dependent features

must conform to the requirements of the Ada Standard. The Ada Standard

must be implemented in its entirety, and nothing can be implemented that
is not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it

must be understood that some differences do exist between

implementations. The Ada Standard permits some implementation

dependencies- -for example, the maximum length of identifiers or the
maximum values of integer types. Other differences between compilers

result from the characteristics of particular operating systems,

hardware, or implementation strategies. All the dependencies observed

during the process of testing this compiler are given in this report.

The information in this report is derived from the test results produced

during validation testing. The validation process includes submitting a

suite of standardized tests, the ACVC, as inputs to an Ada compiler and

evaluating the results. - The purpose of validating is to ensure

conformity of the compiler' to the Ada Standard by testing that the

compiler properly implements legal language constructs and that it

identifies and rejects illegal language constructs. The testing also

identifies behavior that is implementation dependent, but is permitted

by the Ada Standard. Six classes of tests are used. These tests are

designed to perform checks at compile time, at link time, and during

execution.

1-1

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an

Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the

compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported by

the compiler but required by the Ada Standard

To determine that the implementation-dependent behavior is allowed

by the Ada Standard

Testing of this compiler was conducted by GEMMA Corp under the direction

of the AVF according to procedures established by the Ada Joint Program

Office and administered by the Ada Validation Organization (AVO).

On-site testing was completed 4 August 1989 at Loral/Rolm Mil-Spec

Computers.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO

may make full and free public disclosure of this report. In the United

States, this is provided in accordance with the "Freedom of Information

Act" (5 U.S.C. #552). The results of this validation apply only to the

computers, operating systems, and compiler versions identified in this

report.

The organizations represented on the signature page of this report do

not represent or warrant that all statements set forth in this report

are accurate and complete, or that the subject compiler has no

nonconformities to the Ada Standard other than those presented. Copies

of this report are available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office
OUSDRE

The Pentagon, Rm 3D-139 (Fern Street)

Washington DC 20301-3081

or from:

Software Standards Validation Group

Institute for Computer Sciences and Technology
National Bureau of Standards

Building 225, Room A266
Gaithersburg, Maryland 20899

1-2

Questions regarding this report or the validation test results should be

directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to
the Ada programming language.

Ada An Ada Commentary contains all information relevant to
the Commentary point addressed by a comment on the Ada
Standard. These comments are given a unique
identification number having the form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and

1-3

technical support for Ada validations to ensure

consistent practices.

Compiler A processor for the Ada language. In the context of

this report, a compiler is any language processor,
including cross-compilers, translators, and
interpreters.

Failed test An ACVC test for which the compiler generates a result
that demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the
test.

Passed test An ACVC test for which a compiler generates the expected

result.

Target The computer which executes the code generated by the

compiler.

Test A program that checks a compiler's conformity regarding

a particular feature or a combination of features to the
Ada Standard. In the context of this report, the term
is used to designate a single test, which may comprise

one or more files.

Withdrawn An ACVC test found to be incorrect and not used to check

test conformity to the Ada Standard. A test may be

incorrect because it has an invalid test objective,
fails to meet its test objective, or contains illegal or
erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce errors
because of the way in which a program library is used at link time.

Class A tests ensure the successful compilation and execution of legal
Ada programs with certain language constructs which cannot be verified
at run time. There are no explicit program components in a Class A test

1-4

to check semantics. For example, a Class A test checks that reserved
words of another language (other than those already reserved in the Ada
language) are not treated as reserved words by an Ada compiler. A Class
A test is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
compiler.

Class C tests check the run time system to ensure that legal Ada
programs can be correctly compiled and executed. Each Class C test is
self-checking and produces a PASSED, FAILED, or NOT APPLICABLE message
indicating the result when it is executed.

Class D tests check the compilation and execution capacities of a
compiler. Since there are no capacity requirements placed on a compiler
by the Ada Standard for some parameters--for example, the number of
identifiers permitted in a compilation or the number of units in a
library--a compiler may refuse to compile a Class D test and still be a
conforming compiler. Therefore, if a Class D test fails to compile
because the capacity of the compiler is exceeded, the test is classified
as inapplicable. If a Class D test compiles successfully, it is
self-checking and produces a PASSED or FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the
Ada Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is
rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is
attempted. A Class L test passes if it is rejected at link time--that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated. In some cases, an
implementation may legitimately detect errors during compilation of the
test.

Two library units, the package REPORT and the procedure CHECKFILE,
support the self-checking features of the executable tests. The package
REPORT provides the mechanism by which executable tests report PASSED,

1-5

FAILED, or NOT APPLICABLE results. It also provides a set of identity

functions used to defeat some compiler optimizations allowed by the Ada
Standard that would circumvent a test objective. The procedure
CHECKFILE is used to check the contents of text files written by some
of the Class C tests for Chapter 14 of the Ada Standard. The operation
of REPORT and CHECKFILE is checked by a set of executable tests. These
tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then

the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended
to ensure that the tests are reasonably portable without modification.

For example, the tests make use of only the basic set of 55 characters,
contain lines with a maximum length of 72 characters, use small numeric
values, and place features that may not be supported by all

implementations in separate tests. However, some tests contain values
that require the test to be customized according to
implementation-specific values--for example, an illegal file name. A
list of the values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and

demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable

to the implementation. The applicability of a test to an
implementation is considered each time the implementation is validated.
A test that is inapplicable for one validation is not necessarily
inapplicable for a subsequent validation. Any test that was determined
to contain an illegal language construct or an erroneous language
construct is withdrawn from the ACVC and, therefore, is not used in
testing a compiler. The tests withdrawn at the time of this validation

are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under
the following configuration:

Compiler: ADE Revision 3.01

ACVC Version: 1.10

Certificate Number: 890804S1.10142

Host Computer:

Machine: MV 10000

Operating System: AOS/VS 7.64

Memory Size: 16 MBytes

Target Computer:

Machine: HAWK/32

Operating System: ARTS/32 Revision 2.71

Memory Size: 8 MBytes

2-1

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior
of a compiler in those areas of the Ada Standard that permit

implementations to differ. Class D and E tests specifically check for

such implementation differences. However, tests in other classes also
characterize an implementation. The tests demonstrate the following

characteristics:

a. Capacities.

(1' The compiler correctly processes a compilation containing
723 variables in the same declarative part. (See test

D29002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55A03A..H (8

tests).)

(3) The compiler correctly processes tests containing block

statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17

levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

(1) This implementation supports the acditional predefined
types SHORTINTEGER (B86001V) and LONG FLOAT (B86001U) in

the package STANDARD. (See tests B86001T..Z (7 tests).)

c. Based literals.

(1) An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR when a value exceeds SYSTEM.MAXINT. This

implementation raises NUMERICERROR during execution. (See

test E24201A.)

d. Expression evaluation.

The order in which expressions are evaluated and the time

at which constraints are checked are not defined by the
language. While the ACVC tests do not specifically attempt

to determine the order of evaluation of expressions, test
results indicate the following:

(1) None of the default initialization expressions for record
components are evaluated before any value is checked for

2-2

membership in a component's subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same
precision as the base type. (See test J35712B.)

(3) This implementation uses no extra bits for extra precision
and uses all extra bits for extra range. (See test
C35903A.)

(4) NUMERICERROR is raised when an integer literal operand in
a comparison or membership test is outside the range of the
base type. (See test C45232A.)

(5) No exception is raised when a literal operand in a
fixed-point comparison or membership test is outside the
range of the base type. (See test C45252A.)

(6) Underflow is not gradual. (See tests C45524A..Z (26
tests).)

e. Rounding.

The method by which values are rounded in type conversions is
not defined by the language. While the ACVC tests do not
specifically attempt to determine the method of rounding, the
test results indicate the following:

(1) The method used for rounding to integer is round away from
zero. (See tests C46012A..Z (26 tests).)

(2) The method used for rounding to longest integer is round
away from zero. (See tests C46012A..Z (26 tests).)

(3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See test
C4AOl4A.)

f. Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

(1) Declaration of an array type or subtype declaration with
more than SYSTEM.MAX INT components raises no exception.
(See test C36003A.)

(2) NUMERICERROR is raised when 'LENGTH is applied to an array
type with INTEGER'LAST + 2 components. (See test C36202A.)

2-3

(3) NUMERICERROR is raised when 'LENGTH is applied to an array
type with SYSTEM.MAX INT + 2 components. (See test

C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding
INTEGER'LAST raises STORAGE ERROR) when the array objects
are declared. (See test C52103X.)

(5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises STORAGE ERROR when the array
objects are declared. (See test C52104Y.)

(6) In assigning one-dimensional array types, the expression is

evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is

compatible with the target's subtype. (See test C52013A.)

(7) In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINTERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

g. A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However,

lengths must match in array slice assignments. This
implementation raises no exception. (See test E52103Y.)

h. Discriminated types.

(1) In assigning record types with discriminants, the
expression is evaluated in its entirety before

CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's

subtype. (See test C52013A.)

i. Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, the
test results indicate that all choices are evaluated before
checking against the index type. (See tests C43207A and

C43207B.)

(2) In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for

identical bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised after all choices are evaluated
when a bound in a non-null range of a non-null aggregate

2-4

does not belong to an index subtype. (See test E43211B.)

j. Pragmas.

(1) (The pragma INLINE is supported for functions or
procedures. (See tests LA3004A..B (2 tests), EA3004C..D (2
tests), and CA3004E..F (2 tests).)

k. Generics.

(1) Generic specifications and bodies cannot be compiled in
separate compilations. (See tests CAIOI2A, CA2009C,
CA2009F, BC3204C, and BC3205D.)

(2) Generic subprogram declarations and bodies cannot be
compiled in separate compilations. (See tests CAIOI2A and
CA2009F.)

(3) Generic library subprogram specifications and bodies cannot
be compiled in separate compilations. (See test CAIOI2A.)

(4) Generic non-library package bodies as subunits cannot be
compiled in separate compilations. (See test CA2009C.)

(5) Generic non-library subprogram bodies cannot be compiled in
separate compilations from their stubs. (See test
CA2009F.)

(6) Generic unit bodies and their subunits cannot be compiled
in separate compilations. (See test CA3O1A.)

(7) Generic package declarations and bodies cannot be compiled
in separate compilations. (See tests CA2009C, BC3204C, and
BC3205D.)

(8) Generic library package specifications and bodies cannot be
compiled in separate compilations. (See tests BC3204C and
BC3205D.)

(9) Generic unit bodies and their subunits cannot be compiled
in separate compilations. (See test CA3011A.)

1. Input and output.

(1) The package SEQUENTIAL_10 cannot be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE2101C,
EE22OlD, and EE220E.)

(2) The package DIRECT_10 cannot be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE21OIH,

2-5

EE2401D, and EE2401G.)

(3) Modes INFILE and OUT FILE are supported for SEQUENTIALIO.
(See tests CE2102D..E, CE2102N, and CE2102P.)

(4) Modes INFILE, OUTFILE, and INOUTFILE are supported for
DIRECT_10. (See tests CE2102F, CE21021..J (2 tests),
CE2102R, CE2102T, and CE2102V.)

(5) Modes INFILE and OUTFILE are supported for text files.
(See tests CE3102E and CE31021..K (3 tests).)

(6) RESET and DELETE operations are supported for
SEQUENTIALIO. (See tests CE2102G and CE2102X.)

(7) RESET and DELETE operations are supported for DIRECTIO.
(See tests CE2102K and CE2102Y.)

(8) RESET and DELETE operations are supported for text files.
(See tests CE3102F. .G (2 tests), CE3104C, CE3110A, and
CE3114A.)

(9) Overwriting to a sequential file does not truncate the
file. (See test CE2208B.)

(10) Temporary sequential files are given names and deleted when
closed. (See test CE2108A.)

(11) Temporary direct files are given names and deleted when
closed. (See test CE2108C.)

(12) Temporary text files are given names and deleted when
closed. (See test CE3112A.)

(13) More than one internal file can be associated with each
external file for sequential files when writing or reading.
(See tests CE2107A. .E (5 tests), CE2102L, CE211OB, and
CE2111D.)

(14) More than one internal file can be associated with each
external file for direct files when writing or reading.
(See tests CE2107F..H (3 tests), CE2110D and CE2111H.)

(15) More than one internal file can be associated with each
external file for text files when writing or reading. (See
tests CE3111A. .B (2 tests), CE31111D. .E (2 tests), CE3114B
and CE3115A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 567 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for
201 executable tests that use floating-point precision exceeding that
supported by the implementation. Modifications to the code, processing,
or grading for one test was required to successfully demonstrate the
test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

A B C D E L

Passed 124 1129 1773 15 21 44 3106

Inapplicable 5 9 542 2 7 2 567

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

3-1

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 194 573 533 245 172 99 158 331 131 36 250 90 294 3106

Inapplicable 18 76 147 3 0 0 8 1 6 0 2 279 27 567

Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at the time
of this validation:

A39005G B97102E C97116A BC3009B CD2A62D CD2A63A CD2A63B
CD2A63C CD2A63D CD2A66A CD2A66B CD2A66C CD2A66D CD2A73A
CD2A73B CD2A73C CD2A73D CD2A76A CD2A76B CD2A76C CD2A76D
CD2A81G CD2A83G CD2A84M CD2A84N CD2BI5C CD2DlB CD5007B
CD50110 CD7105A CD7203B CD7204B CD7205C CD7205D CE21071
CE3111C CE330A CE3411B E28005C ED7004B ED7005C ED7005D
ED7006C ED7006D

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of
features that a compiler is not required by the Ada Standard to support.
Others may depend on the result of another test that is either
inapplicable or withdrawn. The applicability of a test to an
implementation is considered each time a validation is attempted. A
test that is inapplicable for one validation attempt is not necessarily
inapplicable for a subsequent attempt. For this validation attempt, 567
tests were inapplicable for the reasons indicated:

The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)

3-2

C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 4 tests are not applicable because the tests
require a source line of characters greater than the 120
character source line which this implementation does not
support:

C24113H..K (4 tests)

C34006D is not applicable because use of record descriptors for
arrays gives larger 'SIZE for array.

C35702A and B86001T are not applicable because this
implementation supports no predefined type SHORT_FLOAT.

The following 34 tests are not applicable because 'SIZE
representation clauses for enumeration types are not supported:

A39005B CD1009B CDl009P CD2A21A CD2A21B
CD2A21C CD2A2lD CD2A21E CD2A22A CD2A22B
CD2A22C CD2A22D CD2A22E CD2A22F CD2A22G
CD2A22H CD2A221 CD2A22J CD2A23A CD2A23B
CD2A23C CD2A23D CD2A23E CD2A24A CD2A24B
CD2A24C CD2A24D CD2A24E CD2A24F CD2A24G
CD2A24H CD2A241 CD2A24J ED2A26A

The following 14 tests are not applicable because 'STORAGESIZE
not supported:

A39005C C87B62B CD1009J CD1009R CDI009S
CDIC03C CD2BIlB CD2BllC CD2BllD CD2BlE
CD2BllF CD2BIlG CD2B15B CD2Bl6A

The following 7 tests are not supported because 'SMALL
representation clauses are not supported:

A39005E C87B62C CD1009L CDlC03F CD2DllA
CD2DllB CD2DI3A

The following 16 tests are not applicable because this
implementation does not support a predefined type LONGINTEGER:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55BO7A B55B09C B86001W
CD7101F

3-3

C455311..P (8 tests) and C455321..P (8 tests) are not applicable
because the value of SYSTEM.MAXMANTISSA is less than 11.

C4AO13B is not applicable because the evaluation of an
expression involving 'MACHINERADIX applied to the most precise
floating-point type would raise an exception; since the
expression must be static, it is rejected at compile time.

D4AO02B and D4AO04B use 64-bit integer calculations which are
not supported by this compiler.

B86001X, C45231D, and CD7101G are not applicable because this
implementation does not support any predefined integer type with
a name other than INTEGER or SHORTINTEGER.

B86001Y is not applicable because this implementation supports
no predefined fixed-point type other than DURATION.

B86001Z is not applicable because this implementation supports
no predefined floating-point type with a name other than FLOAT
or LONGFLOAT.

The following 24 tests are not applicable because 'SIZE
representation clauses for integer types are not supported:

C87B62A CD1009A CD1O090 CDICO3A CDIC04A
CD2A3lA CD2A31B CD2A31C CD2A31D CD2A32A
CD2A32B CD2A32C CD2A32D CD2A32E CD2A32F
CD2A32G CD2A32H CD2A321 CD2A32J CD2A64B
CD2A64D CD2A65B CD2A65D CD2A74B

C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

CAI012A, CA2009C, CA2009F, CA3011A, BC3204C, BC3204D, LA5008M
and LA5008N are not applicable because this implementation does
not permit compilation in separate files of generic
specifications and bodies or of specifications and bodies of
subunits of generic units.

The following 16 tests are not applicable because 'SIZE
representation clauses for floating-point types are not
supported:

CD1O09C CD2A4lA CD2A4IB CD2A41C CD2A41D
CD2A41E CD2A42A CD2A42B CD2A42C CD2A42D
CD2A42E CD2A42F CD2A42G CD2A42H CD2A421
CD2A42J

The following 31 tests are not applicable because 'SIZE
representation clauses for fixed-point types are not supported:

3-4

CDIOO9D CDIOO9Q CDIC04C CD2A5IA CD2A5lB
CD2A51C CD2A5ID CD2A5KE CD2A52A CD2A52B
CD2A52C CD2A52D CD2A52G CD2A52H CD2A52I
CD2A52J CD2A53A CD2A53B CD2A53C CD2A53D
CD2A53E CD2A54A CD2A54B CD2A54C CD2A54D
CD2A54G CD2A54H CD2A54I CD2A54J ED2A56A
ED2A86A

The following 21 tests are not applicable because 'SIZE
representation clauses for array types are not supported:

CD1009E CD1009F CD2A61A CD2A61B CD2A61C
CD2A6lD CD2A6lE CD2A6lF CD2A61G CD2A61H
CD2A6KI CD2A61J CD2A61K CD2A61L CD2A62A
CD2A62B CD2A62C CD2A64A CD2A64C CD2A65A
CD2A65C

The following 16 tests are not applicable because 'SIZE
representation clauses for record types are not supported:

CD1009G CD2A71A CD2A71B CD2A71C CD2A71D
CD2A72A CD2A72B CD2A72C CD2A72D CD2A74A
CD2A74C CD2A74D CD2A75A CD2A75B CD2A75C
CD2A75D

The following 1 test is not applicable because 'SIZE
representation clauses for private types are not supported:

CDIOO9H

The following 1 test is not applicable because 'SIZE
representation clauses for limited private types are not
supported:

CD1O091

The following 22 tests are not applicable because 'SIZE
representation clauses for access types are not supported:

CD2ARlA CD2A8lB CD2ARlC CD2A8lD D2AIE
CD2A8lF CD2A83A CD2A83B CD2A83C CD2A83E
CD2A83F CD2A84B CD2A84C CD2A84D CD2A84E
CD2A84F CD2A84G CD2A84H CD2A841 CD2A84K
CD2A84L CD2A87A

The following 5 tests are not applicable because 'SIZE
representation clauses for task types are not supported:

CD2A91A CD2A91B CD2A9lC CD2A9lD CD2A9KE

The following 12 tests are not applicable because of

3-5

restrictions on the use of enumeration types for which an
enumeration representation clause has been given:

CD3OI4A CD3014B CD3014D CD3014E CD3OI5A
CD3015B CD3015D CD3015E CD3OI5G CD3015I
CD3O15J CD3OI5L

CD4031A, CD4051C, and CD40S1D are not applicable because record
representation clauses are not supported for record types with
discriminant parts.

The following 46 tests are not applicable because, for this
implementation, SYSTEM.ADDRESS clauses for variables are not
supported:

CD5003B..I (8 tests) CD5OIIA CD5011C CD5011E
CD5011G CD5011I CD5OI1K CD5011M CD5OIIQ
CDS012A..B CD5OI2E..F CD5012I..J CD5012M CD5013A
CD5013C CD5013E CD5013G CD50131 CD5013K
CD5OI3M CD50130 CD5013S CD5OI4A CD5014C
CDSO14E CDSO4G CD50141 CD5OI4K CD5OI4M
CD50140 CDSO14S..T CD5014V CD5014X..Z (3 tests)

The following 30 tests are not applicable because, for this
implementation, SYSTEM.ADDRESS clauses for constants are not
supported:

CD5OI1B CD5011D CDS011F CD5011H CD5OIIL
CD5011N CD51IIR CD5011S CD5012C CD5012D
CD5OI2G CD5012H CD5012L CD5013B CD5013D
CD5OI3F CD5OI3H CDS013L CD5013N CD5013R
CD5014B CD5OI4D CD5014F CD5014H CD5014J
CD5OI4L CD5014N CD5OI4R CD5014U CD5014W

AE2101C, EE220ID, and EE2201E use instantiations of package
SEQUENTIAL_10 with unconstrained array types and record types
with discriminants without defaults. These instantiations are
rejected by this compiler.

AE2101H, EE240ID, and EE2401G use instantiations of package
DIRECT 10 with unconstrained array types and record types with
discriminants without defaults. These instantiations are
rejected by this compiler.

CE2102D is inapplicable because this implementation supports
CREATE with INFILE mode for SEQUENTIALIO.

CE2102E is inapplicable because this implementation supports
CREATE with OUTFILE mode for SEQUENTIALIO.

CE2102F is inapplicable because this implementation supports
CREATE with INOUTFILE mode for DIRECT_10.

3-6

CE2102I is inapplicable because this implementation supports
CREATE with INFILE mode for DIRECT_10.

CE2102J is inapplicable because this implementation supports
CREATE with OUTFILE mode for DIRECTIO.

CE2102N is inapplicable because this implementation supports
OPEN with INFILE mode for SEQUENTIALIO.

CE21020 is inapplicable because this implementation supports
RESET with INFILE mode for SEQUENTIALIO.

CE2102P is inapplicable because this implementation supports
OPEN with OUTFILE mode for SEQUENTIALIO.

CE2102Q is inapplicable because this implementation supports
RESET with OUTFILE mode for SEQUENTIALIO.

CE2102R is inapplicable because this implementation supports
OPEN with INOUTFILE mode for DIRECT_10.

CE2102S is inapplicable because this implementation supports
RESET with INOUTFILE mode for DIRECTI0.

CE2102T is inapplicable because this implementation supports
OPEN with INFILE mode for DIRECT IO.

CE2102U is inapplicable because this implementation supports
RESET with INFILE mode for DIRECT_10.

CE2102V is inapplicable because this implementation supports
OPEN with OUTFILE mode for DIRECTIO.

CE2102W is inapplicable because this implementation supports
RESET with OUTFILE mode for DIRECTIO.

CE3102E is inapplicable because text file CREATE with INFILE
mode is supported by this implementation.

CE3102F is inapplicable because text file RESET is supported by
this implementation.

CE3102G is inapplicable because text file deletion of an
external file is supported by this implementation.

CE31021 is inapplicable because text file Cause text file CREATE
with OUTFILE mode is supported by this implementation.

CE3102J is inapplicable because text file OPEN with INFILE mode
is supported by this implementation.

3-7

CE3102K is inapplicable because text file OPEN with OUTFILE
mode is not supported by this implementation.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases
where legitimate implementation behavior prevents the successful
completion of an (otherwise) applicable test. Examples of such
modifications include: adding a length clause to alter the default size
of a collection; splitting a Class B test into subtests so that all
errors are detected; and confirming that messages produced by an
executable test demonstrate conforming behavior that was not anticipated
by the test (such as raising one exception instead of another).

Modifications were required for one test CC1223A. CC1223A was modified
according to AVO instructions to replace the expression
"2**T'MANTISSA-I" at line 262 with "2**(T'MANTISSA-l)-l)"; the original
expression raised an exception because 2**T'MANTISSA exceeds
SYSTEM.MAXINT.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10
produced by the ADE Revision 3.01 compiler was submitted to the AVF by
the applicant for review. Analysis of these results demonstrated that
the compiler successfully passed all applicable tests, and the compiler
exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the ADE Revision 3.01 compiler using ACVC Version 1.10 was
conducted on-site by a validation team from the AVF. The configuration
in which the testing was performed is described by the following
designations of hardware and software components:

Host computer: MV 10000
Host operating system: AOS/VS 7.64
Target computer: HAWK/32
Target operating system: ARTS/32 Revison 2.71

A tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing.

3-8

The contents of the tape were loaded directly onto the host computer.
After the test files were loaded to disk, the full set of tests was
compiled, linked, and all executable tests were run on the HAWK/32
under ARTS/32 Revision 2.71. Results were printed from the MV 10000
computer.

The compiler was tested using command scripts provided by Loral/Rolm
Mil-Spec Computers and reviewed by the validation team. See Appendix E
for a complete listing of the available compiler options for this
implementation. The only option invoked during this validation was:

MAINPROGRAM.

Tests were compiled, linked, and executed (as appropriate) using one
host computer, the MV 10000, and one target computer, the HAWK/32 under
ARTS/32 Revision 2.71. Test output, compilation listings, and job logs
were captured on tape and archived at the AVF.

3.7.3 Test Site

Testing was conducted at Loral/Rolm Mil-Spec Computers and was completed
on 04 August 1989.

3-9

APPENDIX A

DECLARATION OF CONFORMANCE

Loral/Rolm Mil-Spec Computers has submitted the following
Declaration of Conformance concerning the

HOST: MV 10000

TARGET: HAWK/32 under ARTS/32 Revision 2.71.

A-i

Attachment 4

DECLARATION OF CONFORMANCE

Compiler Implementer: Loral/Rolm Mil-Spec Computers
Ada Validation Facility: Institute for Computer Sci.and Techn.
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: ADE Revision: 3.01
Host Architecture - ISA: MV 10,000 OS&VER # AOS/VS 7.64
Target Architecture - ISA: HAWK/32 OS&VER #: AOS/VS 7.64
Target Architecture - ISA: HAWK/32 OS&VER #: ARTS/32 2.71

Derived Compiler Registration

Derived Compiler Name: ADE Revision: 3.01
Host Architecture - ISA: MV Family OS&VER #: AOS/VS 7.64
Target Architecture - ISA: MV Family OS&VER #: AOS/VS 7.64
Target Architecture - ISA: HAWK/32 OS&VER #: AOS/VS 7.64
Target Architecture - ISA: HAWK/32 OS&VER #: ARTS/32 2.71

Owner / Implementer's Declaration

I, the undersigned, representinq Rolm Mil-Spec Computers
have implemented no deliberate e ..-bsioas to the Ada Language
Standard ANSI/MIL-STD-1815A in che compiler(s) listed in this
declaration. I declare chat Rolm Mil-Spec Computers is the owner
of record of the Ada language compiler(s) listed above and, as
such, is responsible for maintaining said compiler(s) in
conformance to ANSI/MIL-STD-1815A. All certificates and
registrations for Ada language compiler(s) listed in this
declaration shall be made only in the owner's corporate name.

3 'iiott - -Software Product Manager Date

Owners Declaration

I, the undersigned, representing
agree that as part of the joint Marketing Agreement between Roim
Mil-Spec and Data General for the Ada Development Environment,
Data General has the responsibility to maintain the Base Compiler
listed above. I declare that all of the Ada language compilers
listed, and their host/target performance are in compliance with
the Ada Language Standard ANSI/MIL-STD-1815A.

Date I

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of the ADE Revision 3.01
compiler, as described in this Appendix, are provided by Loral/Rolm Mil-
Spec Computers. Unless specifically noted otherwise, references in this
appendix are to compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are not
a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2_147 483 648 .. 2_147_483_647;
type SHORTINTEGER is range -32768 .. 32767;

type FLOAT is digits 6 range
-16#0.10000000000000# * 16 **(-64) .. 16#0.FFFFF# * 16 **(63);

type LONG FLOAT is digits 15 range
-16#0.10000000000000# * 16 **(-64)..16#0.FFFFFFFFFFFFFF# * 16 **(63);

type DURATION is delta 2.0**(-9) range -2**22 .. 2**22;

end STANDARD;

B-1

Z

Addendum to
the ANSI Reference Manual for

the Ada® Programming Language

086-000070-02

I 77 addendum updates manuaL 069-000073-00
Se updating instructions inside.

Ordering No.086-000070
Rev. 02, December 1988
Copyright Semantc Software. nc.. 1984. 1988
Copyngbt 0 Datm Geneual Corporation. 1984. 1988
All Rigts= Reserved
Printed in the United States of America

Notice
DATA aw ERAL CORPORATION (DC HAS PREPARED THIS OOC.M.NT FOR USE BY DCC PER-
SONNEL. CUSTOME.!. AND PROSP2CTIVP. CUSTOMERS. THE INFORMATION CONTAINED
HEREIN SMALL NOT 51t REPRODUCED IN WHOLE OR IN PA.T WITHOUT DOC'S PIOR WRITIZN
APPROVAL.

DCC reserves he nrght to make changes in specifications and other informaton contained in
,hm ddcument wthout pnor nouce. and the reader should in all cases consult DOC to deter-
mine whether any such change. have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE
PRODUCTS AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF
THOSE SET FORTH IN THE WRITTEN CONTRACTS BETWEEN DGC AND ITS CUS-
TOMERS. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CON-
TAINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED TO STATEMENTS
REGARDING CAPACITY. RESPONSE-TIME PERFORMANCE. SUITABILrTY FOR
USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED
TO BE A WARRANTY BY DGC FOR ANY PURPOSE. OR GIVE RISE TO ANY LI-
ABILITY OF DGC WHATSOEVER.

IN NO EVENT SHALL DOC BE LIABLE FOR ANY INCIENTAL. INDIRECT. SPECIAL
OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO
LOST PROFITS) ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE IN-
FORMATION CONTAINED IN IT. EVEN IF DCC HAS BEEN ADVISED, KNEW OR
SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH DAMAGES.

CEO. DASHER. DATAPREP. DESKTOP GENERATION. ECLIPSE. ECLIPSE MVI4000.
ECLIPSE MV(6000, ECLIPSE MV/8000. GENAP. INFOS. microlOVA. NOVA.
PRESENT. dPROXI. SWAT, and TREND VIEW are U.S. regxered u-ademam of Data
General Corporaton; and AOSMAGIC. AOS/VSAGIC. AROSEIPC. ArrayPius.
BusIGEN. BusiPEN. BusiTEXT. CEO Connection. CEO Drawing Board. CEO DXA.
CEO Light, CEO MAILI. CEO PXA. CEO Wordview, CEOwritg. COBOLJSMART.
COMPUCALC. CSMAGIC. DASHER/One. DASHER/2S6, DASHER/386. DASHER/LN.
DATA GENERAL/Oe. DESKTOP/UX. DG/SOO. DG/AROSE. DGConnect, DG/DBUS.
DG/Fonuyles. DG/GATE. DG/GEO. DG/L DGLIBRARY. DGiUX. DGIXAP.
ECLIPSE. MV/1400. ECLIPSE MV2000. ECLIPSE MV2S00. ECLIPSE MV17800.
ECLIPSE MV/10000. ECLIPSE Y/IS00. ECLIPSE MVI20000. ECLIPSE MV/40000.
FORMA-TEXT. GATEKEEPER. GDC11000. GDC/2400. microECLIPSE, microMY.
MVIUX. PC Liaison. RASS. REV-UP. SLATE. SPARE MAIL. TEO. TEO/3D.
TEO/Elecronics. TURBOI4, UNITE. and XODIAC are trademarks of Data General
Corporauon.

Ada is a registered trademark of the U. S. Gomvernment (AJPO). ROLM is a regsered trade-
mark and ADZ is a uademark of ROLM Corporauon.

Addendum to the ANSI Reference Manual for the Ada* Programming Language

086-000070-02

Effecive with: AOSIVS ADS, Rev. 3.00

Please insert Appendix F in your copy of he ANSI R,ermnc, Wanuai for the Ada

Pro gromming Languag.

ANSI/rL. STo. st ai S a ;Wfetemce Va%.a

Appendix F:
Implementation-Dependent

Characteristics

The DGC Ada compiler is dismbuted as part of the Ada Deveiopment Ewanooment (AD El.
DGC Ada is a validated implememation of Ada tch confoms to dw ftd ANSI/MIL-STD- 1815A
standard. The ANSI standard aLlows indidual implemecauloas to sec or defie cenai language
charateristics, such as pragmas, resctions on represetaton causes, and capaiy limits.

This appendix describes the language chacteristics defined by the DGC implementation. verion
3.00 or higher. In this appendix, the ANSI Refevince Manai for the Ada Propmrumg Language is
referred to as the LRM.

This appendix contains te folowing nformatio:

ADE-Defined Pragma- __-_
Pragmas Tha Have No Effect ... F_3
Prams Implemented in the ADS F-4

]ELABORATFE 4-
ENTRY-POINT _ -

INTE.RFACE -. 1F
LIST LS

LOAD F-16MAIN.
MAXTAS F.19

MV - . - . ..FmPAGE F.Zi
PRIORITY - ,-.....-2

SUP -?"It
TASK STORAGE.SIZE .Z6

Package SYSTEM
Represemaon C.. .

Lawk Clauses
Enuamation ReresentaionsReord Rqeprsntton. F-32

Unchedm4 Prof__,, ed E-33

Prooedum UNC34'ECKtED-DEALCATIION.....-3

Function UNCICKED CONVERSION .
erisics of ADS Ipu. -z put P, cra _F-36

Mauimum Sies Limits in the ADS .. F.37
Sum.az of tie ADS Real Type Attriutm __F.38
Type i .auios in d E AD..__F.

"- 0 -: -F-

ANSI/MIL,STO-181 SA Ads Referigv M4aj uah

ADE-Defined Pragmas
Pragmas teLl the compiler how to process your program at compile time. They do not affect the
semanfa of a prop9r. but they allow you to eercise some control over how the compiler
processe yaw prfogrM

The ANSI Refance Manua for the Ad ,ormuimMg Lanwua (LRM) descbes the standard
pragma and their use. Other pragmas ar defined by the various unplementations of the
lanu u. This section provides additional information on those standard pragas and deines the
prapm thu a unique to DGC Ada.

This soon comains tvwo pars. The first pat lists pramas thu a r at imp mented in the
current version of the ADE. The second part lists the implemented p'awm in ga hbwW order,
desaibu thea and provides esamptes of their use.

I.

P-2 'ge ' u.ovoo.o

ANS~,I .- aSAka Ad& 1*fveeC* %atf,.&

Pragmas That Have No Effect

The following Ada pragmas are not implemezced in the curent version of the ADE

Pragm Explansiton

CONTROLLE.D This pragma is not needed because the compiler does not
reclaim unu4 storage auxomaicaily. To deallocate storage
explicitly, use the genenc prncedure
UNCHECKED DEALLOCATION. Refer to the LRM,
Section 13.10, and the ADE Uses .Wwa" for more information
about this procedure.

MEMORY.SIZE The package SYSTEM define s MEMORY SIZE constant
as 2 29 words. Use the /MTOP switch Oc the ADALINK
command to adjust the mammum virtual memory sizz. Refer to
the ADE User's Mm" for more informa2i*n about the
ADAL i command.

OPTIMIZE The compiler does not cuetly use ime or space optimization

PACK This pragma has no effect in the currenz version.

SHARED The compiler does not implement indivisible direct read and
update operaions for any object; Lherefore, there are no ob ects
to which you can apply this pragma. Refer to the LRM Secuon
9.IL

STORAGE UNIT The package SYSTEM currently defines the storage unit as a
16.bit word. You can not redefine it.

SYSTEM-NAME The package SYSTEM defines this as an object of enumeration
type NAME, for which only one Literal is allowed.

11111 F-3

ANSUMIL.$TO.- 181 SA Ad& 4S0fenct 'vt3fiUAI

Pragmas Implemented in the ADE

The folowing pages describe., in alphabe icai order, Lhe ADE-speac prgmas.

pragma ELABORATE

Specifies which library unit bodies (secondary units) to elaborate
before the current compilation unit

Format

pragma WLaO RATE (libraryunt [Jilbrry-uit));

wh re:

library unit Specifies the simple name of de library unit whose body you
want elaborated before the current compilaton uit.

Description

Prqgm ELABORATE tells the compiler to elaborate the body of the specified 1ibry unit or
units before elaborastig the current compdlation uijL If the aurent compilation unt is a subunit.
the compiler elaborates die body of the specified nbuy unit before elaborating the unit that is the
ancestor of the current compilado subunit.

Pragma ELABORATE must appear after the conzu clause (or the current comilmon unit, and
it must specfy a library unit named in that coante dause. Tbe specified libray unt must have a
body.

For moe information. refer to the LRM Section 10.5.

Example

with EARTH DATA.
pragnia ELAS-ORATE (EARTHOATA);
procedure SOLAR SYSTEM Is

.AM OATA.TRACK ORr

F-4 u 8m0a 7

AN~SI/ MIL*STD- 1 1i SA Ad& A PCO ~al~

pragma ENTRY-POINT

Associates an Ada subprogram name with a specific entry point label
so foreign language routines can call or be called by Ada
subprograms.

Format

pragma ENTRY POINT (subprogramnazmT "enrypoirntarne1;

wbat

subprogram name Spedea the unique name of an Ada subproram defined in the
declarativ pat of the crrent compilation unit. Do no use doe

notam to specify subproram name.

enily_poirt name Specifies the STRING literal denoting the acuai external labeL
Use uppermse letters 4mdose in quates, for exmpie,
*FRTN L1BNAW.

Description

You ca = tehis prm sin er rof ways:

" A subprogam written in another language can refer to an Ada subprogram using the entry
point defined by this pralp.

* An Ada subprogram can cad a ibry routine written in another language by wing the name
of the routine as an entry point. In this cas you must also use pragma INTERFACE to
specify the language of the library roi.

Pragma ENTRY POIT must appear in the declarative pan of a block, in a package specication.
or after a compilation UDL You mwc specify both argument.

Example

p calum MAIN Is
frtctlon FRTN OP (X: INTEGER) rmrn BOOLEAN,

pa Iu JNE#FAcE (F77, PRTonO)
a ENTRY-POINT (FRTNO-P. "Rh UBNAMEJ;

end MAIN;

Ci ?C F-S

AN~SI/MLS.S I8SA Ads Paterence Mvainuaa

pragma INLINE

Specffies the subprograms and generic units that you want expancted
inllne at each call whenever possible.

Format
pragma NLINE (name (, namei):

Where:

name Specfies the subprogram or neric unit you want inLined at
each calL The subprogam or generic unit must be defined
before prasma LNUNE in the decarative pat of the proam.

Description

Praga MIE tells the compiler to insert code for the body of the subprogram each time the
subproam is called. If the -amed subprogam is a generic unit, t. compiler insert code for the
bodies of all subprogams that are intuitioius of that generic unit.

Th following restrictious apply to pragma NUNE

* The nesting level of inlined procedures cannot exceed 100.
* A progam that inie a funcion that reurns an unconsaind object wig am work corrctly.

The ADE will not inlie the folowing:

* Recursive subprogams
* Subpropams containing excepthadlers
* Any unit that dedares a task, task type, or access to a task type.

P4 nupm ,040=340

pragma INLINE (continued)

Example

This ammple shovs two aembly (.SR) Mes for the folowUi source code. The 11% asembly fMe
shows the source code compiled with praga L[NUE. The second example shows the asembiy
file without the pragma.

Source Code

In the foldowi example. prq&ma INLINE applies to ail the cafls to SQUARE in WITH INLLNF

Pr dum WITHINUNE is
FIRST, SECONO INTEGER:
funcn SQUARE (S: INTEGER) renum INTEGER:
praqurm INI.INE (SQUARE):

havow SQUARE (S: INTEGER) return INTEGER is
b.9n

ratum S " S.
eiid SOUAREM

FIRST 'JAft %2);

SECC r * SQUARE (SQUARE (FIRST));
eid u4TH INUNE

uwm OU,0cm73 F-7

SI,/MIL-8
1 SAAd 'G(fclsv aeual

pragma INLINE (continued)

Assembly File with Pragmna INUNE

Ech u. SQUARE is cad eC € hMpW,,lU cWd fo thaL fUnl a then foaow"

Cumple. SQUARE is caileid ctc time& The Lau eihl Ines mn the in,ed subprepam

FIRST: a SQUARE (2;
,S : constant INTEGER • 2;
;; rttan S * 3 - fqrs iline expansion

NLDAI 4,0
XWSTA 0.12..3 .- FIRST

;; SECONO :- SQUARE (SQUARE (FIRST));
; S: constant INTEGER: - SQUARE (FRSM.

;; S : otant I INTEGER : , FIRST;
:: returnl 5' S - second infine expalsion

XWMUL 0.19..3
XWSTA 0,17.,3

;;rtu S *S - ttld Irdine lxpnsion

XWMUL 0.1?..3 S

XWSTA 0.14..3 .;SECONO

WRTN

; function SQUARE (S: INTEGER) return INTEGER is

=treturn S I S.

XWLDA 0.@-12..3
XWMUL 0.@-12..3
XWSTA 0.,&.3
WRTN

end

p4 uomas-

pragma INLINE (continlued)

Miewibly File Without Pragms INLINE

:FIRST: . SQUARE (2):.-PS fetv
LvL3 aps f6C6dru (L31-2

LCALL L2.1,1 - flrs cagI to SQUARE
xWSTA 0.1Z..3

;SECOND:* SQUARE (SQUARE (FIRS1);
XWSTA 0.17-.3 -ps fcv drs 1
XP!P 17..3 shfOladrS(1"

LCALL L2.1,1 - second cad to SQUARE

XWSTA o.19..3
XPEF M9.3 - push effectiveaddress [19 IS

WCALL L2.1. - iffd cad to SQUARE
XWSTA o.14-.3

;funcion SQUARE (S: INTEGER) return INTEGER Is

;;,- rvutl 3 0 S- Wgnt the cage function

L2:

XWMUL o,@-M2.3
XWSTA 0.4.3
WHTN

La: 2
AND

ANSI/ MILSD-16 A Ada Raeffugan M.an.ua

pragma INTERFACE

Speciffes another language (and calling conventions) for Interfacing
with an Ada program.

Format

prgma LINTERFACE 0anguag. name. subproramname):

where

ianguage name Specifim the languag of the caged subprogam.

supmgram name Specfies the name of the called subprogam The subprogam
must be declared ealier in the progam.

oescrptlon

Pragma NrERFACE allows you to call prop= units written in other anguaps (foreign
subpropams). A specifiation for the named subproprm must be written in Ada. The body of
the subpropa can be written in another anguag.

Pragma DnTEFACE must be in the dedaratm pat or packap spec=icaion of the Ada ut "di
calls the subprogam. The subpropm you specify as an arguzent must be declared earlier in the
same declarative pazt or packag e spefication.

Your progam must include the following prapsia LOAD statements in the order shown

pragma LOAD ("ADE ROOT?:RUNTI2ME:ERFACE.LRT TRIGGGEW);
pra pa LOAD ("LANGRTi.B');

You must be able to access LANG RT.LB through one of the Mle access methods provided by the
syste. such as search lists or lks The LMPORT command UWs LANG RT.LB automaticaily.
Use it to import routines written in F77, C, or PASCAL

Ada supports the cling of subprop s write in F77, PASCAL. C, MASM, and ASSEMBLY.
In addition. you can call any lanuag thai obey the common calling conventaon of DGC
lanag but you will reew a compiler warnmg that the language IS not explicitly supported.

The Ada runtme interfae traps any runime error in the caged routne and raises the
PROGRAM ERROR ,=eptin in the calling proraL The mterface aso suspends Ada caskwig
during rw cQ to the ao-Ada subroutine

F,10 ugdn~~3.

AN5lIMILS' 5l j, Ada A~ieter'c sa,

pragma INTERFACE (continued)

General Notes
* Characters within constructs are packed according to DGC aipc ¢nt requirements for the

called language.

* Booleans. arrays, and records are not packed. Boolean are passed one per word.

* Return values are o checked for validity.

" Procedure and function calls to other languages do not support type conversions. You must
do tM conversioas explicitly.

" You can pass ACCESS types, but exercise caution whez changsin Ada data structures. Data
Genera may change data formats in a future revision. After receiving any revisions of the
ADF, tet thoroughly all programs that depend oan specific data formats.

LANG RT performs the ex=eption handling for 'oreig subprograms. If a foreign
subprogram has an error, that error is propagted to the calling Ada program as a
PROGRAM ERROR.

* Foreign subprograms must be in the same ring as the calling Ada program.

* Foreign subprograms can perform 1/O operations, but it is the users responsibility to use
pragma LOAD to load al the necessary runtime objects. A ternaey, you can use the
template facility provided by ADALINI.

* The foreign code interface does not support Ada unconstrained types for any languages.

" All appropriate LB and OB files must be loaded into Ada programs that call foreig
programs. The IMPORT funh n only ensures that the O cotaining your function and
LANGRT are loaded with pragma LOAD. If the foreign code requires additional runume
suppo, such as MULTITASKING.OB, you should add the names of all necessary O and
LB files to Wiface jackapv B ile. This file is created by IMPORT or by ADALLNK
templates.

-In11

ANSIJMt.-S-,0- 18 1 S A A~a Pate1* Ce %4*ftui

pragma INTERFACE (continued)

Foreign Language Calling Conventions and Data Types

The fodowin sections descnibe the caling conventions and/or the data types used by DGC Ad& to
cad subprogams wntten in torcip lanuages.

MASM or ASSEMBLY
The MAM and ASSEMBLY options provide the standard Ada ca&U* conventions. If either is
specud. the called progam (which may or may ao be MASM or ASSEMBLY) is expeced to
follow Ada calling conventions and to know how Ada data structures are formatted.

M is supported as foilowc

F77 Data Type Ads Data Ty"e

tNTEIGE4 INTEGER
INTEGER"2 SHORT INTEGER
REAL4 FLOAT
REA S LONG FLOAT
CHA.RAC-TERSI CHARACTER
C24ARtACTER*4N STRING(L.N)
ARRAY ARRAY

* Array eletments must be of a supported scalar type.
" Scalar parameters an passed copy.in copy-out.
* One-dimensional arrays are passed by reference for copy-in copy-oui
* Multidimensional arrays obey copy-in copy.out rules.

1* 12 uoml OU $0

pragma INTERFACE (continued)

C
C is sup ported as foilows:

C Dat Type Ads Date 7wT

SHORT INT SHORT INTEGER
LONG [NT LONG &I'FGER
SHORT FLOAT FLOAT
LONG LOAT LONG FLOAT
CHARACTER CHARACTER
POINTER ACCESS
ENUMERATION ENUMERATION
ARRAY OF CHARACTER STRING
ARRAY ARRAY
STRUCTURE RECORD

Note C calling convenios specfy pas by veu. Therefom only copy-i rode is allowed for
sam parameters and structures. The cal: =tefc -darces pan by value for array.

PASCAL
PASCAL is supported as foilaws

PASCAL Data Tye Ad Data Type

SHORT INTEGER SHORT INTEGER
LONG -TEGER INTEGER
REAL FLOAT
DOUBLE REAL LONG FLOAT
BOOLEAN BOOLEAN
CHAR CHARACTER
ENUMERATION ENUMERATION
PoOnTR ACCESS
ARRAY ARRAY
PACXED ARRAY OF CHAR STRING
RECORD RECORD

* Not supported: RECORD VARIANTS, SET, FIE.
* Oa-dimensioW arrays are passed by reference for copy-in copy-ouL
" Mulidimesional arrays obey copr-in cop-out rules.

ueiin O,.OO '.7, F.13

F
~ANSI,A&S0-falSA Ads PoetMec

MArWUaa

pragma INTERFACE (continued)

PL/1
PL/I is supported as foUows:

PL/1 Data Type Ada Data Type

FX= BINARY (UT) SHORT INTEGER
FtXED BINARY (31) INTEGER
FLOAT BINARY (21) FLOAT
FLOAT BINARY (53) LONG FLOAT
POINTER ACCS
ARRAY ARRAY
RECORD RECORD

* PL/I is not epficiy supported; however. the data types Hsted &an ca be used if ad data
on standad LANG RT alpmi.em and spae chractermam Spe afin PL/I produces

wanuin umaspe s when, you compile the program.

* Oac-dimeasional wtays ae passed by referenc for copywin copy-amL

* %MuidiAmenSionAl &my obey copy-in copy-out rulms

ANSI/M4L.STO.I ai5A Ads petleoe 'MWlu

pragma UST

Suspends or resumes the compiler listing file output.

Format

prugma LIST (ON I OFF);

Description

The compile always produces a Usting (.LST) Mie unless you do oe of the following:

* Include the /ERRORS sch with the ADA command (and the comp iaion uns contain no

Include pragma UST (OFF); in the compilation uni.

Pagm UST (OFF); suspends the output ie dw .ST fil during compilaion.

PnQ=TS UST (ON): resumes LW ourpu

Example

In Lb. following =unpie, do code for MEIERS is not puinted in the Ustng file.

procsure MAIN Is
type MEMBERS Is privt;
prcedure SORT (UST: in oit MEMBERS);
ft ction HEAO (L UST) return MEMBERS.

praqma US' (OFF):
type MEMBERS is

end MEMBERS;
pragma UST (ON);

;W MAIN:

Y m oil i 4 FotS

ANSIlMfl.ST. 18 15A Ad& ; ene MaMuMa

pragma LOAD

Includes non-Ada object files In the linked program tilL

Format

pragma LOAO ('ob ec-f.eopazhname':

wbere

o0jeq fiepartNm're Sp=c the STRING Utora (in quotes) tha denotes the full
pa02m of the non-Ada object &l you want to load. You do
mot need to include the .03 ie1name enei.

Description

Prasma LOAD allows you to include foreig (non-Ada) object files in your propam. You can use
it with prgM-as INTRFACE and ENTRY PONT to allow Ada procedures to call non-Ada
su M a. The Ada Linker includes tenamed object file when it builds the Ada program
(.PR) 1.

Prau LOAD must appm at the head of a compilation for a body. When using pragna LOAD
with compilation subunits, always specify the /READ- SUBJ'NTS switch on the ADAL-"CM
command ine. If you omit that switch, you may recive this error messag fom the Linkup.

Can't get (bodyl tree for < proram. unitame>"

Note Prama LOAD does no guarantee the order of the loaded files. If order is important, use
the /TE.MPLATE switch with the ADALINI command.

Example

In the following example, the Me SEVENUP.OB must be in the current diectory.

praqgm LOAD CSEVEN UPI:
with T(T 10; us. TEC I0:
procwtum ADA CALLS L , is

p roced SEV4 UF(X ou INTEGER):
praqn INTERFAd! (P. SEVEN UP):
prau ENETRY POINT (SEVEN-UP. *SEVENUPO);
N INTEGER;

be"
SEVEN UP (N);
PUT (N);

vid AOA.CALLSPU;

F-14 up6086O=34W

pragma MAIN

Indicates that a subprogram unit Is a main program.

Format

PIugma MAIN:

Oescrlptlon

Pragma MAIN deipacs the main subpropam uniL Place pragma MAIN Lmmediately after the
subprogm you wan to be cth main subpmoram.

Example

The Woiowing code desipates T ESTI as the main procedure.

proeure TEST i

procedure FIRST is

end FIRST;

procedure SECOND is

end SECOND:
b%"

end TEST;
pragm MAIN:

F-17

ANSl/MIL.ST0.18 81 SA ~A Psfee Mantua

pragma MAIN (continued)

Another way to distinguish the main subprogram in a compiiation uzu is co use the
/MAINPROGRAI switch on the ADE command line. For exampie you can compile the
procedure TEST, located in tdw source f.e LESTLADA. as a main program with tus command.

.) ACA/MAIN PRCOGRAM - TEST TEST

You must use the /MALU PROGRAM switch in each of the Loiowing was-

* The source M1. that you ae compili contains more than one Qirary unit

* You specify mone than one source fi with the same ADA command. The compiler assumes
that the first file Usted contains the main program. If it does not, you must specify which
subprogram is the main program with the /MAIN PROGRAM swich. For example, the
following command compiles the source rles FOO.ADA, FOOSAAADA. and TEST.ADA.
It compiles the subprogram TEADA as the main program:

-) ACA/MAIN PROGRAM ,,TEST FOO TEST FO01AR

For more information about the ADA command, refer to the 4DE Uras Mmu.

F-04MOD70o

P.6 - 8640=340

ANSI/MILST.iSiSA A4 P~fW*0CQ Varf,4J

pragma MAX-TASKS

Specifles the maximum number of Ada tasks you want active
simultaneously.

Format

P nma MAX-TASKS (n);

Specifies an imqs vaLue aer th=n =.

Oecrtptlon

Prugma MAX-TASKS speces the iuaxmum numbe of Ada tasks that = be acuive a the same
time. If you do not specify the number, the systm ime you a -inamum of 50.

Thia pragma mus appear at the head of a compiladon. It applies to all units in the compilation.

Example

p-aaia MAX TASKS(4O);
pagqe body TASKS is

task ONE is ...
task TWO Is ...
tasw ryp THREE TO FORTY is...;
type REMAINING TASKS is

arry (3..40) Ot THREE TO FORTY;
MULTI-TASKS: REMAINING TASKS;

end TASKS;

You can aso specify the maaimum number of tasis by using the /MAX TASKS sitch with the

ADAIINK command. For eample

) ADALANK/MAX TASKS-40 obje tflenam

f you specify a maximum number of Ada tasks with both a pragma and a swich, the pragma cake
deze& Pat more informadon, refer to the ADE Usr's Manu.a

a ,F-i9

ANSlI/ML.T-1815A Ad& PefGerence MawMr

pragma MVECS

Specifie the use of the Data General MV External Calling Sequence.

Format

pragm MVECS(unit name (,unit_narTe...j);

whee

unk name Specifies the name of the subprogam for which you need the
compler to Sgewra MV ECS.

Descrtption

To opdmize code quadly, the compiler does not aiways generate code thu conforms to the Data
General MV Enernai Callin Sequence (ECS). In some cases. owe,er. you will wed to cell he
compile that MV ECS is aecesary. Subroutines that meet any of the following citera must use
MV ECS.:

9 MACHM4 CODE subroutines with formai arguments
e Suixuwisus called from other DOC languages,
a Subrouais that can be called from outer imp.

Pla= pnama MV ECS immediacely after the subprogam for which you wan he cowiler to
geeeMV Ecs.

Example

procedwure TEST is

procedure FiRST is

end FRST:

procedure SECOND Is

eM SECOND:

begin

end TEST,
Pragnu MV EC$(TEST):

F-20 ugame m 4olvall

ANSUMIL-STO. Si a AR 9nce Manual

pragma PAGE

Begins a new page in the compiler output listing file.

Format

pragma PAGE;

Description

nro compiler produces a listing (.LST) rde unlm you do one of the following:

" Include the /ERRORS switch with the ADA command (and the compilation unit contains no

SIndude pgraqna UST (OFF); in the compilation

If the compiler is producing a isting of the compilation, prgma PAGE causes the ten following
the prama to appear on a new page.

Example

In the following example, procedure SECOND would be printed on a pap by itselL

procodure FIRST is

end FIRST;

pmrgma PAGE:
procedure SECOND is

end SECOND:

pragm PAGE.

Iu. F-21

ANSIMIL.$TU- V S SA Ad& PNgW.ic MAau41

pragrna PRIORITY

Specilfes the prlortty of a task or task type.

Format

pagma PRIORITY (n):

Where:

n Specs an ine value from L to in. Lwer vaiues indicate
lower priorities.

DescrIption

You can assign prioritia to tasks or task types by includin pragma PRIORMIY within the
appropriate task spedficais.

Assigning priorities tels the system bow to hadle competing tasks When more that one cask is
eliible for execution at the same time. the system excutes them in the order you specify with
praga P.IORITY. Tasks that are ready for execution am queued fizm by priority number and.
withi prioriies, by order of their occurrence in the source Me1 (FIFO).

You can assign each task or task type only one priority. If you assign more than one priority, the
system recogizes the &a assignment and ignores the others.

Assign*n- priorities is optonaL The defaut priority is 5.

Example

The following code assign a priority of 7 to TASK TYPE and a priority of 8 to NEX TASK.

procedure OUTER Is

task typ TASK TYPE Is
pragm PRIO-RTY (7);

end TASK TYPIL-

sk type NEXr TASK Is
pragrn PRIORITY (8);

rd NEcr TASK;

ed OUTER:

F-22 u-ame o 08040=3u-0

ANSIi MIL.STO.IgisA hAa ;4tfegrco mantal

pragma SUPPRESS

Suppresses specified runtime checks.

Format

prugma SUPPRESS (check-ldntd r [, (ONa > J naml.

where

ceckhdehtiflr Speifies the check you want to suppress. Check identifier
names am Listed in the description that follows.

arne Specifies the name of a type subtype, objec task unit, generic
un, or subpropam.

Description

To suppress cerain rnm13e checks, place prqm SUPPRESS in the declarativ pat of a program
unit or block or bmediately within a package specification. For statements in a progam unit or
blok, check suppression etends from the pragpa statmenu to the and of the declarative part
assodat with that program unit or block. For staements in a package, check suppression
extends to the end of the scope of the speciled ON a entiy. You must declare that entity
immediately within Lhe package specification.

The following table shows the cem of check suppression for each named entity.

Check supprussion for xteands over

An unamed entity (name omitted) The remaining declarative repon
An object ALI operations of the objec
An object of the base type or subtype All operations of the object or subtype
A task or task type All activmtons of the task
A generic unit AJI instantiacios of the generic
A subprogram Al calls of the subprogram

u~sm~ap~c~oF-23

ANSI/MIL ST1-161 S a 4 Re nefece Manual

pragma SUPPRESS (continued)

Althoug it is a better propamming practice to have runmte exceptons , u uotaically, you
can suppress the. if you need to deuas runrime overhead. When you suppress rumntme checks.
you tun off certain propam exceptions. If an error arises after you have suppressed a check. your
compiled program wW ao work correctly. The foLlowing table shows wuach program e=Jpoas
you turn oif when you suppress checks:

Supprlo o(this Turn off mLis Wm pro rm detects dds runtm
cheadet-amfier exlapom eyr

ACCESS-CHECK CONSTRAINT- Selection or indexing applied to an
ERROR object with a null. value

DISCMNANT. CONSTRAINT Violation of disaiminan constraint
CHECK ERROR

I(DEX CHECK CONSTRAINT Out-of-rang index values
ERROR

LENGTH CONSTRAINT Wrong number of itdex componerts
CHECK ERROR

RANGE-CHECK CONSTRAINT Values exceed range constrain or
ERROR type is incompatible with constraint

D[VISION NUMERIC Division, rem, or mod by zero
CHECK ERROR

OVERFLOW NUMERIC Operation result exceeds implemented
CHECK ERROR range

ELABORATION PROGRAM- Attempt to cad a unit before it is
CHECK ERROR elaborated

STORAGE STORAGE Over.allocation of memory space
CHECK ERROR

ANSl/MILS ISiS A48 RWOefwCl '.4ai'••

pragma SUPPRESS (continued)

Example

IU the toUgww4 CzampIC. the pr3al suPtreSsc the checks on tbe i0,4*= of variableS of the ype
TABLE. AUL 1YPe TABLE opezmions in MAIN are 3affecd. No excepoan are raise if X and Y
are aoc in the range of I to 8.

proccdure MAIN I
type COLOR is (RED. BLACK);
ypTABLE is aray (1..& 1..8) o COLOR:
prgi SUPPRESS (INCEX CHECK. ON > TABLE);
X, Y: INTEGER:
BOARD: TABLE-

bogn

iBARO (X. Y) RED:

upamM om,3o0 P-23

ANS4 MILS:- 81 SA A4& AefeOE9Ce MAajua

pragma TASKSTORAGESIZE

Specifies the amount of heap storage space to allocate for task
stacks.

Format

pragma TASK STORAGESIZE (n);

where

Mi SpediRes the total number of Z-byte words you want to allocate
for ail active task stacks. The variable a can be any integer
value., but only values geater tban 1 have an effect.

Description

Pragma TASK STORAGE SIZE alkw you to reset the amount of heap space to alocate for all
task stacks The amount of space you specify should exceed the amount of storage you need at one
time for all active tasks. By default, the system allocates 13 K words.

The praga must appear at the head of a compilAtio. It applies to the entire compilation unit.

You can also use the /TASIC STORAGE SIZE switch on the ADALINK command line to
control the mna-ium heap space allocated to active task stacks. If you use both the praga and
the command switch, the praja takes priority.

Resetting MT I

If you need to set TASK STORAGE SIZE to a value geater than the current virtual address
space adows, you must reset the mamum virtual address space by specifying the value of MTOP.
MTOP defines the mamum vira address for a program. Use the /MTOP svitch with the
ADALINK command to specify how many megabytes your program requires. The default value of
MTOP is 1 Mb.e.

For example, this commad re MTOP to 20 Mbyte

-) AOALNK/MTOP - 20 objetfie

F-6 ups O.2084 r0

• i
I~r34

ANSI MIL..... a A eronce va,,&i

pragma TASKSTORAGE SIZE (continued)

Individual Task Storage

By defauL the system allocates 2048 words for each activ cask stack. If you reqwn a Lager or
smaller stack for a par ucul task type, use the STORAGE-SiZ reprm.ntaon Clause. For
eample, the (oilown ciause tegls the compiler to associae task type BIG with a stack of size N:

for BIGSTORAGESIZE u.C N;

Thec minimum stack size thas you can specify is 512 wards.

Example

In the followin euampie, the value gven in the pragma eceeds the storag required for al tasks

ex~emn at one time.

pragra TASK STORAGE SIZE(56 000)
procodure MAIN is

task type ONE is
for ONE'STORAGE SIZE use 1 000:

taskt TWO is...;
for TWO STORAGE SIZE use 2000:

task ty.. TEN is ...
for TEN'STORAGE SIZE use 10 000:

end MAIN;

u F-27

ANSI, M tL.-ST'.- 18 1 !A Ad& PAsteftCg ' ui

Package SYSTEM
The predeined ibray package SYSTE.M defines crtain typ-. subtypes. and objecu that arc
speati to 0GC Ada. The package SYSTE.M is descrbed in the LRM. Sectioa 13.7.

SYSTEM contains the folowing deciarzaw

packge SYSTEM is

ryp ACORESS I* now INTEGER:
". NAME Is (MV):

SYSTEM NAME constant - NAME :. MV:
STORAGE UNIT constant : - 16
MEMORY SIZE constant: 2 "" 29;

MAX -NT ' constant : a (2"30) -1 (2* 10);
MIN INT constant:- -MAX INT -;
MAXC IGITS •constant := aI;
MAX MANTISSA constant: a 31:
FINE DELTA constant: - 2.0 (-31):
TICK- constant'- 0.1:

subty PRIORITY is INTEGER range 1.. 10:

end SYSTEM:

The following table descnbes thee tes and constants and gives the value of each.

Type or Constat Defined as Explanation

ADDRESS INTEGER Address dauses and atributes
(PADDRESS) return objecm of the
derived type ADDRESS.

NAME 1V The enumeraion type NAME
declares one obje the ,e MV.

SYSTEM-NAME MV SYST-M NAME is an objec of type
NAMIE i=di ini"62zed to %V.

STORAGE UNI 16 Denotes the number of bits per
storage WUi

MF-MORY SIZE 299 Denotes the number of available
storage an.

MAX INT (Z" 637)-.,1 (20O) Denotes the igest value of
Z 1 _4 83764 7 predefined INTEGER typa.

FS u OiOmO

"mIt- mm mmmmmmmm2m8mm m m

Type or Constant DefiMd as Explaadoe

MIN .NT -MAX INT 1 - Denacw the kowes (most -ptve)
-214748364 vakua of prudefluAd U-TMGER rypes.

MAX DIGITS 15 Dme the largest number of
szphcanm dmal diva in a floaun-
poinCltz~l

MAX.MANTISSA 31 Denoles the aru allowed number
obiaury digits in the manissa of
model mumbers of a fi5nd-poim
subype.

FINE-DELTA 2.0"(-31) Denotes E sunh delta Mowed in
a find.poim coinstaint thar has the
rup conaint -LO.LO.

TICK 0.1 Deues th basic dock period in

PRIORITY L1O Declares the rang of values you can
=@ on ppu PRIORITY
statements. PRIORITY is a subtype
of the base ype INTEGE.l

up~s ~r~ooF-29

ANSI/MIL-STO. 81 A Ad& ASWfrlf Manuaa

Representation Clauses
This section desciba the use of representaion clauses in the ADE. You can use represenauion

clauses for either of two puroses:

" To specify a more efficient representation of da in the underlying machin

* To communicate with features outside the domain of the Ada langage, for example,

The Ada progaming language proides four classe of representation clauses

Clause Clan Specifies

L dgth clause The amount of sorp you want associated
with a type.

Eanumeraon representation The inranaL codes for the litrals of an
enumeraton type.

Reord reprsentaion The storage order, relaci posido and size of
reard compoeam,

Addres claum The requi-r. address in storage for an entity.
Addrms clases ae not supported by the
AD.. To asmpa internai names. use pragma
ENTRY ?OINT whenever possible.

The followmg parasaph describe the use of each class of representanon clauses.

Length Clauses

You can use the 'STORAGE SIZE attribute only for reserving storage for acivating a task typ.
For exampl

BITS :contant-1;
BYTES :consa S 8"8ITSf
KBYTES :Cohrat -1024 BYTES;

task type MONITOR Is...;

for MONITOR'STORAGE SIZE use 4"KBYT'S

The ADE does not support the 'SIZE and 'SMALL atributes.

F-30 U o.OW"

A4S~/ML.3 I SgA ~A& A.etvencq '~.

Enumeration Representations

The ADE supports enumeration representation clauses as specified in the L L Section 03. All
enumeration iterals must be provided wkh disinct statc integer codes. The sequence of integer
codes specified for the enumeration type must cousisently increase us value.

There are two restric * a:

* The rapge of nernal codes wusz be a SHORT IETEGER.

* Enumeration types with represention clauses are not allowed as the index type of an array
type definition (refer to thw L, Section 3.6).

Change of Representation

To dump the represetaion dame of a type, you can declare a second type. derived from the
ru%4 and assig the variables of the firu type to the second type. This proces is descibed, in the
LRM, Section 13&

Operations of Discrete Types

Ef you use the atbutes 'PM 'VAL'S UCC, and 'PR!D, agdnz the propam may invoive
addtioaa runime overhead. SinMe potentially oncotpo internal codes mus b-. mapped to
po o numbrs, eecu the proram invlWves addiiosa ovaee if the rpUe is nonstazic
or a a discrae ty or subWyp whose base type is enumam a Refer to the LM
Saio 13.3 for more informadon

Conversions that Cause Overhead

Explicit conversions between enumeration types in which either base type has a representation
clam may car additional runtime overhead. The argument Itself and the method of conversion
both effect the amount of overhead.

You can perform explici conversions between enumeration types by using an attribute such as
'POS or 'SUCC to evaluate an argumen and assign the results to a variable of the target type.
You can also perform explicit conversions by using the atbute and its argument as the actual
parameter in a subpropm call Each method of converting between types causes additional
overhead if the argumentis nonstatc In the laer case, Ada performs checks on the actual
parameter that may aLso add overhead.

Section 3.53. 4.6, and 6.4.1 of the LRM provi more information about explicit conversions and
paramxer assocatimons.

.min omocm7.0o -31

ANSI/ML..STO- 1 81 SA Ad& PfeeOce MWUaW

Case Statements

If the bn type of the cam statement expression is an enumeration type with a repfeentlaon
claue. the resulting code is op mz=d with respect to space rather th.an time. The value of the

cas statement expression is compared with cae alternatives until a match is found.

Can statements with types other than enumeration with a representation clause are unaffected.

Loop Statements

FOR loops for which the base type of the loop parameter is an enumeration type with a

representation clause causes additional runtime overhead. (For more information refer to the
LRM, Section 3.5.5.).

Loop statements for which the base type is no an enumeration type with a representation clause

do not cause additional overhead.

Record Representations

Representatko of record types in the ADZ is the same as in standard Ada with certain
resraoms Specifally, you cannot use record e, auses to speciy aliement and
componew locations for the folowiw

• Record tMys with disciinsacs
* Record types with varian parts
* Record types with army components.

Whe specifying component storage, you can rosm onky one 16-bit word boundary. You cannot

specify the storage for composite, FLOAT, or LONG FLOAT components. For components of

then types. the compiler automaticaly determines the storage required. You can specify storage

for all the remaining component types the same way as in standard Ada.

F-32 ui

ANSI/MIL'STO" 815A Ad& A ere"co MwuaI

The folowing examp'€ 3.ows a valid record reprtseUtatiO spCcificatioa

type IUFL Is
record

RETURN FLAGS • INTEGER range 0.. 15:

TERMINATION F1WlD • NTEGER range 0 .. 7;

PROCESSO • iNTEGER range 1.. 253;

end record:

for IUFL use
record

RETURN FLAGS at o range0.. 4;

TERMINATION .IELD at 0 range S 7;

PROCESSO 10at 0 range . 15:

emd record"

Thegse compouent clauses specify the order, position. and size of WMJ~ fields relativ~e to the start of

the LIj record. Tey also ensure that the [FL fields math the sumjnwt of the ?IUXVL offset

(user a4 word) in a ?=REC system cal:

Fied Field
SciandariW ConLeats

a-' RE1V!.NFLAGS

5-7 TEPIVMJATION .FIEW.

8-1S ProcEsS.D

The ADE dQe ao allow components to ow-riap storage bowmdamCS tha is, record fields caun

cross more tha owe 16-bit word boun4ay.

Unchecked Programming

The ADE implements the preefined. generic library subprograms

UNCHEC ,DpFAL OCATjON &nd UNCHIEC .CONVERSION. The foilowins

secions expukin how to use du subproprinS.

F-33

ANSI/MIL-STO- I W SA Ad& Rafeence Mawual

Procedure UNCHECKED DEALLOCATION

You can use dhe generic procedure UNCHECXED DEALLOCATION to deallocate dynamic
objcts expli~y that are desigatced by values of access types. To deaocate dynamic objects
e.pliigly, your propam must this procedure for a parucuLar object and access type. in
the program body, a cal to the iantatedprocedu e specifies the dynamic object as a parameter.
When that call i eixecuted, the specified object is deallocated, and its value is set to aulL The
fodowing example shows how this works:

Example

In the foUowing example, the call to the procedure DISPOSE deallocaes the dynamic object
desipaced by the access value ROOTI and resets ROOTI to nulL However, if the encl oi
procedure uses the other access vaue, ROOTZ. to desipate the same objec as ROOTIh this code
causes a progam error because the object no longer wiux. You must watch for similar dangling
references when using the procedure UNCHECXMDDEALLOCATION.

with UNCHECKED OEALLOCATION:
package TREE LABELER is

tyw LABEL TYPE is priate;
typ NODE;
type TREE is access NODE.
tye NODE is recor

LABEL : LABELTYPE;
LEFT :TREE.
RIGHT :TREE;

en record:

procedure DISPOSE is new UNCHECKEDOEALLOCATION (NCDE. TREE);
procedure LABEL ROOT (LABEL in LABEL TYPE;

ROOT in out TREE;
LABELLED-TREE out TREE);

end TREE LABELER:

package body TREE LABELER Is
procedure LABEL ROOT (LABEL in LABEL TYPE.

ROOT in ot TREE.
LABELLED TREE out TREE);
ROOT1. R(OT2 NODE;

DISPOSE (ROOTI);

end LABEL ROOT:
end TREE LABELER:

F.34 updwm 010 =wW

ANSI/MIL. 1,1i5A Aga ifertice &4Au1u1

Function UNCHECKED CONVERSION

The generic function UNCHECKED-CONVERSION allows you to return the value of a copy-in
parameter as a value of a target type. The actual bit pattern corresponding to that parameter value
does not change.

The function UNCHECYICE CONVERSION is a umit in the ADE SYSTEM library. The vi.ible
part of that function is listed below.

generic
type SOURCE is limited Oriv e
type TARGET Is limited private:
function UNCHECKED CONVERSION (S: SOURCE) return TARGET;

function UNCHECKED CONVERSION (S: SOURCE) return TARGET is
pragrma SUPPRESS (RANGE CHECK);

begn
return S.

end UNCHECKED CONVERSION;

For instatiiatios of this generic function. cypes SOURCE and TARGET must be of the same

cla anAd the same leu.. SOURCE and TARGET cannot be array ypes.

For more information about unchecked conversions, refer to the LRM Section 13.10.

Example

The following example shows source code that uses the functon UNCHECEDCONVERSION.

with UNCHECKED CONVERSION. ALPHA;
package BETA is
type TEST NAME is private:
type DATA s record

IS VAUD : BOOLEAN:
TfST OBJECT "TEST-NAME:

end record:

function CONVERT TO BETA DATA Is new
UNCHECKED CONVERSION (ALPHA.INFO, DATA);

function CONVERT FROM BETA DATA is new
UNCHECKED CO1NVERSON (DATA, ALPHA. NFO);

end BETA;

.==pa ou o F- 35

ANS/ILSTD-1a 1 S A p~ttture 4Asflua

Characteristics of ADE Input/OutPut Packages

The izandard input and output t'des in TEXT10 correspond to the AOS/VS generic riles

4INPUT and ,OUTPUT, respecuvey. For more information about AOS/VS generic files, refer

to the DGC manual LniV' foeUse YouasAOS/VS System.

When you are using the ADE I/0 package remember the foowin:

" Te ma-4mum, "a for TEXT.O.COUNT and "IECT IO.FIEL is SYSTE .MAX. IN".

* Th FORM paramete of the TEX .IO.OPEN procedure is not used.

" Type TEXTIO.FYTMELYP is an access type.

For more information about input/output operadons in the ADF. refer to the ADE Usres Manual.

F-36
U- oM

ANSIi MIL. 37:. '8 I A ,4a , terence V.arla

Maximum Size Limits in the ADE
The ADE places the following absolute limits on the use of Ada language featur=e

Maximum
Compilation stop Laaiuap Feature or amount

Syntax parsing Length of identifiers 10
Length of line

Semantics checking Discriminants in constraint 2S6
Associations in record aggregate 256
Fields in record aggregate Z6
Formals in genenic 256
Nested contexs 250

Generating machine code Indices in array agpepate 1S
Parameters in call 128
Nesting depth of expressions 100
Nesting depth of Wined exprewons 100
Nesting depth of packages t tasu io

0 , F-37

ANSI/MILST- I 5 Ads atwsore Man~ual

Summary of the ADE Real Type Attributes
rap foaoving sect~ion lisc, Cthe nagne =nd value for each AD E specific real actnbute.

Float Ty". Value

rMACHINEY.ADIX
16

TMACE-.NTISS 6 for FLOAT
14 for LONG-FLOAT
It is die number of TMACH4X$E.Y.AM
(hex) digits in mantisa.

T -AACHNl4E. EMAX 63
it is the maxaiimum exponent for MV floating

ypes, bane 16.

rmcwey.mI -64
It is the minimum exponent for MV floating

rypes base !.6.

rMACICINEROUNOS
TRUE

-rsACHINE VERFLOWS TRUE

TSAFEE.MAX
252
The formuka is:

I (T-AAC I ADIX)

-rSAFE SMALL 2.0 0 (.TSA.FEE.MAX -1)

'SAFE..LAIRGE
2.016'SAFE -EMAX *(1.0 - 2.0
(.TrBA~sE~mANTissA))

F-36
-aau Og4W7

Find Types
Value

MACHNEROUJNS
TRUE

'rACflI4t...OV ERfLOWS TRUJE

'r&sE~smAL
- T'SMALLI~

r&ASLA:nSSA31
(Same as SYSTIMXMANTIA)

T~sAkEESUA]L
- T"BASESMAL

TSAME LARGEa
*AEAG

also

. (2~ ON ASFMANSA 1)-

tIASEV4LL

om.~O72~39

ANSUIMIL.S ' 8I A Ad&a PAterICS MWU&1

Genae0 Notes

* All f=d-point numbers are stored in 32-bit ntegers.

* Floating-point CYPes requirin 5 digits or Iss of precision are stored in FLOAT; those

requuing 6 to 14 digits are stored in LONG-FLOAT,

" FLOAT and LONG FLOAT use I bit for the sip and 7 bits for the exponent (of 16) in

ae=- 64 notation. PLOAT has 24 bits available for the mantissa- LONG-FLOAT has 56.

* For FLOAT and LONG FLOAT. the imallesa number that can be represented in the MV

architecture is given by the following formula:

TMACH, -.ERAD1X '- (TMACHMIE F- MIN- 1).

This is equal to 16 40 (-65) or 16#0.1000O OOO 0C " 16 "" (-64).

* For FLOAT and LONGFLOAT. the larges number that can be reprmeeted in the MV

architecrure Ls given by the foilowing formula:

(L0 - TIMACHI{ RAD IX -- (.T'MACRINE MANTISSA))

(TMACHUINERADtX -- "MACHME-MA3X).

For FLOAT, this is equal to 16#O.FFFFF# " 2" (63).

For LONG FLOAT, this is equal to the foilowin,

16#O.FFrFFFFrFFrrFF# *2 *" (63) for LOSGLOAT.

F-40
uoams o8wo~o3oo

ANSI/MIL.SrO-181sA Ad& j@(Qfor1C8 V.4Ifguh

Type Definitions in the ADE
The ADE defines the rypes INTEGER, FLOAT, and DURATION as follows:

Type Deiniton

INTEGER The so: of itegers begins with the value MIN_ NT and ends
with MAX INT. The formulas for MIN [NT and .MAX NT
are descite undo 'Packap SYSTEM:

FLOAT The type FLOAT is defined by the values described in the notes
undeo 'Summary of the ADE Rea Type Attributes.

DURATION The type DURATION is defined as follows:
2.0 0" (-9) ranp ge 22... - Z 2'"

End of Appendix

upl 0 i, 3 P-41

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,

such as the maximum length of an input line and invalid file names. A

test that makes use of such values is identified by the extension .TST
in its file name. Actual values to be substituted are represented by

names that begin with a dollar sign. A value must be substituted for

each of these names before the test is run. The values used for this

validation are given below.

C-I

-- MACRO.DFS -- ACVC VERSION 1.10

-- THIS FILE CONTAINS THE MACRO DEFINITIONS USED IN THE ACVC TESTS.
-- THESE DEFINITIONS ARE USED BY THE ACVC TEST PRE-PROCESSOR,
-- MACROSUB. MACROSUB WILL CALCULATE VALUES FOR THOSE MACRO SYMBOLS
-- WHOSE DEFINITIONS DEPEND ON THE VALUE OF MAX IN LEN (NAMELY, THE
-- VALUES OF THE MACRO SYMBOLS BIG IDI, BIGID27 BIG ID3, BIG 1D4,
-- BIG STRING1, BIG STRING2, MAX STRINGLITERAL, BIG-INTLIT,-
-- BIG-REAL LIT, MAX LEN INT BASED LITERAL, MAX LEN REAL BASED LITERAL,
-- AND-BLANKS). THEREFORE, ANY VALUES GIVEN IN-THIS FILE FOR THOSE
-- MACRO SYMBOLS WILL BE IGNORED BY MACROSUB.

-- NOTE: THE MACROSUB PROGRAM EXPECTS THE FIRST MACRO IN THIS FILE TO

- - BE MAXINLEN.

-- EACH DEFINITION IS ACCORDING TO THE FOLLOWING FORMAT:

-- A. A NUMBER OF LINES PRECEDED BY THE ADA COMMENT DELIMITER,
-- THE FIRST OF THESE LINES CONTAINS THE MACRO SYMBOL AS IT APPEARS
-- IN THE TEST FILES (WITH THE DOLLAR SIGN). THE NEXT FEW "COMMENT"
-- LINES CONTAIN A DESCRIPTION OF THE VALUE TO BE SUBSTITUTED.
-- THE REMAINING "COMMENT" LINES, THE FIRST OF WHICH BEGINS WITH THE
-- WORDS "USED IN: " (NO QUOTES), CONTAIN A LIST OF THE TEST FILES
-- (WITHOUT THE .TST EXTENSION) IN WHICH THE MACRO SYMBOL APPEARS.
-- EACH TEST FILE NAME IS PRECEDED BY ONE OR MORE BLANKS.
-- B. THE IDENTIFIER (WITHOUT THE DOLLAR SIGN) OF THE MACRO SYMBOL,
-- FOLLOWED BY A SPACE OR TAB, FOLLOWED BY THE VALUE TO BE
-- SUBSTITUTED. IN THE DISTRIBUTION FILE, A SAMPLE VALUE IS
-- PROVIDED; THIS VALUE MUST BE REPLACED BY A VALUE APPROPRIATE TO
-- THE IMPLEMENTATION.

-- DEFINITIONS ARE SEPARATED BY ONE OR MORE EMPTY LINES.
-- THE LIST OF DEFINITIONS BEGINS AFTER THE FOLLOWING EMPTY LINE.

-- SMAX IN LEN
-- AN INTEGER LITERAL GIVING THE MAXIMUM LENGTH i PERMITTED BY THE
-- COMPILER FOR A LINE OF ADA SOURCE CODE (NOT INCLUDING AN END-OF-LINE
-- CHARACTER).
-- USED IN: A26007A
MAXINLEN 120

-- $BIG iDI
AN IDENTIFIER IN 'WHICH THE NUMBER OF CHARACTERS IS $M-AXINLEN.

-- THE MACROSUB PROGRAM WILL SUPPLY AN IDENTIFIER IN WHICH THE
-- LAST CHARACTER IS '1' AND ALL OTHERS ARE 'A'.
-- USED IN: C23003A C23003B C23003C B23003D B23003E C23003G
-- C23003H C230031 C23003J C35502D C35502F
BIGIDi

-- SBIG 1D2
-- AN IDENTIFIER IN WHICH THE NUMBER OF CHARACTERS IS SMAX IN LEN,
-- DIFFERING FROM SBIG IDI ONLY IN THE LAST CHARACTER. THE CROSUB
-- PROGRAM WILL USE '2- AS THE LAST CHARACTER.
-- USED IN: C23003A C23003B C23003C B23003F C23003G C23003H
-- C230031 C23003J
BIG 1D2

-- $BIG ID3
-- AN IfENTIFIER IN WHICH THE NUMBER OF CHARACTERS IS $MAXINLEN.
-- MACROSUB WILL USE '3' AS THE "MIDDLE' CHARACTER; ALL OTHERS ARE 'A'.
-- USED IN: C23003A C23003B C23003C C23003G C23003H C230031
-- C23003J
B I G I D 3 3 A -LAA.

-- $BIG 1D4
-- AN IDENT:FIER IN WHICH THE NUMBER OF CHARACTERS IS SMAXINLEN,
-- DIFFERING FROM $BIGID3 ONLY IN THE MIDDLE CHARACTER. MACROSUB
-- WILL USE '4' AS THE MIDDLE CHARACTER.
-- USED IN: C23003A C23003B C23003C C23003G C23003H C230031
-- C23003J
BIG -D4 4AA

-- SBIG STRING1
-- A STRING LITERAL (WITH QUOTES) WHOSE CATENATION WITH SBIG STRING2
-- ($BIG STRING1 & SBIG STRING2) PRODUCES THE IMAGE OF SBIGIDi.
-- USED TN: C35502D C75502F
BIG STRINGI

-- SBIG STRING2
-- A STRING LITERAL (WITH QUOTES) WHOSE CATENATION WITH SBIG STRING.
-- ($BIG STRING1 & SBIG STRING2) PRODUCES THE IMAGE OF $BIGIDi.
-- USED IN: C35502D C'5502F
BIGSTRING2 If .

-- SMAX STRING LITERAL
-- A STRING LITERAL CONSISTING OF $MAXINLEN CHARACTERS (INCLUDING THE
-- QUOTE CHARACTERS).
-- USED IN: A26007A
MAXSTRINGLITERAL

-- SNEGBASED INT
-- A BASED INTEGER LITERAL (PREFERABLY BASE 8 OR 16) WHOSE HIGHEST ORDER
-- NON-ZERC BIT WOULD FALL IN THE SIGN BIT POSITION OF THE
-- REPRESENTATION FOR SYSTEM.MAX INT, I.E., AN ATTEMPT TO WVRTE A
-- NEGATIVE VALUED LITERAL SUCH XS -2 BY TAKING ADVANTAGE OF THE
-- BIT REPRESENTATION.
-- USED IN: E24201A
NEGBASEDINT 8#377777777764

-- $BIGINT LIT
-- AN INTEGER LITERAL WHOSE VALUE IS 298, BUT WHICH HAS

- ($MAX IN LEN - 3) LEADING ZEROES.
-- USED TN:- C24003A
BIG INTLIT 00oOCOC00Z-OCCOCOO

-- $BIG REAL LIT
-- A UNIVERSXL REAL LITERAL WHOSE VALUE IS 690.0, BUT WHICH HAS
-- ($MAX IN LEN - 5) LEADING ZEROES.
-- USED TN:- C24003B C24003C
BIGREALLIT 000cc0ccCcco00 0coC oooG

-- SMAX LEN INTBASEDLITERAL
-- A BASED INTEGER LITERAL (USING COLONS) WHOSE VALUE IS 2:11:, HAV:IG
-- ($MAX IN LEN - 5) ZEROES BETWEEN THE FIRST COLON AND THE F:RST 1.
-- USED N:- C2AO09A
.MAXLENINTBASED LITERAL 2:00

-- SMAX LEN REAL BASED LITERAL
-- A BASED REAL LITERAI (USING COLONS) WHOSE VALUE IS 16:F.E:, HAV;NG
-- ($MAX IN LEN - 7) ZEROES BETWEEN THE FIRST COLON AND THE F.
-- USED fN:- C2A09A
MAXLENREALBASEDLITERAL 16:000000000000000000000000000000000CC000C0CC0

-- $BLANKS
-- A SEQUENCE OF (S$MAX IN LEN - 20) BLANKS.
-- USED IN: B220 01A 322U01B B22001C B22001D B22001E B22001F

B22001G B220011 B22001J B22001K B22001L B22001M
B22001N

< LIMITS OF SAMPLE SHOWN BY ANGLE BRACKETS >
.4KS <

SMAX DIGITS
kN INTEGER LITERAL WHOSE VALUE IS SYSTEM.MAX DIGITS.
JSED IN: B35701A CD7102B
DIGITS 15

$NAME 7
H NAME OF A PREDEFINED INTEGER TYPE OTHER THAN INTEGER,
SHORT INTEGER, OR LONG INTEGER.
(IMPLEMENTATIONS WHICH-HAVE NO SUCH TYPES SHOULD USE AN UNDEFINED
IDENTIFIER SUCH AS NO SUCH TYPE AVAILABLE.)
USED IN: AVAT007 C45251D B8600OX C7D101G
E NOSUCHTYPEAVAILABLE

$FLOAT NAME
THE NARE OF A PREDEFINED FLOATING POINT TYPE OTHER THAN FLOAT,
SHORT FLOAT, OR LONG FLOAT. (IMPLEMENTATIONS WHICH HAVE NO SUCH
TYPES SHOULD USE AN UNDEFINED IDENTIFIER SUCH AS NOSUCHTYPE.)
USED IN: AVAT013 B86001Z
ATNAME NOSUCHTYPE

$FIXED NAME
THE NME OF A PREDEFINED FIXED POINT TYPE OTHER THAN DURATION.
(IMPLEMENTATIONS WHICH HAVE NO SUCH TYPES SHOULD USE AN UNDEFINED
IDENTIFIER .UCH AS NO SUCH TYPE.)
USED IN: AIAT015 B8OO1Y-
EDNAME NOSUCHFIXEDTYPE

$INTEGER FIRST
AN INTEGER LITERAL, WITH SIGN, WHOSE VALUE IS INTEGER'FIRST.
THE LITERAL MUST NOT INCLUDE UNDERSCORES OR LEADING OR TRAILING
BLANKS.
USED IN: C35503F B54BO1B
'EGER FIRST -2147483648

$INTEGER LAST
AN INTEGER LITERAL WHOSE VALUE IS INTEGER-LAST. THE LITERAL MUST
NOT INCLUDi UNDERSCORES OR LEADING OR TRAILING BLANKS.
USED IN: C35503F C45232A B45BO1B
'EGER LAST 2147483647

$INTEGER L. STPLUS 1
AN INTEGER LITERAL WHOSE VALUE IS INTEGERILAST + 1.
USED IN: C45232A
'EGERLASTPLUS_1 2147483648

SMIN INT
AN INTEGER LITERAL, WITH SIGN, WHOSE VALUE IS SYSTEM.MIN INT.
THE LITERAL MUST NOT CONTAIN UNDERSCORES OR LEADING OR TRAILING
BLANKS.
USED IN: C35503D C35503F CD7101B
IINT -2147483648

SMAX INT
AN INTEGER LITERAL WHOSE VALUE IS SYSTEM.MAX INT.
THE LITERAL MUST NOT INCLUDE UNDERSCORES OR LEADING OR TRAILING
BLANKS.
USED IN: C35503D C35503F C4AO07A CD7101B
._INT 2147483647

-- STASK SIZE
-- AN INTEGER LITERAL WHOSE VALUE IS THE NUMBER OF BITS REQUIRED TO
-- HOLD A TASK OBJECT WHICH HAS A SINGLE ENTRY WITH ONE INOUT PARAMETER.
-- USED IN: CD2A91A CD2A91B CD2A91C CD2A91D CD2A91E
TASKSIZE 32

-- $MIN TASK SIZE
-- AN INTEGER LITERAL WHOSE VALUE IS THE NUMBER OF BITS REQUIRED TO
-- HOLD A TASK OBJECT WHICH HAS NO ENTRIES, NO DECLARATIONS, AND -NULL;-
-- AS THE ONLY STATEMENT IN ITS BODY.
-- USED IN: CD2A95A
MIN TASKSIZE 32

-- SNAME LIST
-- A LIST OF THE ENUMERATION LITERALS IN THE TYPE SYSTEM.NAME, SEPARATED
-- BY COMMAS.
-- USED IN: CD7003A
NAMELIST MV

-- $DEFAULT SYS NAME
-- THE VALUE OF THE CONSTANT SYSTEM.SYSTEMNAME.
-- USED IN: CD7004A CD7004C CD7004D
DEFAULTSYSNAME mv

-- $NEW SYS NAME
-- A VALUE ?F THE TYPE SYSTEM.NAME, OTHER THAN SDEFAULT SYS NAME. IF
-- THERE IS ONLY ONE VALUE OF THE TYPE, THEN USE THAT VXLUE.
-- NOTE: IF THERE ARE MORE THAN TWO VALUES OF THE TYPE, THEN THE
-- PERTINENT TESTS ARE TO BE RUN ONCE FOR EACH ALTERNATIVE.
-- USED IN: ED7004B1 CD7004C
NEWSYSNAME MV

-- $DEFAULT STOR UNIT
-- ALN INTEGER LITERAL WHOSE VALUE IS SYSTEM.STORAGEUNIT.
-- USED IN: CD7005B ED7005D3M CD7005E
DEFAULTSTORUNIT 16

-- $NEW STOR UNIT
-- AN INTEGER LITERAL WHOSE VALUE IS A PERMITTED ARGUMENT FOR
-- PRAGMA STORAGE UNIT, OTHER THAN $DEFAULT STOR UNIT. IF THERE
-- IS NO OTHER PERMITTED VALUE, THEN USE THE VALUE OF
-- $SYSTEM.STORAGE UNIT. IF THERE IS MORE THAN ONE ALTERNATIVE,
-- THEN THE PERTINENT TESTS SHOULD BE RUN ONCE FOR EACH ALTERNATIVE.
-- USED IN: ED7005CI ED7005DI CD7005E
NEWSTORUNIT 16

-- $DEFAULT MEM SIZE
-- AN INTEGER LITERAL WHOSE VALUE IS SYSTEM.MEMORYSIZE.
-- USED IN: CD7006B ED7006D3M CD7006E
)EFAULTMEMSIZE 536870_912

-- SNEW MEM SIZE
-- AN INTEGER LITERAL WHOSE VALUE IS A PERMITTED ARGUMENT FOR
-- PRAG1A MEMORY SIZE, OTHER THAN SDEFAULT MEM SIZE. IF THERE IS NO

OTHER VALUE, THEN USE SDEFAULT MEM SIZE: IF THERE IS MORE THAN
-- ONE ALTERNATIVE, THEN THE PERTINENT TESTS SHOULD BE RUN ONCE FOR

EACH ALTERNATIVE. IF THE NUMBER OF PERMITTED VALUES IS LARGE, THEN
SEVERAL VALUES SHOULD BE USED, COVERING A WIDE RANGE OF
POSSIBILITIES.
USED IN: ED7006C1 ED7006D1 CD7006E

IEW MEMSIZE 536870_912

-- $LOW PRIORITY
-- AN INTEGER LITERAL WHOSE VALUE IS THE LOWER BOUND OF THE RANGE
-- FOR THE SUBTYPE SYSTEM.PRIORITY.
-- USED IN: CD7007C
LOW PRIORITY 1

-- SHIGH PRIORITY
-- AN INTEGER LITERAL WHOSE VALUE IS THE UPPER BOUND OF THE RANGE
-- FOR THE SUBTYPE SYSTEM.PRIORITY.
-- USED IN: CD7007C
HIGH PRIORITY 10

-- $MANTISSA DOC
-- AN INTEGER LITERAL WHOSE VALUE IS SYSTEM.MAXMANTISSA AS SPECIFIED
-- IN THE IMPLEMENTOR'S DOCUMENTATION.
-- USED IN: CD7013B
MANTISSADOC 31

-- SDELTA DOC
-- A REAL LITERAL WHOSE VALUE IS SYSTEM.FINEDELTA AS SPECIFIED IN THE
-- IMPLEMENTOR'S DOCUMENTATION.
-- USED IN: CD7013D
DELTA_DOC 2.0**(-31)

$-- TICK
A REAL LITERAL WHOSE VALUE IS SYSTEM.TICK AS SPECIFIED IN THE
IMPLEMENTOR'S DOCUMENTATION.

T- USED IN: CD7104B
TICK 0.1

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to
the Ada Standard. The following 44 tests had been withdrawn at the time
of validation testing for the reasons indicated. A reference of the

form AI-ddddd is to an Ada Commentary.

A39005G
This test unreasonably expects a component clause to pack an array
component into a minimum size (line 30).

B97102E
This test contains an unintended illegality: a select statement
contains a null statement at the place of a selective wait alternative
(line 31),

C97116A

This test contains race conditions, and it assumes that guards are
evaluated indivisibly. A conforming implememtation may use interleaved
execution in such a way that the evaluation of the guards at lines 50 &
54 and the execution of task CHANGING OF THEGUARD results in a call to
REPORT.FAILED at one of lines 52 or 56.

BC3009B
This test wrongly expects that circular instantiations will be detected
in several compilation units even though none of the units is illegal
with respect to the units it depends on; by AI-00256, the illegality
need not be detected until execution is attempted (line 95).

CD2A62D
This test wrongly requires that an array object's size be no greater
than 10 although its subtype's size was specified to be 40 (line 137).

CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests]
These tests wrongly attempt to check the size of objects of a derived
type (for which a 'SIZE length clause is given) by passing them to a
derived subprogram (which implicitly converts them to the parent type
(Ada standard 3.4:14)). Additionally, they use the 'FIZE length clause
and attribute, whose interpretation is considered problematic by the WG9

ARG.

CD2A8IG, CD2A83G, CD2A84N & M, & CD50110

These tests assume that dependent tasks will terminate while the main

program executes a loop that simply tests for task termination; this is

D-1

not the case, and the main program may loop indefinitely (lines 74, 85,
86 & 96, 86 & 96, and 58, resp.).

CD2BI5C & CD7205C

These tests expect that a 'STORAGESIZE length clause provides precisp
control over the number of designated objects in a collection; the Ada
standard 13.2:15 allows that such control must not be expected.

CD2DlIB

This test gives a SMALL representation clause for a derived fixed-point
type (at line 30) that defines a set of model numbers that are not
necessarily represented in the parent type; by Commentary AI-00099, all
model numbers of a derived fixed-point type must be representable values

of the parent type.

CD5007B
This test wrongly expects an implicitly declared subprogram to be at the
address that is specified for an unrelated subprogram (line 303).

ED7004B, ED7005C & D, ED7006C & D [5 tests]
These tests check various aspects of the use of the three SYSTEM
pragmas; the AVO withdraws these tests as being inappropriate for
validation.

CD7105A
This test requires that successive calls to CALENDAR.CLOCK change by at
least SYSTEM.TICK; however, by Commentary AI-00201, it is only the
expected frequency of change that must be at least SYSTEM.TICK --
particular instances of change may be less (line 29).

CD7203B, & CD7204B
These tests use the 'SIZE length clause and attribute, whose
interpretation is considered problematic by the WG9 ARG.

CD7205D

This test checks an invalid test objective: it treats the specification
of storage to be reserved for a task's activation as though it were like
the specification of storage for a collection.

CE21071
This test requires that objects of two similar scalar types be
distinguished when read from a file--DATA ERROR is expected to be raised
by an attempt to read one object as of the other type. However, it is
not clear exactly how the Ada standard 14.2.4:4 is to be interpreted;
rhus, this test objective is not considered valid. (line 90)

CE3111C

This test requires certain behavior, when two files are associated with
the same external file, that is not required by the Ada standard.

CE3301A
This test contains several calls to ENDOFLINE & ENDOFPAGE that have

D-2

no parameter: these calls were intended to specify a file, not to refer
to STANDARDINPUT (lines 103, 107, 118, 132, & 136).

CE3411B
This test requires that a text file's column number be set to COUNT'LAST
in order to check that LAYOUTERROR is raised by a subsequent PUT
operation. But the former operation will generally raise an exception
due to a lack of available disk space, and the test would thus encumber
validation testing.

E28005C
This test expects that the string ,-.- TOP OF PAGE. --63" of line 204
will appear at the top of the listing page due to a pragma PAGE in line
203; but line 203 contains text that follows the pragma, and it is this
that must appear at the top of the page.

D-3

APPENDIX E

COMPILER OPTIONS AS SUPPLIED BY

Loral/Rolm Mil-Spec Computers

Compiler: ADE Revision 3.01

ACVC Version: 1.10

E-1

C~~GEEPL CORP 7EL.E0f

t The following compiler switches are available for DG ADE 3.01t
f/ASSEMLY Preserves the assembly language for an Ada program

in a .SR file. If this switch is not given, the
assembly-language source may, be deleted after the
compilation; this option is controlled by the ADE
configuration. (For details, on ADE configuration,
see the ADE release notice.'> When the user supplies
this switch, the Ada source code will appear as
comments in the .SR file. t'se this rwitch for
machine-level debugging only.

/AUTOINLINZNG-n Tells the compiler to inline any subroutine called
n or fewer times. For the cvmpiler to perform
automatic inlining on a subrc'utine, the subroutine

4must not be visible outside its compilation unit, and
must also pass some implementation restrictions which
ensure the code will be dupli,:ated no more than n
times. Automatic inlining will not occur when the
INO INLINING switch is present. Do not use
/AUTO INLINING on a source which contains
MACHINE CODE subroutines which manipulate parameters,
because-parameters are not passed on the stack to an

- inlined subroutine. When /AtUTO INLINING-0, the
compiler will not generate code-for unreferenced
subroutines which pass the ziutomatic inling
implementation restrictions.

/CONFIGURATION-configname

Generate code for the configuration whose source
text statements begin: "--/configname". You may give
multiple confignames by separating them with
underscores (for example:
/CONFIGURATION-configlconfig2_config3).

/CPL-n Controls listing columns-per-line. The value of n
may be from 40 to 200, and includes eight columns per
line used by the compiler. Lines that are longer than
n columns are split so that indentation is preserved
when possible.

/DEBUG Compiles filename for use with the Ada Source Code
Debugger. (The Ada Debugger is sold separately with

the ADEX product and may not be available at your
site.) NOTE: Compiling wi6th the /DEBUG switch will
increase the volume of generated code and decrease
runtime performance.

/ERRORS Inhibits a full listing. Puts only error messages if
any) in the .LST. If there are no errors, the isting
file will be empty.

/IDIR-dirname Specifies the directory where otherwise unqualified
input filenames may be obtained. When input pathnames
include a directory prefix, the IDIR= switch is
ignored.

/LIBRARY-libname Names the target Ada librtry into which the source
is to be compiled. If om..tted, ADE uses the current
directory's default library. All binaries output by
the compiler are placed in the same directory as the

:ArA GE'4E.j.L CZR;p .E

one in which the target library reside.

/LPP-n Controls listing lines-per-page, where n is an integer
in the range 0..66. A value cf 0 disables page ejects
and headings. Default n is 66.

/MAINPROGRA[-name] Specifies the source is a mtin program. If the source
fi.le contains more than one library unit, the
JMAINPROGRAM-name keyword switch must be used.

/NOSYSTEM Prevents automatic inclusion of Ada system library in
-sTthe library searchlist for this compile.

/NO INLINING Overrides /AUTO INLINING and pragma INLINE. Since
the Ada Source Code Debugger cannot debug inlined

subprograms, use of this s3itch will help in using
the Debugger.

/SUPPRESS Suppresses all run-time checking in the coda output by
the compiler, including range checking and record
variant checking. This makes your compiled program
run faster, but also makes debugging more difficult.

/TABLE Generates information needed by the Adl Source Code
Debugger to view informaticn, but not set breakpoints
nor step. You need not include this switch if the
/DEBUG switch is specified. NOTE: This switch
increases the generated code size and decreases
runtime performance, but not as much as the /DEBUG
switch.

