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I. Introduction

The caliber .50 Armor Piercing Incendiary (API, MS) and Armor Piercing Incendiary

Tracer (APIT, M20) munitions were developed in 1943-44, for wartime service use in

various versions of the caliber .50, M2, Browning Machine Gun. Reference 1 contains

a summary of the limited aerodynamic data obtained during development testing of the

new munitions. The drag coefficient was determined from resistance firings over solenoid

velocity screens, and the stability was measured using yaw card techniques.

The caliber .50 Ball, M33 round was developed in 1961, as a companion ball munition

to the API, M8, and was intended to be a ballistic match of the M8. Apparently, no

aerodynamic tests were ever conducted for the M33 projectile. Some unpublished aerody-

namic data for the APIT, M20 were obtained by M. J. Piddington in 1979, in support of

the M1 Abrams tank development program. Piddington's spark photography range data
are included in this report.

In November 1987, the Fire Control division of the U.S. Army Armament Research,
Development and Engineering Center (ARDEC) requested that the Ballistic Research Lab-

oratory (BRL) provide trajectory data for a fire control study involving current 7.62mm
and caliber .50 infantry weapons. The BRL advised ARDEC that the existing aeroballis-
tic data base for the caliber .50 munitions was insufficient to permit accurate trajectory
predictions, and recommended that testing be conducted in the BRL spark photography
ranges.2 3 In early April 1988, test material and funding for the BRL spark range firings
of caliber .50 munitions were received from AIIDEC.

Final plans for the spark photography range tests were nearing completion when the
Air Force Armament Laboratory at Eglin Air Force Base, Florida, reqtlested that the
BRL conduct large-yaw firings of the caliber .50, API, MS projectile in the Free Flight
Aerodynamics Range 2 to provide aeroballistic data for side-fire from high speed aircraft.
By mutual agreement between the BRL, ARDEC, and the Air Force; the two aeroballistic
tests were combined, and the Air Force supplied additional funding to the BRL for the
large-yaw firings. This report presents all the modern aerob'allistic data collected in the
two BRL spark photography ranges, for the caliber .50 Ball, M33, API, MS and APIT,
M20 munitions.

II. Test Procedure and Material

Figure 1 is a photograph of the three caliber .50 projectiles. Figure 2 is a photograph
of the BRL Aerodynamics Range (circa 1958), and Figure 3 illustrates the local and master

coordinate systems for the range.

Physical measurements were taken on a sample of five projectiles of each type. The
average physical properties of the test projectiles are listed in Table 1. The Ball. M33.
API. MS. and APIT, M20 designs all have the same nominal external dimensions, and
differ only in minor surface details, such as rolled versus machined cannelures. Figure 4 is
a sketch of the exterior contour, common to all three projectiles.



All test rounds were fired from a 114.3 cm (45 inch) caliber .50 Mann barrel, with

a uniform rifling twist rate of one turn in 38.1 cm (15 inches). Suitable propellants and

charges were selected to achieve test velocities varying from 915 metres/second down to

240 metres/second. For the large-yaw firings of the API, M8, a half-muzzle type yaw

inducer was used, with a lip length ranging from 6.35mm (1/4 inch) to 12.7mm (1/2 inch).

Average yaw levels exceeding 12 degrees were obtained for several test rounds with the

12.7mm lip yaw inducer.

Live tracer firings of small caliber projectiles present a problem for the BRL Aerody-

namics Range, because the light emitted from the tracer tends to fog the film. The APIT,

M20 live tracer firings were conducted in the BRL Transonic Ra-ige, 3 with the gun backed

off approximately 100 metres from the range entrance, to insure a fully burning tracer over

the instrumentation. Transonic Range shadowgraphs of typical small caliber projectiles do

not permit accurate measurement of yawing or swerving motion, sr only drag is obtained

from the live tracer firings.

Tracer-off firings of the APIT, M20 in the BRL Aerodynamics Range were conducted

by pulling the projectiles, burning out the tracer mix, then firing the burned-out tracer

round. All the Ball, M33. and API, MS test firings were conducted in the Aerodynamics

Range.

An interesting and useful by-product of spark photography range testing is the high

quality flowfield visualization provided by the spark shadowgraphs. Figures 5 through 18

show the flowfields around the three caliber .50 bullets at various supersonic, transonic,

and subsonic speeds. Most of the shadowgraphs were selected from range stations where

-the angle of attack was less than one degree; Figure 7 illustrates the effect of large angle

of attack on the flow past the API, M8 projectile.

The round-by-round aerodynamic data obtained for the three caliber .50 bullets are

listed in Tables 2, 3 and 4. Free flight motion parameters for the three buliets are listed

in Tables 5, 6 and 7. The tracer-on drag data obtained in the BRL Transonic Range for

the APIT, M20 projectile is listed in Table 8.

III. Results

The free flight spark range data were fitted to solutions of the linearized equations

of motion and the resulting flight motion p, ameters were used to infer linearized aero-

dynamic coefficients, using the methods of Reference 4. Preliminary analysis of the aero-

dynamic data showed dist:nct variation of several coefficierts with yaw level. In BRL

Report 974, Murphy 5 has shown that aerodynamic coefficients aerived from the linearized

data reduction can be used to infer the coefficients in a nonlinear force and moment ex-

pansion, if sufficient data are available. For the caliber .50 bullets,, sufficient data were

obtained to permit dete!rmination of several nonlinear coefficients. A more detailed analy-

sis of nonlinear effects is presented in tl,,- subtopics of this section, which discuss individual

aerodynimic coefficients.

2



1. Drag Coefficient

The drag coefficient, CD , is determined by fitting the time-distance measurements

from the range flight. CD is diP'.tinctly nonlinear with yaw level, and the value determined

from an individual flight reflects both the zero-yaw drag coefficient, CD0 , and the induced

drag due to the average yaw level of the flight. The drag coefficient variation is expressed

as an even power series in yaw amplitude:

CD = CDO + CD 6 2 +... (1)

where CD, is the zero-yaw drag coefficient, CD 0 is the quadratic yaw-drag coefficient, and
62 is tI-, total aagle of attack squared.

Preliminary analysis of the drag coefficient data for the three caliber .50 projectiles
showed that the zero-yaw drag coefficients were, for practical purposes, identical. The drag
data for all three round types were therefore combined, and a single yaw-drag curve was
determined. No significant variation of the yaw-drag coefficient with projectile type could
be found, and the yaw-drag cirve shown in Figure 22 was used to correct all the range
values of CD to zero-yaw conditions.

Figures 19 through 21 illustrate the variation of CD0 with Mach number for the three
caliber .50 bullets. The zero-yaw drag coefficients for the Ball, M33; API, M8; and APIT,
M20 (Tracer off) are essentially identical at all speeds tested. The round-to-round standard
deviation in zero-yaw drag coefficient is 1.3 percent at supersonic speeds, for all bullet types.

Figure 21 also illustrates the effect of the burning tracer on the zero-yaw draL' coef-

ficient of the M20 projectile. The tracer adds heat and mass flux into the wake, which
raises the base pressure and lowers the base drag. For the APIT, M20 projectile., the tracer
reduces the total zero-yaw drag coefficient by approximately 7 percent, at all speeds tested.

Figure 23 is a comparison of the API, M8 drag coefficient obtained by H. P. Hitchcock I
with the current Aerodynamics Range test results for the same projectile. Hitchcock's
curve was converted from the old KND to the modern CD nomenclature [ CD = ( 8/7r ) KD ],

and was also corrected for the difference in reference diameter (Hitchcock used 0.50 inch,
and the present tests use 0.51 inch). Hitchcock's drag coefficient averages about 4 percent
lower than the spark range curve at supe'rsonic speeds, and about 10 percent higher at
transonic and subsonic speeds•. Considering the rel:mrively crude instr-:mentation used in
the 1943 resistance firings, t!.he agreement is satisfactocy.

2. Overv.urning Moment Coefficient

The range values of the overturning moment coefficient. Ckr,, , were fitted using the
appropriate squared-yw parameters from Reference 5. A weak (lepcndence of CA,, on yaw
level was observed for the caliber .50 projectiles. The overturning moment is assumeid to
be cubic in yaw level, and the coefficient variation is given by:

3



CM= CM0 +C 2  +... (2)

where CM00 is the zero-yaw overturning moment coefficient, and C2 is the cubic coefficient.

Figure 27 illustrates the observed variation of C2 with Mach number, and this curve

was used to correct all the range values of CMA to zero-yaw conditions. Figures 24 through

26 show the variation of CM0, with Mach number for the three caliber .50 projectiles. The

Ball, M33 has the highest overturning moment coefficient of the three bullets; C,01, for

the API, M8 averages about 2 percent lower than that of the Ball, M33 and the APIT,

M20 curve is approximately 10 percent lower than the Ball, M33 curve.

3. Gyroscopic Stability

The launch gyroscopic stability factors of the three caliber .50 bullets, fired from a
barrel with 15 inch twist of rifling, at a muzzle velol týIy of 2950 feet/second, into a sea-level
ICAO standard atmosphere, are as follows:

Projectile Launch Gyroscopic Stability Factor

Ball, M33 1.8
API, M8 1.9

MAPIT; 120 2 2

A gyroscopic stability factor above 1.5 is usually considered adequate, so all the caliber
.50 projectiles tested have sufficient gyroscopic stability to permit satisfactory flight in all
expected conditions. including extreme cold weather (high air density) conditions. Since
the caliber .50 ammunition is never fired at reduced muzzle velocities, the lower values of
Sg observed in Tables 5 through 7 will never occur in field firings.

4. Lift Force Coefficient

The raiite values of the lift force coefficient, C1,,. , were also analyzed using the methods
of Reference 5. A weak dependence of C1.,, on yaiv level was observed for the caliber .50

projectile,. The variation of CL, With yaw le.exl i also assumed to be cu1bic:

CLt = CLa, + (12 2 + ... (3)

where CL0, is the zero-yaw lift force coefficient, and a2 is the cubic coefflcient.

Figure 31 illustrates the variation of the c'ibic lift force coefficient with Machi number.'

The sutbsonic arid supersonic regions showed distinctly different levels of cubic behavior,

and the curve of Figure 31 was used to correct all range vahli.; of CI,, to zero-yaw condi-
tions.

4I



The variation of CL.0 with Mach number for the three caliber .50 bullets is shown
in Figures 28 through 30. The zero-yaw lift force coefficients of the three projectiles are
essentially identical.

5. Magnus ,Moment Coefficient and Pitch Damping Moment Coefficient

The Magnus moment coefficient, Cmo , and the pitch damping moment coefficient
sum (C., + CA,0 ) , are discussed together, since if either coefficient is nonlinear with yaw
level, both coefficients exhibit nonlinear coupling in the data reduction process.5 Due to
mutual reaction, the analysis of C,'q, 0 and (C,t, + CAt.) must be performed simultane-
ously, even tho::gh the aerodynamic moments are not, in themselves, directly physically
related.

If the dependence of the Magnus moment and the pitch damping moment are cubic
in yaw level, the nonlinear variation of the two moment coefficients is of the general form:

CMP = C,%PO° + C, 2  (4)

(C~fq + CA,&) =(Cxfq + + d2 b62 (5)

where C,%po and (CMq + CM,)° are the zero-yaw %Td-es of Mlagnus and pitch damping

moment coefficients, respectively, and C 2 and d2 are, t'Ac associated cubic coefficients.

In Reference 5, it is shown that the nOnliner.r '( i.ling introduced through the least
squares fittine process yields tlhb following expres-.icnF for rarge values [R-subscript] of

CM•,• and (CAfq + Ca):

[A,]PJR 0 + ,",a Titd2 2 (6'

[(CAq + (C,2 + C, + e 2 6(,f,, + (12 6 2 (7)

where lie above effective sq,,ared yaws ;are defiei• ;,s:

(61. CK, - ,1, K.2)bV 2 Kf 2 + 1ýs2

C = (- (9)

|5



, (10)
6eHH (~ ( 0 K (0

Ix L F- O'S)

S= - ( )
6C1T of

The remaining symbols are defined in the List of Symbols in this report.

Preliminary analysis of the caliber .50 data indicated strong nonlinearity in the range'
values of CA,~ and (Crqq + CA, 0 ) at angles of attack less ihan 3 degrees, but essentially
no variation of either coefficient was observed at larger yaw levels. The data rounds were
separated into Mach number groups, and an analysis wa's performed to determine the
cubic coefficients at both small and large yaw levels. No significant values of the cubic
pitch damping moment coefficient, d 2 , could be found.

Figures 32 through 34 illustrate the variation of the range values of Cjq, with the
appropriate squared yaw parameter fronm'Reference 5. The general characteristic of these
plot, is hi-cubic behavior, with strong nonlinearity at small yaw levels, followed by no
significant variation of Ci,,, with ytw level at larger yaws. The small-yaw cubic Magnus
moment coefficient varies significantly with Mach number, but the large-yaw'CAf, appears
to he essentially independent of Mach number at supersonic speeds.

Least squares fitting of the Magnus moment coefficient data yielded the curve of
Figure 38 for C2 , which was then used to correct the range values of CAI,0 and CMq + CA%,
to zero-yaw conditions. Figures 35 through 37 show the variation of CMP,, with Mach
number for the three caliber .50 buillets, and Figures 39 through 41 illustrate the variation
of (CAMq + CAf,) 0 with Mach number.

It should be noted that the analysis of nonlinear Magnus and pitch damping moment
data from free flight spark ranges is a delicate process at best, and the results are hiIghly
sensitive to small, errors in dete'rmination of the damping exponents on the two modal
arms. The uncertainties in Tllanping rate determinations are reflected in the larger round-
to-round data scatter in Magnus and pitch damping monment coefficients, conmpared with
the smaller scatter observed in the overturning niomnent. coef•icients.

6. Damping Rates

The damping rates. Ay and As , of tile fast and slow yaw niodoes indicate the dv-
nanfic stability of a projectile. Negative A's indicate dlampitg; a positive A means that its
aissociated nimodal arm will grow with increasing distance along the trajectory.

For a projectile whose Mag•is or pitch (dlan11il tg nun)lient s are nonilin•ar with vI\aw
evol. the daniping rates :lso show a no01nlinear depe'ndence on yaw,'; Figiircs .12 throtuih 47

illustriatv the varinations in d;minphig rates with yaw ievel foir the t h'ree caliber .50 Iuilb't s
at sipersonir and siibsonic Speeds. Figaires 42 u 3i 43 show that hot h Ioalus a'

tuid4 w t bth 11odl ars a



damped at all yaw levels tested, for high supersonic speeds. At low supersonic speeds.
Figures 44 and 45 shows a damped fast arm at all yaw levels tested, but the slow arm is

unstable at small yaw and stable at larger yaw levels. This behavior is described by the

aeroballistician as limit-cycle yaw, and Figure 45 predicts a slow arm limit-cycle yaw of

about 3 degrees at low supersonic and transonic speeds.

Figures 46 and 47 show the variation of the fast and slow arm damping rates with yaw

level at subsonic speeds, for the three caliber .50 bullets. The fast arm shows generally

satisfactory damping for the Ball, M33 and API, MS bullets at subsonic speeds. with very
weak undamping of the fast arm observed for the APIT, M20 design. Figure 47 indicates a

slow arm limit-cycle for all bullet types at subsonic speeds. The magnitude of the expected

slow arm limit-cycle yaw at subsonic speeds is slightly greater than 4 degrees, for all three

caliber .50 bullets.

IV. Conclusions

The drag coefficients of the caliber .50 Ball, M33, API, M8 and tracer-off APIT, M20
projectiles are essentially identical at all speeds tested. The effect of tile burning tracer
on the APIT, N120 is to reduce the tracer-off drag approximately 7 percent. The observed
round-to-round standard deviation in drag coefficient is 1.3 percent at' supersonic speeds.
for all three bullet types.

The three caliber .50 bullets tested have sufficient gyroscopic stability to permit sat-
isfactory flight at all co-iditions, including extreme cold weather (high air density), when
fired at service velocity from a barrel with standard 381mm (15 inch) twist of rifling.

The non-linear Magnus moment characteristics of the three caliber .50 bullets predict
a slow arm limit cycle yaw of approximately 3 degrees at low siipersonic and transonic
speeds. The low speed NMagnts moment behavior predicts a slow arm limit cycle yaw
slightly exceeding 4 degrees at subsonic speeds.

V. Recommendations

A lo:g range limit cycle yaw test should be conducted with the caliber .50 service

;I1nui irnition to verify ti, flight (Ivy an liC Jp bt di orti,,nS iii lo' it) th ki' report.

A radar doppler velocimeter test should lbe cond(ucted for the calibir .50 projectiles
to verify the drag coefficient results out to leng r•inges. and very low subsonic speeds.
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Figure 5. Shadowgraph of Ball. IN33 Projectile at Maclh2.66.
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Figure 9. Shadowgraph of Bafll M33 Projectile at Mach 1.99.
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Table 1. Average Physical Characteristics of Caliber .50 Projectiles.

Projectile Reference Weight Center Axial Transverse
Diameter of Moment Moment

Gravity of Inertia of Inertia
(mm) (grams) (cal - base) (gm-cm 2) (gm-cm2 )

Ball, M33 12.95 42.02 1.78 7.85 74.5

API, M8 12.95 41.98 1.79 7.84 73.9

APIT, M20 12.95 39.77 1.84 7.79 68.5
(Live Tracer)

APIT, M20 12.95 38.95 1.88 7.77. 66.7
(Burnt Tracer)
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Table 2. Aerodynamic Characteristics of the Ball, M33 Projectile.

Round Mach at CD CMa CL. CM,° (CM, CPNI
Number Number. (degrees) + CMi) (cat -

base)
18892 2.653 1.63 .2813 3.01 2.21 .15 -7.4 2.99
18924 2.589 2.54 .2971 3.01 2.41 .15 -6.4 2.90
18891 2.570 1.98 .2923 3.07 2.20 .15 -6.2 3.02
18895 1.972 1.67 .3171 3.40 2.29 .12 -8.8 3.09
18896 1.953 3.54 .3410 3.39 2.43 .20 -0.4 3.01

18899 1.516 1.59 .3489 3.69 -- -. 10 -6.6 --

18898 1.475 2.79 .3637 3.70 2.06 .10 -7.1 3.31
18901 1.222 1.84 .3725 3.82 1.89 -. 40 -3.9 3.47
18902 1.158 2.26 .3757 3.85 1.79 -. 10 -4.6 3.56
18907 1.041 1.59 .3569 4.04 1.46 -. 73 0.8 4.01

18908 1.003 2.97 .3461 4.19 1.65 -. 10 -7.3 3.88
18906 .989 3.08 .3215 4.24 1.45 -. 41 1.0 4.17
18909 .918 3.15 .1505 4.39 -- .74 -12.6 --

18936 .888 2.87 .1372 4.42 1.44 -. 52 3.7 4.58
18911 .606 2.87 .1230 3.71 -- -. 62 3.0 --

18912 .551 3.30 .1324 3.54 1.67 -. 23 -7.9 3.74

/
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Table 3. Aerodynamic Characteristics of the API, M8 Projectile.

Round Mach Ot CD CMa CL. CM, (CM, CPN
Number Number (degrees) + CM0) (cal -

base)

18857 2.686 1.39 .2938 2.88 2.69 .05 -5.5 2.75
18922 2.669 4.62 .3200 2.81 2.48 .26 -7.3 2.79
18856 2.639 2.54 .2991 2.85 .2.45 .24 -7.8 2.82
18918 2.628 12.81 .4985 2.65 3.26 .13 -6.2 2.49
18923 2.605 2.08 .2950 2.87 2.30 .22 -7.5 2.86

18920 2.600 1.75 .2956 2.92 2.43 .20 -8.0 2.86
18917 2.511 12.58 .5189 2.76 3.30 .28 -7.9 2.51
18915 2.508 13.57 .5683 2.82 3.40 .41 -7.4 2.50
18859 2.038 .60 .3108 -- -- -- -- --

18860 1.926 1.63 .3260 3.33 2.33 -. 02 -8.4 3.04

.18866 1.500 1.69 .3507 3.60 2.35 -. 14 -5.9 3.12
18867 1.496 1.86 .3525 3.65 2.10 -. 07 -6.1 3.28
18929 1.198 7.41 .4542 3.69 1.97 .27 -7.8 3.31
18930 1.197 7.34 .4507 3.67 1.98 .26 -7.5 3.30
18926 1.178 5.00 .4100 3.69 1.79 .24 -7.7 3.46

18875 1.158 4.48 .3984 3.78 1.65 .31 -9.0 3.63
18874 1.109 1.84 .3763 3.84 1.63 -. 68 2.7 3.70
18878 .976 2.74 .2388 4.77 1.55 .61 -18.2 4.45
18879 .959 2.55 .1624 4.88 -- .13 -8.2 --

18932 .939 9.63 .2331 4.00 1.50 .02 2.7 4.10

18933 .897 4.39 .1454 4.16 1.30 .41 -8.5 4.67
1893S .892 2.87 1328 4.28 1.62 .20 -7.7 4.23
18881 .799 4.07 .1407. 3.86 1.40 .02 -4.0 4.29
18934 .692 1.75 .1232 3.80 -- -- -- --

57

-- I



Table 4. Aerodynamic Characteristics of the APIT, M20 (Burnt Tracer).

Round Mach 6t CD CM. CL. CM,. (CM, CPN
Number Number (degrees) + CMa) (cal -

base)

13550 2.309 1.59 .3013 2.86 2.23 .01 -8.8 3.02
13551 1.965 1.33 .3250 3.00 2.52 -. 33 -8.0 2.94
13552 1.958 1.90 .3261 2.98 2.25 -. 11 -4.8 3.04
13549 1.855 1.04 .3182 3.04 2.68 -. 25 -6.5 2.90
13553 1.420 1.29 .3589 3.34 1.67 -- -- 3.53

13554 1.362 2.13 .3729 3.34 2.10 -. 07 -6.3 3.23
13555 1.134 1.78 .3743 3.47 1.54 -- -- 3.70
13556 1.075 2.37 .3790 3.47 1.55 -. 46 .7 3.68
13557 .941 1.50 .1715 4.11 -- -- -- --

13559 1819 2.55 .1260 3.87 1.45 -. 37 4.2 4.34

13560 .748 2.07 .1298 -- -- -- --

13561 .710 2.41 .1294 3.66 -- -. 62, 7.8 --

a5
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Table 5. Flight Motion Parameters of the Ball, M33 Projectile.

Round Mach S9  Sd AF x 103 AS X 103 'F Ks I F Spin
Number Number (1/cal) (1/cal) (r/cal) (r/cal) (r/cal)

18892 2.653 1.81 .8 -. 147 -. 075 .0191 .0204 .0187 .0037 .213
18924 2.589 1.83 .9 -. 120 -. 089 .0297 .0318 .0188 .0037 .213
18891 2.570 1.80 .9 -. 114 -. 084 .0234 .0245 .0187 .0038 .213
18895 1.972 1.61 .6 -. 210 -. 054 .0177 .0222 .0182 .0043 .214
18896 1.953 1.61 .8 -. 165 -. 092 .0403 .0445 .0182 .0044 .214

18899 1.516 1.49 .2 -. 231 .037 .0132 .0238 .0178 .0048 .214
18898 1.475 1.48 .7 -. 173 -. 053 .0310 .0361 .0178 .0049 .214
18901 1.222 1.42 -. 6 -. 271 .126 .0127 .0287 .0174 .0051 .214.

.18902 1.158 1.42 .3 -. 178 .019 .0214 .0327 .0174- .0052 .214

18907 1.041 1.34 -18.1 -. 281 .250 .0054 .0257 .0169 .0056 .213

18908 1.003 1.34 .2 -. 279 *.073 '.0263 .0430 .0172 .0057 .217
18906 .989 1.31 -10.0 -. 134 .124 .0266 .0458 .0169 .0059 .216
13909 .918 1.18 1.2 -. 087 -. 232 .0498 .0203 .0153 .0067 .209
18936 .888 1.26 -- -. 099 .140 .0209 .0449 .0165 .0062 .215
18911 .606 1.43 -- -. 124 .183 .0243 .0434 .0173 .0050 .211

18912 .551 1.47 -. 1 -. 315 .077 .0352 .0445 .0172 .0048 .209
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Table 6. Flight Motion Parameters of the API, M8 Projectile.

Round Mach Sg Sd AF x 0 As x iOs KF Ks F Spin
Number Number (1/cal) (1/cal) (r/cal) (r/cal) (r/cal)

18857 2.686 1.92 .8 -. 128 -. 071 .0157 .0179 .0191 .0035 .213

18922 2.669 1.93 1.0 -. 107 -. 121 .0576 .0538 .0191 .0034 .212
18856 *2.639 1.93 .9 -. 131 -. 109 .0308 .0304 .0191 .0.035 .212

18918 2.628 2.08 1..0 -. 112 -. 113 ý.1626 .1468 .0196 .0032 .214

18923 2.605 i.89 .9 -. 129 -. 102 .0239 .0263 .0190 .0035 .212

18920 2.600 1.85 .8 -. 150 -. 096 .0200 .0222 .0188 .0036 .212
18917 2.511 2.04 1.1 -. 113 -. 148 .1590 .1442 .0197 .0033 .217

18915 2.508 1.99 1.4 -. 108 -. 124 .1729 .1564 .0196 0034 .217

18859 2.038 -- ... .0038 .0095 .. .. ..
18860 1.926 1.67 .4 -. 244 -. 007, .0136 .0244 .0185 .0042 .213

18866 1.500 1.50 .3 -. 215 .018 .0156 .0243 .0178 .1047. .212
18867 1.496 1.49 .4 -. 201 .003 .0181 .0261 .0178 '°•048 .213

18929 1.198 1.55 .9 -. 126 -. 105 .0882 .0902 .0183 .0647 .217
18930 1.197 1.54 .9 -. 124 -. 103 .0863 .0907 .0183 .&047 .216

18926 1.178 1.50 .9 -. 138 -. 088 .0576 .0629 .0179 .0048 .214

18875 1.158 1.45 .9 -. 153 -. 101 .0517 .0559 .0177 .0050 .214
18874 1.109 1.42 -- -. 168 .184 .0108 .0294 .0175 .OC5i .213

18878 .976 1.20 .7 -. 352 -. 037 .0219 .0404 .0162 .0069 .218
18879 .959 1.07 .5 -. 318 .063 .0192 .0389 .0140 .0082 .209

18932 1939 1.33 -- .119 -. 115 .1499 .0703 .0166 .0056 .209

18933 .897 1.29 1.1 -. 094 -. 134 .0595 .0457 .0164 .0059 .210

18935 .6..2 1.24 .8 -. 163 -. 038 .0370 .0318 .0159 .0062 .209
18881 .799 1.39 .6 -. 110 -. 015 .0454 .0537 .0171 .0053 .211
18934 .692 1.44 -- -- -- .0079 .0277 .0175 .0050 .212
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Table 7. Flight Motion Parameters of the APIT, M20 Projectile (Burnt Tracer).

Round Mach Sg Sd AF X 10' As x 10' KF Ks . -ýs Spin
Number Number (1/cal) (1/cal) (r/cal) (r/cal) (r/cal)

13550 2.309 2.09 .4 -. 252 -. 033 .0139 .0226 .0213 .0034 .213
13551 1.965 2.02 -. 1 -. 330 1062 .0066 .0210 .0213 .0036 .214
13552 1.958 2.01 .4 -. 174 -. 015 .0168 .0272 .0212 .0036 .213
13549 1.855 1.94 .1 -. 270 .024 .0073 .0156 .0208 .0037 .211
13553 1.420 1.83 -1.1 -. 351 .172 .0039 .0205 .0207 .0040 .213

13554 1.362 1.81 .4 -. 210 -. 012 .0168 .0315 .0208 .0041 .214
13555 1.134 1.74 -- -- -- .0044 .0278 .0206 .0043 .214
13556 1.075 1.75 -5.9 -. 124 .096 .0166 .0365 .0207 .0043 .215
13557 .941 1.36 -- -- -- .0241 .0049 .0182. .0058 .206
13559 .819 1.48 -- .019 .048 .0254 .0362 .0190 .0052 .209

13560 .748 ..-- -- . .0037 .0335 -- -- --

13561 .710 1.57 -- .050 .130 .0179 .0372 .0195 .0049 .209
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Table 8. Tracer-On Drag Measurements for the APIT, M20 Projectile.

Round Mach at CD(R) CDo
Number Number (degrees)

30461 2.502 .31 .2748 .274
30460 2.497 .27 .2656 .265
30467 2.478 .63 .2741 .274
17089 2.430 * .2759 .275
30462 1.882 .59 .3029 .302

17159 1.533 * .3254 .325
17158 1.528 * .3293 .329
17160 1.525 * .3193 .319
30475(a) 1.015 1.79 .3081 .304
30474(a) 1.007 1.00 .3028 .302

30474(b) .983 1.05 .2263 .225
30475(b) .973 2.30 .1596 .152
30474(c) .967 1.63 .1603 .158
30473 .966 1.28 .1439 .142

Notes: * Very small yaw (at < .5 degree)
) Denotes split reduction
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List of Symbols

a2  = cubic lift force coefficient

C 2  = cubic static moment coefficient

C2  cubic Magnus moment coeffi-
cient

CD Drag Force
[(1/2)pV2 S]

CDo = zero-yaw drag coefficient

CD62  = quadratic yaw drag coefficient

Lift Force Positive coefficient: Force in
CL0  [(1/2)p V 2 S6 plane of total angle of attack,

at, I to trajectory in direc-
tion of at. (at directed from
trajectory to missile axis.)
6 = sin at.

Normal Force
CN SPo~itive coefficient: Force in

,[ (1/2)p S6] plane of total angle of attack,

at, I to missile axis in direc-
tion of at. CIv0 - CL. + (CD

Static Moment Positive coefficient: Moment
CM0  - [(1/2)pV 2 Sd6] increases angle of attack at.

Magnus Moment .
Magnus Moment (Positive coefficient: Moment

1(1/2) pVSd (pd/V) rotates nose .I to plane of at

in direction of spin.

Magnus Force

CN M(1 Forc pVS(p bNegative coefficient: Force
S[(1/2)pV 2 S (pd/V) 6] acts in direction of 90 rota-

tion of the positive lift force
against spin.
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List of Symbols (Continued)

For most exterior ballistic uses, where 6 t q, ;zz -r, the definition of the

damping moment sum is equivalent to:

(CM9 +C11 0  Damping Moment Positive coefficient: Moment
((1/2)pV 2 Sd (qtd/V)J increases angular velocity.

= Roll Damping Moment Negative coefficient: Moment
"j(1/2) p V 2 Sd (pd/V)I decreases rotational velocity.

CPN center of pressure of the nor-
mal force, positive from base
to nose

k, - angle of attack, side slip

Ot - (c2 + 032)p = sin-I 6,
total angle of attack

AF " fast mode damping rate negative A indicates damping

AS slow mode damping rate negative A indicates damping

p = air density

- fast mode frequency

- slow mode frequency

c.m. - center of mass

d - body diameter of projectile,
reference length

d2  - cubic pitch damping moment
coefficient

Ix - axial moment of inertia
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List of Symbols (Continued)

l= transverse moment of inertia

KF - magnitude of the fast yaw
mode

Ks = magnitude of the slow yaw
mode

= length of projectile

M = mass of projectile

M = Mach number

p roll rate

q, r= transvei'se angular velocities

qt= (q + r')•

R = subscript denotes range value

s dimensio less arc length along
the traje tory

S = (Orc"/4), reference area

Sd= dynamic tability factor

S9 = gyroscopi stability factor

V = velocity o projectile
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List of Symbols (Continued)

Effective Squared Yaw Parameters

K 2K + K 2

6CH ~)j((i +- ]•2 ( S) KK F2K -40sK]

e:H ('F K 0 - of' K

62• K 2 + 2 K, 2 - - .
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