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ABSTRACT

Langevin equations for intrinsic optical bistability in a system o f A vo-level

atoms interacting by dipole-dipole interactions are treated, and the stochas-

tic effects of auantum noise are analyzed. For cases in which the population

relaxation is very slow (relative to the homogeneous dephasing rate of the

complex dipole) we derive a one-dimensional Ito stochastic differential equa-

tion for the inversion of population. For such nases the probability distribu-

tion, diffusion process and the first passage times between the two metastable

states are calculated. On the other hand, the quantum fluctuations in in-

trinsic bistability of a pure quantum mechanical system are calculated by

using the Einstein relations. We find that a quantum noise which is above

the standard quantum limit is inherent in the reaction field. We develop a

theoretical analysis for the spectrum of the light scattered by two, two-level

atoms driven near resonance by an external electromagnetic field.

Keywords:

Intrinsic Optical Bistability; Cooperative Effects; Resonance Fluorescence;

Quantum Noise.
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1. INTRODUCTION

Intrinsic optical bistability (IOB) that is not caused by external feedback

such as mirrors, has been the subject of recent intense interest.' It was first

pointed out by Bowden and Sung2 a and by Bowden2" that optical bistability

(OB) may occur for a system comprising a collection of atoms which inter-

act with the electromagnetic field and are driven by an externally applied

coherent field without external feedback. The first detailed experimental

study of intrinsic optical bistability was conducted almost simultaneously by

Hajto and Janossy3 using amorphous GeSe2 , who interpreted their results

as due to temperature-dependent induced optical absorption in the mate-

rial, and Bohnert, Kalt and Klingshirn4 , who used CdS, and also Rossmann,

Hennbberger and Voigt' using the same material. The process in the first

case depends upon absorption due to temperature variation induced by the

incident field, whereas the later cases depend upon saturation of absorption

due to the generation of carriers in the material, and the IOB has been

interpreted' as due to bandgap renormalization. Since the earlier works,

there have been many theoretical and experimental investigations of various

forms of IOB 1.

In certain recent works7 the nonlinear oscillator model has been used as

a prototype medium exhibiting intrinsic bistability. Various effects related

to intrinsic bistability have been explored by following this model. On the

other hand the two-level system has been used as a prototype medium for

describing quantum mechanical effects in intrinsic optical bistability.8-1 2 In
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previous works we have presented quantum mechanical treatments of mir-

rorless (intrinsic) optical bistability (JOB) from collections of spatially dis-

tributed two-level atoms interacting via the electromagnetic (e.m.) field and

driven by an externally applied coherent field.

The aim of the present research project was to study the effects of quan-

tum fluctuations on IOB since these effects have not been studied in the

previous works. The bistability effects have a potential significance for de-

veloping "optical computers". The use of intrinsic bistability as a switching

mechanism will have the following advantages:

a) As the external feedback such as" -*rrors is not needed, the switching

unit can be very small and therefore much less complicated, more efficient

and less expensive than that used in a conventional optical bistability.

b) The switching times in intrinsic optical bistability will be short

relative to the switching times obtained in optical bistability with mirrors.

However, the insertion of noise including especially the quantum fluctuations

might destroy the hysteresis cycle behavior of the steady state response.

Therefore, we have found it to be of utwost importance to investigate these

statistical fluctuations.

Some of the physical effects in cooperative resonance fluorescence are

very similar to those of the intrinsic bistability13- 17 as both phenomena are

related to the coherent dipole-dipole interactions. An interesting problem

in this field which has been studied in the present project is the resonance

fluorescence spectra from two two-level atoms including the dipole-dipole

interactions.



2. SCIENTIFIC RESULTS

The detailed scientific results of the present project are given in the three

articles added in the Appendices. Here we give a short review of our work.

The Langevin equations for intrinsic bistability had been derived in pre-

vious workss - 0 . The solution of the equations was based on complete fac-

torization of the dipole operators and then the Langevin terms drop out for

the expectation values. Instead of this approximation we use in the present

work partial factorization, by which the expectation values are made and

factorized in the first stage only relative to the atoms. The deviation from

complete factorization is due to the Langevin noise terms.

After using the above approximation the quantum nature of the equa-

tions is related to the "Langevin force" operators f(+)(r), which stem from

the vacuum contribution to the fluctuations. -r is the retarded time and

< [f(+)(7), f(-)(r')] >oc 8(-r - r'). The f (±) operators are independent of

the space coordinate. Therefore the treatment of quantum fluctuations in the

case of a short sample (a width smaller than a wavelength) and in the case of

a long sample are similar. We assume that the f(±) operators are gaussian

operators representing a gaussian white noise. By using this approximation

we transform the equations for the inversion of population and for the two

components of the complex dipole into three coupled Ito random differential

18•iuations

The quantum statistical treatment of the intrinsic bistability can be sim-

plified for the case when the dephasing constant is much larger than the
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relaxation constant (P2 >> 01). In a pure quantum mechanical model

P2 = P/2, but we may introduce homogeneous broadening by considering

i81 and 02 as empirical cases. In many experimental cases the condition

P2 >> 81 is fulfilled. Under these conditions the relaxation of the dipole

operators is very rapid relative to the relaxation of the inversion of popu-

tion. Therefore for this case the expectation value for the complex dipole

operators is adiabatically eliminated by using Eq. (17) of Ref. 9. We get

by this approximation a one-dimensional Ito differential equation for the in-

version of population. The methods for solving such a random differential

equation have been described in the theories developed for bistability in laser

cavities V- 20. The tunnelling process and the passage times between the two

stable states in intrinsic bistability were calculated by using these methods

for such cases in which P2 >> 61. The analytical and numerical calculations.

made by following this method, are presented in Appendix A. Cooperative

effects in the resonance spectra of two-level atoms are usually treated by as-

suming that the atoms are within a small volume with dimensions smaller

than a wavelength 2 -2 . In Appendix B we analyze the resonance fluores-

cence spectra of two two-level a.oms by taking into account the dependence

of the coherent dipole-dipole interactions on the distance between the atoms.

In the present project we have treated also a pure quantum mechanical

syst.m in which the relaxation rate P, of the inversion of population is the

spontaneous decay time and the relaxation rate for the dipole moment is

given by P2 P1/2. By using the quantum theory of noise developed by

7



Lax"3 we have calculated al the second moments of the dipole operators and

studied the statistical properties of the reaction field.

It has been shown by other authors that squeezing24-2 6 can be produced

by optical bistability27 but this possibility has been studied only under the

approximation of a good cavity limit. For such cases the medium relaxation

is much faster than that of the field and then the atomic variables can be

eliminated. The problem of photon statistics is studied in Appendix C for the

extreme case of a bad cavity limit where we preclude any reflecting boundaries

and where the relaxation of the field is much faster than the relaxation of the

material. The statistical properties of the transmitted radiation are discussed

and it has been found that squeezing is not obtained in the present system.

CONCLUSIONS

The simple modified Maxwell-Bloch equations used by us are useful as a

generic model for describing the effects of quantum fluctuations on intrinsic

bistability. The long passige times calculated by us, for a two-level system

with large dephasing rates indicate reasonably suitable conditions for obtain-

ing intrinsic optical bistability. However, the effect of quantum fluctuations

in terms of the average passage times can be an important effect. Quantum

nois, effects, as discussed here, can lead to significant "glitch" rates which

can seriously affect stability and switching properties of a bistable device.

By solving our equations for the pure quantum mechanical case we find

that the reaction field in intrinsic bistability is bunched so that a quantum

8



noise which is above the quantum noise limit is inherent in this system. We

conclude that the photon statistics in the bad cavity limit is more chaotic

than the ,od cavity limit in which squeezing was predicted.

The theoretical analysis made in the present work for the resonance flu-

orescence spectra of driven two, two-level atoms can be used for evaluating

the spectra in numerical calculations. For the case of two, two-level atoms

at resonance interacting with a resonant external field, which are within a

volume with a dimension smaller than a wavelength, we ihave derived an an-

alytical expression for the line shape. Additional side bands appear, which

are shifted from the line center approximately by twice the Rabi frequency,

but theseikkbands are very broad and very weak.
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Langevin equations for intrinsic optical bistability (IOB) in a system of two-level atoms interacting by dipole-dipole interac-
lion are treated, and the stochastic effects of quantum noise are analyzed. We derive a one-dimensional Ito stochastic differential

equation for the inversion of population of cases in which the population relaxation is very slow relative to the homogeneous
dephasing rate of the complex dipole. For such cases the pr',oability distribution, diffusion process and the first average passage
times between the two metastable states in IO ae calcillated.

Various forms of intrinsic optical bistability (lOB), the band edge in CS and is entirely an elffct ol'nany
i.e. optical bistability that does not depend upon ex- body interaction in the electron-hole plasma.
ternal feedback such as mirrors, have been investi- Currently lOB is routinely observed or reported in
gated in many theoretical and experimental'-works the literature. What has not been reported and ap-
[ 1-11 ]. Thermally induced lOB has been obtained pears relatively difficult is the observation of 1011 in
experimentally and has been related to internal feed- a system which can be quantitatively analyzed using
back due to nonlinear absorption increasing as a a simple analytical model. In this context our simple
function of intensity [2,8,9]. Dagenais and Sharfin modified Maxwell Bloch equations [ 12-141 are use-
[ 10] observed 1013 by tuning just below the absorp- ful as a generic model. One should distinguish be-
tion peak of the bound 12 exciton in CdS. This was tween JOB which is treated in a steady state and su-
due to thermally induccd shift of the exciton reso- perfluorescence (SF) [151 which is a transient
nance to low frequency (a frequency renormaliza- phenomenon depending on spontaneous initiation
tion which is intensity dependent). and subsequent coherent pulse buildup. Unlike SF,

Non-thermal lOB effects were observed by Boh- JOB has an externally applied field which, when lin-
nert et al. [3] and by Rossmann et al. [4]. These early polarized, causes individual dipole orientation
experiments were explained by Schmidt et al. [5 ] as in the medium and the direction of the reaction field
due to Coulomb screening of carriers caused by laser of the atoms is largely determined by the incident
field induced carrier production resulting in shrink- driving field, into the appropriate narrow solid an-
age of the band gap. in this work the tuning is near gle. Therefore, the dynamics of switching in lOB is

quite different from that of-SF in terms of initial and

The research reported herein-has been sponsored in part by boundary conditions. In a small voltne ( <Al) SF

the United States Army through the European Research Of- cannot happen since there is no preferred direction.
fice under Contract No. DAJA 45-87-C-0040. Whether or not JOB can happen for interacting two-

0 030-4018/89/$03.50 @ Elsevier Science Publishers B.V. 335
(North-Holland Physics Publishing Division)
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lCvel atoms separated by less than a resonance wave- "good cavity limit" is of coursethe complement of
length, has been strongly addressed in tile calcula- the "bad cavity" approximation and' requires that
tional heuristic treatment of Hopf and Bowden [7]. the reflectivity boundary condition prevails, i.e. a
In that work it has been shown that the stochastic high-Q cavity. In.this case the photon lifetime is large
processes in the two-level atoms with the dipole-di- and the cavity width is small. Thus it can happen that
pole interactions causes bimodality. A "clean exper- the medium relaxation is much faster than that of
iment" which might be quite close to this model, the field and then the atomic variables can be adi-
would be a collection of Rydberg atoms [ 16] in ion abatically eliminated [20,21]. An example would be
traps [17,18]. The collisional broadening can be a nonlinear cavity composed of a Kerr medium be-
controlled by laser cooling and decorrelation can be tween highly reflecting mirrors. In our works we have
controlled by introduction of thermal IR or FIR ra- treated short samples configurations of two-level at-
diation. Thus, atoms can be brought closer together onms without any reflecting boundary conditions so
by laser cooling and decorrelated independently by that we have assumed the "bad cavity limit".
interacting with an externally applied stochastic field In our previous works [ 12-14 j we have shown that
superimposed on the coherent driving field (this cubic nonlinearities appearing in dense two-level
needs further considerations). As has been shown in systems, due to the dipole-dipole interactions, can
the heuristic treatment of ref. [7] bistability is ob- lead to 1OB. This, of course, is related to early quan-
tained when the number of atoms within a cubic turn treatments of bistability that is in terms of fac-
wavelength is large. torization and cubic nonlinearities [ 22,23 ]. The aim

In recent works [12-14,19] we have treated the of the present Letter is to describe the effect of quan-
problem of JOB in collections of spatially-distributed tum noise on 1OB. As is well known the stochastic

! two-level atoms interacting via the electromagnetic processes, in general, change the phenomenon of bi-
field and driven by an externally applied coherent stability to bimodal probability distributions. Since
field. In the earlier works on lOB of two-level sys- stochastic effects have not been treated previously
tens the dipole-dipole interactions have been treated for lOB our new analysis of such effects should be of
by assuming a small volume with dimensions smaller interest.
than a resonance wavelength [ 1,6 ] or by assuming The equations of motion obtained for a short sam-
a system with a small number of atoms in semiclas- pie of two level atoms, including the noise source op-
sical approximation [7]. In the recent works [12- erators, are given as [12-14]
14.19] we have treated the problem from the many- d < )>/dr=-)
body standpoint by developing the Heisenberg equa-
tions of motion in the "bad-cavity" limit, where the + (1t/h) [E*(a+o(z, T)>. +E<C.()(z, r)>)
relaxation of the field in the medium is much faster
than the relaxation of the material. This is the case -2(u+o(Z,-r) >nf + (r)-2f- (r) (o(Z, T)),,,

when the cavity width y is very large. Since y -I cor- ()
responds to the average photon lifetime in the cavity d(oa+ 0(z, r) >./dt= - (ItE/2h) (a:(z, T) >..
we obtain the extreme "bad cavity limit" by pre-
cludijig any reflecting boundaries and when the up- +i[ P-E<or(z, r) >,.1 (U+o(Z, r) >.
per bound for the photon lifetime is given by the pas- -fl 2 <+o(Z, T) > +f - (') <C,(z, T) >.. (2)
sage time through the medium. If the cavity width y
is much larger than the material relaxation rate then Here (a+0>, is the expectation value of the slowly
the field variables can -be adiabatically eliminated varying complex atomic polarization per unit vol-
from the Heisenberg equations of motion with the ume, and (o,.>. is the expectation value of the alomic
approximation that the field is in steady state on the inversion per unit volume. The average ( >, are with
time scale of the material response time. The formal respect to the atomic states only. The parameter .u is

- procedure for adiabatic elimination, specifically in the modulus of the matrix element of the transition
the "bad cavity limit" as well as the "good cavity dipole moment of an atom, and n is the number of
limit", has been presented by Lugiato [20]. The atoms per unit volume. J=w-wo is the detuning
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where co is the frequency of the applied field E and imation for strong dephasing, decorrelation of a+o
coo is the atomic resonance frequency. The rates #I, and a.. is an excellent approximation, and indeed,
and 132 are the inverses of the relaxation times T, and must follow for consistency. One should be aware of
T2 for the inversion of population and the dipole the fact that the-effect of lO1 treated here is not re-
moment, respectively, and A=co-coo is the devia- lated at all to the cooperative effects discussed for
tion of the applied field frequency (o from the atomic SF. It is related to the renormalization of the fre-
resonance frequency coo. f is the frequency renor- quency due to the high density of the two level atoms
mealization constant derived in our previous work and is similar to the renormalization of frequency

E=Tnflc3/4co, (3) for lOB in semiconductors as explained in the in-troduction to this Letter.
where fl is the spontaneous decay constant By adiabatic elimination of <a+(> and (o)> in

fl=4112 W /3hc 3 . (4) eqs. (I ), (2) we obtain the single Ito equation[24,25] for the inversion
The frequency renormalization stems from coherent
dipole-dipole interactions between atoms that are / l.1( 12a7:l2
within a volume of a cubic wavelength. The electro- da--1 (a.+ I )d
nignetic field appeali s in eqs. ( I ), (2) in two paris,

i.e. flie free fieldfand the macroscopic field E. The it( dFa+ i -- (-
latter is assumed to be a constant classical driving i(J-(a) i(L1-)+fl2
field (or equivalentiy that it is in coherent sta!e). The
free field operators of eqs. ( 1), (2) obey in the plane (6)
wave limit, the equations where o,=1E/Ih is the Rabi freluency of the ap-
<. + ( ) f - (')> = (r-'), plied external field. lere, we have defined the di-

(f + (T) f + (T') <f - (T) f (T') > mensionless stochastic variables dF1 and dF- by
the equations

=<(.f- (r).f (T' )> =0 , (5)

where the averages < > are expectation values, and dF( =f) dF(t) =f-(r) (7)
r is the retarded time variable T=t-z/c. These op- dr dr
erators constitute fluctuating noise terms which stem
from the quantum field coupling to the atoms, and have dropped the ( >, notation for convenience

In our previous works we have treated the prob- and scaled the atomic variables to functions corre-
lem of factorization of products of atomic operators sponding to densities per atom. The stochastic prop.
that arise from adiabatic elimination of the reaction erties of the variables dF + and dF- follow fiom eqs.
field contributions. Here the multiplications with the (5) and (7),
slowly varying external field E are automatically fac-
torized under the present assumption of a driving (dF + ('r) dF- (r') > =fl dT,
classical field. The only operator product terms left <dF + (r) dFI (T') > = (dF- (T) (IF - (r') >
in eq. ( I ) are the multiplicative noise terms, and this
of course factorize with respect to the atomic initial = (d T(-c) dF + ('-r')> =0. (8)
states (in consistence with the -markovian approxi-
mation of eq. (5)). In the present work we assume The model can be easily generalized to other spe-
also adiabatic elimination conditions for (a+o)>, cific radiation reservoir conditions, such as a ther-
which means overwhelming large dephasing of mal reservoir at temperature TO 0. Using conditions
0+o> (fl2>>13i). Thus, under these conditions, the (8) we transform eq. (6) into a Fokker-Planck

coherence of the off-diagonal dipole terms is equation [24,25] for the inversion of population a-
quenched and the diagonal and off-diagonal terms as a function of the parameters Iwo|l, E, f,s and
are decorrelated. Thus, under the adiabatic approx- ,82 (where 2 >> f,1):
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*,Rf0" ) [ (0f1  + 0 0

2' 4 (A ' j 0

°", 0.5 P 1f bs,/ 0 I,.,, j..P ... . -o. 2p,. - ,

+ i 2,+ (, _ ao.)2jt (9) --0.5'10

E "100
We represent the drift term A (a) and the diffusion
coefficient B(ao) as 

C 2

.R2 
I

IWR 1 2'.-fiB fl2 + (4_ Eo.) 2  (11) Fig. 1. <a,> as a function of IW1Rl for normalized parameters
2  fl, = 1, #2= 10, ,= - 10 and c= 100, where all quantities are inunits of f 1. The solid and dotted curves represent respectivelyhe steady, state solution of (9) is given by stable and unstable steady states. The points a, b and c represent

f7: ~the three solutions of thc cubic steady statc equation where the
.f ~t")(a) = ~L 'C exl 2 f d subscripts j=l, 2 and 3 refer, respectively, to external fieldsT,:=- B(-.) I (ORI 2= 100, 120 and 150 in units offl.

* C
- -)exp[-U(- (12) previous work (ref. [121, eq. (18)), and this, of

3vhere C is a normalization constant and the poten- course, is in total agreement with the expression for
tial U(a.) is defined as the drift term of eq. (10). The dephasing rate, f12,

,,: has been chosen to be 10 fil, so that the approxi-
() 2 d () '13) mation fl2 >> fl, is justified. To obtain a condition of

' J(intrinsic bistability the parameter E must satisfy
[6,141 e/,02>6. For illustration we have chosenLI(q:) plays a role similar to a chemical potential E= 100 and J=- 10, in units offli. This gives thesince the main dependence on a: is through this ratio c/932= 10. The solid and dotted curves in fig. I

function while B(a:) is a slowly varying function of represent, respectively, stable and unstable steady
o:. states. The points a, b and c in this figure represent,

By a straightforward integration we get respectively, the three steady state solutions for a,
/f. 2 2 for a prescribed field value I R 1 2, where j= 1, 2, 3+ refer to Iwit I'- 100, 120, 150 respectively. For theUw.)I (- 2 / same conditions and prescribed fields the corre-

2c 2 - 4A+1 E 2 sponding probability functions, f () (a.), calculatedI R2 +( 1O - 1) 2 from eq. (12), are depicted as functions of or in fig.S+j2(12. The maxima of the probability density functions,
2(f12) (2 '14) in each case, correspond to the two stable solutions,
I wit 12 Y - a and c, of the cubic equation whereas the minima,b, correspond to the associated unstable solution ofTo illustrate the quantum noise effects in intrinsic the equation.

bistability we show in fig. I the value of (t,> as a The time dependent Fokker-Planck equation, eq.
fC-nction of IOwR 2 , where all rates are normalized to (9), can be described by [201
f/1. This figure has been calculated according to the
steady state cubic equatiol of state obtained in our Qf(a,, r)/Or=Af(a2 , T) , (15)
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I I Iin tile upper (highly excited) branch of o.: and change
03 1(OR 2 in the neighborhood of a to approach the point

02z a, or we may start on the lower branch and arrive at
10- the point c. After the fast relaxation of the first step

Cl the probability densityft(a_) is given by the line pro-
file about the point a, whereas for the second case it

1.0 is given by the line profile about point c, as illus-
trated in fig. 2.

In the long time limit (the second stage) the fuic-
0.1. tion f(a) can be approximated by

f oj ) f(a, T)=f(" (a)+exp(-,AI ).ii(a-), (16)

001- 01 where f, (o_) is the cigenfunction of the Fokker-
Planck operator corresponding to the eigenvalue A:.

b2  
The probability to find the system in the states a and
c at time r are given, respectively, by

0.001"
0

C3 IV (T) f f(oa:) do-,
M:b)0.0001- (,

wib3IV:(T) = I W1 - (T) . (17)

0 ' -0.5 -1.o- The rate by which w(r) changes is given by

ivdw(r)/dr=-(I/r.)w. +(l/FC)(l-w.) , (18)

Fig. 2. The probability density f(a,) for various external fields where r. and r. are the "escape times" out of the a
as a function of ai for stationary states with normalized parame- and c wells of the potential. On the other hand we
ters/h = 1,fP2= 10, J= - 10, c= 100. The three curves are for lields have
with I OR" 100, 120 and 150. The maxima a and c correspond
to the stable solutions of the cubic equations and the minima b dw/dr= -A .[wu(r) -uii,(co) ]. (19)
to the corresponding unstable solutions, where j= 1, 2, 3 refer to
I(OR 12=100, 120and 150, respectively. All parameters are in units By comparing eqs. (18) and (19) we get
ofil. A, = I + I T. wV( 0) I = v~ o

Ta c r wi'(oo) r
where, under conditions similar to those which per- .(20)
tain to fig. 2, the linear operator exhibits a nearly de-geneatepairof owes lyng igenalus, 2= 0and By using methods described in refls. [ 20,211] and ap-

geeaepair of lowest lying eigenvalues, A0=0 and
# 0, and a large gap between A, and the remaining proximations that are valid within the switching re-

eigenval, es. The time evolution off(a., ,r) occurs in gime, the "escape times" are given by [201

two separate steps. In the first one the relaxation 0

process is local in which the two peaks of the double T!, =M J do [B(ao') ]-I exp[ - U(.)]
peaked distribution described in fig. 2, evolve in- c,. (b)
dependently of each other 1201. This stage is very ,0)
rapid corresponding to the high eigenvalues for which T =A d [B(a) ] x) U(o:) J (21)
A>>2A, (j> I ). The shapeof the two peaks, of a given J
distribution at the end of the first stage is identical
to that represented byf (3I) (as), but the ratio of the where M is a function of the potential barrier be-
-maxima of the peaks may be different, depending on tween the two potential wells,
the initial conditions. Referring to fig. 1, we may start

339



Volume 72, number 5 OPTICS COMMUNICATIONS 1 August 1989

(112 J. lajto and I. Janossy, Philos. Mag. 1147 (1983) 346.
A= 2f da- ex) [ U(a_) . (22) [3] K. Bohnert, 11. Knit and C. Klingshirn, Appl, Phys. Lett. 43

(1983) 1088.
[4J I. Rossmann, F. llennebergei and II. Voigt, Phys. Stat.

By calculating the escape times according to the Solidi BII5 (1983) K63.
above cquations for the three sets of conditions il- 151 I1.E. Schmidt, II. Hang and S.W. Koch, Appl. Phys. Lett.

Istrated in figs. 1, 2, we obtain T(a 2),3.0X I03 44 (1984) 787.
16] F.A.'Hopfand C.M. Bowden and W.l 1. Louiscll, Phys. Rev.

fli ,' r(cz) -.l.65xlO'3 fi'; z(a,)I92.6 fl, A29(1984) 2591.
r(c,) ,3.08Xl0 fli'; T(a3 ) ; 5.6X 10' fliF, [71 F.A. Hlopfand C.M. Bowden, Phys. Rev. A32 (1985) 268.
r(c ) _36.7fl - t . For the probability density corre- (81 ).A.B. Miller, A.C. (ossard amd W. Wicgiann, Optics Lett.
sponding to Iwi12= 120, labelled j=2 in fig. 2, we 9 (1984)162.
obtain a biodal distribution and long passage times. [9] F. Ilennenberger and H. Rossmiann, Phys. Stat. Solidi B 121(1984) 685.
This condition corresponds very nearly to a gener- (10] M. Dagenaisand W.F. Sharfin, Appl. Phys.Lett.45 (1984)
alized Maxwell's construction and the calculated 210.
passage times arc very close to the maximum aver- I 1] J.W. Haus, L. Wang, M. Scalora and C.M. Bowden, Phys.

age passage time for the parameters chosen. In re- Rev. A38 (1988) 4043.
112] Y. Ben-Arych, C.M. Bowden and J.C. Englund, I'hys. Rev.

gard to the other two cases illustrated in figs. 1, 2 for A34 (1986) 3917.
j= l, 3 corresponding to IwtI 2 = 100, 150 respec- [13]Y. Ben-AryehandC.M. Bowden, Optics Cominm. 59 (1986)
tively, the probability densities are nearly monom- 224.
odal with drastically disproportionate escape times 1141 Y. Ben-Aryeh, C.M. Bowden and J.C. Englund, Optics
corresponding to the two stable steady state regions. Comm. 61 (1987) 147.

1151 P. Polder, M.F.11. Schuurmans and Q.11.F. Vrehen, Phys.
The long passage times associated with the regime Rev. At 6 (1919) 1192.

of clearly distinct bimodality indicate reasonably [16]J.A.C. Gallas, G. Lcuchs. I. Walter and 1i. Figger, in:
suitable conditions for observation of lOB in prin- Advances in atomic and molecular physics, Vol. 20, eds. 1).
ciple, but the effect of quantum fluctuations is a Bates and B. Bederson (Academic press, 1985) p. 4 13 .
measurable quantity in terms of tie average first 171 F. Diedrich and W. Walthers, Phys. Rev. Lett. 58 (1987)

203.

l%1 p.e ltiies and (':tn lie an implorlant effect, es- 11 1)R7lep0er. l'hys, Rev.l~elt. 59 (1Q871672.
pLcially ill the apl)roach to nearly i11onolnodal be- 1191 C.M. fllwdon, in: Qumiltuml t pl ks IV, 'ds. Dl.. Willis lid
havior near the steady state switching thresholds. J.D. Harvey (Springer-Verlag, Blerlin, 1986) p. 139.

(201 L.A. Lugiato, in: Progress in optics, ed. E. Wolf (Elsevier
Quantum noise effects, as discussed here, can lead to Sciences, 1984) p. 69.
significant "glitch" rates which can seriously affect 121 J.C. Englund, R.P. Snapp and W.C. Schieve, in: Progress in
stability and switching properties of a bistable device. optics, ed. E. Wolf (Elsevier Science, 1984) p. 355.

[221 li.J. Carmichael and D.F. Walls, J. Phys. BI 0 (1977) L685.

References (23] S.S. Ilassan and D.F. Walls, J. Phys. AIV (1978) L87.
[24] T.T. Soong, Random differential equations in science and

I I C.Ml. Bowden and C.C. Sting, Phys. Rev. A19 ( 1979) 2392; engineering (Academic Press, New York, 1973).C.M. lowden and cal Sti , ds. ev. (9wden, M. (251 Z. Schuss, Theory and applications ofstochastic differential

Ciftan and II.R. Rohl (l'lenum, New York, 1981) p. 405. equations (John Wiley, New York, 1980).

340



APPENDIX B

Resonance Fluorescence Spectra of Two Driven Two-Level Atoms

14



1376 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 24. NO. 7, JULY 1988

Resonance Fluorescence Spectra of Two Driven Two-
Level Atoms

YACOB BEN-ARYEH AND CHARLES M. BOWDEN

Abstract-We develop a theoretical analysis for the spectrum of tile agreement with that of Mollow [I], Oliver et al. [15],
light scattered by two, two-level atoms driven near resonance by an Carmichael and Walls [4], Kimble et al. [6], and many
external coherent electromagnetic field. The atoms are assumed to re- others. This result is in contrast with the one-photon ap-
lax to equilibrium with the driving field due to radiation damping. The
explicit dependence of the coherent dipble-dipole Interactions on the proximation 1161, which gives a ratio 2: 1 rather than 3 : 1
distance between the two atoms Is taken Into account in the theoretical in the peak heights. A more sophisticated one-photon
treatment of the spectra. For the case of two, two-level atoms with a model for resonance fluorescence spectra of a two-level
fixed distance smaller than a wavelength, an analytical result for the aton has been developed by Baklanov [17] and by Sten-
resonance fluorescence line shape Is obtained, and the result is corn- hohn 1181. This new one-photon model gives the correct
pared to previous works.

resonance fluorescence spectra and is in complete agree-
ment with oth'er works [11], 14], [6], [151. It is the purpose

I. INTRODUCTION of the prese7 work to apply this approach [17], (18] for
0 NE of the most interesting subjects in quantum optics developing the theoretical analysis of the resonance fluo-

which has been studied extensively in the literature rescence spectra of two, two-level atoms and to compare
is the resonance fluorescence spectra from a two-level the results to those of other authors [8]-[13].
atom interacting with a nearly resonant coherent external Cooperative atomic effects in the resonance fluores-
field [1]-[5]. Interesting quantum effects, such as photon cence spectra are usually treated by assuming that the at-
antibunching, have been observed [6J in connection with oms are within a small volume with dimensions smaller
the resonance fluorescence phenomena. The structure of than a wavelength. The-nature of the coherent dipole-di-
the spectrum of resonance fluorescence of a cooperative pole interactions between two identical two-level atoms
system of atoms has been investigated in many works [7]- at a fixed arbitrary distance r apart has been studied by
[13]. Senitzky [7J was the first to predict that the spectrum Milonni and-Knight [19]. The coherent dipole-dipole in-
of a cooperative system would consist not only of the usual teractions with their explicit spatial dependence may ex-
peaks, but also of additional side bands at the harmonics plain various cooperative effects, such as superradiance
of the Rabi frequency. This problem has been investi- [20] and intrinsic bistability [21]. In the present work, we
gated further in the various works [8J-1 13], and in partic- analyze the resonance fluorescence spectra by taking into
ular, the dynamics of the two, two-level atoms has been account the dependence of the coherent dipole-dipole in-
investigated. teractions on the distance r between the atoms.

The purpose of the present work is to study resonance In Section II, we present the general theory for the dy-
fluorescence spectra of two, two-level atoms by the use of namics of driven, spatially separated two, two-level at-
new methods and compare the results to other works. ores. We follow here'the approach given in 1191, by which

The spectral distribution of the resonance fluorescence the dipole-dipole interactions lead to a damping mecha-
scattered light of one two-level atom is well known [1]. nism, but in addition, we include here the effect of the
It has been well established experimentally 114] that for coherent interaction with the externally applied field.
low incident field strengths, the scattered spectrum con- In Section III, we develop the density matrix equations
sists of a single broadened line, which above certain of motion by generalizing the calculations made in [17]
threshold strength, it exhibits a pair of side bands in ad- and [18] for one atom to two, two-level atoms. The anal-
dition to the central component. The ratio of the central ysis for the resonance fluorescence spectra is made in See-
line to the side band peak heights is 3: 1, while the line tion IV. Although for the general cases it was not possible
width ratio is 1 : 1.5. This kind of spectrum is in complete for us to obtain final analytical .results, the equations de-

veloped by us can be used further in a numerical analysis.
Manuscript received September 17, 1987; revised Janmary 25, 1988. Also, we have emphasized the analysis of specific cases
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field, which is nearly resonant with the two-level atomic where I + > and I -> refer to an atom in the upper and
frequency. It is assumed that the two atoms come into lower state of the two-level, respectively, and the indexes
equilibrium with the driving field through the effect of ra- I and 2 refer to the atom number.
diation damping. In the Hamiltonian of (2.1), we distinguish between the

The Hamiltonian, which describes the system, is given coherent interaction H" with the external applied field and
in the rotating wave and in the electric dipole approxi- the incoherent interaction H' with the continuum of the
mation by H = tHo + H' + H": electromagnetic modes. The incoherent interaction de-

Ho w 2 scribes the escape of excitation energy into the radiation
H Z -

"£ " h + WqA aq field and is noted as a dissipative mechanism. This dis-2 1 q sipation appears in a way that is analogous to a relaxation
2 to a heat bath where the heat bath is understood as the

H = -i Z Z4%, + HC
HIk , q quantum fluctuations of the photon vacuum.

The influence of the incoherent interaction H' on the
-ih , - + HC (2.1) equations of motion can be calculated separately from that
2 T of the coherent interaction in the following way. By as-

where HC denotes the Hermitial conjugate and suming that the atomic system is in initial state 1 4m.) (M
= I ' ' • 4), its decay into a lower state is evaluated by

t(2i"')/ • eq. (2.2) developing the equations of motion due to H' and solving
S gVthem by the use of the Laplace transform within the pole

H0 includes the free atoms and free field Hamiltonian. We approximation (see explicit calculations in [19]).
use here the usual operators related to the SU(2) algebra We find that the damping constants for the states 1 4)
for a single atom: 4i represents the population inversion and 14) are given by #3+ and fl-, respectively, where
operator and a ± are the raising and lowering operators + = ( - g(,)) = ±3 ± B; B = jig(r). (2.4)
T'or atom i with coordinates ri. OR is the Rabi rate asso- Here 22 W 3/3Ac 3 is one half of the Einstein A coef-
ciated with the applied coherent field. wo and ko are the ficient and-g(r) is a spatial factor which depends on the
carrier frequency and wave vector of the applied field, distance between the atoms. g(r) is described explicitly
•espectively. V is the quantization volume for the field, in [19] or, in another form, B = 1g(r) is described in
&q is the frequency and 9q is a unit vector in the direction [211. g(r) tends to-I for r - 0 and tends to0 forr- oo.
of polarization for the mode q, gi is the dipole moment The imaginary part of #g(r) = B corresponds to fre-
vector of atom i, and w is the atomic frequency of the two-leve sysem.quency shifts and the absolute values of the amplitudes ofl e v e l s y s t e m .1 6 ) a n 1 0 ) d e y a t a r e

We limit the discussion in the present paper to the case I d2> and I 4)3) decay at a rate
of an external field propagating perpendicular to the in- Re 93± = ( + Re g(r)) = 13 4 7 L. (2.5)
teratomic axis. By choosing the centr of coordinates at In uie same way, we find that the amplitude for the state
the center of the interatomic axis, one finds immediately 141 > has i damping constant 21 where the decay constant
that-the spatial factors of H" vanish. Therefore, for this from the state 141> tc) the state 142 > is P3+ 13(1 +
case, the interaction with the radiation is completely sym- g(r)) = 13 + B, while that from 141 ) to 143 > is 13_ =
metric relative to the two atoms and the analysis of the p_(1 - g0,)) = 13 - B. Taking into account the imagi-
resonance fluorescence spectra is relatively simpler. The nary part of g(r) (including frequency shifts), the effect
treatment of the general case where the radiation is prop- of H' on the amplitudes-of the states j4,,> can be de-
agating in any direction can be done in a straightforward scribed by the following diagram.
way by following the present methods, although the
expressions will be more complicated (the interaction H" 1 )
inserts spatial factors in the matrix elements which are 1.1
different for the two atoms). For cases for which ko " F
<< 1, the spatial factors of H" can be neglected and the 142) 143)
pieseit analysis remains valid for any direction of the ex-
ternal applied field.

A-complete set of the atomic states can be given as 104)
14,) = I+ )l+ )2; -In-the present work, we calculate the resonance fluo-

, )2;rescence spectra in a strong field by including in our re-
1 duced system two sets of states: the states 14 ) (m =

12) + I+2] I - " -4) which do not include scattered photons, and the
states 14,,,.> which include one scattered photon in !he

143) = "[+ )11- )2 - )11 + )21]; mode q. We introduce the atomic reduced density matrix

14)) = I- >1 - )2 (2.3) ,,,,, = <4,,,IpaI4,,); Pin,= (4)rIp.,1I4.,q) (2.6)
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where we have traced out tile states of tile continuum field. P22, and use instead the normalization condition
We calculate the equations of motion for these density
matrix elements by using the Hamiltonian Ho + Ht" of Ptt+ P22 + P33 + P44 = 1. (3.5)
(2.1). 'he effect of H' on the equations of motion has By assuming steady-state conditions, i.e., P,,n= 0, we
been reduced to the use of the damping constants evalu- get 16 equations for the density matrix elements A,,,, (m,
ated previously for the amplitudes of the states 1,,,,> (or n = 1, • • •, 4). All the density matrix e'.ements, which
0kM.q). Under steady-state conditions, the calculation of are coupled to the antisymmetric state 103 >I can be elim-
the density matrix elements p,,,, and p,,,.q,, is reduced to inated front this equation in the following way.
the solution of algebraic equations. The procedure is coni- From the equation
pletely analogous to the method used in [17], [18]. How-
ever, the calculations for our system of two, two-level at- b33 = 0 = 2(fl - Re B)pII - 2 Re B)P33  (3.6)
oms become much more complicated than those made for we get the result
one two-level atom. The complication is mainly due to
the fact that each of the sets p,,,, and P,,.,,q include 16 P33 Pit- (3.7)
matrix elements (in = 1 . .4, i = I . ..4) and the so- The set of equations
lution of 16 simultaneous algebraic equations becomes
quite tedious. Although in the present paper we develop P13 = 0 = -iAP13 - W 23 - (31 - B*Thi 3
the theory for general cases, we emphasize finally special P2. = 0 = -io, 13 - - 2(1 - I11 B)P23
cases for which the calculations and the physical solutions

become quite simple. P34 = 0 = -iAP 34 + ia 32 - (0 - B) 34 (3.8)
The theory and the calculations which are presented (including also their complex conjugates) are homoge-

here can be used further for evaluating the resonance flu- neous algebraic equations whose only solutions are
orescence spectra of two-level atoms by numerical cal-
culations solving the algebraic equations. In the following ,13 "- P23 = ,34 = 0. (3.9)
section, we present the calculations for-the reduced den- The equations for the density matrix elements, which
sity matrix elements pm,, and p t.,,q. These matrix elements are not coupled to the state 103 >, become
are used for evaluating the resonance fluorescence spectra
in Section IV. 0 = io(,5 2 - 521) - 4 03pit;

III. Tile DrNsrrY MATRIx EQUATION OF Mo'rloN 2 pI + P22 + P44 =

We introduce the slowly varying nondiagonal density ()44 - ia( 42 - P24) ± 2(13 + Re B)P 22
matrix elements by using the definitions

P12 P12e -= P 24 = p24e"' =,(42)* + 2(3 - Re B)P 33

P13 P13e' ( 31)*, P34 -P 34 e' =Pl4 = 0 = -2iA 1 4 + iC(( 1 2 - P24) - 21P14

-4 (e )*;t P23 =P23 = (32)* (3.1) P12 = -iAp 1 2 + ioe[Pil - P22 + P141 - (33 + B*) 1 2

where the deviation from resonance is given by P24 = 0 = W-iA24 + ioi[P22 - P44 + A14]

A = o - (0o. (3.2) - (3 + B)A24 (3.10)

We choose the phase of WR so that it is an imaginary num- where the equations for /12, P24, and A14 are complex,
ber and define while other equations are real. These equations may be

easily calculated by numerical analysis.
e = io1-.12 (3.3) For a very strong external field at exact resonance, the

where oa is a real number. This choice of phase corre- approximate solutions of (3.10) are given by
spondj to the Hamiltonian of interaction and the interac- I
tion constant a defined in [18J for treating the resonance Pit P22 P33 "P P44 ; 14 = 0
fluorescence spectra for one two-level atom.

In addition to tie damping of the density matrix ele- 2 (for A = 0;
ments p,,,,, we include in these equations the increase of P21 P42 (
the population of the levels I 2 ), 1I3 ), aid I 4 ), rep-
resented by P22, P33, and P44, due to the decay from the ai >> a, >> I I). (3.11)
upper states. The equations for the diagonal matrix ele- Equations (3.11) represent the fact that when the pump-
ments are dependent via the relation ing by the driving field at resonance (A = 0) is very

P I + P22 + h33 + b44 = 0 (3.4) strong, the population in the four states becomes approx-
imately equal. In the present paper, we discuss analyti-

so that we should eliminate one of the equations, e.g., for cally the problem only for this limiting case. For other
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cases, we represent the solutions by deriving sets of al- get three nlgebraic equationl;:
gebraic equations which can be solved numerically.

We introduce slowly varying density matrix elements PI.3q 0 = [-(A -) - 33 + B*],3q
Pm.nq using the following definitions: - iaP2,3q - rqPll

P2.1q = P2.1q te , 'PI.2q = PI.2q; P4.Iq = P4.1qe - 3i' t  P2.3q = 0 = [i6 - 2(f3 + Imi B)Ib2.3

P4.2q = P4.2qe ' /P2.4q = P .4 4. = Pl.4qe - it[P3.q + P4.3q] - tqP21

Pl,4q = PI.4qe ; PI.lq = Pl.lqe" , ; 2.2q = P2.2qC 1 ' P4.3q 0 = [i(A + 6)b4.3q] - (16 - B*)P4.3q

Pl.3q PI.3q; P2.3q = P2.3qe' ,' P4.3q = P4,3qe' P4.1 - i
1 P2.3q (3.15)

(3.12) where

where wo is the frequency of the external field. For these -, = t I)ei'r T, _ 2ei rq.;2. (3.16)
density matrix elements, we get under steady conditions, For the density matrix elements P3.,q where n = 1, • • •,
three independent sets of algebraic equations. 4, we get four algebraic equations:

For b,,..,q where in z 3, we get nine algebraic equa-
tions: P3.1q = 0 = [i(A + ) - 36 + BJA3.lq + iP3.2q

P3.2 , q=0 = [ "b -. ...- m )
P,2q = 0 = -qP + [-i(A - 6) - 33 - B*]II.2q. 2q 2q 0 [i6 - 2(3 -Im B)] 3.2q

+ i [PI, q - P2.2q + Pl.4q] + iC4[3,iq + P3.4q]

P4,Iq = 0 = [i(2A + 6) - 2B],4.,q + /o[P4 2ii - P2.1q] P3.3q = 0 = [ i - 2(13 - Re B)],53,3q h3.3q -0

P2,lq = 0 = [i(A + 6) - 3j3 - B]32.iq P34q = 0 = [-i(A - 6) - (3 -n

+ i 2.2q - Pl.q - i4.Iql + iP3.2q - PqP3.3" (3.17)+ 2For the stationary state, we get P3.3q = 0 so that (3.15)
P2.2q = 0 [i6 - 2(03 + Re B)I 2.2q are independent of (3.17). For the general case, we have

for A,,,.,,q 15 algebraic equations which can be solved by
+ i [P2qI + P2.4q - ,4.2q - P1.2q] simple numerical analysis (excluding ,3.3q = 0).

, P2~The use of the density matrix elements deiivbd in the+ 2(1 + Re B), l q - -qq P21 present section for calculating the resonance fluorescence
PI.Iq =0 =[ -413].t + i[ ,- ,2.Iql spectra is described in the next section. We develop ananalytical solution for the resonance fluorescence spectra
P.4q = 0 = [-i(2A - 6) - 213],.4q for two, two-level atoms which are at resonance (A = 0)and at a distance smaller than a wavelength.+" ic[pl,2q - P2.4q1 

-
1lqPI2

IV. RESONANCE FLUORESCENCE IN A STRONG FIELD
P4.4q = 0 = ibh4.4q + i[4.2q - 2,4q] -- 74P4,2 The resonance fluorescence spectra are given as

+2 (13-Re B).3q + 2(13+ Re )P2.2q Wq = [P4q,4q + P3q-'q + P2q.21~pn, (4.1)

=24 0 = (A 6) + B)I+qd
where only the growth due to the spontaneous emission

+ io[2.2q A- P.4,1 - 4.4q] - *P22 (evaluatcd by the interaction H') can be seen by the de-
tector, which is in a direction different from that of the

P4.2q = 0 = [i(A + 6) - (13 + B*)],4.2q applied field. In (4.1), we traced over the atomic states
where we have taken into account that there is no spon-

+ ict[/4.4q + P4,1q - 2,2q] - *P4I (3.13) taneous emission to the upper state 145p).

where By using the equation

Oq - WA -- [H', P1 (4.2)tdt J , h
and

(I~lkj- 71+ 2) i-q 72we get7lq = q + )eTq. e 2 (3.14) d

For the density matrix elements P,,.3q where in 3, we 7t [P21,2qJ5 pnt = -2 Re [PloPt.2qI (4.3)
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d = -2 simplifies the expressions. The condition e << 1 refers
t iP4qt4qP 0,, - Re [r1qP2,4qI - 2 Re [ 'qP3.4ql to the approximation of a strong field where the Rabi line

width a 2 is large relative to tile spontaneous decay line
(4.4) width /. For exact resonance, 161 = IWq - coI and the

d [P3q*jSt = -2 Re [LP.3j] (4.5) approximation 16 1/0 >> I excludes the line center so
that our approximations are valid for the line wings. The

he four terms on thle right side of (4.2)-(4.4) conie- solution of the line shape under these approximations by
The tour te rasiions ecribe s em i (t.il-4. ore following the present methods is interesting as it can bespond to tie transitions described schematically in th e done analytically and the results can be compared to thosediagram of Section II. In order to obtain the resonance of other investigators f71-(13].

fluorescence spectra, we need explicit expressions for the By olloingtove ari on whv b
densty atrx elmens p whic ca becalclatd b By following the above approximations, we have ob-

density matrix elements Pm.nq, which can be calculated by tained solutions to P,.,q of (3.13), which are correct to
solving independent sets of algebraic equations given in first order in e. By substituting these solution' in (4.1),
the previous section as (3.10), (3.13), (3.15), and (3.17). (4.3), and (4.4), we get the following expression for the
Since the treatment of the general cases needs the use of line shape:

Iq = 1 Pi"{ 1  - 2)2(6 + 4 S2)E + '2 2(02 - 8)2(32 + 4)E 2" (4.9)W C1- , 11(112- 2)] + 62(8t12' - 6)' [12(9'2 - 2)(fl'2 8)] + 62( 14124- 82j127+48)

very lengthy and tedious algebra, we prefer to analyze and In Fig. 1, we describe the line shape Wq as a function oftile normalized frequency QI =wt X ~[O for various
discuss these cases by the use of numerical analysis in a t ale f ecy i sa -s ge in revaiu
separate paper. Here we limit the discussion to specific units obtained.by exact calculations of the expression in
cases for which the theoretical analysis can be simplified the curled brackets. The maximum of the line shape at i

and for which the physical- results obtained by us can be tile crespondskto Tq m a i where a at it

compared to those of other investigators. N 2 corresponds to W. - w0 = a %f2 where a v is the
We investigate here the resonance fluorescence spectra Rabi frequency. This maximum becomes narrower for

for a very strong external field at exact resonance so that small E and its height is tending to co for e tending to zero.
instead of using the first set of algebraic equations for One can conclude this result analytically also as the see-
p,,.,, given by (3. 10), we use the approximate solutions ond term of (4.9) becomes singular for e - 0 at 1 = .
given by (3.11). Even under this approximation, the an- These results are not surprising as they are in agreement
alytical solutions of p,,,.,q are still very complicated and with the conclusions made by other investigators and the
iedious. Therefore, we limit the discussion to the case for effect is similar to that-obtained for one two-level atom.
which kirj << 1. For this case, B = 3, e'r " = e " j = On the other hand, our conclusions about the additional
1. Assuming that the two dipoles of the two atoms are side bands are different from those- of other authors. Al-
equal, ' = 0 and (3.15) and (3.17) are homogeneous though our calculations show an additional maximum near
linear equations whose only solutions are 1 = 2 12 (corresponding to twice the Rabi frequency:

2 /.2a = I wq - wo I ), this maximum is quite broad aid it
PI.3q = h23q = b4.3q 2P3.1q = b3.2q = P3.4q = 0. (4.6) does not show a singular behavior for e tending to zero
Therefore, the contributions to the resonance fluorescence [7j. Taking into account the logarithmic scale used in Fig.
spectra from thle density matrix elements , amnd ,3.,q of 1, our conclusion is that the additional side bands are quite(4.4)ran (4.5 vaedenih. mti relts obvious as two O weak and are not in agreement with the relatively strong(4 .4 ) a n d (4 .5 ) v a n ish . T h is re s u lt is o b v io u s a s tw o a t- re o a c s p di t d b o h r a u o s [ 7 [ 1 ] [ 3 .ores, which are within a distance smaller than a wave- resonances predicted by other authors [71-[101, [131.
length, are trapped in the state Isa) with no transitions We can explain our result by using a dressed state pic-to other states. ture. The additional side bands result from transitions inWe introduce the definitions which the dipole moment is doubled. The probability for

this kind of transition for a stationary two, two-level atomic
Lb ,- , (4.7) system is quite small, as the relative phases of different
o a a dipoles tend to be randomized. In a recent paper 112], we

have suggested- observing the additional side bands in aWe have developed an analytical expression for the line time dependent spectra where a strong transient coopera-
shape for the special case where the following approxi- tion will be induced by initial conditions.
mations are valid:

r< ;< 1 ; V. CONCLUSIONS
krq =< ; A = 0; c < - >> 1. (4.8) The theoretical analysis made-in the present paper for

the resonance fluorescence spectra of driven two, two-level
The assumption of exact resonance (A = 0) and the atoms can be used for evaluating the spectra in numerical

validity of the relation B = 1 for kn.Y << I very much calculations. The method is based on calculations of den-
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ABSTRACT

The quantum fluctuations in intrinsic bistability of a two-level syste3m are

calculated by using the Einstein relations. All the second moments of the

dipole operators are calculated and the statistical properties of the reaction

field are studied. We find that a quantum noise which is above the standard

quantum limit is inherent in the reaction field.

2



1. Introduction

Intrinsic optical bistability (IOB) that does not require external optical

feedback such as mirrors has been described in various theoretical and exper-

imental works. 1 14 Most of the observations and the theoretical discussions

have been made for complicated systems, e.g. in semicondactors, for which

a full quantitative analysis is difficult. A relatively simple pure quantum me-

chanical system which produces IOB occurs for a dense collection of two-level

atoms interacting via the electromagnetic field and driven by an external ap-

plied coherent field. For low values of the incident field the strong reaction

field reduces the net field into a low transmitivity branch. As the incident

field is increased at a certain critical intensity the cooperative interatomic

interaction is broken and the contribution of the reaction field is suddenly

negated. This phenomenon of a sudden transition from the low transmitivity

branch into the high transmitivity branch occurs as a first order phase tran-

sition far from thermodynamic equilibrium. Although various properties of

the coexisting steady states of the transmitted radiation have been described

in our previous works, the influence of this phenomenon on photon statistics

has not yet been explored.

The purpose of the present work is to study the quantum fluctuations

in intrinsic bistability including especially the statistical properties of the

reaction field.

In a recent work"5 we have treated quantum noise fluctuations in IOB

two-lvel system. However, the analysis has been made only for a system

with a rapid dephasing (T2 < < T1) and only the affect of the quantum ioise

3



on the bistable states has been discussed. In the present work we treat a pure

quantum mechanical two-level system in which the relaxation time T, of the

inversion of population is the spontaneous decay time and the relaxation time

for the dipole moment is given by T2 = 2T,. By using the quantum theory of

noise developed by Lax1 we calculate all the second moments of the dipole

operators and study the statistical properties of the quantum noise in a pure

IOB system.

It has been shown by other authors that squeezing17-19 can be produced

by optical bistability2 ' but this possibility has been studied only under the

approximation of "a good cavity limit", i.e. for bistability in high Q cavity21.

For such cases the medium relaxation is much faster than that of the field

and then the atomic variabls can be adiabatically eliminated. We investigate

here the problem of photon statistics for the extreme case of a "bad cavity

limit"12 1 where we preclude any reflecting boundaries and where the relaxation

of the field in the medium is much faster than the relaxation of the material.

For this case the statistical properties of the reaction field are related to the

statistical properties of the dipole operators.

A single atom driven by an externally applied coherent field emits sponta-

neous photons that are "antibunched" i.e. the intensity correlation function

is in the quantum domain g(2)(0) < 1 for a null delay.22 -2 . This nonclassical

property of the light observed in resonance fluorescence of single atoms oc-

curs due to the reduction of the state of the atom into its ground state after

the emission of the first photon so that it cannot immediately emit a second

photon. The antibunching phenomena vanish for the radiation emitted in

4



resonance fluorescence of many two-level atoms due to destructive interfer-

ence effects. We will show in a similar way that the quantum noise is inherent

in the IOB system and that squeezing 17- 19 cannot be obtained in this system

(the bad cavity limit).

In a recent work antibunching behaviour has been observed in the reso-

nance fluorescence light emitted by a many atom source.24 The constructive

phase matching conditions in that work were obtained by using a four wave

mixing scheme in which the intensity correlation function was measured be-

tween two detection channels of spontaneous radiation emitted in opposite

directions. Although this system is basically different from that of the present

work the methods developed here can be used also for treating that problem

and we hope to do it somewhereelse.

In Sec. 2 we describe shortly some properties of Squeezed States (SS)

and explain our method for checking the existence of squeezing. In Sec.

3 we calculate all the moments of the dipole operators in IOB by using

Einstein relationsl'X . The statistical properties of the transmitted radiation

are discussed and we find that squeezing is not obtained in the present system.

In Sec. 4 we summarize our results and conclusions.

2. Squeezing and Anomalous Correlation Functions

The -nonclassical properties of quantum light"8 are related to the normal

ordered normalized second order correlation function defined for stationary

5



light as

g(2)(r) < E(-)()Ec-)(t + r)E(+)(t + 7)E+)() >< E(-)(t)E(+)(t) >2 1

where E(+) and E() are the positive-frequency and negative-frequency parts

of the elctromagnetic field, The non-classical properties of S.S. are usually

obtained by mixing the L.O. (coherent state) and the S.S. in interference

experiments. 27- 28 It is generally assumed in these experiments that the L.O.

is much stronger than the S.S. so that the denominator of Eq. (1) is equal

approximately to IaI4 where lal is the absolute value of the coherent state

amplitude. The numerator of Eq. (1) can be developed up to the second

order in the S.S. operators and the result is given by 29 - 31

g()(r)_- 1 - < : A[E.)(t)E.9)(t + T)] :>
I2Jr (2)

where :: denotes normal ordering and E!() is the quad, tur3 amplitude of

the S.S.: 2

EM)(t) = E(-)(t)e" + E(+)(t)e-" (3)

0 is the phase angle of the coherent state which is changed in the interference

experiment to obtain an optimal quantum noise reduction. The quadrature

amplitudes are defined in the interaction picture of the L.O. so that the rapid

dependence on the frequency of the L.O. is eliminated. The function g(2)(r) is

dimensionless and since the normalization is arbitrary it is chosen so that IaI2

is the flux of the L.O. photons (sec -1 ) and consistently <: A[E,9)(t)ER()(t +

r)] :> is given also in terms of the flux of S.S. photons.
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Non-classical light is defined by the antibunching property g(2)(r) < 1.26

Similar expressions to Eq. (2) have been used extensively in various works

for analyzing quantum noise reduction under the Shot Noise Limit (SNL)

in homodyne and heterodyne experiments 19 ,29- s1 or explaining other quan-

tum effects in correlation measurements between two photodetectors3 . In

particular the Fourier transform of Eq. (2) is known as the squeezing spec-

trum and various theoretical methods have been developed for calculating

this spectrum.3 ' 34- 36

The anomalous correlation function for the S.S. is defined as35

J++(r) =<: AtE(+)(t)E(+)(t + r)] :>= IJ++(r)e - "' (4)

and the ordinary correlation function as 5

J_+(r) =<: A(E(-)(t)E(+)(t + r)] :> (5)

By using these definitions Eq. (2) can be expressed as

g(2)(r) - 1 = cos2(9 + 0/2)[21J++(r)t + L+(,r) + J+_(r)] (6)

+sin'(0 + 0/2)[-2jJ++(r)j + J_+(r) + J+-(r)],

where [J++(r)]* = J__(r). It will be shown later that J_+(r) and J+_(-r) are

for IOB real positive functions of r. Since g(2)(r) - 1 expresses the amount

of quantum noise this noise is minimum for sin2 (0 + 0/2) = 1 and maximum

for cos2(0 + 0/2) = 1 with harmonic dependence on the L.O. phase 0.

In the present work we are interested in the statistical properties of the

reaction field in IOB. It is sufficient to calculate g(2)(0) in order to see if anti-

bunching effect (g(2)(0) < 1) occurs in the system which would, in principle,
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lead to squeezing spectra. The condition g(2)(0) < 1 gives according to Eq.

(6) the folluwing criterion for obtaining squeezed spectra

21J++(O)l > J_+(O) + J+_(O) (7)

for null delay times. Squeezing is obtained when the relation (7) is fulfilled

since by adjusting the phase 0 of the L.O. we get the non-classical regime

g(2)(0) < 1 and the quantum noise is reduced below the SNL in the homodyne

or heterodyne or other correlation experiments. The meaning of inequality

(7) is that for obtaining squeezing the anomalous correlation function of

creating or annihilating two photons should be larger than that of the usual

correlation function of creating or annihilating one photon.

The role of anomalous correlation functions in relation to squeezing has

been treated in various works. 31.35 .37 In particular the constructive anti-

bunching effects described in Ref. 24 were obtained by designing the ex-

periments so that constructive interference is -obtained for the anomalous

correlation function J++('r) and a destructive interference is produced for

the ordinary correlation functions J+-(r) and J_+(r).

By using definitions analogeous to Eqs. (4-5) and the inequality (7) the

criterion for obtaining squeezing in IOB is

21 <& r+06o+o > I > < 60-_060+0 > + < 6 0+06o >. (8)

We have chosen to treat in the present work a pure quantum system since

as is well known the insertion of additional damping mechanism spoil the

effects of squeezing. However, we will show that even in the pure quantum
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mechanical system a quantum noise exists which is above the Quantum Noise

Limit (QNL). We calculate in the second section all the second moments of

the dipole operators and examine the statistical properties of the reaction

field.

3. Statistical Properties of the Quantum Noise in IOB

We consider a thin sample of a large number of two-level atoms coupled

to each other only via the electromagnetic field and driven externally by an

applied coherent field. In our previous works on IOB in two-level systems

we have calculated for various cases the expectation values per unit volume

of the slowly varying dipole moments < o-o > and for the inversion of

population < a,, > ."'-14 In the calculations for the expectation values the

contribution of the Langevin noise terms vanish. In the present work we

assume the relations

64±o =< 0.0 > +6 -o; &.. =< o, > +6&- (9)

and linearize the equations for small perturbations of the system from the sta-

tionary state. By following the derivations given in our previous works 2-14

including the Langevin noise terms we get

d(go+o) - Ed - [-/2±i(A-<o- >]&+odr

+ [w1/2- ic < o+o >]6&, + f-) < >
d( . ) = - , - w6-+o - w66- 0 - 2f(+)(&+o>- 2f H, < o-o >

(10)
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We neglect here the multiplications of f(+), f() with 6o, +. The-present

approximations are not valid when the quantum fluctuations are large or

when the system is unstable.

We assume a fully quantum mechanical model where /3 41PI2k3/3k is

spontaneous decay time. P is the dipole matrix element and k = w/c. A =

w - w0 is the detuning, where w is the frequency of the applied field E, and

wo is the atomic resonance frequency. w is the Rabi rate associated with

the applied coherent field and e is the frequency renormalization constant

derived for a dense two-level system in our previous work as

77rn/c 3  (1)

The frequency renormalization stems from coherent dipole dipole interaction

between atoms that are within a volume of a cubic wavelength. The free field

operatorsof Eqs. (10) obey in the plane wave limit the equations:

< f(+) (7)f-H((r') >= #6(r - r"),

< fc+)(T)fc+)('-') >=< fc-)(,r)fC-)(.r') >=< f(-)(,-)f(+)(,rl ) >= o t2)

where r is the retarded time. These operators consttute fluctuating noise

terms which stem from the quantum field coupling to atoms.

We follow in our theoretical treatment of the quantum noise in IOB the

quantum theory of noise developed by Lax16 . We rewrite our fundamental

Langevin Eqs. (10) in the form:

da,
,= G(, t) + F.(C,t) (3)

10



where for our cases a, G and F are three dimensional vectors given by:

a, = 6U+o; a2 = 6&-o; a3 = 6&z (14)

G, = [-.-/2 + i(A - e < o,, >))63+o + 1w*12 - ic < tT+o >16&,,

G2 = G+; G3 = -- +o - W.6&_o, (15)

and

F1 - -) < ba >; F2 = f(+) < Orz >; F3 <-2f(+ <0+o> -2/(- <o > .(16)

F,(t) are Markoffian operators and according to Eq. (12) obey the equations

< F,(t) F.(u) >= 2 < D, (a,t) > S(t - u) (17)

where

< D11. >=< D22 >=< D12 >=< D13 >=< D32 >= 0;

2 < D23 >= -2P3 < o- >< o'-- >; 2 < D21 >=/ < Orz >2t

2 <D 3 1 i -20 < +o >< o,,>; 2 <D 3 3 >= 4< +o>< ~o-o>P ()

One should notice that < DI,, > is not symmetric as F. and F, do not

commute.

By using the Markoffian property of the operator F ,(t) Lax has shown1 6

that the equation for the mean motion of the product of two operators a.

and a, obeying Eq. (13) is given by:

d<a, 2 < D > + < G,a, > + < aG > (19)

11



In the steady state when the second order operators do not change with

time we obtain the standard Einstein relations

-2 < DUV >steady state -< Gta. >,, + < a.G. >,a , (20)

The order in these equations follows from the quantum nature of our

system and in this respect it is different from the equations for the moments

in a Markoffian system which can be derived classically.

We introduce the following definitions:

p=-f/2+i[A-e<cr,>j; q=w*/2-ie<aOo> . (21)

Einstein equations for our system are obtained from Eqs. (20) by substi-

tuting the values of a., G, and D., according to Eqs. (14), (15)-and (18),

respectively, and by using the short notation of Eq. (21).

We get the following 9 Einstein equations for our system:

< 6'60"+o > + < 60+o60o= >= -(2p/q) < 6T+0 6E+o >;

< 6u'6 0 > + < 6o._o6r., >= -(2p*/q*) < 6ooo._o >;

o'2 >= 2 < o+O >< o" 0 > +/A <S+o6o+O>

/3q~q+-q* < 6o.-o6T.-o >;

q < 58 6o.._o > +q* < 6So+o6o >= P < 5O'+o6O'_o >;

12



(p -)3) < 6o+o6a > +q < 6o. >= wR < 6O+o6o-+o >

+w* < 60.+o6o >;

(p* -3) < 5o_o- > +q* < 6,5o, >= <5o6oo >

+WR < or--o6o+o > +23 < o, >< o-o > ;

q < 6o_o6o-, > +q* < 6oJ6o+o >= -6 < o.' > +3 < 6o_o6o+o >;

(p -3) < 6o.,6o+o > +q < 6a,T > -Wjr < 647+o+o >

-w* < 6o_o6Oa+o >= 2,8 < o+o >< o, >;

(P* -) < 6a&6oo > +q* < 6 2 > -WjR < 60cr+o6o_o >

-4a < 6o.-060r-o >= 0 (22)

Eqs. (22) consist of 9 algebraic equations from which one can calculate

numerically all the moments for our system. A careful analysis of these

equations shows that they fulfill the following relations:

< 6o,6o+o >*=< 6a.o6or >; < 6o6o-o >*=< 6o+o6o >

< 6o+oo.+o >*-< 6.-oo.-o > (23)

The functions < 6o, >, < 6o+0o'-0 > and < 6o'-o6O+o > are real and

positive but < 6o+o6o.-o >4< 6a-o6o+o > due to the unsymmetric property

of D .

13



By using the above relations, Eqs. (22) can be reduced to the following

form

< 6, 6 -+O} >= < +0+ > (24&)
q

(q < {6uz,&5+o} > +C.c.)= - < a >2 3 +1< 16{01+o,6o>; ()4-C)

(q*6oS,, 6+o] + c.c.) 3 - . >2 +# < [6(o, 50'+o]) 1-L-" d)

(p - 6) < {6o-,, 6a+o} > +2q < 6or' >=

2WR < 6T4oT+o > +WRj{6'+o,0-O} + 213 < r+o >< o' >; (z-e)

(p1f) < [8o-.) 86a+o] >= w*[6aoo, 6a+01 + 2P < U+o >< a,>; (21-4)

where in these equations { } and ] denote anticommutation and commu-

tation relations respectively.

In the present work we are treating the fluctuations in the reaction field

and check the possibility for getting squeezed light according to Eq. (8).

For this purpose it is enough to calculate the moments < 5ar+o 6aT+o >=<

u0_o -go >* and < 6r+o6 r-o > + < /r-o6to+o >= {6 ir+o, 6r-o}. By substi-

tuting Eq. (24a) into Eq. (24c) we get:

< 6 6 > 2pq .2pq >2 (25)

<1o+,+6oro1 ->- < 60+o6O"+o > +-P-< 5_o6_o >=< o->(2

14



By substituting Eqs. (24-a) and (24-b) into Eq. (24-e) we get

< {60+O, 6 '_o > + < 60 +06 +o '0 > 2wn +  2 (p ) 3pwR

R ~ w R OWR
- < 60r-o6r-o > 2qp* = 4q < 0"+o >< o-o >_ 2/3 < o-+o >< r 26)

We find that the moments needed for calculating the properties of the

reaction field can be calculated from Eqs. (25) and (26) without the need to

evaluate ail other moments. Let us introduce the following definitions

<8c ~r~o&T> = A; < {6o+o,&o-o} >= 2r; (27)

where r is real and positive and the condition for squeezing becomes r < JAI.

For the steady state solutions of IOB the following relations are fulfilled

< -(+0 >2)-<w*. >
<0+o > i(A - e < o,, >) - (/3/2)'

<0" < -> < > [< - > +1] (28)
2

Using these relations the real and imaginary parts of Eq. (26), and Eq. (25)

consist of three algebraic equations from which the parameters r and A can

be calculated and the condition r < JAI for squeezing can be examined by the

numerical calculations. The phase of wRlw , fixed by an arbitrary phase in

the external field, will affect the phase of < 6o+06a+o > but will not change

the results for the values of r and JAI = I < 5o'+o6o+o > I.

By substituting the value of < or+o > from Eqs. (28) into Eq. (21) we

get:

q = (w* /2)[( (iA -/3/2) (29)i(A-e < o-, >) -/3/2'
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Since general analytical solutions of Eqs. (25-26) are still quite compli-

cated we pursue further our quantitative analysis for three special cases and

obtain qualitatively general conclusions.

Let us develop the analytical solutions under the resonant condition A -

0 where we get:

q -(w 2)/ +2ic < o-, > ; - //- <t=> (30)

Substituting Eqs. (27), (28) and (30) into Eqs. (25-26) we get

(13 + 2ie < O*Z >) 2  A(3 2ie < rz >) 2  < >2 (31)

03 + 2ic < o-, > (8+ 2ie < o-, >)2(3pl+2 <o >]

2r+A[2+ I 3  + (, 1,R1 2 + <

+A* ( 3 - 2ie < or. >)2 -/3 [3 < 2+ < o, >]. (32),O(P3 + 2ic < o' . >) 6/ + 2ic < 0', >

We study the quantum fluctuations in the reaction field both for the ordinary

Bloch equations (e = 0) and for the IOB case (E >> /3).

For the ordinary Bloch equations on resonance we have

-- =o; f32/i I2 -- -2 < o-, >/[ > +1(33)

and Eqs. (31-32) can be written as

2r - (A+ A*) =< r >2 (34)

2r + 3A[1 + -2 1 + A* = -3 < tT, >2 _< O r> (35)

IWRI
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After a straightforward algebra we get

Ai-ImA=0; An=-/eA= 2 <c,> 2 [< C>+1] 0[< 0,>
3 6

r = ReA+ < o, >2 /2. (36)

In Fig. 1 we describe the values of r and JAI as a function of < ,0' >

according to Eqs. (36) for Bloch equations on resonance. We find that r > IAI

so that the reaction field is bunched and squeezing cannot be obtained for the

transmitted radiation. We find also the conclusion that the fluctuations in

the ordinary correlation function are decreasing as a function of the intensity

of the external field so that they are negligible in the region of < a, > 0

and maximal in the region <ur >_ -1.

Let us now discuss the solutions of Eqs. (32-33) for resonance (A = 0) in

intrinsic bistability (e >> 0). For this case the relation

WR [<z > +1][/ 2 + 4e2 < , >2  (37)
2 < az >

is fulfilled. We simplify further Eqs. (32-33) under the approximation

2< a> I>> 0 . (38)

This approximation is very good for the lower branch of intrinsic bistability

where we have relatively stronger quantum fluctuations. We get under this

approximation:

2r + 6Af 4e < o- >A, =< o, >2 (39)

10< LT, > [E 4<o-,>I _2
2r+ AR< > +1[ A > +1-4 2 <o.>> 2+3<>1(40)
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A 10 < Z >] AR[4e < a, > + 4E < a,, >_2_1Ax6+< a., > -J+ +1 ll< >- + >

- [3 < o > 2 + < 2 >. (41)2e < a', >

In Fig. 2 the values of r and IAI are calculated, as a function of I <

ar > I > 0.5 according to Eqs. (39-41) for an 1OB example on resonance

(A = 0) for which e = 10/3 and the condition (38) is valid. We find that the

quantum fluctuations for an IOB system are similar to those of the ordinary

Bloch equations. Similar to the ordinary Bloch equations r > JAI so that

squeezing is not obtained. For the upper branch in IOB the terms which

are proportional to e < o-, > are quite small so that the equations become

similar to the ordinary Bloch equations where squeezing is not obtained.

Let us now discuss as a third case the solutions of Eqs. (25-26) for IOB

under the resonant condition A - e < o-, >= 0 where the relation

f32/1JwRJ =-2 < o- >/1< a- > ±11 (42)

is valid (as in Eq. (33)). For this case the relations

p = -fl/2; < o+o >=W < a, >q .(,,*2 -[ 2i < -, >] (43)

p=1 32;cro> 1 0V~~.t

are fulfilled. By using Eqs. (43) and Eqs. (27) we can write Eqs. (25-26) as

2r -(A P + 2ic < o,,2 < > + c.C.] =< 0" >-, (44)

2r + A[3 + 32 10 >1 + A* P - 2i < a-,, >
WR 12 /-2ic < or, > + 2iE < cr1 >

2iwRI2 <a-2 >2
2 3 (P- 2i < o- >)- 2 < o, > 2  (45)

18



Using the relation (42) and the approximation (38) we reduce Eqs. (44-45)

into the form:

2r + 2AR + A , >2 (46)C <0" >

2r+AR[2-3# ] + A[ 302+ [-[<(, > +122 < or,> 6[< > +] < >

=-2 < > >2 _< 0., > [< > +1] , (47)

A14 - 3p2 >-1 - AR[ /0 + 3,8
At4-< o-, > +1]262 < , > < 0-, > 1< a, > +I]le

_ 2 < o >2 [< kZ > +1] (48)

'

In Fig. 3 the values of r and JAI are calculated as a function of I <

orz > I > 0.5 according to Eqs. (46-48) for an IOB example on the resonance

A - , < o >= 0 for which e = 103 and the condition (38) is valid. We find

that the quantum fluctuations in this case are very large relative to those in

Fig. 2. Squeezing is not obtained in this example and the reaction field is

again bunched. Although we evaluated the parameters A and r according

to Eqs. (25-26) under special conditions we can obtain general conclusions.

Under the resonance condition A - e < o, >= 0 the absolute value of the

parameter R in Eq. (25) is minimal. On deviation from this resonance
/3q

we would expect therefore a decrease in the parameter J< 65+o~r+o >J, i.e.

worse conditions for squeezing, We summarize our conclusions in the next

section.

4. Results and Conclusions
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The statistical properties of the reaction field in IOB has been studied.

The quantum properties of the reaction field are related to the anomalous

correlation function and a general criterion for obtaining squeezing is given

[Eq. (8)].

General equations for calculating all the second moments of the dipole

operators have been developed by linearizing the equations for small per-

turbations of the system from the stationary state and by using the corre-

sponding Einstein relations (Eqs. (22-24)]. The fluctuations in the reaction

field can be calculated numerically from Eqs. (25-27) where the condition

2 j< 6(7+060*+o >1> < &r+o8_o > + < 8o"-oo+o > represent the antibunch-

ing property (and vice versa).

By solving our equations for special examples and examining the general

behaviour of the equations we find that the reaction field is bunched so that

a quantum noise which is above the quantum noise limit is inherent in the

IOB system. We may conclude therefore that the photon statistics in the

bad cavity limit is more chaotic than that of the good cavity limit in which

squeezing was predicted. We find however the conclusion that the quantum

fluctuations in the steady states of IOB on resonance (A = 0) are similar to

those predicted for the ordinary bloch equations (e = 0) on resonance for the

same state of inversion of population.

The calculations made in this work show that the quantum noise in IOB

of a pure quantum mechanical system is quite large. By inserting large

dephasing processes i s we can improve the conditions for IOB but not for

obtaining squeezing.
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FIGURE CAPTIONS

Fig. 1. The parameters r and JAI are described as a function of

< o-, > for the ordinary Bloch equations on resonance (A 0). The

calcualtions have been made according to Eqs. (36).

Fig. 2. The parameters r and JAI are described as a function of o-,

(for I ,I > 0.5) for IOB on resonance (A = 0) where e = 10fl.

Fig. 3. The parameters r and JAI are described as a function of

< a, > (for oI _ 0.5) for IOB in which A-- e < a >= 0 and e = 10,8.
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