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ABSTRACT

ALVINN (Autonomous Land Vehicle In a Neural Network) is a 3-layer

back-propagation network designed for the task of road following.

Currently ALVINN takes images from a camera and a laser range finder

as input and produces as output the direction the vehicle should
travel in order to follow the road. Training has been conducted
using simulated road images. Successful tests on the Carnegie
Mellon autonomous navigation test vehicle indicate that the network

can effectively follow real roads under certain field conditions.
The representation developed to perform the task differs dramatically
when the network is trained under various conditions, suggesting the

possibility of a novel adaptive autonomous navigation system capable

of tailoring its processing to the conditions at hand.
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INTRODUCTION

Autonomous navigation has been a difficult problem for traditional vision and robotic
techniques. prnmarily because of the noise and variability associated with real world
scenes. Autonomous navigation systems based on traditional image processing and pat-
tern recognition techniques often perform well under certain conditions but have problems
with others. Part of the difficulty stems from the fact that the processing performed by
these systems remains fixed across various driving simations.

Artificial neural networks have displayed promising performance and flexibility in other
domains charactezed by high degrees of noise and variability, such as handwritten
character recognition (Jackel et al., 19881 [Pawlicki et aL, 19881 and speech recognition
[Waibel et al., 1988]. ALVINN (Autonomous Land Vehicle In a Neural Network) is a
connectionist approach to the navigational task of road following. Specifically, ALVINN
is an artificial neural network designed to control the NAVLAB, the Carnegie Melon
autonomous navigation test vehicle.

NETWORK ARCHITECTURE

ALVINN's current architecture consists of a single hidden layer back-propagation network
(See Figure 1). The input layer is divided into three sets of units: two "retinas" and a
single intensity feedback unit. The two retinas correspond to the two forms of sensory
input available on the NAVLAB vehicle; video and range information. The first retina.
consisting of 30x32 units, receives video camera input from a road scene. The activation
level of each unit in this retina is proportional to the intensity in the blue color band of
the corresponding patch of the image. The blue band of the color image is used because
it provides the highest contrast between the road and the non-road. The second retina.
consisting of 8x32 units, receives input from a laser range finder. The activation level of
each unit in this retina is proportional to the proximity of the corresponding area in the
image. The road intensity feedback unit indicates whether the road is lighter or darker
than the non-road in the previous image. Each of these 1217 input units is fully connected
to the hidden layer of 29 units, which is in tu fully connected to the output layer.

The output layer consists of 46 units, divided into two groups. The first set of 45 units
is a linear represertation of the turn curvature along which the vehicle should travel in
order to head towards the road center. The middle unit represents the "uavel straight
ahea" condition while units to the left and right of the center represent successively
siurla left and right rams. The network is trained with a desired output vector of all
ue-s except for a "hill" of activation centered on the unit representing the correct trn
cmvwm, which is th rvanre which would bring the vehicle to the road center 7 on For
mesers ahead of its -rnem position. More specifically, the desired activation levels for
the nine unit centered aromund the correct tum curvature unit are 0.10, 0.32. 0.61, 0.89,
1.00, 0.89,0.61, 0.32 and 0.10. During testing, the turn urvmre dictated by the network 0 I. . )Cod
is taken to be the curvante represented by the output unit with the highest activation
leveLnt on

The final output unit is a road intensity feedback unit which indicates whether the road
it. lonl
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ALVINN
Architecture

Road Intensity 45 Direction
Feedback Unit Output Units

8x32 Range Finder
Input Retina

30x32 Video
Input Retina

Figure 1: ALVINN Architecture

is lighter or darker than the non-road in the current image. During testing, the activation
of the output road intensity feedback unit is recuruls:e to the input layer in the style
of Jordan [Jordan, 1988] to aid the network's processing by providing rudimentary in-
formision concerning the relative intensities of the mad and the non-mad in the previous
image.

TRAINING

Training on actual mad imaes is logpticafUy difficult, because in order to develop a
geneuil rep snadom , the network must be presented with a Large number of trauning
emoplm depicting roads under a wide variety of conditions. Collection of such a
daM set would be difficult, and changes in paraneters such as camera oientaton would
requik collectng an entirely new set of road images. To avoid these difficulties we have
developed a simulated road genetor which creams road images to be used a tramiig
exemplas for the network. The simulated road generator uses nearly 200 parameters
in order to generate a variety of realistic mad images. Some of the most important
parmeters are listed in figue 2.

Figre 3 depicts the video images of one real road and one artificial road generated
with a single set of values for the parameters from Figure 2. Although not shown in
Figure 3, the road generator also creates corresponding simulated range finder images.
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" size of video camera retina

" 3D position of video camera
" direction of video camera

" field of view of video camera

* Size of range finder retina

" 3D position of range finder camera

" direction of range finder
" field of view of range finder

" position of vehicle relative to road center

" road direction

" road curvatnre

" rate of road curvature change

* road curve length

" road width

" rate of road width change

" road intensity

" left non-road intensity

" right non-road intensity

" road intensity variability
" non-road intensity variability

• rate of road intensity change

" rue of non-road intensity change

" position of image saturation spots

" size of image saturation spots

• shape of image saturation spots

" position of obstacles
" sie of obstacles

" shape of obstacles
" itensty of obstacles
" shadow size

" shadow direction

" Shadow intensity

Figure 2: Paumeters for simulated road generator
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Real Road Image Simulated Road Image

Figure 3: Real and simulated road images

At the relatively low resolution being used it is difficuit to distinguish between real and
smulated roads.

Network taimng is performed using artficial road -snapshots" from the simulated road
generator and the Warp back-propagation simulator described in [Pomerleau et al., 1988).
Training involves firs creating a set of 1200 different mad snapshots by randomly varying
the parameters used by the simulated road generator. Back-propagation is then performed
using this set of exemplars until only asymptotic performance improvements appear likely.
During the early stages of training, the input road intensity unit is given a random
activation level. This is done to prevent the network from merely learning to copy the
activation level of the input road intensity unit to the output road intensity unit. since their
activation levels should almost always be identical because the relative intensity of the
road and the non-road does not often change between two successive images. Once the
network has developed a representation that uses image characteristics to determine the
activaon level for the output mad intensity unit, the network is given as input whether
the road would have been darker or lighter than the non-rad in the previous image. Using
this ea information concerning the relative brightness of the road and the non-road,
the network is better able to determine the correct directon for the vehicle to navel.

PERFORMANCE

T1ree methods are used to evaluate ALVINN's performance. The first test uses novel
artificial road images. After 40 epochs of training on the 1200 simulated road snapshots.
the network correctly dictates a turn curvature within two uis of the correct answer
appro nately 90% of the tune on novel artificul road snapshots. The second, mote
informative test involves "dnving" down a simulated stretch of road. Specifically. the
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Figure 4: NAVLAB, the CMU autonomous navigation test vehicle.

artificial road generator has an interactive mode in which the rod image scolls in
response to an externally specified speed and direction of traveL After the traning
described above, ALVINN can drive the artificial road generator at a constant speed on
trips of several miles without straying from the simulated road. The primary testing of
ALVINN's performance is conducted on the NAVLAB (See Figure 4). The NAVLAB
is a modified Chevy van equipped with 3 Sun computers, a Warp, a video camera, and
a laser range finder, which serves as a testbed for the CMU autonomous land vehicle
project thorpe et aL. 1987]. Performance of the network to date is comparable to that
acheved by the best traditional vision-based autonomous navigation algorithm at CMU
under the limited conditions tested Specifically, the network can accurately drive the
NAVLAB at a speed of 1/2 meter per second along a 400 meter path through a wooded
area of the CMU campus under sunny fall conditions. Under similar conditions on the
same coure, the ALV group at CMU has recently achieved similar driving accuracy at
a speed of one meter per second by implementing their image processing autonomous
naigaton algorthm an the Warp computer. In contrast, the ALVINN network is currently
simulad using only an on-boazd Sun computer, and dramatic speedups are expected
whan ms are performed using the Warp.

NETWORK REPRESENTATION

Th representation developed by the network to perform the road following task depends
dramatically on the characteristics of the trnzning set. When trained on examples of roads
with a fixed width, the network develops a representation in which hidden units act as
filters for roads at differnt positions. Figures 5, 6 and 7 are diagrams of the weights
projecting to and from single hidden units in such a networ.
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Weight to Output
Feedback Unit

Weights to Direction Output Units

Weight from Input
Feedback Unit Weights from Video Camera Retina

Weight from
Bias Unit

BRoad
*Non-road- -

Weights from
Range Finder Retina

Figure 5: Diagram of weights projecting to and from a typical hidden unit in a network
trained on roads with a fixed width. This hidden unit acts as a filter for a single road on
the left side of the visual field as illustrated by the schematic.
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Weight to Output
Feedback Unit

F % Weights to Direction Output Units

Weight from IpuWihsfomVdoCmeaRtn
Feedback Unit W ihsfo ie aeaRtn

C -w

Weight from
Bias Unit--

Left Road Right Road
Edges Edges& 4JM

rU' a 3? 

Weights from
Range Finder Retina

Figure 6: Diagramn of weights projecting to and from a typacai hidden unit in a network
tandon roads with a fixed width. This hidden unit acts as a filter for two roads, one

slightly left and one slightly right of center, as illustrated by the schematic.
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Weight tc Output
Feedback Unit

Weights tc Direction Output Units

Weight from Input
Feedback Unit Weights from Video Camera Retina

Weight from
Bias Unit

Weights from
Range Finder Retina

Fig=r 7: Diagram of weights projecbrng -3 and, fom a typical hidden unit in a network
owined on roads with a fixed width. This hidden urit acts as a filter for three wads, as
illustd by the trimodaI excitatory connections to the direction output units.



As indicated by the weights to and from the feedback unit m Figure 5. this hidden unit
expects the road to be lighter than the non-road in the previous image and supports the
road being lighter than the non-road in the current image. More specifically, the weights
from the video camera retina support the interpretation that this hidden unit is a filter for
a single light road on left side of the visual field (See the small schematic to the left of
the weights from the video retina in Figure 5). This interpretation is also supported by
the weights from the range finder retna. This hidden unit is excited if there is high range
activity (i.e. obstacles) on the right and inhibited if there is high range activity on the left
of the visual field where this hidden unit expects the road to be. Finally, the single road
filter interpretation is reflected in the weights from ths hidden unit to the direction output
units. Specifically, this hidden unit makes excitatory connections to the output units on
the far left, dictating a sharp left turn to bring the vehicle back to the road center.

Figure 6 illustrates the weights to and from a hidden unit with a more complex represen-
taion. This hidden unit acts as a filter for two roads, one slightly left and one slightly
right of center. The weights from the video camera retina along with the explanatory
schematic in Figure 6 show the positions and orientations of the two roads. This hid-
den unit makes bimodal excitatory connections to the direction output miuts, dictating a
slight left or slight right turn. Finally, Figure 7 illustrates a still more complex hidden
unit representation. Although it is difficult to determine the nannw, of the reiesentation
from the video camera weights, it is clear from the weights to the direction output units
that this hidden unit is a filter for three different roads, each dictating a different travel
direction. Hidden units which act as filters for one to three roads are the representation
structures most commonly developed when the netwodk is trained on roads with a fixed
width.

The network develops a very different representation when trained on mapshots with
widely varying road widths. A typical bidden uit from this type of representation is
depicted in figure 8. One important feature to notice from the feedback weights is that
this umt is filtering for a mad which is darker than the non-road. More importantly, it
is evident from the video camera retina weights that this hidden unit is a filter solely
for the left edge of the road (See schematic to the left of the weights from the video
retina in Figme 8). This hidd unit supporu a rather wide range of travel directions.
This is to be expected, since the correct travel direction for a mad with an edge at a
paricular location vanes substantially depending on the road's width. This hidden unit
wod cooperate with hidden units that detect the right road edge to determine the corret
navel diection in any particular situation.

DISCUSSION AND EXTENSIONS

The dtiact representations developed for different circumstances illusate a key advan-
tap pvnded by neural networks for autonomou navigation. Namely, in this paradigm
the data not the progranmer, determines the salient image features crucial to accurate
road navigation. From a practical standpomt. this data responsiveness has drammacaly
sped ALVINN's development. Once a realistic artificld road generator was developed.
back-propagaon producted in half an hour a relatively sicceusful road following system.
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Weight to Output
Feedback Unit

5 Weights to Direction Output Units

Weight from InephufrmVdetamr Rtn
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Weight from
Bias Unit
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Figwe 8: Diagram of weights projecting to and from a typical hidden unit i a network
trained on roads with different widths.
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It took many months of algorithm development and parameter tuning by the vision and
autonomous navigation groups at CMU to reach a sunar level of performance using
traditonal image processing and pattern recognition techniques.

More speculatively, the flexibility of neural network representations provides the pos-
sibility of a very different type of autonomous navigation system in which the salient
sensory features are determined for specific driving conditions. By interactively trainig
the network on real road images taken as a human drives the NAVLAB, we hope to
develop a system that adapts its processing to accommodate current circumstances. This
is in contrast with other autonomous navigation systems at CMU [Tnorpe et al., 1987)
and elsewhere [Dunlay & Seida. 1988] [Dicknanns & Zapp, 1986] [Kuan et aL, 1988].
Each of these implementations has relied on a fixed. highly structured and therefore rela-
tively inflexible algorithm for finding and following the road, regardless of the conditions
at hand.

There are difficulties involved with training "on-the-fly" with real images. If the network
is not presented with sufficient variability in its training exemplars to cover the conditions
it is likely to encounter when it takes over driving from the human operator, it will not
develop a sufficiently robust representation and will perform poorly. In addition, the
network must not solely be shown examples of accurate driving, but also how to recover
(i.e. return to the road center) once a mistake has been made. P&-Wa1 initial tinning on

a variety of simulated road images should help eliminate these difficulties and facilitate
better performance.

Another important advantage gained through the use of neural networks for autonomous
navigation is the ease with which they assimila data from independent sensors. The
current ALVINN implementation processes data from two sources, the video camera and
the laser range finder. During training, the network discovers how infonnaon from
each source relates to the task. ad weights ch accordingly. As an example. range
data is in some sense les important for the task of road following than is the video
data. The range data contains information concerning the position of obstacles in the
scene, bit nothing explicit about the location of the road. As a result, the range data
is given less significance in the repmsentation, as is illustrated by the relatively small
magnitude weights from the range finder retma in the weight diagrams. FiguR 5, 6 and

8 diumte that the range finder connections do correlate with the connections from the
vdecamera, and do con ibute to choosing the correct travel direction. Specifically, in
thm three figures, obstacles located outside the area in which the hidden unit erpects

tie roed to be located increase the hidden unit's activation level while obstacles located
wih1 the expected a boundaries inhibit the hidden unit However the contributions
fum as ringe finger conections aren't necessary for reasonable performance. When
ALVINN wu eoted with normal video input but an obstacle-fre range finder image as
coam iput, them was no noticeable degradation in driving performance. Obviously
under off-road driving conditiom obstacle avoidance would become much mote important
and henoe one would expect the ange finder tetina to play a much moe significant role
in the network's representation. We an currently working on an off-mad version of
ALVINN to test this hypothesis.
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Other current directions for this project include conducting more extensive tests of the
network's performance under a variety of weather and lighting conditions. These will
be crucial for making legitimate performance comparisons between ALVENN and other
autonomous navigation techniques. We are also working to increase driving speed by
implementing the network simulation on the on-board Warp computer.

Additional extensions involve exploring different network architectures for the mad fol-
lowing task. These include 1) giving the network additional feedback information by us-
ing Elman's [Elman. 1988] technique of recirculating hidden activation levels. 2) adding
a second hidden layer to facilitate better internal representations, and 3) adding local
connectivity to give the network a priori knowledge of the two dimensional nature of the
input.

In the area of planning, interesting extensions include stopping for, or planning a path
around, obstacles. One area of planning that clearly needs work is dealing sensibly with
road forks and intersections. Currently upon reaching a fork, the network may output two
widely discrepant travel directions, one for each choice. The result is often an oscillation
in the dictated travel direction and hence inaccurate road following. Beyond dealing with
individual intersections, we would eventually like to integrate a map into the system to
enable global point-to-point path planning.

CONCLUSION
More extensive testing must be performed before definitive conclusions can be drawn con-
cerning the performance of ALVINN versus other road followers. We are optimistic con-
cernng the eventual contributions neural networks will make to the area of autonomous
navigation. But perhaps just as interesting are the possibilities of contributions in the
other direction. We hope that exploring autonomous navigation, and in particular some of
the extensions outlined in this paper, will have a significant impact on the field of neural
networks. We certainly believe it is important to begin researching and evaluating neural
networks in real world situations, and we think autonomous navigation is an interesting
application for such an approach.
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