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ABSTRACT

In principal, the version space approach can be applied to any induction problem.
However, in some cases the representation language for generalizations is so nowerful that
(1) some of the update functions iol Lie version space are not effectively computable, and
(2) the version space contains infinitely many generalizations. The class of context-free
grammars is a simple representation that exhibits these problems. This paper presents an
algorithm that solves these problems for context-free grammars. Given a seequence of
strings, the algorithm incrementally constructs a data structure that has almost all the
beneficial properties of a version space. The algorithm is fast enough is fast enough to
solve small induction problems completely, and it serves as a framework for biases that
permit solving larger problems heuristically. The techniques used to develop the
algorithm may be applied in constructing version spaces for representations (e.g.,
production systems, Horn clauses, And-Or graphs) that include context-free grammars as

special cases.
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1. Introduction
The nroblem addressed here arose in the course of studying how people learn

arithmetic procedures from examples (VanLehn. 1983a. VanLehn, 1983b). Our data
allows us to infer the procedures the subjects have learned and the examples they
received curing training (approximately). Thus, the inputs and outputs to the learning
process are known, and the problem is to describe the learning process in detail.
However, because the subjects' learning occurs intermittently over several years. Ne
are not immediately interested in developing a detailed cognitive simulation of their
learning processes. Even if such a simulation could be constructed, it might be so
complicated that it wouldn't shed much light on the basic principles of learning in this
task domain. Therefore, our initial objective is to find principles that act as a partial
specification of the learning process. The principles we seek take the form of a
representation language for procedures and some inductive biases that povtdict the
procedures learned by our subjects. More precisely. our problem is:

" Given

1 a training sequence, consisting of examples of a procedure being
executed, and

2. a set of observed procedures, represented in some informal language
(i.e.. English),

" find

1, a representation language for procedures, and

2. a set of inductive biases, expressed as predicates on expressions in
the representation language.

* such that the set of all procedures that are consistent with the examples
and preferred by the biases

1 includes the observed procedures, and

2 excludes implausible procedures (e g.. ones that never halt)

This method for Studying the structure of mental representations and processes has
much to recomend it (VanLehn. Brown & Greeno. 1984, Fodor. 1975), but here we
wish to discuss only the technical issues involved in implementing it. The central
technical problem is calculating the sets mentioned above The calculation must be
done repeatedly, once for each combination of representation language, biases ard
training sequence Although the calculations could be done by hand, it is orobablv
easier to program a computer to perform them. Rather than build one program that
could handle all combinations, or one program for each combination, we chose a
hybrid approach.

The approach is to build a different program for each reoreseritation language.
The programs are induction programs, in that they take a sequence of training
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examples and calculate expressions in the representation language that are
generalizations of those examples. The inducers are unbiased, in that they produce all
expressions in the language consistent with their inputs, An unbiased inducer provides
a framework on which we can install explicit biases in an attempt to fit its output to
the data. The advantage of this approach is that tuning an unbiased inducer is much
easier than building a different biased inducer for each set of biases. The main
technical problem of implementing this approach is devising an unbiased inducer for
each of the hypothesized representation languages.

It is very important to understand that these inducers are merely tools for
generating certain sets that we are interested in studying. They are not meant to be
models of the students' learning processes.

This approach works fine for some representation languages. but not for others.
Some procedure representation languages (e.g.. those use by Anderson (1983) and
VanLehn (1983c)) are based on recursive goat hierarchies ihat are isomorphIc to
context-free grammars.' For several reasons. it is impossible to construct an inducer
that produces the set of all context-free grammars consistent with a given training set.
First, such a set would be infinite. Second. the standard technique for representing
such a set. Mitchell's version space technique (Mitchell. 1982). seems inapplicable
because the crucial 'more-specific-than' relationship is undecidable for context-free

grammars. 2 The proofs for these points will be presented later. Although we could
have abandoned exploration of procedure representation languages with recursive goat -

hierarchies, we chose instead to attack the subproblem of finding a suitable induction
algorithm for context-free grammars.

The impossibility of an unbiased inducer means that a biased one must be
employed as 'he framework on which hypothesized biases are installed for testing their
fit to the data. Because we will not be able to test the fit with the built-in bias
removed, the built-in bias must be extremely plausible a priori. Moreover. there must
be an algorithm for calculating the set of grammars consisent with it. and that set
must be finite.

We found such a bias, and called it "reducedness.' A grammar is reducec if
removing any of its rules makes it inconsistent with the training examples. Later. the
plausibility of reducedness will be argued for. and more imoortantly. it will be prcved
that there are only finitely many reduced grammars consistent with any given training
sequence. This proof is one of the main results presented in this paper

The proof contains an enumerative algorithm for generating the set of reduced
grammars consistent with a training sequence, but the algorithm is far to slow to be
used. In order to experiment with biases, we need an algorithm that can take a
training sequence of perhaps a dozen examples, and produce a set of reduced
grammars in a day or less time.

A context.free grammar S a set of rewrite riles. simifar lo a simole croduction svstem ' e 'ext
section gives orectse cefinitions of the relevant terms from formal language theorv

2"he ,e'slOr scace 'ect- aue s eola'neci !n the ,exl section



The obvious candidate for a faster algorithm is Mitchell's version space strategy
(Mitchell. 1982). Applying the strategy seems to involve conquering the undecidability of
the 'more-specific-than' relationship for grammars. However. we discovered that it was
possible to substitute a decidable relationship for 'more-specific-one and thereby
achieve an algorithm that had almost all the beneficial properties of the version soace
technique. In particular, it calculates a finite, partially ordered set of grammars that
can be represented compactly by the maximal and minimal grammars in the order
The set. unfortunately, is not exactly the set of reduced grammars. but it does
properly contain the set of reduced grammars. We call it the denvatonal version
space.

The derivational version space satisfies our original criterion: it is a set of
consistent grammars which is arguably a superset of the set of grammars qua
procedures that people learn Moreover the algorithm for calculating it is fast enough
that small training sequences can be processed in a few hours, and the structure of
the algorithm provides several places for installing interesting biases. The derivational
version space is the secnnd result to be presented in the paper

The main interest for machine learning researchers lies in the generality of the
techniques we used. The reducedness bias can be applied directly to many
representation languages. For instance, an expression in disjunctive normal form (i.e..
a disjunction of conjunctions) iS reduced if deleting any of its disjuncts makes the
expression inconsistent with the training examples. The finiteness result for reduced
grammars suggests that sets of reduced expressions in other representations are also
finite and effectively computable. 3 Moreover. the technique of substituting an easily
computed relation for the more-specific-than relation suggests that such sets of
reduced expressions can be efficiently computed using the derivational version space
strategy,

Indeed, the fact that substituting another relation for more-specific-than leads to
a useful extension of the version space strategy suggests looking for other relationsmics
that provide the benefits of version spaces without the costs. This idea is independent
of the idea of reducedness. Both ideas may be useful outside the context of
grammar induction.

There are four main sections to this paner The first introduces the relevant
terminology on grammars. grammar induction and version soaces. The second
discusses reducedness and the finiteness of the set of grammars consistent with the
examples. The third discusses the derivational version space. The fourth presents the
induction algorithm for this structure. and demonstrates the results of incorooratirg
certain biases into it. The concluding section speculates on the larger significance of
this work.

3 't ,rgrt argued that althcugm 'he ,as -an te acoired o other ,ecrese"atCn aguages. :e -C'
-f ,,ant to 1cweve( 'educedness S aireadv ceved :v ai zonstructie nduC!,Cn orcgar s 'hat ,,e a,e
'anmiar ,vth. nCtudlng. e g.. nducerS cv Ouinian ,1986) Michalsk, .'983 arnd ,e e 5,
Peducedness s not usualiv obeved bv enumeraion.oased ,nduc:On alacr"mr u.s cu h S ' hse 'cur'
,he i,te,aiure or, language 'dentifcation ,m he liri OCshe'son. Stot & iveinStetn. 1985i . Aooare"'1 ,"*

;e constructive 'nducers L,.;-e 'hai t s naturat for an mcluced gereazator to "c'.: , .,
Car's e g.. ruleS. dis~iunCIS) !hat have some sucoorf 1 the Jata Peducedness s a crec,se stater"e-t
ths Iehef
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2. Terminology

2.1. Introduction to grammars and grammar induction
A grammar is a finite set of rewrite rules. A rule is written a -4,. where a and

13 are strings of symbols. Grammars are used to generate strings by repeatedly
rewriting an initial string into longer and longer strings. In this article, the initial string
is always "S" For instance, the following grammar

S 4b
S -* aS

generates the string "aab" via two applications of the second rule and one application
of the first rule:

S 4 aS - aaS -> aab

Such a sequence of rule applications is called a derivation There are two kinds of
symbols in grammars. Terminals are symbols that may appear in the final string of a
derivation, whereas nonterminals are not allowed to appear in final strings. In the
above grammar. a and b are terminals. and S is a nonterminal,

The grammar induction problem is to infer a grammar that will generate a given
set of strings.4 The set of strings given to the learner is called the presentation It
always contains strings that the induced grammar should generate (called positive
stringsl and it may or may not contain strings that the induced grammar should not
generate (called negative strings). For instance, given the oresentation

a. + ab. - aab. - ba

the grammar given earlier (call it grammar 1) could be induced because it generates
the two oositive strings. "ab" and "aaD". and it cannot generate the two negative
strings, "a' and "ba" A grammar is said to Ce consistent Nith a presentation f i
generates all the positive strings and none of the negative strings 5

There are usually many grammars consistent with a given orebentation Or
instance, here are two more grammars consistent .vith the presention mer'!ioned abcve

Grammar 2 Grammar 3
S A S -- Sb
A -b Sb - ab
A - aA S aa

'3ar"-3r mcduct--c S sruded *" at 'east three ite,s .- ZiCSccO v. rtOStCS t s a ,,,c al .',eh"

C,:, 'e-, % , ', e i-ewcCins ot eac't see ,escec',velv Csiescl Stol & ,.',e-tster' 19851 0--o-
'979, a,"c Lar'gtev & Caftorlei 1986) in adctom. Comem & Je,genbau, ,'933) give an eye'le-t

Sce auth,,s .se ',ecuclivev adeauate' . ,,,ng. '969) or ":Trsstent at'd :omclete' Mic-aick,
1983i ifr tP'e same :nctot ,a ,ro - - -- sie t' n ormer c trr'

0  
e 'erimnoogv of ?'",s

acoe, nro i'e .,'th 'ie 'ermro gv of Mtic'eil s i982i ,vcrk on iersjon spaces



Grammar 2 is equivalent to grammar 1 in that 1! generates exactly the same set of
strings: ,b. ab. aab. aaab. aaaab. The set of all strings generated by a
grammar is called the language generated by the grammar The language in this
case is an infinite set of strings. However languages can be finite The language
generated by Grammar 3 is the finite set ;ab. aa. aao:

Grammar induction is considerably simpler if restrictions are placed on the class
of grammars to be induced. Classes of grammars are often defined by specifying a
format for the grammars that are members of the class. For instance. grammars I
and 2 obey the format restriction that the rules have exactly one nonterminal as the
left side Grammars having this format are called contexr-free grammars Grammar 3
is not a context-free grammar

2 2. Version spaces
One of the most widely studied forms of machine learning is learning from

examples or Induction. as it is more concise!y called The following is a standard

way to define an induction problem 5

" Given:

I A representation language for generalizations:

2. A predicate of two arguments. a generalization and an instance. that
is true if the generalization matches the instance.

3 A set of nstances, where an instance is marked "positive' ;f it

should be matched by the induced generalizations, and 'negative' if
it should not:

4 A set of biases that indicate a preference order for generalizations

" F',nd One or more generaliza t, ns tt!3 pre

1 consistent with the instances, and

2. preferred by the biases.

where 'consistent" means that the generalization matches all the costive
instances and none of the negative ,nstances

This formulation is deliberately vague in order to encompass many specific induc',cn
oroblems For instance, the instances may be ordered. There may be no negati,,e
instances. There may be no biases. or biases that rank generalizations on a
numerical scale. or biases that partially order the set of generalizations. Much work in

machine learning is encompassed by this definition

r,"' Tug nout -e. I, c M' N it '-e 's 1982) :"o,ce ' 'e t- ,r oi gy . .w ih ".-wn exca icns Z sf e e

je,"eazes,, r "sead zt f oe-scec~ f-man,. Sec:rd fI 3ere,aizes v. "e." .- e ."suai,ze ' as

0 ,dJi' -,'?ueII ,s'a82i mat saY ' sat , s ,v



7

Mitchell defines a version space to be the set of all generalizations consistent
with a given set of instances. This is just a set, with no other structure and no

associated algoritlm. However, Mitchell also defines tMte verSion soace strategy to be a
particular induction technique, based on a compact way of representing the version
space Although Popular usage of the term "version space" has drifted. tns paper
will Stick to the original definitions.

The central idea of the version space strategy is that the space of
generalizations defined by the representation language can be partially ordered by
generality One can define the relation Generalizes(x.y) in terms of the matching
predicate

Cefnirion Generalzesix.y) is true if and only if the set of instances
matcned by x is a superset of the set of instances matched by y

Note that the Generalizes relationship is defined in terms of the denotations of
expressions in the reoresentation language and not the expressions themselves This
Nill become imoortant later, when it is shown that the Generalizes relation ,s
undecicaole for context-free grammars

It is simple to show that the Generalizes relation partially orders the space of
generalizations Thus no matter what the specific induction problem may be. one can
always imagine its answer as lying somewhere in a vast tangled hierarchy which rises
from very specific generalizations that cover only a few instances. all the wvay up to
generalization s that cover many instances

Given a presentation the version space for that presentation N0il1 also be partially
ordered Cy he Generalizes relation Given some mild restrictions ii e that there are
no infinite ascending or descending chains in the partial order), the version soace l'as
a subset of maximal elements and a subset of minimal elements The maximal set -s
called G because it contains the set of maximally general generalizations The mir,'al
set is called S because it contains the maximally soecif'c generalizations The cair
[SG can be used to represent the version space Mitchell proved that

Given a presentation. x is in the version soace for that presentation if and
Only if there ,s some g in G such that g Generalizes x anJ there ,s some s
in S such that x Generalizes s.

Three algorithms are usually discussed in connection with the (S GJ representatcn
:f version spaces-

Updare(i.[S.Gl) --> [S',G'I
-he Update function takes the current version space boundaries and an
instance that is marked as either Positive or negative !t returns
boundaries for the new version space if the instance makes tte version
space empty 1 e there is no generalization that is consistent Nith tte
presentation, as .'hen the same instance occurs both cositively and
negatively), then some marker such as Lisp s NIL. is returned The Update
algorithm s the induction algorithm for version soace toundaries its
implementation depends on the representation language



" DoneP([S,Gl) --> true or false
Unlike many induction algorithms, it is possible to tell when further
instances will do no good because the version soace nas changed as
much as it is going to. ConeP is implemented by a test for set equality
S=G

" Classify(i,(SGI) -- > -. or
Classify an instance that is not marked positively or negatively, and the
version space boundaries. it returns " " if the instance would be
matched by all the generalizations in the version space. It returns "-" if :t
would be matched by no generalizations It returns "?" otherwise
Classify is useful for experiment design If instances are marked by some
expensive-to-use teacher (eg.. a gene sequenator. or a proton coliider)
then one wants to check that an instance will cause some change in the
version space before having the teacher decide whether it is a positive or
negative instance Only instances that receive "I" from Classify are worth
submitting to the teacher Classify is implemented as follows: if all s in S
match j. then return -- " else if no g in G match i. then return '-". else
return "I"

Aoolying the version space strategy to a reoresentation language means that one must
devise only an appropriate Update function, because the Classify and QoneP functions
come for free with the strategy. This is sometimes cited as the chief advantage of
the version space approach. In our work on skill acquisition, we make only a little
use of them. Our main reason for preferring the version space strategy over other
induction strategies is that it computes exactly the set we need. the version space
and represents it compactly.

3. Reduced version spaces
The first oroblem encountered in aoolying the version soace strategy to grammar

induction is that the version space will be always be infinite. T ,S does not
necessarily imoly that the version soace boundaries vill be infinite a fih-te S and S
can recresent an infinite version space However for grammars. the boundaries also
turn out to be infinite. To begin, let us consider a well-kncwn theorem atou!
grammar !nduction. which is:

Theorem 1: For any class of grammars that includes grammars for all
the finite languages, there are infinitely many grammars in !he class that are
consistent with any given finite presentation.

That is. the version soace is nfinite for any finite presentation

This theorem has a significance outside the context of version space ,echnolcgy
For instance, it has been used to justify nativist approaches to language acQluJsion
(Pinker 1979) This section is written to address both the concerns of version scace
technology and the larger significance of this theorem.
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3. 1. Normal version spaces are infinite
Three ways. to prove the theorem will be presented. Simply amending the

statement of the theorem to prevent the use of each of the proof techniques yields a
new theorem. which is one of the results of this article.

All three proofs employ mathematical induction. The initial step in all the proofs
is the same. Because the class of grammars contains grammars for all finite
languages. and the positive strings of the presentation constitute a finite language. we
can always construct at least one grammar that is consistent with the presentation.
This grammar initializes the inductions. The inductive steps for each of the three
proofs are. respectively:

1. Let a be any string not in the presentation. Add the rule S a a to the
grammar. The new grammar generates exactly the old grammars
language plus a as well. Since the old language was consistent with the
presentation, and a does not appear in the presentation, the new grammar
is also consistent with the presentation. Because there are infinitely many
strings a that are not in the oresentation, infinitely many different grammars
can be constructed this way. One might object that the rule S _. a
may be in the grammar already However, because a grammar has finitely
many rules. there can be only finitely many such a. and these can be
safely excluded when the a required by the proof is selected.

2. Let A be a nonterminal in the grammar. and let B be a nonterminal not in
the grammar. Add the rule A -* B to the grammar For some or all of
the rules that have A as the left side. add a copy of the rule to the
grammar with B substituted for A. These additions create new grammars
that generate exactly the same strings as the original grammar Because
the original grammar is consistent with the presentation, so are the new
grammars. This process can be repeated indefinitely, gererating an infinite
number of grammars consistent with the presentation.

3. Form a new grammar by substituting new nonterminals for every
nonterminal in the old grammar (except S). Create a union grammar
whose rules are the union of the old grammars rules and the new
grammar s rules. The union grammar generates exactly the same language
as the original grammar. so it is consistent with the oresentaton The
union process can be repeated indefinitely, yielding an infinite set of
grammars consistent with the presentation.

It is hard to imagine why a machine or human would seriously entertain the
grammars constructed above. The grammars of the last two proofs are carticularly
worthless as hypotheses, because they are notational variants of the original grammar
In a moment, we will add restrictions to the class of grammars that will bar such
irrational grammars.

It was mentioned that an infinite version space can. in orinciple, be represented
by finite boundaries. Unfortunately. this does not work for grammars. The second
two proofs above will generate infinitely many grammars that generate exactly the
same language as the initial grammar. If the initial grammar is from S. then S can
be made infinite: similarly. G can be made infinte The G set can also be made
infinite by the first proof above. These comments prove the following theorem
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Theorem 2: If the representation language for generalizations specifies a
class of grammars that includes grammars for all finite languages. then for
any finite presentation, the version space boundaries. S and G. are each
infinite.

3.2. Reducedness makes the version space finite
One way to make the version space finite is to place restrictions on the

grammars to be included in it. As some of these restrictions are most easily stated
as restrictions on the form of grammar rules, we will limit our attention to context-free
grammars. although the same general idea works for some higher order grammars as
well (as shown in the appendix). The first restriction blocks the grammars produced
by the second proof:

Definition: A context-free grammar is simi/e if (1) No rule has an empty
right side. (2) if a rule has just one symbol on its right side. then the
symbol is a terminal, and (3) every nonterminal appears in a derivatior of
some string

The class of simple grammars can generate all the context-free languages. Hopcroft
and Ullman (1979) prove this (theorem 44) by showing how to turn an arbitrary
context-free grammar into a simple context-free grammar. For our purposes, the
elimination of rules of the form A -+ B. where both A and B are nonterminals.
blocks the second proof.

Proofs 1 and 3 can be blocked by requiring that all the rules in an induced
grammar be necessary for the derivation of some positive string in the given
presentation To put this formally:

Definition: Given a presentation P a grammar is reduced if it is consistent
with P and ,f there is no proper subset of its rules that is consistent with P

Removing rules from a grammar will only decrease the size :' the language generated.
not increase it So removing rules from a grammar will not make it generate a
regative string that it did not generate before However, deleting rules may orevent
the grammar from generating a positive string, thus making it inconsistent with the
presentation If any deletion of rules causes inconsistency, the grammar is reduced

In proof 1 adding the rules S -+ creates a new grammar that is reducible
Similarly the union grammar formed by proof 3 is reducible This leads to the
theorem-

Theorem 3: Given a finite presentation, there are finitely many reduced
simple context-free grammars consistent with that presentation

1"1i S  reduceS he exoressve Dower of 'e :ass scme.,at. tecause a grammar , thout suCh eosdi-

"-ues as 'hev are cDmnmoniv alled, cannot generate - ' mctv string
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The proof of this theorem is presented in the appendix. We call the version space of
reduced, simple grammars a reduced version space for grammars.

Any finite partially ordered set has a finite subset of minimal elements and a
finite subset of maximal elements. Define the reduced G and S as the maximal and
minimal sets. respectively, of the reduced version space under the partial order
established by the Generalizes relation. It follows immediately that

Theorem 4: Given a finite presentation. the reduced G and S sets are
each finite.

3.3. The behavior of reduced version spaces
This section describes some of the ways in which a reduced version space

differs from a normal version space.

Normally. a version space can only shrink as instances are presented. As each
instance is presented, generalizations are eliminated from the version space. With a
reduced version space, negative instances cause shrinking, but positive Instances
usually expand the reduced version space. To see why. suppose that at least one of
the grammars in the current version space cannot generate the given positive string.
There are usually several ways to augument the grammar in order to generate the
string. For instance, one could add the rule S 4 a. where a is the string. Or one
could add the rules S -+ A,3 and A - y,. where a = Y,3. Each way of augmenting
the current grammar in order to generate the new string contributes one grammar to
the new version space. So positive strings cause the reduced version space to
expand.

Because presenting a positive string caused the reduced version space to
expand, the equality of S and G no longer implies that- induction is done. That is.
the standard implementation of DoneP doesn t work. We conlecture that Gold's (1967)
theorems would allow one to show that there is no way to tell when induction of a
reduced version space is done.

The S set for the reduced version space turns out to be rather boring. It

contains only grammars that generate the positive strings in the presentation We call
such grammars "trivially specific" because they do nothing more than record the
positive presentation. The version space Update algorithm described below do rot
bother to maintain the S set, although it could. Instead. it maintains P -, the set of
positive strings seen so far In order to illustrate the efficiency gained by this
substitution. consider the Classify function whose normal definition is: where i is an
instance to be classified. if all s in S match i. then return - - ' else if no g in G
matches i. then return "-" else return "I" With P-, the first clause of the definition
becomes if i is in P- then return '- " Because S contains only the trivially
scecific grammars, these two tests are equivalent Clearly. it is more efficient to use
P -, instead of S. Similar efficiencies are gained in the implementation of the Update
algorithm Nowlan (1987) presents an alternative solution to this problem with some
interesting properties.
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3.4. Why choose reducedness for an inductive bias?
The basic idea of reducedness applies to other representation languages. For

instance, suppose the representation is a first order logic whose expressions are In
disjunctive normal form (i.e., a generalization is one large disjunction, with conjunctions
inside it). The rules in a grammar are like disjuncts in a disjunction. Therefore. a
disjunctive normal form expression is reduced if removing a disjunct from it makes it
inconsistent with the presentation. We conjecture that the reduced version space for
disjunctive normal forms will turn out to be finite. There may be a general theorem
about reducedness and finiteness that would apply, at the knowledge level perhaps
(Newell. 1982. Dietterich. 1986). to many representation languages.

From the machine learning literature, it seems that reducedness is a "common
sense" restriction to place on induction. All heuristic concept induction programs with
which we are familiar (e.g.. Michalski, 1983: Vere. 1975: Quinlan, 1986) consider only
reduced concepts. Reducedness seems to be such a rational restriction that machine
learning researchers adopt it implicitly.

There are other ways to restrict grammars so that there are only finitely many
grammars consistent with a finite presentation. For instance, there are only finitely
many simple. trivially specific grammars consistent with a finite presentation. However.
the restriction to reduced. simple grammars seems just strong enough to block the
procedures that produce an infinitude of grammars without being so strong that
interesting grammars are blocked as well. This makes it an ideal restriction to place
on version spaces for grammars. The chief advantage of version spaces is that they
contain all the generalizations consistent with the presentation. In order to retain the
basic spirit of version spaces while making their algorithms effective, one should add
the weakest restrictions possible. For grammars, the conjunction of reducedness with
simplicity seems to be such a restriction

4. Applying the version space strategy to reduced version spaces
The proof of theorem 3 puts bounds on the size of reduced grammars and their

rules In principle, the reduced version space could be generated by enumerating all
grammars within these bounds. However. such an algorithm would be too slow to be
useful. This section discusses a technique that yields a much faster induction
algorithm.

The version space strategy is the obvious choice for calculating a reduced
version space. but it cannot. we believe, be applied directly. The problem is that the
version space strategy is based on the Generalizes relationshio. which is defined by a
superset relationship between the denotations of two generalizations. If the
generalizations are grammars. then the denotations are exactly the languages
generated by the grammars. Implementing Generalizes(x.y) is equivalent to testing
whether the language generated by x includes the language generated by y This test
is undecidable for context-free grammars or grammars of higher orders (Hoocroft. &
UlIman. 1979, theorem 8.12). This means that there is no algorithm for implementing
Generalizes(xy) over the context-free grammars.

This result does not prove that the version space strategy is inapplicable
because only the Update algorithm is required in order to construct a version space
and there is no proof (yet) that a computable Generalizes is necessary for a
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computable Update. On the other hand. we have never seen a version space Update
algorithm that did not call Generalizes as a subroutine, and we have no idea how to
build a Generalizes-free Update algorithm for grammars. So the undecidabillty of the
Generalizes predicate is a practical impediment, at least.

The Generalizes predicate may be decidable if its arguments are restricted to be
reduced grammars for the same presentation. If so. then it may be possible to use
Generalize In an Update algorithm that only works for the reduced version soace. and
not the normal version space. This is not an approach that we explored. Instead. we
sought a way to apply the spirit of the version space strategy while avoiding the
troublesome Generalizes predicate entirely.

The "trick" to the version space strategy is using the boundaries of a partial
order to represent a very large. partially ordered set. In principle, this trick can be
based on any partial order. and not necessarily on the partial order established by
Generalizes. This idea led us to seek a partial order that was "like" Generalizes. and
yet computable. Moreover. the partial order had to be such that there was an Update
algorithm for the sets of maximal and minimal elements in the order.

It was not difficult to find a computable partial order on grammars, but we never
found an Update algorithm that could maintain sets that were the boundaries of exactly
the reduced version space. Instead, we did find one for a superset of the reduced
version space. In particular. we found:

* A set, called the derivational version space. that is a superset of the
reduced version space and a subset of the version space.

" A computable predicate. called FastCovers, that is a partial order over
grammars in the derivational version space.

" An Ucdate algorithm for the maximal and minimal elements in FastCovers
of the derivational version space.

This section presents the derivational version space and the FastCovers relation The
next section presents the Update algorithm

4. 1 The derivational version space
In order to define the derivational version space, it is helpful to define some

ancillary terms first.

A denvation tree is a way to indicate the derivation of a string by a grammar
iDerivation trees are also called carse trees) The derivation tree s leaves are the
terminals in the string. The non-leaf nodes of the tree are labelled by nonterminals.
The root node is always labelled by the root nonterminal. S An algorithm can "read
off" the rules used by examining mother-daughter subtrees. If the label of the mother
is A and the labels of the daughters are B. C and 0. then the rule A - 8 C 0
has been applied. This reading off process can be used to convert derivation trees
into a grammar.
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For simple grammars. derivation trees are constrained to have certain possible
shapes. Simple grammars have no rules of the form A -+ B. where both A and B
are nonterminals. Therefore, the only nodes in the derivation trees that have singleton
daughters are ones whose daughters are terminals, because the only rules that can
have singleton right sides are those whose right side consists of a terminal. Let us
call trees with this shape simple trees. The definition of simple grammars makes it
impossible for a simple tree to have long. unbranching chains. Consequently. there
are only finitely many unlabelled simple trees for any given string.

If a string has more than one element, then there is more than one unlabelled
simple tree. Given a finite sequence of strings, one can calculate all possible
sequences of unlabelled simple trees by taking the Cartesian product over the sets of
unlabelled simple trees for each string. Let us call this set of simple tree sequences
the simple tree product of the strings. Because there are only finitely many unlabelled
simple trees for each string, the simple tree product will be finite.

The definition of the derivational version space can now be stated:

Definition: Given a set of positive strings, the derivational version space is
the set of grammars corresponding to all possible labellings of each tree
sequence in the simple tree product for those strings. Given a set of
positive and negative strings, the derivational version space is the derivational
version space for the positive strings minus grammars that generate any of
the negative strings.

An example may clarify this definition. Suppose the positive strings are "b" and "ab."
The construction of the derivational version space begins by considering the simple
tree product for the strings. There is one unlabelled tree for "b." There are four
unlabelled trees for "ab." So there are four tree sequences in the Cartesian product
of the trees for "a" and the trees for "ab" These four tree sequence constitute the
simple tree oroduct. which is shown in figure 4-1. For each of the four tree
sequences. the construction process partitions the nodes in the trees and assigns
labels. Figure 4-2 illustrates how the fourth unlabelled tree sequence is treated. At
the top of the figure. the unlabelled tree sequence is shown with its nodes numbered.
Trees 4 1 through 4.5 show all possible partitions of the four nodes. and the labellings
of the trees that result. Because the root nodes of the trees must always received
the same node label. S. they are given the same number, which forces them to be in
the same partition element, and hence receive the same labelling, Each of the
resulting labelled tree sequences is converted to a grammar These grammars are
shown in the third column of the figure. The derivational version space is the union
of these grammars. which derive from the fourth tree sequence, with the grammars
from the other tree sequences.

The motivation for the derivational version space is the following: If a grammar
is going to parse all the positive strings, then there must be a sequence of simple
derivation trees. one for each string. Such a sequence must be some possible
labelling of some possible sequence of unlabelled simple trees. The derivational
version space is constructed from all such sequences, i.e.. from the simple tree
product. Consequently, it must somehow represent all possible grammars. except
those grammars which have rules that were not used during the parsing of those
strings. Those grammars are. by definition, the reducible grammars. So the
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Figure 4-1: The simple tree product for the presentation "b" "ab",

derivational version space contains all the reduced grammars. These observations lead
to the following theorem. which is proved in the appendix:

Theorem 5: Given a presentation, the derivational version space for it
contains the reduced version space for it.

Usually, the reduced version space is a proper subset of the derivational version
space. That is. the derivational version space often contains reducible grammars In
the illustration discussed earlier, where the positive strings (P -) are "b" and "ab." no
reducible grammars are generated. However. if P.4- is :"b". "ab". "ab" or if P- is
:"b". "ab". "abb":, then many reducible grammars are generated. In general, if a
subset of P- is sufficient to produce grammars that will generate all of it. then the
derivational version space will contain reducible grammars.

The following theorem shows that the "version space" component of the name
'derivational version space" is warranted:

Theorem 6: Given a presentation. the derivational version space for it is
contained in the version space for it.

The proof follows from the observation that the grammars in the derivational version
soiace were constructed so that each positive string has a derivation, and grammars
that generate negative strings are filtered out Consequently. the grammars are
consistent with the presentation.

Lastly. we note that

Theorem 7: The derivational version space for a finite presentation is
finite.

The proof follows from the earlier observation that the simple tree product is finite.
Because each tree sequence in the product has only finitely many nodes and there
are only finitely many ways to partition a finite set into equivalence classes, there are
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Unlabelled Trees: 1 2

b 3 4

a b

Partition Labelled Tree Grammar

4.1 (1,2,3,4) S S S b b
S-a

b S S S-SSI I
a b

4.2 (1,2,3) S S S b
(4) 1S - a

b S A S SA

I I A - a

a b

4.3 (1,2,41 S S S b b
(3 [ S -AS

b A S A 4 a
I

a b

4.4 (1,2) S S S b
(3,4) S .-.+ AA

b A A A a
i i A ba
a b

. ,2} S S
(3) I / S4 b
(4) b A B S -+ AB

A a
a b B- b

Figure 4-2: Partitions. labelled trees and grammars of tree sequence 4
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only finitely many ways to label each of the finitely many simple tree sequences.
Hence. the derivational version space for P* is finite. The derivational version soace
for the whole presentation is a subset of the one for P +. so it too is finite.

The derivational version space is a finite set that contains all the reduced simple
grammars. and moreover, all its members are consistent with the presentation. This set
suffices for the purposes we outlined in the introduction. It contains all the
"plausible" grammars. and it is finite. We show next that there is a partial order for
it that allows a boundary updating algorithm to exist.

4.2. The FastCovers predicate
The definition of the partial order is simplified if grammars in the derivational

version space are represented in a special way. as a triple. The first element of the
triple is a sequence of unlabelled simple derivation trees. with the nodes numbered as
in figure 4.1. The second element of the triple is a partition of the trees nodes
The third element is the grammars rules. For instance. grammar 4.4 of figure 4-2 is
represented by the following triple:

Tree sequence:
(1 b), (1 (2 a)(3 b))

Partition:

(1), (2 3)

Rules:
S- b
S AA
A -a
A -b

The triple representation allows the FastCovers relation to be defined as follows:

Definition: Given two grammars. X and Y in triple form grammar X
FastCovers grammar Y if (1) both grammars are labellings of the same tree
sequence (i e.. the first elements of their triples are the same). and (2) the

partition i e., second element of the triple) of Y is a refinementa of the
partition of X.

For instance, a grammar whose partition is (,1,.:2:.,3:) is FastCovered by !he
grammar above: a grammar whose partition is (,1 2.,:3,) is not FastCovered by the
grammar above, nor does it FastCover the grammar above

FastCovers is named after Covers. a partial order used in early work on
grammar induction (Reynolds. 1968. Horning, 1969. Pao. 1969) Although we will not
pause to define Covers. it can be shown that FastCoversixy) implies Covers(x.y). but

Soartitio, PV -s a einememt of another oarition OY 4 and only t every oartion element of OYV s
suoset Tf some oartution element of Ox.
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Covers(x.y) does not imply FastCovers(xy). FastCovers is used instead of Covers for
ordering the derivational version space because it is faster to compute than Covers
and it makes the Update algorithm simpler

It is simple to show that the FastCovers relationship is transitive and reflexive.
because the refinement relationship is. Moreover. because every grammar in the
derivational version space has a triple form, FastCovers applies to every pair of
grammars in a derivational version space. Thus, FastCovers partially orders the
derivational version space.

A second property of FastCovers. which is needed in showing that the Update
algorithm is correct. is:

Theorem 8: For any two grammars. X and Y. in triple form.
FastCoversiX.Y implies Generalizes(X.Y).

The proof follows from observing that the refinement relationship between !te
nonterminals (= partition elements) of X and the nonterminals of Y establishes a
mapping that takes Y's nonterminals onto X's nonterminals. Every derivation in
grammar Y can be turneo into a derivation in grammar X by mapping Y's nonterminals
onto X's nonterminals. Thus, every string that has a derivation in Y must have a
derivation in X as well. So the language generated by Y is a subset of the language
generated by X. i e.. Generalizes(X.Y)r

Given a derivational version space. there is always a finite set of maximal
elements in FastCovers and a finite set of minimal elements. The finiteness of the
boundaries follows from the finiteness of the space itself. We will call the maximal
and minimal sets the derivational G and S. respec:ively. -rom the preceding theorem.
it follows immediately that

Theorem 9: The derivational G IS) includes the subset of the
derivational version space that is maximal minimal) with respect to the
Generalizes relationship.

Given a derivational (S.G, the FastCovers relationship can be used to determine
whether a given grammar is in the derivational version space represented by the oair

Theorem 10: Given a grammar x in triple form and a derivational [G,S].
x is in the derivational version space represented by [G.S] if and only if there
is some g in G such that g FastCovers x. and some s in S such that x
FastCovers s.

The proof of the theorem is in the appendix

5. An Update algorithm for the derivational version space
rhe preceding section discussed the definitions of the structure that we wish to

generate. This section presents the algorithm that generateti the structure, then
reports the results of several experiments with it It begins by presenting an informal
account of what happens as positive and negative strings are presented.
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The derivational version space under FastCovers is a set of partition lattices.9

one lattice for each tree sequence in the simple tree product. One can visualize the
space as a loaf of sliced bread, one slice for each tree sequence All the FastCovers
relationships run inside slices: none cross from one slice to another. Each slice is a
partition lattice. It has one maximal partiion on top and one minimal partition on the
bottom. The top partition has just one element. and the element has all the nodes in
the tree sequence for that slice. The top partition for tree sequence of figure 4-2 is
(,1. 2. 3!). The bottom partition in each lattice has a singleton partition element per
node in the tree sequence. The bottom partition for the tree sequence of figure 4.2
is (;1:,:2:,1:3). All the slicesilattices have unique top and bottom partitions.

If there are no negative instances in the presentation, then G consists of the top
partition in each lattice. As negative instances are Pr,-ented. the maximal set for
each lattice may descend. Thus, the G set expands and the derivation version space
shrinks as negative strings are presented. The S set always consists of the bottom
partition in each lattice. Presentation of negative instances does not effect the S set.

When a new positive instance is presented. the derivational version space grows
horizontally, so to speak (i.e.. the loaf gets more slices, and the slices get larger.). If
the newly added positive string has more than one member. there will be more than
one unlabelled simple derivation tree for it. Hence, the simple tree product will
increase in size. and the set of partition lattices will increase as well. (i e.. the loaf
gets more slices) Moreover. each of the new tree sequences is longer than the
corresponding old one. because some unlabelled derivation tree for the new string has
been added to it. The new. longer tree sequence will have more nodes (again.
assuming that the string has more than one member). With more nodes available for
partitioning, the partition lattices will expand. Thus, the loaf's slices get larger In
short. presenting a positive string increases the number of partition lattices and the
sizes of the partition lattices.

Presenting a new positive string affects the derivational S and G sets in the
following ways. The increase in the number of partitions implies that the derivational S
grows because its members are always the bottom partitions of the partition lattices.
The affect on the derivational G is more subtle. If there are no negative instances
then G grows because its members are the top elements of the partition lattices if
there are negative instances, then G may grow as positive instances are presented.
but we have no proof that it must grow. Although the number of maximal sets grows
the size of the sets may decrease. leaving the overall G set the same size. or
perhaps even decreasing it.

5 1 The Update algorithm
As mentioned earlier. our algorithm does not bother to maintain the S set

although it could easily do so. Instead, it maintains P- the set of positive strings
seen so far. This makes the algorithm more efficient.

9A !attice is a nartial order .viih the addutional orcoertv that e/efv car of *ies -n 'he lattice 1-3s a

singleton rmaxn'ai set and a sjngieton minimal set A cartition 'atice -cnssts -i 'he set _)f 311 oarit, -ls
,t some 'r'te set cf co3ecs. rC'erec v he -ef'-r"ernt 'elatensh,o
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The Update algorithm is incremental. It takes an instance and the current
[P .r GJ pair. and returns a revision of the pair that is consistent with the given
instance. If there is no such revision, then Mhe algorithm returns some error value.
such as NIL. The following describes the top level of the algorithm

1. If the string is positive and a member of P-',- then do nothing and return
the current version space. If the string is not a member of P - then add
it to P- and call Update-G+

2. If the string is negative and a member of P.-. then return NIL. If the
string is not a member of P- then call Update-G-

The subroutine Update-G- is simpler than Update-G -. so it will be described first

The task of Update-G- is to modify G so that none of the grammars will parse
the negative string. The easiest way to do this is with a queue. which is initialized to
contain all the grammars in G The basic cycle is to pick a grammar off the oueue
and see if it parses the negative string. If it does not. then it can be placed in -New-
G. the revised version of G If it does parse the string, then the algorithm refines the
node partition once. in all possible Nays That is. it takes a partition such as 1: 1 2
3:.:4 5,z). and breaks one of the partition elements in two. In this case. there are
four possible one-step refinements:

1 :1:.:2 3:.:4 5:

2. :', 2:. ;3: :4 5:

3 :1 3: :2: :4 5:

4 :1 2 3: :4: :5:

Each of these corresoOnds to a new grammar These grammars have the procoertv
that they are FastCovered by the original grammar and there is no grammar that
FastCovers them and not the original grammar That is. they are lust below 'Ile
original grammar in the partial order of FastCovers This process is called solttirg'

in the grammar induction literature (Horning. 1969) 0

All the grammars produced by splitting are placed on the queue Eventually ,'e
new grammars will be taken off the queue. as described above, and tested to see -f
they parse the negitive string. Those that fail to oarse the negative string are oaced
in New-G. Such grammars are maximal in the FastCovers order in that there s ro

grammar above them that fails to parse the negative string The basic cycle of
testing grammars. splitting and queuing new grammars continues until the queue s

scr" i ov~ tir'g -awes : 'e c term'nali e a car?"'o ele-'ea" 3n o'. s Ail 's
*w So-e -)f -e Tc:,rre- es a3re 'ecaced ov a ew ontermirai , hus. -e :yd e~a

'NO "- *, le  'ecrese-tation oresente eari,er allows a ,e'v simole -mcerre-?aion SOhit!O 2'
a~cies only o gram- ars hat an be eCreserted as 'riDies. and t gene,aies niv a suDse, :t
grammfrarS "Mai "Crfrr8i -s""g .vculd oroduce
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exhausted. At this point. New-G contains the maximal set of the grammars that fail to
parse the negative string.

There is one technical detail to mention It is possible for the same grammar to

be generated via several paths. Before queuing a new grammar. the queue and New-

G are checked to make sure the new grammar is not FastCovered' by some existing
grammar

New-G should contain only grammars that are (1) simple. (2) consistent with the
positive oresentation. (3) consistent with the negative presentation, and (4) maximal in
the FastCovers partial order. The following comments prove that the Update-G-
algorithm satisfies those criteria

I The grammars are simple because the unlabelled derivation trees from
which they are constructed are simple

2. -he grammars are consistent Nith the oositive presentaticn. because they
are a labelling of a set of derivation trees for those strings Therefore,
they are guaranteed to oarse those strings

3 The grammars are consistent wNith the the negative string just received.

because the test puts the grammars in New-G only if they fail to parse
that string The grammars are consistent with the negative strings received
prior to this one. because the grammars from the old G were consistent.

and splitting moves down the FastCovers order so splitting reduces the
language generated by a grammar and never expands it

4 The grammars are maximal n !he FastCovers order because solitting
moves down the order one steo at a time. and the movement ,s sto"ed

as soon as !he grammar becomes consistent with the presentation '2

This compietes the discussion of Uodate-G- We now turn to Joda;-G- the furvcion

that revises the 3 set when some of the grammars n it do not parse a 'e%v
received Positive string

T1e easiest .vay to explain Update-Gi- s o first clescrte an atgcrthrm ,at s

not incremental it takes the whole oresentation at once and builds the aporcorate .3

set The non-incremental algorithm oroceeas n the foflowing stecs

I Form the simple tree croduct cv taking the Car!estan croauct of tr'e

unlabelled simple derivation trees 'or each cositive string

-,e 'T. -'ake he a'ac-"" n ~-~. ~'s e Se -1~ :'his 3rd -, C:.
-';e,!-g gi,-"nars ''at -re !., :oe v grar ,-ars -. rr 3 t,¢t -nace,le," Itee seauences .- 0, 3,- e

sea- cat's 'hat "av ead '? .ad 14e., '3 - e' 's S 'he -'al "-as"' ' . - g .'-3' h
is tC .es "athe' 'han s? e's

'2 1 ,'ce~e " .. uic " 'e , .S '0e ac, ",at he cer,-.'aticna, -ers-c, -cace 's a set :1 'atices
3- J 3t!, eS are oa a, r, afv .e,. ,,' _e
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2. For each such tree sequence in the simple tree product, form a triple to
represent the grammar that has only one nonterminal. S. The partitions for
these grammars all have just one partition element, and the element
contains all the nodes in the derivation tree sequence. These grammars are
the maximal grammars in the FastCovers partial order They would be the
G set if the presentation had only the positive strings.

3. For each string in the set of negative strings. apply Update-G-

This algorithm is not incremental, since it must process all the positive strings before 't
processes any of the negative strings. An incremental Update algorithm must be aOle
to handle strings in the order they are received. The incremental algorithm should
take a G set whose grammars may have already been split somewhat by Update-G-
and modify it to accomodate a new positive string.

In the non-incremental algorithm, the effect of adding a new string is to ,ncrease
the length of the seouences of unlabelled derivation trees. and hence to increase the
number of nodes in the partitions. In the incremental algorithm, this must be done n
all oossible ways. so the resulting Update algorithm is.

1 Given a oositive string, form the set of all unlabelled simple derivation trees
for that string.

2. For each grammar in the old G and for each tree for the new positive
string.

a. append the tree onto the end of the tree sequence of the grammar s
triple, and

t allocate the new tree s nodes to !he oartiticn elements in all cossicie
Nays Thus. if there are N partition elements in the cartiton -er ,

there are N choices for where to out the first tree node. N choices
for Nhere to out the second tree node etc if 'he tree has M
-'odes. then NIIA new partitions Nill oe generated Eacn one becomes
a grammar that is a candidate for New-G

3. Place all the candidate grammars generated in the creceding steo -n '-e
oueue for the Uodate-G- algorithm However instead of testing that a
grammar is consistent with just one negative string. 3s the 'odate-G-
algorithm does. test that the grammar is consistent .. ith all the "egat'. e
strings in the presentation that have been received so far

-he first two steps generalize the old grammars by adding rules lo *'e'' "e
new grammars mignt be too general. in that they may carse scme of !re "-e-a".e
strings given earlier in the presentation 6ence. the last step r-ust check 3o I"e
negative strings This requires saving all the negative strings as they are cresented
Thus. the version space needs to be a triple [P - P- GI

This means that one of the usual benefits of the version scace technique s c'S
USually version space induction allows the learner to forget about an instarce after
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having processed it. This algorithm requires the learner to remember the instances in
the presentation. However, it is still an incremental algorithm After each string is
presented, an up-to-date G set Is produced. Moreover. it is produced with less
processing and memory than would be required to generate 'at same G set
completely from scratch using the entire presentation. In short. the algorithm is an
incremental version space update with respect to computation. but not with respect to
instance memory.

5.2. Illustrations of the algorithm's operation
In order to illustrate the operation of the algorithm, this section presents a

simple example. The next section will continue this example by Showing how the
algorithm performs when it is modified to incorporate certain biases.

The illustration is based on learning a command language for a file system
The algorithm receives strings of command words. marked positive or negative, and
from these data. it must infer a grammar for the command language. Suppose the
first string is positive: "delete all-of-them." There are four possible unlaoelled simple
trees for this string, and they lead directly to four grammirs for the G set These
grammars are listed below in their triple representation.

1. (1 delete all-of-them)
(1}

(S -* delete all-of-them)

2. (1 delete (2 all-of-them))
(1 2)
(S -* delete S) (S - all-of-them)

3. (1 (2 delete)(3 all-of-them))
(1 2)
(S -+ S all-of-them)(S -* delete)

4. (1 (2 delete)(3 all-of-them))
(1 2 3)
(S -+ S S)(S -* delete)(S -+ all-of-them)

The first three grammars generate the finite language consisting only of the
single string "delete all-of-them " The fourth grammar generates all possible strTngs
over the two word vocabulary of "delete" and "all-of-them ' Suppose the next string
is a negative string. "all-of-them delete " This string cannot be parsed by gramrnars
1 2 or 3. so they remain unchanged in the G set. The fourth grammar is overly
general. so it is split, There are only three legal partitions. Two of them Sur,,ve
becoming grammars 5 and 6 shown below The other partition. :1: :2 3: yields a
grammar that parses the negative string, so it is split further into :1: :2: :3: This
partition is FastCovered by the two survivors, so it is abandoned The survivors are.



24

5. (1 (2 delete)(3 all-of-them))
(1 2}(3)
(S -+ S A)(S -+ delete)(A -+ all-of-them)

6. (1 (2 delete)(3 all-of-them))
(1 3)(2)
(S -+ A S)(A -* delete)(S -4 all-of-them)

Suppose the next string is "delete delete." a negative instance. None of the
grammars in G parse this string. so the G set remains unchanged. This illustrates
that the algorithm is an inductive leap while processing the preceding strings. This
string is new. but there is no change in the version space.

Suppose the next string is positive. "delete it." There are four possible
unlabelled simple derivation trees for this string. Each is paired with each of the five
grammars in the current G. yielding 20 combinations. The resulting 20 grammars are
queued for testing against P- Some splitting occurs during the processing of ,he
queue. When the Queue is finally exhausted, New-G has 25 grammars.

Table 5-1 summarizes the results so far, and shows what happens as more
instances are presented As a rough indication of the practicality of the algorithm, the
table shows the number of CPU seconds used in processing each instance by a Xerox
1109 running Interlisp. The combinational explosion inherent in the Upcate-G-
algorithm is quite evident. However. the algorithm is fast enough to cons'ruct small
version spaces.

Table 5-1: Learning a command language

Inst mces Size of G set CPU seconds
delete all-of-them 4 0.03

- all-of-them delete 5 0.25
delete delete 5 0.52

- delete it 25 11.80
- it it 25 (D.32
- print it 197 526.00

print all-of-them 2580 20300.00

53. Biasing the Update algorithm
Better performance can be obtained by using the Ucdate algorithm as a

framework upon which biases can be mounted. There are several places in the
algorithm where biases car, be installed. One place is in the aueue-based loop of
Uodate-G- Currently, new grammar tripliS are placed on the queue only if they are
not FastCovered by existing grammar triples This filter can be made stronger F-r
instance. suppose Ne queue only grammars that have a minimal nurrer of
nonterminals, that is. grammar triples 'ith partitions of minimal cardinality Table 5-2
shows the results of running the porevious illustration with this bias mstatled.
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Table 5-2: A bias for minimum number of nonterminals

Instances Size of G set CPU seconds
+ delete all-of-them 4 0.03
- all-of-them delete 3 0.28
- delete delete 3 0.05
- delete it 7 1.66
- it it 7 0.09
print it 17 5.87

print all-of-them 55 19.40

The bias reduces the G set from 2580 grammars to 55 grammars. All of these
grammars happen to use a single nonterminal. e.g..

S 4 S all-of-them
S - S it
S - delete
S - print

Processing time is drastically reduced since many grammar triples -- those with
partitions having cardinality larger than that of some existing consistent grammar triple

are not even generated.

Another filter that can be placed on the Update-G- loop is one which limits how
deeply into the partition lattice the search may delve We implemented a filter which
allows the user to set a "ply." If a grammar triple with partition of cardinality m
needs to be split, the search will proceed only to partitions of cardinallty m .n. where
n is the ply set by the user Table 5-3 indicates that this bias acoroximates the
results of the unbiased algorithm more closely than does minimizing the number of

nonterminals Note esoec:ally that for a ply of two. all the grammars of ,he unbiased
algorithm were produced at a fraction of the processing time.

Table 5-3: The effects of limiting the splitting ply

Instances LELl
G Secs. G Secs.

* delete all-of-them 4 .. 2 -. 0.01
- all-of-them delete 5 0.39 0.54
delete delete 5 ,0.09 !0.08

- delete it 25 6.99 25 3.50
it it 25 0.31 25 0.32
print it 188 75.20 197 204.00

- print all-of-them 2406 1110.00 2580 3460.00

The desirability of these biases will depend on the task domain The point ,s

only that the algorithm provides a convenient framework from implementing such
biases.
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Another place to install biases is in the subroutine of Update-G-- that generates
unlabelled derivation trees. This placement allows the biases to control the form of
the grammars. For example. if the tree generator produces only binary trees, then the
induced grammars are in Chomsky normal form If the tree generator is constrained to
produce only right branching trees, then only regular grammars are considered In the
latter case. there is only one right branching simple tree for each string.
Consequently. there is only one unlabelled tree sequence for any given presentation.
Under these circumstances. FastCovers is equivalent to Covers. and our algorithm
becomes similar to Paos (1969) algorithm for learning finite state machines. The main
difference is that Pao's algorithm employs an explicit representation for the whole
version space. whereas our algorithm uses the more compact [P-,.P-.Gi representation
Table 5-3 shows the results of our algorithm on the test case discussed above when
the bias for regular grammars is introduced. Tables 5-4 and 5-5 show the results for a
more challenging case. inferring the syntax of Unix file names.

Table 5-4: Inducing regular grammars for file system commands

Instances Size of G set CPU seconds
- delete all-of-them 1 .07

- all-of-them delete 1 .02
- delete delete i .01
delete it i .07

- it it 1 .02
print it 1 .11

+ print all-of-them 1 .12

Table 5-5: Learning regular grammars for Unix file names

Instances G set size CPU seconds
- foo . bar 1 0.01
- foo 1 0.01
- bar 1 0.)1
/ gram I foo I 0.04
foo / / foo 5 1.03
- / foo 2 0.82

- / usr / vsg / bar 43 88.30
/ / bar 32 20.90

- / / / bar 25 9.49
- / usr / / bar 16 19.50
-/ gram/ bar 32 9.76

/ / vsg / bar 14 6.10
- ;sg / / usr / bar 22 10.1
- / usr / / gram / bar 15 17.20
- / usr / / foo 10 10.40
- / usr / / gram / foo 5 7
- / usr / / vsg / ba 2 8.72
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Table 5-6: The contents of the final G set of table 5-4

Grammar I Grammar 2
S -/ A S -4 / A
A -4 gram S A -4 gram S
A - usr S A 4 usr S
A - vsg S A - vsg S
S -/ foo S -/ fo
S - / bar S -* / bar
S . bar A 4 . bar
S foo S + foo
S - bar S - bar
S - o fo S S - foa A

The point of this section is that the Update algorithm is good for more than just
exploring induction problems. It can be used as a framework for the development of
practical. task-specific learning machines.

6. Conclusions
The introduction motivated the results presented here from a narrow perspective.

viz. their utility in our research on cognitive skill acquisition However. they may have
wider application. This section relates the results to more typical applications of
grammar induction, which, for purposes of discussion. can be divided into three
classes:

* Grammar induction is used as a formal account of natural language
acquisition (Osherson. Stob & Weinstein. 1985. Berwick. 1985. Langley &
Carbonell 1986. Pinker. 1979). Learning the syntax of a language is
regarded by some as an important component of (earning a language. and
grammar induction is one way to formalize the syntactic component of the
overall language-learning task.

" Grammars are sometimes used in software engineering, e g. for command
languages or pattern recognition templates (Gonzalez. & Thompson. 1978).
Some applications require that the grammars change over time or in
response to different external situations. For instance, a command
language could be tailored for an individual user or a oattern recognzer
might need to learn some new patterns Grammar induction may be useful
in such applications (Fu & Booth. 1975. Biermann & Feldman. 1972).

" Knowledge bases in Al programs often have recursive hierarchical
structures. such as calling structures for plans or event schemata for
stories. The hierarchical component of such knowledge is similar to a
grammar Grammar induction can be used to acquire the hierarchical
structure, although it must be used in combination with other induction
engines that acquire the other structures. For instance, the Sierra learner
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(VanLehn, 1987) represents knowledge as hierarchical production rules It
uses a grammar induction algorithm to learn the basic skeleton of its rules.
a Bacon-like function inducer (Langley. 1979) to learn details of the rules
actions, and a version space algorithm (Mitchell, 1982) to learn the exact
content of the rules' conditions.

In all these applications, the problem is to find an algorithm that will infer an
"appropriate" grammar whenever it receives a "typical" training sequence The
definition of "appropriate grammar" and "typical training sequence" depends. of
course, on the task domain. However. it is usually the case that only one grammar is
desired for any given training. If so, then the derivational version space Update
algorithm is not immediately applicable, because it produces a set of grammars. In
fact, the set tends to grow larger as the training sequence grows longer. This is why
we do not claim that the algorithm models human learning, even though it was
developed as part of a study of human learning The algorithm produces a set.
whereas a person probably learns only one (or a few) grammars qua procedures
Similarly. t"e algorithm is not a plausible model of how children learn natural
language. even in the liberal sense of "plausible" employed by studies of language
identification in the limit.'3

Of course. not all applications of grammar induction desire an algorithm to
produce just one grammar An application might have an inducer to produce a set of
grammars. and leave some other process to choose among them. For instance, when
tailoring a command language, one might have the user choose from a set of
grammars generated by the grammar inducer

If grammar induction is viewed as search, then producing just one grammar is a
form of depth-first or greatest-commitment search. The version space strategy. as
pointed out by Mitchell (1982). is a form of breadth-first or least commitment search
This gives it the capability of producing informative intermediate results. Halfway
through the presentation of the training sequence. one can determine unequivocally
Which generalizations have been rejected and which generalizations are still viable If
this capability, or any other feature of the least committment approach. is important
then the algorithm presented here should be considered.

Even if the application doesnt use grammars as the representation language, cr
even as a component of the representation, the techniques presented here may be

useful. The definition of reducedness extends readily to many representaticn
languages. For instance, a Prolog program is reduced if deleting any of its Horn
clauses makes the program inconsistent with the training examples Similarly the
technique for building a derivational version space can be extended to representations
other than grammars. It remains to be seen whether there is any utility in these
extensions, but they are possible at least.

1-'t right seem 'hat after a 'arge number of evamoles ,ad teen received. all 'he grammars n -e

deriational /ersion soace tll generate eactv the same tangLlage. and 'ha' language s 'e 'arget
language. "hiS Noud mOiv that cur aigorthm ,entifies languages n the tmlt. e.ven though ,t crcuceS

a set of grammars instead of a singie grammar Kevin Kelly and Clark Givmour (ce'sona commUnlcatic
have oroved this coniecture false. Kelly dle,sonal communicationi has Srown that any identifiaole -lass
of context.free grammars s dentifiabie by a macmine vrnse conlectures are always 'educed. :-c'le
grammars that are consistent vitnh the data Kelly and Givnicur conclude along Nvith US. that c.ur 'esults
have 'ittle tearing on the language dienitficatcn literaiure
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However, the applications that seem most likely to benefit from the derivational
version space approach are those that are most similar to our application. In that their
research problem is to understand the influence of representation languages and
biases on learning. This amounts to studying the properties of induction problems.
rather than studying the properties of induction algorithms. In such research it is
often a useful exercise to study the set of generalizations consistent with a given
training sequence and see how that set changes as the biases and representation
language are manipulated. Such sets are exactly what the derivational version space
strategy calculates.
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7. Appendix

7 1 Proof of Theorem 3
The following proof shows that there are finitely many reduced context-sensitive

grammars for any given finite presentation. Context-sensitive grammars are used in
the theorem not only because they give the theorem broader coverage, but because
they make the proof simpler. The proof is a counting argument. and context-sensitive
grammars are defined by counting the relative sizes of the left and right sides of their
rules.

Definition: A grammar is a context-sensitive grammar if for all rules
a .-4,. we havela : 1,1, where Ix! means the length of string x. 4

Definition: A context-sensitive grammar is simple if (1) for all rules
a - 3. . I= J, I implies that ,3 has more terminals than a. and (2) every
nonterminal occurs in some derivation of some string.

Lemma: The longest derivation of a string s using a simple context-sensitive
grammar is 21 s 1-1

Proof: Consider an arbitrary step in the derivation. a ..,. if a I 1,81. then
must contain at least one more terminal than a. because the grammar is a simple
one. Consequently, there can be at most I sI such steps in the derivation, because
there are 1 s 1 terminals in the string. For all the other steps in the derivation. A must
be at least one longer than a. There can be at most I s I-1 such steps in the
derivation, because the string is only I sI long. So the longest possible derivation
using a simple grammar is 21 s 1-i where I s steps have a 1=1,1 and I s 1-1 steps
have 1. < 1<I.

Theorem 3: There are finitely many simple reduced context-sensitive
grammars for any given finite presentation.

Proof: There are finitely many positive strings in the presentation. B tie
lemma lust proved. the longest derivation of each string a is 21 a I-i. Therefore 'he
largest number of rule firings in deriving the positive strings is less than 2T. where T
is the total of the lengths of positive strings:

T"= ,a I

where P- designates the set of positive strings in the presentation. If a grammar has
more than 2T rules. then there must be rules that were not used in any string s
lonest derivation. Such rules can be eliminated from the grammar without affecting
the existence of the longest derivations. So such a grammar is reducible. Thus, the
largest possible reduced grammar will have less than 2T rules

4 Anotmer definition of conteyt-sensitve grammars ,ecures !hat ihe ,ules have 'he '
a.4, - av4 vhere A is a rn~oe,-ma( and v *s ,^remov Tone ief'-ton g.,en aove S ':"

HIo Croft and Jiliman 1969) . iho :ormment ihat !he ', oefi rtions are ecu,,alent
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This result alone is not enough to show that there are finitely many reduced
grammars, because the rules could in principle be arbitrarily long or contain arbitrarily
many distinct symbols. However, if a rule is used in a derivation of some string in
P+, its right side must be shorter than L. where L is the length of the longest string
in P+. The rules left side must also be shorter than L. If we could show that the
grammar cannot have arbitrarily many symbols. then we would be done. Because the
terminals in the rules must appear in the strings and there are finitely many strings,
there are finitely many possible terminals in the rules. In fact. the largest number of
terminals is T. Because each nonterminal must participate in some string's derivation
(by simplicity), each nonterminal must appear in some rules left side. There are less
than 2T rules, each with at most L symbols on the left side, so there are less than
2LT possible nonterminals. Thus, the number of simple reduced grammars is finite
because: (1) the number of rules is less than 2T, (2) the length of the left and right
sides is at most L, and (3) there are less than 2LT-,-T symbols used in the rules.
This completes the proof of theorem 3

7.2. Proof of Theorem 5

Theorem 5 states that the derivational version space contains the reduced version
space. The critical part of the proof deals with the positive strings. P+. because
both version spaces specifically exclude grammars that generate negative strings.
Hence. we prove the following theorem. from which theorem 5 follows immediately.

Algorithm A: Given a set of strings P +. produce the grammars
corresponding to all possible labellings of all possible sequences of all
possible simple unlabelled derivation trees for each string.

Theorem 11: Algorithm A Produces a set of grammars that contains all
the reduced. simple grammars for P-

To prove the theorem. we need to show that every reduced grammar is
generated by the algorithm. Suppose that R is a reduced grammar. Because R
generates every string in P., it generates at least one derivation tree for every string
in P 4- First we will consider the case where R generates exactly one derivation tree
for each string, then consider the case where R generates more than one derivation
tree for some (or all) of the strings.

Since R generates exactly one derivation tree for each string, we merely need to
show that that sequence of derivation trees is among the set of labelled parse tree
sequences generated by the algorithm Because R is simple. its parse trees must
conform to the structural constraints that Nere imposed in generating the set of
unlabelled derivation trees. In other words. if a node has just one daughter. then the
daughter is a leaf Moreover, the algorithm generates all such unlabelled derivation
trees, so R's derivation trees must be among those generated by the algorithm. Rs
derivation trees are. thus, some labelling of one of the un/abelled derivation tree
sequences. However, the algorithm generates all possible labellings of these. So R s
Parse trees must be among the set of labelled derivation tree sequences generated by
the algorithm. The only way for R to have nonterminals other *'an those induced by
labelling the unlabelled derivation trees would be for R to have rules that are not used
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in generating its derivation trees for P However, R is reduced, so this cannot be
the case. Thus, R must be one of the grammars induced by the algorithm.

Next we consider the case where R generates more than one derivation tree for
at least one string in P . For each string p in P -, let TreesP be the set of

derivation trees for p. generated by R. As shown above, the algorithm generates at
least one of the derivation trees in each Tree. From that derivation tree sequence, it

generates rules for a grammar. The generated grammar will not be the same as A if
some of the other derivation trees in Trees use rules that are not in this derivation

tree sequence. However, if this were the case, then those rules could be deleted
from R. and yet all the strings could still be parsed. Thus. A would be reducible.
contrary to hypothesis. So R must be generated by the algorithm. This completes
the proof of the theorem.

7 3. Proof of theorem 10
The following theorem states that the derivational version space is properly

represented by its boundaries:

Theorem 10: Given a grammar x in triple form and a derivational (G.SI. x
is in the derivational version space represented by [G.Sj if and only if there
is some g in G such that g FastCovers x. and some s in S such that x
FastCovers s

The "if" half of the "if and only if" follows immediately from the definition of G and
S; if x is in the space, then there must be maximal and minimal elements above and
below it. To Show the "only if" half. suppose that x isnt in the space. and yet there
is a g that FastCovers it and an s that it FastCovers. A contradiction will be derived
by showing that x should be in the derivational version space. First. we show that x
is consistent with the presentation. Because x FastCovers s. the language renerated
by x includes the language generated by s. Because s s language includes the
positive strings of the presentation. so does x's language. Thus. x is consistent with
the positive strings of the presentation. Because g FastCovers x. and g s language
excludes all the negative strings. x s language must also exclude all the negative
strings. So x is consistent with the negative strings. Therefore. x is consistent vrth
the whole presentation. The remaining requirement for membership in the derivational
version space is that x be a labelling of some tree sequence from the simple !ree
product of the presentation. Clearly, x is a labelling of the tree sequence which is
the first element of its triple. Because x FastCovers s. it must have the same tree
sequence as x. so its tree sequence is a member of the simple tree product It
follows that x should be in the derivational version space This contradiction
completes the proof of the theorem.
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