AD-A218 943

o l"!'

u‘;nu

-y T v'\\
lti_.— V\{

‘A VERSION SPACE APPROACH TO
LEARNING CONTEXT-FREE GRAMMARS

Technical Report AIP-14

Kurt VanLehn and William Ball

Departments of Psychology and Computer Science
Carnegie-Mellon University
Pittsburgh, PA 15213

The Artificial Intelligence
and Psychology Project

Departments of
Computer Science and Psychology

Carnegie Mellon University

Learning Research and Development Center
University of Pittsburgh

Approved for public release; distribution unlimited.

9 03 1> 088

DTIC

§% ELECTE ™

N CGB

mar14 12909 E




A VERSION SPACE APPROACH TO
LEARNING CONTEXT-FREE GRAMMARS

Technical Report AIP-14

Kurt VanLebn and William Ball

Departments of Psychology and Computer Science
Carnegie-Mellon University
Pittsburgh, PA 15213

29 September 1987

This research was supported by the Computer Sciences Division, Office of Naval Research
and DARPA under Contract Number N00014-86-K-0678. Reproduction in whole or in part
is permitted for purposes of the United States Government. Approved for public relecase:

distribution unlimited.




TR TASSIFI TON QF “WIS 244

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION
Unclassified

10. RESTRICTIVE MARKINGS

28, SECURITY CLASSIFICATION AUTHORITY

T e ———————— T —
3 OISTRIBUTION/ AVAILABILITY QF REPORT

w
b OECLASSIFICATION / DOWNGRADING SCHEDULE

Approved for public release;
Distribution unliaited

4 PERFORMING ORGANIZATION REPORT NUMBER(S)
AIP - 14

S. MONITORING ORGANIZATION REPORT NUMBER(S)

6b. OFFICE SYMBOL

6a NAME OF PERFORMING ORGANIZATION
(If appiicadie)

Carnegie-Mellon Universicy

7a. NAME OF MONITORING ORGANIZATION
Computer Sciences Division
Office of Naval lesearch (Coce 11i.3)

ADORESS (City. State. and 2iP Code)
enarti.ent ot Isrcnoicgy

Pittsburga, Pennsvivaaia 15413

7 ADORESS (City, State. end ZIP Code)
300 N. Quincy Street
arlington, \Virginia 22.17-3000

8b QFFICE SYMEOL
(If applicadie)

8a. NAME OF FUNDING / SPONSORING
QRGANIZATION

Sine as Momitoring Crganicatioq

9 PROCUREMENT INSTRUMENT 10ENTIFICATION NUMBER

NOCOl4a-36-K-0678

8c. ADDRESS (City, State. and 2IP Code)

10 SOURCE OF FUNDING NUMBERS S0C3yb2Gs. Jma=3u

PROGRAM PROJECT TASK WORK _NIT

ELEMENT NO NO NO ACCESSION NO
N/A N/A N/A N A

T

'UOTITLE (include Security Classification)

.
2y

Version Spacs approach to Learning Grammars

12 SEASONAL Ay THOR(S)

. JanLehn ana Ww. zail

'la "YPE OF IEPORT 135 TIME COVERED

Tecraical taom S5SeptlirgdlSept !

14 DATE QF REPQRT vear, Month, Day)
87 September 29

'S. PAGE COUNT
36

‘& SUPPLIMENTARY NOTAT.ON

>

-7 CISAT COOES
223 | 3ROLP | 5UB-GROULP
| Ji
T T

'8 SUBLECT TERMS Continue on reverse :f rnecessary ond 'Gentify by BIOck number)
Induction, grammatical inference, context-free grammars,
learning from examples

'3 A357RACT Continue on reverse /f necessary and .aentify by diock numober)

SEE REVERSE SID:
20 OSTRIBUT ON. AVAILABILTY OF ABSTRACT 2' ABSTRACT SECLRITY CLASSIFICATION
DUNCLASS-F-ED/UNLIMITED ® same as aer T o-c users

228 NAME OF ESPONSIBLE NOIVIDUAL
JT. Alan . Mevrowitz

22b TE.EPHONE (Include Ared Code) | 22¢. QFFICE SYMBOL
(20 ~00014

s Uy R

20.) 69

DO FORM 1473, 34 var

83 APR ed:i10n may D@ used LNt exPausted
All other eaitions are QDsOIete

SECURITY CLASSIFICATION QF Twi§ a0t

‘nclassified




ABSTRACT

In principal, the version space approach can be applied to any induction problem.
However, in some cases the representation language for generalizations is so powerful that
{1) some of the update funcuons for iae version space are not effectively computable, and
(2) the version space contains infinitely many generalizations. The class of context-free
grammars is a simple representation that exhibits these problems. This paper presents an
algorithm that solves these problems for context-free grammars. Given a seequence of
strings, the algorithm incrementally constructs a data structure that has almost all the
beneficial properties of a version space. The algorithm is fast enough is fast enough to
solve small induction problems completely, and it serves as a framework for biases that
permit solving larger problems heuristically. The techniques used to develop the
algorithm may be applied in constructing version spaces for representations (e.g.,
production systems, Horn clauses, And-Or graphs) that include context-free grammars as

special cases.
.
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1. Introduction

The nroblem addressed here arose in the course of studying how people learn
arithmetic procedures from examples (VanLehn. 1983a. VanlLehn. 1983b). OQur data
aflows us to infer the procedures the subjects have learned and the examples they
received auring training (approximately). Thus, the inputs and cutputs to the learning
process are known, and the problem is to describe the learning process in detail.
However. because the subjects’ learning occurs intermittently over several years. we
are not immediately interested in developing a detailed cogritive simulation of therr
learning processes. Even if such a simulation could be constructed. it might be so
complicated that it wouidn't shed much light on the basic principles of learning in this
task domain. Therefore. our initial objective is to find principles that act as a partial
specification of the learning process. The principles we seek take the form of a
representation language for procedures and some inductive biases that postHict the
procedures learned by our subjects. More precisely. our problem is:

¢ Given

1 a traning sequence, consisting of examples of a procedure being
executed. and

2. a set of observed procedures. represented in some informal language
(i.e.. English),

e find

1. a represenmation language for procedures. and

2. a set of inductive biases. expressed as predicates on expressions in
the representation language.

e such that the set of all procedures that are consistent with the exampies
and preferred by the biases

1. includes the observed procedures. and

2. excludes implausible procedures (e g.. ones that never halt)

This method for studying the structure of mental representations and processes has
much to recomend it (VanLehn. Brown & Greeno. 1984, Fodor. 1975). but here we
wish to discuss only the technical issues involved in implementing it. The central
technical problem is caiculating the sets mentioned above  The calculation must be
done repeatedly. once for each combination of representation language. biases ard
training sequence.  Although the calculations could be done by hand. it is probably
easier 10 program a computer to perform them. Rather than build one program that
could handle ail combinations. or one program for each combination. we chose a
hybrid approach.

" The approach is to build a different program for each representation language.
The programs are induction programs. in that they take a sequence of training




examples and calculate expressions in the representation language that are
generalizations of those exampies. The inducers are unbiased. in that they produce all
expressions in the lanquage consistent with their inputs. An unbiased inducer provides
a framework on which we can instail expficit biases in an attempt to fit its output 10
the data. The advantage of this approach is that tuning an unbiased inducer is much
easier than building a different biased inducer for each set of biases. The main
technical problem of implementing this approach is devising an unbiased inducer for
each of the hypothesized representation languages.

It is very important to understand that these inducers are merely tools for
generating certain sets that we are interested in studying. They are not meant to be
models of the students’ learning processes.

This approach works fine for some representation languages. but not for others.
Some procedure representation tanguages (e.g.. those use by Anderson (1983) and
VanLehn (1983c)) are based on recursive goal hierarchies hat are I[somorphic to
context-free grammars.' For several reasons. it is impossible to construct an inducer
that produces the set of all context-free grammars consistent with a given training set.
First. such a set would be infinite. Second. the standard technique for representing
such a set. Mitchell's version space technigue (Mitcheli. 1982). seems inapplicable
because the crucial ‘more-specific-than’ relationship is undecidable for context-free
gramrnar's.2 The proofs for these points will be presented later. Although we could
have abandoned exploration of procedure representation languages with recursive goal
hierarchies. we chose instead to attack the subproblem of finding a suitable induction
algorithm for context-free grammars.

The impossiktility of an unbiased inducer means that a biased one must be
employed as the framework on which hypothesized biases are instailed for testing their
fit 10 the data. Because we will not be able to test the fit with the built-in bias
removed. the built-in bias must be extremely plausible a prniori.  Moreover, there must
be an algorithm for calculating the set of grammars consisent with it. and that set
must be finite.

We found such a bias. and called it “reducedness.” A grammar is reduceg it
removing any of its rules makes it inconsistent with the training examples. Later. the
plausibility of reducedness will be argued for. and more importantly. it wil be preved
that there are only finitely many reduced grammars consistent with any given training
sequence. This proof is one of the main results presented in this paper

The proof contains an enumerative aligorithm for generating the set of reduced
grammars consistent with a training sequence. but the algonthm is far to slow to be
used. In order to experiment with biases. we need an aigonthm that can take a
training sequence of perhaps a dozen examples, and produce a set of reduced
grammars in a day or less time.

1
A context-free grammar s a set of rewnte rules. simiar 1o a simple greduction svstem The next
section gives precise dehimitions of the relevant terms from ‘ormal language theory

2"""0 ©@rsiI0n space 'echnique s explained :n the next sechion




The obvious candidate for a faster algorithm is Mitchell's version space strategy
(Mitchell. 1982). Applying the strategy seems to involve conguering the undecidability of
the 'more-specific-than’ relationship for grammars. However. we discovered that il was
possible to substitute a decidabie relationship for 'more-specific-one’ and thereby
achieve an algorithm that had almost ali the beneficial properties of the version space
technique. In particular, it calculates a finite. partially ordered set of grammars that
can be represented compactly by the maximal and minimal grammars in the order
The set. unfortunately. is not exactly the set of reduced grammars. but it does
properly contain the set of reduced grammars. We call it the derivational version
space.

The derivational version space satisfies our original criterion: it is a set of
consistent grammars which is arguably a superset of the set of grammars qua
procedures that people learn. Moreover. the algorithm tor calculating it is fast enough
that small training sequences can be processed in a few hours. and the structure of
the algorithm provides several places for installing interesting biases. The derivational
version space is the second resuit to be presented in the paper.

The main interest for machine learning researchers lies in the generality of the
techniques we used. The reducedness bias can be applied directly to many
representation languages. For instance. an expression in disjunctive normal form (ie..
a disjunction of conjunctions) 1§ reduced if deleting any of its disjuncts makes the
expression inconsistent with the training examples. The finiteness resuit for reduced
grammars suggests that sets of reduced expressions in other representations are aiso
finite and effectively computable.3 Moreover. the technique of substituting an easily
computed relation ftor the 'more-specific-than’ relation suggests that such sets of
reduced expressions can be efficiently computed using the derivational version space
strategy.

Indeed. the fact that substituting another relation for ‘more-specific-than !eads to
a useful extension of the version space strategy suggests looking for other relationshios
that provide the benefits of version spaces without the costs. This idea is independent
of the idea of reducedness. Both ideas may be useful outside the context of
grammar induction.

There are four main sections to this paner The first introduces the relevant
terminclogy on grammars. grammar induction and version spaces. The second
discusses reducedness and the finiteness of the set of grammars consistent with the
examples. The third discusses the derivational version space. The fourth presents the
induction algorithm for this structure. and demonstrates the results of incorporating
certain biases into it. The concluding section speculates on the larger significance of
this work.

3 might argued 'hat aithcugh 'me as can he apohed ‘o other regresentation ‘anguages. >re ~ige!
“ot owant o However reducedness s alreadv creved Bv all constructive mducticn grograms that ve are
famihar - wmth. nctuding, e 3. nducers  tv Quinfan (19868) Michaiskr  '283  3ng  sere 1373
Reducedness s not usuallv obeved by enumeration-pased 'nduchon aiger'hms. such 25 ‘hese fourg 7
'he iiterature on tanguage 'dentitication n the himit (Csherson. Stob & Nemstern. 1985):  Apparenty ‘he

Zes:gners 0 zonstructive 'nducers Leneve thal ot '3 natural tor an nduced gereraiizabon 1o ~Clude Ik
carts ‘e g.. rules. disyuncls) that have some supoort n the dara. Reducedress ‘S 3 Crecrse statement o
'his pehet




2. Terminology

2.1. Introduction 10 grammars and grammar induction

A grammar is a finite set of rewrite rules. A rule is written 2 - 3. where g and
A are strings of symbols. Grammars are used to generate strings by repeatedly
rewriting an initiat string into longer and longer strings. In this article. the initial string
is always "S” For instance. the following grammar

S->b
S - asS

generates the string “aab” via two applications of the second rule and one application
of the first rule:

S - aS - aaS - aab

Such a sequence of rule applications is cailed a dernvation There are two kinds of
symbois in grammars. Terminais are symbols that may appear in the final string of a
derivation. whereas nonierminals are not allowed to appear in final strings. in the
above grammar. a and b are terminals. and S is a nontermnal.

The grammar induction problem is to infer a grammar that will generate a given

set of strings.® The set of strings given 10 the learner is called the presenraton. It
always contains strings that the induced grammar shouid generate (called cositive
strings) and it may or may not contain strings that the induced grammar should not
generate (called negauve strings). For instance. given the presentation

-a + ab. +~ aab. - ba

the grammar given earlier (call it grammar 1) could be induced because it generates
the two positive strings. “ab” and “aab’. and it cannot generate the !wo negative
strings. “a’ and “ba” A grammar is said to be consistent with a presentation f

generates all the positive strings and none of the negative strings 3

There are usually many grammars consistent with a given presentation For
instance. here are twg more grammars consistent with the presention mentioned abtcve

Grammar 2 Grammar 3
S5 A S - 5b
A-b Sb > ab

A -5 aA S - aa

1.
Srammar nducten s studied o0 at least thrae heids - ghdTscgoRv, hnguishics ang armhiceal ovelhgence
Far reviews ‘rom the sewCoints of each. see. respectively. CTskersen. Stob & Nengtein (19881 Pieker
*87®  ang Langtev & Carbonell 1986) 'n agaiton. Cohen & Feigenbaum ('233) give an evcelent

PA-AAL-X

=
“Scme authcrs use 'Zeguctively adeguate’ MHoraing. '9689) or “consistent and comclete’  Mickaisi

138 tor the same zoncept Ne 1ga ‘he ‘arm  ~congigtent’ in arder o bring & terminglogy at this
cacer nto une wth *he cerminoicgy of Mitchell s (1382) werk on sersion spaces




Grammar 2 is equivalent to grammar ! 'n that it generates exactly the same set of
strings: ,b. ab. aab. aaab. aaaap. : The set of all strings Qenerated by a
grammar is called the /anguage generated by the grammar The language in this
case is an infinite set of strings. However. languages can be hmte The language
generated by Grammar 3 is the finite set !ab. aa. aap!'

Grammar induction is ccnsiderably simpler if restrictions are placed on the c'ass
of grammars to be induced. Classes of grammars are often defined by specitving a
format for the grammars that are members of the class. For instance. grammars !
and 2 obey the format restriction that the rules have exactly one nonterminal as the
left side  Grammars having this format are cailed context-free grammars. Grammar 3
1§ not a context-free grammar

2 2. Version spaces
One of the most widely stugdied forms of machine learmng s learmng from
examples. or /ngucton. as it 1s more concisely cailed. The followmng s a standarg

way 1o define an induction problem °
e« Given:

1 A representation language for generalizations:

2. A predicate of two arguments. a generalization and an nstance. that
s true if the generalization matches the instance:

3 A set of mnstances. where an nstance s marked “positive’ f 1t
should be matched by the induced generalizations. and ’"negative” |f
it should not:

4 A set of biases that indicate a preference order for generalizations

e Find One or more generalizauuns that are

1 consistent with the instances. and

2. preferred by the biases.

~here “consistent” means that the generalization matches ail the positive
instances and none of the negative :nstances

This formuiation s deliberately vague in order to encompass many spectfic inducten
problems.  For instance. the instances may be ordered. There may be no negatwe
instances. There may be no biases. or biases that rank gereralizations ©on a
numerical scale. or biases that partiaily order the set of generalizations. Much work in
machine learmng is encompassed by this definition

“Througnout. we ‘ollow Mitzhel s 1982) chaice oF termunsingy. with we  excepliang Eorst -8 <o
Seramralizesix ' nstead 2t more.specttic-thaniy Secand. b« Jereranzes 4. 'men .e sualze < 23S
alogue v Mizhell 382 woulg sav that ¢ s below v




Mitchell defines a version space to be the set of all generalizations consistent
with a given set of instances. This is just a set. with no other Structure and no
asscciated algorithm. However. Mitchell also defines the version space strategy 10 te a
particular induction technique. based on a compact way of representing the version
space Although popular usage of the term “version space” has dnfted. tms paper
will stick to the original defimtions.

The central :dea of the version space strategy is that the space of
generalizations detined Dy the represenmation language can be parnally orgered by
generality One can define the relaton Generalizes(x.y) in terms of the matching
predicate:

Cefinition: Generalizes(x.y) s true if and only if the set of instances
matcned by x 1S a superset of the set of instances matched by vy

Note that the Generalizes relationship s defined in terms of the denotations of
expressions 10 the representation language. and not the expressions themselves Thig
~il become 'mportant later. when 1t s shown that the Generalizes relfation s
undecidaple for context-free grammars

It 's simple t0 show that the Generalizes relation partially orders the space of
generalizations. Thus. no matter what the specific induction problem may be. one can
always imagine 1ts answer as lying somewhere n a vast langled hierarchy which rises
from very specific generalizations that cover only a few instances. all the way up to
generaiizaticns 'hat cover many nstances.

Given a presentation. the version space for that presentation will also be partally
ordered by 'he Generalizes relation  Given some mild restrictions (i e that there are
no 'nhnite ascending or descending chamns in the partial order). the version space has
a subse! of maximal elements and a subset of mimimai elements The maximal set 's
called 5 because it contains the set of maximally genera/ generalizations The mirimal
set is called S. because it contains the maximally spec/fic fgeneralizations  The par
[S G} can be used to represent the version space. Mitchell proved that

Given a presenration. x s N the version space for that presentation f and
only 'f there 's some g n G such that g Generalzes x and there 15 some s
in S such that x Generalizes s.

Three algorithms are usually discussed 'n connection with the {S.G| representation
of version spaces:

e Update(i,[S.G]) --> {5'.G"]

The Update function takes the current version space boundares and an
'nstance that s marked as erither positive or negatve 't returrs
boundaries for the new version space if the instance makes the versien
space empty e there :3 no generalization that s consistent with the
presentation. as ~hen the same nstance occurs both positively and
negatively). then some marker such as Lisps NIL. 1s returneg Tre Update
algonthm s the nduction aigorthm for version space toundares "ts
'mplementation depends on the representation language




e DoneP([S,G}) --> true or false
Uniike many induction algorithms. t iS possible to tell when further
instances will do no good because the version space has changed as
much as it is going to. QDoneP is implemented by a test for set equality

$=G

e Classify(i,[S.G]) --> +, -, or ?
Classify an instance that is not marked positively or negatively. and the
version space boundaries. It returng "+ it the instance would be
matched by all the generalizations in the version space. It returns "-" if it
would be matched by no generalizations it returns “?7” otherwise

Classity is useful for experiment design f instances are marked by some
expensive-to-use teacher (e.g.. a gene sequenatoi. or a proton colider
then one wants !0 check that an instance will cause some change in the
version space before having the teacher decide whether it is a positive or
negative instance. Only instances that recewe “?" from Classify are worth
submitting to the teacher Classify 1s /mplemented as follows: f all s in S
match i. then return “+" else f no g n G match i. then return "-". else
return “2°

Applying the version space strategy to a representation language means that cne must
devise only an appropnate Update function. because the Cliassify and DonefP functions
come for free with the strategy. This is sometmes cited as the chief advantage of
the version space approach. In our work on skill acquisition. we make only a lttle
use of them. Qur mamn reason for prefernng the version space strategy over other
induction strategies is that it computes exactly the set we need. the version space
ang represents it ccmpactly.

3. Reduced version spaces

The first problem encountered 'n apolying the version space strategy 10 grammar
induction s that the version space wil Dbe always pe infinite. Ths does not
necessarily imply that the version space boundaries mil be infimte. a fh~ite S and G
can represent an infinite version space. However for grammars. the boundares also
turn out to be nfinite. To begin. fet us c¢onsider a well-kncwn theorem atou!
grammar 'nduction. which is:

Theorem 1: For any class of grammars that ncludes grammars for all
the timte languages. there are nfimtely many grammars n the class that are
consistent with any given finite presentation.

That 1s. the version space 's :nfimte for any fimite presentation

This theorem has a significance outside the context of version space ‘echnolcgy
For instance. 1t has been used to justfy natvist approaches o language acquisiticn
(Pinkar. 1979)  This section 1s written to address both the concerns of version scace
technology and the larger significance of this theorem.




3.1. Normal version spaces are infinite

Three ways to prove the theorem will be presented. Simply amending the
statement of the theorem 1o prevent the use of each of the proof lechniques yields a
new theorem. which is one of the resuits of this article.

All three proofs employ mathematical induction. The initial step in all the proofs
i$ the same. Because the class of grammars contains grammars for all finite
languages. and the positive strings of the presentation constitute a finite language. we
can always construct at least one grammar that is consistent with the presentation.
This grammar initializes the inductions. The inductive steps for each of the three
proofs are. respectively:

1. Let 2 be any string not in the presentation. Add the rute S - 2 to the
grammar. The new grammar generates exactly the old grammar's
language plus « as well. Since the old language was consistent with the
presentation. and ¢ does not appear in the presentation. the new grammar
1S also consistent with the presentation. Because there are infinitely many
strings ¢ that are not in the presentation. infinitely many different grammars
can be constructed this way. One might object that the rule S = «
may be in the grammar already However. because a grammar has finitely
many rules. there can be only tinitely many such z. and these can be
safely exctuded when the « required by the proof is selected.

2. Let A be a nonterminal in the grammar. and let B be a nonterminal not in
the grammar. Add the rule A - B to the grammar. For some or all of
the rules that have A as the left side. add a copy of the rule to the
grammar with B substituted for A. These additions create new grammars
that generate exactly the same strings as the orniginal grammar. Because
the original grammar is consistent with the presentation. so are the new
grammars. This process can be repeated indefinitely. gererating an infinite
numper of grammars consistent with the presentation.

3. Form a new grammar by substituting new nonterminals for every
nonterminal in the old grammar (except S). Create a umon grammar
whose rules are the union of the oid grammars rules and the new
grammar s rules. The union grammar generates exactly the same language
as the original grammar. so it is consistent with the presentation The
union process can be repeated indefimitely, yelding an infinite set of
grammars consistent with the presentation.

It is hard to imagine why a machine or human would seriously entertain the
grammars constructed above. The grammars of the last two proofs are particuiarly
worthless as hypotheses, because they are notational vanants of the original grammar
In a moment. we will add restrictions 2 the class of grammars that will bar such
irrational grammars.

't was mentioned that an infinite version space can. in principle. be represented
by fimte boundaries. Unfortunately. this does not work for grammars. The second
twe oroofs above will generate infinitely many grammars that generate exactly the
same language as the inmtial grammar. If the initial grammar is from S. then S can
be made infinite: similarly. G can be made infimte. The G set can also be made
infinite by the first proof above. These comments prove the following theorem:
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Theorem 2: if the representation language for generalizations specifies a
class of grammars that includes grammars far all finite languages, then tor
any finite presentation. the version space boundaries. S and G. are each
infinite.

3.2. Reducedness makes the version space finite

One way to make the version space finite is to place restrictions on the
grammars !0 be included in it. As some of these restrictions are most easily stated
as restrictions on the form of grammar rules. we will limit our attention t0 context-free
grammars. although the same general idea works for some higher order grammars as
well (as shown in the appendix). The first restriction blocks the grammars produced
by the second proof:

Definition: A context-free grammar 1S simple if (1) No rule has an empty
nght side.” (2) it a rule has just one symbol on itls nght side. then the
symbol is a terminal. and (3) every nonterminal appears n a derivatior of
some string.

The class of simple grammars can generate all the context-free languages. Hopcroft
and Ullman (1979) prove this (thecrem 4.4) by showing how to turn an arbitrary
context-free grammar into a simple context-free grammar. For our purposes. the
elimination of rules of the form A - B. where both A and B are nonterminals.
blocks the second proof.

Proofs 1 and 3 can be blockea by requiring that all the rules in an induced
grammar be necessary for the derivation of some positive stnng in the gwven
presentation. To put this formaily:

Definition: Given a presemtation P a grammar is reduced if it is consistent
with P ang f there is no proper subset of its rules that is consistent with P

Removing rules from a grammar will only decrease the size =* the language generated.
not increase it So removing rules from a grammar will not make !t generate a
regative string that it did not generate before. However. deleting rules may prevent
the grammar from generating a positive siring. thus making it inconsistent with the
presentatton.  If-any deletion of rules causes inconsistency. the grammar 1S reduced

In proot 1. adding the rules S - 2z creates a new grammar (nat is reduc:ble
Similarly. the umion grammar formed by proof 3 s reducible This leads to the
theorem:

Theorem 3: Given a finite presentation. there are finitely many reduced
simple context-free grammars consistent with that presentation

-
This reduces the expressive power At 'he 2'ass scmewnal. because a grammar aithout such epsian
rules. 3as thev are “ommonly called. cannaot generate the ampty string
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The prooft of this theorem is presented in the appendix. We call the version space of
reduced, simple grammars a reduced version space for grammars.

Any finite partially ordered set has a finite subset of minimal elements and a
finite subset of maximal eiements. Define the requced G and S as the maximal and
minimal sets. respectively. of the reduced version space under the partial order
established by the Generalizes reiation. It follows immediately that

Theorem 4: Given a finite presentation. the reduced G and S sets are
each finite.

3.3. The behavior of reduced version spaces
This section describes some of the ways in which a reduced version space
differs from a normal version space.

Normaily. a version space can only shrink as instances are presented. As each
instance is presented. generalizations are eliminated from the version space. With a
reduced version space. negative instances cause shrinking. Dbut positive instances
usually expand the reduced version space. To0 see why, suppose that at least one of
the grammars in the current version space cannot generate the given positive string.
There are usuaily several ways to augument the grammar in order to generate the
string. For instance. one could add the rule § - a. where 2 is the string. Or one
could add the rules S > AZ and A 5 y. where a=v4. Each way ol augmenting
the current grammar in order t0 generate the new string contributes one grammar to
the new version space. So positive strings cause the reduced versign space to
expand.

Because presenting a positive string caused the reduced version space 10
expand. the equality of S and G no fonger implies that induction is done. That is.
the standard implementation of DoneP doesnt work. We conjecture that Gold's (1967)
theorems wouid allow one to show that there is no way to tell when induction of a
reduced version space is done.

The S set for the reduced version space turns out to be rather boring. 1t
contains only grammars that generate the positive strings in the presentation We call
such grammars “trivially specific” because they do nothing more than record the
positive presentation.  The version space Update algerithm described below do not
bother to maintain the S set. although it could. Instead. it maintaing P+ the set of
positive strings seen so far In order to illustrate the efficiency gained by this
substitution. consider the Classify function. whose normal defimition is: where | 1§ an
instance to be classified. if all s in S match . then return "«" eise f no g in G
matches i. then return "-”: else return “?”  With P+ the first clause of the definition
becomes f i is in P+~ then return “ «" Because S contains only the trivially
specitic grammars. these two tests are egquivalent Clearly. it is more efficient o use
P+ instead of S. Similar efficiencies are gained in the implementation of the Update
algorithm.  Nowlan (1987) presents an alternative solution to this problem with some
interesting properties.
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3.4. Why choose reducedness for an inductive bias?

The basic idea of reducedness applies to other representation languages. For
instance. suppose the representation is a first order logic whose expressions are in
disjunctive normal form (i.e.. a generalization 1S one large disjunction. with conjunctions
inside it). The rules in a grammar are like disjuncts in a disjunction. Therefore. a
disjunctive normal form expression is reduced if removing a disjunct from it makes it
inconsistent with the presentation. -We conjecture that the reduced version space for
disjunctive normal torms will turn out to be fimte. There may be a general theorem
about reducedness and finiteness that would apply. at the knowledge level perhaps
(Newell, 1982, Dietterich. 1986). t0 many representation languages.

From the machine learning literature. it seems that reducedness is a “common
sense” restriction to place on induction. All heuristic concept induction programs with
which we are familiar (e.g.. Michaiski, 1983: Vere. 1975: Quinlan, 1386) consider only
reduced concepts. Reducedness seems to be such a rational restriction that machine
learning researchers adopt it implicitly.

There are other ways to restrict grammars so that there are only finitely many
grammars consistent with a finite presemtation.  For instance. there are only finitely
many simple. trivially specific grammars consistent with a finite presentation. However.
the restriction to reduced. simple grammars seems just strong enough to block the
procedures that produce an infinitude of grammars without being so strong that
interesting grammars are blocked as well. This makes it an ideal restriction to place
on version spaces for grammars. The chief advantage of version spaces is that they
contain a/l the generalizations consistent with the presentation. In order to retain the
basic spirit of version spaces while making their algorithms effective. one shouid add
the weakest restrictions possible. For grammars. the conjunction of reducedness with
simplicity seems to be such a restriction.

4. Applying the version space strategy to reduced version spaces

The proof of theorem 3 puts bounds on the size of reduced grammars and therwr
rules In principle. the reduced version space could be generated by enumerating all
grammars within these bounds. However. such an aigorithm would be too siow to be
useful. This section discusses a technigue that yields a much faster induction
algorithm.

The version space strategy is the obvious choice for calculating a reduced
version space. but it cannot. we believe. be applied directly. The problem is that the
version space strategy is based on the Generalizes relationship. which is defined by a
superset relationship between the denotations of two generafizations. it the
generalizations are grammars. then the denctatons are exactly the languages
generated by the grammars. Implementing Generalizes(x.y) is equivalent to testing
whether the language generated by x includes the language generated by y This test
i undecidable for context-free grammars or grammars of higher orders (Hopcroft. &
Uliman. 1979. theorem 8.12). This means that there is no algorithm for implementing
Generalizes(x.y) over the context-free grammars.

This result does not prove that the version space strategy is inapplicable
because only the Update algorithm is required in order 1o construct a version space
and there is no proot (yet) that a computable Generalizes 1s necessary for a
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computable Update. On the other hand, we have never seen a version space Update
algorithm that did not call Generalizes as a subroutine, and we have no idea how o
build a Generalizes-free Update algorithm for grammars. So the undecidability of the
Generalizes predicate is a practical impediment, at least.

The Generalizes predicate may be decidable if its arguments are restricted to be
reduced grammars for the same presentation. f so. then it may be possible 10 use
Generalize in an Update algorithm that only works for the reduced version space. and
not the normal version space. This is not an approach that we explored. Instead. we
sought a way to apoly the spirit of the version space strategy while avoiding the
troublesome Generalizes predicate entirely.

The “trick” to the version space strategy is using the boundaries of a partial
order to represent a very large. partially ordered set. in oprinciple. this trick can be
based on any partial order. and not necessarily on the partial order established by
Generalizes. This idea led us to seek a partial order that was “like” Generalizes. and
yet computable. Moreover. the partial order had 10 be such that there was an Update
algorithm for the sets of maximai and minimai elements in the order.

it was not difficult to find a computable partial order on grammars, but we never
found an Update aigorithm that could maintain sets that were the boundaries of exactly
the reduced version space. Instead. we did find one for a superset of the reduced
version space. In particular. we found:

e A set. called the derivational version space. that is a superset of the
reduced version space and a subset of the version space.

e A computable predicate. called FastCovers. that is a partial crder over
grammars in the derivational version space.

o An Ucdate algorithm for the maximal and mnimal elements in FastCovers
of the derivational version space.

This section presents the derivational version space and the FastCovers relation The
next section presents the Update algorithm

4.1. The derivational version space
in order to define the derivational version space. it is heipful to define some
ancillary terms first.

A derivaton tree is a way !0 ingicate the derwvation of a string by a grammar
Derivation trees are aiso called parse trees) The derivation tree s leaves are the
terminals in the string. The non-leaf nodes of the tree are labelled by nonterminals.
The root node is always labelled by the root nontermunal. S. An algorthm can “read
oft” the rules used by examining mother-daughter subtrees. If the label of the mother
'S A and the labels of the daughters are B. C and O. then the rule A 5 8 C D
has been applied. This reading off process can be used to convert derivation trees
into a grammar. ’
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For simple grammars. derivation trees are constrained to have certain possible
shapes. Simple grammars have no rules of the form A - B. where both A and B
are nonterminals. = Therefore. the only nodes in the derivation trees that have singieton
daughters are ones whose daughters are terminals. because the only rules that can
have singleton right sides are those whose right side consists of a terminal. Let us
call trees with this shape simple trees. The definition of simpie grammars makes it
impossible for a simple tree to have tong. unbranching chaing. Conseguently. there
are only finitely many uniabelled simple trees for any given string.

If a string has more than one element. then there is more than one uniabelled
simple tree. Given a finite sequence of strings. one can calculate ail possible
sequences of unlabelled simple trees by taking the Cartesian product over the sets of
uniabelled simple trees for each string. Let us call this set of simple tree sequences
the simpie tree proauct of the strings. Because there are only finitely many uniabeiled
simple trees for each string. the simple tree product will be finite.

The definition of the derivational version space can now be stated:

Definition: Given a set of positive strings. the derivational version space is
the set of grammars corresponding to all possible labellings of each tree
sequence in the simple tree product for those strings. Given a set of
positive and negative stringé. the derivational version space is the derivational
version space for the positive strings minus grammars that generate any of
the negative strings.

An example may clarify this definition. Suppose the positive strings are "b” and "ab.”
The construction of the derivational version space begins by considering the simple
tree product for the strings. There is one unfabelled tree for "b." There are four
uniabelled trees for "ab.” So there are four tree sequences in the Cartesian product
of the trees for "a” and the trees for “ab” These four tree sequence constitute the
simple tree oproduct. which is shown in figure 4-1. For each of the four tree
sequences. the construction process partitions the nodes in the trees and assigns
labels. Figure 4-2 illustrates how the fourth uniabelled tree sequence is. treated. At
the top of the figure. the unlabelled tree sequence is shown with its nodes numbered.
Trees 4.1 through 4.5 show aill possible partiticns of the four nodes. and the labellings
of the trees that result. Because the root nodes of the trees must always recetwved
the same node label. S. they are given the same number. which forces them to te in
the same partition element. and hence recewve the same labelling. Each of the
resulting labelled tree sequences is converted to a grammar These grammars are
shown in the third column of the figure. The derivational version space is the umon
of these grammars. which derive from the fourth tree sequence. with the grammars
from the other tree sequences.

The motivation for the derivational version space is the following: If a grammar
IS going 10 parse all the positive strings. then there must be a sequence of simple
derivation trees. one for each string. Such a sequence must be some possible
labelling of some possible sequence of uniabelled simple trees. The derivational
version space is constructed from all such sequences. ie.. from the simple tree
product. Consequently. 1t must somehow represent all possible grammars. except
those grammars which have rules that were not used during the parsing of those
strings. Those grammars are. by definiton. the reducible grammars. So the
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Figure 4-1: The simple tree product for the presentation “b”. "ab”.

derivational version space contains all the reduced grammars. These observations 'ead
to the following theorem. which is proved in the appendix:

Theorem §5: Given a presentation, the derivational version space for it
contains the reduced version space for it.

Usually, the reduced version space is a proper subset of the derivational version
space. That is. the derivational version space often contains reducible grammars. In
the illustration discussed earlier. where the positive strings (P +) are "b” and "ab.” no
reducible grammars are generated. However. if P+ ig ["b” "ab”. "ab”| or if P+ is
V"b”. "ab”. "abb”!. then many reducible grammars are generated. In general. if a
subset of P+ is sufficient to produce grammars that will generate ail of it. then the
derivational version space will contain reducible grammars.

The following theorem shows that the “version space” compcnent of the name
‘derivational version space” is warranted:

Theorem 6: Given a presentation. the derwational version space for it i1s
contained in the version space for it.

The proof follows from the observation that the grammars in the derivational version
space were constrycted so that each positive string has a derivation. and grammars
that generate negative strings are filtered out Consequently. the grammars are
consistent with the presentation.

Lastly. we note that

Theorem 7: The derivational version space for a fimte presentation is
finite.

The proof follows from the earlier observation that the simple tree product s finite.
Because each tree sequence in the product has only finitely many nodes and there
are only finitely many ways to parttion a finite set into equivalence classes. there are
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b A S A > a
i |
a b
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4.5 {1,2} S S
{3} | / A\ S 3 b
{4} b A B S - AB
! ! A = a
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Figure 4-2: Parttions. labelled trees and grammars of tree

sequence Jd
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only finitely many ways to label each of the finitely many simple tree sequences.
Hence. the derivational version space for P+ is finite. The derivational version space
for the whole presentation i3 a subset of the one for P+, so it too is finite.

The derivational version space is a finite set that contains all the reduced simple
grammars. and moreover. ail its members are congistent with the presentation. This set
suftices for the purposes we oullined in the introduction. it containg all the
“plausible” grammars. and it is finite. We show next that there is a partial order for
it that allows a boundary updating algorithm to exist.

4.2. The FastCovers predicate

The definition of the partial order is simpiitied if grammars in the derivational
version space are represented in a special way. as a tripie. The first element of the
triple is a sequence of uniabelled simple derivation trees. with the nodes numbered as
in figure 4.1, The second element of the triple is a partition of the trees nodes.
The third element is the grammar's rules. For instance. grammar 4.4 of figure 4-2 s
represented by the following tripie:

Tree sequence:
(1 b), (1 (2 a)(3 b))

Partition:
(1}, {2 3}

Rules:
S

R A A

b
S AA
A a
A b

The triple representation allows the FastCovers relation to be defined as follows:

Lefinition: Given two grammars. X and Y. in triple form. grammar X
FastCovers grammar Y if (1) both grammars are labeliings of the same tree
sequence (i.e.. the first elements of their triples are the same). and (2) the
partition (i e.. second element of the triple) of Y is a refinement® of the
partition of X.

For instance. a grammar whose partition is (!1;.:2!.;3)) is FastCovered by the
grammar above: a grammar whose partition is (,1 2!.:3") is not FastCovered bv the
grammar above. nor does it FastCover the grammar above

FastCovers is named after Covers. a partial order used in early work on
grammar induction (Reynoids. 1968. Horming. 1969. Pao. 1969). Although we will not
pause to define Covers. it can be shown that FastCoversix.y) implies Coversix.y). but

8a partition PV .5 a rehinement of another partition PX f and only i every partinon slemeant of BV 5 3
subset 2f some partition element of OX.
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Covers(x.y) does not imply FastCovers(x.y). FastCovers 1s used Instead of Covers ‘or
ordering the derivational version space because it is faster 1o compute than Covers
and it makes the Update algorithm simpler.

it is simple to show that the FastCovers relationship is transitive and reflexive.
because the refinement relationship is. Moreover. because every grammar in the
derivational version space has a triple form, FastCovers applies to every pair of
grammars in a derivational version space. Thus. FastCovers partially orders the
derivational version space.

A second property of FastCovers. which is needed in showing that the Update
algorithm is correct. is:

Theorem 8: For any two grammars. X and Y. in triple form.
FastCoversiX.Y) implies Generatizes(X.Y).

The proof follows from observing that the refinement relationship between the
nonterminais (= partition elements) of X and the nonterminals of Y establishes a
mapping that takes Y's nonterminais onto X's nonterminals. Every derwvation in
grammar Y can be turned into a derivation in grammar X by mapping Y's nonterminals
onto X's nonterminals. Thus. every string that has a derivation in Y must have a
derivation in X as well. So the language generated by Y is a subset of the language
generated by X. i.e.. Generalizes(X.Y).

Given a derivational version space. there is aiways a finite set of maximal
elements in FastCovers and a finite set of minimal elements. The finiteness of 'he
boundaries follows from the finiteness of the space itseif. We will call the maximal
and minimal sets the dervanonal G and S. respectively. <rom the preceding theorem.
it follows immediately that

Theorem 9: The derivational G (S) includes the subset of the
derivational version space that is maximal (minimal) with respect to the
Generalizes relationship.

Given a derivational [S.G], the FastCovers relationship can be used to determine
whether a given grammar is in the derivational version space represented by the par

Theorem 10: Given a grammar x in triple form and a derivational [G.S].
x 1S In the derivational version space represented by (G.3] if and only if there
is some g in G such that g FastCovers x. and some 5 in S such that x
FastCovers s.

The proof of the theorem s in the appendix

5. An Update algorithm for the derivational version space

The preceding secticn discussed the defimtions of the structure that we wish to
generate. This section presents the algorithm that gererates the structure. then
reports the results of several experiments with it It begins by presenting an informal
account of what happens as positive and negative strings are presented.
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The derivational version space under FastCovers is a set of partition lattices.®
one lattice for each tree segquence in the simple tree praduct. One can visualize the
space as a loal of sliced bread. one slice for each tree sequence Al the FastCovers
refationships run inside slices: none cross from one slice 10 another. Each slice is a
partition lattice. it has one maximal partion on top and one minimai partition on the
pottom. The top partiticn has just one element. and the element has all the nodes in
the tree sequence for that slice. The top partition for tree sequence of figure 4.2 is
(11. 2. 3!). The bottom partition in each lattice has a singleton partition eiement per
node in the tree sequence. The bottom partition for the tree sequence of figure 4-2
is (11).121.131). Al the siices/lattices have unique top and bottom partitions.

it there are no negative instances in the presentation. then G consists of the top
partition in each lattice. As negative instances are precented. the maximal set for
each lattice may descend. Thus. the G set expands and the derivation version space
shrinks as negative strings are presented. The S set always consists of the bottom
partition in each lattice. Presentation of negative instances does not effect the S set.

When a new posilive instance is presented. the derivational version space grows
horizontaily, so to speak (i.e.. the loaf gets more slices. and the slices get larger.). I
the newly added positive string has more than one member. there will be more than
one unlabelled simpie derivation tree for it Hence, the simple tree product will
increase in size. and the set of partition lattices will increase as well. (i.e.. the lcaf
gets more slices) Moreaver. each of the new tree sequences is longer than the
corregponding old one. because some unlabeiled derivation tree for the new string has
been added !¢ it. The new. longer tree sequence will have more nodes (again.
assuming that the string has more than one member). With more nodes avaitable for
parutioning, the partition lattices wiil expand. Thus. the loaf's slices get larger. In
short. presenting a positive string increases the number of partiton lattices and the
sizes of the partition lattices.

Presenting a new positive string affects the derivational S and G sets in the
following ways. The increase in the number of partitons implies that the derivational S
grows because its members are always the bottom partitions of the partition lattices.
The affect on the derivational G is more subtle. |If there are no negative instances
then G grows because its members are the top elements of the partition lattices. !f
there are negatve instances. then G may grow as posilive instances are presented.
but we have no proof that it must grow. Although the number of maximal sets grows
the size of the sels may decrease. leaving the overalli G set the same size. or
perhaps even decreasing it.

5.1 The Update algorithm

As mentioned earlier. our aigorithm does not bother to maintain the S set
although 1t could easily do so. Instead, it mamtans P~ the set of positive strings
seen so far. This makes the algorithm more efficient.

o]

“A lattice s 2 nartial Jrder .ath the additonal property that every car ot nades .n ‘he 'athce "as 3
singleton maximal set and a singleton mimimal set A partihon 'athce consists of the set of ail partitang
2t some ‘inite get ~f cDrects. trdereq by the -efirement relationship
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The Update algorithm is incremental. it takes an instance and the current
[P+ .G] pair. and returns a revision of the pair that is consigtent with the given
instance. If there is no such revision. then the aigorithm returns some error value,
such as NIL. The tollowing describes the top level of the aigorithm:

1. )t the string is positive and a member of P+ . then do nothing and return
the current version space. |If the stnng is not a member of P+~ . then add
it to P+ and call Update-G+

2. If the string is negative and a membper of P+ then return NIL. If the
string is not a member of P+ then call Update-G-

The subroutine Update-G- is simpler than Update-G +. so it will be described first

The task of Update-G- is to modity G so that none of the grammars wil parse
the negative string. The easiest way to do this 1s with a gueue. which s initialized to
contain all the grammars in 5. The basic cycle 15 10 pick a grammar off the gueue
and see it it parses the negatve string. !f it does not. then it ¢an be placed in New-
G. the revised version of G It it does parse the string, then the algonthm refines the
node partition once. in all possible ways That 1s. it takes a partition such as (:1 2
3:.14 5%). and breaks one of the partition etements in two. In this case. there are
four possible one-step refinements:

Toi12 314 5

2.71.20. 330 14 5]
301 30 21 14 8]
4 01230 140 5.

Each of these corresponds to a new grammar  These grammars have the property
that they are FastCovered by the orngmnal grammar. and there s no grammar that
FastCovers them and not the ongmal grammar That 1s. they are just Delow the
originai grammar in the partial order of FastCovers. This process 's called “splitting '

in the grammar induction literature (Horming. 1969).'°

All the grammars proguced by splitting are placed on the queue Eventually 'he
new grammars wil be taken off the queue. as described above and tested to see f
they parse the negitive string. Those that fal to parse the negative string are placed
n New-G. Such grammars are maximal in the FastCovers order in that there 's no
grammar above them that fails to parse the negative string The basic cvcle of
testing grammars. splithng and queuing new grammars continues until the gueue s

N
“Narmally  sgihrg 'akes cre nconterming) 8 3 Carthon elemann  angd toges il 's 11Tocrentes -

taQ Some of 'ne cccurrences are replaced Dv 3 mew nontermipal Thus. 'he nd Asoeteeviral 3 IT
'n tag. The trpie representahion presented earher allows 3 /erv Simple mpiementation 2t sphtting  Tur 0
apcires <nly o grammars that can be -ecresented as 'nples. and ! generates Iniv 3 subser ot 're
jrammars 'hat "ormal spiithng vcould produce
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exhausted. At this point. New-G contains the maximal set of the grammars that fail to
parse the negative string.

There 18 one technical detail to mention. It is possible for the same grammar 1o
be generated via several paths. Before queuing a new grammar. the queue and New-
G are checked 10 make sure the new grammar is not FastCovered'' by some existing
grammar

New-G should contain only grammars that are (1) simple. (2) consistent with the
positive presentation. (3) consistent with the negative presentation. and (4) maximal in
the FastCovers partiai order. The following comments prove that the Update-G-
algorithm satisties those critena.

t The grammars are simple. because the unlabelled derwvation trees from
which they are constructed are simpte

2. The grammars are consistent with the gpositive presentaticn. because 'hey
are a lapelling of a set cf derwvation trees for those strings  Therefore.
they are guaranteed !0 parse those strings

3 The grammars are consistent with the the negative string just received.
because the test puts the grammars n New-G only if they fal to parse
that stnrng  The grammars are consistent with the negative strings recewed
prior to this one. because the grammars from the old G were consistent.
and splitting moves down the FasiCovers order. so splitting reduces the
language generaled by a grammar and never expands it

4 The grammars are maximal :n 'he FastCovers order because splitting
moves down the order cne step at a tme. and the movement 's storoed

as soon as !he grammar becomes ccnsistent aith the presentaton 2

This compietes the discussion of Update-G- We now turn to Jodawe-G+ the furction
that revises the G set when some of the grammars 'n it do not parse a rewly
recewvegd pcsitive string.

The easiest wvay to explan Upgate-G- s !0 ‘first descrite an aigerithm tkat s
not 'mcremental it takes the whole presentation at crce and tuidds the apprcprate S
set The non-incremental algorithm proceeds n the following steps

' Farm the simple tree product ov 'aking the Cartestan groduct of tre
unlabetled simpie derivation trees ‘Cr each cositive string

© 2rZer ' Make Che 3lgorthm dgnction coerect, SagtCouers Mgt e ged forothig ard -ot Tooees
Fitmnng grammars ‘mat are co.ereg 2y grammars “am Zishrcr yriageled ree sequences il gryre
seatn caths hat may #ad ' Javd Ne w3 vempers Ths g the mam ceagin tor aararg w
SastC:.ers cather than Couers

€4 :amgigte graat would reqQuire JS'NQ Che tact thatl the zervaticnalr Jersion 3pace 's a set ot fathces
1"d  athces are parnculary well.llnrecleg
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2. For each such tree sequence in the simple tree product, form a triple to
represent the grammar that has only one nonterminal. S. The partitions for
these grammars all have just one partition element. and the element
containg all the nodes in the derivation tree sequence. These grammars are
the maximal grammars in the FastCovers partial order. They would be the
G set it the presentation had only the paositive strings.

3 For each string in the set cf negative strings. apply Update-G-

This algorithm is not incremental. since it must process ail the positive strings before
processes any of the negative strings. An incremental Update algorithm must be able
10 handie strings in the order they are received. The incremental aigorithm should
take a G set whose grammars may have aiready been spiit somewhat by Update-G-
and modify it to accomodate a new positive strnng.

In the non.ncremental aigorithm. the effect of adding a new string 1S t0 ncrease
the length of the sequences of uniacelled derwation trees. and hence !0 increase 're
number of nodes n the parutions. In the incremental algorithm. this must be dore n
all possible ways. so the resulting Update aigornthm s.

1 Given a positive string. form the set of all unlabeiled smple derivation trees
for that string.

2. For each grammar in the old G and for each tree for the new positive
string.

a. append the tree onto the end of the tree sequence of the grammars
rriple. and

b allccate the new tree s nodes !0 'he paruticn elements n afl possitie
~Nays Thus. it there are N partinon etements in the partiticn ‘hen
there are N choices for where to put the first tree node. N choices
for w~here 10 put the second tree node. etc 't the tree has M
nodes then N* new partitions will pe generated Each ~re beccmes
a grammar that is a candidate for New-G

3. Place all the candidate grammars generated in the opreceding step <n 're
queue for the Update-G- afgornthm.  However nstead of testing that a
grammar s consistent with just ore negative string. as !he _pdate-G-
algorithm does. test that the grammar 15 consistent with all 'he n~egatwe
strings in the presentation that have been recewved so far

]

The first two steps generalize the 2ld grammars by acd:ng rules ‘o them Tk
rew grammars rmgnht be !'00 general. in that they may parse scme ¢t re r~ega'
strings given earlier 'n the prasentation Hence. 'he 'ast step must creck 3 '»
negative strings  This requires saving all the negative strings as they are greserted
Thus. the version space needs to te a triple [P+ P-G]

D @

This means that one of the usual benefits of the versien space techmque 'S ©S!
Usually version space nduction allows the learner 1o forget about an instarce afier




23

having processed it. This algorithm requires the learner to remember the instances in
the presentation. However it is still an incremental aigorithm. After each string 18
presented. an up-to-date G set is produced. Moreover. it is produced with less
processing and memory than would be required to generate ‘hat same G set
completely from scratch using the entire presentation. In short. the algorthm s an
incremental version space update with respect to computation. but not with respec! 10
instance memory.

5.2. Wlustrations of the aigorithm's operation

In order to illustrate the operation of the aigorithm. this sestion presents a
simple example. The next section will continue this example by showing how the
algorithm performs when it is modified 10 incorporate certain biases.

The illustration is based on learning a command language for a file system.
The algorithm recewves strings of command words. marked positive or negative. and
from these data. it must infer a grammar for the command tfanguage. Suppose the
first string is positive: “delete all-of-them. " There are four possible unlapelled simple
trees for this string., and they lead directly to four grammars for the G set. These
grammars are listed telow in therr triple representation.

1. (1 delete all-of-them)

{1}

(S - delete all-of-them)
2. (1 delete (2 all-of-them))

{12}

(S = delete S) (S = all-of-them)
3. (1 (2 delete)(3 all-of-them))

{1 23}

(S 2 S all-of-them)(S = delete)
4, (1 (2 delete)(3 all-of-chem))

{12 3}

(S 2 S S)(S > delete)(S > all-of-them)

The first three grammars generate the finite language consisting only of the

single string “delete all-of-them.” The fourth grammar generates all possible strings
over the two word vocabulary of “delete” arnd "all-of-them * Suppose the next string
1s a negative string. “all-of-them delete ” This string cannot be parsed by gramrars

1.2 or 3. so they remain unchanged in the G set. The fourth grammar s overly
general. so it is split. There are only three legal parttons. Two of them sursve
becoming grammars 5 and 6 shown below The other partition. :1:,2 3, ywelds a
grammar that parses the negative string. so it 15 split further. wnto [1:,2):3! Thisg
partition 1s FastCovered by the two survivors. so it is abandoned. The survivors are.
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S. (1 (2 delete)(3 all-of-them))
{1 2}(3)
(S =5 S A)(S = delete)(A - all-of-them)

6. (1 (2 delete)(3 all-of-them))
{1 3}(2}
(S 2> A S)Y(A > delete)(S = all-of-them)

Suppose the next string is “delete delete.” a negative instance. None of the
grammars in G parse this string. so the G set remains unchanged. This illustrates
that the aigorithm is an inductive leap while processing the preceding strings. This
string is new. but there is no change n the version space.

Suppose the next string is positive. “delete it.” There are four possible
uniabelled simple derivation trees for this string. Each is pawred with each of the five
grammars in the current G. yielding 20 combinations. The resulting 20 grammars are
queued for testing against P- Some spliting occurs during the processing of 'he
queue. When the queue is finaily exhausted. New-G has 25 grammars.

Table 5-1 summarizes the resuits so far. and shows what happens as more
instances are presented. As a rough indication of the practicality of the algorithm. the
table shows the number of CPU seconds used in processing each instance by a Xerox
1109 running Interlisp. The combinational explosion inherent in the {Update-G+
algorithm is quite evident. However. the aigorithm is fast enough to cons‘ruct small
version spaces.

Table 5-1: Learning a command language

Ins* inces Size of G set CPU seconds
+ delete all-of-them 4 0.03
- all-of-them delete 5 0.25
- delete delete b 0.32
- delete it 25 11.80
- it it 25 0.32
- print it 197 526.00
- print all-of-them 2580 2030C.00

5.3 Biasing the Update algorithm

Better performance can be obtaned by using the Ucdate algorithm as a
framework upon which biases can be mounted. There are several places in the
algorithm where biases car be installed. One place is in the gqueue-based locp of
Update-G-  Currently. new grammar triples are placed on the queue only if they are
not FastCovered by existing grammar triples  This filter can be made stronger For
instance. suppose w~e queue only grammars that have a mimmal numper of
nonterminals. that is. grammar triples wmth partitions of mimimal cardinality Table 5-2
shows the results of runnming the previous ilustration with this bias instatled.
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Table 5-2: A bias for minimum number of nonterminals

Instances Size of G set CPU seconds
+ delete all-of-them 4 0.03
- all-of-them delete 3 0.28
- delete delete 3 0.05
+ delete it 7 1.66
- it it 7 0.09
+ print it 17 5.87
+ print all-of-them 55 19.40

The bias reduces the G set from 2580 grammars to 35 grammars. All of these
grammars happen to use a single nonterminal. e.g..

S - S all-of-them
S = S it
S - delete
S - print
Processing time is drastically reduced since many grammar tripies -- those with

partitions having cardinality larger than that of some existing consistent grammar triple
-- are not! even generated.

Another filter that can be placed on the Update-G- loop is one which limits how
deeply into the partition lattice the search may deive. We implemented a filter which
allows the user to set a “ply.” It a grammar triple with partition of cardinality m
needs o be split. the search will proceed only to partitions of cardinality m+n. where
n 1s the ply set by the user Table 5-3 indicates that this bias acoroximates the
results of the unbiased algonthm more closely than does mirimizing the number of
nonterminals. Note espec:ally that for a ply of two. all the grammars of the unbiased
algorthm were produced at a fraction of the processing tme.

Table 5-3: The effects of limiting the sphtting ply

Instances l-ply 2-ply
G Secs. G Secs.
- delete all-of-them 4 .02 < N.01
- all-of-them delete S 0.139 bl 0.54
- delete delete 5 0.09 : 0.08
+ delete it 25 6.29 23 T
- it it 25 .31 23 0.32
- print it 18 78020 197 204.00
- print all-of-them 2406 1110.00 2280 3460.00

The desirability of these biases will depend on the task domain. The point s
only that the algorithm provides a convenient framework from impiementing such
biases.
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Another place 1o install biases is in the subroutine of Update-G + that generates
uniabelled derivation trees. This placement allows the biases !0 control the form of
the grammars. For exampie. if the tree generator produces only binary lrees. then the
induced grammars are in Chomsky normal form I[f the tree generator is constrained to
produce only right branching trees. then only regular grammars are considered In the
latter case. there s only one nght branching simple tree for each string.
Consequently, there is only one uniabelled tree sequence for any given presentation.
Under these circumstances. FastCovers 1S equivalent to Covers. and our algorithm
becomes similar to Pao's (1969) algornthm for learning finite state machines. The main
difference is that Pao's algorithm employs an explicit representation for the whole
version space. whereas our aigorithm uses the more compact [P+ P- G| representation
Table 5-3 shows the results of our algorthm on the test case discussed above when
the bias for regular grammars is introduced. Tables 3-4 and 5-5 show the resuits for a
more challenging case. inferring the syntax of Unix file names.

Table S-4: Inducing regular grammars for file system commands
Instances Size of G set CPU seconds
« delete all-of-them 1 .07
- all-of-them delete 1 .02
-~ delete delete 1 .01
+ delete it 1 .07
- it it 1 .02
+ print it 1 .11
+ print all-of-them 1 .12

Table 5-5: Learning regular grammars for Unix file names

Instances G set size CPU seconds
- foo . bar 1 0.01
+ foo 1 0.01
+ bar 1 0.01
« / gram / foo 1 0.04
- foo 7/ / foo 5 1.03
- /7 foo 2 n.82
- / usr / vsg / bar 43 88.10
- / / bar 32 20.30
-/ / / bar 25 9,49
- / usr / / bar 16 12.30
- / / gram / bar 2 2.7

-/ / usg / bar 14 6.20
- vsg / / usr / bar 22 19.10
- / usr / / gram / bar 15 17.20
- / usr / / foo 10 10.40
- / usr / / gram / foo 5 7.33
- 7/ usr / / vsg / ba 2 8.72
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Table 5-6: The contents of the final G set of table 5-4

Grammar 1 Grammar 2
S =/ A S =/ A

A - gram S A - gram S
A - usr § A = usr S
A 5 vsg S A = vsg S
S - / foo S = / foo
S = / bar S = / bar
S - bar A = . bar
S = foo S = foo

S = bar S = bar

S - foo S S > foo A

The point of this section is that the Update algorithm is good for more than just
exploring induction problems. It can be used as a framework for the development of
practical. task-specific learning machines.

6. Conclusions

The introduction motivated the results presented here from a narrow perspective.
viz. their utility in our research on cognitive skill acquisition. However, they may bave
wider application. This section relates the resuits to more typical applications of
grammar induction. which. for purposes of discussion. can be divided into three
classes:

e« Grammar induction is used as a formal account of naturai language
acguisition (Osherson. Stob & Weinstein, 1985 Berwick. 1985. Langley &
Carbonell. 1986. Pinker. 1979). Learning the syntax of a language is
regarded by some as an important component of learming a language. and
grammar induction is one way to formalize the syntactic component of the
overall language-iearning task.

o Grammars are sometimes used in software engineering. e g.. for command
languages or pattern recognition templates (Gonzalez. & Thompson. 1978).
Some applications require that the grammars change over time or in
response o different external situahions. For instance. a command
language could be tailored for an individual user. or a pattern recogmzer
might need to learn some new patterns. Grammar induction may be usefui
in such applications (Fu & Booth. 1975. Biermann & Feldman. 1972).

o Knowledge bases in Al programs often have recursive hierarchical
structures. such as calling structures for plans or event schemata for
stories. The hierarchical component of such knowledge 1s similar to a
grammar. Grammar induction can be used to acquire the hierarchical
structure. although it must be used in combination with other induction
engines that acquire the other structures. For instance. the Sierra learner
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(VanLehn, 1987) represents knowledge as hierarchical production rules It
uses a grammar induction algorithm to learn the basic skeleton of its ruies.
a Bacon-like function inducer (Langley. 1979) to learn details of the rules
actions, and a version space algonthm (Mitchell. 1982) 1o learn the exact
content of the rules’ conditions.

In alt these applications. the problem is to find an algorithm that will infer an
"appropriate” grammar whenever it receives a “lypical” training sequence. The
definition ot “appropriate grammar” and “typical tramning sequence” depends. of
course. on the task domain. However. it 1s usually the case that only one grammar is
desired for any given training. If so. then the derivational version space Update
algorithm is not immediately applicable. because it produces a set of grammars. In
fact, the set tends to grow larger as the training sequence Jrows longer. This is why
we do not claim that the algorithm models human learning. even though it was
developed as part of a study of human learning. The aigorithm produces a set
whereas a person probably learns only one (or a few) grammars qua procedures.
Similarly. te algorithm is not a plausible model of how children learn natyral
fanguage. even in the liberal sense of “plausible” employed by studies of language

identification in the fimit '3

Of course. not all apptications of grammar induction desire an algorithm 10
produce just one grammar. An application might have an inducer to produce a set of
grammars. and leave some other process to choose among them. For instance. when
tailoring a command language. one might have the user choose from a set of
grammars generated by the grammar inducer.

If grammar induction is viewed as search. then producing just one grammar is a
form of depth-tirst or greatest-commitment search. The version space strategy. as
pointed out by Mitcheli (1982). is a form of breadth-first or least commitment search.
This gives 1t the capability of producing informative intermediate resuits. Halfway
through the presentation of the training sequence. one can determine unequivocally
which generalizations have been rejected and which generalizations are still viable  f
this capability. or any other feature of the least committment approach. is important.
then the algorithm presented here should be considered.

Even if the application doesn't use grammars as the representation language. cr
even as a component of the representation. the technigues presented here may be
useful. The definition of reducedness extends readily to many representaticn
languages. For instance. a Prolog program s reduced if deleting any of its Horn
clauses makes the program inconsistent with the traiming examples. Similarly. the
technique for building a derivational version space can be extended 10 representations
other than grammars. ft remains to be seen whether there is any utility n these
extensions, but they are possible at least.

Rl might seem ‘hat after 3 ilarge n~umbper ot evamoles nad Deen racewed. all *he grammars n 're
derisational version space ail generate evactly the same language. and 'ha' language s ‘he ‘arget
language. This woutd 'mplv that 2ur algenthm .gentifies languages  the 'mit. even though st croduces
a set of grammars nstead of a singie grammar  Kevin Keilv and Clark Glvmour cersonal commuynicate=
have proved this conjecture false.  Kelly (personal commumcanon has shown that anv gentitiaple c'ass
2f context.free grammars s identifiable by a machine w~hrose conjectures are alwavs reduced. me'e
grammars that are consistent sith the data.  Xellv and Glvmour zonclude along with us. that our results
have iittle Cearnng on the 'anguage ‘dentficabicn iterature
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However. the applications that seem most likely to benefit from the derivationat
version space approach are those that are most similar to our application. in that their
research probiem is 10 understand the influence of representation languages and
biases on learning. This amounts to studying the properties of induction problems.
rather than studying the properties of induction algorithms. In such research. it is
often a useful exercise to study the set of generalizations consistent with a given
training sequence and see how that set changes as the biases and representation
language are manipulated. Such sets are exactly what the derivational version space
strategy calculates.
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7. Appendix

7 1. Proof of Theorem 3

The following proof shows that there are finitely many reduced context-sensitive
grammars for any givent finite presentation. Context-sensitive grammars are used in
the theorem not only because they give the theorem broader coverage. but because
they make the proof simpler. The proof is a counting argument. and context-sensitive
grammars are defined by counting the relative sizes of the left and right sides of their
rules.

Definition: A grammar is a context-sensitive grammar if for all rules
a>43. we havelal<!gl where |x| means the length of string x.'*

Definition: A context-sensitive grammar is simple if (1) for all rules
a=8. lel=18| implies that 3 has more terminals than 2. and (2) every
nonterminal occurs n some derivation of some string.

Lemma: The longest derivation of a string s using a simple context-sensitive
grammar is 2| s |-1.

Proof: Consider an arbitrary step in the derivation. 2 »4. it lal=]8]. then 3
must contain at least one more terminai than o. because the grammar is a simpie
one. Consequently, there can be at most | s| such steps in the derivation. because
there are | s| terminais in the string. For all the other steps in the derivation. 8 must
be at least one longer than 2. There can be at most | sl-1 such steps in the
derivation. because the string is only |s| long. So the longest possible dervation
using a simple grammar i1s 2{ s|-1. where | s| steps have lz|=(g] and |sl|-1 steps
have lal<ligl

Theorem 3: There are finitely many simple reduced context-sensitive
grammars for any given finite presentation.

Proof: There are finitely many positive strings n the presentation, By the
lemma just proved. the longest derivation of each string z 18 2lal-l. Therefore ‘he
largest number of rule firings in deriving the positive strings 1s less than 27. where T
1s the total of the lengths of positive strings:

T= Z le |
a &P+

where P+ designates the set of positive strings in the presentation. !f a grammar has
more than 2T rules. then there must be rules that were not used in any strings
lonCest derivation. Such rules can be eliminated from the grammar without affecting
the existence of the longest derivations. So such a grammar s reducible. Thus. the
largest possible reduced grammar will have less than 2T rules

14

Another  gefimtion  of  context-sensiive  grammars  requires that  'he ryles have ‘he ‘arm
adfl 3 ayfl wnere A s 2 nonterminai and v s ncremoty  The detmmion gwen apove s I
Hopcroft and Ullman (1359). ~no comment that the *twn dehnitions are equivalent
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This result alone is not enough to show that there are finitely many reduced
grammars, because the rules could in principle be arbitrarily long or contain arbitrarily
many distinct symbols. However, if a rule is used in a derivation of some string in
P +. its right side must be shorter than L. where L is the length of the longest string
in P+. The rule's left side must also be shorter than L. If we could show that the
grammar cannot have arbitrarily many symbols. then we would be done. Because the
terminals in the ruies must appear in the strings and there are finitely many strings.
there are finitely many possible terminals in the rules. In fact. the largest number of
terminals is T. Because each nonterminal must participate in some string's derivation
(by simplicity), each nonterminal must appear in some ruie's left side. There are less
than 2T rules. each with at most L symbois on the left side. so there are less than
2LT possible nonterminals. Thus. the number of simple reduced grammars is finite
because: (1) the number of rules is less than 2T, (2) the length of the left and right
sides is at most L. and (3) there are less than 2LT+T symbols used in the rutes.
This completes the proof of theorem 3.

7.2. Proof of Theorem 5

Theorem 5 states that the derivationai version space containg the reduced version
space. The critical part of the proof deals with the paositive strings. P+ . because
both version spaces specifically exclude grammars that generate negative strings.
Hence. we prove the following theorem. from which theorem 5 follows immaediately.

Algorithm A: Given a set of strings P+. produce the grammars
corresponding to ail possible labellings of all possible sequences of all
possible simple unlabelled derivation trees for each string.

Theorem 11: Aigorithm A produces a set of grammars that contains all
the reduced. simple grammars for P+

To prove the theorem. we need o show that every reduced grammar is
generated by the algorithm. Suppose that R is a reduced grammar. Because R
generates every string in P+, it generates at least one derivation tree for every string
in P+ First we will consider the case where R generates exactly one derivation tree
for each string. then consider the case where R g@generates more tharn one derivaton
tree for some (or ail) of the strings.

Since R generates exactly one derivation tree for each string. we merely need to
show that that sequence of derivation trees is among the set of labelled parse tree
sequences generated by the algorithm Because R s simple. its parse trees must
conform to the structural constraints that were mposed in generating the set of
uniabelled derivation trees. In other words. if a node has just one daughter. then the
daughter is a leat. Moreover. the algonthm generates all such uniabelled derivation
lrees. so R's derivation trees must be among those generated by the algorithm. R's
derivation trees are. thus. some labelling of one of the unl/abeiled derivation tree
sequences. However. the algorithm generates all possibte labellings of these. So R's
parse trees must be among the set of /abelleg derivation tree sequences generated Dby
the algorithm. The only way for R to have nonterminals other t“an those induced by
labelling the unlabelled derivation trees would be for R to have rules that are not used

—
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in generating its derivation trees for P+. However. R is reduced. so this cannot be
the case. Thus, R must be one of the grammars induced by the aigorithm.

Next we consider the case where R generates more than one derivation tree for
at least one string in P+. For each string p in P+, let TreesD be the set of

derivation trees for p. generated by R. As shown above. the aigorithm generates at
least one of the derivation trees in each Treeo. From that derivation tree sequence. it

generates ruies for a grammar. The generated grammar will not be the same as R if
some of the other derivation trees in Treesp use ruies that are not in this derivation

tree sequence. However, if this were the case, then those rules could be deleted
from R. and yet all the strings could stil be parsed. Thus. R would be reducibte.
contrary to hypothesis. So R must be generated by the algorthm. This completes
the proof of the theorem.

7.3. Proof of thecrem 10
The following theorem states that the derivational version space is properly
represented by its boundaries:

Theorem 10: Given a grammar x in triple form and a derivational [G.S]. x
is in the derivational version space represented by [G.S5] if and only it there
is some g in G such that g FastCovers x. and some s in S such that x
FastCovers s

The "if” half of the "if and only if” follows immediately from the definition of G and
S: if x 1s in the space. then there must be maximal and minimal elements above and
below it. To show the “only if” haif suppose that x isn't in the space. and yet there
IS a g that FastCovers it and an s that it FastCovers. A contradiction wil be derived
by showing that x shouid be in the derivational version space. First. we show that x
iIs consistent with the presentation. Because x FastCovers s. the language gJenerated
by x includes the language generated by s. Because s's language includes the
positive strings of the presentation. so does x's fanguage. Thus. x is consistent with
the positive strings of the presentation. Because g FastCovers x. and g's language
excludes all the negative strings. x's language must also exclude all the negative
strings. So x is consistent with the negative strings. Therefore. x is consistent with
the whole presentation. The remaining requirement for membership n the derivational
version space is that x be a labelling of some tree sequence from the simple tree
product of the presentation. Clearly. x 1s a labelling of the tree sequence which s
the tirst element of its triple. Because x FastCovers s. it must have the same tree
sequence as x. SO its tree sequence 1S a member of the simple tree product it
follows that x should be in the derwational version space This contradiction
completes the proof of the theorem.
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