
'FU COPY ®R

q A VISUAL PROGRAMMING
SLANGUAGE FOR NOVICES

00 Technical Report AIP - 22

Jeffrey G. Bonar
Computer Science Department and

Learning Research and Development Center
University of Pittsburgh

&

Blaise W. Liffick
Department of Mathematics & Computer Science

Millersville University

The Artificial Intelligence
and Psychology Project

Departments of
Computer Science and Psychology
Carnegie Mellon University

Learning Research and Development Center
University of Pittsburgh

DTICELECTE
MAR14 199011

Approved for public release; distribution unlimited. S B U

aO 03 12 01A

Unc. ass if ied
SrCUj"VY CLASSiwFIcON Of 145PG

REPORT DOCUMENTATION PAGE
Ia. REPORT -SECURITY CASWICATION lb. RESTRICTIVE MARKINGS

unclassified
2a SECURtITy CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILAILITY OF REPORT

-1Approved for public release;
2b. DECLASSIORWAIONiIDW1OOIIANG SCEDL Dis tribut ion uni i.ni ted

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMIER(S)
AIP - 22

64. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
Car-legie-iM-ellon University (if sabiloei) Computer Sciences Division 3Office of Naval Research (Code iL13

Sc. ADORESS (City, Stat. and ZIP Code) 7b ADDRESS (City, State. and ZIP Code)
D eparti-ent of Ps;.'hoigy 800 N. Quincy Street
Pittsburgi, Pennsylvania 13213 rlington, Virginia 22zd7-5000

U4. 14AME OF PFNOINGI SPONSORING 8 b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION J Ifapscabw.)

-a:%e as Monitorin- Or-anizatioL NO0014-86-iK-0678

SC. ADORESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS D400005uiz29 l/7-4-36
PROGRAM IPROjECT ITASK I WO RK UNIT
ELEMENT NO NO I NO0 ACCESSION NO
IN/A NIA N/A N/A

ii TITLE (include Security Classdication)

A Visual Programming Language for Novices

'2a OSB Lif f ick

13a TYPE OF -1EPORT 113b TIME COVERED j4 DATE OF REPORT Year, ae"t,ODay) II, PAGE COUNT
chnici I ROM 6S"ept13T0 91SeptI1 87 September 29 I 5

S SPPEMEN1ARY NOTATION

'7COSATI CODES 18 SUSjECT TERMS (Continue on, reverse if I'Qcflidfy and idmntify by block numnber)
E .D GROUP SuS-GROuP --- Teaching programming; visual programmring languages'I 'I programming languages,

'9 A8STRACT Continue on reverse it mecessary and identif'y by block number) ,

We present BridgeTalk,,,a new approach to visual languages for novice programmers. The design of
BridgeTalk is based on data about how novices learn to program. BridgeTalk allows novices to program with
programming plans - frama-like oijects that capture essential program components like Pkeep a running total'
and ifterate down a data stri.cture . Novices are focused on the interactions between plans, not on the
implementation details for a particular plan. Beginning with plans as a basis for a novice programming
language, we were forced to develop a programming formalism that can deal with multiple levels of detail,
merged plan implementations, and interrelationships between plans. The actual visual presentation for the
language is based on six 4design, implement, test with students, and redesign# cycles. "e ,

20 DISTRIBUTION IAVAILAILITY OF ABSTRACT 21 AIsTRACT SECURITY CL.ASSIFICATION
O3UNCLASSiFIEO1UNLIMITEO Z SAME AS RPT C O"C USERS

22a NAME OF RESPONSIBLE NOIVIDUAL 22b T'ELEPHONE (Include Ared Code) T22c. OFFICE SYKASO!.
,)r. A-lan L. Meyrowitz (2QGZ' 69t)--.64 I ,U0014

uo FORM 1473. 84 MAR 53 APR Ilidtior Miay 00 YSd ufll Onrldu1tCd SECURITY CL.ASSIFICATION OF THIS PAGE
All t~e IliitinS re OS01tt.Unclass if ied

A VISUAL PROGRAMMING
LANGUAGE FOR NOVICES

Technical Report AIP - 22

Jeffrey G. Bonar
Computer Science Department and

Learning Research and Development Center
University of Pittsburgh

&

Blaise W. Liffick
Department of Mathematics & Computer Science

Millersville University

29 September 1987

This research was supported by the Computer Sciences Division. Office of Naval
Research and DARPA under Contract Number N00014-86-K-0678. The Learning Research
and Development Center Al Equipment and software base was developed under ONR
Contract Nos. N00014-83-6-0148 and N00014-83-K-0655. The original version of Bridge
was developed under Air Force Human Resources Laboratory Contract F41689-84-D-0002,
order 0004. The opinions expressed do not necessarily reflect the position or policy of
the agencies and no official endorsement should be inferred. Reproduction in whole or in
part is permitted for purposes of the United States Government. Approved for public
release; distribution unlimited.

BridgeTalk came out of a richly interdiscipinary research community of computer
scientists, psychologists, programmers and educations, all concerned with improving the
quality and impact of educational applications of computers. Discussions with Alan
Lesgold and Lauren Resnick, helped to crystalize the ideas presented here. Mary Ann
Quayle, Jamie Schultz, and John Corbett contributed to the design and implementation of
early versions of BridgeTalk. Bob Cunningham contributed substantially to the design of
later versions and was the principle programmer on the project. Paul Beatty, Vikki Pitts,
and Perry Riggs also contributed to later versions. The Chips interface design tool was
developed and implemented by Bob Cunningham and John Corbett. An earlier version of
the discussion on novice programming language design appears in Technology and
Learning, published by Lawrence Erlbaum Associates.

DTIC
ELECTE

3MAR 14 9 U0-

"But if we look at what a programmer would say about a program to a
colleague who wanted to work on it or use it, very little of the description
appears anywhere in the code."

Winograd [19791

1. Introduction
There is a wealth of evidence that experienced programmers use a large set of

programming plans: standard templates and structures for accomplishing typical
programming tasks [Bonar and Soloway, 1985; Soloway and Ehrlich, 1984; Spohrer,
1985; Waters, 19851. Example plans include "running total" and "iterate through a
data structure looking for a distinguished value". Our objective is to take advantage of
plans to provide novice programmers with an environment for learning to program.
This environment begins with a high-level, plan based language, but permits and
encourages the ultimate use of a standard language like Pascal. For several reasons
the plan language has been designed as a visual language. This paper reports our
initial efforts at formalizing and generalizing this plan language.

In learning a programming language, novices have two fundamental difficulties,
both of which are addressed in our plan language:

Relating experience with informal plans to programming: Empirical evidence
[Bonar and Soloway, 1985; Kahney and Eisenstadt, 1982] suggests that novice
programmers bring a vocabulary of programming-like plans from everyday
experience with procedural specifications of activities expressed in natural
language. These plans come from experience with step-by-step instructions like
"check all the student scores and give me an average" or "see that hallway, if any
doors are open close them." These informal plans, however, are often extremely
difficult for novices to reconcile witk .,- much more formal plans used in
standard programming languages. 1N for example, that both example
phrases involve an iteration without any specific mention of a repeated action.

Translating formal plans into programming constructs: Even if a student
recognizes particular formal plans, they are likely to have difficulty translating
plans into programming code. A running total, for example, is implemented in
Pascal with four statements, dispersed throughout a program: a variable
declaration, an initialization above a loop, an update inside that loop, and a use 0
below the loop. Epohrer et al. [19851 have shown that plan-to-code translation 0
errors account for many student errors.

In responding to these problems, we have developed four objectives for our visual
plan-based programming language for novices:

- odes

Av t iand/orJ tSt speil 5

2 A Visual Programming Language for Novices

(1) Allow users to "connect" to their informal (primitive) plans. Unless novices
can recognize how their own understanding of plans fits into the
programming environment they are being faced with, they will find it
impossible to formulate correct solutions.

(2) Support novice programmers in learning a "vocabulary" of programming
plans. Eventually, the user would begin to think in terms of the
programming plans themselves, not the informal plans. Not only is there a
catalog of plans, but students are able to create their own plans.

(3) Support novice programmers in learning how to implement plans with a
standard programming language. The ultimate goal is that the user will
learn enough to be able to program in a standard programming language
such as Pascal.

(4) Support the use of plan-like composition of programs. Plans can be seen as
the essence of good program comments. To the extent that a program uses a
vocabulary of plans, the program will be easy to read and understand.

These goals create an environment that supports a new, higher level programming
language, as suggested by Winograd (19791. Though our intention is to teach a
standard language, e.g. Pascal, not all users need continue on to this additional level of
complexity. Those students that do not learn Pascal are limited to using the provided
plans. The more a student learns about translating plans into code, the more directly
they can express their intentions.

2. Programming Languages for Novices
The approach presented here grew from our concern with the conceptual distance

between the syntax and semantics of programming languages like Pascal and the
purpose and goals realized by that code. We felt that the programming task, as
typically presented, confronts students with an enormous gap between goals and code.
The BridgeTalk visual language presented here is intended to "bridge" this gap.

To illustrate the gap between goals and code in Pascal, consider the goal of

"keeping a count" as implemented in Pascal:

* Above the loop - A programmer must declare a counter variable and initialize it
to zero using an assignment statement.

* Inside the loop - The counter must be incremented, again using an assignment

statement with a peculiarly non-algebraic construction:

Count := Count + 1.

Bonar and Liffick 3

Although an elementary concept, this is a very weird construction when viewed
from outside the domain of programming. It requires a particular model of how
computer memory is implemented in terms of extracting a value from a memory
cell, incrementing the value, and storing the result back in the same cell.
(Burstein [19861 discusses the assignment construct in detail.)

0 Below the loop - The counter value must actually be used below the loop.

In summary, the simple goal of "keeping a count" has been spread throughout the
program and buried in general purpose constructs. The design of these constructs is
more closely related to the architecture of a register-based computer than to any
problem actually being solved in the code.

Languages like Pascal are rooted in a programming model that is not closely
related to the purpose and goals of the programmer using the language. Research into
how novices learn programming confirms that the semantics of typical programming
languages are not closely related to the way a typical novice understands a program
[Bonar 1987). Success with programming seems to be tied to a novice's ability to
recognize general goals in the description of a task, and to translate those goals into
actual program code (see, for example, Eisenstadt et al. [19811, Mayer [1979], or
Soloway and Ehrlich [1984].) Our approach, embedded in the design of the BridgeTalk
visual language, allows students to explicitly represent their goals and describe how
those goals interrelate.

2.1 Programming Plans: How Novices Learn to Program

Most programming texts teach students almost nothing about standard
programming practices between the statement level and the fairly vague "structured
design" level. That there are standard concepts and techniques for implementing
common tasks is rarely mentioned. Typical tasks like "keeping a running total,"
"iterating down a list," and "searching a binary tree" are usually only covered
implicitly through examples. (See Bonar and Weil [1986] for a collection of such
concepts and techniques for introductory Pascal programmers.) We call these
"standard concepts and techniques" programming plans, after the usage introduced by
the Programmer's Apprentice Project (Rich and Shrobe, 1976; Waters, 19811.

In the last few paragraphs, we discussed the difficulties novice programmers have
mapping task goals into code. Programming plans provide a representation of the goals
of their task, a set of tools for translating those goals into actual code. BridgeTalk is
intended to provide studehts with a way to program by manipulating plans.

Programming textbooks typically introduce a programming language by
discussing the syntax and semantics of each statement type. Unfortunately, this
approach exacerbates a common novice tendency to adopt a syntactic matching strategy

4 A Visual Programming Language for Novices

for problem solving. For example, physics students will often attempt to solve
elementary mechanics problems by matching knowns and unknowns against standard
formulae (Chi et al., 1981). Their problem solving degenerates into a syntax-directed
search with no understanding of the quantities being manipulated. Experts, in
contrast, analyze a problem in terms of standard intermediate concepts and techniques
from past experience. In physics, for example, these concepts and techniques include
"component vectors", free body diagrams, and conservation of energy.

Programming novices exhibit syntactic strategies similar to those of the physics
novices. In our video protocols of novice programmers [Bonar, 1985] we see novices
working linearly through a program, choosing each statement based on syntactic
features of the problem text or program code. Programming plans are exactly the
concepts students need to step above the syntactic approach. Students can work on
programming problems using standard approaches as encoded in plans.

A language that allows students to use programming plans has other advantages.
Because the plans are high level, they allow the student to directly address
interrelationships, in particular plan merging. Plan merging is necessary because
programming plans typically have several facets that end up as dispersed lines of code.
We saw this earlier with the counter plan example. When the counter increment must
be placed inside of a loop body after the loop test, we are merging a facet of the counter
plan with a facet of the loop plan. Errors in this plan merging process form a critical
area of novice difficulty [Spohrer et al. £1985]. With an explicit plan representation,
students can work directly with plans and plan interactions, without confusion about
exactly how the merged plans will be turned into code.

2.2 Why Current Programming Languages are Unsuitable for Novices

The goals and constructs of standard programming languages are inconsistent
with the needs of novice programmers. This can best be seen by examining the
aesthetics used to judge standard programming languages: economy of expression,
distrust of defaults and implicit behavior, emphasis on abstraction and abstraction
tools, and efficiency on standard computer architectures. Here, we take up each point
in detail.

2.2.1 Economy of Expression

Given similar functionality, programming languages with fewer constructs are
almost always considered better then those with more. Pascal is considered an
excellent programming language design because it managed to add substantial new
functionality - user defined types - and embody a new approach - structured
programming - in a language with substantially fewer constructs than its predecessor
ALGOL 60. The history of LISP has been driven by language researchers looking for
one abstract construct that can be used to efficiently implement a host of more

Bonar and Liffick 5

specialized constructs. Finally, one of the most common criticisms of the language Ada
is its large size and firm opposition to "subsets".

Economy of expression makes sense when considering the implementation of a
programming language, but seems to interfere with an important part of learning
programming. As discussed above, a wealth of evidence now exists that expert
programmers use a large collection of programming plans - standard templates and
structures for accomplishing typical programming tasks. Experienced programmers
effortlessly implement hundreds or even thousands of such plans [Waters, 1985] in
programming languages with relatively few - on the order of 50 - constructs.

Novice programmers, on the other hand, have major difficulties implementing
plans with programming language constructs. Evidence from our own work [Bonar and
Soloway, 1985; Bonar et al., 19861 suggests that novice programmers bring a
vocabulary of programming-like plans from experience with procedural specification in
natural language. The translation of these natural language plans into the the narrow,
low level constructs provided by a programming language is a critical and often
insurmountable problem.

Acquiring the new plans that are essential to mastering programming is certainly
difficult. This difficulty is compounded because novices not only need to acquire the
plans, but they also need to learn how to translate the plans into a programming
language. Because the natural language plans are rooted in real world day-to-day
procedural specifications, it is very tough for a novice to translate them into a sparce
and formal set of programming language constructs.

To illustrate the general problem, consider the following excerpt from an interview
with an introductory Pascal student. She was writing a program that reads, sums, and
counts inside a loop. She had written the following lines (line numbers are given for
reference):

(1) repeat
(2) Read (New);

(3) Sum := Sum + New;

(4) Count := Count + 1

(5) until Count > 100

The first author asked this student if line (3) was a "different kind of statements" than
line (4). To our surprise, she stated that even though these statements "look alike,"
they were quite dissimilar. She went on to explain that line (3) "has something to do
with something you are gonna ... take out of the loop with you." On the other hand, she
explained, line (4) "keeps the loop under control." We contend the student has a deep
understanding of the programming issues involved, even though she may have a weak

6 A Visual Programming Language for Novices

understanding of the specific Pascal constructs. While she has a firm grasp on the plans
to be accomplished, she has a much weaker grasp on the language design constraint
that would cause statements with such different purposes to have such a similar look.

We conclude that the emphasis on economy of expression in most modern
programming languages is misplaced in designing languages for novice programmers.
By looking for ever more abstracted ways to express similar procedural behavior,
modern languages have excised most clues of goal and purpose that are essential to
novice understanding of a program. The student discussed above would have much
preferred a language with two constructs, "counter update" and "running total update",
to Pascal which subsumes these (and many other) plans in the assignment statement.
For this reason, BridgeTalk is a richer language than standard languages like Pascal.
The richness in BridgeTalk expresses a catalog of standard plans.

2.2.2 Distrust of Defaults and Implicit Behavior

Another trend in the development of programming languages has been the
systematic removal of defaults and implicit behavior. Whereas early languages such as
FORTRAN and BASIC assumed properties and initial values for variables - for
instance, based on the first letter of the variable's name - such assumptions are rare in
modern languages. The trend to deemphasize default and implicit behavior is
consistent with the trend toward economy of expression. Typically, defaults and
implicit behavior add more complexity to a language. For example, a programming
language designer would argue against a default value mechanism when standard

assignment statements at the top of a program can accomplish the same end. Even
where defaults reduce the number of tokens needed in a program - implicit typing of
variables, for example - the defaults complicate a formal description of how the
program runs.

As with economy of expression, the lack of defaults and implicit behavior makes
standard programming languages much more difficult for novice programmers. While
it is no extra work for an expert programmer to know to explicitly specify that a counter
is to be incremented by one, it is a confusing burden to a novice. As expert
programmers, we all can remember (or conjure up) a few circumstances where a
problem is best solved by incrementing a counter by other than one. Even though such

circumstances are exceedingly rare, we force every novice to explicitly specify this, as if
a counter were commonly implemented in some other way.

Consider another example. Plans like "iterate down a list" are typically
implemented with constructs that begin by testing for a condition that indicates we
have finished the entire list. Readers with programming experience will need to
consider for a moment to realize that this is very peculiar. First of all, it makes little

sense to put an ending test at the beginning of the construct, before we've talked about

= I 0I I I I
Bonar and Liffick 7

what the construct is to do. Second, it is strange that the list structure itself does not

"know" where its end is, recognize the end, and take some appropriate default action to
stop the iteration. Such examples of missing defaults are pervasive. We give novice
programmers considerable extra work by forcing them to translate common plans into

much lower level programming language constructs.

2.2.3 Emphasize Abstraction and Abstraction Tools.

Modem programming languages emphasize tools for abstraction. Current
programming language design and development focuses on developing language
constructs that capture and summarize structure and function for later use. For
example, older languages provide control structures while more modern languages
provide tools for interprocess communication, with the original control structures
available as special cases. As another example, older languages focus on memory
management while newer languages focus on data structuring and reuse of
components.

As we have discussed above, non-programmers do not need tools for more abstract

expression of programming plans; they need more direct ways to express the actual
plans. The formal power of highly abstract constructs is in contrast to the pragmatic
familiarity of programming plans. From the point of view of a procedural mechanism,
an assignment statement is an abstraction that simplifies and subsumes a host of
specific "changes to a variable," including, in particular, incrementing a counter.
However, by stripping out the real world pragmatics that underlie programming plans,
such abstractions make much of the programming process implicit and unavailable to
novice programmers.

2.2.4 Efficiency on Standard Computer Architectures

A crucial constraint in most modern programming languages is that the language
run efficiently on standard computer architectures. Pascal, for example, in its
implementation of sets and rigid specification of ordering among program components,
was intentionally tailored for efficiency of implementation. The designer of Pascal set
the development of "implementations . . . which are both reliable and efficient on
presently available computers" (Wirth, 1971] as his second of two principal aims for the
language. While such an aim is obvious in a language for professional programmers, it

is questionable in a language for novice programmers.

Many programming constructs are quite confusing to a novice programmer. For
example, the assignment statement has peculiar semantics when seen from a
perspective other than one that understands the basic working of registers and
synchronous busses. In our daily experience it is rare that copying is simpler to specify
than movement, as it is with assignment. Furthermore, in our daily experience we

8 A Visual Programming Language for Novices

rarely encounter values that are easier to destroy than to displace, again as it is with
assignment.

2.3 How Can Visual Languages Help Novices

There are two basic reasons to turn to a visual language in a programming
language for novices. First, a visual language provides the flexibility and
expressiveness needed for a novice language to express a large vocabulary of
programming plans. In our experience, a linear textual version of a plan-based
programming language is quite unwieldy. Second, from a point of view of novice
cognitive capability, a visual language is less likely to tax a novice's working memory.
We discuss each of these poir ts in detail.

2.3.1 Visual Languages for Expressing Plans

In BridgeTalk the emphasis is on identifying the formal plan components and
expressing their interrelationships. As discussed above, correct expression of plan
interrelationships has been shown to be critically difficult for novices, particularly
where those interrelationships result in the merging of several plans into one sequence
of code (Spohrer and Soloway, 19851. BridgeTalk provides an environment where
students can focus on plan interrelationships.

The various BridgeTalk constructs are implemented as icons that can be picked up,
manipulated, placed, and connected together. The critical constraint that dictated this
approach was the need for a language that allowed atomic plans with multiple
connections of different types. The essentially linear nature of textual languages
makes it very difficult to express interconnections. Furthermore, since plans represent
rich, high-level programming objects, it is sensible to depict them as icons that suggest
their function. In fact, the current iconic representation was suggested by the confusion
of students using earlier textual versions. (See section 4 where we Uiscuss the
formative evaluation of BridgeTalk.) Although the plans of BridgeTalk are not
completely general, they do allow a student to focus on the pragmatic knowledge that
stands above particular programming language implementations of that knowledge.

2.3.2 Visual Languages and Novice Cognition

Anderson [19851 has documented novice programmer errors which arise from
overloading the student's working memory. rhe difference between novices and
experts, they found, was the ability of experts to organize and structure their
knowledge within working memory. Other work (cited earlier) points to plans as the
kinds of structures used by experts. By providing plan icons and a way to interconnect
those plans, we give students a structure to use i. organizing their understanding and
problem solving.

Bonar and Lfick 9

2.4 Design Goals For BridgeTalk

There are four objectives for BridgeTalk:

(1) Allow users to "connect" to their informal (primitive) plans.

(2) Support novice programmers in learning a "vocabulary" of programming
plans.

(3) Support novice programmers in learning how to impl-ment plans with a
standard programming language.

(4) Support the use of plan-like composition of programs.

We take up each of these goals separately.

2.4.1 Connecting to Informal Plans

Unless novices an recognize how their own understanding of plans fits into the
programming environment they face, they will find it impossible to formulate correct
solutions. Novice programmers have a large vocabulary of informal plans based on
experience with step-by-step procedures in everyday life. We want, BridgeTalk to
connect to and build on this understanding. A subset of the plan icons in BridgeTalk
must connect to the collection of naive plans brought in by programming novices.

This goal yields several benefits. First, there is the obvious benefit that students
have at least some familiarity with the system, even before their first use.
Furthermore, the informal plans brought in by a novice are typically a simplified form
of plans that are central for experienced programmers. Finally, a simplifled novice
plan forms a good starting place for understanding the related set of richer, more
formally specified expert plans.

Note that we are not arguing that a novices' collection of naive plans is sufficient
for sophisticated programming. Instead, we are recognizing the importance of giving a
beginner an anchor point in a new domain. We are very clear that experienced
programmers have a much richer set of programming plans than a novice. We are also
clear that the plans of an expert programmer are more fully articul-Ited and elaborated
than the plans of a novice. Nonetheless, we see great value in supporting the growth of
a novice from primitive plans that are already known.

2.4.2 Developing an Explicit Vocabulary of Programming Plans

Although we begin with a student's informal plans, our ultimate goal is that a
student leaves a programming course with a rich set of highly articulated programming
plans. Even in a language with no explicit plan structure, e.g. Pascal, successful
students do leave a course with a rich vocabulary of plans. With BridgeTalk, we
provide a mechanim for this vocabulary to be an explicit part of programming
instruction.

10 A Visual Programming Language for Novices

An explicit vocabulary of plans provides an opportunity to formally specify
programming curriculum. Although elementary programming courses often discuss
issues of design, abstraction, and structure, this is rarely done with any rigor. We
suggest that the rigor is missing because there is no adequate vocabulary with which to
discuss programming design. Typical programming constructs operate at too low a
level. At the other end of the spectrum, formal approaches to correctness offer little to a

student still attempting to understand the design space of programming.

Essential to the development of a plan vocabulary are techniques for extending and
modifying plans in a systematic way. In BridgeTalk we provide techniques for
extending and specializing a particular plan. Students just beginning with BridgeTalk
can use the plans provided with the system. More experienced students can develop
their own plan vocabulary.

2.4.3 Implementing Plans With a Standard Programming Language

If a student desires, BridgeTalk should support that student in learning to program
in a standard programming language such as Pascal. In general, this means that the
plan formalism must provide a way to derive a conventional program from any plan
program. BridgeTalk provides a mechanism whereby students can successively "look
inside" a plan, and at each level reveal an implementation closer and closer to typical
programming constructs. This approach takes advantage of the strengths of both plans
and programming constructs. On one hand, the plans abstract away from particular
programming constructs, specifying higher level goals. On the other hand, the
programming constructs are more general purpose than the plans.

The system is layered for interrelated implementation and pedagogical reasons.
By providing various layers, we can take advantage of shared structure between
various plans. For example, the counter plan is a specialization of the running total
plan, and is implemented that way. Pedagogically, it is valuable for students to see the
shared structure inherent in the various plans. By using multiple layers, we need only
show the plan components required to illustrate the commonality, without showing all
the underlying detail. So, for example, the counter plan can be described as a
specialization of the running total plan where the update is always one. Note that most
details of the plan implementations need not be understood to understand their
commonality.

2.4.4 Supporting Plan-like Composition of Programs

The final design goal is that BridgeTalk support programming by plan
composition. To support this goal each particular plan has a single icon. We feel this is
crucial if we are to allow a student to focus directly on plan interconnection separate
from other issues. As discussed above, one of the crucial difficulties of a programming
language like Pascal is that simple plans can end up expressed in several dispersed

Bonar and Liffick 11

lines of code. Our goal for BridgeTalk is a representation that maintains a plan as an
atomic element.

Even though the plans are atomic, we must be able to distinguish between
components contained within the plan. For example, a looping plan needs to have
separate subcomponents that represent a test, a body, and a modification that can
change the value of the test.

3. A Visual Language for Novices
3.1 Informal Overview

A key design constraint of the BridgeTalk language is that each particular plan
has a single icon. We feel this is crucial if we are to allow a student to focus directly on
plan interconnection separate from other issues. As discussed above, one of the crucial
difficulties of a programming language such as Pascal is that simple plans can end up
expressed in several dispersed lines of code. Our goal for BridgeTalk is a representation
that maintains a plan as an atomic element.

Consider the following example programming problem, which is used in our
discussion. We call this the Ending Value Averaging Problem. The problem is:

Write a program which repeatedly reads in integers until it reads in the integer
99999. After seeing 99999, it should print out the CORRECT AVERAGE without
counting the final 99999.

The BridgeTalk plan icons used for the Ending Value Averaging Loop plan are shown
in Figures 1 and 2. The general metaphor of the plan language is that of puzzle pieces
being fit together. Plans with similar shapes have similar kinds of roles in a program.
Plans that express a sequence of values in a variable, called "variable plans," are shown
as squares (see Figure 1). Each of these plan icons embodies the entire semantics of a

particular plan.

The Counter plan, for example, keeps and shows a value (the count so far), knows to
initialize itself to zero, and increments its value by a specified amount every time
control flows through it. The Running Total plan similarly keeps and shows a value
(the total so far), knows to initialize itself to zero, and adds the value of another plan
into the total so far (how the connection with the plan that supplies the value is
expressed is discussed b.low.) The Input plan gets a sequence of values from the user of
the program. Every time control passes through the plan a new value is requested from
the user.

In addition to the variable plans, Figure 1 shows a Compute plan. The Compute
plan uses values supplied by variable plans (the connection to a variable plan is

12 A Visual Programming Language for Novices

described below), and an operation selected by the user. The operation is specified by
mouse selection on the operator box and selecting an operator symbol off a pop-up
menu. When control passes through the Compute plan the operation is performed with
the current values of the associated variable plans.

Figure 2 shows a New Value Controlled Loop plan, one of the most complex plan
icons in BridgeTalk. There are four components of the New Value Controlled Loop
plan:

new value generator - A variable plan to produce a series of values, each of which
is tested to determine when to exit the loop. Typically the new value
generator is an input plan that requests values from the user. It could
also be a random number generator or a traversal of a data structure.

end of loop condition - A test to determine when to exit the loop. Note that this
test is constrained to do a particular kind of test: checking each new
value. Another loop that requires a different sort of test - for
example, to see if the running total has exceeded a particular value -
requires a different plan.

body of loop - A series of plan icons to be executed in the body of the loop.

actions to be performed after loop is complete - A series of plan icons to be
executed when the loop completes.

The key idea with the New Value Controlled Loop plan is to hide all the syntactic and
control flow complexity that a student would need to confront to implement such a loop
in a standard language. (Soloway, et al. [1983] presents detailed data on this
complexity.)

Figure 3 shows a BridgeTalk solution to the Ending Value Averaging problem.
The focus of BridgeTalk is on the connections between the plans. In particular, there
are two kinds of connections that students must master: control flow and data flow.
Control flow expresses the order of execution for the plans. In BridgeTalk control flow
is expressed explicitly by connecting the puzzle-piece tabs together. Plans are executed
in a top-to-bottom order. So, for example, in Figure 3 the Compute Plan is executed
before the Output Plan.

In addition to control flow, students must also express data flow. Specifically,
students must show how values computed in one plan are used in other plans. This is
done with a special plan called a Value plan. Value plans can be placed in holes within
plans that are expecting values from another plan (a Value plan and corresponding hole
are shown in Figure 4.) Value plans are created by selecting the box labeled "Value"
within a plan that can produce a value. Figure 5a shows a Running Total plan whose
value box has just been selected. Such a selection creates a Value plan icon that is

Bonar and Liffick 13

attached to the mouse cursor. The data flow connection is established by dragging the
Value plan to the plan that needs the value, and placing it in the appropriate hole.
Figure 5b shows the Value plan from the Running Total plan being placed in a hole of
the Compute plan.

We have made the decision that BridgeTalk expresses control flow in a more direct
way than data flow. Control flow connections have a direct visual expression. If plan A
is executed before plan B, the tab on the top of B's icon fits into the slot on the bottom of
A's icon. Data flow connections, while specified directly by dragging an object from one
plan to another, leave a much more subtle visual clue. In theory, we could have
designed the plan language to emphasize visual expression of data flow instead of
control flow, or even to emphasize either, depending on a mode selected by the user.
One earlier plan language had a visual representation for both control and data flow
simultaneously, but proved to be too complex and unwieldy for our students. We chose
to favor control flow over data flow in order to best match Pascal, the current "default"
novice programming language.

3.2 Formal Description

This section describes a formal representation for plans that forms the basis for our
visual programming environment to aid novices in learning to program. Our approach
allows several representations of a problem solution. The user is able to navigate from
one representation to another in order to obtain different points of view on the solution.
The problem solution can be modified from any one of these representations, or levels.
The solution is descriptive at the highest level, prescriptive at the lowest. This top level
uses icons to identify specific plans that the user links together appropriately. At the
lowest level is source code for a textual, procedural language, such as Pascal.

3.2.1 Plan Representation

The plan formalism is based on object-oriented programming. For each type of plan
there is a class that specifies the local data and operations of that plan. Instances of a
plan class can then be created, each with their own copy of the local data. The user
organizes these instances into a particular execution order using abuttment,
embedding, and merging.

Each plan is represented with up to four parts:
ParentClass - this section provides a link indicating a hierarchical relationship among

plans for purposes of taxonomy and inheritance. Each plan is a member of

exactly one class. If this section is missing, there is no parent class to the plan.

14 A Visual Programming Language for Novices

Slots - each plan can have zero or more slots, which provide one of two types of entities

- data or plan links. The data slots are untyped at this stage of the system, and

contain a single value. One slot can be distinguished as the "value" slot for

this plan, meaning that the plan acts like a function and creates a single value

that can be used elsewhere. The plan links provide a method for referring to

other plans for purposes of abuttment and embedding.

Initialization - this optional section contains "executable code" that is performed once

when the plan is first accessed. Whenever a plan is entered, if its initialization

section has not been previously executed, it is fired. As a special condition,

when a loop plan is entered, it fires its initialization section and the

initialization sections of all plans contained in its body.

Execution - this optional section contains "executable code" that is performed

whenever the plan is accessed.

The code given in the Initialization and Execution sections is expressed in a simple

pseudo-code which creates the required control structures. This code can be easily
translated into a standard programming language such as Pascal, given the plan
representations and the pseudo-code. There are sufficient constraints on the
representation to make this a straightforward process. It can be done incrementally,
allowing for user modification of the code. The user will have access to this code,
allowing him/her to examine the way a plan is implemented in a standard
programming language.

Figure 6 gives an example of the above scheme. This example forms a hierarchy of
refinement for the notion of a counter. At the top-most level is a Loop Action plan. The
lack of a ParentClass designation simply means that this plan inherits from no other

class. In addition, there are no Slots, Initialization, or Execution sections associated
with this type of plan. Its purpose in the taxonomy of plans is to indicate that any plan
decended from the Loop Action class must be used within the body of a loop.

Next, the Running Total plan contains three slots, all data slots. The angled
brackets (< >) indicate data that has no pre-specified value. The slot Total has been

prefixed with "value." as an indication that it is the distinguished slot that will be
taken as the value of this plan. Finally, the Initial slot has been given an explicit value
of zero. The asterisk indicates that this is a default value, and can therefore be changed
by the programmer.

Bonar and Liffick 15

The Initialization and Execution sections give typical "code" for how a running total
works. As a member of the Loop Action class, the Running Total plan will naturally be
embedded in a loop of some kind, so there is no need to explicitly specify the loop itself
here.

The Constant Running Total plan is a specialization of the Running Total plan.
The only difference is that the addend is a constant of some sort, so that this plan sums
a single value over and over. The one slot in this plan shows two additional notations.
First, the slot Addend that was used in the Running Total plan has been renamed to
Increment. This renaming is indicated syntactically by using a concatenation of the
two names. The renaming makes it easier to construct meaningful messages for the
user. Second, this slot has been redefined to include a link to another plan, namely the
Constant plan which asks the user for a value for the constant to be summed.

Finally, the Counter plan shows a further refinement of the Addend.Increment slot
to be a specific value of 1 (default). In addition, the slot Total that was inherited from
some parent class (in this case, from Running Total) has been renamed to Count. The
renaming does not affect the designation of this slot as the "value" slot, however.

3.2.3 Inheritance

Each plan must specify a parent class explicitly, unless there is no parent. This
provides a linkage for the inheritance mechanism.

Slots are inherited from all predecessors, but may be renamed or redefined. Note in
the example given in Figure 6 that the Counter plan has inherited (and renamed) the
Total slot from the Running Total plan, although the intervening plan (Constant
Running Total) does not explicitly reference it. In addition, the Counter plan inherits
Total's designation as the distinguished value of the Running Total plan.

The Initialization and Execution sections can also be inherited. In this case, both
are inherited by successors from the Running Total plan. The renaming and redefining
mechanisms allow us to think of the execution of the Counter plan as

Count <-- Count + 1.

In addition, it allows us in conversation with the user to describe the "1" as an
"increment" rather than as an "addend."

3.2.4 A More Complex Example

Figure 7 shows the representation of the Ending Value Averaging Loop plan and
its components. This plan is used to calculate the average of a running total of values
that are entered by the user.

16 A Visual Programming Language for Novices

Some additional notation occurs in this example. Note that it is possible to pass
values to linked plans. For instance, in the case of the Average slot, the Average plan is

passed the values of Total and Count with which the Average plan will compute the

average. These values are substituted for the slots Dividend and Divisor, respectively,

in the Average plan. The Output slot sends this average to the Output plan.

The Execution section of the Ending Value Averaging Loop plan shows how slots

can be executed by sending them an Execute message. The meaning of this code is that
the slots identified are to be executed sequentially, forming an abuttment of the plans
contained in the named slots.

Note that the Loop slot contains a reference to the Sentinel Loop plan. This

Sentinel Loop plan is a subclass of the New Value Controlled Loop plan. The Sentinel
Loop plan does not have any executable sections, but does define three new slots that
will be used during execution. In addition, even though the Sentinel Loop plan itself

does not contain a slot called Body, as referenced in the Loop slot of the Ending Value
Averaging Loop plan, it inherits such a slot from its parent class, the New Value
Controlled Loop plan.

The Body slot requires some additional explanation. Generally, a slot being used

as a parameter contains the name of a single value or slot. In the case of Body, however,

several slots (and, therefore, plans) can be abutted to form, for instance, the body of a
loop. The Body slot, then, acts similar to a BEGIN-END block in Pascal. In this

example, the body of the Ending Value Averaging Loop plan is identified as being the
Total slot (and, consequently, the Running Total plan), followed by the Count slot

(linking to the Counter plan.

Finally, note that the code for performing the actual looping action appears only in
the New Value Controlled Loop plan. The Ending Value Averaging Loop plan and the
Sentinel Loop plan leave this detail to another level so that it can been hidden from the
user to some extent. In this case, this executable code is inherited by the Sentinel Loop
plan, where the values given in its slots (which are references to other plans) are used to
"fill in the blanks" of the code. In this way, a subclass plan can redefine slots that have
been originally defined in its parent plan.

The Body of the loop in the executable code given in the New Value Controlled Loop

plan actually comes from the Ending Value Averaging Loop plan. In this way, the
actual contents of the loop body can be customized to fit the requirements of particular
plans. In this case, it is the Ending Value Averaging Loop plan that should define that
the body of the loop contains Running Total and Counter plans. The Sentinel Loop plan
is not responsible for this detail, since its only concern should be how to construct a

sentinel-valued loop.

Bonar and Liffick 17

3.2.5 Meeting the Goals

The notions of programming plans and informal natural language plans are
fundamental to this system. The "connection" between these two types of plans
obviously must be provided in a natural, easily understood manner in order to be
obvious to a novice. Using plans already is a first step toward providing an intuitive
environment. It will be the responsibility of the interface to provide the rest of the
connection that is required. This is one of the main reasons why a visual programming
environment is desireable. The interface would naturally need to include appropriate
icons for the available plans, a graphics editor for creating a program, execution
displays, etc. The rest of the discussion in this section assumes a suitable interactive
interface, much like the one currently available in the Bridge programming tutor
[Bonar et al. 19871.

Initially the novice would use plans at the highest possible level, constructing
programs by selecting from a menu of plan icons and connecting the icons together
using abuttment, embedding, and merging. For instance, he/she might use the Ending
Value Averaging Loop plan with only the understanding that such a plan, would
somehow total up a series of numbers and compute their average. This can be seen
simply by looking at the representation for Ending Value Averaging Loop plan given in
Figure 7, for instance, without referring to any of its sub-plans. Exactly how this will
be presented to the user visually is not restricted by the representation given above.
The actual formal representation could be one of the alternate representations
available to the user, or could be just the base representation for all others without
being visible itself.

A curious student, however, would probably want to know more about the plans
identified in the slots of the Ending Value Averaging Loop plan. In such a case, the
user could ask the system to navigate the hierarchy so that he/she could view, for
instance, the Sentinel Loop plan. In this way the user can study the taxonomy of the
plans, and learn something about plan construction.

Further interest might lead the user to examine the code that implements the
Sentinel Loop plan (as inherited from the New Value Controlled Loop plan). This can
be derived from the representation given in Figure 7. Exactly what form this will take
is yet to be determined. Possibilities include diplaying the pseudo-code shown in Figure
7, as well as an implementation in a standard language such as Pascal. In addition, it is
possible to allow the user to modify this code directly, rather than relying entirely on
the iconic representations of the plans. This lets the user -- as his/her skill grows -- to
define his/her own plans. Selective execution of code is also possible with the system.
This all helps the user to understand programming plans and their peculiar
vocabulary.

18 A Visual Programming Language for Novices

The navigation described above takes place in two distinctly different ways. In
moving from the Ending Value Averaging Loop plan to viewing the Sentinel Loop plan,
the user is scanning the details of the plan itself and its various component parts.
Figure 8 shows a graphical representation of the Ending Value Averaging Loop plan
and its components, as developed from the plan description of Figure 7 with all
inheritences resolved. This figure has fairly standard connotations of hierarchy of the
plans involved. It also contains some indication of plan construction -- the
multi-branched lines indicate abuttment of plans, as in the case of the Loop, Average,
and Output slots of the Ending Value Averaging Loop plan, and the Running Total and

Counter plans (via the Total and Count slots, respectively) contained in the Body of the
Sentinel Loop. This figure shows the plans involved with the Ending Value Averaging
Loop mechanism at their highest level, which is essentially descriptive.

A second way that the plans might be navigated, changing to a different point of
view, is through the Class hierarchy. This was somewhat implied by viewing the code
implementing the Sentinel Loop plan above, inherited from the New Value Controlled
Loop plan. Figure 9 shows a more specific example. Counter is shown to be a sub-class
of the Constant Running Total plan, which in turn is a sub-class of the Running Total
plan, which is a Loop Action plan. The slots of the Running Total plan are inherited by
the lower levels. In this case, the Initial slot is inherited without modification by lower
levels.

The Constant Running Total plan is shown redefining and renaming the Addend

slot from its predecessor. The Counter plan also redefines this slot further. The
Counter plan also renames the Total slot from above.

Navigating this hierarchy is considerably different than in the previous case
shown in Figure 8. When moving from the Counter plan to the Constant Running Total
plan, to the Running Total plan, we are moving from more specific levels to more
general ones. It is more specific to say that we are counting, with an increment of 1,
than to keep a running total of some unspecified addend.

This hierarchy can be considered as orthogonal to the one shown in Figure 8. It
represents additional detail that the user can explore for a deeper understanding of
programming. Traversing these levels also lets users explore the plan taxonomy on
another level. In this way the user gains a more sophisticated point of view of the
programming environment.

3.3 Implementation

A detailed discussion of the implementation of the plan language discussed above
is beyond the scope of this article. The current prototype is implemented in LOOPS, an

Bonar and Liflck 19

object-oriented extension to Interlisp-D on Xerox 11xx workstations. BridgeTalk is
embedded within the Bridge intelligent tutoring system for teaching Pascal [Bonar, et
al. 1987]. The visual language is developed in Chips, a tool for building direct
manipulation interfaces developed at the University of Pittsburgh's Learning Research
and Development Center [Corbett and Cunningham, 1987]. Chips was particularly
valuable in allowing the rapid development of prototype visual interfaces for testing
with students.

BridgeTalk is the result of an indepth cycle of research, design, testing with
students, and evaluation. As is documented in detail in the next section, BridgeTalk
has been through six distinct generations of that cycle. The first two generations each
took six person-months of program development time, along with one person-month
each of empirical testing. The last four generations were each developed in less than
three person-weeks, using the Chips interface design tool. Each of these last four
generations also took about a person-month of empirical testing.

4. Formative Evaluation and Design History
BridgeTalk has not been systematically tested against a standard programming

language like Pascal in a classroom situation, though such a test is planned.
BridgeTalk is the result, however, of a long process of formative evaluation and
development. BridgeTalk has been extensively tested with students through a number
of different versions. In this section we summarize the design history of BridgeTalk
over the course of 6 generations.

4.1 Generation I

Figure 10 shows an Ending Value Averaging solution in the original version of
BridgeTalk. The student uses a mouse to "pick up" and place each element in its proper
place in the developing program.

There were two main objectives in this initial version of BridgeTalk. First, the
student was to gain a better understanding of the flow of control implied by the various
plans, and the interrelationships of the various plans. In the case of the loop construct,
an icon was supplied that was meant to show graphically what the looping entailed.
Two other icons, for input and output, were also supplied in an attempt to illustrate
their function.

The second objective was to begin to show a separation of the various roles each
plan may have. For instance, in the language of Figure 10 the user is faced with the
need to identify where the initialization of a variable should occur. In the case of the
Counter Variable plan, note the initialization and increment roles in separate locations
in the figure.

20 A Visual Programming Language for Novices

This version of BridgeTalk was deemed unsatisfactory for several reasons. First,
the user was required to develop an entirely new vocabulary in terms of the specific
plan phrases given. The phrases used were somewhat cryptic, making identification of
the proper plan difficult.

A second problem was with the icons. Aside from their crudity, they were not
particularly indicative of the function represented. The use of icons was also limited to
only three constructs, input, output, and looping. In addition, those icons served no
dynamic function, but were only somewhat abstract graphics used to highlight the
particular plans. The main reason these specific three plans were chosen for graphical
representations is that they seemed easily represented. It simply was not clear how to
represent the other plans neatly using this sort of graphics.

A third problem was that this new representation of a problem solution was still
static. This meant that the user still had to imagine how this solution actually would
work. The static nature of the solution representations required too much computing
skill from the user.

4.2 Generation 2

Version 2 of BridgeTalk was more data oriented. More complete descriptions of the
various roles of each plan were given. Figure 11 shows a selections of plans from this
second version. Plans are represented by boxes containing slots to be filled. Each slot
represents a role, represented as a tile, of some other plan. This helped make each plan
more self-explanatory. The underlying notion was that a plan could be more
systematically treated as a frame with slots. The control structures became frames,
and data were slots.

Figure 12 shows how a solution to the Ending Value Averaging problem was
formed. Either an entire plan or just its slots could be used in the final solution. In this
example, the Control Loop with Sentinel plan is used in its entirety. Its open slots are
filled with tiles from other plans. In the case of the Count How Many plan, only its tiles
are used, not the entire box identifying the plan.

While this approach does indeed make the data objects being manipulated more
identifiable, and does give more explicit help to the user in terms of explaining the
plans, there are still many problems. To begin with, the layout employed implies a
fairly loose interpretation of plans by the user. In some cases, the entire plan's box is
used. In others, only the tiles are used. In addition, sometimes these tiles are used to
fill in slots of other plans, while at other times they are simply placed individually in
the figure, with no direct connection to any other object in the figure. How does a novice
interpret these differences of use?

Bonar and Liffick 21

This approach also was too textual, giving up any advantage that might be gained
from a more graphical representation. While the use of graphics in the previous version
of was not particularly innovative, there at least was some suggestion of the dynamic
flow of control.

Finally, this version did not account for the prospect of nested plans. How might
the Compute the Result plan be placed inside the Control Loop with Sentinel plan, for
instance?

4.3 Generation 3

The next version added more suggestive shape to the representation. In addition, it
attempted to deal with the nesting issue. Figure 13 shows a loop with other plans
following it. Preceding the loop plan are representations of initialization roles for two
different variable plans. The basic representation is still, however, based on the notion
of frames and slots.

Although this version adds some graphics, as in the original version the graphics
are not particularly intuitive. In addition, they are still static. Up to this point in the
development, however, it was not clear that an executable version of this phase was
desireable. After lengthy consideration, it was decided to approach the phase with an
iconic language that was executable.

4.4 Generation 4

This is the first entirely graphical representation of BridgeTalk. Each plan is
represented by its own graphical object. The focus of this representation was on the
merging and coordination of the plans, for instance as in the case of the actions to be
performed as the body of a loop. In addition, this version was executable, allowing the
user to see the flow of control as well as changes in data.

Figure 14 shows an object representing a generalized Loop plan and a Compute
plan. In this case, the Loop plan currently contains a Counter plan and a Running
Total plan. The Loop Test is on a slide mechanism, and the user must position the test
with respect to other actions to be taken inside the loop. The Increment by and Update

by roles of the plans embedded in the loop are also on slides. The position of the
Initialize role of each of these plans is designed to indicate that they occur before the
loop begins.

The Value roles hold the current value of each of the plans. The boxes containing
these values are given -unique shading to make them distinguishable throughout the
program being created, as in the value implied by the Input plan given in the Loop plan.
These values can be copied to other locations in the program.

In Figure 15 you can see how these mechanisms work in a typical example. In this
example, the test condition of the loop has been positioned to occur before the Update

22 A Visual Programming Language for Novices

and Increment portions of the plans embedded in the loop. Also note that the value
generated by the Input plan is the same value used by the Running Total plan in its
Update by role (the shading of the two boxes is the same). Also, the Value role of the
Running Total is used in the Compute plan, along with the Value from the Counter
plan to produce the final Output of the program.

Note that an explicit flow control line has been attached between the Loop plan and
the Compute plan, and between the Compute plan and the Output plan. Also, there is a
flow line on the side of the Loop plan. These lines are animated as the program is
executed to indicate the order of execution. In the example shown in Figure 15, three
numbers were entered, producing a total of 120. The average was computed as 40.

While this version has the virtue of the suggestiveness of its icons, and it is
dynamic in nature, there is still at least one major problem that it creates, namely the
inconsistent semantics of its graphical constructs. For instance, control flow is shown
in three different ways: as flow lines; as a top to bottom precedence (e.g. the fact that the
Initialize roles of variable plans are executed before the loop because they appear on top
of their respective plans, and the Loop Test occurring before the Update and Increment
in the loop's body); and a left to right ordering (as evident in the loop body mechanism).

Another problem arises with the slide mechanisms used in some of the plans. What
does the slide mean with regard to the Running Total and Counter plans? It may be
somewhat clear as to why the slide in the Loop plan is necessary, but the only reason it
is present in the other plans seems %, be so that the Loop Test can be properly
positioned. In addition, what happens if the Loop Test and the Update and/or
Increment are positioned at the same level?

4.5 Generation 5

Part of the problems encountered by the version in generation 4 seemed to stem
from the lack of an analogy for the figures used. There was no intuitive component that
allowed users to recognize the meaning of the objects or their characteristics. In
addition, as noted above, ther was inconsistency in the flow of control.

Figure 16 shows a redesign of the graphical objects used to represent plans. The
design was influenced by the Transformer type of toys, with pieces being keyed to fit
particular places in other pieces. The flow of control was implied to be strict!y left to
right and top to bottom.

The design shown in Figure 16 turned out to be too "busy." Figure 17 shows a
refinement of the graphics in order to make the objects a bit simpler. Figure 18 shows
how some of these objects would fit together.

Bonar and Liffick 23

There were still some mechanical problems with this design, making the
attachment of some of the objects difficult. In addition, it turned out that the left-right,
top-bottom control flow was insufficient.

4.6 Generation 6

The current version of the visual language is shown in Figure 19. This design was
influenced by jig-saw puzzle pieces. The mechanics of this version work out better than
the previous version. In addition, control flow is more explicit, following the keyed tabs
on each object top-down. Data objects are rectangular shapes with Labs on the.r left and
right sides. Originally, these data objects were placed over a recepticle that contained a
"velco" substance for sticking them to. This was later changed to being simply holes
that were filled with the data objects.

Figure 20 shows a solution to an averaging problem. During the running of tne
visual solution, data flow is explicitly provided by having the values actually move
from one location to another. For instance, in this example, when a value is entered as
an input, the value would automatically be carried by a moving box to the New Value
location in the New Value Controlled Loop plan, and on down to the Update location in
the Running Total plan. Likewise, the Value from the Running Total plan and fror: the
Counter plan would be carried to the appropriate locations in the Compute plan. The
Value in the Compute plan would be carried down to the Output pls n.

There are still problems to be overcozie in this current version of the visual
language. For instance, the issue of nesting plans has still not been fully addressed. In
addition, there is still some concern that the shapes of the plans are not adequate in
their ability to evoke understanding by the user.

Despite the difficulties with the current version, what is clear at this point is that
the use of a visual language is effective.

5. Future Steps
There are several issues still to be resolved with BridgeTalk. These issues fall into

the general areas of visual appearence, implementation, and usage. We take up each
topic separately.

The most problematic issue with the visual appearence of BridgeTalk is the
difficulty of expressing nesting. In particular, the current version can visually express
only one level of nesting, and that one level with only a fixed number of contained
elements. The problem is that there must be only a small finite amount of space to put
a contained element if the parent icon is visually containing them. Inevitably, we will
need to go to some sort of grow/shrink scheme for the contained elements. We have

24 A Visual Programming Language for Novices

resisted this because it is inherently disturbing and confusing unless the grow/shrink
transistion is smooth and obviously reversable. Most visual languages address this
problem by using small icon elements that expand to windows. This solution is
unacceptable due to our experience suggesting the importance of icon shapes
suggesting the icon usage.

The BridgeTalk implementation is still incomplete. In particular, we still have not
completed the browsers that allow a user to navigate the structures showing plan
inheritance and implementation, as pictured in Figures 8 and 9. We will have a

challenge in distinguishing this representation from the specific plan icons used at the
surface level. On the otherhand, we feel these structures are a crucial tool for teaching
students to understand the management of abstraction.

The final area of future work suggested by this work is the most complex: how is
this tool and approach best used? In our attempt to tease apart the expression of
intentions to a computer, we have become increasingly suspicious of the glib discussion
of"top-down design" found in most programming textbooks. In particular, the design of
BridgeTalk shows that programming design involves many different mappings,
including: informal to formal, declarative to procedural, goals to plans and processes,
natural language to Pascal, linear structure to tree structure, and weakly constrained
to strongly constrained. We believe that programming texts do their students a
disservice by presenting a design model that at best ignores the differences between
novices and experts, and at worst is completly unrelated to actual programming
practice.

6. Conclusions
We have reported on BridgeTalk, a new approach to visual languages for novice

programmers. BridgeTalk is based on actual data about how novices learn to program.
It allows novices to program with programming plans, and focuses novices on the
interactions between plans, not on the implementation details for a particular plan.
Beginning with plans as a basis for a novice programming language, we were forced to
develop a programming formalism that could deal with multiple levels of detail,
merged plan implementations, and interrelationships between plans. Finally, we used
six "design, implement, test, and redesign" cycles to develop a specific visual
representation for the language.

A key contribution of this work is the systematic support for a plan-like view of
programming. We feel that such support is essential if programming languages are to
allow a programmer, novice or expert, to work with programming constructs that
reflect actual world semantics. Unfortunately, "high level programming language" has

Bonar and Limflck 25

come to mean more abstract data structures and more formal semantics. We advocate,
and have demonstrated the feasability of, "high level languages" that reflect the
semantics of real-world objects.

Consistant with a language that makes a richer connection to the semantics of
real-world objects, our language provides novices with a pathway from experience in
the real-world, to real-world plans, to standard programming language constructs.
Current software systems force a user to either use the system as is, or become a
programmer. BridgeTalk illustrates an approach that provides a smoother transition
with many intermediate steps along the way. That is, programming strictly with plans
simplifies programming by allowing users to draw on their knowledge of real-world
situations, but limits users to those plans provided in the system. Because the internals
of the plans can be examined, modified, and specialized, users can extend the power of
their system beyond the predefined plans.

One of the most important lessons of this work is the criticality of empiricial work
in the design of visual languages. Without the extensive empirical work documented in
this report, our language would be much poorer. Furthermore, the language would
more than likely be unsuitable for use with novices. There is no reason to believe that
languages designed based on purely formal and intuitive arguments will be usable.
Until a suitable theory of visual interface design emerges, we feel that computer
scientists must submit their visual languages to the test of real users under realistic
circumstances. Not only will this produce happier languages, we believe, but also
better science.

7. References

Bonar, J., Cunningham, R., Beatty, P., & Riggs, P. [1987]. Bridge: Intelligent
Tutoring With Intermediate Representations. Technical Report, Learning Research
and Development Center, University of Pittsburgh, Pittsburgh, PA 15260
Bonar, J., and Soloway, E. [1985]. Pre-programming Knowledge: A Major Source of
Misconceptions in Novice Programmers. Human-Computer Interaction, 1.

Bonar, J., Weil, W., & Jones, R. [19861. The Programming Plans Workbook.
Technical Report, Learning Research and Development Center, University of
Pittsburgh, Pittsburgh,.?A 15260

Cunningham, R., Corbett, J., & Bonar, J. [19871 The Chips Technical Report.
Technical Report, Learning Research and Development Center, University of
Pittsburgh, Pittsburgh, PA 15260

26 A Visual Programming Language for Novices

Liffick, B. [1987]. A Visual Programming Environment for Novices. Technical
Report, Learning Research and Development Center, University of Pittsburgh,
Pittsburgh, PA 15260

Rich, C. [19811. A Formal Representation for Plans in the Programmer's Apprentice.
Proceedings of the 7th International Joint Conference on Artificial Intelligence,
Vancouver, Canada, 1981. Also in Artificial Intelligence and Software Engineering,
Rich, C. and Waters, R.C (ed.). Morgan Kaufmann Publishing, 1986

Shrobe, H. [1979]. Dependency Directed Reasoning for Complex Program
Understanding. PhD Thesis. MIT/AI/TR-503, April 1979

Soloway, E. Bonar, J., & Ehrlich, K. [19831. Cognitive Strategies and Looping
Constructs: An Empirical Study. Communications of the ACM, 26, November.

Soloway, E., & Ehrlich, K. [19841. Emperical Studies of Programming Knowledge.
IEEE Transactions of Software Engineering, SE-i 0

Spohrer, J., Soloway, E., & Pope E. [1985]. A Goal/Plan Analysis of Buggy Pascal
Programs. Human-Computer Interaction, 1

Waters, R.C. [19781. Automatic Analysis of the Logical Structure of Programs. PhD
Thesis. MIT/AI/TR-492, December 1978

Waters, R.C. [1985]. The Programmer's Apprentice: A Session with KBEmacs. IEEE
Transactions of Software Engineering, SE-11

Winograd, T. [1979]. Beyond Programming Languages. Communications of the
ACM, July 1979. Also in Interactive Programming Environments, Barstow, D. et al
(ed.), McGraw-Hill, 1984

~j tnj=Running Total

PlnsanPg

PPlan
Pr.int

UtGpdate

New Value Controlled

Loop Plan

Input
Plan

Plan to Get
New Value "

Value

Loop Test

New Value

Exit When True Do When False

rT.rTTv.r 2

r7 r7

.,

JA4 LJ4a

U 0

FIRE 3O

SS .
..

S~.. I

4--;

00 -4-

-o'o ae

E 0
v".4: :: : : .

~*~ *.........~~~~~ ~ S...........lil iii i : i

......................................

... ... -. .

FIUR 4

. ,

u,1uL|j -j

... i........
.. '

.........

..............

o0 e

70 RE >11. *:4 O

U .1*1
cI

0
_ _ _ _ _ _ _ _ _ _ _ _..............._ _

.

................I

..

c,.LZ

FIGURE 5A

.
.. o
. o. I*
.. - .J

-D 00 *q~73 > >

co.

C3

FIGURE 5B

LOOP ACTION PLAN

RUNNING TOTAL PLAN

PARENTCLASS:
LOOP ACTION

SLOTS:
value.TOTAL -- < >
ADDEND -- < >
INITIAL -- 0*

INITIALIZATION:
TOTAL <--- INITIAL

EXECUTION:
TOTAL <---TOTAL + ADDEND

CONSTANT RUNNING TOTAL PLAN

PARENTCLASS:
RUNNING TOTAL

SLOTS:
ADDEND.INCREMENT -- (CONSTANT)

COUNTER PLAN

CLASS:
CONSTANT RUNNING TOTAL

SLOTS:
TOTAL.COUNT -- < >
ADDEND.INCREMENT -- 1*

FIGURE 6

ENDING VALUE AVERAGING LOOP PLAN

SLOTS:
TOTAL -- (RUNNING TOTAL)
COUNT -- (COUNTER)
LOOP -- (SENTINEL LOOP: BODY <-- (TOTAL,COUNT])
value.AVERAGE -- (AVERAGE: DIVIDEND <--TOTAL; DIVISOR <--COUNT)
OUTPUT -- (OUTPUT: OUT <-- AVERAGE; MESSAGE <-- "The average is ")

EXECUTION
LOOP <= = Execute
AVERAGE <= = Execute
OUTPUT <= = Execute

SENTINEL LOOP PLAN

PARENTCLASS:
NEW VALUE CONTROLLED LOOP

SLOTS:
NEWVALUE -- (INPUT: MESSAGE <-- "Entera newvalue")
TESTVALUE.SENTINEL -- (CONSTANT)
WHENTOHALT --' =*

NEW VALUE CONTROLLED LOOP PLAN

SLOTS:
NEWVALUE -- < >
TESTVALUE -- < >
WHENTOHALT-- < >
TEST -- (TEST: TESTVALUE1 <-- NEWVALUE; TESTVALUE2 <-- TESTVALUE;

RELATIONALOPERATOR <-- WHENTOHALT)
BODY -- < >

EXECUTION:
Loop

NEWVALUE <= = Execute
TEST < = = Execute
If value.TEST is False then Exit
BODY <= = Execute

Endloop

FIGURE 7, part I of 3

COMPUTE PLAN

SLOTS:
value.RESULT -- < >

OPERAND1 < >

OPERAND2 < >

OPERATOR < >

EXECUTION:
RESULT <-- OPERATOR(QPERAND1,OPERAND2)

AVERAGE PLAN

PAR ENTCLASS.
COMPUTE

SLOTS:
RESULT.AVERAGE -- <>
OPERAND 1.DIVIDEND -- <>
OPERAND2.DIVISOR -- <>
OPERATOR - ,

TEST PLAN

PARENTCLASS:
COM PUTE

SLOTS:
OPERAND l.TESTVA LU E1 -- <>
OPERAND2.TESTVALUE2 -- <>
OPERATOR.RELATIONALOPERATOR -- < >

INPUT PLAN

SLOTS:
value.iN -- < >

MESSAGE -- < >

EXECUTION

FIGURE 7, part 2 of 3

OUTPUT(MESSAGE) <= Execute
INPUT(IN) <= Execute

OUTPUT PLAN

SLOTS:
value.OUT -- < >
MESSAGE -- < >

EXECUTION:
OUTPUT(MESSAGE) <= Execute
OUTPUT(OUT) <= Execute

FIGURE 7, part 3 of 3

ENDING VALUE AVERAGING LOOP

TOTAL COUNT LOOP
(SENTINEL LOOP)

(RUNNING TOTAL) (COUNTER) AL .

/ NEWVALUE SENTINEL WHENTOHALT
TOTAL / COUNT (INPUT) (CONSTANT)

TOTAL ADDEND INITIAL COUNT INCREMENT

I I I I TOTAL

VALUE 0* VALUE 1*

FIGURE 8, part I of 2

AVERAGE
(AVERAGE)

OUTPUT
(OUTPUT)

_ COUNT] TOTAL OUNT

BODY TEST AVERAGE DIVIDEND DIVISOR OPERATOR
(TEST)

NEWVAIUE " NT ,., VALUE /

L COUNT RESULT VALl VAL2 RELOPI
VALUE

FIGURE 8, part 2 of 2

*DEFAULT

z LLW

0-0

I--

LIJJ

LLLJ

U 2Q

45 g1 -3

a- U -. C00II 22

4- ~ ~. Lu

.. - . ..

II

...

--- ------ 2.

...... ss s s w f...

..

. S i.iu

.sl. .. l. f .%v............

*~~~

S. .. ,.......

.*"..............

0 1

I> 6
* ~ "IC

FIUR 10.....

FIGURE 11

r-i ri

I IE

o I 0 W.

T V Ip Pq

rs I0 %W

* I I I

I I I s

I I I

A
I I IZ

L. -. .4 L I.J

IN

aa.

I L.

~<\ ~:311

' N FIGURE -12

FIGURE 13

1~ 1I 116

II I I

00 6I0l ~
II I ~ I

reIi I

F'--
0 -o

c m

N C

a a

C,

m1 cc III

Ca A:FI

I0- . I

FIGURE 14

Ma I

M x-

Mr

MNoi

2CD

FIGURE 15

Running Total
Plan

vdlueUpdat@

AA

New Value Controlled
Loop Plan ConditionalPlan

Input

Get NewF Plan D
Value Q

If true 'NewFls

exit loop' Value

Loop Test
iff'lfe" - Conditional

dothis Plan0
Compute

Plan

Output E7
Plan

Counter

Plan
J a~A i Value _ nrmn

I IValue

New Value Controlled
Loop Plan

oConditional
Plan

Valuee

2True oas

NewU
Value 0a

Loop Test

Do thisPln30

Compute Plan

0
Value Input Plan

EL Value

Output Plan

Value

I T7..E 17

New ~~Value nrle

Lotpu Plan

VaVulu0

Lo-p, Ts

n ContantRunning TCotal
New Value Controlled Plan

Loop Plan r7Update

InputWSuS

plan to Get r
New vauValue Compute r

Plan

Conitina Plannutpu
Plaay

Loop Tst IPrimet

N e w V al u e T& Pr 0

......

0 0 0 -

c -- r~

U~ _ _ _ __ _ _ _..

......
..

CL F,
L_j ~WLL

w3

FIGURE 2

