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Intelligent Tutoring With Intermediate Representations - Bonar and Cunningham 2

Abstract - We describe an intelligent tutor called Bridge that provides support to novice
programmers as they design, implement, and test programs. Not only does the tutor find
and report student conceptual errors, but it also understand student designs and partially
complete programs. This is done by providing intermediate representations that allow a
student to directly represent designs and partial work. These intermediate representations
are intended to give students specific mental models to support their problem solving
process. Bridge supports a novice in an initial informal statement of a problem solution,
subsequent refinement of that solution, and final implementation of the solution as
programming language code. Students should finish the tutor with the ability to discuss
their work at a conceptual level above that of their actual problem solution.

Introduction

Our goal is a programming environment that provides tutorial support to novice
programmers as they design, implement, and test programs. Not only should the tutor find
and report student conceptual errors, but it should also understand student designs and
partially complete programs. Here, we report on the Bridge system, a step toward such an
environment and tutor. In order to understand student designs and partial programs,
Bridge provides languages that allow a student to talk about his or her designs and partial
work. Providing such intermediate design languages has two implications for intelligent
tutoring methodology. First, such languages enormously simplify diagnosis. Instead of
deriving student intentions with elaborate partial matching based on a bug catalog - as used
in the PROUST system described by Johnson [ 1986] - or a process model of the student's
decision making - as done in the CMU Lisp Tutor [Reiser et al., 1985] - the tutor can ask a
student about his or her intentions directly. Second, the use of intermediate languages
gives students specific mental models with which to conceptualize their problem solving
process. Students finish the tutor with the ability to discuss their work at a conceptual level
above their actual problem solution.

The name Bridge comes from our intended "bridg& -tween novice and expert
conceptions of programming. Novice conceptions of a prouiem solution are likely to be
informal and sketchy. Bridge supports a novice in the initial informal statement of a
problem solution, subsequent refinement of that solution, and final implementation of the
solution as programming language code. This is accomplished in three phases:

The first phase involves an informal statement and refinement of the goals for the
program. The language we provide to the student is based on simple natural
language phrases typically used when people write step-by-step instructions for
other people. For example, a student can construct the phrase "keep doing these
Rteps until the sum exceeds 100." The Bridge analysis of a student's phase I
solution is based on a set of naive models of programming. Before moving to
phase 1, a student must develop a complete natural language problem solution. For

I
* The second phase involves refining the informal description of phase I into a series 0

of semi-formal programming plans. Plans are schema-like structures which 0
describe how goals ate traiisfoimed iio actuai pogianurung code (see Soloway
and Ehrlich [19851 for a complete description of plans). Plans typically have
various roles that interrelate with the roles of other plans. Phase H of Bridge is
designed to allow students to focus on relating various plan roles without the )n/
syntactic complexity required when relating a code representation of those roles. In ty Codes

- ad/or
,peoial

104 'A.I

'U-. -.
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particular, phase H plans are atomic: all plan roles appear together with the plan.
Phase 11 plan structures are runnable.

The third phase requires translating the plan-based description of phase II into
actual Pascal code. Students are provided with a Pascal structure editor [much like
that of Garlan and Miller, 19841, and an interpreter with a stepping mode.

We begin with overview of the current Bridge implementation. Next, we discuss the
decision to provide students with intermediate problem solving languages. We conclude
with discussions of specific design decisions in Bridge and our experience with students
using Bridge.

An Overview of the Bridge System

In Bridge, the student user is given a problem from the first ten wceks of a college level
introductory programming course. The student passes through three phases while solving
the problem.

In the first phase, the student constructs a set of step-by-step instructions using English
phrases. In the next phase, the student matches these phrases to programming plans or
plan fragments and builds a program using a representation of these plans. In the final
phase, the student matches the plans to programming language constructs and uses these to
build a programming language solution to the original problem. Currently the only
language implemented in Bridge is Pascal, although many other programming languages
could be used with the same approach.

We use an example problem to demonstrate the three phases of Bridge. The problem,
called the "Ending Value Averaging Problem", is:

Write a program which repeatedly reads in integers until it reads in the
integer 99999. After seeing 99999, it should print out the CORRECT
AVERAGE without counting the final 99999.

In the following description, several things should be kept in mind: (1) Bridge is highly
interactive. The figures only give some sense of the display in action. Most of the objects
of concern to the student are created, manipulated, and edited by moving screen objects
with a mouse. (2) Bridge has been designed for students who have some familiarity with
our particular version of programming plans. Since they are not covered in most texts, we
have developed a programming plan workbook for our students (Bonar et al., 1986). We
assume that users of Bridge are familiar with the plans in the workbook, up to the exercise
they are attempting. Of course, students do not need to be skilled at using the plans, only
familiar with the idea and basic purpose of plans. (3) The terminology and complex screen
display of Bridge may seem overwhelming, particularly for a novice. The example
problem presented is approximately one-half of the way through the programming
curriculum we have designed. T-1c problems student see initially are mt'ch simpler The
earliest problems consist of only one or two plans. A new problem never introduces more
than one unfamiliar plan.
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You must have a planthat
will compute the average. .........

~~~~~~~~~Done With Program I:;::i ::: :~

Instructionsl~~~:ii.ti IIi
Start Over l~:ii:' :i'kk ,

Write a program which
repeatedly reads in integers
until it reads the integer 99999. " s Solution

After seeing 99999. it should.
print out the CORRECT
AVERAGE without counting
the final 99999. ...

Print...
Output. .
... And So On...
Continue steps...
Keep doing steps...
Get...
Read in...
Count...
jAdd.. .
Sum..._ _ __ _

Figure 1. Bridge screen at the start of phase I.

Phase 1: Building the Natural Language "Program"

Figure I shows the screen from Phase 1 with the ending value averaging problem as the
current problem. The problem specification is in the lower left comer of the screen.

The user is to build his English language solution to the problem by making choices from
the menu labeled "Natural Language Selections". The menu selections are the beginnings of
phrases. Each phrase is intended to correspond to one plan. Some of these selections are
redundant, for example, Print ... and Output .... This is done because our empirical work
indicated that different people preferred different phrases to refer to the same plan (see
Bonar [19851 and MiUer [19811).
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Compute.. .
Print ...
Outputt...

., nd So On ... c

Figurnu2. seI s alo e integerContnuestep..,each number

Keep doins steps ... the numbers
Get ... the integers

Read in... Tr another phrase N

Count ...
Add ...

Sum.. .

Figure 2. Phase submenus allow the student to construct a specification that more closely
represents his or her intentions. Here the submenu for the Read in phrase is
shown.

After the student chooses the beginning of a phrase from the Natural Language Selections
menu, a smaller submenu appears to the right of the selection. This submenu contains
choices which complete the phrase (see Figure 2). In general, this second phrase further
specifies or parameterizes the plan specified with the phrase from the Natural LanguageSelections menu. We allow a large amount of variability in surface lexicon with only a few
basic underlying plans. In general, our goal is to allow the student to construct the English
phrase that most precisely states his or her intentions, yet still map that phrasing into our
catalog of programming plans.

Once a phrase is completed, it appears in the Natural Language Plans window. 'Me student
uses the mouse to move the phrase to a desired location and places the phrase with a button
click. At each step, Bridge neatly formats the program for the student. The student builds
the natural language program by combining phrases in an order that correctly specifies a
solution to the problem. At any time during phase I the phrases may be repositioned or
deleted from the program entirely. Figure 3 shows a typical phase I partial solution.
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Since you will repeatedly
be reading in new values.

c' Z your input plan should
request singular values.

h ~Hints :
Done With Program

- $~~tart over---'"

repeatedly reads in integers ngish .... Solution
until it reads the integer 99999.
After seeing 99999. it shouldRedi..thnubr
print out the CORRECT S ... intege to running toW
AVER AGE without counting
the final 99999. Co ... each integer

CoP te... ... Ai So On ...Pint...

Oultu... Until 99999 is seen

... And So On... Compute... the average

Continue steps ... Print... the average
Keep doing steps...
Get...

Read in...
Count...

Add...
Sum...

Figure 3. Typical phase I partial student solution.

Understanding a Student's Phase I Solution

If the student needs help or thinks the program is correct, he can select Hints or Done
with program, respectively, from the main menu. In either case, Bridge checks the
student program, offering appropriate tutorial advice or allowing the student to move to the
next phase. The program responds to the student in the persona of Gworky the friendly

troll. Gworky checks the program and coaches the student if there are any errors. To do

this checking, the tutor builds a symbolic representation of the natural language version of
the program. In this representation the tutor notes the order of each plan and the detailed
phrasings used by the student off the submenus.

The symbolic representation of the natural language version of the program is compared
with a list of requirements for a correct solution to the problem. The first requirement that
the student fails to satisfy becomes the subject of Gworky's remarks. The requirements are
supplied by the instructors as part of a problem description.
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The requirements are specified at four differcnt levels, corresponding to four different naive
models of the programming process that a novice might bring to !ridge (see Biermann et
al. [19831 and Bonar [1986]). These models differ from an expert model in that they do
not specify all required plans, relax the constraints on slot fillers for the plans specified,
and allow more flexible ordering than is required in an ideal solution. In essence, Bridge
specifies four possible student models that can be matched against student phase I
performance.

For exaple, a common naive model of looping allows a student to construct a loop with a
description of the first iteration followed by the phrase "and so on." Based on the
particular phrasings constructed by the student, Bridge infers a particular naive model. The
specific coaching provided by Bridge is shaped by the naive model inferred and the
student's current level of detail. Before moving to phase I, a student must develop a
complete natural language problem solution using the most sophisticated (least naive)
programming model.

The particular four levels are not ad hoc, but based on our empirical work with step-by-step
natural language procedures. We have found that a novice's natural language solutions
reflect one of four overall strategies for specifying looping in natural language [Bonar,
19861. Since looping was the most complex aspect of the problems tutored in Bridge, we
based our student model on the student's understanding of loops.

Figure 4 shows a schematic of the model with which the tutor diagnoses the student's
solution. The four looping strategies (levels of the student model) are each captured by a set
of requirements in a column of the chart shown in Figure 4. Each column shows the plans
that must be present in the solution to satisfy that level. Each of those plans specifies a set
of detailed requirements discussed in the next section.

E Y A New V a IIUe.,)A t OIi- L AaOj~l! l j 'l -illljlIl'rq1 IaQ

i MT

gIn .tiJ l tO tOB u e th d aeraqe, yOu -11 tilel to [. ,
d In lue rt e SN Of the ir te r , y ehC itil Oe "1 Fe "gi,.. I A

inte,) rre d in Incl,,de A plan t. ,ant the titS ftl

, t ie -teJe, s,-.

re n leqer reid in y ie ¢tuir Jr nE I u i . rrO
inte,;er i n lude (me .'SM " F.,1 0

ir tr~e ".'Ad-I '.' plan nto. ) j -4

-, ,.i lt.Jc iii u1 - i11. 11, U, I lu t n 03,. All ll I*1.1"ll
[.-.n. ,., i .e ,o,,lrl logIII l.?7la, C. 1ist." F ill i .

C .a.- euia lueContro I ledL OOltP lanlj in F C .
ISEt'-~~it* ~ ~ s no ilp u p *or-e Elea Oe stejer') F

0tt i~a.e $petlr1ij a QIOn t .1 i ngle flusteer Nh&- E.i

nC1 . pla Ha. aloy pu to o ong I kep 3 rustling E

i~e yli, h~t dds in te o, e , rt.u , t.11

nl.e ait t n .L Id Oup ALL the inr,lra Put I?. a plIn
'at . lo. .Ot, to revset thing. Su ' as tn e 4Co It ruIIte t 014.11 . %"plan i))

Figure 4. A schematic of the model used to diagnose student solutions in phase I. Each
column corresponds to a particular looping strategy and shows the plans that must
be present in the solution to satisfy that level. Also shown is a detailed
requirements specified by the Arithmetic Sum Variable plan.
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The requirements have hints built in. If a specification is not satisfied, an associated hint is
presented to the student. Most errors have three or more hints, increasing in specificity.
Note that hints can be tailored to a particular unsatisfied requirement within a particular
novice model.

When the student requests help by selecting Hints or Done with Program from a
command menu at the top of the Bridge screen, the tutor then checks through the required
plans, model by model, and matches the requirements from the plans at each model against
the represeniation of the student solution. Once all plans are marked as satisfied or
unsatisfied by the student's solution, a hint is selected to be presented to the student. In
general, the student solution may fully satisfy the plans for one or more simpler looping
strategies, and partially satisfy one or more sophisticated strategies. (That is, students
don't work exclusively with one strategy at a time). We approximate the actual student
understanding by selecting a hint from the simplest partially satisfied strategy.

In summary, the diagnostic strategy for Phase I is based on matching a student to a
particular elementary model of programming. Each model requires particular plans
expressed in informal natural language and a particular organization of those plans. When
analyzing a student's informal specification of a solution, the system evaluates the student's
satisfaction of the requirements for plans within each model. Tutoring (hint giving) is
directed by the simplest unsatisfied plan in the simplest model with one or more unsatisfied
plans.

Phase II: Building a "'Plan Program"

In phase II of Bridge a student takes the informal specification developed in phase i and
formalizes the interconnection between the plans and their components. The student does
this by selecting a line of the phase I specification and refining the intent of that line with
one or more objects in a phase II plan specification language. Where in phase I the
emphasis is on the appropriate solution strategy, accumulating the correct plan components,
and ordering them in a reasonable way, in phase II the emphasis is on identifying the
formal plan components and expressing their interrelationships.

Correct expression of plan interrelationships has been shown to be critically difficult for
novices, particularly where those interrelationships result in the merging of several plans
into one sequence of code [Mayer, 1979; Spohrer et al., 1985]. Phase II provides an
environment where students can focus on plan interrelationships without the confounding
concern of how those interrelationships will ultimately be expressed in code.

We have chosen to implement phase II as a visual programming language. Various
constructs are implemented as icons that can be picked up, manipulated, placed, and
connected together. Since the focus of phase H is on plans and their interconnections, we
needed to develop a language that focused student attention on those elements. The
essentially linear nature of textual languages made if very difficult to express
interconnections. Furthermore, since plans represent rich, high-level programming
objects, it is sensible to depict them as icons that suggest their function. Finally, the
current iconic representation of phase II was suggested by comments from students
confused while using earlier textual versions.
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Design of the Bridge Phase 11 \isual Plan Language

The key design constraint of the phase UI language is that each plan is represented by a
single atomic icon. We feel this is crucial if we are to allow a student to focus directly on
plan interconnection separate from other issues. The phase II plan icons used for the
Ending Value Averaging Plan are shown in Figures 5. (A detailed discussion of the design
of the phase II visual programming language is beyond the scope of this paper. See Bonar
and Liffick 119881 for a complete discussion). The general metaphor of the plan language
is that of puzzle pieces being fit together. Plans with similar shapes have similar roles in a
program.

:Hints
Done with prog, 4m
il nst ructions
IRun Program
'Start Phase 2Over

New V-'1te Controlled

Your program has Loop -an
finished Iniput
successfully. P . ..

Com~pute R un ag Total

Plan Pl~anl

Read in... ead integer
Sum. .. integer to running total

Count... eachi integer 7

r. : l*''? ?l,'('-,; m r'' TI [;:_.' _1 :-'t ,'-T :Output-
Plat. , g '..'L-.---

Compute... the average
Print... the average =rL3-

Figure 5. A phase 11 solution to the Ending Value Averagirg Problem.

Plans that express a sequence of values in a variable, called variable plans, are shown as
squares. Each of these plan icons embodies the entire semantics of a particular plan. The
Counter plan, for example, keeps and shows the value of the count so far, knows to
initialize itself to zero, and increments its value by a specified amount every time control
flows through it. The Running Total plan similarly keeps and shows the value of the total
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so far, knows to initialize itself to zero, ano adds the value of anoher plan into the total so
far (how the connection with the plan that supplies that value is expressed is di: ,,Ussed
below). The Input plan gets a sequence of values from the user of the program. Every
time control passes through the plan a new value is requested from the user.

In addition to the variable plans, Figure 5 shows a Comapute plan. The Compute plan uses
values supplied by variable plans (tying a vatiable plan's value to other plans is described
below) and an operation selected by the student. The operation is specified by mouc .

selection on the operator box and selecting an operator symbol off a pop-up menu. W, :n
control passes through the Compute plan the operation is performed with the current values
of the associated variable plans.

The New Value Controlled Loop plan is one of the most complex plan icons in Bridge.
There are four components of the New Value Controlled Loop plan: (1) new value
generator - A variable plan to produce a series of values, each of which is tested to
determine when to exit the loop. Typically the new value generator is an Input plan that
requests values from the user. It could also be a random number generator or plan that
traverses a data structure. (2) end of loop condition - A test to determine when to exit the
loop. Note that this test is constrained to do a comparison to each new value. Another
loop that requires a different sort of test - for example, to see if the running total has
exceeded a particular value - requires a different plan. (3) body of loop - A series of plan
icons to be executed in the body of the loop. (4) actions to be performed after loop is
complete - A series of plan icons to be executed when the loop completes.

The key idea with the New Value Controlled Loop plan is to hide all the syntactic and
control flow complexity that a student would need to confront to implement such a loop.
The focus in phase II is to express the interconnection between the plans. How those
interconnections are actually implemented in programming language code is the focus of
phase IRl.

Figure 5 shows a phase II solution to the ending value averaging problem. The focus of
phase H is on the connections between the plans. In particular, there are two kinds of
connections that students must master: control flow and data flow. Control flow expresses
the order of execution for the plans. In the phase LI plan language, control flow is
expressed explicitly by connecting the puzzle-piece tabs together. Plans are executed in a
top-to-bottom order. So, for example, in Figure 5 the Co'mpute Plan is executed before the
Output Plan.

In addition to control flow, students must also express data flow. Specifically, students
must show how values computed in one plan are used in other plans. This is done with a
special plan called a Value plan. Value plans can be placed in holes within plans that are
expecting values from another plan. V'alue plans are created by selecting the box labeled
"Value" within a plan that can produce a value. Such a selection creates a Value plan icon
that is attached to the mouse cursor. The data flow connection is established by dragging
the Value plan to the plan that needs the value, and placing it in the appropriate hole.

Using Bridge Phase If
I

A student begins phase H1 with the phase I solution window (titled Step-by-step English
Solution") shifted to the left side of the screen and a new window titled "Visual Solution" is
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shown on the right side of the screen. Students work by selecting English phrases from
the phase I solution. As each selection is made, the English phrase greys and the student is
given the corresponding plan icon in the Visual Solution window. Icons can be moved
about and placed as needed. As in phase I, students can request assistance from Gworky at
any time. In addition, phase I1 solutions can be executed. Upon student request, a robust
interpreter steps through the program, highlighting each plan as it executes, animating data
flow with floating Value plans, and stopping to explain and suggest corrections for errors
and omissions. A correct phase H solution requires all plans with all control and data flow
connections correctly expressed.

Tutoring in phase II is very similar to tutoring in phase I, though less detailed. The student
selects Hints whenever he or she needs help and Done with program when he or she
thinks a correct plan solution to the problem has been formulated. The diagnosis is
performed similarly to phase I, comparing the student's solution to the requirements.

Phase IIl: Building the Pascal Program

In phase II the student builds a programming language solution to the original problem. In
particular, the goals and plans developed in phases I and I1 are finally realized as Pascal
code. At the start of phase I the Visual Solution window from phase H is now shown on
the left with a Pascal Solution window on the right. The student's task is to match each
visual plan icon to one or more Pascal statements. Once statements are created, they are
inserted and manipulated with a Pascal structure editor provided in the Pascal Solution
window.

The student works by selecting a plan icon and then selecting a Pascal language construct
from a pop-up menu of Pascal statements (see figure 6). If the student makes the correct
choice, he or she is then asked to indicate the position for the statement in the Pascal
Solution Window.

Bridge allows the student to avoid phase Ill syntax errors through a Pascal structure editor
(see Garlen and Miller [19841 for a detailed discussion of structure editors). In addition to
managing syntactic concerns, the editor also manages variable declarations.

Once the Pascal program is begun, the student may attempt to run it. Bridge works to run
whatever pieces of program are in place. When execution reaches an unexpanded non-
terminal node (from the structure editor) or an error, the program is halted with a detailed
error message.
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New Value Controlled
LoopWhile Loop

oop rInput/Output Functions
Input Repeat ... Until Loop

P to G. Plan If Then Else Statement
For Loop

Begin ... End
Assignment Statement

LC¢,p Test

E ig 6hele Tre Do icnsctipe of LOBrige

Compute sRunning Total
Plan an s n

couoteT .

Plan I it

Plan
Pnrnt

Figure 6. Selecting a Pascal conaact in phase nd of Bridge.

At the core of phase Ml is Bridge's supervision of the student matching process between
phase o plans and Pascal constructs. This is not as regular a process as it might seem. In
particular, one plan icon may require several Pascal constructs. When this occurs, Bridge
to. the student in moving from the plans to Pascal constructs. It is important to note thatthese complexities arise not from some peculiarity of Bridge but from the inherent

irregularity of the mapping between Pascal and the underlying goal structure of Pascal
programs. In fact, the main purpose of phase III is to support the student in learning about
moving from an explicit goal structure to the peculiar realization of that goal structure in
Pascal.

Intermediate Languages For Problem Solving

The Bridge approach gives the student languages for explicit manipulation of designs and
partially complete programs. The approach is motivated by two complementary concerns.
The first concern relates to extending the capability and ease of specification for the part of
Bridge that understands student errors - the diagnostic component. Our second concern
relates to what is known about novices learning to program. In this section we discuss
these two issues.



Intelligent Tutoring With Intermediate Representations - Bonar and Cunningham 13

Simplifying Diagnosis with Intermediate Languages

In any intelligent tutoring system a key problem is inferring student intentions from student
behavior. In particular, the tutor must infer all mental activity from the final solution
presented by the student. In the programming domain, for example, a standard intelligent
tutor must reconstruct the student's entire mental activity between seeing a program
specification and actually entering code in the machine. Such a reconstruction must account
for both the correct and incorrect knowledge used by the student during design and
implementation.

With a knowledge base of correct and buggy operators a tutor can use search techniques to
reconstruct plausible accounts foi errorful student responses to problems. This approach
has been powerfully demonstrated in the programming tutor PROUST [Johnson, 19861.
While the approach works, it is very costly in terms of both search time and knowledge
engineering. The accomplishments of PROUST must be weighed against the large cost in
knowledge engineering time - several hundred hours per problem tutored (Johnson,
1986b]. This knowledge engineering is particularly cost ineffective because the student
sees so little of the results. That is, almost all of the knowledge engineering that has gone
into representing correct and buggy student actions is never seen by the student. Inside of
PROUST, these operators are optimized for the the search task. They are not available in a
form that could be presented to students, or used to assist students as they work toward a
solution.

Bridge uses a different approach to reconstructing the student's intentions. Instead of
attempting to reconstruct a student's entire reasoning from problem statement to final code
in one step, Bridge has the student prepare intermediate solutions in languages that
correspond to particular levels in the goal decomposition and the goal-to-code translation
processes. This alleviates many of the difficulties of the PROUST approach. The search is
more manageable because it has been broken up into a series of much smaller searches. In
each of the smaller searches there are fewer relevant operators to try and less reasoning
"distance" to span between the student's surface behavior and the solution the tutor is
trying to reconstruct.

How is it that the relatively simple requirements matching process can give sufficient
diagnostic power to deal with most student errors? We have the crucial advantage that we
understand the student's intentions, based on their phase I and II solutions. Each piece of
the early solutions is tied to a statement of intentions. Instead of recreating the entire goal-
plan problem solving trace, as done in PROUST [Johnson, 19861 or the CMU Lisp tutor
[Reiser et al., 1985], we are tracking the trace a level at a time, focusing on the critical
difficulties of that level. Phase I corresponds to the highest level expression of the goals.
Phase I allows the student to refine those goals and begin to add implementation
information. In phase Ifi the refined goals are actually turned into Pascal code.

In addition, the Bridge approach simplifies the knowledge engineering. The fewer
operators in each search correspond to a smaller catalog that must be loaded into the
program. In addition, the knowledge engineer has an easier task because the operators are
simpler and it is easier to tell when the space of possible correct and errorful versions has
been covered.
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Pedagogical Arguments for Intermediate Languages

The Bridge approach grew from our concern with the conceptual distance between the
syntax and semantics of programming languages like Pascal and the purpose and goals
realized by that code. We felt that the programming task, as typicaliy presented, confronts
students with an enormous gap between goals and final product (e.g. Pascal code). The
intermediate languages in Bridge are intended to "bridge" this gap.

To illustrate the gap between goals and code in Pascal, consider the goal of "keeping a
count" as implemented in Pascal: (1) above the loop - a programmer must declare a counter
variable and initialize it to zero using an assignment statement; (2) inside the loop - the
counter must be incremented, again using an assignment statement with a peculiarly non-
algebraic construction: Count : Count + 1; (3) below the loop - the counter value must
actually be used below the loop. In summary, the simple goal of "keeping a count" has
been spread throughout the program and buried in general purpose constructs. The design
of these constructs is more closely related to the architecture of a register-based computer
than to the problem actually being solved in the code.

Research into how novices learn programming reveals that the semantics of typical
programming languages are not closely related to the way a typical novice understands a
program [Bonar and Liffick, 1988]. Success with programming seems to be tied to a
novice's ability to recognize general goals in the description of a task and to translate those
goals into the relatively foreign program code (see, for example, Anderson and Jeffries
[1985], Eisenstadt et al. [19811, Mayer [1979], or Soloway and Ehrlich [1985]). The
Bridge approach allows students to explicitly represent their goals, describe how those
goals interrelate, and only then concern themselves with how to translate those goals into
code. The different tasks in programming are separated, simplifying the learning task.

In general, the Bridge approach can be seen as a collaboration between the student and the
system (see Collins et al. [1987]). As discussed above, the value of such an interactive
relationship lies in Bridge teaching expert strategies in a problem solving context shared
with the student. Bridge also provides scaffolding for the selection and application of those
strategies.

Principled Design Decisions in Bridge

The key principle of Bridge is:

Teaching elementary programming with intermediate representations
provides novice programmers with a deeper understanding of the
programuning language and process then is possible with conventional
approaches.

The students learn programming, we assert, because they are facilitated in developing the
mental models necessary to successfully carry out each phase of programming. So, then,
the decision to present Bridge students with a series of phases, each built around a
particular representation form, is principled.

Furthermore, the particular phases chosen are principled. The phases have developed out
of a large body of research into the mental representations of novice and expert
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programmers. Each phase represents a particular set of concerns and programming sub-
skills.

In phase I we ask students to state the key components of the problem solution, order those
components correctly, and mention those components consistent with a "programming
like" (as explained above) mental model of program loops. The language used in phase I
is natural language via menu selections. The particular phrases used in the menus come
from the phrasings used by subjects in a study of non-programmers writing step-by-step
natural language instructions [Bonar, 1985].

In phase I we ask students to transform their phase I solution into a plan-like solution.
The plans chosen are based on classroom experience with a plan based curriculum [Bonar
et al., 1986]. In phase H students must confront the full complexity of programming
control structures and data flow but without the added complexity of programming
language syntax. Combining the plans with concern for programming language control
and data flow are central to a beginning programmer's understanding (see, for example,
Soioway and Ehrlich [1985]).

In phase UI we ask students to transform their phase II plan structures into a Pascal
solution. In this phase students must take a fairly complete solution and map it into the
particular syntactic features of Pascal. In terms of Shneiderman and Mayer's [ 1979]
syntactic/semantic theory, they must use their programming language specific knowledge
of Pascal.

Using Bridge with Students

We have run Bridge with approximately 40 students ranging from no programming
experience to half way through a college level introductory Pascal programming course.
Bridge currently contains 25 problems. Each problem took approximately one person-
week to be specified and fully described to Bridge.

While there is no systematic evaluation, there are some highlights from our experience with
Bridge. First, students who are near the beginning of their programming course or doing
poorly in that course appreciate phase I much more than students near the end of a course
or doing well in a course. This is as expected: one would expect that more advanced
students have less need for the informal representation allowed in phase I. At one point in
our testing we ran Bridge with three students doing very poorly in their current
programming course. In each case the use of Bridge was found by the student and his or
her instructor to be very helpful. This suggests that Bridge may be particularly helpful for
beginning programmers.

The riskiest part of the Bridge design is phase H1. Despite the potential problems with
phase H, we find it to be used successfully by both good and poor students. In particular,
students reported that the use of phase H clarified their understanding of the problem and
the programming constructs. It is seen by students as a place they can work on their
programs without worrying about the details of Pascal. Students spend the majority of
their time working in phases I and H of Bridge. Phase HI is seen by the students as a way
to produce the final product, not as a way to think about and plan the program.
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We plan to use Bridge with 10-15 problems in a introductory Pascal class in Fall of 1988.
At that time we will complete a detailed evaluation of Bridge and our overall approach.

Concluding Remarks

The work reported here focuses on the explicit use of intermediate representations to teach
introductory programming. We have sought, through these intermediate representations, to
provide students with an environment where they can talk about and receive tutoring about
their designs and partial work. Specifically, Bridge supports a novice in the initial informal
statement of a problem solution, subsequent refinement of that solution, and final
implementation of the solution as programming language code. Bridge provides explicit
coaching for a student in working through parts of the programming process that are
usually implicit. The power of the computer's dynamic and graphical capabilities, coupled
with the immediacy of intelligent tutoring have provided us with the capability to coach a
student in a detailed and conceptually rich way.

Our goal with Bridge is not that students merely learn the constructs of a programming
language, but that students gain the ability to discuss their work at a conceptual level above
that of their actual problem solution. Although our success with this goal is not yet fully
tested, initial results are very encouraging. We are eager for the results of our detailed
study.

Bridge invites a more radical possibility than more effective tutoring of traditional
programming languages. Except for syntactic and idiosyncratic semantic details, the
program is fully specified at the end of phase II. Why should the student, or the typical
programmer, be forced to learn and use those details? We have been actively investigating
the notion of an intention-based programming language with constructs at the level of plans
(see Bonar and Liffick [1988]).

We are interested in developing principles for use of intermediate representations, like those
in phases I and IH, for domains other than programming. What if, for example, students
could use similar structures to reason about mechanics problems, geometry proofs, algebra
word problems, or even arguments in an essay? The possibility is intriguing for two
reasons. Plan-like structures have played a central role in a cognitive understanding of
learning and thinking (see, for example, Resnick, 1983). A seemingly important gap in
research with these structures exists in that they have not been used directly for instruction.
A Bridge-like framework allows us to explore this possibility.

Acknowledgments

This work was supported by the Air Force Human Resources Laboratory under contract
number F41689-84-D-0002, Order 0004 and by the Office of Naval Research under
contract numbers N00014-83-6-0148 and N00014-83-K0655. Any opinions, findings,
conclusions, or recommendations expressed in this report are those of the authors, and do
not necessarily reflect the views of the U.S. Government.

The earliest version of the Bridge system was programmed by Mary Ann Quayle. Paul
Beatty, John Corbett. Vikki Pitts, Jamie Schultz, and Bill Well contributed substantially to
the development of the current version of Bridge. We are grateful to the Intelligent Tutoring



Intelligent Tutoring With Intermediate Representations - Bonar and Cunningham 17

Systems group for their suggestions i.nd encouragement in this project. Many useful
comments on earlier drafts were provided by John Seely Brown, Robert Glaser, Alan
Lesgold, Stellan Ohlsson, Lauren Resnick, and Robert Rist.

References

Anderson, J. R. and Jeffries, R. [19851. Novice LISP Errors: Undetected losses of
information from working memory. Human-Computer Interaction, 1, 107-131.

Biermann, A.W., Ballard, B.W., Sigmon, A.H. [1983]. An Experimental Study of
Natural Language Programming. International Journal of Man-Machine Studies 18:71-87,
1983.
Bonar, J. [1985]. Understanding the bugs of novice programmers. Unpublished doctoral
dissertation. University of Massachusetts, Amherst.
Bonar, J. [1986]. Mental Models of Programming Loops. Technical Report, Intelligent
Tutoring Systems Group, Learning Research and Development Center, University of
Pittsburgh, PA 15260.

Bonar, J. & Liffick, B. [1988]. A Visual Programming Language for Novices. In press,
to appear in Visual Languages and Visual Programming, edited by Shi-Kuo Chang,
Prentice Hall Publishers.
Bonar, J., Weil, W., & Jones, R. [1986]. The Programming Plans Workbook. Technical
Report, Intelligent Tutoring Systems Group, Learning Research and Development Center,
University of Pittsburgh, PA 15260.

Bonar, J., & Soloway, E. [1985]. Pre-programming knowledge: A major source of
misconceptions in novice programmers. Human-Computer Interaction, 1, 133-16 1.
Collins, A., Brown, J.S., and Newman, S.E. [1987]. Cognitive Apprenticeship: Teaching
the Craft of Reading, Writing, and Mathematics. In Cognition and Instruction: Issues and
Agendas, Lawrence Erlbaum Associates, Hillsdale, New Jersey.

Eisenstadt, M., Laubsch, J., and Kahney, H. [19811. Creating Pleasant Programming
Environments for Cognitive Science Students. In Proceedings of the Third Annual
Cognitive Science Society Conference. Cognitive Science Society, Berkeley, California.
Garlen, D.B. & Miller, P.L. [19841. GNOME: An Introductory Programming
Environment Based on a Family of Structure Editors. In Proceedings of the Software
Engineering Symposium on Practical Software Development Environments. ACM-
SIGSOFT/SIGPLAN, April.

Johnson, W. L. [19861. Intention-Based Diagnosis of Errors in Novice Programs.
Morgan Kaufman, Palo Alto, CA.

Johnson, W. L. [1986b]. personal communication.

Mayer, R. E. [19791. A Psychology of Learning BASIC. Communications of the
Association For Computing Machinery Vol. 22, No. 11, pp. 589-59.
Miller, L. A. (19811. Natural Language Programming: Styles, Strategies, and Contrasts.
IBM Systems Journal, 20, pp. 184-215.

Reiser, B., Anderson, J., & Farrell, R. [19851. Dynamic Student Modelling In an
Intelligent Tutor For Lisp Programming. Proceedings of the Ninth International Joint
Conference on Artificial Intelligence, pp. 8-14.



Intelligent Tutoring With Intermediate Representations - Bonar and Cunningham 18

Resnick, L. [19831. A New Conception of Mathematics and Science Learning. Science,
Vol. 220, pp. 477-478.

Schneiderman and Mayer [19791. Syntactic/Semantic Interactions in Programmer Behavior:
A Model and Experimental Results. International Journal of Computer and Information
Sciences, Vol. 10, No. 3, pp. 219-238.

Soloway, E., & Ehrlich, K. [1985]. Empirical studies of programming knowledge. IEEE
Transactions of Software Engineering, SE- 10, November, pp. 595-609.

Spohrer, J., Soloway, E., & Pope, E. [1985]. A goal/plan analysis of buggy Pascal
programs. Human-Computer Interaction, 1, pp. 163-207.


