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Absract

A parallel distributed processing model of visual word recognition and pronunciation and of the
acquisition of these skills is described. The model consists of a set of orthographic units used to code
letter strings, a set of hidden units, and a set of phonemic units. Weights on connections between units
were modified during a training phase using the back-propagation learning algorithm. The model takes
letter strings as input and yields two types of output: a pattern of activation across the phonemic units,
and a recreation of the input spelling pattern across the orthographic units. The model was trained on a
corpus of 2897 English words that included most of the uninflected monosyllabic words in the language.
The model provides detailed accounts of performance on two tasks, naming aloud and lexical decision,
and simulates many aspects of human performance, including (a) differences between words in terms of
processing difficulty; (b) pronunciation of novel items; (c) differences between readers in terms of word
recognition skill; (d) transitions from beginning to skilled reading; and (e) differences in performance on
the two tasks. The model's behavior early'in the learning phase corresponds to that of children acquiring
word recognition skills. Training with a smaller number of hidden units produces output characteristic of
many poor readers.-Pronunciation is accomplished without rules governing spelling-sound
correspondences, and lexical decisions are accomplished without access to word-level representations.
The performance of the model is mainly determined by three factors: the nature of the input, which is a
significant fragment of written English; the learning rule, which extracts the implicit structure of the
orthography and encodes it as weights .on connections; and the architecture of the system, which
influences the scope of what can be learned.
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Wond RecognItion and Naing 2

The recognition and pronunciation of words is one of the central topics in reading research and has
been studied intensely in recent years (see papers in Besner, Waller & MacKinnon, 1985, and M.
Coftheart, 1987, for reviews). The topic is important primarily because of the immediate, 'on-line" character
of language comprehension (Marslen-Wilson, 1975), that is, the fact that text and discourse are interpreted
essentially as the signal is perceived. Two aspects of lexical processing contribute to this characteristic of
reading. First, words can be identified quickly; the rate for skilled readers typically exceeds 5 words per
second (Rayner & Pollatsek, 1987). Second, identification of a word results in the activation of several
types of associated information or codes, each of which contributes to the rapid interpretation of text.
These codes include one or more meanings of a word (Seidenberg, Tanenhaus, Leiman & Bienkowski,
1982; Swinney, 1979), information related to its pronunciation or sound (Baron & Strawson, 1976; Gough.
1972; Tanenhaus, Flanigan, & Seidenberg, 1980), and information concerning the kinds of sentence
structures in which the word participates (McClelland & Kawamoto, 1986; Tanenhaus & Carlson, in press).
Understanding the meanings of words is obviously an important part of text comprehension. The
phonological code may be related to the retention of information in working memory while other
comprehension processes such as syntactic analyses or inferencing continue (Baddeley, 1979; Daneman
& Carpenter, 1980). The third type of information facilitates the development of representations
concerning syntactic and conceptual structures (Tanenhaus & Carlson, in press). The picture that has
emerged is one in which lexical processing yields access to several types of information in a rapid and
efficient manner. Readers are typically aware of the results of lexical processing, not the manner in which it
occurred. One of the goals of research on visual word recognition has been to use experimental methods
to unpack these largely unconscious processes; the model we present in this paper attempts to give an
explicit, computational account of them.

Word recognition is also important because acquiring this skill is among the first tasks confronting
the beginning reader; moreover, deficits at the level of word recognition are characteristic of children who
fail to acquire age-appropriate reading skills (Perfetti, 1985; Stanovich, 1986). The model we will describe
provides an account of the kinds of knowledge that are acquired, how they are used in performing different
reading tasks, and the bases of some types of reading impairment. Specific deficits in word recognition are
also observed as a consequence of brain injury; the study of these deficits has provided important
information concerning the types of knowledge and processes involved in normal reading and clues to
their neurophysiological bases (Patterson, M. Coltheart & Marshall, 1986). Our model provides the basis
for an account of some aspects of pathological performance in terms of damage to the normal processing
system; this aspect of the model is discussed in Patterson, Seidenberg, and McClelland (in press).

Finally, visual word recognition provides an interesting domain in which to explore general ideas
concerning learning, the representation of knowledge, and skilled performance because it is a relatively
mature area of inquiry. There has been an enormous amount of empirical research on the topic, and
several models have already been proposed (M. Coftheart, 1978; Forster, 1976; LaBerge & Samuels,
1974; McClelland & Rumelhart, 1981; Morton, 1969). Our goal has been to develop an explicit,
computational model that accounts for much of this extensive body of knowledge. At the same time, word
recognition provides an interesting domain in which to explore the properties of the connectionist or
parallel distributed processing approach to understanding perception, cognition, and learning (Rumelhart
& McClelland, 1986a; McClelland & Rumelhart, 1986a) that we have employed in this research. In
particular, our model illustrates an important feature of this approach, the emergence of systematic, "rule-
governed" behavior from a network of simple processing units

SCOPE OF THE PROBLEM

In acquiring word recognition skills, children must come to understand at least two basic
characteritics of written English. First there is the alphabetic principle (Rozin & Gleitman, 1977), the fact
that in an alphabetic orthography there are systematic correspondences between the spoken and written
forms of words. Beginning readers alreadcy possess large oral vocabularnes; their initial problem is to learn
how known spoken forms map onto unfamiliar written forms. The scope of this problem is determined by
characteristics of the writing system. The alphabetic writing system for English is a code for representing
spoken language; units in the writing system--letters and letter patterns--largely correspond to speech
units such as phonemes. However, the correspondence between the written and spoken codes is
notoriously complex; many correspondences are inconsistent (e.g., -AVE is usually pronounced as in
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GAVE, SAVE, and CAVE, but there is also HAVE) or wholly arbitrary (e.g., -OLO-in COLONEL, -PS in
CORPS).

These inconsistencies derive from several sources. One is the fact that the writing system also
encodes morphological information. Chomsky and Halle (1968) argue that English orthography represents
a solution to the problem of simultaneously representing information concerning phonology and
morphology. According to their analysis, the writing system follows a general principle whereby
phonological information is encoded only if it cannot be derived from rules that are conditioned by
morphological structure. Thus, words with seemingly irregular pronunciations such as SIGN and BOMB
preserve in their written forms information about morphological relations among words (SIGN-SIGNATURE;
BOMB-BOMBARD); the correct pronunciations can be derived from a morphophonemic rule governing
base and derived forms. Whatever the validity of Chomsky and Halle's account of these phenomena (see
Bybee, 1985, for an alternative), it is clear that some irregular correspondences between graphemes and
phonemes are due to the competing demand that the writing system preserve morphological information.

Other inconsistencies derive from the fact that the spoken forms of words change over time while
the written forms are essentially fixed. In British English, for example, the word BEEN is a homophone of
BEAN; in American English, it is a homophone of BIN. The American pronunciation has changed through a
process of phonological reduction, resulting in an irregular spelling-sound correspondence. These
diachronic changes in pronunciation are an important source of irregularities in spelling-sound
correspondences. There are other sources as well, principally lexical borrowing from other languages,
periodic spelling reforms, and historical accident. The net result is that the writing system encodes
information related to pronunciation and sound, but the correspondence between written and spoken
forms is not entirely regular or transparent. English is said to have a "deep" alphabetic orthography, in
contrast to a "shallow" orthography such as that in Serbo-Croatian, which has more consistent spelling-
sound correspondences (Katz & Feldman, 1981).

A second aspect of the writing system the child must team about concerns the distribution of letter
patterns in the lexicon. Only some combinations of letters are possible, and the combinations differ in
frequency. These facts about the distribution of letter patterns give written English its characteristic
redundancy. Of the many possible combinations of 26 letters, only a small percentage yield letter strings
that would be permissible words in English. An even smaller percentage are realized as actual entries in
the lexicon. As Adams (1981) has noted, "From an alphabet of 26 letters, we could generate over 475,254
unique strings of 4 letters or less, or 12,376,630 of 5 letters or less. Alternatively, we could represent
823,543 unique strings with an alphabet of only 7 letters, or 16,777,216 with an alphabet of only 8. For
comparison, the total number of entries in Webster's New Collegiate Dictionary is only 150,000" (p. 198).
Constraints on the forms of written words may play an important role in the recognition process. The reader
must discriminate the input string from other vocabulary items, a task that might be facilitated by knowledge
of the letter combinations that are permissible or realized. Many studies have provided evidence that skilled
readers utilize this knowledge (see Henderson, 1982, for review).

Orthographic redundancy also provides cues to other aspects of lexical structure, specifically
syllables and morphemes. For example, the written forms of words typically provide cues to their syllabic
structure (Adams, 1981) for the following reason. Syllables derive from articulatory-motor properties of the
spoken language: essentially they reflect the opening and closing movements of the jaw cycle (Fowler,
1977; Seidenberg, in press). Thus, the capacities of the articulatory-motor apparatus constrain the
possible sequences of phonemes. Moreover, there are language-specific constraints on phoneme
sequencing. Written English is largely a code for representing speech; hence properties of speech such
as syllables tend to be reflected in the orthography. For example, the fact that the letters GP never appear
in word-initial position derives from a phonotactic constraint on the occurrence of the corresponding
phonemes. These letters can appear at the division between two syllables (e.g., PIGPEN), reflecting the
fact that there are more constraints on the sequencing of phonemes within syllables than between. As a
result, the letter patterns at syllable boundaries tend to be lower in frequency than the letter patterns that
occur intrasyllabically (Adams, 1981; Seidenberg, 1987). Thus, facts about the distribution of phonemes
characteristic of spoken syllables are reflected in the distribution of letter patterns in their written
realizations. As in the case of grapheme-phoneme correspondences, however, the realizations of
syllables in the orthography are not entirely consistent, as illustrated by minimal pairs such as
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WAIVE-NAIVE, BAKED-BAKER, and DIES-DIET, which are similar in orthography but differ in syllabic
structure. Thus, written English provides cues to syllabic structure, but these cues are not entirely reliable.

The situation is similar when we turn to the level of morphology, which concerns the organization of
sublexical units that contribute to meaning. The meaning of a word is often a compositional function of the
meanings of its morphemes; consider prefixed words such as PREVIEW and DECODE. That English is
systematic in this regard is seen in the coining of new words such as PRECOMPILE or DEBUG. That it is
;,nconsistent is illustrated by words such as PRETENSE (unrelated to TENSE) or DELIVER (unrelated to
LIVER). Again written English encodes information related to morphological stncture, but not in a regular
or consistent manner.

In sum, the English orthography partially encodes several types of information simultaneously.
The reader's knowledge of the orthography can be construed as an elaborate matrix of correlations among
letter patterns, phonemes, syllables, and morphemes. Written English is an example of what we will term a
quasiregular system-a body of knowledge that is systematic but admits many irregularities. In such
systems the relationships among entities are statistical rather than categorical. Many other types of
knowledge may have this character as well.

The child's problem, then, is to acquire knowledge of this quasiregular system. The task of reading
English might be facilitated by the systematic aspects of the writing system, e.g., the constraints on
possible letter sequences and the correspondences between spelling and sound. However, there are
barriers to using these types of information. Facts about orthographic redundancy cannot be utilized until
the child is familiar with a large number of words. Acquiring useful generalizations about spelling-sound
correspondences is inhibited by the fact that many words have irregular correspondences, and these
words are overrepresented among the items the child learns to read first (e.g., GIVE, HAVE, SOME,
DOES, GONE, etc.). The child must nonetheless learn to use knowledge of the orthography in a manner
that supports the recognition of words within a fraction of a second.

Our model addresses the acquisition and use of knowledge concerning orthographic redundancy
and orthographic-phonological correspondences. We focus on these types of information because they
are sufficient to account for phenomena related to the processing of monosyllabic words, which is our
model's domain of application. In the general discussion we return to issues concerning syllabic and
morphological knowledge and the processing of more complex words. Our goal has been to determine
how well the basic phenomena of word naming and recognition might be accounted for by a minimal model
of lexical processing, in which as little as possible of the solution of the problem is built in, and as much as
possible is left to the mechanisms of learning. The model is realized within the connectionist framework
being applied to many problems in perception and cognition (Rumelhart & McClelland, 1986a; McClelland
& Rumelhart, 1986a). The model provides an account of how these types of knowledge are acquired and
used in performing simple reading tasks such as naming words aloud and making lexical decisions. One of
the main points of the model is that, because of the quasiregular character of written English, it is felicitous
to represent these types of knowledge in terms of the weights on connections between simple processing
units in a distributed memory network. Learning then involves modifying the weights through experience
in reading and pronouncing words. Thus, the connectionist approach is ideally suited to accounting for
word recognition because of the nature of the task, which is largely determined by these characteristics of
the orthography.

A key feature of the model we will propose is the assumption that there is a single, uniform
procedure for computing a phonological representation from an orthographic representation that is
applicable to exception words and nonwords as well as regular words. A central dogma of many earlier
models (e.g., the dual-route accounts of M. Coltheart, 1978; Marshall & Newcombe, 1973: Meyer,
Schvaneveldt, & Ruddy, 1974) is that exception words and nonwords require separate mechanisms for
their pronunciation: exception words require lexical lookup, because they cannot be pronounced by rule,
whereas nonwords require a system of rules, because their pronunciations cannot be looked up (see
Seidenberg, 1985a, 1988 for discussion). Whether in fact two mechanisms are required--and whether
they are the mechanisms postulated in dual-route models--are among the main issues that our model
addresses. The model does not entail a lookup mechanism, because it does not contain a lexicon in which
there are entries corresponding to individual words. Nor does it contain a set of pronunciation rules.
Instead it replaces both by a single mechanism that learns to process regular words, exception words,
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nonwords, and other types of letter strings through experience with the spelling-sound correspondences
implicit in the set of words from which it learns.

The model gives a detailed account of a range of empirical phenomena that have been of
continuing interest to reading researchers, including (a) differences between words in terms of processing
difficulty: (b) differences between readers in terms of word recognition skill; (c) transitions from beginning
to skilled reading; and (d) differences between silent reading and reading aloud. The model also provides
an account of certain forms of dyslexia that are observed developmentally and as a consequence of brain
injury.

DESCRIPTION OF THE MODEL

Precursors

Before we turn to the model itself, it is important to acknowledge several precursors of this work. In
some ways, this model can be seen as an application of many of the principles errodied in the interactive
activation model of word perception (McClelland & Rumelhart, 1981) to a more distributed model of the
kind used by Rumelhart and McClelland (1986b) in their simulation of the acquisition of past tense
morphology. This work draws heavily on insights into distributed representation due primarily to Geoff
Hinton (1984; Hinton, McClelland & Rumelhart, 1986) and exists only because of Rumelhart, Hinton, and
Williams' (1986) discovery of a learning procedure for mutilayer networks. In applying many of these ideas
to the task of reading, we follow in the footsteps of Sejnowski and Rosenberg's (1986) NETtalk model,
which was the first application of the Rumelhart et al. algorithm to the problem of learning the spelling-
sound correspondences of English. Sejnowski and Rosenberg recognized that this knowledge could be
represented within a parallel distributed network rather than a set of pronunciation rules. Our goal was to
explore the adequacy of this approach by developing a model that could be related to a broad range of
phenomena concerning human performance.

Several previous models of visual word recognition also influenced the development of the
somewhat different account presented here. Among them are Morton's (1969) seminal logogen model,
the dual-route model of M. Coltheart (1978) and Glushko's (1979) lexical analogy model. Later in the iext
we show how our model relates to these precursors. Finally, our account of lexical decision is similar to
ones proposed by Gordon (1983) and Balota and Chumbley (1984).

The Larger Framework

As we have noted, the model was developed with the goal of employing a minimal architecture in
which the learning aspect played a dominant role. Some minimal structural assumptions were required,
however. A second goal was to keep things as simple as possible; therefore the model we have
implemented is a simplification of the larger, somewhat richer processing system that surely is required to
account for aspects of single word processing outside our primary concerns. We begin by describing the
larger framework of which the model we have implemented is a part: we then describe the simplifications
and detailed assumptions of the implementation.

The larger framework assumes that reading words involves the computation of three types of
codes: orthographic, phonological, and semantic. Other codes are probably also computed (concerning,
e.g., the syntactic and thematic functions of words), but we have not included them in the present model
because they probably are more relevant to comprehension processes than to the recognition and
pronunciation of monosyllabic words. Each of these codes is assumed to be a distributed representation:
that is, to be a pattern of activation distributed over a number of primitive representational units. Each
processing unit has an activation value which in our model ranges from 0 to 1. The representations of
different entities are encoded as different patterns of activity over these units.

Processing in the model is assumed to be interactive (Marslen-Wilson, 1975; McClelland, 1987
McClelland & Rumelhart, 1981; Rumelhart, 1977). That is, we assume that the process of building a
representation at each of the three levels both influences, and is influenced by, the construction of
representations at each of the other levels. We also assume, in keeping with this inherently interactive
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view, that word processing can be influenced by contextual factors arising from syntactic. semantic, and
pragmatic constraints, although the scope and locus of these effects is a mattcr of current debate (see
McClelland, 1987: Rumelhart, 1977; Tanenhaus, Dell & Carlson, in press, for discussion). We assume that
at least some of these types of information constrain the construction of the representation at the semantic
level, and thus indirectly influence construction of representations at the other levels; and conversely that
the construction of a representation of the context is influenced by activation at the semantic level.

As in other connectionist models, processing is mediated by connections among the units.
However, it is well known that there are limits on the processing capabilities inherent in networks in which
there are only direct connections between units at different representational levels (Minsky & Papert,
1969: Hinton, McClelland, & Rumelhart, 1986). In view of these limits, it is crucial that there be a set of so-
called "hidden units," mediating between the pools of representational units.

The assumptions described thus far are captured in Figure 1, in which each pool of units--both
hidden units and representational units--is represented by an ellipse. Connections between units on
different levels are represented by arrows. These arrows always run in both directions, in keeping with the
assumption of interactivity.

Insert Figure 1 About Here

The Simulation Model

The model that we have actually implemented is illustrated in Figure 2 and is the part of Figure 1 in
heavy outline. This simplified model removes the semantic and contextual levels, leaving only the
orthographic level, the phonological level, and the interlevel of hidden units between these two.
Furthermore, as an additional simplification, we have not implemented feedback from the phonological to
the hidden units; this means, in effect, that phonological representations cannot in fact influence the
construction of representations at the orthographic level. There is, however, feedback from the hidden
units to the orthographic units. This feedback plays the role of the top-down word-to-letter connections in
the interactive activation model of word perception, allowing the model to sustain, reinforce, and clean up
patterns produced by external input to the orthographic level.

Insert Figure 2 About Here

Several further assumptions were required in implementing this simplified model. These
assumptions can be grouped into three types: Processing assumptions, specifying the way in which
activations influence each other; learning assumptions, specifying how connection strength adjustment
takes place as a result of experience; and representational assumptions, specifying how orthographic and
phonological characteristics of words are to be represented.

Processing Assumptions

At a fine-grained level, we believe it would be most accurate to characterize processing in terms of
the gradual buildup of activation (McClelland, 1979; McClelland & Rumelhart, 1981), subject to a
considerable amount of random noise. However, for simplicity the simulation model actually computes
activations deterministically in a single processing sweep. This simplification makes simulation of the
learning process feasible, since it speeds up simulation by a couple of orders of magnitude.

Details of the processing assumptions of the model are as follows. Each word-processing trial
begins with the presentation of a letter string, which the simulation program tmen encodes into a pattern of
activation over the orthographic units, according to the representational assumptions described below.
Next, activations of the hidden units are computed on the basis of the pattern of activation at the
orthographic level. For each hidden unit, a quantity termed the net input is computed; this is simply the



Orthography Phonology

MAKE /mAk/

Figure 1: General framework for lexical processin'g. The implemented
model is outlined in bold.
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activation of each input unit, times the weight on the connection frcn that input unit to the hidden unit plus
a bias term, ui,;que to the unit. Thus, f' r hidden unit i, the net input is given by:

neti= _wijaj+ bias,

Here j ranges over the orthographic units, a is the activation of orthographic unit j, biasi is the bias term for

hidden unit i, and wij is the weight of the connection to unit i from unit j. The bias term may be thought of as

an extra weight or connection to the unit from a special unit that always has activation of 1 ,^

The activation of the unit is then determined from the net input using a nonlinear function called
the logistic function:

1
ai=

1 4. -net i

The activation function must be nonlinear for reasons described in Rumelhart et al. (1986). It must be
monotonically increasing and have a smooth first derivative for reasons havirm to do with the learning rule.
The logistic function satisfies these constraints.

Once activations over the hidden units have been computed, these are used to compute
activations for the phonological units and new activations for the orthographic units based on feedback
from the hidden units. Thise activations are computed following exactly the same computations already
described; first the net input to each unit is calculated, based on the activations of all of the hidden units;
then the activation of each of these units is computed, based on the net inputs.

Learning Assumptions

When the model is initialized, the connection qtrengths and biases in the network are assigned
random initial values between ± .5. This means that each hidden unit computes an entirely arbitrary
funct;on of the input it receives from the orthographic units, and sends a random pattern of excitatory and
inhibitory signals to the phonological units and back to the orthographic units. This also means that the
network has no initial knowledge of particular correspondences between spelling and sound, nor can its
feedback to the orthographic units effectively sustain or reinforce inputs to these units. Thus, the ability to
recreate the orthographic input and generate its phonological code arises as a result of learning from
exposure to letter strings and the corresponding strings of phonemes.

Learning occurs in the model in the following way. An orthographic string is presented and
processing takes place as described above, producing first a pattern of activation over the hiuden units,
then a feedback pattern on the orthographic units and a feedforward pattern on the phonological units. At
this point these two output patterns produced by the model are compared to the correct, target patterns
that the model should have produce,!. The target for the orthographic feedback pattern is simply the
orthographic input pattern: the target for the phonological output is the pattern representing the corre.t
phonological code of the presented letter string. We assume that in reality the phonological pattern may
be supplied as explicit external teaching input--as in the case where the child sees a letter string and hears
a teacher or other person say its correct pronunciation--or self-generated on the basis of the child's prior
knowledge of the pronunciations of words.

For each orthographic and phonemic unit, the dr arence between the correct or target activation
of the unit and its actual activation is computed:

di= (ti- a)
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The learning procedure adjusts the strengths of all of the connections in the network in proportion to the
extent to which this change will reduce a measure of the total error, E. Thus,

aIE
AW i -- -E

aw ii

Here e is a learning rate parameter, and E is the sum of the difference terms for each unit, each squared:

2
E = FXd 1

The term aE/awij is the partial derivative of the error measure with respect to a change in the weight to unit i
from unit j.1

The algorithm that is used to compute the partial derivative for each weight is the "back-
propagation" learning procedure of Rumelhart et al. (1986). Readers are referred to Rumelhart et al. for an
explanation of how these partial derivatives are calculated. For our purposes the important thing to note is
that the rule changes the strength of each weight in proportion to the size of the effect changing it will have
on the error measure. Large changes are made to weights that have a large effect on E, and small changes
are made to weights that have a small effect on E.

Repre entational Assumptions

In reality the orthographic and phonological representations used in reading are determined by
learning processes, subject to initial constraints imposed by biology and prior experience. The learning of
these representations is beyond the scope of the model; for simplicity we have treated these
representations as fixed in the simulations. Our choice of representations is not intended to be definitive:
rather it was motivated primarily by a desire to capture a few general properties which we would expect such
representations to acquire through learning, while at the same time building in very little specifically about
the correspondences between spelling and sound, or about the particular kinds of letter and phoneme
strings that are words in English.

In representing a word's orthographic or phonological content, it is not sufficient to activate a unit
for each of the letters or phonemes in the word, because this would yield identical representations for pairs
such as BAT and TAB. It is necessary to use some scheme that specifies the context in which each letter
occurs. We chose to use a variant of Wickelgren's (1969) "triples" scheme, following Rumelhart and
McClelland (1986b), rather than the strict positional encoding scheme of McClelland and Rumelhart (1981)
In this we have given the model a tendency to be sensitive to local context rather than absolute spatial
position, since letters occurring in similar local contexts activate units in common. Thus, for example, the
letter string MAKE is treated as the set of letter triples _MA, MAK, AKE, and KE_ (where _ is a symbol
representing the beginning or ending of a word), while the phoneme string /mAk/ is treated as the set of
phoneme triples _mA, mAK, AK_. 2

Note that we do not claim that this scheme in its present form is fully sufficient for representing all of
the letter or phoneme sequences that form words (see Pinker & Prince, 1988). However, we are presently
applying the model only to monosyllables, and the representation is sufficient for these (see general
discussion). Extensions of the representation scheme can be envisioned in which more global properties
such as approximate position with respect to particular vowel groups is also represented in conjunction with
each triple. Such a scheme would largely collapse to the present one for monosyllables.

An important way in which our representations differ from Wickegren's proposal lies in the fact that
we do not assume a one-to-one correspondence between triples and units; rather, each triple is encoded
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as a distributed pattern of activation over a set of units, each of which participates in the representation of
many triples. The representation used at the phonemic level is the same as that used by Rumelhart and
McClelland (1986b). Each unit represents a triple of phonetic features, one feature of the first of the three
phonemes in each triple, one feature of the second of the three, and one of the third.3 For example, there
is a unit that represents [vowel, fricative, stop]. This unit should be activated for any word containing such a
sequence, such as the words POST and SOFT. Word boundaries are also represented in the featural
representation, so that there is a unit, for example, that represents [vowel, liquid, word-boundary]; this unit
would come on in words like CAR and CALL. There are 460 such units, and each phoneme-triple activated
16 of them- see Rumelhart and McClelland (1 986b) for details.

The representation used at the orthographic level is similar to that used at the phonological level,
except that in this instance 400 units were use.;, and each unit was set up according to a slightly different
scheme. For each unit, there is a table containing a list of ten possible first letters, ten possible middle
letters, and ten possible end letters. These tables are generated randomly except for the constraint that
the beginning/end of word symbol does not occur in the middle position. When the unit is on it indicates
that one of the 1,000 possible triples that could be made by selecting one member from the first list of ten,
one from the second, and one from the third is present in the string bein represented. Each triple
activated about 20 units. Though each unit is highly ambiguous, over the full set of 400 such randomly
constructed units, the probability that any two sequences of three letters would activate all and only the
same units in common is effectively zero. 4 In sum, both the phonological and the orthographic
representations can be described as coarse-coded, distributed representations of the sort discussed by
Hinton, McClelland and Rumelhart (1986). The representations allow any letter and phoneme sequences
to be represented, subject to certain saturation and ambiguity limits that can arise when the strings get too
long. Thus, there is a minimum of built-in knowledge of orthographic or phonological structure. The use of
a coding scheme sensitive to local context does promote the exploitation of local contextual similarity as a
basis for generalization in the model; that is, what it learns to do for a grapheme in one local context (e.g.,
the M in MAKE) will tend to transfer to the same graphemes in similar local contexts (e.g., the M's in MADE
and MATE, and to a lesser extent, M's in contexts such as MILE and SMALL).

Naming and Lexical Decision

The model produces patterns of activation across the orthographic and phonological units as its
output. For naming, we assume that the pattern over the phonological units serves as the input to a system
that constructs an articulatory-motor program, which in turn is executed by the motor system, resulting in an
overt pronunciation response. In reality, we believe that these processes operate in a cascaded fashion,
with the triggering of the response occurring when the articulatory-motor program has evolved to the point
where it is sufficiently differentiated from other possible motor programs. Thus, activation would begin to
bui!d up first at the orthographic units, propagating continuously from there to the hidden and phonological
units and from there to the motor system where a response would be triggered when the articulatory-motor
representation became sufficiently differentiated.

The simulation model simplifies this picture. Activations of the phonological units are computed in a
single step, and the construction and execution of articulatory motor programs are unimplemented. The
activations that are computed in this way can be shown to correspond to the asymptotic activations that
would be achieved in a cascaded activ'tion process (Cohen, Dunbar & McClelland, submitted). To relate
the patterns of activation the model produces to experimental data on latency and accuracy of naming
responses, we use what we call the phonological error score, which is the sum of the squared differences
between the target activation value for each phonological unit and the actual activation computed by the
network.

It is important not to treat the error score as a direct measure of the accuracy of an overt response
made by the network. In fact, the error scores can never actually reach zero, since the logistic function used
in setting the activations of units prevents activations from ever reaching their maximum or minimum values.
Rather, with continued practice, error scores simply get smaller and smaller, as activations of units
approximate more and more closely the target values. This improvement continues well beyond the point
where the correct answer is the best match to the pattern produced by the network. To determine the
correct match, we simply use the error score as a measure of how closely the pattern computed by the net
matches the correct pronunciation and each of several other possible pronunciations. In general, as we
detail below, we find that after training the error score is lower for the correct pronunciation than for any other
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where the correct answer is the best match to the pattern produced by the network. To determine the
correct match, we simply use the error score as a measure of how closely the pattern computed by the net
matches the correct pronunciation and each of several other possible pronunciations. In general, as we
detail below, we find that after training the error score is lower for the correct pronunciation than for any other

Even where the target code provides the best fit to the pattern of activation over the phonological units.
there is still room for considerable variation in error scores. We assume that lower error scores are correlated wit-
faster and more accurate responses under time pressure. The rationale for the accuracy assumption is simply
that a low error score signifies that the pattern produced by the network is relatively clear and free from noise,
and so provides a better signal for the articulatory-motor programming and execution processes to work with.
The rationale for the speed assumption is as follows: In a cascaded system, patterns that are asymptotically
relatively clear (low in error) will reach a criterion level of clarity relatively quickly. Simulations demonstrating this
point are presented in Cohen, Dunbar, and McClelland (submitted).

Thus far we have discussed the use of the phonological error score as a measure of the accuracy
and speed of naming. We shall see below that this measure is sensitive to familiarity: the more frequently
the network has processed a particular word, the smaller the error score will be. The error score computed
over the orthographic units is likewise related to familiarity. Since the input pattern is also the target pattern
for the orthographic feedback, the orthographic error score is simply the sum of the squares of the
differences between the feedback pattern computed by the network and the actual input to the
orthographic units. For lexical decision, in which the subject's task is to judge whether the stimulus is a
familiar word or not, we assume that a measure like the orthographic error score is actually used in making
this judgment. Note that this differs from our use of the phonological error score in accounting for naming
performance. The calculated phonological error score is simply a measure of the asymptotic clarity of the
computed phonological representation, which we use to predict naming latencies. In contrast, a measure
like the orthographic error score is assumed to be actually computed by subjects as part of the decision
process. Since the orthographic input is in fact presented to the subject, it seems reasonable to assume
that subjects can compare this input to the internally generated feedback from the hidden units and use
the result of this comparison process as the basis for judgments of familiarity. This issue is considered
again below in the section on lexical decision.

Parameters

Once the input and output representations are specified, the model leaves us with very few free
parameters. There are two free parameters of the input representation, the number of letters in each unit's
table and the number of such units. After picking plausible initial values for these, however, we did not
manipulate them. There are two other parameters: the learning rate E and the number of hidden units. For
both these parameters, the initial values we chose (.05 and 200, respectively) have turned out to produce
quite good quantitative accounts of the phenomena. Interestingly, manipulation of the learning rate
parameter has rather little effect; acquisition is not so much slower as less noisy with a smaller learning rate.
Manipulation of the number of hidden units, however, has interesting and illuminating effects, which are
considered below when we discuss individual differences in learning to read. For completeness two other
parametric details should be mentioned. First, as targets for learning we used the values of .9 and .1; that
is, the model was trained to set the activations of units that should be on to .9 and the activations of units
that should be off to .1, rather than to the extreme values of 1.0 and 0.0. Second, the momentum
parameter a, was set at .9. These values are commonly used in models of this type (see, e.g., Sejnowski &
Rosenberg, 1986, and Footnote 1).

The Training Regime

There is one other factor that has profound effects on the model's performance, namely the set of
learning experiences with which it is trained. The training corpus we have used consists of all of the
monosyllabic words in the Kucera and Francis (1967) word count consisting of three or more letters. From
these we removed proper nouns, words we judged to be foreign, abbreviations, and morphologically-
complex words that were formed from the addition of a final -a or -ed inflection. It should be noted that this is
not a complete list of monosyllables; the word FONT, for example, is one of many that do not appear in
Kucera and Francis. Nevertheless the corpus provides a reasonable approximation of the set of
monosyllables in the vocabulary of an average American reader. To this list we added a number of words
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that had been used in some of the experiments that we planned to simulate. Some of these words were
inflected forms (e.g., DOTS); for these the Kucera-Francis frequency of the base form was used Others
were simply entered into the word list with frequencies of 0. The resulting list contained 2897 words. This
total includes 11 homographs (words such as WIND and BASS that have two pronunciations) which were
entered twice, once with each pronunciation. Thus there were 2886 unique orthographic patterns in the
list.

The training regime was divided into a series of epochs. Within an epoch, each word had a chance
of being presented that was monotonically related to its estimated frequency:

p - K log(frequency + 2)

A value of K was chosen so that the most frequent word (THE) had a probability of about .93. Words
occurring once per million had probabilities of about .09 and words not occurring in the Kucera-Francis
count had probabilities of .057. Thus, the expected value of the number of presentations of a word over
250 epochs ranged from about 230 to about 14. Since the sampling process is in fact random, there was
about a 5% chance that one of the least probable words would be presented less than 7 times in 250
epochs.

The use of the logarithmic frequency transformation radically compresses the range of variation ir
the presentation frequencies of different words. For example, the word THE is presented only about 10
times as often as a word like RAKE, whereas in the Kucera and Francis (1967) corpus, THE occurs more
than 69,000 times as frequently as RAKE. This compression was motivated in part by practical
considerations. It simply is not possible to run sufficient trials to achieve even the current level of
exposure to the least frequent words without compressing the frequency range. Using compressed
frequencies, we achieved this level of exposure with a total of 150,000 learning trials. Using
uncompressed frequencies something on the order of 5,000,000 learning trials would have been
required; this would take several months given available computational resources.

There are several other reasons why some compression of the frequency range is preferable to
the use of raw frequencies. First, the word frequencies found in a count such as Kucera and Francis
(1967) are based on samples of written text taken from adult sources and do not reflect the relative
frequencies of words experienced by beginning readers. In the early stages of learning to read, the words
to which the child is exposed necessarily span a much narrower range of frequencies than in the adult
norms. With additional experience, the relative frequencies of words begin to differentiate. The
logarithmic transform, which compresses the range of frequencies, is thus more in keeping with the child's
experience than the adult's. We thought it important to approximate this aspect of the child's experience
because the largest gains in reading skill occur early in training. This is true both for the model, as will be
seen below, and for children, whose knowledge of the spelling-sound correspondences of the language
expands rapidly during the first year or two of instruction.

A second point is that the frequency transform compensates for the effects of another aspect of
the implemented model, the restricted corpus of words used in training. The training corpus consists
entirely of monosyllabic words, and includes only a few morphologically-complex words. Children learn
the spelling-sound correspondences of the language on the basis of exposure to both mono- and
multisyllabic words, including morphological relatives that were excluded from the simulations. For
example, the model is trained on a word such as DUNK but does not gain additional feedback from related
items such as DUNKED or DUNKING. The net effect is that the listed frequencies of the base words tend
to underestimate their actual frequency of occurrence in the language. This factor will have little effect on
the model's performance on higher frequency words; the morphological relatives tend to be much lower in
frequency and including these words would result in little additional learning. However, the morphological
relatives of the lower frequency items tend to be as frequent or more frequent than the base words
themselves; excluding these items eliminates an important source of feedback. Thus, the restrictions on
the training set disproportionately penalize the lower frequency words, which the frequency transform
tends to counteract.

The effects of the frequency compression must also be considered in light of the properties of
the learning algorithm we used, which is an error correcting learning procedure. This means that changes
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in connection strengths are only made to the degree that the network fails to match the target. It follows
that the magnitudes of the changes tend to diminish with successive presentations of a word. The data
presented below indicate that the model reached nearly asymptotic performance on higher frequency
words with less than 250 presentations; thus, additional presentations would have little effect. The net
result is that the network itself effectively compresses the effects of frequency as it learns in any case.
Where the compression in the frequency range does have an effect is on the relative speed with which
high and low frequency words are mastered. Higher frequency words do not reach asymptote as quickly
because they are presented less often.

In summary, it seems likely that our compression of the frequency range may distort to some
extent the rate of mastery of words of different frequencies. However, several considerations suggest
that the effects of this compression are less significant than one might initially suppose. The differences
between high and low frequency words relevant to the child's experience are actually smaller than the
norms suggest. Moreover, given the properties of the corpus we have used in these simulations, some
compression of the frequency range seems appropriate. In the final section of the paper, we also present
data from an additional simulation indicating that the model's performance replicates when a broader range
of frequencies is used.

We should stress that the model represents a claim about the types of knowledge that are
acquired, but it is not a simulation of the child's experience in learning to read in the American educational
system. In the model, all words are available for sampling throughout training, with frequency modelled by
the probability of being selected on a given learning trial. In actual experience, however, frequency derives
in part from age of exposure; words that are higher frequency for adults tend to be introduced earlier than
lower frequency items. In learning to read, then, words are introduced sequentially, and often in groups
that emphasize salient aspects of the orthography. As shown below, however, the model nonetheless
exhibits some of the basic developmental trends characteristic of the acquisition process.

RESULTS

Pronunciation of Written Words

We consider first the model's account of the task of naming written words aloud. Words vary in
terms of factors such as frequency of occurrence, orthographic redundancy and orthographic-
phonological regularity. Many studies have investigated the effects of these variables on naming
performance (see Barron, 1986; Carr & Pollatsek, 1985; Patterson & V. Coltheart, 1987: Seidenberg,
1985a, for reviews). The basic research strategy has been to examine performance in naming words that
differ systematically in terms of these structural variables. The central observation is that even among very
skilled readers, there are differences among words in terms of ease of pronunciation. We now consider
whether the model's performance on different types of words is comparable to that of humans.

Phonological Output and Naming

Before characterizing the model's performance, it is necessary to consider further a theory of the
naming task and how it relates to the output computed by the model. We assume that overt naming
involves three cascaded processes: (a) the input's phonological code is computed; (b) the computed
phonological code is compiled into a set of articulatory-motor commands: (c) the articulatory motor code is
executed, resulting in the overt response. Only the first of these processes is implemented in the model.
In practice, however, the phonological output computed by the model is closely related to observed
naming latencies.

A word is named by recoding the computed phonological output into a set of articulatory motor
commands, which are then executed. Differences in naming latencies primarily derive from differences in
the quality of the computed phonological output. Informally speaking, a word that the model "knows" well
produces phonological output that more clearly specifies its articulatory-motor program than a word that is
known less well. Thus, naming latencies are a function of phonological error scores, which index
differences between the veridical phonological code and the model's approximation to it. Clearly the
computed phonological code and the compiled articulatory-motor program are closely related, which is why
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the error scores systematically relate to observed naming latencies. That the codes are distinct is
suggested by evidence that subjects are able to utilize phonological information even when compilation of
the articulatory-motor program is blocked by performance of a secondary articulatory task. For example,
subjects can reliably judge phonological properties of stimuli when they are simultaneously mouthing a
nonsense syllable (Besner & Davelaar, 1982). Other models have also distinguished between
phonological and articulatory codes (e.g., LaBerge & Samuels, 1974).

Differences in naming latencies could also be associated with the execution of the compiled
articulatory-motor programs. Consider, for example, a factor such as frequency. The distributions of
phonemes in high and low frequency words differ; some phonemes and phoneme sequences occur more
often in higher frequency words than low, and vice versa (Landauer & Streeter, 1973). Phonemes also
differ in terms of ease of articulation (Locke, 1972): higher frequency words may contain more of the
phonemes that are easier to pronounce, or it may be that the phonemes that are characteristic of high
frequency words are easier to pronounce because they are used more often. Thus, naming latencies for
high and low frequency words could differ not because frequency influences the computation of
phonological output, or the translation of this output into an articulatory code, but because they contain
phonemes that differ in terms of ease of articulation. We have ignored this aspect of the naming process
for two reasons. First, we have not implemented procedures for producing articulatory output. More
importantly, existing studies indicate that effects of variables such as frequency and orthographic-
phonological regularity obtain even when articulatory factors are carefully controlled. For example, there
are frequency effects even when articulatory factors are controlled by using homophones (e.g.,' high
frequency: MAIN; low frequency: MANE; see Seidenberg, McRae, & Jared, 1988; Theios & Muise, 1976).
Among the monosyllabic words under consideration, differences at the stage of producing articulatory-
motor output contribute very little to observed naming latencies (see also Monsell, Doyle, & Haggard, in
press). In sum, naming latencies depend in part on factors related to the construction of an articulatory-
motor program and its execution, processes the model does not simulate. It turns out, however, that we
can give a fairly accurate account of a broad range of naming phenomena simply in terms of the
computation from orthography to phonology.

In the sections that follow, we examine how the model performed on different types of words that
were used in behavioral studies. Because the model was trained on a large set of words, we can examine
the model's performance on the same items that were used in specific experiments. We evaluate the
model's performance in the following way. Given a particular input string, the model produces a pattern of
activation across the phonological units. We characterize this pattern by comparing it to different target
patterns. For example, we can calculate an error score that reflects the difference between the obtained
pattern and the one associated with the correct phonological code for the input string. We can also
compare the output to other plausible phonological codes: for example, if the input were an exception
word such as HAVE, we can compare the computed pattern of activation to the pattern for both the correct
phonological code, /hav/ and the output for a plausible alternative, such as the regularized pronunciation
/hAv/.

For the entire set of words after 250 learning epochs the following results obtained. In general, the
error scores calculated using the correct phonological codes as targets were much smaller than the error
scores derived by using other targets. In order to be certain that the best fit to the computed output for a
given word was the correct phonological code, it would be necessary to compare the output to all possible
phonological patterns, which we have not done for obvious reasons. However, the following analysis
provides a general picture of the model's performance. The phonological output computed for each word
was compared to all of the target patterns that could be created by replacing a single phoneme with some
other phoneme. For the word HOT, for example, the computed output was compared to the correct code,
/hot/, and to all of the strings in the set formed by /Xot/, /hXt/, and /hoX/, where X was any phoneme. We
then determined the number of cases for which the best fit (smallest error score) was provided by the
correct code or one of the alternatives.

Among the 2897 words in the corpus, there were 77 cases (2.7%) in which the best fit to the
computed output was a pattern other than the correct one. The errors, which are listed in Table 1, were of
several types. The model produced 14 regularization errors, in which a word with an irregular pronunciation
is given a "regular" pronunciation. These errors are also observed in children learning to read (Backman.
Bruck, Hdbert & Seidenberg, 1984) and in certain cases of dyslexia following brain injury (Marshall &
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Newrombe, 1973: Patterson, M. Cotheart, & Marshall, 1985). Thus, although the model was trained that
the correct pronunciation of BROOCH is /brOC/, the best fit to the computed output was provided by the
regularization /rUC/, similar to BROOM. For PLAID the model produced /plAd/ instead of /plad, and for
SPOOK it produced /spuk' (as in BOOK) instead of /spUk/. All of the regularization errors were produced
for words that occurred with very low frequencies during the training phase. In these cases, the model's
output was determined on the basis of knowledge derived from exposure to other words, for which the
regular spelling-sound correspondences predominate. These errors illustrate a basic characteristic of the
model, the fact that the output for a word is affected by exposure to both the word itself and other words.
This aspect of the model is discussed in greater detail below.

There were 25 other cases in which the model produced incorrect vowels that were not
regularizations. For example, the best fit to BEAU was /bU/, and the best fit to ROMP was /ramp/. Vowels
account for the bulk of the errors because they are the primary source of spelling-sound ambiguity in
English. There were also 24 cases in which the model produced incorrect consonants. Some of these
errors are systematic; for example, the model produced hard Gs instead of soft ones for the words GEL,
GIN, and GIST (it performed correctly on other such words, including GENE and GEM, however). Finally,
one other type of error occurred because some target pronunciations specified in the training list were
miscoded by the experimenter. For example, the pronunciation of SKULL was incorrectly coded as /skull/:
in our encoding scheme the correct code is /skA'V. Interestingly, in 5 cases, the best fit to the computed
output was the correct code rather than the one used in training; for JAYS, for example, the model was
trained on the incorrect pronunciation /jAs/ but the best fit was provided by the correct code/j/z/. These
self corrections were based on knowledge derived from exposure to related words, such as DAYS.

Insert Table 1 About Here

This analysis of the errors should not be taken as comprehensive, because it only tests the
computed output against the set of codes containing the same number of phonemes as the target: hence
it does not reveal cases in which phonemes were deleted or added from the target pattern. Inspection of
other cases, however, suggests that the model produced few errors of these types. Consider, for
example, words containing silent letters, such as DEBT and CALM. We tested the computed phonological
output for these words against both the correct pronunciations and the "regularizations" that would occur
by pronouncing the silent letters. We found no cases in which the regularized pronunciation yielded a
smaller error score. Thus, it appears that in a very high percentage of cases the best fit to the computed
output was provided by the correct phonological code, and the number of errors was small.

Among cases where the best fit was the cbrrect code, the error scores varied, indicating that the
model's response was not equally strong for all correct items. This, of couse, parallels the finding that
human subjects pronounce some words more quickly, or with greater accuracy under time pressure, than
others. Our main concern is to relate the magnitudes of the error scores computed after 250 epochs of
training to the naming latencies obtained in behavioral studies. The simulations reported below compare
naming latencies for the words used in particular studies to the error scores for these items. In general,
naming latencies are monotonically related to error scores; in most of the simulations, latencies are about
10 times the error score plus a constant of 500-600 msec. The constant varies from experiment to
experiment, and we take it to reflect experiment-specific factors such as the quality of the stimulus display.
sensitivity in the voice-key used, and other factors that influence the overall speed of the subjects.5

Frequency Effects

We begin by considering simple effects of word frequency on naming latency. In general,
common, familiar words yield faster naming latencies than uncommon, less familiar words (e.g., Forster &
Chambers, 1973; Frederiksen & Kroll, 1976). The standard interpretation of these effects is that they
reflect processes involved in lexical access (i.e., access to entries stored in the mental lexicon). Each
vocabulary item is thought to have a frequency-coded entry in the mental lexicon; recognition involves
accessing the appropriate entry. In Morton's (1969) model, the entries were termed logogens and
frequency was encoded by their resting levels of activation (see McClelland & Rumelhart, 1981, for a
similar proposal). Balota and Chumbley (1985) also observed small frequency effects that were not



Table 1

Corpus of Errors

1 .True errors

A. Regularizations (N-14)

Word Output Word Output

ACHE AC BROOCH brUC
CROW krW DROUGHT dr~t
PLAID plAd SOOT Sul
SPA spa SPOOK spuk
SUEDE swEd SWAMP swamp
WASP wasp WOMB o

B. Other Vowel Errors (N. 25)

Word Output

ALPS AlIps BEAU bU
BLITHE bliT BRONZE branz
CHEW OW DRAUGHT draet
SCARCE skers SCOUR skAr
FRAPPE frip FROST tr Ast

KNEAD nAd LEWD lEd
MAUVE may mow ml
NONCE nans OUCH AC
PLEAD plAd PLUME plOM
QUALMS kwAlmz QUARTZ kWA rts
QUEUE kwU ROMP ramp
STARVE starv SWARM swIrm
WONT wAnt

C. Consonant errors (N. 24)

Word Output

ANGST orndst BREADTH brebT
CORPSE kOrts CYST Sist
CZAR vor DREAMT dremp
EWE wMJ FEUD I lUd
GARB gorg GEL gel
GIN gin GIST gist
HEARTH hors NURSE mers
NYMPH mimf PHAGE pAj
SPHINX spinks SVELTE swelt
TAPS tats THWART Twert
TSAR tar WALTZ W*lps
WARP wOrb ZIP vip

2. Coding errors (N. 14)

Word Coded as Output Word Coded as output

CHAISE* Cez CAz DANG dAng dang
DAUNT' dWnt dnt FOLD rOld DOld
SKULL skull skulk JAYS* jAs jAz
MEW* myu myU SHOOT' SUT SUt
PROWL proWl prWWI STRODE stros strOz
SWATH swoth swoCh VELDT veldt velvt
WOW WW WWI ZOUNDS* zWnds zWndz

Self corrections
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attributable to lexical access because they occurred even when subjects had over a second to prepare
their responses. These effects were thought to be due to processes involved in producing articulatory-
motor output.

Our model differs from these kinds of accounts in a fundamental way: it contains no lexicon in
which there are entries for individual words: hence they cannot be "accessed" and there is no direct record
of word frequencies. Instead, knowledge of words is encoded in the connections in the network.
Frequency affects the computation of the phonological code because items that the model has
encountered more frequently during training have a larger impact on the weights. Higher frequency words
tend to produce phonological output that more closely approximates the veridical pattern of activation,
yielding smaller error scores. As noted above, we have assumed that the more closely the computed
phonological code corresponds to the veridical code, the easier it will be to compile the code into a
sequence of articulatory-motor commands. Thus, frequency has important effects on the computation of
the phonological code and therefore on the time it takes to produce an overt response.

Orthoglraphlc-Phonoogical Regularity

Consider next the contrast between regular words such as MUST, LIKE, and CANE, and exception
words such as HAVE, SAID, and LOSE. Regular words contain spelling patterns that recur in a large
number of words, always with the same pronunciation. MUST, for example, contains the ending -UST; all
monosyllabic words that end in this pattern rhyme (JUST, DUST, etc.). The words sharing the critical
spelling pattern are termed the neighbors of the input string (Glushko, 1979). Neighbors have been
defined in terms of word-endings, also termed rimes (Trieman & Chafetz, 1987) or word-bodies (Patterson
& V. Coltheart, 1987), although as we shall see other aspects of word structure also matter (Taraban &
McClelland, 1986). Exception words contain a common spelling pattern that is pronounced irregularly. For
example, -AVE is usually pronounced as in GAVE and SAVE, but has an irregular pronuruiation in the
exception word HAVE. In terms of orthographic structure, regular and exception words are similar: both
contain spelling patterns that recur in many words. It is often said that regular words obey the pronunciation
"rules" of English, while exception words do not. Thus, these types of words are similar in terms of
orthography, and they can be equated in terms of other factors such as length and frequency. Differences
between them in terms of processing difficulty must be attributed to the one dimension along which they
differ, regularity of spelling-sound correspondences.

The studies examining the processing of such words have yielded the following results. As noted
previously, there are frequency effects; higher frequency words are named more quickly than lower
frequency words. In addition, regularity effects--faster latencies for regular words compared to exceptions--
are larger in lower frequency items, and are small or nonexistent in higher frequency words (Andrews,
1982; Seidenberg, 1985b; Seidenberg et al., 1984a; Taraban & McClelland, 1987: Waters & Seidenberg,
1985). In short, there is a frequency by regularity interaction, as exemplified by the results from
Seidenberg (1985b) presented in Table 2.

Insert Table 2 About Here

The number of "higher frequency" items for which irregular spelling-sound correspondences have
little impact on overt naming is likely to be rather large because of the type/token facts about English
(Seidenberg, 1985b). A relatively small number of word types account for a large number of the tokens
that a reader encounters. In the Kucera and Francis (1967) corpus, for example, the 133 most frequent
words in the corpus account for about half of the total number of tokens. Hence, a small number of words
recur with very high frequency, and for these words spelling-sound irregularity has little effect. Exception
words tend to be overrepresented among these higher frequency items which is largely due to the fact
that the pronunciations of higher frequency words are more ousceptible to diachronic change (Hooper,
1977; Wang, 1979). It is interesting to note that although written English is said to be highly irregular, the
irregular items tend to cluster in the higher frequency range in which this property has negligible effects on
processing. Finally, the size of this "higher frequency" pool varies as a function of reading skill.
Seidenberg (1985b) partitioned the data in Table 2 according to overall subject naming speed, yielding
fast, medium, and slow reader groups (Table 3). Among these subjects, who were McGill University



Table 2

Mean Naming Latencies and Percent Errors from Seidenberg (1985b)
Experiment

Type Example Latency (errors)

High frequency, regular NINE 540 (0.4)

High frequency, exception LOSE 541 (0.9)

Low frequency, regular MODE 556 (2.3)

Low frequency, exception DEAF 583 (5.1)
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undergraduates, the fastest readers named /owerfrequency words more rapidly than the slowest readers
named higher frequency words, and thus showed no regularity effect even for the lower frequency items.
Thus, faster readers recognize a larger pool of items without interference from irregular spelling-sound
correspondences. In effect, more words are treated as though they are "high frequency" items: this may
be an important source of individual differences in reading skill.

Insert Table 3 About Here

Simulation results. To examine the model's performance on these types of words, we used a
somewhat larger stimulus set studied by Taraban and McClelland (1987, Experiment 1). Figure 3 presents
the model's performance on this set of high and low frequency regular and exception words after different
amounts of training. Each data point represents the mean phonological error score for the 24 items of each
type used in the Taraban and McClelland experiment. The learning sequence is characterized by the
following trends. Training reduces the error terms for all words following a negatively accelerated trajectory.
Throughout training, there is a frequency effect: the model performs better on the words to which it is
exposed more often. Note that although the test stimuli are dichotomized into high and low frequency
groups, frequency is actually a continuous variable and it has continuous effects in the model. Early in
training, there are large regularity effects for both high and low frequency items; in both frequency classe',
regular words produce smaller error terms than exception words. Additional training reduces the exception
effect for higher frequency words, to the point where it is eliminated by 250 epochs. However, the
regularity effect for lower frequency words remains.

Insert Figure 3 About Here

Taraban and McClelland's adult subjects performed as follows. First, lower frequency words were
named more slowly than higher frequency words. Second, there was a frequency by regularity interaction:
exception words produced significantly longer naming latencies than regular words only when they were
low in frequency. For lower frequency words, the difference between regular and exception words was 32
msec, which was statistically significant; for higher frequency words, the difference was 13 msec and
nonsignificant. The model produced similar results, as indicated in Figure 4.

Insert Figure 4 About Here

Figure 5 presents two additional studies of this type, using slightly different stimulus sets. The
Seidenberg (1985b, Experiment 2) data summarized in Table 2 are presented on the left: the results of
Seidenberg et al. (1984a, Experiment 3) are on the right. The model's performance on the same stimulus
words is also presented. In each case, both experiment and simulation yielded frequency by regularity
interactions, with a good fit between the two.

Insert Figure 5 About Here

Figure 6 summarizes the results of 14 conditions from 8 experiments that examined differences
between regular and exception words. The data represent the mean differences between exception
words and regular words obtained in the experiments and in simulations using the same items. For
conditions A-E, the differences between the naming latencies for regular and exception words were not
statistically significant (these were higher frequency stimuli); the model also produced very small effects in
these cases. In the remaining conditions, which yielded significant effects, the model also produces larger
differences between the two word types. The correlation between experiment and simulation data is .915.



Table 3

Mean naming latencies (in msec) as a function of decoding speed

Subject group

Word Type Fastest Medium Slowest

High frequency, regular 475 523 621

High frequency, exception 475 51 7 631

Difference 0 -6 +10

Low frequency, regular 500 530 641

Low frequency, exception 502 562 685

Difference +2 +32 +44
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Insert Figure 6 About Here

The simulation is revealing about the behavioral phenomena in two respects. First, it is clear that in
the model the frequency by regularity interaction occurs because the output for both types of higher
frequency words approaches asymptote before the output for the lower frequency words. Hence the
difference between the higher frequency regular and exception words is eliminated while the difference
between the two types of lower frequency words remains. This result suggests that the interaction
observed in the behavioral data results from a kind of "floor" effect due to the acquisition of a high level of
skill in decoding common words. In the model, the differences between the two types of lower frequency
words wuuld also diminish if training were continued for more epochs. This aspect of the model provides an
explanation for Seidenberg's (1985b) finding that there are individual differences among skilled readers in
terms of regularity effects. As Table 3 indicates, the fastest subjects in this study showed no regularity
effect even for words that are "lowero in frequency according to standard norms. The model suggests that
these subjects may have encountered lower frequency words more often than the slower subjects, with the
result that they effectively become "high frequency" items.

Second, the model provides an important theoretical link between effects of frequency and
regularity. Both effects are due to the fact that connections that are required for correct performance have
been adjusted more frequently in the required direction for frequent and regular items than for infrequent or
irregular items. This holds for frequent words simply because they are presented more often. It holds for
regular words because they make use of the same connections as other, neighboring regular words.
Hence, both "frequency" and "regularity" effects derive from the same source, the effects of repeated
adjustment of connection weights in the same direction.

Performance on Other Stimulus Types

Several other types of words have been studied in naming experiments; research in this area has
been marked by the development and revision of several taxonomies based on different properties of
words or perceptual units thought to be theoretically relevant. In part this research was motivated by the fact
that several models, incorporating very different representational and processing assumptions, all predict
longer naming latencies for exception words compared to regular. In the dual-route model (M. Coltheart,
1978), longer latencies result because readers attempt to pronounce exception words by applying
grapheme-phoneme correspondence rules, resulting in a temporary misanalysis. In Glushko's (1979)
model, a word is pronounced by analogy to similarly-spelled neighboring words. The fact that the neighbors
of an exception word are all regular was thought to interfere with generating its pronunciation. According to
Brown (1987), the factor that determines naming latencies is the number of times a spelling pattern (word-
body) occurs with a particular pronunciation. A regular word such as DUST contains a word-body, -UST, that
is pronounced /ust in many words. An exception word such as SWAMP contains a word-body, -AMP, that
is pronounced /omp/ in only one word, the exception itself. Hence the frequency of a spelling-sound
correspondence could be the source of the exception effect.

In the following sections we consider the model's performance on several additional types of words
and nonwords, showing that it closely simulates the behavioral data. We then consider the principles that
govern the model's performance and compare them to ones in other models.

Regular Inconsistent words. In an important paper, Glushko (1979) studied a class of words termed
"regular inconsistent." These words, such as GAVE, PAID and FOE, have two critical properties. Their
pronunciations can be derived by rule; in fact most of these words' neighbors rhyme (e.g., GAVE, PAVE,
SAVE, BRAVE, etc.). However, each of these words has an exception word neighbor (e.g., HAVE, SAID,
and SHOE, respectively). The view that readers pronounce words by applying spelling-sound rules predicts
that regular inconsistent words should be named as quickly as regular words, other factors being equal; in
both cases the rules generate the correct pronunciations. Glushko (1979) proposed that words are
pronounced by analogy to similarly-spelled words, affording the possibility that pronunciation of a regular
inconsistent word such as GAVE could be influenced by knowledge of an exception word such as HAVE.
He reported experimental evidence that regular inconsistent words yield longer naming latencies than
regular words; he also found that nonwords derived from exception words (e.g., BINT from PINT)
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yielded longer latencies than nonwords derived from regular words (e.g., NUST from MUST). These
findings have been taken as strong evidence against dual-route models (e.g., Henderson, 1982).

Subsequent studies of regular inconsistent words have yielded mixed results. Seidenberg et al.
(1984a, Experiment 3) obtained the regular inconsistent effect only for lower frequency words, and several
studies failed to yield statistically reliable effects at all (e.g., Seidenberg et al., 1984a, Experiment 1;
Stanhope & Parkin, 1987; Taraban & McClelland, 1987). These mixed results suggest that the mere
presence or absence of an exception word neighbor is not the only factor relevant to processing, an issue
to which we return below. We examined the model's processing of regular inconsistent words using stimuli
from the Taraban and McClelland experiment described above, which also included high and low
frequency regular inconsistent words and matched regular word controls. This represents the largest set
of regular inconsistent words used in any experiment. There were again 24 items of each type, all of which
were included among the 2897 words in our training set. Figure 7 presents the moders performance on
these words after different amounts of training. Error scores aqain decreased with additional training, and
higher frequency words again produced lower error scores than lower frequency words. However, after
250 epochs there were only small differences between regular inconsistent words and regular words in
both frequency ranges (high frequency: 0.C077; low frequency: 0.3128). These data are consistent with
Taraban and McClelland's results; the diferences between regular inconsistent words and regular controls
in their experiment were 7 and 10 msec, respectively, for the high and low frequency items. Neither
difference was statistically reliable. For comparison note that the difference between lower frequency
regular and exception words in their experiment was 32 msec and 2.4804 in the simulation.

Insert Figure 7 About Here

Seidenberg et al. (1984a) identified an aspect of Glushko's methodology that may have been
responsible for the large regular inconsistent effect in his study. Glushko's experiment included matched
exception/regular inconsistent pairs such as BEEN-SEEN, GIVE-DIVE, and NONE-CONE. Each spelling
pattern in the stimulus list occurred at least twice with two different pronunciations; some spelling patterns
were repeated several times (e.g., the stimuli included NONE, CONE, GONE, DONE, SHONE and BONE).
Repetition of spelling patterns with different pronunciations may have introduced intralist priming effects
that would tend to increase the magnitude of the regular inconsistent/regular difference. Seidenberg et al.
(1 984a, Experiment 2) showed that a large regular inconsistent effect occurs when stimuli are repeated in
this way, but not when the stimuli are not repeated. The model provides additional support for this
conclusion. We tested the model on the items from Glushko's Experiment 3, which had yielded a
significant 17 msec difference between regular incorsistent and regular words. The model yielded a
negligible difference of 0.1247 on the same items. The basis for this difference is clear: unlike human
subjects, the model's performance durina testing is not influenced by previous trials. The model is tested
on each stimulus without changing the weights in any way; hence there are no intralist priming effects.

We consider the regular inconsistent words again below, because they are theoretically important
and because the studies examining these items did not control another important aspect of their structure.
Here it is sufficient to note that the model gives a good account of the behavioral data obtained in studies
using these words.

Strange words. Several studies (e.g., Parkin, 1982; Parkin & Underwood, 1983; Seidenberg et
al., 1984a; Waters & Seidenberg, 1985) have examined words that differ from the regulars, regular
inconsistents, and exceptions in a basic way: they contain spelling patterns that occur in a very small
number of words, often only one. Regular patterns such as -UST and inconsistent patterns such as -AVE
are productive in the sense that they are realized in many words. Words such as GUIDE, AISLE, and
FUGUE contain nonproductive spelling patterns that rarely occur in other words. For example, GUIDE is
the only monosyllabic word ending in -UIDE. Henderson (1982) terms these words lexical hermits; in
Glushko's (1979) terminology, they have few if any immediate neighbors. These words might be expected
to be difficult to pronounce for three reasons: first, because they contain relatively unfamiliar spelling
patterns and thus are low in terms of orthographic redundancy, a factor that would slow the identification of
component letters; second, because the spelling-to-sound correspondences of these patterns are also
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relatively unfamiliar; and third, because these unusual spelling patterns are often associated with
idiosyncratic pronundations (as in CORPS).

Waters and Seidenberg (1985) compared the naming latencies for a set of these words (which
they termed "strangel) to the latencies for regular and exception words. The words were again
dichotomized into high and low frequency groups. Results of this study are presented in Figure 8. Among
the higher frequency words, there were no reliable differences between word classes; for the lower
frequency words, the ordering of latencies was strange > exception > regular. Strange words also
produced a larger number of mispronunciation errors. The moders performance on these words is also
presented in Figure 8, and shows the same interaction between frequency and word class. The results
corroborate the conclusion that for higher frequency words, variations in word structure, such as the
frequency of a spelling pattern or spelling-sound correspondence, have little impact on naming. Despite
the various ways in which regular, regular inconsistent, exception, and strange words differ, they yield
similar naming latencies in this frequency range. Among the lower frequency words in the language, the
strange items are the most difficult to name.

Insert Figure 8 About Here

Unklqu words. We also tested the model on a set of words used by Brown (1987), who introduced
another category of items, termed "unique". These are words such as SOAP or CURVE which also contain
word-bodies that do not occur in other monosyllabic words. These words are somewhat less eccentric that
the strange words mentioned above, as indicated by the fact that they produce lower orthographic error
scores, which are a measure of orthographic redundancy (see discussion on p. 47). Brown also examined
exception words such as LOSE, and regular words such as MILL, which he termed "consistent". The
stimuli were used to examine the hypothesis that the factor critical to naming is the number of times a word-
body is associated with a given pronunciation. Both unique and exception words contain spelling patterns
assigned a given pronunciation in only a single word (namely the unique or exception item itself), whereas
regular words contain word-bodies associated with a given pronunciation in many words. Hence Brown
predicted that unique and exception words should yield similar naming latencies, and both should be
slower than regular words. Data from Brown's naming experiment and the simulation are presented in
Figure 9. Clearly the fit between the two is very good.

Insert Figure 9 About Here

Neighborhood size. Andrews (1988) reported a study that factorially varied word frequency and a
measure of neighborhood size known as Coltheart's N (Coltheart, Davelaar, Jonasson, & Besner, 1977),
which refers to the number of words that can be derived from a given word by changing one letter. There
were 15 words in each of the four classes formed by crossing frequency (high, low) and neighborhood size
(large, small). Results of the experiment and simulation are presented in Figure 10, with again a very good
fit between the two. Both Andrews' data and the model suggest that as the frequency of a word increases.
the effects of neighboring words diminish.

Insert Figure 10 About Here

Nonword pronunciation. After training, the model has encoded facts about orthographic-
phonological correspondences in the weights on connections. Although the model performs better on
the training stimuli, it will compute phonological output for novel stimuli. In this respect it simulates the
performance of subjects asked to pronounce nonwords such as BIST or TAZE. Nonword performance
provides important information concerning the naming process because, as we have seen, performance
on many words reaches floor levels because of repeated exposure to an item itself. Because nonwords
have not been encountered previously, pronunciation must be based on knowledge gained from similar
words. A critical experiment was reported by Glushko (1979), who examined naming latencies for
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nonwords derived from regular words (e.g., NUST derived from MUST) and nonwords derived from
exception words (e.g., MAVE derived from HAVE). 6 We tested the model on his set of nonwords; the
results from experiment and simulation are presented in Figure 11. In both cases performance is poorer on
the exception nonwords. Note that the nonwords derived from exceptions are in effect "regular
inconsistent." Whereas regular inconsistent words show little effect of a neighboring exception word,
regular inconsistent nonwords do. The difference, of course, is that the model is actually trained on regular
inconsistent words, but not the corresponding nonwords. Apparently training on the item itself is sufficient
to overcome the effect of training on the exception neighbor.

Insert Figure 11 About Here

The model was also tested on a set of nonwords derived from the exception words used in the
Taraban and McClelland study. These nonwords can be pronounced in two ways, either by analogy to the
exception word (e.g., MAVE pronounced to rhyme with HAVE) or by analogy to a regular inconsistent word
(e.g., MAVE rhymed with GAVE). Using the weights from 250 epochs, the model was tested to determine
which pronunciation would be preferred. For each item, phonological error scores were calculated twice,
using both exception and regular pronunciations as targets. We also calculated analogous scores for
alternative pronunciations of the exception words themselves, e.g., HAVE pronounced correctly and
pronounced to rhyme with GAVE. This is the regularization error discussed previously.

Figure 12 presents both types of error scores for the exception words in the Taraban and
McClelland stimuli. For words, the correct, "exception" pronunciations produce much smaller error scores
than the incorrect, "regularized" pronunciations. Thus, the model's output resembles the correct
pronunciations rather than the regularized ones.

Insert Figure 12-14 About Here

The opposite pattern obtains with the nonwords derived from these stimuli (Figure 13). Here the
"regularized" pronunciations are preferred to the pronunciations derived from the matched exception
words. Note, however, that the difference between the two pronunciations is much smaller than in the
corresponding word data, suggesting that the pronunciation of a nonword like MAVE is influenced by the
fact that the model has been trained on exception words like HAVE.

Figure 14 presents the error scores for the regular pronunciations of nonwords derived from
regular and exception words. The error scores are larger for nonwords such as MAVE (derived from an
exception word) than PAME (derived from a regular word). These results also indicate that the
pronunciation of novel stimuli such as MAVE is affected by the fact that the model has been trained on
both HAVE and regular words such as GAVE.

The model's performance on the nonwords is important for two reasons. First, it shows that
performance generalizes to new items; the knowledge that was acquired on the basis of exposure to a pool
of words can be used to generate plausible output for novel stimuli. Second, the nonword data provide
additional information as to what the model has learned. Regular inconsistent words are little affected by
training on exception word neighbors. However, the inconsistency in the pronunciation of -AVE is
encoded by the weights, as evidenced by performance on regular inconsistent nonwords.

What the Model Has Learned

We have demonstrated that the model simulates a broad range of empirical phenomena
concerning the pronunciation of words and nonwords. Why the model yields this performance can be
understood in terms of the effects of training on the set of weights. The values of the weights reflect the
aggregate effects oi many individual learning trials using the items in the training set. In effect learning
results in the recreation of significant aspects of the structure of written English within the network.
Because the entire set of weights is used in computing the phonological codes for all words, and because
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all the weights are updated on every learning trial, there is a sense in which the output for a given word is a
function of training on all words in the set. Differences between words derive from facts about the writing
system distilled during the learning phase. For words, the main influence on the phonological output is the
number of times the model was exposed to the word itself. Number of times the model was exposed to
closely related words (e.g., similarly-spelled items) exerts secondary effects; there are also small effects
due to exposure to other words. The magnitudes of these effects vary as a function of how similar these
words are to a given item.

To see this more clearly, consider the following experiment. We test the model's performance on
the word TINT; with the weights from 250 -'oochs, it produces an error score of 8.92. We train the model
on another word, adjusting the weights according to the learning algorithm, and then retest TINT. By
varying the properties of the training word, we can determine which aspects of the model's experience
exert the greatest influence on the weights relative to the target. This procedure yields orthographic and
phonological priming effects, which have been studied by Meyer, Schvaneveldt and Ruddy (1974),
Hillinger (1980), and Tanenhaus et al. (1980). For example, Meyer et al. observed that lexical decision
latencies to a target word such as ROUGH were facilitated when preceded by the rhyme prime TOUGH but
inhibited when preceded by the similarly-spelled nonrhyme COUGH. For the purposes of the simulation,
we examined the cumulative effects of a sequence of ten prime (learn) - target (test) trials. The primes
were a rhyme (MINT), a matched exception word (PINT), a word with the same consonants but a different
vowel (TENT), and an unrelated control (RASP). The data are presented in Figure 15.

Insert Figure 15 About Here

The results indicate, first, that priming with the orthographically-similar rhyme MINT decreases the
error for TINT; the overlap between the words is sufficient to improve performance. Other rhymes act in a
similar manner. This outcome is consistent with Brown's (1987) proposal that the frequency with which a
word-body is acociated with a given pronunciation influences performance; the number of times the
pattern -INT= lint/ occurs in the training set affects performance on TINT. Note, however, that the other
primes also have effects. Priming with the similarly-spelled nonrhyme TENT also improves performance;
the effect is smaller because vowels are the primary source of ambiguity in orthographic-phonological
correspondences and hence the primary source of error. Training on MINT has a larger facilitating effect
because it provides feedback concerning the primary source of ambiguity. The exception word PINT has
interfering effects complementary to the facilitative effects of MINT. Finally, the unrelated prime RASP has
very small negative effects.

The model clarifies why some effects of word type are obtained in behavioral studies and others
are not. When experimenters compare performance on two types of words, they are attempting to
observe the net effect of a particular aspect of word structure (e.g., regularity defined in terms of word-
bodies) against a background of noise provided by the effects of all other properties of the words. For this
reason experimenters routinely attempt to equate stimuli in terms of these other properties (such as
frequency, length, initial phoneme, etc.). There is a net exception effect for lower frequency words
because the-regular correspondence is encountered many more times than the irregular one; repeated
experience with words such as TINT, MINT, and HINT has a negative impact on the weights from the point
of view of PINT. Conversely, exposure to an exception such as PINT tends to have relatively small effects
on a regular inconsistent word such as TINT because the exception word is encountered much less often
than the set of rhyming regular inconsistent words. It is not that PINT has no effect on TINT; in the priming
experiment the effect was observed once it was magnified through repetition. The effect can also be
observed earlier in the training sequence; eventually it recedes into the background provided by
exposure to many other words. The model corroborates the common assumption that word-bodies are
relevant to naming; however, it suggests that other aspects of word structure also matter.

It should be noted that the priming effects illustrated in Figure 15 are not characteristic of all words
in the training set after 250 epochs of training. TINT is somewhat unusual in that the model's performance
is relatively poor, due in part to the fact that TINT is low in frequency and the fact that there are few -INT
words in the corpus. There are smaller priming effects for target words that yield smaller error scores. The
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figure accurately illustrates the influences of training on related words but these effects are more salient
earlier irtthe training sequence, when error scores are larger.

One other point should be noted. We also examined repetition priming, that is, the effects of 10
trials of training on TINT itself. This resulted in a much larger decrease in TINTs error score, from 892 to
2.50. As stated previously, the main factor that influences performance on a word is the number of times
the model is exposed to the word itself; effects of neighboring words are relatively small. Thus,
presenting an exception word such as PINT with much greater frequency would have less effect on TINT
than a small number of exposures to TINT itself.

The model's behavior can be further clarified by examining yet another type of word, which
contain what Seidenberg et al. (1984a) and Backman, Brutk, Hdbert, & Seidenberg (1984) termed
ambiguous spelling patterns. These spelling patterns, such as -OWN, -OVE, and -EAR, are associated
with two or more pronunciations, each of which occurs in many words (e.g., BLOWN, FLOWN, KNOWN,
GROWN; TOWN, FROWN, DROWN, GOWN). For inconsistent spelling patterns such as -INT or -AVE the
number of words with the regular pronunciation greatly exceeds the number of words with the exceptional
pronunciation. For the ambiguous spelling patterns, however, the ratio is more nearly equal. Hence,
during training the model is exposed to many examples of each pronunciation. We constructed a set of
24 high frequency and 24 low frequency words containing these spelling patterns, matched with the
stimuli in the Taraban and McClelland set in terms of frequency. Mean phonological error scores for these
words (using the weights from 250 epochs), and the other stimuli in the Taraban and McClelland
experiment, are presented in Figure 16. As before there are negligible differences between the word
types in the higher frequency range. Among the lower frequency words, the ambiguous items yield
better performance than the exceptions, but worse than the regular inconsistents. Performance is better
than on the exceptions because the model receives less training on the exceptional pronunciation than
on either pronunciation of the ambiguous spelling pattern. Performance is worse than on the regular
inconsistent words because the model is repeatedly exposed to both pronunciations. Thus, there are
graded effects of regularity owing to the nature of the input during acquisition.7

Insert Figure 16 About Here

Characteristics of the hidden units. Evidence as to how orthographic and phonological information
are encoded by the network can be obtained by examining the patterns of activations over the hidden
units produced by different words. Unlike the model's orthographic and phonological units, the hidden
units do not have specific, predetermined roles. Rather, their representational and functional roles emerge
as a result of experience in learning to perform the task that is imposed on the network by the training
procedure. Recall that the activation of a hidden unit is a function of the weights on the connections
coming into it. At first, each hidden unit has random incoming and outgoing connection strengths.
Gradually these are adjusted through experience, so that units come to perform useful, generally partially
overlapping parts of the task. Because of the task these units need to perform--they must allow
reconstruction of the orthography as well as construction of the phonology-the values of these weights
are affected by feedback concerning both orthography and phonology.

Consider first the pattern of activation over the hidden units produced by the word LINT (Figure
17). LINT activates 23 units, 22 very strongly (net activation > .8) and one more weakly (net activation < .6).
We can determine how many of these units are also activated by the orthographically-similar rhyme MINT,
and by the unrelated word SAID. 14 units are activated by both LINT and MINT, and 3 by LINT, MINT, and
SAID; one unit was activated by both LINT and SAID. The remaining 5 units were "unique" to LINT, in the
sense that they were not activated by either MINT or SAID. (Note that the "unique" units were activated by
many other words outside this limited set.) Thus, a large number of units apparently reflect the
orthographic and phonological similarity of LINT and MINT, and a smaller number are relevant to LINT itself.
Fewer units are activated by both LINT and the unrelated word SAID.

Insert Figure 17 About Here
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This pattern contrasts with the one observed for the exception word PINT (Figure 18). PINT
activates 22 units, 8 of which were activated by both PINT and MINT, 1 by PINT and the unrelated word
SAID, and 3 by PINT, MINT and SAID. There were 10 units activated by PINT only. Hence, compared to
the pattern for LINT, there is a relatively larger number of units specific to PINT; moreover, the
orthographically-similar but nonrhyming stimuli LINT and PINT activate fewer units in common than the
orthographically-similar, rhyming pair LINT and MINT. Finally, there is very little spurious overlap with an
unrelated word such as SAID.

Insert Figure 18 About Here

These snapshots of the hidden units indicate that they reflect generalizations concerning the
regularities in the lexicon encoded by the weights on connections. Similarly-spelled rhymes activate the
largest number of common units (LINT/MINT a 14), similarly-spelled nonrhymes a smaller number of
common units (PINT/MINT - 8), and unrelated words a smaller number still (LINT/SAID and PINT/SAID both
- 4). Six units are activated by PINT, MINT, and LINT, and 3 by PINT, LINT, MINT, and SAID, reflecting some
overlap among these items. Thus, inspection of the hidden units provides additional evidence that the
model encodes orthographic and phonological relations among words.

It should also be noted that the units activated by a particular word contribute in different ways to
the computed output. This point can be illustrated as follows. After 250 epochs of training, the word PINT
produces the following results (Table 4): the orthographic error score is 6.47; the phonological error score
computed for the correct pronunciation is 6.64; the phonological error score computed for the incorrect,
regularized pronunciation is 34.6. If we consider the patterns of activation for PINT, LINT, MINT, and SAID,
there are 9 units unique to PINT. The contribution of an individual unit can be determined by temporarily
excluding the unit (i.e., forcing its activation to remain fixed at zero) and then recalculating the output and
error score. This procedure has different effects depending on which unit is zeroed. Shutting off one of
the units unique to PINT (Unit A in Table 4) has little effect on the computed orthographic output, but
dramatically increases the error score associated with the correct pronunciation and decreases the error
score associated with the regularized pronunciation. Hence this unit appears to be particularly relevant to
the irregular pronunciation of PINT. Eliminating the output from Unit B has a somewhat different effect: it
produces a large increase in the orthographic error score, and smaller increases in the error scores for the
correct and regularized pronunciations. Hence this unit is primarily relevant to the orthography, and may
partially influence aspects of the pronunciation that are shared by the regular and exceptional
pronunciations of PINT. Unit C produces a third pattern: substantial increases in the error scores for both
the correct orthographic and phonological codes, with little effect on the score for the incorrect
phonological code. Thus, each unit makes its own partial contribution to the model's performance on PINT.

Insert Table 4 About Here

We also examined the effects of zeroing a unit that is activated by LINT, MINT, and PINT. This
produced a small increase in the orthographic error score; the effect on the phonological error score for the
correct pronunciation was intermediate between the effects of units A and B. This appears to be a complex
unit encoding information relevant to the correct spelling and to both pronunciations of -INT. Finally,
consider the effects of activating a unit that is normally active in LINT and MINT but not normally active in
PINT. This has virtually no effect on the orthographic output for PINT, but yields an increase in the
phonological error score for the correct pronunciation, and a decrease in the error score for the incorrect,
regularized pronunciation. Hence the unit appears to be relevant to the regular pronunciation of -INT.

It can be seen, then, that the units contribute in complex ways to the computation of orthographic
and phonological output. Some units must be on in order to produce correct output and others must be
off. Some units can be seen as contributing in relatively specific ways to the computed output (e.g., Unit A,
which is critical to the pronunciation of -INT as in PINT, and Unit D, relevant to pronouncing -INT as in MINT).
Other units can be seen as partially encoding several different types of information. This behavior is typical
of models with hidden units. Often it is possible to identify the specific information encoded by individual
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Table 4

Altering the hidden units for PINT: Effects on error scores

Type of Error Score

Orthography Correct Pron Reg Pron

Baseline 6.47 6.64 34.6

Damage to individual units

Units Unique to PINT: Unit A 6.87 12.78 25.4
Unit B 9.61 7.19 25.4
Unit C 9.73 9.87 34.9

In LINT, MINT & PINT: Unit D 7.45 10.56 33.6

Turning on a unit in LINT & MINT 6.48 11.17 29.4

Note: Orthography = orthographic error score; Correct Pron = phonological error score
for correct pronunciation; Reg Pron = phonological error score for regularized
pronunciation.
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units; however, many units contribute to the computed output in complex ways that do not reflect simple
generalizations about the relations between two codes. To take another example, Hinton, McClelland and
Rumelhart (1986) describe a small-scale model of the mapping from orthography to meaning. The hidden
units in a model of this type will encode generalizations about correlations among semantic features. Some
hidden units may be interpretable as encoding a generalization such as "large and yellow," whereas others
will not because they encode complex, partial relations among several features.

It should also be noted that generalizations concerning relations between orthography and
phonology are encoded by several units rather than individual ones. For example, there is no single unit
that encodes the pronunciation int/ common to LINT, MINT, and other rhymes. Nor is there a single unit
responsible for the irregular pronunciation of PINT. Although we identified a unit that is particularly salient
to pronouncing -INT as /int/, other units also contribute to this pronunciation. Given this property of the
model, and the fact that units participate in many different words, spelling-sound correspondences cannot
be seen as encoded by individual units.

To consider one more example, we examined the patterns of activation over the hidden units
produced by the word MAID, the similarly-spelled rhyme PAID, the similady-spelled nonrhyme SAID, the
homophone MADE, and the unrelated word BASK. Sixteen units were activated by both MAID and PAID,
5 by MAID and SAID, and 4 by MAID and BASK, reflecting the differing degrees of orthographic and
phonological similarity among these items. Interestingly, the homophonic pair MAID-MADE shared 13
units, somewhat fewer than the similarly-spelled rhymes MAID and PAID, but more than would be expected
if the words were unrelated. Thus, the degree of similarity between the words is systematically related to
the activity of the hidden units.

Relationship to Other Models

With this picture of the model in hand we can consider how it relates to previous proposals. In
general the model embodies many of the principles that had been identified in previous work; however, it
shows that they derive from a deeper generalization about the nature of the learning process.

Our model accounts for a number of phenomena that are problematical for the dual-route model,
specifically the interaction between frequency and regularity, and the longer latencies for regular
inconsistent nonwords compared to regulars. These effects are not predicted by the dual-route model and
could only be accommodated by ad hoc extensions to it (Seidenberg, 1985c). The dual-route model also
has other limitations that have been discussed extensively elsewhere (e.g., Humphreys & Evett, 1985;
Seidenberg, 1985c). The model corroborates the common assumption that the ends of words-word-
bodies or rimes-are relevant to naming (Glushko, 1979; Meyer et al., 1974; Seidenberg et al., 1984a:
Brown, 1987; Treiman & Chafetz, 1987). This fact falls out from properties of the learning algorithm and
training corpus. The ends of words turn out to be salient because of the properties of written English: the
pronunciations of vowels are more influenced by the following letters than the preceding ones. The
learning algorithm picks up on these regularities, which have an impact on the weights. Importantly, the
characteristics of the learning algorithm also dictate that the effective relationships between words are not
limited to word-bodies. These units happen to be salient, but other regularities in the lexical corpus are
also picked up.

The model incorporates Glushko's (1979) insight that the pronunciation of a word or nonword may
be influenced by knowledge of the pronunciations of other, neighboring words. As the Andrews (1988)
study showed, words with more neighbors tend to be named more quickly than words with fewer
neighbors; in the model this occurs because the neighbors of a word tend to modify the weights in the
same direction as the word itself. These effects are smaller for higher frequency words, however, because
of repeated exposure to the words themselves. The model also incorporates Glushko's assumption that
inconsistencies in spelling-sound correspondences are relevant to performance; inconsistent neighbors
push the weights away from the values that are optimal for pronouncing a given word. The representations
and processes in our model differ in critical respects from his proposal, however. Glushko's model contains
nodes for individual words, and pronunciations are synthesized on the basis of competition among
partially-activated entries. Our model contains no word-level nodes; the competition between words is
realized in the effects of the connection weights, which are determined by exposure to many items. Our
model captures the notion of lexical analogy that was central to Glushko's model in terms of the
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consequences of learning within a distributed system. A second difference between the accounts is that
Glushko assumed that the ends of words-word-bodies--have a special status in naming. This
assumption has been widely accepted by reading researchers (see, for example, Brown, 1987;
Henderson, 1982; Parkin, 1982; Patterson & V. Coltheart, 1987: Seidenberg et al., 1984a: Treiman &
Chafetz, 1987; ). In our model, there is no single perceptual unit relevant to pronunciation; the model picks
up on regularities in terms of word endings, but also regularities involving other parts of words.

The model is consistent with Brown's (1987) principle concerning the number of times a word-
body is associated with a given pronunciation; again it can be seen that the principle is simply one of the
consequences of the learning process. However, Brown made an additional assumption that is not
congruent with our model, namely that inconsistencies in spelling-sound correspondences do not
influence processing. In Brown's model, for example, the number of times -OSE is pronounced /Uz/ and
the number of times it is pronounced /Oz/ are separate facts that do not interfere with one another. This
assumption provided the basis for the prediction that exception words such as LOSE and unique words
such as SOAP should yield similar naming latencies, despite the fact that LOSE has inconsistent
neighbors. In our model, the effects of experience in naming LOSE and POSE (and all other words) are
superimposed on the weights, rather than separated in the manner Brown suggested. Hence our model
predicts that consistency of a spelling-sound correspondence could affect naming, whereas Brown's does
not. In effect, Brown's model suggests that repetition of a spelling pattern with a given pronunciation
facilitates performance, with no interference due to exposure to an inconsistent pronunciation. In our
model, performance is determined by the net effects of exposure to both pronunciations (and to other
words); interference can result when training is inconsistent.

The experiment presented in Brown (1987) does not discriminate between the two theoretical
alternatives because, as the data in Figure 9 indicate, our model simulates the results even though d does
not conform to Brown's assumptions about inconsistency.8 Critical cases are provided, however, by the
regular inconsistent words and nonwords discussed above. Our model predicts inconsistency effects
whose magnitude will depend on factors such as the frequencies of the regular inconsistent and exception
words and their similarity to other items. According to Brown's model, regular inconsistent words should
yield longer latencies than regular words only if the two types of words are not equated in terms of the
factor he assumed to be relevant, the number of times their word-bodies occur with regular pronunciations.
That is, if the word-bodies in regular inconsistent words occur with regular pronunciations in fewer items
than the word-bodies in regular words, the regular inconsistent items should yield longer naming latencies.
If the items are equated in terms of word-body frequency (and other factors such as lexical frequency), no
difference should obtain.

As we have noted, previous studies have not yielded reliable differences between regular
inconsistent and regular words. However, these studies may not be definitive for two reasons. First, as we
have seen, the mere presence of a single exception word neighbor may produce negligible effects on a
regular inconsistent word because the effects are washed out by exposure to a large number of words
containing the regular pronunciation, including the word itself. Our model does not predict appreciably
longer 'vtencies for all words defined as regular inconsistent compared to matched regular words; however,
it does -,edict detectable consistency effects for some words, particularly lower frequency words that have
more than a single exception word neighbor. For example, the pattern -ONE is highly inconsistent
because it is associated with three pronunciations, one regular (as in BONE) and two exceptional (GONE:
DONE/NONE). This inconsistency might be expected to influence the processing of a lower frequency
word such as HONE. Similarly, the pattern -OSE is associated with three pronunciations (as in POSE,
LOSE, and DOSE). If, as our model suggests, there are effects due to inconsistencies in spelling-sound
correspondences, they should be more apparent using stimuli that include such words. A second factor is
that the stimuli in previous studies of regular inconsistent words were not equated in terms of the Brown
factor, the frequencies with which their word-bodies are associated with regular pronunciations. With these
issues in mind, Seidenberg, McRae, and Jared (1988) conducted the following experiment. The stimuli
were 40 pairs of consistent (regular) and inconsistent words (see Appendix). The properties of these
words are summarized in Table 5. They were equated in terms of the number of words in which the word-
bodies occur with regular pronunciations (termed "friends" in the table); this is Brown's factor. They were
also equated in terms of the summed frequencies of these friends Thus, both types of stimuli contain
word-bodies associated with regular pronunciations about equally oten. Seidenberg et al. also matched
the stimuli in terms of overall frequency, length, and initial phoneme. The two types of words were also
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equated in terms of orthographic error scores, so that any differences between them cannot be attributed
to orthographic redundancy. The systematic difference between the words is that the inconsistent items
have enemies-words that contain the same word-body but are pronounced irregularly. As a result, the
two types differ in terms of mean phonological error scores (inconsistent - 5.63; consistent = 4.48); this
difference is statistically significant. Thus our model predicts longer latencies for the inconsistent words,
whereas Brown's model predicts no difference because the stimuli are equated in all respects relevant to
his account. The study was run with 25 McGill University undergraduates as subjects, who named the
words aloud as they appeared on a computer screen. The results, presented in Figure 19, showed a 13
msec inconsistency effect, which was significant in both subject and item analyses. The phonological error
scores for these words also provide a good fit to the latency data.

Insert Table 5 About Here

Insert Figure 19 About Here

The results of Glushko's (1979) nonword experiment (presented in Figure 11) also contradict
Brown's model. The study showed that nonwords derived from inconsistent spelling patterns (e.g., MAVE
from HAVE/GAVE) yield longer naming latencies than nonwords derived from regulars (e.g., NUST from
MUST). Note that the difference here is between the latencies to produce the regular pronunciations of
these stimuli. According to Brown, this difference should only obtain if the word-bodies in the inconsistent
stimuli were associated with regular pronunciations in fewer words than the word-bodies in the regular
items. In Glushko's stimuli, however, the opposite pattern obtains: the inconsistent nonwords have an
average of 9.5 regular neighbors, whereas the regular nonwords have an average of 6.2 regular neighbors.
Since the regular inconsistent nonwords actually have more regular neighbors but yield longer latencies,
the results are not consistent with Brown's model.

In summary, the model simulates the results of a broad range of empirical studies employing many
different sets of stimuli. The factor that Brown (1987) isolated-the number of times a word-body is
associated with a given pronunciation-has an impact on performance, one that must be considered in
drawing comparisons between different types of items. However, this is not the only factor that influences
performance; inconsistencies in spelling-sound correspondences also matter. Moreover, aspects of word
structure other than word-bodies also affect processing, such as overlap in terms of the beginnings of
words (Taraban & McClelland, 1986). The pretheoretical distinctions between different types of stimuli
(e.g., regular inconsistent and regular; unique and exception) are difficult to maintain because several
different factors--overall frequency, word-body frequency, regularity, orthographic redundancy, etc.--are
typically confounded in the language. These natural confoundings are neatly handled by the model in
terms of the aggregate effects of training on the settings of the weights on connections.

Acquisition of Naming Skills

We have suggested that the model provides a good characterization of a broad range of
phenomena related to the naming performance of skilled readers. As a learning model, it also speaks to the
issue of how these skills are acquired; moreover it provides an interesting perspective on the kinds of
impairments characteristic of developmental and acquired dyslexias. Developmental dyslexia could be
seen as a failure to acquire the knowledge that underlies word recognition and naming. Acquired dyslexias
naturally correspond to impairments following damage to the normal system. Here we focus on the
acquisition of naming skills and their impairment in developmental dyslexia. Our studies of acquired forms
of dyslexia are discussed in Patterson, Seidenberg, and McClelland (in press).

Studies of children's acquisition of word recognition skills (e.g., Backman et al., 1984; Barron &
Baron, 1977; Jorm & Share, 1983; Seidenberg et al., 1986) have addressed how children reach the
steady state observed in adults; they have also addressed the bases of failure to acquire age-appropriate
reading skills and of specific reading disability (dyslexia). Naming plays an important role in acquiring word
recognition skills; children in the earliest stages of learning to reading typically recognize words by



Table 5

Characteristics of the Stimuli in the Seidenberg, McRae, and Jared (1988) study

Type

Consistent Inconsistent

Number 40 40

KF Freq 5.475 5.475

Friends 8.5 8.3

Total Freq Friends 601 602

Length in Letters 4.45 4.53

Orth Error Score 8.63 8.24

Enemies 0 3

Total Freq Enemies 0 33

Phon Error Score 4.48 5.63

Note: KF Freq = mean Kucera and Frances (1967) frequency:
Friends = number of words in which word-body occurs with regular pronunciation;
Total Freq Friends = average of the summed frequencies of the friends:
Orth Error Score = orthographic error score from thq model;
Enemies = number of words with same word-body but different pronunciation;
Total Freq Enemies = average of the summed frequencies of the enemies;
Phon Error Score = phonological error score from the model.
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"sounding out;* that is, they attempt to derive the pronunciation of a written word and match it to a known
phonological form. A stuay by Backman et al. (1984) examined the acquisition of naming skill. Children
named regular, exception, regular inconsistent and ambiguous words and nonwords derived from these
items. All of the stimuli were words that are high frequency items in adult vocabularies. The subjects were
children in grades 2, 3, 4 and high school reading at or above age-appropriate levels ('good readers"), and
children in grades 3 and 4 reading below age-appropriate levels '"poor readers). Response latencies
showed the expected developmental trends: younger and poorer readers named words at longer
latencies than older, better readers. The effects of word type were manifested in the number of
mispronunciation errors.

The primary data are summarized in Figure 20. The developmental trends exhibited ;n these data
are clear: younger, less skilled readers have more difficulty with the words associated with multiple
pronunciations (exception, regular inconsistent, ambiguous); they show larger regularity effects. The
reader groups differed very little in performance on regular items. As children acquire reading skills, the
differences between word classes shrink and disappear. The less-skilled readers have weaker knowledge
of spelling-sound correspondences; this lack of knowledge is a liability in the case of words with irregular,
inconsistent, or ambiguous spelling-sound correspondences. Older children and adults are able to
compute the pronunciations of high frequency exemplars of all word classes about equally well;
differences between word classes only persist for lower frequency items. The unskilled readers'
performance in naming higher frequency words is therefore similar to that of skilled readers' naming of
lower frequency words: in effect the developmental data reveal the emergence of the modulating effects
of experience on naming performance. At the same time that children are achieving the ability to name
different types of words equally well, their knowledge of spelling-sound correspondences is expanding, as
evidenced by the older readers' superior performance in reading nonwords (Backman et al., 1984).

Insert Figure 20 About Here

Consider these facts in light of the simulation data presented earlier. The data for regular and
exception words presented in Figure 3 show that early in training, the model produces poorer output for
exception words compared to regular in both frequency ranges. Like children in the early stages of reading
acquisition, the model performs more poorly even on higher frequency exception words. The effect of
training is to decrease the error scores to the point where the two types of higher frequency words reach
floor values, yielding the frequency by regularity interaction also observed in adults. The data for the
regular inconsistent words and regular controls (Figure 7) are also interesting, because early in training,
there are small differences between regular inconsistent and regular words in both high and low frequency
ranges. Backman et al.'s (1984) children also produced more errors on common regular inconsistent words
than regular. As in the model, performance was better for regular inconsistent words than exceptions. It is
clear why there are regular inconsistent effects early in acquisition but not late: early in training both
exception and regular inconsistent items appear about equally often. It is only after additional experience
that the regular spelling-sound patterns gain the upper hand.

Thus, the model captures a key aspect of the child's acquisition of word naming skills. it is known
that acquiring knowledge of spelling-sound correspondences is a key component of learning to ead;
disorders in phonological analysis skills are thought to be a primary source of reading disability, and children
who are backward readers (Backman et al., 1984) or developmental dyslexics (Seidenberg, Bruck,
Fornarolo, & Backman, 1986) exhibit relatively poor performance in naming words and nonwords aloud
(see Jorm& Share, 1983, and Stanovich, 1986, for reviews). One of the primary developmental trends
observed in studies such as Backman et al. (1984) is that although children who are acquiring age-
expected reading skills initially have more difficulty naming higher frequency exception words (an 4 other
items containing spelling patterns associated with multiple pronunciations) than regular 'ords, tho. deficit is
eliminated by about Grade 5 (10 years of age). During the first few years of instruction, ciiildren learn to
name common exception words as efficiently as regular words. Even among skilled adult readers,
however, lower frequency exception words continue to produce longer naming latencies and more errors
than lower frequency regular words. Note that the differences among younger good and poor readers in
terms of the number of words read without interference from irregular spelling-sound correspondences are
seen, at a higher level of performance, among skilled readers (Table 3). In both groups, the number of
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words in this pool is related to reading skill. In the model these effects simply derive from the amount of
training experience.

Both poor readers who are reading below age-expected levels and children who have been
diagnosed as developmental dyslexics fail to show this improvement in naming higher frequency
exception words. For example, the naming performance of the poor readers in grades 3 and 4 in the
Backman et al. study was like that of good readers in grade 2. Both the younger and poorer readers made
more errors on exception words and other items containing spelling patterns associated with multiple
pronunciations.

Develormtal Dyslexia

Developmental dyslexia is a term applied to children who are failing to acquire age-appropriate
reading skills despite adequate intelligence and opportunity to learn (Vellutino, 1979). The nature of this
disorder-whether it derives from a single or multiple causes, whether there are different subtypes,
whether the performance of children diagnosed as dyslexic differs from that of children who are merely
"poor readers-is a matter of continuing debate. However, it is clear that many dyslexic children exhibit
poor word decoding and naming skills, and there is some evidence that these impairments have a
biological basis (Vellutino, 1979; Benton, 1975).

The model suggests a basis for the impaired performance of some dyslexic readers, who appear to
be unable to master fully the spelling-sound correspondences of the language. Consider the results of an
experiment in which we retrained the model with half as many hidden units, 100 instead of 200. In all other
respects the training procedure was the same as before. At the start of training, all weights were given
small random values. The model was again trained on the 2897 word vocabulary. In the simulations
reported here, we used a version of the training list in which the coding errors mentioned above (p. 19)
were corrected. Training was also carried out for 500 epochs instead of 250. Figure 21 (upper) gives the
mean phonological error scores for regular and exception words in the Taraban and McClelland stimulus set
when the model was trained with 200 hidden units. This is a replication of the simulation reported in Figure
3 (note, however, the change of scale on the ordinate). Figure 21 (lower) summarizes the data for the
same words in the simulation using 100 hidden units. Two main results can be observed in comparing the
two data sets. First, training with fewer hidden units yields poorer performance for all word types. High
frequency regular words, for example, asymptote at a mean squared error of about 2 in the 200-unit
simulation but only 3.8 in the 100-unit simulation; other words yield similar results. Second, even after 500
epochs, exception words produce significantly poorer output than regular words in both high and low
frequency ranges in the 100-unit simulation; in the 200-unit simulation, exception words produce larger
error scores only in the lower frequency range.

Insert Figure 21 About Here

Eliminating half the hidden units, then, produced a general decrement in performance; more
importantly, higher frequency words produced the patterns associated with lower frequency words in the
200-unit simulation, i.e., larger error scores for exception words compared to regular. Even with fewer
hidden units the model continued to encode generalizations about the correspondences between
spelling and pronunciation; error scores were smaller for regular words than for other types. However, it
performed more poorly on words whose pronunciations are not entirely regular. Thus, including fewer
hidden units makes it more difficult to encode item-specific information concerning pronunciation.

These results capture a key feature of the data obtained in studies of poor readers and dyslexics.
These children exhibit larger regularity effects than good readers; they continue to perform poorly in
naming even higher frequency exception words. At the same time, their performance shows that they
have learned some generalizations about spelling-sound correspondences; for example, they are able to
pronounce many nonwords correctly. One of the main hallmarks of learning to read English is acquiring
knowledge of spelling-sound correspondences. Backward readers achieve some success in this regard,
but cope poorly with the irregular cases. The model performs in a similar manner with too few hidden units;
given the resources that are available, it is able to capture crude generalizations about regularity but at the
expense of the exception words. The main implication of the simulation, of course, is that failures to
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knowledge of spelling-sound correspondences. Backward readers achieve some success in this regard,
but cope poorly with the irregular cases. The model performs in a similar manner with too few hidden units:
given the resources that are available, it is able to capture crude generalizations about regularity but at the
expense of the exception words. The main implication of the simulation, of course, is that failures to
achieve age-expected reading skills may derive from limitations on the computational resources available
for the task. There is another important implication, however. Apparently, the architecture of the model
determines in an important way its ability to behave like humans. If there are too few units, the model can
learn generalizations about the regularities in the writing system; however, it does not have the capacity to
encode enough of the word-specific information relevant to exception words to perform as well as people.
With a sufficient number of units, it is able to cope with both regular and irregular cases, although not
equally well on all items. The important point is that human performance seems to reflect rather subtle
constraints concerning computational resources. The idea that impaired performance might result from
dedicating too few resources to a task is one that could be pursued in future research. 9

We should stress that some dyslexic children exhibit other patterns of performance, suggesting
that the normal system can be impaired in other ways. For example, some children appear to learn on a
word-by-word basis, resulting in adequate performance on regular and exception words but very poor
generalization to novel stimuli (see Barron, 1986, for discussion). These children apparently fail to encode
generalizations concerning spelling-sound regularities. One possibility is that this type of performance
results from the use of a somewhat different encoding of orthographic input and/or phonological output. If
the amount of overlap in the encoding of similar inputs and/or outputs is reduced, there will be less transfer
of what is learned about one word wo other words that are similar to it. Yet another posibility is that the
pathway from orthography to phonology is so grossly deficient in such readers that they read primarily by
accessing meaning from print, and then producing the pronunciation corresponding to the accessed
meaning. Hence only words that are within the child's vocabulary can be pronounced. This possibility is
consistent with the full version of our model illustrated in Figure 1.10

Summary of the Naming Simulatlon

The model provides a basis for understanding the manner in which knowledge of orthographic-
phonological correspondences is acquired, represented in memory, and used in naming. The
generalization that governs the model's performance concerns the properties of the writing system that are
picked up during learning. All of the various empirical phenomena observed in the behavioral studies we
have reviewed (concerning neighborhood effects, lexical analogy, word-body frequencies, and the like) fall
out of this single property of the model. The model goes beyond earlier proposals in suggesting that the
best characterization of the knowledge relevant to pronunciation is given by the entire state of the network,
rather than generalizations concerning spelling-sound rules, perceptual units, or types of words.

The model differs from previous accounts in terms of the kinds of knowledge representations and
processes employed. In contrast to the dual-route model, there are no rules specifying the regular
spelling-sound correspondences of the language and there is no lexicon in which the pronunciations of all
words are listed. All items--regular and irregular, word and nonword--are pronounced using the knowledge
encoded in the same sets of connections. The main assumption of the dual route model is that separate
mechanisms are required in order to account for the capacity to name exception words and nonwords
(Coltheart, 1986). Exception words cannot be pronounced by rule, only by consulting a stored "lexical"
entry; hence one route is termed "lexical" or "addressed" phonology. Nonwords do not have lexical
entries, hence they can only be pronounced by rule. Hence the second route, termed the "nonlexical" or
"subword" process. One of the main contributions of the model is that it demonstrates that pronunciation
of exception words and nonwords can be accomplished by a single mechanism employing weighted
connections between units. The analysis of the hidden units also indicated that the model did not partition
itself in a manner analogous to the routes in the dual-route model.

The model suggests that the distinction between words that conform to the spelling-sound rules
of the language and those that do not (i.e., the contrast between regular and exception words), which
motiv3ted the dual-route model, is simply not rich enough to account for human performance. Connection
weights reflect the cumulative effects of many learning trials, each of which imposes small changes on the
weights. Correct predictions about performance follow from an understanding of what is learned on this
basis, not merely whether a pronunciation obeys a putative rule or not. Thus, words whose pronunciations
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are equally well specified by the rules can differ in terms of naming performance; performance on words
that violate the rules also differs depending on their similarity to other words. The distinction between rule-
governed items and exceptions fails to capture these generalizations.

Our model also differs from proposals by Glushko (1979) and Brown (1987) in that there are no
lexical nodes representing individual words and no feedback from neighbors. Where the model agrees
with these accounts is in regard to the notion that regularity effects result from a conspiracy among known
words. In our model, this conspiracy is realized in the setting of connection strengths. Words with similar
spellings and pronunciations produce overlapping, mutually beneficial changes in the connection weights.

Following the work of Glushko (1979), a number of researchers have developed definitions of
"regularity' or "consistency" based on assumptions as to which perceptual units or "neighborhoods" are
relevant to pronunciation (e.g., Kay & Bishop, 1987; Parkin, 1982; Parkin & Underwood, 1983; Patterson
& V. Coltheart, 1987). From the perspective of the model, these definitions miss relevant generalizations
concerning the kinds of knowledge that underlie pronunciation, how this knowledge is represented in
memory, and how it influences processing. There is no single "perceptual unit" relevant to pronunciation.
The output that the model produces for a given letter string is determined by the properties of all the words
presented during training. From this perspective, the various definitions of "regularity" or "neighborhood"
are simply imperfect generalizations about the nature of the input and its effects on what is learned.

ORTHOGRAPHIC OUTPUT AND LEXICAL DECISION

We turn now to other aspects of the model that are of interest primarily because of their relevance
to the lexical decision task, which is probably the most widely used task in reading research. One of the
main features of the model is that it employs distributed representations: the spellings and pronunciations
of words are represented in terms of patterns of activation across output nodes. In this respect the model
differs radically from previous conceptions of lexicai knowledge, which assumed that the spellings and
pronunciations of words are stored as entries in one or more mental lexicons (e.g., Coltheart, 1978, 1987;
Forster, 1976; Morton, 1969). We have shown that the model provides a good account of subjects'
performance in naming words aloud. The question that arises is whether this type of knowledge
representation can support performance on other tasks. Lexical decision presents an especially
challenging case because standard accounts of the task assume that it is nerformed by accessing the kinds
of lexical entries that our model lacks.

In the following sections we present an account of lexical decisions to isolated words and
nonwords, and show that the model simulates the results of many experiments. Our main point is that
distributed representations provide a basis for making lexical decisions; moreover, the model provides an
enlightening account of some complex lexical decision phenomena. Interestingly, the model simulates
many of the main lexical decision phenomena despite the absence of any representation of meaning at all;
thus, our account of the task runs contrary to the standard view that decisions are necessarily made by
determining whether the target stimulus has a meaning or not. We do not doubt that meaning is sometimes
relevant, and we note that our account of lexical decision is necessarily limited because we have not
implemented a semantic system or provided a way for contextual information to influence processing, as it
is of course known to do (e.g., Fischler & Bloom, 1979; Schwanenflugel & Shoben, 1985; Seidenberg,
Waters, Sanders, & Langer, 1984b). Both of these components are relevant to lexical decision
performance under conditions that are beyond the scope of the present model.

While considerations of contextual and semantic factors have often entered into lexical decision
experiments, the task has also been widely used as a way to investigate the structural properties of words
relevant to "lexical access'. The subject is presented with a string of letters and must decide whether it
forms a word or not. Use of the task was predicated on the observation that words and pronounceable
nonwords differ in an essential respect: words have conventional meanings and nonwords do not. It was
initially assumed that this distinction between the stimuli provided the basis for making the word/nonword
decision: "word" decisions are made by identifying the target as a particular word and accessing its
meaning; if this process fails, the target is a nonword. Hence the task could be used to study the
properties of words (e.g., frequency, orthographic redundancy, orthographic-phonological regularity) that
influence access to lexical representations and thence meaning (Henderson, 1982; McCusker, Hillinger &
Bias, 1981). However, words and nonwords also differ in other respects, providing other bases for making
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the decision; for example, words are more familiar orthographic and phonological patterns than nonwords.
The task requires subjects to discriminate between the two types of stimuli. As in a signal detection task,
the subject must establish decision criteria that allow fast responses with acceptable error rates. These
criteria could in principle involve any of the several dimensiors along which words and nonwords differ.
Perhaps the primary conclusion from extensive use of the task is that response criteria vary as a function of
the properties of the stimuli in an experiment. As subjects' response criteria vary, so do the effects of
variables such as frequency, orthographic-phonological regularity, and contextual congruence (e.g.,
Forster, 1981 a; Neely, 1977; Seidenberg et al., 1984b; Stanovich & West, 1981).

The general framework given in Figure 1 suggests that the presentation of a word results in the
computation of several types of information or codes in parallel, resulting in what Donnenwerth-Nolan,
Tanenhaus, and Seidenberg (1981) termed "multiple code activation." We have emphasized the
computation of the phonological code and shown that the model provides a good account of the empirical
naming data. We envision an analogous process, which has not been implemented, by which readers
compute the meaning of a word, corresponding to a pattern of activation across a set of semantic nodes;
see Kawamoto (1988) and Hinton et al. (1986) for initial steps toward modelling this process. Finally, the
implemented model also includes the computation of orthographic output, resulting from feedback from
the hidden units to the orthographic units. This code represents the retention or recycling of the
orthographic input in a short-term sensory store; the computed code provides the basis for performing
tasks such as tachistoscopic recognition and thus accounting for the phenomena that motivated the
McClelland and Rumelhart (1981) word recognition model.

Presentation of a stimulus string will activate orthographic, phonological, and semantic information
in parallel, each of which could provide information relevant to the decision process, depending on the
conditions in an experiment. Consider, for example, a case in which the stimuli consist of familiar words and
nonwords that are random letter strings. Subjects could respond correctly simply on the basis of
orthographic information; the words contain letter patterns that are "legal" according to English
orthography, while the nonwords will contain letter patterns that do not occur in any words (e.g., PSKT).
Properties of the words related to phonology (e.g., orthographic-phonological regularity) or meaning (e.g.,
concreteness/abstractness) would have little effect on performance if decisions were made on the basis of
this orthographic strategy. If the stimuli included familiar words and orthographically-legal nonwords (such
as NUST), this simple orthographic strategy might be disabled. However, the stimuli still provide a
nonsemantic basis for responding; the subject could decide if the target is a word by determining whether
it has a familiar pronunciation. When the decision is based on phonological information, we might expect
factors such as orthographic-phonological regularity to affect performance. In principle this strategy might
in turn be disabled if the nonword stimuli were so-called pseudohomophones such as BRANE, which
sound like words (Dennis, Besner, & Davelaar, 1985). Because these stimuli look and sound like words,
subjects might be required to utilize semantic information in making their decisions. Below we consider
evidence that subjects do in fact modify their decision strategies in such ways (see also Bradshaw &
Nettleton, 1974; James, 1975).

Similar considerations apply when target words and nonwords appear in word or sentence
contexts. Although subjects could in principle base their decisions on the properties of the word and
nonword targets, they find it very difficult to inhibit comparing targets to the contexts in which they occur.
Here decision latencies are influenced by the perceived congruence of target and context. Neely (1977),
for example, showed that contextual information influences both word and nonword decisions; moreover
decision latencies depend on factors such as the types of contextual information provided and the
proportions of trials of different types (Seidenberg et al., 1984b; Tweedy, Lapinski & Schvaneveldt, 1977).
Again, subjects respond intelligently to the information provided by the stimuli in the experiment and
modify their response strategies to improve performance.

The logic of the lexical decision task, then, does not necessarily require the subject to access the
meanings of word targets: rather it requires the subject to find a basis for reliably discriminating between
words and nonwords. The model suggests that there are at least three types of information that could
enter into the decision process for isolated stimuli. When targets appear in meaningful contexts, there is
fourth source of information. Which information is used depends on the properties of the stimuli, which
afford different response strategies. A theory of lexical decision performance must provide a principled
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account of how strategies vary as a function of the stimulus conditions. We illustrate this aspect of the
model by considering some data that have been the source of considerable puzzlement.

Vaable Effects of OrthographicPnological Regularity

There have been many lexical decision studies, analogous to the naming studies described
above, using regular and exception words (these include Andrews, 1982; Bauer & Stanovich, 1980; M.
Coltheart, Besner, Jonasson & Davelaar, 1979, Parkin, 1982; Parkin & Underwood, 1983; Seidenberg et
al., 1984a; Waters & Seidenberg, 1985). As in the naming studies, orthogiaphic-phonological regularity
has negligible effects on lexical decisions for higher frequency words. Whereas the naming studies have
yielded robust exception effects for lower frequency words, the results of the lexical decision experiments
have been inconsistent. In studies such as M. Cotheart et al. (1979) and Seidenberg et al. (1984a,
Experiment 3), no effects of orthographic-phonological regularity were observed, while in others (such as
Parkin, 1982, and Bauer & Stanovich, 1980), they were.

These inconsistent effects have been interpreted as indicating that words can be recognized by
either 'direct' (visually-based) or 'mediated* (phonologically-based) processes (Carr & Pollatsek, 1985;
Barron, 1986; Seidenberg, 1985a). In cases where there were no effects of phonological regularity, it was
inferred that recognition is direct; where there were such effects, recognition was thought to be
phonologically-mediated. Use of these alternative strategies was thought to be under the reader's control
(M. Coltheart, 1978). This account left a key question unresolved, however: it did not explain the factors
that determined why a particular strategy seemed to be used in a particular experiment. Note that the
inconsistent results which led to this view involved the same types of stimuli (regular and exception words)
used in different experiments. Hence it cannot be the case that direct access is used for one type of word
(e.g., exceptions) and mediated access for the other (e.g., regular), as suggested by some versions of the
dual-route model.

Waters and Seidenberg (1985) discovered a generalization that accounts for these seemingly
inconsistent outcomes. They noted that the lexical decision results depended on the the types of words
and nonwords included in a stimulus set. When the stimuli in an experiment contain only regular and
exception words and pronounceable nonwords, no exception effect obtains (Waters & Seidenberg, 1985:
M. Coltheart et al., 1979). Under these conditions, the effect of irregular spelling-sound correspondences
for lower frequency words obtained with the naming task is eliminated. The situation changes when the
stimuli contain a third type of item, the so-called strange words first studied by Seidenberg et al. (1984a).
These are items, such as ONCE, AISLE, and BEIGE, that contain unusual spelling patterns. In a naming
study, Waters and Seidenberg (1985) obtained the results presented in Figure 8. Among the higher
frequency words there were again very small differences among word types: among the lower frequency
items, the strange items produced the longest naming latencies, followed by exception and then regular.
The model yields similar results. In a second experiment, subjects made lexical decisions to these stimuli.
yielding the results in Figure 22, similar to those obtained in naming. Waters and Seidenberg then
repeated these experiments deleting the strange words from the stimulus set, which eliminated the
difference between regular and exception words in lexical decision but not naming (Figure 23).

Insert Figures 22-23 About Here

Thus, phonological effects in lexical decision (the differences between regular and exception
words) depend on the composition of the stimuli in the experiment; the presence or absence of strange
words accounts for the seemingly inconsistent results of previous lexica decision studies. Importantly, the
results on the naming task are not affected by this factor; there are robust exception effects for lower
frequency words whether or not strange words are included.

Waters and Seidenberg (1985) proposed the following account of these results. When the stimuli
consist of regular and exception words and pronounceable nonwords, subjects base their decisions on
the results of orthographic analyses. Hence no effects of phonological regularity obtain. Including the
strange stimuli increases the difficulty of the word/nonword discrimination. Subjects are asked to respond
"word" when they see an item with an unfamiliar spelling pattern such as AISLE and to respond "nonword"
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strange stimuli increases the difficulty of the word/nonword discrimination. Subjects are asked to respond
"word' when they see an item with an unfamiliar spelling pattern such as AISLE and to respond "nonword"
when they encounter stimuli that contain common spelling patterns but are nonetheless not words (e.g.,
NUST). Making this discrimination on the basis of orthographic information is difficult; thus, subjects
change their response strategy, turning to phonological information as the basis for their decisions. In
effect, the subject now responds *word" if the stimulus has a familiar pronunciation, and "nonword if it
does not. Thus, subjects could make correct decisions for words that are in their spoken vocabularies
even when they are unsure of their spellings. Under these conditions, the task is much like naming: it
requires computing the phonological code. Thus, results are similar to those in naming, with a regularity
effect for lower frequency words.

Analogous results involving semantic information were reported by James (1975). When the
stimuli consisted of words and very wordlike nonwords, decision latencies were faster for concrete words
than abstract ones, suggesting that subjects utilized semantic information in making their decisions. When
the nonwords were changed to orthographically-illegal letter strings, the difference between the concrete
and abstract words was eliminated, suggesting that decisions were based on orthographic information
alone. It can also be seen how this account generalizes to the case of targets presented in sentence
contexts. If the word/nonword discrimination is difficult, subjects judge the perceived congruence of
sentence context and target' they respond "word if the target forms a meaningful continuation of the
sentence, and "nonword if the target does not (Stanovich & West, 1982). Since language
comprehension normally involves integrating words and contexts, subjects find it very difficult to inhibit this
process in making lexical decisions.

In sum, lexical decision allows considerably more flexibility in response strategy than does naming.
In the former task, the orthographic, phonological, and semantic codes may all provide a basis for
responding depending on list composition, instructions, and other experiment-specific factors. Naming is
more constrained because the subject must produce the correct pronunciation, which requires
computation of the phonological code.

Lexlcal Decisions in the Model

As noted previously, we assume that lexical decision makes use of the orthographic output that is
computed in parallel with phonological and semantic output: orthographic output provides the basis for the
familiarity judgment described by Balota and Chumbley (1984) in their account of lexical decision. We will
explicitly examine the simplest case, in which only this orthographic input is used, but as we have noted
experimental variables will determine whether this strategy is sufficient. The subject computes a measure
of orthographic familiarity by comparing the input-string to the computed orthographic output. In our model
this corresponds to comparing the pattern of activation produced across the orthographic units by the
input to the pattern produced through feedback from the hidden units. The subject compares the
obtained orthographic error score to a criterion value adopted on the basis of experience with prior word
and nonword error scores, the relative frequency of words and nonwords, and instructional factors, as
standardly assumed in signal detection experiments. If the error score is less than the criterion, the subject
makes the word response; if greater than the criterion, the subject makes the nonword response. Words
and nonwords falling on the wrong side of the criterion are assumed to be responded to incorrectly. Items
with scores farther from the criterion are assumed to be responded to more rapidly than those with scores
close to criterion. If information about the orthographic error scores accrues gradually over time, as -e
assume it does in reality, more extreme values would exceed criterion more rapidly than less extreme
values (cf. Ratcliff, 1978).

This lexical decision strategy will lead to an unacceptably high error rate under some conditions,
specifically when the words and nonwords are orthographically similar. Under these conditions, we assume
that subjects also assess the familiarity of the stimuli in terms of the computed phonological output.
Feedback from other parts of the system would provide the basis for judging the familiarity of this code.
Indeed, the phonological representation computed by our existing orthography -> phonology pathway
can be seen as an input pattern over the phonological units. If this pattern were passed through a set of
hidden units reciprocally connected to the phonological units and trained through experience with the
sounds of words, the difference between the incoming phonological stimulus and this feedback could
serve as the basis for a familiarity judgment.



Word Recognition and Namlng 34

The simulations reported below are concerned with cases in which orthographic and phonological
information provide a basis for making lexical decisions. This account is completely consistent with the
possibility that there may be other cases in which subjects must consult information provided by the
computation from orthography to semantics. Our main point is that, contrary to standard views of lexical
decision, access to individuated lexical representations associated with particular words is not required by
the task. Instead, information about familiarity of the pattern produced by the stimulus at one or more levels
of representation provides a sufficient basis for lexical decision performance. In some cases familiarity of
semantic patterns may need to be assessed, but in others orthographic and/Or phonological information
may be sufficient. Our simulations show that this can indeed be the case, since they indicate the we can
capture the results of a number of lexical decision experiments with the existing, version of the model, in
which the computation of semantic representations is not implemented.

Simulation results. We tested this account by using the model to compute orthographic error
scores for the Waters and Seidenberg word and nonword stimuli using, as before, the weights from 250
learning epochs. All of the word stimuli had been included in the 2897 word training set. Figure 24 (top)
presents the data for the condition in which the stimuli consist of high and low frequency regular and
exception words; Figure 24 (middle) presents the data for the pronounceable nonwords. While the
distributions of error scores overlap a bit, inspection suggests that a decision criterion can be established
that yields an error rate similar to that observed in the actual experiment. Since the decision can be based
on orthographic output, no effect of phonological regularity is predicted. Figure 24 (bottom) presents the
same data as in the top figure but with the addition of the high and low frequency strange items. Now there
is considerable overlap between the word and nonword distributions. This is primarily because the mean
orthographic error score for the lower frequency strange words is 13.1770, whereas the mean for the
nonwords is 15.450 with a standard deviation of 5.610. This overlap makes it impossible to establish a
decision criterion that yields an acceptably low error rate. Under these circumstances, we argue, subjects
begin to look to phonological output (and possibly semantic as well). Decision latencies should now exhibit
the pattern associated with the naming task, longer latencies for lower frequency exception words
compared to regular. This was the result obtained in the Waters and Seidenberg (1985) experiment.

Insert Figure 24 About Here

In effect, the orthographic error scores provide a measure of orthographic familiarity. The validity of
this measure is supported by the observation that it accounts for other data as well. For example, the lower
frequency, orthographically-irregular strange words yield larger orthograpnic error scores than regular or
exception words. Hence when the nonword stimuli are sufficiently unwordlike to permit an orthographic
response strategy, the model predicts that strange items will still yield longer lexical decision latencies than
the other types (as Waters & Seidenberg, 1985, found). This measure is also interesting because it
derives from everything that the model has encoded about the frequency and distribution of letter patterns
in the lexicon. Error scores are a function of the input stimulus and the weights on connections that derive
from the entire training experience. Other measures of orthographic familiarity have been used in word
recognition experiments (e.g., positional letter frequencies, bigram frequencies, Coltheart's N measure),
with mixed results. These inconsistent results, we suggest, may be due to the fact that orthographic
familiarity as it is reflected in the performance of the adult reader is better captured by the overlaid effects of
the full range of experiences with the structure of words, as in our model, than by these other measures,
which reflect only part of the information that is acquired through experience. It is a characteristic of this
measure, and therefore an implication of our model, that the orthographic familiarity of a letter string reflects
frequency of exposure to the string itself, as well as exposures to other, orthographically overlapping letter
strings.

Homographs. Additional evidence consistent with this account is provided by performance on
homographs, words such as LEAD or WIND that contain common spelling patterns but are associated with
two pronunciations. Eleven homographs were included in the training set; the model was trained on both
pronunciations of each word. The Kucera and Francis norms provide estimates of the overall frequencies
of these words; we arbitrarily assigned a frequency equal to half the listed frequency to each pronunciation,
Thus the model was equally likely to receive feedback concerning both pronunciations. These words
represent the limiting case in terms of orthographic-phonological inconsistency, since the model is given
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of these words; we arbitrarily assigned a frequency equal to half the listed frequency to each pronunciation.
Tius the model was equally likely to receive feedback concerning both pronunciations. These words
represent the limiting case in terms of orthographic-phonological inconsistency, since the model is given
inconsistent feedback about the entire words, not merely parts such as word-bodies. Given this
inconsistent feedback, it is not surprising that the model performed relatively poorly on these items,
producing high phonological error scores. Even though the model was exposed to both pronunciations
equally often, after 250 epochs of training it typically "preferred" one pronunciation. For example, for the
word WIND, the error score for the pronunciation /wind/ was much smaller than the score for the
pronunciation /wind/, probably because the training corpus contained several /Ind/ words and no other
/ind/ words. Similarly, the model preferred LEAD - led/ and BASS - /bas/, again on the basis of
regularities elsewhere in the corpus. Interestingly, human subjects asked to name isolated homographs
aloud also produce very long latencies (Seidenberg et al., 1984). Presumably the correct pronunciations
of these words are normally determined by establishing which meaning is appropriate to a given context
and computing the pronunciation from meaning; subjects perform poorly when contextual information is
not provided, forcing them to rely on the computation from orthography to phonology, which is ambiguous.
Our account of lexical decision suggests that if the stimuli consist of words containing common spelling
patterns and orthographically-distinct nonwords, no effects of factors related to phonology should be
observed because the decision can be based on orthographic output; hence homographs should behave
like other words with common spelling patterns. This outcome has been observed empirically: whereas
homographs yield longer naming latencies than nonhomographs, they do not yield longer lexical decision
latencies (Seidenberg et al., 1984a). The model predicts that if this experiment were repeated with
nonwords whose orthographic error scores overlapped with those of the word stimuli, the orthographic
response strategy would be disabled, forcing subjects to consult phonological information as well. Under
these conditions, homographs should yield longer lexical decision latencies than nonhomographs, as in
naming. This prediction has not been tested, however.

In sum, the model provides a simple account of observed differences between lexical decision and
naming performance. The naming task requires the subject to compute a word's phonological code; thus it
is affected by factors such as orthographic-phonological regularity. Under many conditions, the lexical
decision task can be performed on the basis of orthographic information, and latencies are affected by
orthographic properties of words, but not by orthographic-phonological regularity. If the stimuli in a lexical
decision experiment include very wordlike nonwords, or very unwordlike words, subjects' decisions take
into account the computed phonological codes. Under these conditions, lexical decision results are like
those that obtain in naming, because both responses are based on the same information.

Orthgraphlc and Phonological Priming

The preceding account generalizes to a somewhat different phenomenon studied by Meyer et al.
(1974). Rather than orthographic-phonological regularity, they examined orthographic and phonological
priming effects. The stimuli consisted of words and nonwords presented in pairs. Subjects responded
"yes" if both stimuli were words, and "no" if the pair contained a nonword. The word pairs included
orthographically-similar rhymes (e.g., BRIBE-TRIBE), orthographically-similar nonrhymes (e.g., FREAK-
BREAK), and unrelated control items (e.g., BRIBE-TIGHT, FREAK-TOUCH) Rhyme pairs yielded faster
latencies and nonrhyme pairs slower latencies than controls. This mixed pattern of facilitation and inhibition
indicates that phonological relations between the words influenced subjects' decisions. Meyer et al.
interpreted the results as indicating that processing of the prime biased the encoding of the target. Having
computed the phonological code for BRIBE biased the subject to assign the same code to TRIBE; this
strategy yielded interference when the stimuli were nonrhymes such as FREAK-BREAK. However,
Hillinger (1980) obtained facilitation on trials containing rhymes with different spellings (e.g., CAKE.
BREAK), suggesting that phonological relations between words affect subjects' decision strategies rather
than target encoding.

According to our account, phonological information will bias lexical decisions only when the use of
orthographically-based decision criteria is disabled because of the similarity of words and nonwords along
this dimension. It is easy to see why Meyer et al.'s stimuli would have this effect; nonword trials included
pairs such as TRIBE-FRIBE and FREAK-TREAK, which differ by only a single letter. It follows from our
account that phonological information would not be used if the word and nonword stimuli were more
discrirninible in terms of orthography. Shulman, Homak, and Sanders (1978) reported this result. They
replicated the Meyer et al. study using the same word stimuli but varying the properties of the nonwords,
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account that phonological information would not be used if the word and nonword stimuli were more
discriminible in terms of orthography. Shulman, Homak, and Sanders (1978) reported this result. They
replicated the Meyer et al. study using the same word stimuli but varying the properties of the nonwords,
which were either pronounceable pseudowords (like Meyer et al.'s) or random letter strings. With
pseudoword stimuli, the results replicated Meyer et al.'s, with facilitation for orthographically-similar rhymes
and inhibition for orthographically-similar nonrhymes, indicating the use of phonology. With random letter
strings as nonwords, there was facilitation for both rhymes and non hymes, indicating the use of
orthographic information but not phonological.

Frequency Blocking Effect

Glanzer and Ehrenreich (1979) and Gordon (1983) reported a seemingly anomalous lexical
decision phenomenon termed the frequency blocking effect, which can also be understood within the
account of lexical decision performance given above. The phenomenon is the finding that, in this task, the
magnitude of the effect of frequency depends on the composition of the stimuli in an experiment. Gordon
(1983), for example, reported an experiment in which the stimuli were high, medium and low frequency
words, presented in either mixed or blocked conditions. In the mixed condition, stimuli from all three
frequency bands were randomly intermixed; in the blocked conditions, the same stimuli were presented,
but blocked according to frequency. Gordon's results are given in Table 6. In both conditions there were
frequency effects, with the order of lexical decision latencies being high < medium < low. Whereas
latencies for the lower frequency words were identical in the mixed and blocked conditions, they were
faster in the blocked condition than in the mixed condition for both medium and high frequency words.
This increase in the magnitude of the frequency effect is the frequency blocking phenomenon. Gordon
presented a signal detection model, much like the one given above, in which subjects vary their decision
criteria in response to the properties of the stimulus set.

Insert Table 6 About Here

We simulated Gordon's experiment by computing the orthographic error scores for high, medium,
and low frequency words like the ones used in his experiment. There were 24 items of each type, matched
in length. We also tested 69 pronounceable nonwords similar to the ones he used. The distributions of
orthographic error scores are presented in Figure 25. Assume that decisions are based on a weighted
combination of orthographic and and other types of information (e.g., phonological and/or semantic). As
the overlap between words and nonwords in terms of orthography decreases, subjects sh.w 6d weigh
orthographic information more heavily. As the overlap increases, subjects should weigh the other types of
information more heavily. When the stimuli are intermixed, the distributions for words and nonwords show
considerable overlap, predicting that the lexical decision should be difficult. Under these conditions,
subjects might be expected to weigh the other types of information more heavily in making their
responses. The overlap is primarily due to the lower frequency words, some of which produce error scores
like the pronounceable nonwords. Hence, presenting only low frequency words and pronounceable
nonwords would not facilitate performance, as Gordon (1983) observed. The situation improves when
medium and high frequency words are blocked. Because the distribution for the high frequency words
overlaps little with the nonwords, blocking would allow the subject to establish decision criteria based on
orthographic information alone; other types of information would not need to be consulted. Orthographic
information is closer to the input stimulus than either phonological or semantic information: therefore
decisions based on this code should be more rapid. Because the distributions for the medium frequency
words and nonwords overlap a bit more, blocking would yield a smaller benefit. These predictins are
entirely consistent with Gordon's results.11 One other point should be noted. The frequency blocking
phenomenon derives from the fact that lexical decision performance depends on the discriminibility of
word and nonword stimuli. Since naming depends on the computation of ohonological output, rather than
the discriminibility of words and nonwords, it follows that frequency blockii g should have little effect on
naming performance. Forster (1981b) reported this result, providing strong support for this analysis of the
differences between the tasks.



Table 6

Results of the Gordon (1983) Frequency Blocking Experiment

Word Frequency Class.

List Type Low Medium High

Mixed-frequency list 710 (8.9) 566 (0.3) 520 (0.1)

Pure-frequency list 710 (8.1) 547 (0.5) 480 (0.2)

difference in msec 0 19 40

Note: Main entries are lexical decision latencies in msec. Percent error
given in parentheses.
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Insert Figure 25 About Here

"Pseudohomophone" Effects

The final simulations co icem the processing of pseudohomophones-nonwords such as BRANE
or PRUVE that sound like words. Pseudohomophone effects refer to differences in naming or lexical
decision latencies for these items compared to nonpseudohomophones such as BRONE or PRAVE.
Performance on these stimuli has been thought to provide evidence concerning the role of phonology in
the access of meaning. In the original study employing these stimuli (Rubenstein, Lewis, & Rubenstein,
1971), subjects performed the lexical decision task. On nonword trials, latencies were longer for
pseudohomophones such as BRANE than for nonpseudohomophones. Rubenstein et al. assumed that
the task was performed by determining whether the target stimulus has a meaning or not. Thus, the longer
latencies for stimuli such as BRANE suggested that the stimulus was phonologically recoded, and that this
phonological code was used to access the meaning associated with BRAIN. This information interfered
with the decision that BRANE is a nonword. Latencies for pseudohomophones derived from high and low
frequency words (e.g., BRANE, high frequency; BRUME, low frequency) did not differ. Subsequent
studies of pseudohomophone effects have yielded inconsistent results (see, e.g., Dennis, Besner &
Davelaar, 1985; Coltheart et al., 1977; Van Orden, 1987). McCann and Besner (1987; Besner & McCann,
in press) recently reported three findings concerning these stimuli. First, when the task was to name the
stimuli aloud, pseudohomophones yielded faster latencies than nonpseudohomophones. Second, when
the task was lexical decision, the pattern was reversed: pseudohomophones yielded longer latencies than
nonpseudohomophones. Third, neither the lexical decision nor naming latencies for
pseudohorophones were correlated with the frequencies of the base words from which they were
derived. That is, the latency to name or make a lexical decision to an item such as BRANE was unrelated to
the frequency of BRAIN. Besner and McCann interpreted these results in terms of a model concerning the
role of frequency in lexical access.

These results are relevant to the model we have proposed for the following reason.
Pseudohomophone effects are thought to reflect the influence of the lexical entry for the base word on
the pseudohomophone. That is, BRANE differs from BRONE because only BRANE is influenced by a
neighboring homophone. BRAIN facilitates the naming of BRANE but interferes with making a lexical
decision to it. Pseudohomophone effects would appear to be a pro:iem for our model because it lacks
word-level representations; there does not seem to be - way for the spelling or pronunciation of BRAIN to
directly influence BRANE because there is no lexical entry for BRAIN.

It is interesting to note, however, that the model actually performs differently on McCann and
Besner's pseudohomophone and nonpseudohomophone stimuli. When the stimuli (which were nearly
identical in the two studies) were tested on the model, the pseudohomophones yielded smaller
orthographic and phonological error scores. Hence the model predcits that they should be easier to name
and yield longer lexical decision latencies, just as McCann and Besner found.

The model simulates these effects because it is sensitive to a general difference between the two
types of stimuli: pseudohomophones tend to be more wordlike than the nonpseudohomophones. That
is, the pseudohomophones tend to contain spelling patterns and spelling-sound correspondences that
occur more often in words; hence they are better approximations to actual words. These tendency derives
from two factors. First, some pseudohomophones benefit from the model's exposure to orthographically-
similar base words. Training on a word such as BRAIN or CAUGHT tends to modify the weights in a
direction that facilitates processing on pseudohornophones such as BRANE or COUGHT. The magnitude
of this effect will depend on the similarity of pseudohomophone and base word; much smaller effects will
occur for dissimilar pairs such as CAUGHT and CAWT. Second, pseudohomophones tend to be more
wordlike because of constraints that govern the construction of the stimuli. The constraint that
pseudohomophones sound like words may require using more of the spelling patterns and spelling-sound
correspondences that actually occur in words; conversely, the constraint that nonpseudohoophones not
sound like words may require using structures that do not occur very often. Because the error scores



14 F M

C 0

0 ++

04 0 2 4
-- 3: - Oitoguphic E o

.- -a 0

0 u0

4

010,

2: 0

4'A

0 2 4 8 10 12 14 I

Oftgpl Ew Sc*m



Word Recognition and Naming 38

reflect the aggregate effects of exposure to a large vocabulary of words, they tend to pick up on these
systematic differences between the stimuli.

In short, the model produces pseudohomophone effects because these stimuli tend to be closer
approximations of words than are the nonpseudohomophone controls. Still, it is possible that there could
be pseudohomophone effects above and beyond those accounted for by general orthographic and
phonological properties of the stimuli. If the processing of a target such as BRANE were influenced by the
entry for a word such as BRAIN, the model would fail to pick up this effect. Hence there might be
differences between the stimuli even when they are equated in terms of the error scores generated by the
model. On the other hand, the model predicts no differences between the two types of stimuli if they are
equated in terms of error scores. We tested these predictions by using the orthographic and phonological
error scores generated by the model to create two sets of stimuli. In the unbalanced set, the stimuli were
like the ones in the Besner and McCann studies, in that the pseudohomophones produced significantly
smaller orthographic and phonological error scores than the nonpseudohomophones. In the balanced
set, the two types of nonwords were equated in terms of both error scores. In the lexical decision version,
24 subjects were presented with all of the stimuli randomly intermixed with a set of monosyllabic words. In
the naming version, a second group of 24 subjects were presented with each nonword and required to
name it aloud. Results for the unbalanced stimuli (Figure 26, top) replicate the McCann and Beser (1987)
and Besner and McCann (in press) findings: pseudohomophones were easier to name than
nonpseudohomophones, but yielded longer lexical decision latencies. This pattern did not replicate with
the balanced stimuli, however (Figure 26, bottom). There was a main effect of task, with faster latencies on
naming than on lexical decision, but no interaction with type of nonword.

Insert Figure 26 About Here

In sum, the model replicates the pseudohomophone effects in the Besner and McCann studies
even though it does not contain explicit lexical entries to influence pseudohomophone processing.
These effects are realized in the model's error scores, which reflect the extent to which
pseudohomophones and nonwords resemble words in the lexicon. Our experiment suggests that there is
no residual pseudohomophone effect above and beyond that captured by the error scores. It appears that
the general tendency for pseudohomophones to be closer approximations to words can be eliminated by
other facts that affect the error scores. The error scores are effective because they provide summary
measures that capture influences that arise not only from experience with a particular word, but also with
other words that overlap with it in a wide variety of ways.

Summary of the Lexical Decision Simulations

The model gives a good account of simple word/nonword discrimination, including some more
subtle phenomena related to changes in decision criteria, as well as differences between naming and
lexical decision. Several points emerge from this analysis. First, we have shown that the model can
account for lexical decision performance despite the absence of word-level representations. This
represents a substantial change from previous accounts which assumed ti;,at lexical decisions involved
accessing such representations. The simulations also show that the types of knowledge representations
we found useful in accounting for naming performance can support the lexical decision process.

A second point is that the types of information utilized in making lexical decisions vary
systematically in response to properties of the stimulus set. Under the conditions that are characteristic of
many lexical decision experiments, subjects can base their decisions on orthographic information alone.
When this strategy is disabled, they can use phonological information. In principle there should be other
conditions in which semantic information must be consulted. The model provides an independent basis
for determining when orthography will or will not provide a sufficient basis for the decision, allowing us to
correctly predict when lexical decision results will or will not mimic those obtained with naming.

The model also suggests that under the conditions that often obtain in single-word studies, lexical
decisions can be based on nonsemantic types of information. This observation is important because it
calls into question the assumption that lexical decision performance necessarily provides evidence
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concerning processes related to the access of meaning. Our model accounts for performance in many
single-word studies even though it contains no representation of meaning at all. Of course, subjects can
ultimately determine that words have meanings and that nonwords do not; in our model this information
would be provided by the computation from orthography to semantics. However, the lexical decision
process does not actually proceed on this basis under many conditions.

Finally, it is clear that the conditions we have examined (concerning the presence or absence of
strange words, and the use of pronounceable nonwords vs. random letter strings) do not exhaust the
range of possible circumstances afforded by the lexical decision paradigm. Our main point is that the
results of any given experiment must be interpreted in regard to the response strategies permitted by the
stimulus conditions. The results of each experiment represent a point in a space of possibilities
determined by the properties of the stimuli, instructions to the subjects, and other experiment-specific
factors. The complexity of the task increases greatly when targets appear in sentence contexts. A more
complete theory than ours would provide an account of the types of information and decision processes
involved ir ,he judgments of contextual congruity typical of performance in sentence context experiments
(see Stanovich & West, 1981; Forster, 1981a, for discussion).

GENERAL DISCUSSION

The model of lexical processing that we have described can be summarized in terms of a number of
main features. Lexical processing entails the computation of several types of output in parallel. We have
described the computation of the orthographic and phonological codes in some detail and shown that the
model provides a quantitative account of various behavioral phenomena. The model accounts for
differences among words in terms of processing difficulty, differences in reading skill, and facts about the
course of acquisition. Lexical decision and naming are characterized in terms of how the computed codes
are utilized in making these types of responses. A task such as naming focuses on the use of one type of
code, phonology; a task such as lexical decision may involve all of the codes. The same types of
knowledge representations and processes are involved in the computation of all three codes (although the
implemented model is restricted to orthography and phonology). Knowledge is represented by the
weights on connections between units. These weights are primarily determined by the nature of the
English orthography that acts as input, in conjunction with feedback during the learning phase. Our claim is
that representing knowledge of the orthography in this way is felicitous given the quasiregular nature of the
system; the characteristics of English orthography are more congruent with this type of knowledge
representation than with tt," kinds of pronunciation rules proposed previously. The computation of the
orthographic code is affec,;u by the facts about the distribution of letter patterns in the lexicon;
computation of the phonological code is affected by facts about correlations between orthography and
phonology.

The main theoretical implications of the model can be characterized in terms of a number of
recurring issues in reading research.

Role of Phonology in Word Recognition

A large amount of research has been directed at questions concerning the use of phonological
information in visual word recognition. Three issues have been studied, although they have not alvays
been distinguished. One concerns access to phonology: does the processing of a word necessarily
result in access to phonological information? The second concerns the nature of the computation involved
in accessing phonology: what kinds of knowledge are involved and is there a single process or more than
one? The third issue concerns the relationship between phonological access and meaning: is the
phonological code computed as part of the process by which the meaning of a word is identified?

Concerning the first issue, the primary question is whether access of phonological information is an
automatic consequence of processing, or the result of a recoding strategy under the control of the
perceiver. Clearly the task of understanding a text does not necessarily require access of phonological
information, and the task can be accomplished by individuals who lack any knowledge of orthographic-
phonological correspondences at all (e.g., nonspeaking deaf persons). It might nonetheless be useful to
access phonological information, as suggested by early information processing models of memory such as
Atkinson and Shiffrin (1968), which proposed that subjects recode visual stimuli into phonological
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representations for the purpose of retaining information in short term memory, consistent with the r.sufts
of studies such as Conrad (1964). Thus, phonological recoding was thought to be a strategy relevant to
maintaining information in short term memory, rather than a necessary consequence of stimulus encoding.
Some reading researchers retained this idea, and attempted to identify the factors that determined when
phonological recoding was utilized. For example, it was proposed that phonological information might be
utilized for certain types of words (e.g., regular rather than exception; M. Coltheart, 1978), by certain types
of readers (e.g., poor readers: Jorm & Share, 1983; good readers: Barron, 1981), or for certain tasks (e.g..
naming rather than lexical decision; M. Coltheart et al., 1979).

Our model differs from these proposals in that it incorporates the idea that visual word recognition
results in the activation of phonological information in parallel with other representations (Donnenwerth-
Nolan et al., 1981; Seidenberg & Tanenhaus, 1979). In acquiring word recognition skills, children learn to
associate the orthographic codes for words with both their meanings and pronunciations. Once this skill is
acquired, processing of a written stimulus results in activation of multiple types of information, even though
only one may be required for performing a given reading task. Tversky and Kahneman (1983) have
observed other phenomena of this type. Their studies show that individuals find it difficult to ignore
information that is correlated with information that is relevant to problem solving but not itself re!evant to the
solution. According to this view, activation of phonological information is a result of stimulus encoding
processes rather than recoding strategies. What varies is whether this information is used in performing
tasks such as lexical decision, as illustrated by the experiments we simulated above. The activation of
phonological representations in parallel with meaning may account for the "voice in the head" experienced
by many individuals in silent reading.

Additional support for this view is provided by studies such as Tanenhaus et al. (1980), in which a
modified Stroop paradigm created a situation in which access of phonological information had a negative
effect on performance. This result is inconsistent with the idea that access of phonological information is
due to a subject strategy intended to facilitate performance. Rather, subjects accessed this information
even when it was optimal to avoid doing so. The ubiquitous effects of phonological information on various
reading tasks observed by Baron (1979), Kleiman (1975), and others simply reflect the fact that
phonological information, like meaning, is rapidly activated in reading; they further show that this
information is used in performing tasks such as making a lexical decision or judging the meaningfulness of
an utterance. 12

In regard to the nature of the computation involved in accessing phonology, our model refutes
what Seidenberg (1988) has termed the central dogma linking different versions of the dual-route model of
naming, namely that separate processes are required for naming exception words on the one hand and
novel items on the other. Our model demonstrates that a single computation that takes spelling patterns
into phonological codes is sufficient to account for naming of these types of items and others. Moreover, it
provides an explicit account of quantitative differences between stimulus types in terms of naming
difficulty.

It should be noted, however, that within the architecture illustrated in Figure 1 there is a second,
indirect way to generate the pronunciations of words: by computing the meaning of a word from
orthography and computing its pronunciation from meaning, as in speech production. In this respect our
account is similar to the dual-route model, which also holds that there are two ways to pronounce letter
strings. It is important to recognize the differences between the models, however; they are not notational
variants (Seidenberg, 1988, in press). The evidence that there is a second naming mechanism is
compelling; as we have noted, the indirect method is relevant to generating the contextually-appropriate
pronunciations of homographs such as WIND. Moreover, the indirect method is implicated in certain types
of dyslexia that occur following brain injury. For example, so-called phonological dyslexics are able to
name familiar words but impaired in naming nonwords (Shallice & Warrington, 1980). This would follow if
the patient's capacity to compute pronunciations from orthography were impaired, but the indirect route
from orthography to meaning to phonology were not. Perhaps the primary difference between the two
models concerns the role of the indirect route in normal reading. According to the dual-route model,
words with irregular pronunciations can only be pronounced by the indirect method. This follows from the
assumption that readers' knowledge of spelling-sound correspondences is represented in terms of rules
which, by definition, are only capable of generating the pronunciations of regular words and nonwords. In
our model, knowledge of spelling-sound correspondences is represented in terms of the weights on
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connections between units involved in the computation from orthography to phonology. As we have
demonstrated, this type of knowledge representation is sufficient to account for facts about the
pronunciation of regular and irregular words and nonwords. Moreover, the type of computation we have
described is necessary in order to account for consistency effects of the type illustrated in Figure 19. The
dual-route model is silent about cases in which the pronunciation of a putatively rule-governed word is
influenced by knowledge of words not covered by the rule. In sum, there are similarities between the
dual-route model and the account presented here, but the models employ different types of knowledge
representations and processes and make different predictions about inconsistent words. Ours is a "dual-
route" model, but it is not an implementation of any previous model.

The picture is similar when we turn to the third issue, concerning the role of phonological
information in accessing the meanings of words, probably the single most widely studied question in
reading research. A large number of studies have been directed at distinguishing between "direct" and
"phonologically mediated" routes to meaning (see Carr & Pollatsek, 1985; Henderson, 1982; McCusker et
al., 1981, for reviews). The direct access hypothesis is that readers recognize a letter pattern as a particular
word, providing access to a representation of its meaning stored in semantic memory. The phonological
mediation hypothesis holds that readers first compute the phonological code for a word and then use this
code to search semantic memory. Despite extensive research, empirical studies have not yielded a clear
resolution of the issue (see, for example, Baron, 1979; Van Orden, Johnston, & Hale, 1988). The model
presented in Figure I provides a framework for integrating many of the conflicting results in the literature.
As Figure 1 indicates, the model entails computations from orthography to meaning and fron orthography
to phonology. The default assumption, then, is that meanings are activated on the basis of a "direct"
computation from orthography. The computation from orthography to phonology occurs in parallel,
however, with the result that the phonological code becomes available and, as suggested above, it can
influence performance on many tasks, even when it is not logically required. This aspect of the model
underscores an ambiguity in much of the research on phonological mediation: many studies have provided
evidence that subjects utilize phonological information in reading, but as the model suggests, this fact
does not itself necessarily indicate that access of meaning was phonologically mediated. In general it has
proven difficult to empirically discriminate between activation of phonological information and
phonologically-mediated access of meaning.

These two assumptions--that there is a "direct" computation from orthography to meaning, and a
separate, equally direct computation from orthography to phonology-are consistent with a large body of
empirical findings in this area. However, the framework presented in Figure 1 also affords the possibility
that phonological information could influence the activation of meaning, by means of feedback from the
computed phonological code, the third side of the triangle in Figure 1. Just as there is an indirect route
from orthography to meaning to phonology, there.is an indirect route from orthography to phonology to
meaning. Other factors being equal, the feedback from phonology to meaning should develop relatively
slowly, because it requires a prior computation from orthography to phonology. Thus, feedback from
phonology to meaning should depend on amount of time available for this process to occur (Seidenberg,
1985a,b). In general, this feedback will have an effect when the primary computation from orthography to
meaning is itself relatively slow. There are a number of conditions under which this might occur. For
example, readers are sometimes more familiar with the pronunciation of a word than its spelling. In such
cases, the computation from orthography to meaning might fail to yield a clear pattern, but the reader
could attempt to determine the word's meaning from phonology. This process may be characteristic of
children in the earliest stages of learning to read, who identify the meanings of words by sounding them
out, matching the phonological codes that are generated to words in their spoken vocabularies. Similarly,
the computation from phonology to meaning might be utilized when it provides information relevant to
performing a particular task. For example, if subjects are required to make a difficult lexical decision or
categorization judgment, the information provided by feedback from phonology to meaning may provide
an additional basis for responding (e.g., Van Orden et al., 1988). In general, feedback from phonology to
meaning should be associated with words that have unfamiliar spelling patterns, readers who are relatively
poor at computing meanings from orthography, conditions under whch accessing the information
facilitates performance, or difficult tasks that yield relatively long response times (Seidenberg, 1 985a,b).

In sum, many of the controversies in the study of visual word recognition have been concerned
with the questions concerning the number of processes involved in identifying the meanings or
pronunciations of words. The framework presented in Figure 1 clarifies how these questions are related.
Both of the codes can be derived on the basis of primary, "direct* computations from orthographic input.
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pronunciations of words. The framework presented in Figure 1 clarifies how these questions are related.
Both of the codes can be derived on the basis of primary, "direct" computations from orthographic input.
In both cases, however, there is an indirect method of generating the relevant code. The existence of
both "direct" and "indirect" routes is a consequence of the architecture presented in Figure 1, which
reflects interconnections among the readers' knowledge of the written, spoken, and semantic codes fcr
words.

The Lexicon and Lexical Access

Our model differs from previous accounts in regard to the manner in which lexical knowledge is
represented and processed. A standard view, common to models such as M. Coltheart (1978), Forster
(1976), Morton (1969), and others, is that lexical memory consists of entries corresponding to the different
codes of words. For example, Forster (1976) suggested that lexical memory consists of a set of files or
bins, including a master file containing entries for all vocabulary items, and slave files containing entries for
different codes (e.g., a file containing word pronunciations). The models described by M. Coltheart (1987)
and Monsell (1987) contain multiple lexicons, including separate orthographic lexicons used in reading and
writing, and separate phonological lexicons used in listening and speaking. Research within this framework
has focused on questions concerning what has been termed lexical access: how the entries for different
codes are accessed in reading, the order in which they are accessed, and how access of one code affects
access of other codes.

The present model departs from these precursors in a fundamental way: lexical memory does not
consist of entries for individual words; there are no logogens. Knowledge of words is embedded in a set of
weights on connections between processing units encoding orthographic, phonological, and semantic
properties of words, and the correlations between these properties. The spellings, pronunciations, and
meanings of words are not listed in separate stores; hence lexical processing does not involve accessing
these stored codes. Rather, lexical information is computed on the basis of the input string in conjunction
with the knowledge stored in the network structure, resulting in the activation of distributed
representations. Thus, the notion of lexical access does not play a central role in our model because it is
not congruent with the model's representational and processing assumptions.

The view that lexical processing involves the activation of different types of information rather than
access to stored lexical codes represents more than a change in terminology. Access to a lexical code is
often taken to be an all-or-none phenomenon, whereas our alternative framework replaces this concept
with a partial or graded activation of representations. In an activation model with distributed representations,
a code is represented as a pattern of activation across a set of units. The activations of the units can differ
in strength. Moreover, the representations in our model are not "lexical" in two senses: the units of
representation do not correspond to words, and they support the processing of nonwords as well as
words. These conceptions raise different questions and generate different empirical predictions. For
example, within the access framework, it is relevant to ask how many of the meanings of an ambiguous
word are accessed; Swinney (1979; Onifer & Swinney, 1981) has proposed that lexical access results in all
the meanings of an ambiguous word becoming available with equal strengths. In contrast, a network with
distributed representations, such as ours, affords the possibility of partial activation of one or more
meanings (see Kawamoto, 1988; Hinton et al., 1986; Hinton & Sejnowski, 1986; McClelland & Kawamoto,
1986; McClelland & Rumelhart, 1985). The latter view is more congruent with evidence concerning the
effects of contextual information on the activation of meaning (Barsalou, 1982; Schwanenflugel &
Shoben, 1985; Tabossi, 1988; Burgess, Tanenhaus & Seidenberg, in press).

Similarly, within the lexical access framework, research has focused on whether factors such as
frequency influence lexical access or post-access processes involved in making lexical decisions or naming
words aloud (McCann & Besner, 1987; Balota & Chumbley, 1984, 1985). In our model, there is no lexical
access stage common to all word recognition tasks: there are simply orthographic, phonological, and
semantic computations. Within this framework, the primary question concerns how the readers' knowledge
of the correlations among these codes is represented, how they are computed, and how the computed
codes are used in performing different tasks. Frequency-the readers experience in reading, hearing,
and pronouncing words-affects these computations, but there are no separate effects due to "lexical
access."
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In sum, the notion of lexical access" carries with it a concern with certain types of theoretical
questions. The primary questions concern the number of lexicons, how they are organized and linked,
and whether it is orthographic or phonological information that provides access to meaning. The primary
processing mechanism is search through one or more ordered lists. In our model, the codes are
distributed; they are computed on the basis of three orthogonal processes: and the primary processing
mechanism is spread of activation. The primary theoretical questions concern the properties of these
computations, which are determined by the properties of the writing system that are picked up by the
learning algorithm on the basis of experience.

If, in keeping with much of previous usage, we take the term 'lexical access" to refer to access of
information concerning the meanings of a word, then an implication of our model is that neither naming nor
lexical decision latencies necessarily reflect this process. The model simulates many aspects of single-
word naming and lexical decision performance even though meaning is not represented at all. Naming
simply involves a direct mapping from spelling to pronuncialion. Lexical decision often involves simply a
judgment based on nonsemantic properties of the word and nonword stimuli. Hence, the results of
experiments using these tasks may have no direct bearing on the question, how do readers access the
meanings of words from print? The model calls into question the common assumption that these tasks
necessarily provide evidence as to how readers identify the meanings of words.

Acquition of Reading Skill

The model suggests that learning to read words involves learning to compute orthographic,
phonological, and semantic codes from visual stimuli. Acquiring this skill is a function of three factors: the
nature of the stimulus; the nature of the learning rule; and the architecture of the system.

Nature of the stimulus. The model suggests that learning to read involves creating a network
structure that encodes facts about the orthography. The model works as well as it does because it is
trained on a significant fragment of written English, which contains a complex latent structure. Measures of
orthographic redundancy (such as positional letter frequencies and bigram frequencies), lists of spelling-
sound rules (such as Venezky, 1970), and definitions of regularity or phonological neighborhoods (e.g.,
Parkin, 1982) are partial characterizations of what is actually a very complex correlational structure
concerning relations between letters and between letters and phonemes. Like the child learning to read,
the model is exposed to this complex input in the training phase.

The learning rule. This elaborate structure would be of no importance were it not for the fact that
there is at least one learning algorithm (there may be more) capable of extracting it. The effect of the
learning rule is that the weights on connections come to encode regularities present in the input. This is a
good thing to be doing if the input does in fact exhibit a rich set of regularities. It is an especially good thing
to be doing if the regularities are statistical (as in written English) rather than categorical (as in rules, as they
are normally construed). Thus, there is a good match between what the learning algorithm does and what
is to be recovered from the input.

The architecture of the system. We have demonstrated that the model's capacity to simulate
human behavior critically depends on one aspect of the architecture, the number of hidden units. This
aspect of the model illustrates what may be a general characteristic of connectionist models. In order to
capture facts about human behavior, the models apparently have to obey a kind of "Three Bears" principle
concerning computational resources. The experiments with the number of hidden units suggest that if
there are too few, the model will learn some of the basic regularities but will not be able to cope well enough
with exceptions. Though we have not established this point in regard to the present model, it is known that
in some cases networks with too many hidden units "memorize" the training examples but fail to extract
implicit regularities and thus lack the ability to respond to novel inputs (Hinton, 1986). Apparently the
number of hidden unit has to be "just right," to capture both the regularities and the exceptions as people
do. A detailed understanding of these characteristics of network models will require considerable
mathematical analysis of network capabilities. In the meantime, the empirical discovery that something as
general as the number of hidden units contributes in specifiable ways to the solution of a problem is
interesting insofar as it suggests how biological constraints--the human architecture-influence what is
learnable.
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In sum, it will probably turn out that having the right amount of computational machinery (and the
right organization of that machinery) is necessary to be able to encode the regularities that are found in the
input and extracted by the learning algorithm. There may be other general architectural constraints as well.

The characterization of our model in terms of environment, learning rule, and architecture provides
a useful framework for thinking about other connectionist models and about behavior in general since it
incorporates some of the most important approaches to understanding behavior that have emerged in
modern psychology. With Gibson it shares the emphasis on understanding the structure of the input. With
learning theory it shares the notion of general laws of learning. With Chomsky it shares an emphasis on
how biological constraints contribute to what is learnable. Which of these elements contributes most to the
solution of a given problem will probably vary. In the case of learning to read and pronounce written
English, the biological constraints are probably fairly minimal: the system has to devote the right amount
and kind of resources to the problem. The solution is largely driven by the highly structured input and the
power of the learning rule. In language acquisition, where the input to the system is thought to be
impoverished relative to what is learned, biology may impose stronger constraints on the solution space.
Thus, depending upon the nature of the problem, one or another component may contribute more or less
to its solution; nonetheless all three need to be considered.

Generality of the Simulation Results

It is important to consider the generality of the conclusions we have reached on the basis of the
model's performance. This issue arises in connection with every simulation model. Our concerns focus on
two issues. First, the model's scope is limited; it deals with only some aspects of visual word recognition.
Second, there are questions as to how specific aspects of the implementation contribute to the model's
performance. Both of these factors could limit the generality of the results. For example, the model might
perform as well as it does only because it deals with only selected phenomena: similarly, it might perform
very differently if certain features of the implementation were changed.

Scope Limitations

The model's scope is restricted in three primary respects: (a) it is only concerned with monosyllabic
words; (b) we have not implemented a process that yields an articulatory-motor response on the basis of
the computed phonological code; (c) we have not addressed issues related to meaning. Our primary
concerns are whether these limitations compromise the conclusions that we have drawn, and whether the
model would need to be changed in important ways in order to deal with them.

The restriction to monosyllabic words could be important for two reasons. First, it might be that the
nodel performs as well as it does only because the learning problem has been consuained in this way. It is

possible, for example, that the learning algorithm would function much differently if the model were
exposed to a wider variety of words. If the set of monosyllabic words is more homogeneous than the set of
words in English, this might contribute in important ways to the behavior of the model. This is an empirical
question that awaits further experimentation with this model and others like it. We should note, however,
that we obtained essentially similar results for simulations using lists of 1200 and 2897 monosyllabic words;
although the larger list was more heterogeneous, this fact had little effect on its behavior. Moreover,
Lacouture (1988) has developed a model similar to ours based on a training corpus of 2100 words
including both mono- and multisyllabic items. This model exhibits similar behavior on monosyllabic words
even though the training corpus is quite different. Hence it does not appear that our results are specific to
the particular corpus that we used, or to the use of only monosyllabic words.

A second issue is that complex words exhibit additional types of structure, such as syllables and
morphemes, which could be relevant to processing. Moreover, the pronunciation of multisyllabic words
raises difficult issues concerning the assignment of syllabic stress. There have been a large number of
studies examining the role of structures such as syllables and morphemes in visual word recognition (see
Seidenberg, in press, for review). These studies have led to models in which the processing of complex
words involves parsing into sublexical syllabic or morphemic components. For example, Spoehr and Smith
(1973) obtained evidence that syllables play a role in tachistoscopic recognition and proposed a model in
which word recognition involves the recovery of syllabic structures. Other studies have been taken as
providing evidence that words are decomposed into component morphemes as part of the recognition
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process (e.g., Murrell & Morton, 1974; Taft, 1985). Treiman and Chafetz (1987) have provided evidence
indicating the salience of subsyllabic onset and rime units.This research would seem to require
representations of syllables, morphemes, and onset/rime which are accessed as part of the recognition or
pronunciation of letter strings. This would represent a substantial elaboration of our minimal model for
monosyllabic words.

We consider these to be unresolved questions. Clearly the model in its current form is silent
concerning the complex processes involved in assignment of syllabic stress. The basic question is
whether these phenomena can be accommodated by extensions to the present model, or whether they
require a model with very different types of representations and processes. For example, stress
assignment is determined in part by grammatical category, a type of knowledge the current model lacks.
However, it is easy to imagine extensions to the model in which grammatical category is directly encoded
and learned according to similar principles. Similarly, in some theories stress is represented by a feature
associated with the representations of vowels (Chomsky & Halle, 1968), which could be accommodated by
adding a feature to the scheme used here to encode phonemes. More recent theories, however, suggest
that stress assignment involves access to an explicit syllabic level of representation (see Selkiri, 1980, for
discussion), which might entail a major modification of the present account.

These issues can only be addressed by further research. However, there is good reason to think
that a model very much like ours could account for the effects of sublexical structures such as syllables,
morphemes, and onset/rime that have been observed with tasks such as lexical decision and naming
without additional representational or processing assumptions. Specifically, the model may provide an
account of the effects of complex word structure that is an alternative to parsing rules. Studies of the role
of syllables and morphemes in visual word recognition have yielded inconsistent results, with some
yielding evidence for decomposition into these components, while others have not (see Henderson,
1982; Seidenberg, in press, for reviews). These inconsistent results may indicate that what is relevant to
processing is not syllables or morphemes, but properties of words that are correlated with these
structures. As we observed in the introduction, syllables and morphemes are inconsistently realized in
English orthography. Just as the properties of written English make it difficult to formulate a set of rules
governing orthographic-phonological correspondences, they also make it difficult to formulate parsing
rules that will yield the correct decomposition into component parts. Moreover, there has been little
agreement among linguists concerning the definition of the syllable (see Hoard, 1971; Kahn, 1976;
Selkirk, 1980; Seidenberg, 1987). The inconsistency of spelling-sound correspondences in English led
us to abandon the notion of mapping rules in favor of weighted connections between units; the analogous
inconsistencies in terms of syllables and morphemes might require abandoning parsing rules for the same
reason. At the same time, the orthography does provide cues to syllabic and morphological structures.
Morphemes, for example, are sublexical components that recur in a large number of words. As such they
tend to be very high frequency spelling patterns. Consider for example a prefix such as PRE-, which recurs
at the beginning of a large number of words. Empirical studies have suggested that the prefix and stem of
a word act as perceptual groups (Taft, 1985). Does this grouping occur because the reader decomposes
the word into morphemic components or because prefixes tend to be extremely high frequency spelling
patterns? Similar considerations hold in the case of syllables. The syllabic structures of words will tend to
be realized in the orthography by inhomogeneities in the distributions of letters because syllables are
properties of the spoken language and the orthography is alphabetic. Hence, "syllabic" effects could
occur in word recognition not because readers recover syllabic structures per se, but only because they
are affected by orthographic properties that are correlated with syllables. In sum, the hypothesis is that
effects of units such as syllables and morphemes in visual word recognition are secondary to facts about
how these units are realized in the writing system. Thus, effects of these structures would be an emergent
property of a model, like ours, which only encodes facts about orthographic redundancy and orthographic-
phonological regularity. We are currently examining this hypothesis (see Seidenberg, 1987, in press, for
discussion). There is already some suggestive evidence in this regard. Treiman and Chafetz (1987) have
shown that subjects are sensitive to the division of syllables into onset and rime. In the word SPLASH, for
example, the onset is SPL- and the rime is -ASH. We have already shown that rime units tend to be salient
to pronunciation because of the structure of English orthography, as in the simulations of effects of
different words on performance on TINT. Training with PINT or MINT has large effects on processing TINT,
but training with TENT or TINS has much smaller effects. This is simply a consequence of the fact that
vowel pronunciations--4he most sensiive and least predictable aspect of the word-are sensitive to the
letter which follow them, and the model picks up on this fact.
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The scope of the model is also limited in that we have not implemented a process that takes
computed phonological output into a set of articulatory-motor commands. We cannot be certain, then, that
this process can be implemented in a manner consistent with facts about speech production. We think it
highly unlikely that the model will prove to be inconsistent with facts about speech production given the
simple monotonic relationship between phonological error scores and pronunciation latencies, but it does
represent an unresolved issue. Minimally what is required is a mechanism that would take the imperfect
specification of the phonological code provided by the model into an explicit representation of the
pronunciation. The sequential networks described by Jordan (1986) are quite suggestive in this regard;
these networks take patterns of activation representing entire words as input, and learn to produce the
corresponding phonemes one at a time in sequence. Utlimately we would hope that a model of this type
would encompass many of the phenomena described by Dell (1986) in a mechanism that incorporated
learning procedures. 1 3

Finally, the model does not address issues related to meaning. Insofar as the primary goal of word
recognition is to identify the contextually-appropriate meaning of a word, this represents a serious
limitation. What we have demonstrated is that a large number of lexical decision and naming phenomena
thought to bear on issues concerning access of meaning can be simulated by a model in which meaning is
not represented at all. However, questions concerning the representation and access of meaning remain
to be addressed; we have not, for example, even touched on the role of semantic priming or contextual
constraint in word processing. As we have noted, promising work by Kawamoto (1987), Hinton and
Sejnowski (1986), McClelland and Rumelhart (1985) and others uses principles very similar to the ones we
have employed to address the computation of meaning. Further exploration of these issues is an
important topic for future research.

Details of the Implementation

We have argued that aspects of our model are critical to understanding how words are recognized
and pronounced. The critical aspects include the use of distributed representations, the existence of a
layer of hidden units, the adjustment of weights on connections through learning, and the idea that
pronunciation involves a direct mapping from orthography to phonology. There are details of the present
implementation that are less theoretically relevant, however, and it is prudent to consider how they might
contribute to its behavior. The main questions in this regard concern the representations of orthographic
and phonological knowledge. The method of encoding phonemes was also utilized by Rumelhart and
McClelland (1986b) in their model of the acquisition of past tense morphology. Pinker and Prince (1988)
have noted several limitations of this encoding scheme.

We are aware of these limitations and have not claimed that the model embodies an adequate
characterization of English phonology. The imp rtant question is, does the model exhibit the behavior
that it does (in terms of regularity effects and the like) because of specifics of the phonological (or
orthographic) encoding schemes that we have chosen to use? This question can be addressed
empirically, by developing models that perform the same task as ours (learning about the structure of
English orthography) but do not utilize the same representational schemes. Two additional models
(Sejnowski & Rosenberg, 1986; Lacouture, 1988) provide evidence on this score. Sejnowski and
Rosenberg's model utilizes letters and phonemes as representational units, rather than the triples
employed in our model. Although context sensitivity is not built into their representations, it is introduced
in another way: Each letter is presented to the network for processing centered in a seven-letter window,
so that there are three letters of context on either side of the central letter. The task of the network is to
produce the correct output for the central letter, given this context. In other respects their model is similar
to ours; it learns the correspondences between graphemes and phonemes using a network with a layer of
hidden units and the back-propagation learning algorithm to adjust the weights on connections. Since the
two models yield similar behavior in many respects, it appears that the use of the "triples" notation is not
necessary in order to obtain many aspects of our own model's performance.

Lacouture's model, in contrast, uses a position-specific representational scheme similar to the (. ie
proposed by McClelland and Rumelhart (1981), rather than a locally context sensitive scheme like the one
used here. That is, there was a complete set of 28 graphemic primitives (featural components of letters) for
each of the letter positions in a word, counting from left to right. In spite of several obvious drawbacks of
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this sort of scheme, Lacouture's model also behaves similarly to ours, yielding, for example the frequency
by regularity interaction and other phenomena. Once again it appears that models with widely differing
representation schemes yield qualitatively similar results. What is common to all these models is the use of
representations in which similar words with similar spelling produce overlapping input patterns, and words
with similar pronunciations produce overlapping output patterns.

Of course, the specific details of the representations do affect the degree of overlap of input and
output representations: and ultimately it will turn out that there are some choices of representation that wiil
be superior to others, particularly if multisyllabic items are included. However, we do not think that the
choice of representation is an a priori process independent of learning. Though there may be constraints
that come originally from evolution and/or pre-reading experience, we believe these predispositions are
subject to considerable reorganization with experience. Our choice of representation was intended to
approximate the one that people learn to use, rather than to serve as an exact characterization.

One other aspect of the implementation of the model deserves to be re-examined in light of our
results: the fact that we compressed the range of word frequencies rather drastically in training our network.
Two questions arise concerning this compression: was it justifiable and was it responsible for any important
aspects of the results?

We have already argued that some compression was justifiable, in that the untransformed Kucera-
Francis word frequencies provide a biased picture of the experience we might expect a child to have with
the words in our corpus. This is particularly true when we consider the fact that the spelling patterns and
spelling-sound correspondences rep,'csented ir, low frequency words tend to show up in words derived
from the base forms of these words as well as in the base forms themselves. Nevertheless, we cannot
definitively assert that the actual degree of compression that we used is comnletely justified. This issue is
important, because Bever (in press) has suggested that the model closely simulates human performence
only because of the frequency transform, which he considers to be unrealistic. Bever's conjecture is that
the model would fail to learn the correct pronunciations of many words if a broader range ot frequencies
were employed. As we have noted, exception words tend to be overrepresented anong the higher
frequency items in the lexicon. Bever's intuition is that if words such as HAVE or SAID were presented
more often, the model would not be able to learn the regular pronunciations of regular inconsistent words
such as RAVE or PAID.

While this conjecture certainly deserves careful consideration, there is no reason to suppose that it
is correct. Because of the error-correcting character of the learning rule that we use in training the network,
performance on high-frequency items reaches asymptote relatively early; after this point they exert
relatively little influence on performance because the network has sufficient resources (in the form of units
and connections) to master less frequent items in its environment. Under these circumstances, repeated
presentation of high frequency items keeps accuracy with these items high, while at the same tit ne
allowing gradual acquisition of the capacity to deal with other items in the corpus. We can see this pattemn
clearly in the simulations reported in this paper: As Figure 3 shows, performance on words of relatively hi,:i
frequency reaches asymptote by about 70 epochs, leaving room for continued improvement on lower
frequency words. To be sure, a change in the frequency compression function that we used would tend to
increase the importance of the word frequency factor, relative to the orthographic regularity, but it should
not change the fact that oath frequency and regularity influence performance, nor the fact thal -egularity is
a more important factor among less frequent words.

Still, in light of these considerations it seemed prudent to explore whether similar results would
obtain if a less drastic compression of the frequency range were employed. Hence, we repeated the
simulation using the same corpus of words and training procedure with one change: words were sampled
during the training phase as a function of the square root of their Kucera-Francis frequencies. Results of
this simulation for the words in the Taraban and McClelland (1987) set are presented in Figure 27. The
simulation was run for many more epochs because only Pout 60 items were presented in each one. The
res _lts replicate the frequency by regularity interaction seen in Figure 3 Looking at the regular inconsistent
words, the correct pronunciations of these words again yielded much smaller error scores than the
.exceptional" pronunciations, contrary to Bever's conjecture. Increasing the relative frequency of the
higher frequency words did have one effect: it eliminated the regularity effect for high frequency words
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early in training. In effect, the simulation says that if children were drilled repeatedly on a small number of
high frequency words, they would perform about equally well on both regular and irregular itemc

Insert Figure 27 About Here

In sum, the model is clearly limited in some respects, and details of its performance depend on
some of the specific assumptions incorporated in the model. However, we see no reason to think that the
theoretical conclusions we have offered are contingent on these aspects of the model.

Concklons

We have presented a model of visual word recognition that syr'hesizes a broad range of empirical
phenomena and provides an account of the types of knowledge relevant to this task, the manner in which
they are represented in memory, and the course of acquisition. Our basic claim is that the model can
account for these phenomenla because of the close fit between the nature of the task (learning the
structure of English orthography) and the capabilities of models of this type. English orthography is not
strictly regular, and so it is not well captured by mechanisms involving systems of rules. Attempts to patch
up this problem by proposing two routes (rules and lexical lookup) have been offered by others, but they
have not been entirely successful. Our model, and others like it, offers an alternative that dispenses with
this two-route view in favor of a single system that also seems to do a better job of accounting for the
behavioral data. It remains for further research to establish whether the present approach can be
successfully extended to longer words and to other aspects of word reading, and to integrate the word
reading process, here artificially isolated, back into the process of understanding texts.
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Footnotes

1. In fact the size of the adjustments made to the strengths of the connections in the model is given by a
somewhat more complex expression, as follows:

aE
AW i -E. aE + a * AW 'i!

awii

Here w' refers to the previous increment to the weights, and a is a parameter between 0 and 1 - a can be
thought of as specifying how much momentum there is in the magnitude of the changes made to the
weights.

2. Here and elsewhere in the paper we the following notation for representing phonemes: A - a in GAVE,
a - a in HAVE; O -o in POSE; U = o in LOSE; i - i 'n LINT; I - i in PINT; E .es in SEED A a u in MUST; u
oo in BOOK; o = o in HOT; W - ow in HOW; = aw = PAW.

3. The set of phonological features used was somewhat simplified, so that certain phonemes pairs (e.g.,
the initial phonemes in CHIN and SHIN) were not in fact distinguished. See Rumelhart and McClelland
(1986b) for details.

4. Ghosts are capable of appearing in this representation when it becomes too "saturated*; that is, when
too many of the units are on at one time. This iz one reason why a richer representation would be required
to represent multisyllabic words.

5. The simulations reported below involve comparisons between subjects' naming latencies and the
model's performance on the same items. The naming latencies presented in the figures sometimes differ
slightly from those reported in the original papers because some experiments included a small number of
words that were not contained in the training set. Excluding these items did not alter the patterns of results
in any of the experiments.

6. Glushko's Experiment 2, which examined nonword naming, did not include repetitions of spelling
patterns with different pronunciations: hence it is not subject to the repetition priming hypothesis
previously advanced in connection with his experiment on regular inconsistent words.

7. Ambiguous words have been used in only one study of skilled readers (Seidenberg et al., 1984a,
Experiment 1). The model simulates the results of this experiment quite closely. However, the ambiguous
words were in the higher frequency range in which they do not differ from regular words. In Backman et
al.'s (1984) developmental study (described below), children's performance on ambiguous words was
better than on exceptions, but worse than on regular inconsistents. Thus, children show the pattern for
lower frequency words seen in Figure 16. The stimuli in this experiment were words that are nominally
"high frequency" items for adults. As we argue below, younger readers' processing of higher frequency
words is like skilled readers' processing of lower frequency words. Hence the results are consistent with
the data in Figure 16.

8. It should be noted, however, that Brown's study does not provide clean evidence for his principle. The
critical comparison in the experiment is between unique and exception words. These words are similar in
terms of the factor Brown assumed to be relevant, the number of times their word-bodies are associated
with a given pronunciation (in both cases, the number is 1). They differ in terms of the factor thought to be
irrelevant; only the exception words have inconsistent neighbors. Hence the finding that the words yield
similar naming latencies was taken as evidence that only the first of these factors is relevant. However, the
words also differ in other respects relevant to processing (and to our model). Specifically, exception words
contain higher frequency spelling patterns than unique words. This is a necessary consequence of the
fact that the exceptions have a large number of regular inconsistent neighbors. Hence there is a
confounding between the number of times a spelling pattern occurs in the orthography and consistency of
pronunciation. In our model, both of these factors are relevant; they jointly account for why performance is
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similar on exception words such as LOSE and unique words such as SOAP. The model is trained on a
large number .of -OSE words and t weights come to reflect the fact that these words tmvnav rhyma with
POSE. It then performs relatively poorly on the exception LOSE. Unique words such as SOAP fare
differently. The f0icx ;,hat -OAP is pronounced /Op/is not very strongly encoded by 'he weights because
this pattern is encountered so infrequently. This also means, however, that the model has not been given
inconsistent feedback about the pronunciation of this pattern. The tradeoffs between these factors, woich
are realized in the learning process, are such that SOAP and LOSE are about equally difficult to name.

9. While it is tempting to equate the number of hidden units with the size of the population of neurons that
might be dedicated to reading in the brain, one must be careful not to take this analogy too literally. First,
the precision of the individual units used in our simulations could only be achieved by much larger numbers
of actual neurons. Second, resource limits might arise in a number of ways, such as degree cf noise or
number of modifiable connections per neuron, rather than strictly in terms of numbers of neuroo.s involved.

10. We also considered the possibility that generalization would be reduced if the model were given too
many hidden units. This has been observed in some experiments with back-propagation (e.g., Hinton,
1986). This behavior would correspond to learning the pronunciations of words on an item-by-item basis,
leading to poor performance on novel stimuli such as nonwords. We ran one simulation utilizing 400
hidden units, which yielded results very similar to the ones with 200 hidden units except that learning was
faster and lower error scores were achieved. Thus, in the present case at least, merely doubling the
number of hidda. units does not significantly reduce the generalization performance of the model. We are
continuing to explore this and other possible computational bases for different patterns of uyslexic
performance (see also Patterson et al., in press).

11. Even with the most optimistic setting of the decision criteria, the simulation predicts somewhat more
errors in the medium and high frequency conditions than Gordon actually observed. However, it should be
noted that this simulation did not employ the stimuli that he used because they were not published with the
study.

12. The Tanenhaus et al. (1980) results, and related phenomena such as the visual tongue-twister effect
(McCutchen & Perfetti, 198K.) suggest that subjects cannot shut off phonological processing completely
even when it would be beneficial to do so. However, it may be that this computation can be regulated to
some extent. Cohen, Dunbar and McClelland (submitted) have recently proposed a model of attention
which has this implication. For example, the insltrnction to attend to colors of Stroop stimuli may facilitate
the encoding of this information. Thus, although phonological information is activated under a broad range
of conditions, the manner in which it is computed may vary.

13. Lacoutur,'s (1988) model is suggestive in this respect. It computes phonological output in a manner
very similar to ours; however, the computed phonological representation is then input to an auto-
associative network (Anderson, Silversteir,, Ritz, & Jones, 1977), which essentially completes the
phonological code based on this partial input. This pattern completion process might be seen as
analogous to assembling an articulatory code.



Appendix

Stimuli in the Seidenberg, McRae and Jared (1988)
Experiment

Inconsistent words Consistent words

Word Enemy Word

bead head barge
booth smooth bean
braid said beep
brood good bin
broth both bliss
brow flow brute
cave have bunch
chase phase cane
crouch touch cape
crush bush cheer
dome some coy
drown flown den
floe shoe dime
frost post doom
gloss gross fade
growl bowl flask
haste caste gloat
hive give groan
leaf deaf haunt
lone gone hike
loot foot lame
lull bull lilt
mail shall lure
noose choose mince
pear fear nerve
pleat sweat peach
plied skied peel
poll doll pier
pose lose poise
rut put probe
sneak break rust
sour tour scrub
stew sew steal
stint pint stole
stool wool strait
tease cease stunt
toad broad taint
tough cough teen
valve halve vain
wove love weld


