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Abstract

People who solve the Tower of Hanoi start out with a guided trial-and-error strategy and later acquire a

recursive strategy, the generally most effective strategy. Protocol data shows that noticing and using

subtowers in problem-solving differentiates two subjects who acquired the recursive strategy from one

who did not. A working Soar model explains Tower of Hanoi strategy-acquisition by first assuming the

basic ability to notice and use subtowers, and then charting the process by which this new knowledge is

integrated with ei~ting knowledge !c 2r' duce the recursive strategy. Of Pd~ii(uear irtportanrie in the

integration is learning to see nested subtowers and using simple spatial-manipulation reasoning to figure

out how to move those subtowers. The model shows a good qualitative fit to the data, providing support

for Soar as a unified theory of human cognition.
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Tower-Noticing Triggers Strategy-Change
in the Tower of Hanoi:

A Soar Model
Dirk Ruiz and Allen Newell

Departments of Psychology and Computer Science
Carnegie Mellon University

People who solve the Tower of Hanoi start out with a guided trial-and-error strategy and later acquire a
recursive strategy, the generally most effective strategy. Protocol data shows that noticing and using sub-
towers in problem-solving differentiates two subjects who acquired the recursive strategy from one who
did not. A working Soar model explains Tower of Hanoi strategy-acquisition by first assuming the basic
ability to notice and use subtowers, and then charting the process by which this new knowledge is
integrated with existing knowledge to produce the recursive strategy. Of particular importance in the
integration is learning to see nested subtowers and using simple spatial-manipulation reasoning to figure
out how to move those subtowers. The model shows a good qualitative fit to the data, providing support
for Soar as a unified theory of human cognition. ,

THE PHENOMENoN

How are new problem-solving strategies acquired? In particular, what new information triggers the
acquisition process, and how is that information integrated into problem-solving to produce a new stra-
tegy? We address this question within the Tower of Hanoi domain. The puzzle (Figure 1) consists of five
disks of graded sizes which in the initial state are sitting on one peg (the Source) to form a tower. The
object is to move the disks to the Destination peg while moving only one disk at a time from peg to peg
and never placing a larger disk on a smaller. Much is already known about this problem. In particular, it
has been found that the Tower of Hanoi car. be solved with a small number of well-defined, easily detect-
able strategies and that people tend to learn new strategies while solving it (Simon, 1975; Anzai &
Simon, 1979). These characteristics make the problem ideal for studying strategy-acquisition.

Subjects start out solving the Tower of Hanoi using a guided trial-and-error (GTE) strategy and fre-
quently end up using a recursive strategy (Egan & Greeno, 1974; Simon, 1975; Anzai & Simon, 1979;
Ruiz, 1988; VanLehn, 1989). The GTE strategy consists of never moving the same disk twice in a row
and never returning a disk to the peg from which it most recently came. The recursive strategy consists of
setting a goal to move the largest disk that is not yet on the Destination to the Destination, followed by
recursively setting subgoals to move blocking disks out of the way. Prior speculations and models of this
change have typically relied on three assumptions (Egan & Greeno, 1974; Simon, 1975; Anzai & Simon,
1979). First, search takes place only in the Tower of Hanoi problem-space. Second, prior knowledge of
(domain-independent) means-ends analyses (MEA) is necessary either to guide the acquisition of new

1 3
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Source Auxiliary Destination
Figure 1: The Five-Disk Tower of HLo.
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information that will later lead to the development of the recursive strategy, or to directly provide a tem-

plate for building the recursive strategy. Third. little prior knowledge, drawn from other domains, is
assumed. (VanLehn's model sets aside the MEA assumption, but retains the assumptions of a single
problem-space and little prior knowledge.) Our theory, a working Soar model (Newell, in press), provides
a new explanation of Tower of Hanoi strategy acquisition without having to make these sometimes overly
restrictive assumptions.

HUMAN DATA

Our model is based on thinking-aloud protocols taken from three subjects solving ,ne five-disk
Tower of Hanoi problem: AS, RN, and PD. AS is Anzai and Simon's well-known (1979) subject. who
did the following trials using a physical problem: part of a five-disk, a complete five-disk, a one-disk, a
two-disk, a three-disk. a four-disk (these last four problems were experiments initiated by AS), and then
two more five-disks. RN and PD were run in our laboratory on an IBM PC; they used special keys to
pick up and drop disks. Numbers were printed on the disks to aid identification. They each did five com-
plete trials of the five-disk Tower of Hanoi. Their moves and times were recorded. The following regu-
larities were observed in the protocols:

1. All three subjects initially used the GTE strategy; RN and AS later acquired the recursive stra-
tegy. AS acquired it upon starting her three-disk experiment; RN acquired it during his first trial
at state _,1234,5 (the Source is blank, Auxiliary has disks 1-4, and 5 is on Destination). While
PD was able to solve the Tower of Hanoi, he did not acquire the recursive strategy; he did use
lookahead, but that only infrequently (six times).

2. Solving one-disk and two-disk subtowers was trivial for all subjects.

3. Before acquiring the recursive strategy, RN set five subgoals and AS set six. Two of RN's
subgoals and three of AS's subgoals were to move a two-disk subtower. In both, the two-disk
tower was then planned out and moved. The remaining goals were to move larger towers; they
were abandoned in favor of a move generated according to the GTE strategy.

4. Upon or after placing disk 4 on the Destination, all three subjects realized they had made an error
and tried to rectify it.

5. Subtowers figured prominently in RN's and AS's pre-recursive problem-solving, but not in PD's
pre-lookahead problem-solving. (A subtower is defined as a stack of k consecutive-sized disks,
with disk 1 as the first disk.) RN mentioned them explicitly in six statements such as "Now I
need to move disks one, two, and three (to the] auxiliary." AS did her aforementioned four
experiments solving subtowers. PD did mention subtowers five times in his pre-lookahead
problem-solving. These mentionings were either vague or were comments on a tower just about
to be completed; they never occurred while planning a move.

6. Recursion was displayed suddenly by both AS and RN, within one move.

7. Recursive reasoning occurred when AS and RN were confronted with subtowers (e.g., the state
5,4,123); there was little mention of goals while moving between subtowers.

SOAR

The theory we shall present is a subtheory within Soar. Soar provides the general theoretical con-
strtucts (learning, problem-spaces, memory structure, etc) that support and realize our strategy-change
explanation. To understand the subtheory, it is necessary to first understand Soar.
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Soar is a general cognitive architecture which models the human cognitive architecture (Newell, in
press). Soar has an associative, recognition-based long-term memory (LTM), realized by productions,
and a working memory to hold intermediate resilts of computation. As with humans, the problem-space
(the problem-states and operators that can be used to solve the problem) is the basis of Soar's cognition
(Newell, 1980). Given a goal to solve a problem, Soar makes progress by first deciding on a problem-
space for that goal, then deciding on a problem-state, and then deciding on an operator to apply to that
state. The operator is used to create a new state, to which new operators are applied, and so on. Each
decision (problem-space, state, and operator) takes place within a decision-cycle, during which candidates
are first generated via production match from LTM, followed by the selection of the best candidate. The
selection is done by collecting desirability information about each candidate from LTM, and then apply-
ing a fixed decision procedure to this information. If Soar has conflicting or insufficient information to
make a decision, it sets up a subgoal to resolve the impasse. By searching in one or more problem-
spaces, Soar generates the needed information and resolves the impasse. Impasses can occur within
impasses, leading to a subgoal hierarchy. Soar learns from its experience in resolving impasses by deter-
mining which working-memory elements were responsible for generating the results that resolved the
most recent impasse in the stack. The responsible elements and the generated results become the condi-
tion and action, respectively, of a new production, a chunk. The chunk will fire when the impasse situa-
tion (or any other sufficiently similar situation) occurs in the future. Thus the chunk both avoids impasses
and causes transfer of learning. Soar has no pre-built procedures for handling faulty chunks: they must be
detected and overriden by deliberate problem-solving.

THlE MODEL

The model consists of productions that provide the knowledge Soar needs to use the various
problem-spaces. Each problem-space corresponds to a particular cognitive function (e.g., how to generate
operators, and how to reason about generated operators). Our description of the model will first be
problem-space oriented, with the exception of subtower-noticing, which does not occur in its own
problem-space (Figure 2). Then, we will describe the mechanics of the individual models for RN and AS,
and finally their general behavior. (PD is not modeled here, but is used simply to supply contrasting
data.)

TOH
Tower Of Hanoi moves disks in the real world. TOH is assumed to arise from comprehending the

TOH Space

GENOP Space BW Space

Selecton Spac

Tower- oticing

Figure 2: Sui-mry of Problm nSpacmu
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problem instructions, which specify how disks may be moved. (Future versions of this model will actu-
ally comprehend problem instructions, using the language comprehension system developed by Lewis.
Newell & Polk (1989).) TOH translates the physically realizable results of operator generation and rea-
soning into disk movements. TOH is implemented in Soar with the move-disk operator, which transfers a
disk from one peg to another.

GENOP
GENerate OPerator generates move-disk operators for TOH by first choosing a disk to move and

then choosing a peg to which to move it. Operator generation is given a separate problem-space because
it is a complex cognitive activity, as indicated by the fact that subjects employ several heuristics in gen-
erating operators. GENOP uses two heuristics to select disks for movement: do not repetitively move an
object, and prefer the largest (non-repetitive) object which can be moved. GENOP employs three heuris-
tics to select pegs: do not block the goal on the first move, do not move an object to the location from
which it was last moved, and prefer to move an object to its final location (the Destination peg). Prior to
the problem-solver perceiving a stack of consecutive-sized disks as both a unit (a subtower) and as mov-
able, GENOP generates move-disk operators from the tops of the stacks, as they are the only movable
disks. This effectively implements the GTE strategy. After a problem-solver has started seeing stacks of
disks as movable subtowers, GENOP will generate operators to move the bottom disk of an encountered
subtower. This effectively generates the operators needed to begin the recursive strategy. In the Soar
model, GENOP has two operators: choose-disk and choose-to-peg. The results of these operators are
recorded on the problem-state and then used to form a move-disk operator for TOH.

oW
Blocks World reasons about TOH's unimplementable move-disk operators. BW is so named

because it reflects people's ability to do simple spatial-manipulation reasoning, of which blocks-world
type problems are a paradigmatic case. This reasoning capability is called into use by the Tower of
Hanoi's spatial character. Since spatial-manipulation reasoning is at least able to solve a two-disk prob-
lem, BW was built with enough knowledge to do that. BW does three things. First, given an unimple-
mentable move, it determines the blocking object using two heuristics: prefer the largest movable object.
and prefer the object that blocks the unimplementable move's desired location. Second, BW chooses a
peg to which to move the blocking object, using the heuristic that it is best to move the blocking object
out of the way of the desired move. Third, BW tries out the assembled move-disk operator. If this results
in a new state, then the move-disk operator is implementable and is used to resolve the unimplementable
operator's impasse. If no new state is produced, an impasse has occurred and BW is used again to resolve
this new impasse. The final result of BW's reasoning is returned to TOH and executed. In the Soar
model. BW has one operator for each action: a mark-blocking-disk operator, a mark-receiving-peg opera-
tor, and an operator called try-operator. The results of the first two operators are recorded on the state.
Try-operator tries out the assembled operator as discussed above. When BW finally reasons out a move,
it provides TOH with both the move and the operator it should use next, as determined in the reasoning
chain.

Selecton
Selection is a default, domain-independent problem-space that collects information about alterna.

tives (usually, operators) and uses that information to choose one of them. The selection-space is derived
from people's ability to use heuristics and to make simple choices as a result of applying those heuristics.
The selection-space is used when ,: problem-space encounters an impasse in which it has insufficient
information to directly choose between i'.veral alternatives. The selection-space applies all relevant
heuristics for each alternative separately, and then integrates the results of those heuristics into a single
choice, thus resolving the original problem-space's impasse. (The selection-space does not generate
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heuristics, it only applies them.) The selection-space has one operator: evaluate-object, which evaluates
each alternative and records the results of each evaluation on the selection-space's problem-state.

Subtower-Notlclng
Subtower-noticing distinguished RN and AS from PD, and thus is postulated to be the crucial vari-

able in discovering the recursive strategy. Subtower-noticing occurs when the subject realizes that a
series of consecutive, stacked disks (starting with disk 1) forms a tower, and makes the assumption that
this tower might be moved as a unit. The subject's ability to see consecutive disks as a tower is derived
from his/her prior knowledge of such things as towers, pyramids and triangles. The impetus to apply this
knowledge to the problem comes from the problem name (the TOWER of Hanoi) plus the frequency with
which subtowers occur in the problem. For example, in a perfect solution to a 5-disk problem. 12 of the
32 problem-states will have a subtower sitting by itself on a peg. Most important. the subject will. during

* his/her solution, encounter these subtowers in order of size. For example, s/he may see a two-disk tower
followed by a three-disk tower, followed by a four-disk tower. This experience should lead the subject to
see the subtowers as being nested, i.e., that a three-disk tower really consists of a two-disk tower sitting
on top of disk 3. Seeing subtowers as nested is important because it effectively breaks a subtower down
into components about which BW can reason. For, a nested subtower of k disks is really just a two-disk
subtower: a (k - ])-disk subtower sitting on disk k. (Of course, the (k - 1)-disk tower must itself be a two-
disk tower for reasoning to proceed.) In Soar, tower-noticing occurs in the GENOP problem-space upon
seeing a k-disk subtower sitting by itself on a peg. The noticing (implemented via productions) results in
a minor change to the problem-state: the tower's bottom disk is marked as a tower and as movable. A
chunk gets built that can then label that tower in any context, including when it is the subtower of another
tower. Repeated experience with single subtowers thus gives Soar the ability (i.e., the chunks) to see
nested subto-,., Since these chunks allow the use of BW, they (and not the subtower-noticing produc-
tions) are directly responsible for the development of the recursive strategy.

Model Mechanics
Two variant models were created, one each for RN and AS. The GENOP, BW, and TOH

problem-spaces were the same in the two models. The productions constituting these problem-spaces
were integrated into LTM before solving the Tower of Hanoi. Te two model- differed in three areas.
First, RN's model was given the ability to label subtowers as subtowers before it was given the ability to
label them as movable, while AS' model was given the two abilities simultaneously. This corresponds to
the fact that RN noticed subtowers well before trying to move them, whereas AS noticed and used sub-
towers at the same time. In both models, the relevant productions were integrated into LTM at the indi-
cated point in the human subjects' problem-solving. Second, AS required several additional productions
to model the different initial states in her one-disk through four-disk problems. These were integrated
into LTM before the start of each problem. Third, a small set of special-case productions (two for AS and
one for RN) modeled instances in which the subjects used reasoning processes outside of the scope of the
GENOP, BW, and TOH problem-spaces. In AS' model, one production was used to halt her simulation
after placing disk 4 on the Destination in the first trial, mimicking AS' giving up midway on her first trial.
Another production mimicked AS' second-trial realization that disk 1 had to go to the Destination on the
first move. Finally, one production mimicked RN's violation of the disk non-repetition heuristic at state
5,.,1234. The first of these productions was introduced along with the three problem-spaces; the last two
were introduced at the appropriate points in the problem-solving. Effectively, the two models only
explained moves that corresponded to a strict use of the recursive and GTE strategies. Learning was
always on; the models therefore learned continuuuily from their experience.

Model Behavior
Upon starting to solve the problem, the models used the TOH problem-space. Since TOH cannot
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generate operators. it encountered impasses and used GENOP to supply he needed move-disk operators.
At this point, the models did not notice subtowers. and therefore generated implementable operators
according to the GTE strategy. Upon learning about subtowers, GENOP began generating operators to
move (the bottom disks of) subtowers. Since such operators were not directly implementable. impasses
resulted and BW was used to reason out how to make progress towards applying the operators. BW tried
to generate an operator to move the blocking disk/tower out of the way. If BW produced an implement-
able move-disk operator, the new operator was used in TOH. If BW produced an unimplementable
operator. another impasse resulted and BW was once again used to reason about the new uaimplement-
able operator. This successive use of BW on a single move produced the observed recursion. BW's first
implementable result was used to continue progress in TOH. The selection-space was used every time
GENOP or BW had to choose between several versions of an operator. The selection-space applied the
heuristics discussed above to make the choices. Learning had three major effects on the model's
behavior. First, it produced the chunks that noticed nested subtowers. Second, it abbreviated, with time,
the amount of processing needed to use both the GTE and recursive strategies. Third, it eventually built
chunks that directly generated move-disk operators in TOH, thus bypassing strategic processing.

MODEL AND DATA: THE PIT

Problem-Solvlng FIt
The models show a good quantitative fit to the subjects' external problem-solving behavior. Moves

made by the model corresponded to 77% and 67% of AS's and RN's first-trial moves, respectively. In
the remaining trials, the correspondence was almost always 100% with the exception of AS's second trial
(94%) and RN's last trial (97%). Unmodeled moves were the result of errors or error-recovery on the
subjects' part, both of which deviated from a perfect GTE or recursive sequence: these moves either had
no analog in the models, or were mimicked with the special-purpose productions described above. (Both
types of moves were counted against the models.) To test the models further, RN's move-times were
correlated with the number of decision-cycles that his model required to make the corresponding moves.
(Unmodeled moves were not included in this correlation.) The correlations, in order of trials, were r =
0.69, 0.61,0.85, 0.45 (0.75), and 0.01. The Trial 4 correlation was low because RN remembered the first
move and executed it directly, whereas the nwdel reasoned it out- without this outlier, the correlation
goes to 0.75. The final correlation was nil (and should be), because both RN and the mo d hid low vari-
ance. Move-time data was not reported for AS in Aazai & Simon (1979) so no correlations could be cal-
culated.

The models' problem-solving strategies displayed a good qualitative lit to the subjects'. We simu-
lated a pure form of the GTE and recursive strategies. Therefore, the models showed some differences:
their GTE showed no occasional goal-setting and their recursive strategy showed excess goal-setting
between subtowers. Within these boundaries, the models' GTE and recursive strategies showed the same
type of reasoning and behavior as AS and RN. The protocols might be fit more closely by remembering
more of BW's reasoning chain or using the BW problem-space earlier. However, a closer fit would not
change the basic result, i.e., that the recursive strategy arises from noticing and using (nested) subtowers
in problem-solving.

Srategy-Ch nge FIt
The models closely fit the qualitative aspects of the subjects' strategy-change. AS's and RN's

models acquired the recursive strategy at the same point that AS and RN did. RN's model, like RN,
acquires the recursive strategy at state _,1234,5; AS's model, like AS, acquires it during its 3-disk experi-
ment. In both cases, the model's acquisition was the result of having correctly mimicked subtower-
noticing and use. RN's model had been learning to notice subtowers for the same amount of time that
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RN did; upon acquiring the ability to mark labeled towers as movable, the model was immediately able to
make use of that information. AS's model had had previous experience with a two-disk tower, and ihus
saw the three-disk tower as a nested tower (a two-disk tower sitting on disk 3), allowing it to apply BW.
Thus, the switch to the recursive strategy is not due to the subtower-noticing productions per se, but to the
chunks that allow the models to see the subtowers as nested and to Soar's ability to recursively use
problem-spaces. Finally. the models, like RN and AS, acquired the recursive strategy suddenly. This is
because the models treat movable objects (disks or subtowers) alike: as soon as subtowers are noticed,
they can immediately be reasoned about.

Lermlng Fit
The learning displayed by the models showed a good qualitative fit to the subjects'. Besides notic-

ing subtowers, the models' learning did two major things: it abbreviated strategic processing and it even-
tually caused weU-learned moves to be executed directly, without the need for any strategic processing.
The abbreviation of strategic processing appeared in the protocols as decreased verbalization over trials,
as well as corresponding decreases of move-times in RN's protocol. Making well-learned moves directly
executable brought the model more in line with the sparse recursive reasoning displayed by the subjects.
After the moves between major subtowers had been well-learned, the model, like the subjects, only
reasoned out moves when confronted with a subtower.

CONCLUSIONS

Our model has provided a simple answer to the question of Tower of Hanoi strategy-acquisition. It
comes about because people notice nested subtowers and use spatial-manipulation reasoning to move
them. This latter capability is cast in terms of physical objects in general, and so is able to work with
either disks or towers once these have been noted as relevant to the task at hand. In positing this answer,
our model has bypassed the need for some of the basic assumptions of previous models and speculations.
Our model, like previous models, works by problem-space search. However, our model works in multi-
ple problem-spaces, not one, and thus claims that people (who can use multiple types of reasoning on a
single task) do likewise. The claim of multiple problem-spaces is both a specific claim of our model and
a general claim of Soar, which processes information in many problem-spaces.

Second, we have reduced the types of information that prior models claimed had to be learned.
Like previous models, ours learns continuously from its experience. But, the crucial information that
allows the switch to the recursive strategy is noticing (nested) subtowers. This paper has described how
this knowledge is incorporated into problem-solving to produce a new strategy; future work will tackle
the mechanics of subtower-noticing per se.

Third, our model has eliminated prior knowledge of domain-independent MEA as the cause of
strategy-change. While our model certainly behaves according to MDEA in the BW problem-space, that
MEA is a direct result of domain-specific knowledge, and is not necessarily transferable to non-spatial-
manipulation domains. The recursion characteristic of Tower of Hanoi solutions comes about because of
Soar's ability to recursively use problem-spaces to resolve impasses. We have therefore set up a strong
alternative hypothesis to strategy-adaptation: strategy-building. This claim about MEA is a general Soar
claim, as Soar has nothing corresponding to a domain-independent MEA. Rather, Soar's use of weak
methods stems from its task knowledge against the background of its use of multiple problem-spaces
(Laird & Newell, 1983)

Fourth, our model directly relies on prior knowledge of a specific domain: spatial-manipulation
problems. We have therefore taken this task out of the realm of knowledge-lean tasks, and made it more
knowledge-intensive, where the knowledge used is knowledge of spatial relationships and operators. In
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so doing, we have blurred the boundaries of the traditional toy-task category.

Finally, the work done here will generalize to other task domains. The fundamental insight, that
strategy-change comes about via noticing aggregate problem features and attempting to operate on them.
is certainly empirically verifiable, and therefore amenable to modeling, in other tasks. The GENOP
problem-space might be easily extended to other tasks, thus providing a source of models and ideas about
people's default strategies. Finally, the BW problem-space might be expanded to include many other
spatial-manipulation tasks, and thus might be the starting point for a single Soar theory of puzzle
problem-solving.

To conclude, this model derives its explanatory power from being a subtheory of Soar. Soar pro-
vides the ability to search in problem-spaces, the learning, and the theory of how knowledge is transmit-
ted between problem-spaces. Our task as theorists has been to carefully specify the knowledge people
have about the Tower of Hanoi. What Soar has thus done is not only ease our burden as theorists, but
reduce our theoretical degrees of freedom as well. In return, the success of this model supports Soar as a
unified theory of human cognition.
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