
BTI- II-, ( 0PY

o-- TOWARDS THE KNOWLEDGE LEVEL IN-N01 SOAR: THE ROLE OF THE ARCHITECTUF
IN THE USE OF KNOWLEDGE

I'I Technical Report AlP - 65

P.S. ROSENBLOOM, A. NEWELL, & J.E, LAIRD

University of Southern-California,
Carnegie Mellon University, &

University of Michigan

A, sWi8t7 1QA

The Artificial Intelligence
and Psychology Project

I 
, ' ' '

,4Departments of MAT

Computer Science and Psychology MJ
Carnegie Mellon University

Learning Research and Development Center
University of Pittsburgh -

03 A fd o n lii
:\ Approved for public release; distribution unlimited.



TOWARDS THE KNOWLEDGE LEVEL IN
SOAR: THE ROLE OF THE ARCHITECTURE

IN THE USE OF KNOWLEDGE

Technical Report AlP -65

P.S. ROSENBLOOM, A. NEWELL, & J.E. LAIRD

University of Southern California,
Carnegie Mellon University, &

University of Michigan

August 7, 1989

This research was sponsored by the Defense Advanced Reaearch Projects Agency (DOD) under contract
numbers N00039-86C-0033 (via subcontract from the Knowledge Systems Laboratory, Stanford
University) and F33615-87-C-1499 (ARPA Order No. 4976, monitored by the Air Force Avionics
Laboratory), by the National Aeronautics and Space Administration under cooperative agreement
numbers NCC 2-538 and NCC 2-517, and the Office of Naval Research under contract numbers
N00014-86-K-0678 (Information Sciences Division) and N00014-88-K-0554 (Computer Science Division).
The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either exp.oessed or implied, of the Defense Advanced
Research Projects Agency, the National Aeronautics and Space Administration, the Office of Naval
Research or the US Government.



Unclassif ied
_UICUjMT.CLA5SIFIATIO-N O F THIS PAGE-

REPORT DOCUMENTATION PAGE
Ia. REPORT S U~CSgfS!F ~ATION 1b. RESTRICTIVE MARKINGS

12a. SECURITY CLASSIFICATION AUTHORITY 3. OISTRI13UTION /AVAILABILITY OF REPORT

Approved for public relea3e;
2b. DECLASSIFICATION/DOWNGRAING SCHEDULE Distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AIP - 65 Same as Performing Organization

6a. NAME OF PERFORMING ORGANIZATION I6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Carnegie Mellon University (if applicable) Personnel and Training Research

_______________________I ________ Office of Naval Research (Code 1142PT)

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, anld ZIP Code)
Department of Psychology 800 N. Quincy Street
Pittsburgh, Pennsylvania 15213 Arlington, VA 22217-5000

Ba. NAME OF FUNDING /SPONSORING 8 b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION j(if applicable) N00014-88-K-0086

;ame as Monitoring Organization I_______ _______________________

Sc. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK I WORK UNIT
ELEMENT NO. NO. NO. I CCESSION NO

______________________________ N/A N/A N/A 1A N/A

11. TITLE (include Security Classification) Towards the knowledge level in Soar: The role of the
- architecture in the use of knowledge

PERSONAL AUTHOR(S) Paul S. Rosenbloom, Allen Newell, and John E. Laird

ME 1eEPT13b, TIME COVERED 14. DATE OF REPORT (Year Month, Day) S.PAGE COUNT
eniaFRMaugust ,19971

16. Up? !ARY NOTATION To appear in VanLehn, K. (Ed.), Architctures for intelligence.

11 Hillsdale, NJ: Erlbaum.KL7 COSATI CODES 1S SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FED GROUP ISUB.GROUP I procedural knowledge

episodic knowledge
I I declarative knowledge

19. ABSTRACT (Continue on reverse id necesary and identify by block number)

SEE REVERSE SIDE

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
O:UNCLASSIFIEDIUNLIMITED =SAME AS RPT 0 OTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TE EPHONE (Include Area Code 2cOFIESMOL
Susan Chipman (202) 696-4322 1142 PT

_0DFORM 1473,8 BMAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE-
All other editions are cbsoletq. Unclassified



ABSTRACT

Soar has been described as an architecture for a system that is to be capable of general
intelligence. One wav to specify what this might mean is to define general intelligence as the
ability to approximate an ideal knowledge level system across a sufficiently broad set of goals
and knowledge. In this chapter we use this definition as the basis for evaluating the scope of this
chapter, so we focus more narrowly on how the Soar architecture supports and constrains the
representation, storage, retrieval, use and acquisition of three pervasive forms of knowledge:
procedural, episodic, and declarative knowledge. The analysis reveals that Soar adequately
supports procedual knowledge - to some extent it was designed for this - but that there are still
significant questions about episodic and declarative knowledge. These questions arise primarily
because of consequences of the principle source on constraint in Soar, the fact that all learning
occurs via chunking. New results are also presented on the acquisition of declarative knowledge.
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Abstract

Soar has been described as an architecture for a system that is to be capable of general
intelligence. One way to specify what this might mean is to define general intelligence as
the ability to approximate an ideal knowledge level system across a sufficiently broad set
of goals and knowledge. In this chapter we use this definition as the basis for evaluating
the degree to which Soar achieves general intelligence. A complete evaluation is beyond
the scope of this chapter, so we focus more narrowly on how the Soar architecture
supports and constrains the representation, storage, retrieval, use and acquisition of three
pervasive forms of knowledge: procedura!, episodic, and declarative knowledge. The
analysis reveals that Soar adequately supports procedural knowledge - to some extent it
was designed for this - but that there are still significant questions about episodic and
declarative knowledge. These questions arise primarily because of consequences of the
principle source of constraint in Soar, the fact that all learning occurs via chunking. New
results are also presented on the acquisition of declarative knowledge. (<~
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To11Ads the Knowledge Level in Soar: The Role of the Architect
the Use of Knowledge l

Soar has been described as an architecture for a system that is to be

capable of general intelligence (Laird. Newell. & Rosenbloom. 1987). One

way to specify what this might mean is to enumerate the set of

capabilities that. based on the field's cumulative experience, appear to be

required for general intelligence: to be able to work on the full range of

tasks. to be able to use the full range of problem-solving methods and

varieties of knowledge, to be able to interact with the outside world in real

time. and to learn about the world and the system's own performance.

Progress can then be evaluated by determining the degree to which the

architecture supports such capabilities. For Soar, such an evaluation

reveals significant progress in the areas of tasks (Laird. Newell, &

Rosenbloom, 1987). problem-solving methods (Laird & Newell. 1983,

Laird, 1983) and learning (Steier et al, 1987); some progress in the area of

outside interaction (Laird, Yager, Tuck. & Hucka. 1989): and an unclear

situation in the area of knowledge.

'This research was sponsored by the Defense Advanced Research Projects Agency
(DOD) under contract number3 N00039-86C-0033 (via subcontract from the Knowledge
Systems Laboratory, Stanford University) and F33615.87-C-1499 (ARPA Order No. 4976.
monitored by the Air Force Avionics Laboratory), by the National Aeronautics and Space
Administration under cooperative agreement numbers NCC 2-538 and NCC 2-517, and
the Office of Naval Research under contract numbers N00014-86-K-0678 (Information
Sciences Division) and N00014-88-K-0554 (Computer Science Division). The views and
conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either exprssed or implied, of the Defense
Advanced Research Projects Agency, the National Aeronautics and Space Administration,
the Office of Naval Research or the US Government.
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Tbe. problem with such an approach to specifying (and evaluating

progress towards) general intelligence is the lack of theoretical

justifications for the set of capabilities included. Without such

justifications it is unclear, for example. whether some new form of

learning that is developed is necessary for general intelligence, or just an

interesting oddity. In addition, whole categories of critical capabilities

may be unknowingly omitted. What is needed is a more fundamental

definition of general intelligence from which the required capabilities can

be derived (or at least justified).

One idea that shows promise towards providing such a definition is the

knowledge level (Newell, 1981). The idea of the knowledge level is based

on earlier developments in the area of computer systems levels (Bell &

Newell, 1971). A computer systems level consists of a medium that is

processed. components that provide primitive processing. laws of

composition that permit components to be assembled into systems. and

laws of behavior that determine how system behavior depends on the

component behavior and the structure of the system. Existing levels (and

their media) include the device level (electrons), the circuit level (current),

the logic level (bits), the register-transfer level (bit-vectors), and the

program (or symbol) level (symbols. expressions). In terms of these levels.

an architecture is a register-transfer level system that defines a symbol

level.

The knowledge level is a distinct computer systems level that lies
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immediately above the symbol level. The medium processed at the

knowledge level is knowledge. An agent - a system at the knowledge

level - consists of a physical body that can interact with an environment.

knowledge. and a set of goals. The law of behavior is the Principle of

Rationality: "If an agent has knowledge that one of its actions will lead to

one of its goals. then the agent will select that action." (Newell. 1981. p.

8) Once knowledge is acquired. it is available for all future goals. There

are no capacity limitations on the amount of knowledge that can be

available or on the agent's ability to bring it to bear in the selection of

actions that achieve its goals. An essential feature of the knowledge level

's that the agent's behavior is determined by the content of its knowledge,

not by any aspects of its internal structure. It abstracts away f'om the

processing and representation of the lower levels. This lack of significant

internal structure implies that there are no laws of composition at the

knowledge level.

The knowledge level provides a straightforward. though not

uncontroversial, definition for intelligence. A system is intelligent to the

degree that it approximates a knowledge-level system (Newell, 1989).

Perfect intelligence requires a complete lack of internal resource

limitations. However, this ideal is unreachable in physically realizable

systems that are required to make decisions using bounded resources over

a sufficiently wide range of goals using large bodies of knowledge. Such

systems can at best only approximate a knowledge-level system. and thus
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achieve some level of intelligence that is less than perfect. The ideal of

perfect intelligence also does not entail the generality of that Intelligence.

A system's behavior is characterized both by its intelligence and by its

generality. Generality for a knowledge-'-Io system is the range of

interactions that it can have with the environm,nt. the range of goals i;

can have, and the range of knowledge that it can acquire and use.

Intelligence is how well the system applies its knowledge to the tasks

within its scope.

Assuming this knowledge-level definition of general intelligence, the key

question for the architecture is how it supports the knowledge level for a

sufficiently broad set of goals and knowledge. How does it approximate

rationality with bounded resources? How does it support the acquisition

and use of knowledge? A complete answer to the key question requires

answering a number of such subquestions. In (Newell, 1989), a beginning

was made at answering the first subquestion. In this chapter we provide

the beginnings of an answer to the second subquestion. We examine how

the Soar architecture supports and constrains the representation. storage,

retrieval, use and acquisition of three pervasive forms of knowledge.

The first form of knowledge to be examined is procedural knowledge.

Procedural knowledge is knowledge about the agent's actions. It includes

knowledge about which actions can be performed, which actions should be

performed when (control knowledge), and how actions are performed. The

second form of knowledge to be examined is episodic knowledge. Episodic
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knowledge is knowledge about what objects. actions. and action sequences

have occurred in the agent's past. It allows answering such questions as

"Did this object. action. or action 3equence occur (in this eontext)?" and

"What objects. actions. or action ,equenees occurred (in this context)?"

The third and final form of knowledge to be examined is declaratiue

knowledge. Declarative knowledge is knowledge about what is true in the

world. These final two forms of knowledge have often been referred to

collectively as propositional kncwledge. with the term "semantic

knowledge" used in place of declarative knowledge (Tulving. 1983).

The plan for this chapter is to start with a brief conventional description

of the Soar architecture (Section 1). followed by its redescription in terms

of the direct support it provides for knowledge (section 2). The core of

the chapter then consists of in-depth analyses of how procedural. episodic.

and declarative knowledge are represented. stored, retrieved, used. and

acquired in Soar (Sections 3-5). Special emphasis is placed on how the

architecture supports and constrains these abilities. The chapter is

concluded with a summary of key points and important directions for

future work (Section 6).

1. Soar 2

Research on Soar to date has focused on the de-,'-,pment (and

application) of an architecture for intelligence that is based on formulating

This section describes Soar 4.5 (Laird et al, 1989), which is the basis for the analyses

in this chapter.
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all symbolic goal-oriented behavior as search in problem spaces. The

problem space determines the set of states and operators that can be used

during the processing t, attain a goal. The states represent 4tuadons.

There is an initial state, representing the initial situation. and a ,et of

desired states that represent the goal. An operator. when applied to a

state in the problem space. yields another state in the problem space. The

goal is achieved when a desired state is reached as the result of a sequence

of operator applications starting from the initial state. Each oal defines

a problem-solving context ("context" for short) that contains, in addition

to a goal. roles for a problem space. a state, and an operator.

Problem solving for a goal is driven by decisions that result in the

selection of problem spaces. states, and operators for the appropriate roles

in the context. Decisions are made by the retrieval and integration of

preferences - special architecturally interpretable elements that describe

the acceptability, desirability, and n-,cessity of selecting particular problem

spaces, states, and operators. The context in which a preference is

applicable is specified by its goal. problem-space. state, and operator

attributes. When present. they specify the objects that must be already

selected in the context for the p--ference to be valid. For example, the

following is a desirability - aference stating that operator ol is at least as

good as any other operator - that is, it is best - for state s1. problem

space pl. and goal gl.

(preference ol ^role operator ^value .est
goal gi ^problem-space p1 ^state sl)
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There are two types of acceptability preferences - acceptable and reject

- to rule an operator into and out of consideration for selection. k reject

preference overrides an acceptable preference. There are five types of

desirability preferences - worst. worse. indifferent. better. and best - to

determine the relative desirability of considered objects. Worst and best

are unary preferences. Worse and better are binary preferences.

Indifferent can be binary or unary. in which case the object is indifferent

to all other competing objects with indifferent preferences. There are two

types of necessity preferences - require and prohibit - for asserting that

an object must or must not be selected for a goal to be achieved. Details

(,n the semantics of preferences can be found in (Laird, Newell. &

Rosenbloom. 1987).

All long-term knowledge is stored in a recognition-based memory - a

production system. Each production is a cued-retrieval unit that retrieves

the contents of its actions when the pattern in its conditions is successfully

matched. By sharing variables between conditions and actions.

productions can retrieve information that is a function of what was

matched. By having variables in actions that are not in conditions. new

objects can be generated/retrieved.

Transient process state is contained n a working memory. This includes

information retrieved from long-term memory. results of decisions made

by the architecture, information currenly perceived from the external

environment, and motor commands. It should be clear that this process
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state,-is much more than just a single state in a problem space. The

process state is the entire transient state of the system. which includes as

components. states in problem spaces. and in fact whole problem-solving

contexts. It provides the cues for retrieving additional information from

long-term memory.

Structurally, working memory consists of a set of objects and preferences

about objects. Each object in working memory has a class name, a unique

identifier. and a set of attributes with associated values, which may be

constants or identifiers (allowing a graph structure of objects). For

example. a particular box could be represented by the following object.
(box bi ^name boxi ^height 10 ^width 4 ̂depth 2)

The class is "box". the identifier is "bi". the name of the box is "boxil",

and the box has a height of 10 a width of 4 and a depth of 2.

For each problem-solving decision, the contents of working memory is

elaborated by parallel access of long-term memory to exhaustion. All

productions that match the current working memory are fired in parallel,

and this repeats until no productions match. This elaboration process

retrieves into working memory new objects. new information about

existing objects, and new preferences. When quiescence is reached - that

is, when no more productions can fire - an architectural decision

procedure interprets the preferences in working memory according to their

fixed semantics. If the preferences uniquely specify an object to be

selected for a role in a context, such as selecting the current operator for a
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state, then a decision can be made. and the specified object becomes the

current value of the role. The whole process. an elaboration phase

followed by a decision. then repeats.

If the decision procedure is ever unable to make a selection - because

the preferences in working memory are either incomplete or inconsistent -

an impasse occurs in problem solving because the system does not know

how to proceed. When an impasse occurs, a subgoal with an associated

problem-solving context is automaticaily generated for the task of

resolving the impasse. The impasses, and thus their subgoals. vary from

problems of selection (of problem spaces. states and operators) to

problems of generation (e.g., operator application). Given a subgoal. Soar

can bring its full problem-solving capab'ility and knowledge to bear on

resolving the impasse that caused the subgoal. For example. if an

operator-tie impasse occurs because multiple operators are competing for

selection with insufficiently distinguishing preferences. then a subgoal is

created in which Soar can (among other things) execute operators to

evaluate the competing alternatives. Productions can then create

preferences based on these evaluations. allowng the decision to be made.

When impasses occur within impasses - if, for example. there is

insufficient knowledge about how to evaluate a competing alternative -

then subgoals occur within subgoals. and a goal hierarchy results (which

therefore defines a hierarchy of contexts). The top problem space consists

of task operators: such as. to recognize an item. The subgoals are
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generated as the result of impasses in problem ,olving. \ ,;uboal

terminates when the impasse is resolved.

Soar learns by acquiring new productions that summarize the processing

that leads to the results of subgoals. a process called chunking. The

actions of the new productions are based on the results of the subgoal.

The conditions are based on those working memory elements in supergoals

that were relevant to the determination of the results. Felevance is

determined by using the traces of the productions that fired during the

subgoal. Starting from the production trace that generated the subgoal's

result, those production traces that generated the working-memory

elements in the conditions of the trace are found. and then the- traces that

generated their condition elements are found, and so on until. elements are

reached that are in supergoals. Productions that only generate desirability

preferences do not participate in this backtracing process - desirability

preferences only affect the efficiency with which a goal is achieved, and

not the correctness of the goal's results.

Soar's perceptual-motor behavior is driven by a set of asynchronous

modules, and mediated through the state in the top context. Each

perceptual and motor modality (module) has its own state attribute to

which perceptual information is added and/or motor commands are taken.

New sensory information arrives in working memory whenever it is

available, and motor commands are sent to the appropriate motor

modules as soon as they are added to working memory. Sensory
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information can be retained by Pxplicitly attaching it to other - xisting

structures. Otherwise. it will be displaced when new information arrivcz.

Figure 1-1 summarizes the major functional and structural vomponent.s

of the Soar architec'ure - its memories, basic computational cycle.

learning, and interfaces.

* Purpose of Research: Architecture for general intelligence.

* Organizing Framework: Goals and problem spaces

* Long-term Memory: Recognition-based productions.

" Short-term Memory: Objectq and attributes.

" Basic Computation Cycle: Elaboration (access LTM until
quiescence) and decision.

" Decisions: Preference-based for problem spaces. states, and
operators.

* Subgoal Creation: Impasses in decision scheme.

* Learning: Chunking - ,,ummarize processing of ;ubgoal :i_, -t
production.

" Interface to External Environment: Asynchronous through top-
state.

Figure 1-1: Summary of Soar.
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2. Architectural Support for Knowledge

The conventional description of Soar provided in the previous section

does not always make clear the ways in which the architecture directly

supports knowledge. That is the task for this section - to make explicit

the ways the architecture directly supports knowledge in general. and

procedural. episodic. and declarative knowledge in particular. The

question of indirect architectural support is left to the later sections. which

examine each of these three types of knowledge in detail.

General support is provided by productions. the elaboration phase.

impasses. subgoals. problem space search, working memory, and chunking.

Productions provide for the explicit storage of knowledge. The knowledge

is stored in the actions of productions, while the conditions act as access

paths to the knowledge. The process of retrieving knowledge by the

matching and firing of a production comprises a search of the system's

explicitly stored long-term knowledge. It is thus termed knowledge search

(or k-search). Knowledge retrievable by k-search - i.e.. by the firing of a

production - is termed k-retrievable knowledge. K-search is efficient, but

relatively limited in its capabilities.

Knowledge that is not retrievable by the firing of a single production

may still be retrievable by the firing of multiple productions in a single

elaboration phase. This happens when information retrieved early in an

elaboration phase provides the cues that allow the desired information to

be retrieved by a later production firing. It also happens when the desired
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information is distributed among the actions of multiple productions.

which retrieve it by firing jointly within the ;same elaboration phase. This

is termed keareh. and knowledge retrievable through elaboration iz

termed k*-retrierable knowledge. k*-,earch is exhaustive but efficient.

allowing the system to use a significant body of knowledge in its decisions

even under relatively stringent time constraints.

The creation of impasses provides a means for determining when the k*-

retrievable knowledge is an inadequate basis for making a decision. The

decision procedure can detect incompleteness and inconsistency in the set

of k*-retrievable preferences. but cannot directly detect incorrect or sub-

optimal knowledge.

Subgoals provide contexts in which knowledge that is not k*-retrievable

can be retrieved by problem-space search (or ps-.search). Knowledge that

is retrievable by ps-search is termed ps-retrievable knowledge. Because

problem-space search (ps-search) is always eventually grounded in

production firings (k*-search). there is a fairly diret relationship between

ps-retrievable knowledge and k*-retrievable knowledge. 3 Knowledge that

is ps-retrievable in the current context is constructed from pieces of

knowledge which are independently k*-retrievable in other contexts, but

not jointly k*-retrievable in the current context. Ps-search allows for the

3Here, and in the remainder of this chapter ,he terms k*-search and k*-retrievable
knowledge will be assumed to subsume the terms k-search and k-retrievable knowledge.
respectively, except where the distinction is particularly crucial.
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consideration of alternativei and the deliberate construction of

information. whereas, k*-Rearch provides for only the monotonic

accumulation of knowledge. Problem-space search is selective and slow.

but can with sufficient resources retrieve any knowledge in the system's

knowledge level.

Working memory provides a locus where retrieved knowledge can be

examined and used. It also provides a locus where new knowledge can

reside temporarily before it i. stored into long-term memory by chunking.

Chunking provides a means ot creating new productions. thus directly

augmenting the system's store of k*-retrievable knowledge. and indirectly

augmenting its store of ps-retrievable knowledge. Chunking is the

mechanism for converting ps-search to k*-search.

Procedural knowledge is specifically supported by the architecture in

four ways. First, production execution is a primitive form of controlled

action. Executing a production performs a form of retrieval in which the

retrieved information is adapted to the current situation before being

retrieved. The nature of the adaptation is determined by the production's

variables. Variables that are shared between conditions and actions result

in the retrieved information being instantiated to be about existing

objects. Variables that exist only in actions result in the creation of new

objects. Control is exerted on production execution by the match.

Production conditions specify situation,3 that must hold in working

memory in order for the retrieval actions to be executed (Newell.
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Rosenbloom & Laird. 1989). Unlike traditional production systenis, therp

i5 no additional conflict resolution process that participates in the ,ontml

of production execution.

Second. the selection of atn cbject for a context slot is also a primitive

form of controlled action. Selections are actions performed by the

architecture that change the focus of problem solving in working memor.

For example. the selection of a new operator changes what the system is

attempting to accomplish. Preferences represent architecturally

interpretable control information for the selection process.

Third. the concept of a problem-solving operator is partially supported

by the architecture. The architecture provides an operator role in

contexts and the decision procedure that enables the selection of operators

for operator roles. It also provides for the generation of impasses when

there is insufficient knowledge about how to select or execute an operator.

An important form of support not provided is an architecturally

interpretable operator language. Instead. operator execution always

eventually grounds out in memory retrieval (and motor behavior). How

this happens may be quite complicated, involving numerous subgoals. or

the interpretation by productions - that is. by further memory retrieval

- of an arbitrary operator language.

Fourth, the architecture provides motor commands that perform

primitive actions in the external environment. There is not yet a complete
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and standard set of motor commands in .,oar. Instead. what exists is a

text-output module, providing basic text-output commands. and a l'lexible

mechanism for adding new modules to. for example. control robot arms

(Laird. Yager. Tuck. & Hucka. 1989) and mobile robots. Selection o1'

motor commands is not provided directly by the architecture. It is under

the control of the knowledge (productions) which retrieve t.he motor

commands into working memory. usually tinder the aegis of operator

execution.

Episodic knowledge is specifically supported by the chunking and

execution of new productions. Chunking acquires new productions based

on problem-solving episodes. The actions of a chunk correspond to

information that was generated as the result ol' an episode. When the

chunk executes it retrieves information that is ;iiiilar to that generated

during the episode - though. as mentioned above, the retrieved

information is generally adapted to the current situation rather than being

a verbatim record of the earlier episode's results. The conditions of the

chunk ensure that the adapted results are only retrieved in similar

situations. o'at provided by the architecture is a mechanism that creates

verbatim records of the system's experiences for later examination.

Declarative knowledge is specifically supported by the working and

production memories. Working memory is a transient memory of objects.

with associated attributes and values. These objects are declarative in

that they are examinable (by productions), but they need not have a fixed
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semantics. Production memory provides for Io,,-tirm -tor.',e

declarative structures - in the actions o prodiiction,; - which .an be

retrieved (and adaptel) by production exeeition.

3. Procedural Knowledge

.As mentioned in the introduction, procedural knowledge is knowledge

about the agent's actions, which includes knowledge about which actions

can be performed. which actions 4hould be performed when (control

knowledge). and how actions are performed. Procedural knowledge is

already one of the most well developed and understood parts of Soar.

Soar was. after all. originally developed as a general problem-solving

architecture. Thus this section primarily serves as a review, but it also

serves to develop a number of the basic concept- used in the subsequent

sections on episodic and declarative knowledge. The discussion is divided

into subsections covering the three subdomn:ins mentioned above:

performable actions. action control, and action performance. For each of

these subdomains. we discuss how the knowledge k r preseated. stored.

retrieved, used. and acquired. This same suborganization will ie followed

in later sections on episodic and declarative knowledge.

3.1. Performable Actions

Performable actions are represented as operators. along with acceptable

preferences that can cause the operators to be considered in some set of

situations. Each operator is represented in working memory as an object

- a declarative 3tructure - rather than a production. For example, an
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operiior in the Eight PuZzle that slides a tile from one cell on rile board

to an adjacent one could be represented as (operator ol 'name lide).

When augmented with parameters specifying the source and destination

cells for the tile. the operator can be represented as (operator ol ^name

slide ^source cl "destination c2). where the symbols cl and c2 are the

identifiers of the two cells.

The declarative structure for operators. and their acceptable preferences.

are stored in the actions of' productions. The entire object can be stored

in the actions of a single production (k-retrievable), it can be distributed

across the actions of a group of productions that all fire within a single

decision cycle (k*-retrievable): or it can be distributed across multiple

productions that fire in a subgoal that constructs the operator. bit by bit

(ps-retrievable).

Problem spaces are a major source of context for operator retrieval. The

production in which the above Eight Puzzle operator is stored will have a

condition which tests that the Eight Puzzle problem space is the one

currently selected in a context before retrieving the operator for the

context. It is also often useful to utilize the operator's preconditions as a

source of retrieval context. If this is done. then the operator is only

retrieved in situations for which it is applicable. An alternative is to

retrieve the operator according to means-ends analysis, that is. when the

operator will reduce the difference between the current state and the

desired state. With means-ends analysis. an operator may be retrieved
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even when its preconditions are nor zalisfied by the (,urrent state.

Operator; hy rhemselves dlo ,ttin. The architecture does not

understand the language(s) in which .perators are written, and therefore

does not know how. basel ju-;t ,n the operators themselves, to either

,elect among them or to perform them. The best the architecture can do

without additional knowledge is to perform various default actions based

on its understanding of their acceptable preferences. It can select an

operator if it is the only vandidate available, and generate an impasse if

there is more than one operator. or if the selected one cannot be executed.

Operators. and their acceptable preferences. are cues for retrieving a

variety of additional knowledge. The operator structure can trigger

knowledge about how to select and perform operators (Sections 3.2 and

3.3). The acceptable preferences can trigger knowledge in both

prospective and retrospective fashions. Prospectively. acceptable

preferences for operators determine what operator, are being considered

for the next selection. Retrospectively, acceptable preferences for

operators ac, as episodic knowledge about what optrators were considered

for what states (Section 4).

Operators. and their acceptable preferences. are acquired by the

chunking of problem-solving episodes that generate them as results.

Chunking does not by itself generate new operators. but it can convert ps-

retrievable operators ipro k*-retrievable ones. as well as store away in
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production memory new operators that are generated. The conversion of

operator knowledge from ps-retrievable to k*-retrievable is the obvious

caching effect produced by chunking. storage of newly generated

operators factors into two cases. If the new operators are generated

internally, then they must have already been ps-retrievable - that is.

retrievable by problem space search - thus reducing this case to the

previous caching situation. If the new operators are based on external

information. chunking can turn unretrievable operators into k*-retrievable

operators. This is a more subtle consequence of chunking that is worth

looking at in some detail.

Yost & Newell (1988) demonstrated how new operators could be

acquired from external information, in the context of a system called TAQ

(Yost. 1987) that acquires new tasks (i.e.. problem spaces) from external

descriptions. In more recent work. this approach has been extended to

take simple English instructions for a range of immediate-reasoning tasks.

such as categorical syllogisms and sentence verification (Lewis. Newell, &

Polk, 1989). Figure 3-1 shows the two basic steps. The first step in task

acquisition is to comprehend an externally provided description of the task

to be acquired. This description can conceptually take a variety of forms

- versions of TAQ have accepted descriptions in simple English sentenc-s

and in a formal problem space notation. The outcome of the

comprehension process is the presence in working memory of a declarative

description of a problem space for the task. The second step is to solve
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the problem using the declarative description interprerivoly. That i, . :,1

each point in task performance. if the next required activity - ,ueh :i., the

generation of an operator - is not directly performable by k-,ar,h. ih en

a subgoal occurs. Within the subgoal. the declarative task decription i,

examined and interpreted by a set of pre-existing problem ;paces that

search through the declarative task description for information about what

to do in the current situation.

Comprehension Interpretation

Unretrievable Ps-retrievable K*.retrievable

External Internal Internal action
declarative declarative specification of
specification of specification of task
task task

Figure 3-1: The two stages of acquiring operator knowledge.

The chunks acquired for these interpretation sub,., als directly implement

the required activity. Chunking the comprehension process converts

unretrievable operators into ps-retrievable operators - using memorization

techniques described in Sections 4 and 5 - and chunking of the

interpretation process makes the ps-retrievable knowledge k*-retrievable.
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.3,2.Action Control

Control knowledge - that is. knowledge about how to ,,elect :nmong

performable actions - is represented to the architecture hy operator

preferences. The three types of preferences described in Section 1 -

acceptability. desirability, and necessity - are used to represent three

qualitatively different types of control knowledge. Acceptability

preferences represent knowledge about whether an operator is to be

considered for execution. Unconsidered operators have no effect on the

decision procedure: they cannot be selected. nor can they cause an impasse

to occur. Desirability preferences represent heuristic information that can

be brought to bear in determining what operator is likely to lead towards

goal satisfaction. Necessity preferences represent constraints derived from

the goal. They can be used to guarantee that certain conditions are

always (or never true) during the search, thus eliminating the need to

explicitly test hhm at the end. In the extreme, necessity preferences can

be used to explicitly represent the entire sequence of steps in a proc.dure

that achieves some goal. eliminating the need for an explicit goal test at

the end.

Preferences are stored in the actions of productions. In any particular

situation an arbitrary preference can be k-retrievable. k*-retrievable. p!s-

retrievable, or unretrievable. The primary context for preference retrieval

is the object being considered and the objects already selected as part of

the problem solving context. For example. the retrieval context for
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operator preference- ;n the Eight Puzzle inelide' Iie .perarvr '-intl

ensidered (to lide a tile from ,ell oi into ,ell ti.l he 'oal t I a1w '

ta i lt on to the Eight tiizzle,. the [,r.;lem .iacv 1Li"'ht- ',lzzle. :aIl the

• tate to which the operator i., I be 'pplipd. For binary preferene,;. tich

as better worse and indifferent preferences. the retrieval context inchudes

multiple contending objects.

Preferences are used both by the architecture - ,he decision procedure

- and by other knowllize. The :,,'chitecture u.es preferences to

determine what -election to ,,,ake. or what type of subgoal to generate if

no -election can be made. As mentioned in Section 3.1. preferences can

act as cues about what the decision procedure is going to do. and to

reconstruct what it did in the past.

Preferences are acquired by the chunking of problem-solving episodes

that generate preferences as their results. Most of our experience in

acquiring preferences involves the wequiition of lesirability preferences

and that is all that will be liscu.sel here. th,'ugh the acquisition of

acceptable preferences is covered under the 1iiscussion of operator

acquisition in Section 3.1.

As with knowledge about performable actions. ,'hunking can turn ps-

retrievable preferences into k*-retrievable preferences. and convert

unretrievable preferences into ps-rtrievable and k*-retrievable

preferences. The most common way to turn ps-retrievable preferences
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into-:kretrievable ones involves a look-ahead search. This prrcess has

been described in detail elsewhere (Laird. Newell. & Rosenbloom. 1987).

but the essence is to use Soar's basic iearch capabilhi," along with

knowledge - about how to evaluate states, how to back up evaluations to

earlier operators and states, and how to generate preferences from

evaluations - to generate, and thus learn via chunking, preferences about

operators that have tied for selection.

As demonstrated in (Golding. Rosenbloom. & Laird. 1987). it is posible

to use external advice to assist in the process of converting ps-retrievable

knowledge into k*-retrievable knowledge. If advice is given about what

alternatives are good (or bad, for that matter), the advice can be turned

into preferences which guide the look-ahead search. This can reduce the

amount of search required without changing the chunks that are learned

for the search. Externally provided knowledge can also be used to shift a

piece of control knowledge from unretrievable to k*-retrievable using the

techniques described in Section 3.1 (Yost & Newell. 1988).

3.3. Action PerformancL

As mentioned previously, Soar does not have a single, architecturally

interpretable language for action performance. Instead, there are several

distinct ways of representing action performance. One way to represent

action performance, at least for external actions, is as some combination of

motor'commands. Retrieval of motor commands into working memory

causes the associated motor systems to behave in appropriate fashions.
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There is a fixed language of motor eonmands. as (lterminel !v rhe

available motor ,zyqtems.

A second way to r preqent action pertormance is ,s a ,iibproelure that

performs the action when executed. In ',oar t,,rms. the -iibproeedurf is

the processing in a ,,ubgoal that arises when the results of performingr the

action are not k*-retrievable. Within the subprocedure. the types otf

procedural knowledge described in this section would be applied

recursively.

A third way to represent action performance is as the state that results

from applying the operator representing the action. As with operators.

the entire state can be stored in the actions of "a single production (k-

retrievable), it can be distributed across the 'ictions of a group of

productions that all fire within a single decision ,ycle (k*-retrievable). or

it can be distributed across multiple productions that fire tinder different

circumstances (ps-retrievable). The ps-retrievable vase corresponds to the

representation of action performance as subproceiures that is described

above. Such a procedural representation - that ij. representation a. a

subprocedure. rather than representation of a procelure - can actually be

used for any piece of knowledge. whether the knowledge is itself about

procedures or not.

The primary context for the retrieval of a result state is the conjunction

of relevant features of the previous state and the operator. The result
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state-is used as the basis for further problem solving. by serving n.- part of

the retrieval context for goal testing, result generation. state and operator

evaluation, and operator generation. selection. and application. The result

state's acceptable preference is used by the decision procedure to select the

state as the current state. As mentioned in the previous subsections. other

knowledge may also use the preference prospectively to determine what

state is going to be selected, and retrospectively to determine what state

was selected, and what operator and state preceded it.

Acquisition of result states occurs by the chunking of problem-solving

episodes that generate such states. One of the most common ways to

acquire a k*-retrievable result state is to chunk over the process of

executing a procedure that represents an action. As with the acquisition

of knowledge about control. external advice can be utilized to speed up

the process of acquiring knowledge about action performance. In one

version, demonstrated for subtraction. Tic-Tac-Toe, and simple block

manipulation, the system starts out with a set of primitive operators that

are sufficient to implement the individual tests and modifications made by

any operator. Advice is then used to determine which elements the action

should test and generate for the specific operator being acquired. Given

the primitive operators, this approach allows arbitrary operators to be

acquired from advice.

Another way to acquire knowledge abou action performance is to chunk

over the process of interpreting an externally provided description of the
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action, as in (Yost & Newell. 1988). The process proceeds miih a.-, id th,,

,,orrp zponding one in seetion :3.1. %%here in this ease. one or more 'htunk,

are learned that can retrieve the reiiit ,,ate in the fltulre.

3.4. Summary

Procedural knowledge appears to be adequately supported by the eiurrent

architecture. This should not be too surprising as it wa, originally

designed for this: or at least for representing problem-solving knowledge.

One aspect that might come ns a ' urprise is that productions. though they

are a primitive form of action. are not the model for action - operators

are. Another possibly ,urprising aspect is that there is no single

architecturally interpreted operator language. The fixed operator language

common to most systems is replaced by the ability to perform operators

by memory retrieval - either k*-retrieval or ps-retrieval - in conjunction

with motor commands. The flexibility of this approach allow,

performance knowledge to be represented either directly in action form or

as declarative structures that are interpreted. In fact. with the aid of

software interpreters it should be possible to construct arbitrary operator

languages. One example of such an approach is the language and

interpreter used in the task acquisition work.

Learning has an important place in the use of procedural knowledge. By

converting ps-retrievable knowledge into k*-retrievable knowledge. it can

improve the system's ability to retrieve relevant knowledge under real-

time constraints, and thus improve the system's approximation to the
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pri"ple of rationality. It can convert interpreted behavior into direct

action. It can also acquire new knowledge from the outside world.

allowing the system to expand the tasks it can work on and the knowledge

that it can use on those tasks.

4. Episodic Knowledge

Episodic knowledge is knowledge about what has occurred. In general.

the individual elements of episodic knowledge can be viewed as instances

of a binary predicate. Occurred(x. y), where x is an object. action, or

sequence of actions that has occurred - for simplicity we will refer to all

such members of the class of things that can occur as events - and y is a

context in which the event occurred. Two loose but illustrative examples

are Occurred("gaf", "List 1 of Experiment 2"). which denotes that a

particular object (the nonsense trigram "gaf") occurred in a particular

context (during the first list of experiment 2), and Occurred("pull-knob

then turn-knob". "setting time on watch"), which denotes that a

particular sequence of actions (pulling out of the watch's knob followed by

turning of it) occurred in a particular context (the setting of the watch).

There are two notable features about the role of episodic knowledge in

Soar. First, episodic knowledge can be represented at many different

levels of explicitness. Second, although the representation, storage,

retrieval, and use of episodic knowledge is rather straightforward. the

acquisition of some forms of episodic kn wledge is quite challenging. It

leads us to posit the existence of comparatively complex strategies for
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acquiring these forms of episodic knowledge.

4.1. Representation

One way to repr,,ent e.pisodie knoIledge i. ('ompletely a. uleolnrative

structures: that is. as objects M ith ittributes and vallues. In ,,ich :

representation, the above two examples night appear as followz.

(occurred el 'event ol 'context ,f)
(object ol 'name gaf)
(context cl 'experiment 2 'list 1)

(occurred e2 'event .1 'context c:
(sequence sI 'action I aI action2 a-
(action al 'name pull-knob)
(action a? 'name turn-knob)
(context c2 'name setting-time-on-watch)

However. not all of this knowledge need be represented directly as

declarative structures. The alternative is to omit -ome of the components

from the explicit representation. and assume them implicitly by default.

The key to making this work is an understanding of the episodic nature of

chunking: that is. that chunks are acquired as ,he rpqilt of problem-

solving episodes. and execute in contexts that are ,imilar to the ones in

which they were learned. Spinning out the consequences of this

understanding leads to a sequence of ways of omitting and modifying

components of the representation.

The first component that can be omitted is the context. The conditions

of a chunk represent both the context in which the information was

learned and the contexts in which it should be retrieved. Therefore. when
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inforiation is retrieved from long-term memory it can be assumed that it

was learned in a situation that was similar to the retrieval situation.

Eliminating the explicit context from the example above leaves the

following explicit structures.
(occurred el ^event ol)
(object ol ^name gaf)

(occurred e2 ^event 81)
(sequence l ^action1 al 'action2 a2)
(action al ^name pull-knob)
(action a2 ^name turn-knob)

The next component that can be omitted is the occurred predicate.

which, now that the context is removed, just states that its event

occurred. If it is assumed that all knowledge that is retrieved from long-

term memory got there via chunking, - even if the system starts out with

a number of productions. after sufficient time nearly all of its productions

should have been acquired by chunking - then it can be assumed that any

structures retrieved from long-term memory must have been seen before.

Therefore. the explicit predicate can be eliminated in favor of the

assumption that anything that is retrieved has occurred. Eliminating the

occurred predicate from the example leaves the following explicit

structures.

(object ol ^name gaf)

(sequence si ^actionl al "action2 a2)
(action al ^name pull-knob)
(action a2 ^name turn-knob)
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The episodic knowledge .aboiut the %af event i, now repre,,entv 'lil,

-imply as 'i typical Sioar object - all ,true'tures that were intro(luce' -I-ly

tfir their r(lf, in repre,;entina ,i-,ic knowledge have been deleted. T"li-

i,; thu its final form. lfowevr. for th, watch event, two alditional -lv- I

are needed to convert its action 'quence into its final form. The flr,,t

step irivolve- a change in nomenclature to replace actions with ()perator-,.

Operators are intended to rpre-ent actions that can be performed rather

than actions that were perlorme I. bit the :sisumptions made .o far imply

that if an operator is retrieved in a context then it must have been learned

in a ,imilar context. Operator, 'an therefore stand in for actions that

have occurred. Making this change eliminates the need for creating new

.tructures to explicitly repreent actions that have occurred. using the

existing operator structures instead.

(-sequence al 'operatorl al "operator2 a2)
(operator al 'name pull-knob)
(operator a;2 'name turn-knob)

The second. and final. step is to replace the exrlieit representation ot

operator sequences with preferences. As mentioned in the previous

section. preferences can be used retrospectively to Itermine what objects

were selected. Through their context fields - the goal. problem-space.

state, and operator fields - they can also be usd to determine what

objects were current in the context at the time the object was ;elected.

The following recoding of the example represents that operator ,al was

acceptable in the situation characterized by gI. pi. and .sl: that state 8d
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was-aceptable in the situation where operator al was additionally selected

(it is al's result); and that operator a2 was acceptable in the situation

where state sl has been replaced by state s.

(preference al ^value acceptable 'role operator
.goal gi problem-space p1 ^state sl)

(operator al ^name pull-knob)
(preference s2 ^value acceptable ^role state

.goal gi problem-space p1 ^state si ^operator al)
(preference a.2 ^value acceptable ^role operator

.goal gi problem-space pl ^state s2)
(operator a2 ^name turn-knob)

As was true of the gaf event earlier, the watch event is now represented

without the use of any structures introduced solely for their role in

representing episodic knowledge. The explicit structures that are left may

actually be larger than some of the previous (this is not true of the gaf

example), but they are structures that are already available because of

their role in problem solving. This is thus Soar's native form of episodic

knowledge. The significance of this is three-fold. First, this is the form of

episodic knowledge which is available without positing additicnal

semanties (or apparatus). Second. this form of episodic knowledge will

always be around anyway, so it needs to be taken into consideration.

Third, because it posits no additional apparatus, it should automatically

compose well with the other capabilities in the system.

. . . . . . . .. . . . . . . .. . . . . . . . . . . ...................
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4.2. Storage

The manner ,' -torage of episodic knowledge is a fIunction ,t' 4 he

representation that i- lisel. (Components that are directly repre-ented n,

declarative struetuzre; are ,tored in the actions of productions. Tile "gat"

example might be -toreI in a production like the f'ollowing (or across

multiple productions).
4

(occurred <el> "ewent <o1> "'ontext <c1>)
(object <o1> 'name gaf)
(context <e1> t-xperiment 2 'list 1)

Though this production i, ,hown without conditions. as described in

Section .5. it is necessary (and possible) to add additional conditions to

restrict the situations in which such declarative structures are retrieved.

.ssumed parts are Rimply omitted from the actions. However. for the

context assumption to work, a representation of the context must appear

in the conditions of the production. This doesn't allow the context to be

retrieved as an explicit structure. but does constrain the explicit structures

to be retrieved only in contexts similar to the ont, in which they were

learned. The "gaf" example above would be stord as a production like

the following one.
(context <ci> 'experiment 2 list 1)

-- > (object <o1> ^name gaf)

4Symbols enclosed in angle brackets, such as -<el >, are variables.

-
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Explicit episodic knowledge is retrieved in the same way as are other

declarative structures; that is. by a combination of k*-search and ps-

search. Omitted components are retrieved by assumption. If the context

of occurrence is omitted, then it is assumed to share critical features with

the retrieval context. If the predicate is omitted, occurrence is assumed

for retrieved information. If actions are omitted, operator retrieval is

assumed to denote an action that was executed. If sequence information is

omitted, preferences are assumed to denote sequences of operators and

states that occurred. A

4.4. Use

There has not yet been a great need for episodic knowiedge in the tasks

that have so far been implemented in Soar. Nonetheless, it has been used

in several distinct ways. One way is the use of preferences as the basis for

a form of chronological backtracking - a short-term episodic use in which

the preferences remain in working memory throughout. Soar normally

backtracks in look-ahead search by terminating subgoals that lead to

failure. However, there are times when Soar thinks it knows what it is

doing.- so no look-ahead search is being performed - yet failure still

occur. Backtracking under these circumstances involves examining the

acceptable preference for the state at which failure occurred to find out

which state was current when the failed state was selected. This prior

state is then reselected, and problem solving is continued.
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A second use is as the basis for reeoznition and reeall tasks I Roeuhl(oom.

Laird. &. Newell. 1987. Rosenbloon. Laird. V Newell. 198sai. In "

recognition task the -ytem i- ,re,-enIl with :t list of itms, 1-P i,e

memorized. It is then prompted with ti item which may or tay Iot lie

in the list. Its task is to -ay yes if the item was in the list and no if it

wasn't. A recall task is iiniilar. hut instead of being prompted with an

item. the system must produce as many. of the items in the list as it can.

without producing items not in the [},t. These tasks require Ppisodic

knowledge because they ak ',uetionrs nbout what happened in the

system s past.

A third use is as the basis for the transfer of procedural knowledge. The

procedural knowledge that Soar learns can be viewed as really being

episodic knowledge about the past behavior of rhe system. To use this

episodic knowledge as procedural knowledge. there is an implicit

assumption that what is descriptive of the past is normative for the

future. This assumption is maintained until it leads to an error, at which

point the system attempts to recover by doing something other than what

is directly dictated by its past experience (Laird, 1988).

The issue of errors is actually a key one when native episodic knowledge

is used. because, whenever an assumption is made. the possibility for error

creeps in. There are four classes of situations that can lead to errors.

Some of these are intrinsic in the natur of the world, while others arise

because of specific architectural commitments in Soar. The first class of

4.I
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errors arises because of mistakes in credit assignment. Soar cannot

examine the conditions of productions. so when knowledge is retrieved it

can only guess as to which aspects of the retrieval context were shared

with the context in which the knowledge was learned. This can lead to

both errors of commission and omission. Suppose. for example. that the

system is winding a watch at the same time it is trying to recall the

elements that occurred in list I of experiment 2. It will retrieve both

"gaf" and "pull-knob then turn-knob". The problemis that there is no a

priori reason to assume that one of these events is in the list and that the

other is not. In this particular case it might be able to use background or

other contextual knowledge to reason that the watch'events were not part

of the list. but in other cases it may not be so lucky.

The second class of situations arises because of mistakes in context

generalization. There is a trade-off between the scope of applicability of

knowledge and its utility as episodic knowledge. The more general is the

context. the more situations in which the knowledge can be retrieved, and

thus be available for use. However. increasing the generality also

decreases the ability to discriminate the situations in which the knowledge

was originally learned from related situations. This can be seen clearly in

the acquisition and use of control knowledge. The more general is the

control knowledge, the more search is eliminated, assuming the

generalization is correct. However. generality also implies that the

knowledge will be retrieved in a variety of contexts, many of which are
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only remotely like the one in which the knowledge was learned.

The third ,.L:s ot zituations arise-; because of mistakes in memory

attribution. The only -xaminable .tructures in Soar are those in it's

working memory. -,uch -,tructures could arise from memory retrieval.

from intervention by the architecture (the decision procedure). or from

perception. Only those that arise from memory retrieval embody episodic

knowledge. Normally this ,houldn't be a problem because the decision

procedure and perceptual -y,;tems each create structures in a characteristic

fashion: the decision procedure only modifies certain special attributes of

goals: perception always adds its ,tructures to special attributes of the

state in the top context. However. the possibility remains.

The fourth, and final class of situations can be caused by any of the first

three. It occurs because cf mistakes in co-occurrPnce attribution. Such

failures occur when the system mistakenly thinks it has previously

experienced an event i.... ause it has experienced all ')f it-; individual pieces.

though never all as pir' of a single event. Suppo-,+. for example. that in

one context the system -ees a large ball. and in a -imilar context it sees a

green ball. A co-occurrence error occurs if the system thinks that it saw

both in the same context, or worse, that it has seen a single large green

ball. In the recognition and recall tasks this problem is partially dealt

with by assuming that k*-retrievable objects have been experienced, while

ps-retrievable and unretrievable objects 'iave not. The rationale is that

k*-retrieval. being a limited computational mechanism, has a limited

0.
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ability' to put things together in novel ways. while ps-retrieval allows

arbitrary structures to be created.

4.5. Acquisition

Episodic knowledge is acquired by chunking problem-solving episodes.

Though this is somewhat of a tautology for Soar. it is not always as simple

as it sounds. The simple case is the acquisition of episodic knowledge

about objects generated in subgoais. If such objects are returned as

results of their subgoals. then chunks are created which can later be u'ed

as episodic knowledge about the objects. The variety of subgoal results -

objects, operators, preferences. etc. - leads directly to variety in the

episodic knowledge that can be learned.

Under normal circumstances this episodic knowledge is represented in

what we have referred to as native form: that is. predicates. contexts.

actions, and sequences are represented respectively by chunk existence.

production conditions. operators. and preferences. However. if the system

monitors its own performance. and creates declarative structures

representing what has transpired. then the chunks created for such

structures can be used as explicit declarative-form episodic knowledge

about what has transpired. In addition, such chunks can be used as

native episodic knowledge about the monitoring process itself.

One form of episodic knowledge that cannot be handled this easily is

knowledge about what has happened to uhe system; that is. knowledge
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about what the system has perceived rather than knowledge :bout what

the wsytem has erierated. The "af' example presented above i' a iypic:il

pereepriial event. The ,episodie knowl,,tge to be acquired i- :il,out Ow

perception o "galp'" in a particular context (experiment 2. list I. ,L

described in Section 1. Soar'- input mechanism attache. perceptual

information to the state in the top problem-solving context. hi order for

information about the event to be stored into long-term memory by

chunking. an internal episode must be generated in which this perceptual

information is used.

For perceptual events it is relatively easy to acquire a form of episodic

knowledge akin to a familiarity test. The system must simply chunk over

a subgoal in which it examines a representation of the perceptual event

and the context. and generates as a subgoal result an occurred predicate

covering them (Rosenbloom. Laird. & Newell. 1987). A familiarity chunk

for this example might look like one of the following two productions.

depending on whether the context is explicit or not.

(object <o1> ^name gaf)
!context <ci> ̂ experiment 2 'list 1)

(occurred <el> ̂ event <o1> ^context <cl>)

(object <o1> 'name gaf)
(context <ci> 'experiment 2 'list 1)

(occurred <el> 'event <ol>)

In the systems so far implemented, context is actually ignored in the

learning of episodic knowledge. By having no explicit representation of



,Towards the Knowledge Level in Soar Page 40

context in either the conditions or the actions of the chunks. the context is

effectively the entire history of the system. In this form. the "gaf"

familiarity chunk looks like the following:
(object <ol> ̂ name gaf)

(occurred <el> ̂ event <ol>)

Familiarity chunks allow the determination of whether an event has

occurred before in a particular context. Whenever a representation of the

.vent appears in working memory along with a representation of the

context, an occurred predicate will be retrieved for them. Familiarity

chunks can thus support performance in recognition tasks. where the task

is to determine whether a presented object has been seen before.

What familiarity chunks do not directly support is the retrieval of events

that occurred in a particular context. For an event to be retrieved by the

execution of a chunk, the event must be stored in the actions of the

chunk, and not tested in its conditions. A retrieval chunk for the "gaf"

example should look something like the following (with an assumed

context and predicate):

(context <ci> ̂ experiment 2 list 1)

(object <ol> 'name gaf)

For such productions to be learned by Soar, they must be created by

chunking over some form of problem solving. But chunking is not an

indefinitely flexible mechanism. A chunk's actions are always based on
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the results of a subgoal. and it$ co ditions are alway; l,:.sed ,n "1

dependency analysis of the results. This immediately impose; two

constraints on the nature of the problem s olving that ,'an ,tinderly the

acquisition of retrieval chunks.

1. For the event to appear in the actions of a chunk. it must be
generated as a result of a stubgoal.

2. For the event to not appear in the conditions of the 'hunk. the
subgoal results must not depend on an examination of the
event.

The first constraint is relatively ea,-,y to meet: for example. by creating a

copy of the perceptual event in a ,;ubgoal. and returning the copy as a

result. However. attempting to meet both constraints at once leads to the

data chunking problem: if the result is based on ,xamining the object to

be learned, then the conditions of the chunk will also test the object.

allowing it to only be retrieved when it is already :.vailable. For example.

using the copying strategy for the "gaf" example would lead to a chunk

like the following:
(context <ci> 'experiment 2 'list 1)
(object <l1> ^name gaf)

(object <l1> 'name gaf)

In contrast to the desired retrieval chunk. this o)ne tests that "gaf" is

already in working memory before it will retrieve it. so it doesn't do the

job.

The solution to the data chunking problem is to 5eparate the result
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generation process from the use of the perceptual event. Result generation

must be based on what the system already knows, rather than on the

perceptual event. One approach involves assembling the result from

components that the system can already retrieve (Rosenbloom. Laird. &

Newell, 1987). For example. if the letters "g", "a". and "f" are

retrievable, then "gaf" can be generated by retrieving and assembling

them. This is a syntactic compositional process which may or may not

respect any specific semantic rules in performing the assembly. Another

approach is to start with the context and to chain through a sequence of

productions which form a pre-existing, though possibly indirect, link

between the context and the event (Rosenbloom. 1988). For example,

(object ol ^name gaf) can be generated if (context cl ^experiment 2 ^list

1) is already in working memory, and if the following two retrieval chunks

exist.

(context <ci> ^experiment 2 list 1)

(object <o1> ^name fern)

(object <01> ^name fern)

(object <ol> ^name gaf)

Either approach requires the system to start out with a set of primitive

elements that can be generated. Other more complex structures can then

be built up out of compositions of these primitive elements. For the work

on recognition and recall, the system was initialized with the ability to

generate the 26 letters. Conceivably, Soar could have been initialized with

an even lower level of primitives, such as simple lines, curves, and points,
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from which it would construct the letters. It ,'ould ilso have i, pn

initialized with more meaningful primitive-;. .uch as the primitive ACT, in

('onceptmal Dependency Theory izchank. 1075) or the ,.pitnemoloszieal

primitive-; in KL-ONE (Brachman. 1079).

Though the perceptual event eannot be used directly in the generation

process. it is still used in two critical ways. The first is a-; the basis of a

goal test for the generation process. The generation process can

conceivably return any event that it van either assemble or chain to. so a

goal test is necessary to determine when the desired event has been

generated. The straightforward approach of comparing the perceptual

and generated events does not work. Instead. it leads to a secondary

version of the data chunking problem in which the ,omparison causes tests

of the perceptual event to appear in the conditions of the chunk.

To avoid this secondary data chunking problem. the goal test is based

on. a familiarity chunk for the perceptual event rather than ,lireetly on the

event. Given a familiarity chunk for the perceptual event, the generation

goal test is satisfied when a familiar but unretriexed event is generated.

The test of familiarity guarantees that the event has been seen in the

current context (or a similar one). If the event is unretrieved. it is one

that the system has not previously learned to generate. This test is

somewhat overgeneral in that it can't guarantee that the generated event

is a copy of the current perceptual event However. at worst it will only

generate a different event that is familiar in the same context. If this
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happens. it is always possible to try again to generate an event that

corresponds to the input event. The use of a familiarity chunk as the goal

test for the generation process makes this is a generate-recognize approach

to recall (see. for example. Watkins & Gardiner. 1979). though focused on

the acquisition phase rather than the retrieval phase.

The second way that the perceptual event is used is as the basis for

controlling the search through the space of events that can be generated.

The goal test determines the correctness of the result, but does not affect

the efficiency of the search. Using the perceptual event as control

knowledge makes the search tractable, potentially removing all

backtracking, without affecting the correctness of the result. Thus the

result technically does not depend on such control knowledge. The

bottom line is that the use of search control knowledge can speed up

performance without introducing additional conditions into chunks (recall

from Section 1 that chunking does not bactrace through the use of

desirability preferences by the decision procedure). Of secondary

importance is that the use of the perceptual event as search control

increases the likelihood that the first event generated will correspond to

the perceptual event rather than to m-other familiar but unrctrieved

e vent.

When the generation, goal testing, and control process are all put

together, a retrieval chunk can be learned that is identical to the one that

was desired. Context can be treated in the same ways that it is for
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familiarity- chunks. It can be explicia (in the :ictions-. v-zimnel (ill he

eonditions). or eom pletely inore'l mo%%here,. te,~tis Ii

implemented have 'knore'l *'ontext.

One consequence o' i h:i-approach io the neIiilisition ot' retriev-al ehunlks

is that it forces information s torage to be b)ased on an understanding

process. The understanding inay he only of -iyntax (surface structure). or

it may be of a deeper semantic (deep ;trurture) nature. hut without it.

learning will not oecumr. There is no imple assignment operation - luch

as the SETQ operation inl Lisp - that allows an utnanalyzed stritcture to

be stored in long-term memory. A second consequence is that the

understanding process must he a reconstructive - or analysis- by-synthesis

-process (Bartlett. 1932. Neisser. 1967). in which t,%ents are reconstructed

in terms of known structures. A third consequ-ece is that the storage

process is semantically penetrable. Other knowledge can potentially alter

the reconstruction process. and thus xhat , toredl. leading to

generalization and other forms of Ihas in tht- mer--,ov triteture, that are

stored.

4.6. Summary

Soar can represent. store. -?trieve. use. and acquire episodic knowledge.

However, the situation is nowhere near as clean and simple as it was for

procedural knowledge. In fact, if we were to ;it down to design a

capability for episodic knowledge from scratch, with no constraints, we

would be unlikely to design it as currently embodied by Soar. What the
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architecture most directly supports is native episodic knowledge about

structures generated by the system itself. Such knowledge is represented.

stored. retrieved, and acquired without requiring additional cognitive

effort. However. the assumptions required to use such knowledge can lead

to errors. By increasing cognitive effort. more explicit forms of episodic

knowledge can be acquired that require fewer assumptions for use. and

thus hopefully lead to fewer errors. Such structures are not terribly

dissimilar to the structures used in other episodic memory proposals. such

as Scripts (Schank and Ableson. 1977) and E-M, ps (Kolodner. 1985).

The situation is even more complicated for episodic knowledge about

perceptual events. Three features of the architecture yield strong

constraints on how the knowledge is acquired.

1. Chunk actions are based on subgoal results.

2. Chunk conditions are based on the supergoal structures upon
which the results depend.

3. Perceptual information arrives in the top goal.

Together these features force a reconstructive approach to knowledge

acquisition. Though this approach is considerably more complicated than

simple verbatim storage of what has transpired. it does have a number of

promising properties.

Given the overall picture of episodic knowledge, as relatively complicated

and mesby, it is important to ask wiether this signals a need for

modification of the architecture. One key question is the appropriateness
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of the levels of ,4upport and emi.-otraint that ar, providlf, ' I.

architectire. For psychology. thi- i,, i matter of the extent ,,, v hilh th,-

level , f -upport models hItuman ianp idiui iI-. an lhe level .1* -,ird int

models human limitations. For Al. this i. a matter of whether yhe .yt em

achieves an appropriate level of' ,pipodic functionality. A .em(d key

question is whether there are more appropriate mechanisms - f;)r either

definition of "appropriate" - for the upport of episodic knowledge which

could hb integrated cleanly into the- architecture. Providing detailed

answers to these two key (uestion- remain5 t r ftiture work.

5. Declarative Knowledge

Declarative knowledge is knowledge about what is true in the world.

Examples include the Facts that dogs have four !,.s and that Fido is a

dog. Declarative representation comes in many forms. such as natural

language, diagrams. maps. charts. table-. and graphs. This i also the

area with which logic is ,lassically ,-oncerned. \ loi, has a -vntax

specifying the form that tntemew,- take. andl a +:,ti,' which rtt,--

logical statements to an abstract c oneptualizatioi ' , ,rld. For Iirqt

order predicate calculus (FOPC' the syntax a.-ed ,n ('onstants.

variables, predicates. connectives (A. V. -. and D). and quantifiers (V and

3). The mapping between the ;yntax and the -,emantics. called the

interpretation, is used to determine the truth of 'tatements expressed in

the syntax of the logic.

In this section we will be primarily concerned with the syntactic side of
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)
declarative knowledge. taking advantage of logic's privileged role in Ad as

a language for representing declarative knowledge. We will examine how

declarative knowledge is represented (its syntax). stored. retrieved, used.

and acquired. On the issue of semantics, we will assume that the meaning

of a structures is determined by a combination, of two factors: its

relationship to the outside world, as mediated by the perceptual and

motor systems. and how it is used by internal processes.

As with episodic knowledge. the main challenge will be in the acquisition

of declarative knowledge. The data chunking techniques described earlier

will be extended to handle declarative representations.

5.1. Representation

As with episodic and procedural knowledge, there are several different

ways that declarative knowledge can be represented in Soar.5 The most

flexible and general approach is to represent each syntactic component -

whether it be a constant, variable, predicate, connective, or quantifier -

as an object. The details of exactly how this is done are not crucial, but

the general flavor should be clear from the following example which shows

a statement in FOPC and how it could be translated into a set of objects

in Soar.

51n this section we focus on derivation-based representations for logic. Other
representations are possible, such as validity-based techniques - see, for example, (Polk &
Newell, 1988) and (Polk. Newell. & Lewis. 1989) eor research on mental models in Soar.
These have somewhat different properties, but much of the discussion would remain the
same.
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V X Px -2O () i

Iquantilier v'name t%)rall rvral,l- v I lv hi)
( variable ! I winp t i

(" l luectiVe b/1 lattll iniiplie', 'it,(edP lent ail oo}l,eyil t ll I

(predicate I namie 1, !irswnient 1 1)
(predicate -I 'name q Iargument rvl

For -imple ,tatements ,ontaining no quantifiers or variable,. no

predicates with more than two arguments. and no connectivep, except for

A. there is a simpler nativ rppresentation that takes dlirect ndvantage of

Soar's object structure. ("on,;tants are represented as object,,. predicates

as attributes, and conjunction as simultaneous occurrence. Here's a simple

example about. Fido.

Category(Fido. Dog) A Alive(Fido)

(object ol 'name fido ^category o2 'alive)

(object o2 'name dog)

This native representation is more ;uccinct than ihe one above. but in

exchange it lacks expressibility.

Another variation is to use productions as a repr,.-entation for a subclass

of implications. A production can represent a universally quantified

implication in which the antecedent is a conjunctio, of predicates. and the

consequent is an exist .ntially quantified conjunction of predicates.

( I ....... ........ C(.....) A ... ACI ..... z.)
3(yIm....yn) A,(xI.....=Xn,y, .....m) A ... A Ak(xI ..... XI/, n ..... )I11

The existential quantifier in the consequent arises from the ability to

create new objects when variables appar in actions that are not in

I.
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conditions. A form of negation as failure is also available in the

antecedent which allows a predicate to be assumed false unlems it is

explicitly known to be true (that is. available in working memory).

Implica.ions encoded as productions are non-examinable and can only be

used to forward chain. We will not discuss them further here. fnstead we

will focus on examinable structures of either of the first two types.

5.2. Storage

Storage of declarative knowledge is straightforward. As with

declaratively represented procedural and episodic knowledge. declarative

knowledge is stored in the actions of productions.

5.3. Retrieval

Declarative knowledge is retrieved by k*-search and ps-search. If the

knowledge is stored directly in productions, k*-search can retrieve it.

otherwise ps-search is required. Hopefully. by this point, this is obvious.

However. less obvious is what the context should be for retrieval of

declarative knowledge. The retrieval contexts for both procedural and

episodic knowledge are straightforward. An element of procedural

knowledge is retrieved when it may be needed to produce bet.avior. An

element of episodic knowledge is retrieved when a context is established

that is similar to the one in which the episode occurred (at least if the

context is tested in production conditions rather than stored in production

actions). In contrast, declarative knowledge is by it e-:ence not
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associated with a particular context. The knowledge i. true. iInleL, eln.-Itii

of ,'ntext. "ind qhould be usable in 'in.y 'ontxt roquiriniz ir.

On the other hand. if declarative knowled-e i6 stored with no .on(.xt -

that is. with a null set of production conditions - the knowledge will not

only be retrievable in all ,ontexts. it will in fact be retrieved in :Il

contexts. swamping the system with true but irrelevant information. One

approach to controlling the retrieval of' declarative knowledge is to use the

connectedness among facts :I.-a co-relevanee heuristic. This k ofteni

implemented by the mechanism of -preading activation, which retrieve,

facts close to those that are already retrieved (Collins & Loftus. 1975.

Anderson. 1983). Another approach is to control the retrieval of

declarative knowledge by providing a partial description of the knowledge

to be retrieved (Norman & Bobrow. 1979). The ,,artial description then

delineates the set of things which appear to be relevant.

The approach that we have taken is to -ztore de'larative knowledge in n

discrimination network that allows retrieval ,f objects by partial

description (Rosenbloom, Laird. & Newell. 1988:aj. Given 'iny partial

description, a single object is retrieved along with he facts about it. The

construction of this discrimination network is liscussed below. under

acquisition.

One last important aspect of the rerieval of declarative knowledge

concerns the basis for believing that structures retrieved from long-term

t
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memory represent true facts about the world. This belief must be based

on the implicit assumption that the system knew what it was doing during

the episode in which the structures were acquired. In other words. the

system must trust its past behavior. This is one form of assumption that

cannot be completely avoided by adding more explicit structure. Even if

explicit true-in-world annotations are added to all structures representing

true facts about the world. the system must still trust that in the past it

only added such annotations when the facts were true. It might be more

"careful" about adding such annotations than it is about adding

structures to working memory in general. but since there is no oracle for

truth, it is still assuming that these annotations were added correctly.

This assumption that the annotations are true is of the same type as the

original one. It may localize the assignment (f trust, but can not

completely eliminate it.

5.4. Use

Declarative knowledge has a multitude of uses. It can be used to

describe procedures so that they can be reasoned about. or followed

interpretively (from which native procedures can be compiled). It can be

used to explicitly describe episodes. It can be used to describe knowledge

whose function is not yet clear. It can be used as the basis for

memorization tasks. A complete list would go on considerably longer, but

this gives a sampling of typical uses.
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5.5. Acquisition

The acquisition of declarative knowledge has nuich in .omm, n with irhe

acquisition of episodic knowl(,dge. I)eclarative knowledge that i- L.,nerate

as the result of a problem -olving episode is directly acquired I.Y hi.inking.

with a retrieval context that corresponds to those elements of the *tuation

on which creation of the knowledge depended. Likewise. the acquisition of

perceptually originating declarative knowledge utilizes the data chunking

.olution described in Section 1.5. Though. to go beyond the types of

structures acquirpd in the rpsearch oin Ppisodic knowledge. Soar was

initialized with primitive elements for the 26 letters. plus a set of primitive

attributes (isa. has. color, response. letterl. letter2. letter3. letter4. letter5.

letter6. letter7. letterS. letterg. let.terlO). 6 Using these primitives, facts are

represented by attributes relating named objects. For example. lsa(Fido.

Dog) is represented by the following structures.
(object <f> 'letterl <fl> "letter2 <f2> letter3 <f-.>

letter4 <f4> "isa <d>)
(letter <fl> 'name f)
(letter <f 2> ^name i)
(letter <f.3> 'name d)
(letter <f4 > 'name o)
(object <d> "letteri <dl> letter2 <d 2> letter3 <,i.Y>)
(letter <dli> ̂ name d)
(letter <d2> 'name o)
(letter <d3> 'name g)

This is a variation on the native representation described in Section 5.1.

The primary difference is that names, which were unanalyzable atoms in

61n future work we will be examining how to loosen up the requirement that attributes
be pre-existing primitives as well as investigating different levels of primitive elements.

It/
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the earlier representation, have been expanded out to where their internal

,tructure is open for examination and creation.

There are a number of ways in which the acquisition of declarative

knowledge is more complicated than the acquisition of episodic knowledge

in Soar. We have so far isolated three additional issues that must be

resolved in the acquisition of perceptually originating declarative

knowledge. (1) How is a discrimination network to be acquired that can

control the retrieval of declarative knowledge? (2) How is knowledge about

objects acquired incrementally? (3) How do chunks store the components

of an object?

.As mentioned earlier, utilizing the data chunking solution alone results

in the acquisition of context-free declarative knowledge. 7 Acquiring a

discrimination network thus requires an augmentation of the basic data

chunking solution. Abstractly. the approach is to modify the simple

memorization strategy underlying data chunking so that the acquisition of

new knowledge involves relating the new knowledge to what is already

known. If in the process of establishing relations, an explanation is

created as to why the new knowledge is different from similar existing

knowledge, this should lead to discrimination. Similar processing could

lead to generalization, or other alterations of the new knowledge prior to

'There is a corresponding, but not identical, in. ue for perceptually originating episodic
knowledge which has not yet been addressed: how he situational context is incorporated
into chunk conditions.



Towar& the Knowledge L ~'l in "oar PaIge 55

its being stored (Anderson. 1986. Rosenbloom. 1988).

The 'iirrnt implementation in -oar ',,e,, tuch a -trategy to perform

object-centered ,liscrimination. Given :i new fact. -uch as IsalFidlo. Dog).

the ;vstem uses the features of Fido b, -ee what object is retrieved from

the discrimination network. If Fido is retrieved, no discrimination is

necessary. If some other object. ,iuch as Fred. is retrieved. Fido's features

are compared with Fred's to find a difference, such as the letter 'd" in

the third position of the name." This difference is then used as the

justification for generating a new ,ymbol representing Fido. and for

rejecting Fred as the object to be retrieved. If there is more than one

difference, one is picked indifferently.

By thus loosening the prohibition against examining perceptual

knowledge during result generation. discriminating eonditions are added to

retrieval chunks which control when the acquired knowledge is retrieved.

Schematically, the production resulting from this process looks like the

following.

Retrieved(g35) A - Rejected(g35) A letter3(g35. t?)

A Perceived(p) A letter3(p. d) -- > Reject(g33) A Retrieve(g37) (1)

This production says that if there is a retrieved, but not yet rejected.

object with symbol g35 and an "e" as its third letter, and the perceived

object's third letter is 'd". then reject the retrieved object and create a

81n the current implementation. discrimination is always based on features of object
names. rather than on other facts known about the object.

6j
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new symbol (g37) for the perceived object. Each such retrieval production

forms one link in the discrimination network that is constructed as new

objects are perceived. This discrimination network supports k*-

retrievability - that is. retrievability by a combination of production

firings within a single elaboration phase - rather than the k-retrievability

that is possible for knowledge stored with no context.

Consider what happens when the following three facts are learned in

sequence. ignoring for now all of the learning except for the creation of the

discrimination network.

Isa(Fred, Cat)
Isa(Fido, Dog)
Isa(Carl, Dog)

First, Fred is processed. Because no object has been learned previously,

no discrimination is necessary, and the only action to be taken is the

creation of a new symbol for Fred. This results in the acquisition of a

production which generates the symbol for Fred if no object has already

been retrieved.

- Retrieved() -> Retrieve(g35) (2)

Second, Cat is processed. Given the features of Cat. the symbol for Fred

(g35) is retrieved by production 2. As described below, the information

about Fred is cued off of Fred's symbol, so the retrieval of g35 leads to

the retrieval of what is known about Fred. Once this knowledge is

retrieved, Cat is discriminated from Fred. The system chooses

indifferently one of the discriminating leters of the objects' names - in

this case the second letter - yielding the following production.
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Retrieved(g35) A - Rejected(g35) A letter2(g35. r)
A Perceived(p) A letter2(p. a) -- > Reject(g35) ' Rerrievei-436! 131

Third. Fido i. processed. Fred i, retrieved and discriminatel fr,)m [il

by the third letter. yielding production 1. above. Fourth. 1)o& i-

processed. Once again. Fred is retrieved, and the discrimination i-. again

based on the third letter, yielding the following production.
Retrieved(g35) A - Rejected(g35) A letter3(g3., e)

A Perceived(p) A letter3(p. g) --> Reject.(g35) A Retrieve(g3) (4)

Fifth. Carl is processed. This time Fred is retrieved and then immediately

rejected by production 3. which also retrieves Cat. Carl i, then

discriminated from Cat by the third letter, yielding the following

production.

A, Retrieved(g36) A -' Rejected(g36) A letter3(g35. t)
A Perceived(p) A letter3(p. r) -- > Reject(g36) A Retrieve(g3g) (5)

Sixth, Dog is processed. Fred is retrieved, and then immediately rejected

by production 4. which also retrieves the symbol for Dog. Because there is

no mismatch between the perceived and retrieved objects. no

discrimination is necessary. no new -symbol is 4pnerated. and no new

production is created. At this point the discrimination network lia, the

shape shown in Figure .5-1.

Given a partial specification of an object name. the 4ymbol for the

object whose name matches most closely - according to the structure of

the discrimination network - is retrieved. The knowledge associated with

the object is acquired with a retrieval context consisting of the object's

symbol. As with episodic knowledge. this occurs by first acquiring a

9.
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FRED

2/a 3/d 3/g

CAT FIDO DOG

3/r

CARL

Figure 5-1: Discrimination network acquired from sequence of facts.

familiarity chunk for the new knowledge. and then acquiring a retrieval

chunk which depends on the object's symbol.

Unfortunately. this approach depends on having all of the knowledge

about the object available at once. which raises the second issue: how to

incrementally acquire knowledge about objects. If the familiarity chunk

must recognize the entire object. as it does in the previously published

approaches, no learning can occur about an object until all of the

knowledge about it is available. Conceptually. the solution to this

problem is straightforward. Data chunking is applied to each fragment of

an object individually. The processes of familiarization and generation are

performed independently for each letter of the object's name, and for each

fact about the object. As an example, the individual familiarity and

retrieval productions for the first letter of Fred's name look like the
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following.
letterl(g35. r)--> Fam iliarilet ter I ( 353. 1- 6)

Retriev-,3-5) A - Rejetoeil,;3-1 -- > letterI35. r) 1T)

The implementation of this .,olution allows new t'acts to be acquired

about known objects. for example. that Color(Fido. Red). However. what

is given up in going with this ,olution is the ability to use familiarity

chunks to directly perform recognition tasks. Object recognition must

now be based on multiple productions. The obvious way to do this is to

sort the object through the ,liscri nination network. If the new object is

the same as the one stored in the node at which discrimination ends. then

4 it is recognized.

The third issue is how references to learned objects 3hould be stored in

retrieval chunks. For primitive objects. such as the letters. the answer is

simple. The value is stored directly in the actions of the retrieval chunk.

as shown in production 7. However. for valueq t.hat are objects. the

situation is more complicated and leads to .i sequenced pair of

discriminations, similar to the approach taken by EPAMvI (Feigenbaum &

Simon. 1084).

Suppose the system has already learned about the object bej. a nonsense

trigram. and that the retrieval cue associated with bej is its first letter (b).

Then suppose that the system is presented with a paired associate (a

stimulus-response pair) in which bej is the response, for example

6

9b
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Response(gaf. bej). This pair would be represented as follows.

(object s 'letterl s1 "letter2 s2 *Ietter3 s-1 'response r)

(letter al 'name g)
(letter 82 "name a)
(letter sd 'name f)
(object r "letterl rl 'letter2 r? "Ietter3 r3)
(letter ri 'name b)
(letter r2 'name e)
(letter r3 'name j)

If g41 is the symbol for gaf and g42 is the symbol for bej, the obvious

retrieval production to create for this pair (ignoring for now the retrieval

productions for the object's names) is the following.

Retrieved(g41) A -' Rejected(g41) -- > response(g41. g42) (8)

However, the rule that is actually created will have an additional

condition which tests bej's retrieval cue (b).

Retrieved(g41) A -, Rejected(g41) A Letterl(g42. b)
-- > response(g41. g42) (g)

This happens because the retrieval cue is examined in order to retrieve g42

from the discrimination network. Therefore, the appearance of g42 in the

chunk's actions leads to the cue appearing in the chunk's conditions.

Such a retrieval production cannot support performance in paired-

associate tasks, where after studying a list of stimulus-response pairs. the

subject must generate responses when given just the corresponding stimuli.

One solution to this problem is to include a (partial) description of the

value object in the retrieval production rather than the object itself. If

the description is created anew, by data chunking, from the information

provided in the paired associate, no additional retrieval cues get
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incorporated. With this change. the following chunk is learned.

Retrieved(g41) A - Rejected(g41) -- > response(g41. l tteri(-. I i 1))

Given -iuch a chunk (or -t ,t' chunks), the paired associate ia.k van be

performed by using the tiniulus reatures to retrieve its ,yrnhol (gllo .

using the stimulus ,.mbol to retrieve a (possibly partial) description o' the

response (letterl(-. b)). using the description of the response to retrieve the

response symbol (g42). and then using the response symbol to retrieve the

information about the response (bej).

Using this strategy the iask now requires two independent retrievals

from the discrimination network - one to retrieve the stimulus symbol

and one to retrieve the response symbol. This is similar to the double

discrimination performed by EPAM during paired associate tasks

(Feigenbaum & Simon. 1984). However. it occurs in Soar not because of a

need to match the data. but as a means of ,nabling responses to be

retrieved from stimuli in the absence of any additional response cues.

5.8. Summary

The representation, storage and use of declarative knowledge are

relatively straightforward in Soar. The architecture provides some

support for these capabilities through the primitive attribute-value

representation. the ability to store declarative structures in productions.

and the ability to examine declarative structures in working memory. The

architecture does not enforce a fixed semantics for declarative knowledge.

nor does it provide default inference mechanisms that automatically

0
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generate structures representing knowledge that is implied by its existing

structures. Both of these, if part of the architecture. would imply

excessive rigidity in how the system could behave. To the extent they are

needed, provision should be made by adding knowledge and problem

spaces on top of the fixed architecture.

The acquisition and retrieval of declarative knowledge is considerably

less straightforward. Chunking is provided as a means for acquiring

declarative knowledge. but the problem solver must be put through a

number of contortions for the system to acquire the appropriate chunks

from externally provided knowledge. In addition to the constraint

imposed by the data chunking problem. a related architectural constraint

restricts how known objects can be used in t'he acquisition of new

knowledge. The solution to the problem posed by this constraint leads to

an approach which is increasingly like the discrimination network

structure of the EPAM model of memory.

Retrieval of declarative knowledge is supported by production firing, but

considerable additional complexity arises from the need to constrain

retrieval to what might be relevant. The discrimination network we have

employed, provides one approach to this. Though the approach currently

seems somewhat ad hoe, the abstract characterization of the process as

relating the new knowledge to existing knowledge, leads to the hope that

it will eventually be placed on a principle-i footing.
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Further work is clearly called for, in developing and evaluating the

acquisition and retrieval mechanisms that have been proposed (and

implemented).

6. Conclusions

Taking an architecture -eriously means living within its constraints and

using what support it provides, at least until it is clear that the

architecture must be modified. In this chapter we have taken a :tep

towards evaluating the level of' upport and constraint which the soar

architecture provides for the knowledge level, a concept that is closely

related to the idea of general intelligence. This helps us to understand the

a extent to which the architecture's current levels of support and constraint

are adequate for achieving general intelligence. It also provides an

alternative way of viewing Soar in which its architectural mechanisms are

subjugated to their role in supporting knowledge. This complements other

efforts that view Soar as a set of mechanisms (Laird. Newell. &

Rosenbloom. 1987). a hierarchy of meta-levels (Rosenbloom. Laird. &

Newell. 1988b), a hierarchy of cognitive levels at different time scales

(Newell, 1989, Rosenbloom. Laird. Newell. & Mc"'arl. 1989). a physical

symbol system (Newell. Rosenbloom & Laird. 1989). and a general goal-

oriented system (Rosenbloom. 1989).

01- particular focus in this step has been on how the Soar architecture

supports and constrains the representat'on. storage. retrieval, use, and

acquisition of three pervasive forms of knowledge: procedural. episodic.

LE'__ _
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and declarative. The analysis reveals that Soar adequately supports

procedural knowledge - to some extent it was designed for this - but

that there are still significant questions about episodic and declarative

knowledge. These questions arise primarily because of consequences of the

principle source of constraint in Soar. the fact th9t nil !earning occur5 via

chunking. Chunking can support the acquisition of episodic and

declarative knowledge. but in so doing it imposes significant requirements

on how the problem solving underlying this acquisition proceeds. These

requirements amount to architecturally-derived hypotheses about how

learning occurs. We have reported here some new results that elaborate

on these hypotheses in the acquisition of declarative knowledge, but

considerable future work is still called for in both the development and

testing of these hypotheses.

One obvious question at this point is why not just add new architectural

mechanisms that directly support the acquisition of episodic and

declarative knowledge? Assuming that appropriate mechanisms could be

developed, there are still at least two critical reasons not to rush into

adding them to the architecture. The first reason is that the integration

of new mechanisms into an existing architecture can have major

consequences. An integrated architecture is more than just a collection of

useful mechanisms. It must be constructed so that its mechanisms

compose appropriately with each other. The number of potential

interactions that need to be worried about increases rapidly -



V

Towards the Knowledge Level in -oar Page ti5

exponentially. if there can be interactions among all possible ,ubsets -

with the number of mechanisms. Frequently. the addition or" a perfectly

reasonable new mechanism will eanse -,trongly dyfunctional ,whavior in

others of the existing mechanisms. Though there are times when an

architectural addition is absolutely required. and a research effort must be

engendered to get the interactions right (as recently oceurred for

perceptual-motor behavior in Soar (Wiesmeyer. 1988)). almost always a

conservative strategy is what i, required.

The second reason is that rushing to add new mechanisms discourages

learning about the limits of the existing mechanisms, and their

combinations. This is essential to understanding the scope and limits of
9

the architecture. It is also essential to discovering the deeper. nonobvious

consequences of the architecture. If we had jumped to add new learning

mechanisms to Soar. we would never have discovered how the current,

mechanisms inherently imply a reconstructive learning strategy. The

discovery of such nonobvious consequences is some of the most interesting

research that can be done with architectures.

This being said, much additional work is still needed. One issue to be

addressed is the origins of the bootstrap knowledge that allows new

procedural. episodic, a;', declarative knowledge to be acquired. The

acquisition of perceived procedural knowledge requires the existence of an

interpreter for the knowledge. The acqisition of perceived episodic and

declarative knowledge requires a set of pre-existing primitive elements plus

al
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the knowledge about how to familiarize. discriminate. and construct object

representations. It appears necessary to add some of this to the

architecture. such as the ability to generate a set of primitive elements.

Other parts may just be specific instances of more general capabilities.

which of course must themselves be either innate or learned. For example.

the interpreter for procedural knowledge may be just an instantiation of a

more general comprehension process. The same may also be true of the

discrimination and construction processes for declarative and episodic

knowledge. The current implementation does not quite look like this. and

architectural changes may he required before it does, but this is one

promising path to pursue.

Finally, a number of additional steps must still be taken before the

relationship of the Soar architecture to the knowledge level is completely

tied down. The most important missing aspect is the relationship between

Soar's mechanisms and the principle of rationality. The key issue is how

its architectural mechanisms. such as its decision procedure and subgoal

generator, allow Soar to approximate rationality even under the

constraints of its being a physical system with time and space bounds.

We have commented briefly on how chunking increases Soar's ability to

bring knowledge to bear under real-time constraints, but much more is

left to be done.
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