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ABSTRACT

Soar has been described as an architecture for a system that is to be capable of general
intelligence. One wav to specify what this might mean is to define general intelligence as the
ability to approximate an ideal knowledge level system across a sufficiently broad set of goals
and knowledge. In this chapter we use this definition as the basis for evaluating the scope of this
chapter, so we focus more narrowly on how the Soar architecture supports and constrains the
representation, storage, retrieval, use and acquisition of three pervasive forms of knowledge:
procedural, episodic, and declarative knowledge. The analysis reveals that Soar adequately
supports procedual knowledge - to some extent it was designed for this - but that theie are still
significant questions about episodic and declarative knowledge. These questions arise primarily
because of consequences of the principle source on constraint in Soar, the fact that all learning
occurs via chunking. New results are also presented on the acquisition of declarative knowledge.
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Abstract

Soar has been described as an architecture for a system that is to be capable of general
intelligence. One way to specify what this might mean is to define general intelligence as
the ability to approximate an ideal knowledge level system across a sufficiently broad set
of goals and knowledge. In this chapter we use this definition as the basis for evaluating
the degree to which Soar achieves general intelligence. A complete evaluation is beyond
the scope of this chapter, so we focus more narrowly on how the Soar architecture
supports and constrains the representation, storage, retrieval. use and acquisition of three
pervasive forms of knowledge: procedura!. episodic, and declarative knowledge. The
analysis reveals that Soar adequately supports procedural knowledge — to some extent it
was designed for this — but that there are still significant questions about episodic and
declarative knowledge. These questions arise primarily because of consequences of the
principle source of constraint in Soar, the fact that all learning occurs via chunking. New
results are also presented on the acquisition of declarative knowledge. ( J <R )
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;
Towkeds the Knowledge Level in Soar: The Role of the Architect
the Use of Knowledge!

Soar has been described as an architecture for a system that is to be
capable of general intelligence (Laird. Newell. & Rosenbloom. 1987). One
way to specify what this might mean is to enumerate the set of
capabilities that. based on the field's cumulative experience, appear to be
required for general intelligence: to be able to work on the full range of
tasks, to be able to use the full range of protlem-solving methods and
varieties of knowledge, to be able to interact with the outside world in real
time, and to learn about the world and the system’s own performance.
Progress can then be evaluated by determining the degree to which the
architecture supports such capabilities. For Soar, such an evaluation
reveals significant progress in the areas of tasks (Laird. Newell, &
Rosenbloom, 1987), problem-soiving methods (Laird & Newell, 1983,
Laird, 1983) and learning (Steier et al, 1987); some progress in the area of
outside interaction (Laird, Yager, Tuck. & Hucka. 1989):; and an unclear

situation in the area of knowledge.

This research was sponsored by the Defense Advanced Research Projects Agency
(DOD) under contract numbers N00039-86C-0033 (via subcontract from the Knowledge
Systems Laboratory, Stanford University) and F33615.87-C-1499 (ARPA Order No. 4976.
monitored by the Air Force Avionics Laboratory), by the National Aeronautics and Space
Administration under cooperative agreement numbers NCC 2-538 and NCC 2-517, and
the Office of Naval Research under contract numbers N00014-86-K-0678 (Information
Sciences Division) and N00014-88-K-0554 (Computer Science Division). The views and
conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied. of the Defense
Advanced Research Projects Agency, the National Aeronautics and Space Administration,
the Office of Naval Research or the IUS Governient.
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The. problem with such an approach to specifving (and evaluating
progress towards) general intelligence is the lack of theoretical
justifications for the <et of capabilities included.  Without such
justifications it is unclear. for example. whether some new form of
learning that is developed is necessary for general intelligence. or just an
interesting oddity. In addition, whole categories of critical capabilities
may be unknowingly omitted. What is needed is a more fundamental

definition of general intelligence from which the required capabilities can

be derived (or at least justified).

One idea that shows promise towards providing such a definition is the
knowledge level (Newell, 1981). The idea of the knowledge level is based
on earlier developments in the area of computer systems levels (Bell &
Newell, 1971). A computer systems level consists of a medium that is
processed. components that provide primitive processing. laws of
composition that permit components to be assembled into systems. and
laws of behavior that determine how system behavior depends on the
component behavior and the structure of the system. Existing levels (and
their media) include the device level (electrons), the circuit level {current),
the logic level (bits), the register-transfer level (bit-vectors). and the
program (or symbol) level (symbols. expressions). In terms of these levels.

an architecture is a register-transfer level system that defines a symbol

level.

The knowledge level is a distinct computer systems level that lies

K e et St b (. Eeh Tk B Tat,
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imm;diately above the symbol level. The medium processed at the
knowledge level is knowledge. An agent — a system at the knowledge
level — consists of a physical body that can interact with an environment.
knowledge. and a set of goals. The law of behavior is the Principle of
Rationality: "If an agent has knowledge that one of its actions will lead to
one of its goals. then the agent will select that action." (Newell. 1981. p.
8) Once knowledge is acquired. it is available for all future goals. There
are no capacity limitations on the amount of knowledge that can be
available or on the agent’s ability to bring it to bear in the selection of
actions that achieve its goals. An essential feature of the knowledge level
is that the agent’s behavior is determined by the content of its knowledge,
not by any aspects of its internal structure. It abstracts away from the
processing and representation of the lower levels. This lack of significant

internal structure implies that there are no laws of composition at the

knowledge level.

The knowledge level provides a straightforward. though not
uncontroversial, definition for intelligence. A system is intelligent to the
degree that it approximates a knowledge-level system (Newell, 1989).
Perfect intelligence requires a complete lack of internal resource
limitations. However, this ideal is unreachable in physically realizable
systems that are required to make decisions using bounded resources over
a sufficiently wide range of goals using large bodies of knowledge. Such

systems can at best only approximate a knowledge-level system. and thus

P T ST
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achieve some level of intelligence that is less than perfect. The ideal of
perfect intelligence also does not entail the generality of that intelligence.
A system's behavior is characterized both by its intelligence and by its
generality.  Generality for a knowledge-leval system is the range of
interactions that it can have with the environment. the range of goals 1t
can have, and the range of knowledge that it can acquire and use.

Intelligence is how well the system applies its knowledge to the tasks

within its scope.

Assuming this knowledge-level definition of general intelligence. the key
question for the architecture is how it supports the knowledge level for a
sufficiently broad set of goals and knowledge. How does it approximate
rationality with bounded resources? How does it support the acquisition
and use of knowledge? A complete answer to the key question requires
answering a number of such subquestions. In (Newell, 1989), a beginning
was made at answering the first subquestion. In this chapter we provide
the beginnings of an answer to the second subquestion. We examine how
the Soar architecture supports and constrains the representation. storage.

retrieval, use and acquisition of three pervasive forms of knowledge.

The first form of knowledge to be examined is procedural knowledge.
Procedural knowledge is knowledge about the agent’s actions. It includes
knowledge about which actions can be performed, which actions should be
performed when (control knowledge), and how actions are performed. The

second form of knowledge to be examined is episodic knowledge. Episodic

kil
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knov&ledge is knowledge about what objects, actions. and action sequences
have occurred in the agent's past. It allows answering such questions as
"Did this object. action. or action sequence occur (in this context)?" and
"What objects. actions. or action sequences occurred (in this context)?"
The third and final form of knowledge to be examined is declarative
knowledge. Declarative knowledge is knowledge about what is true in the
world. These final two forms of knowledge have often been referred to
collectively as propositional kncwledge. with the term “semantic

knowledge" used in place of declarative knowledge (Tulving. 1983).

The plan for this chapter is to start with a brief conventional description
of the Soar architecture (Section 1). followed by its redescription in terms
of the direct support it provides for knowledge (Section 2). The core of
the chapter then consists of in-depth analyses of how procedural. episodic.
and declarative knowledge are represented. stored. retrieved, used, and
acquired in Soar (Sections 3-5). Special emphasis is placed on how the
architecture supports and constrains these abilities. The chapter is
concluded with a summary of key points and important directions for

future work (Section 6).

1. Soar?
Research on Soar to date has focused on the dev-.opment (and

application) of an architecture for intelligence that is based on formulating

This section describes Soar 4.3 (Laird et al, 1939), which is the basis for the analyses
in this chapter.
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all symbolic goal-oriented behavior as search in problem spaces. The
problem space determines the set of states and operators that can be used
during the processing to attain a goal. The states represent <ituations.
There is an initial state. representing the initial situation. and a set of
desired states that represent the goal. An operator, when applied to a
state in the problem space. vields another state in the problem space. The
goal is achieved when a desired state is reached as the result of a sequence
of operator applications starting from the initial state. Each goal defines
a problem-solving context {"context" for short) that contains. in addition

to a goal. roles for a problem space. a state. and an operator.

Problem solving for a goal is driven by decisions that result in the
selection of problem spaces. states, and operators for the appropriate roles
in the context. Decisions are made by the retrieval and integration of
preferences — special architecturally interpretable clements that describe
the acceptability, desirability, and nzcessity of selecting particular problem
spsces, states, and operators. The context in which a preference is
applicable is specified by its goal. problem-space. state. and operator
attributes. When present. they specify the objects that must be already
selected in the context for the p-~ference to be valid. For evample, the
following is a desirability ~ aference stating that cperator ol is at least as
good as any other operator — that is, it is best — for state si., problem

space pl. and goal gl.

(preference ol “role operator “value dest
“goal g1 “problem-space pl “state s1)

A
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There are two types of acceptability preferences — acceptable and reject
— to rule an operator into and out of consideration for selection. .\ reject
preference overrides an acceptable preference. There are five types of
desirability preferences — worst. worse. indifferent. better. and best — to
determine the relative desirability of considered objects. Worst and best
are unary preferences.  Worse and better are binary preferences.
Indifferent can be binary or unary. in which case the object is indifferent
to all other competing objects with indifferent preferences. There are two
tvpes of necessity preferences — require and prohibit — for asserting that
an object must or must not be selected for a goal to be achieved. Details

vn the semantics of preferences can be found in (Laird, Newell. &

Rosenbloom, 1987).

All long-term knowledge is stored in a recognition-based memory — a
production system. Each production is a cued-retrieval unit that retrieves
the contents of its actions when the pattern in its conditions is successfully
matched. By sharing variables between conditions and actions,
productions can retrieve information that is a function of what was
matched. By having variables in actions that are not in conditions. new

objects can be generated/retrieved.

Transient process state is contained in a working memory. This includes
information retrieved from long-term memory. results of decisions made
by the architecture, information curren.ly perceived from the external

environment, and motor commands. It should be clear that this process

AN ik i AL
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/
state -is much more than just a single state in a problem space. The
process state is the entire transient state of the system. which includes as
components, states in problem spaces. and in fact whole problem-solving
contexts. It provides the cues for retrieving additional information from

long-term memory.

Structurally, working memory consists of a set of objects and preferences
about objects. Each object in working rﬁemor,\' has a class name. a unique
identifier. and a set of attributes with associated values., which may be
constants or identifiers (allowing a graph structure of objects). For

example, a particular box could be represented by the following object.
(box b1 “name boxl “height 10 “width 4 “depth 2)

The class is "box", the identifier is "61". the name of the box is "box1",

and the box has a height of 10 a width of 4 and a depth of 2.

For each problem-solving decision. the contents of working memory is
elaborated by parallel access of long-term memory to exhaustion. All
productions that match the current working memory are fired in parallel,
and this repeats until no productions match. This elaboration process
retrieves into working memory new objects. new information about
existing objects, and new preferences. When quiescence is reached — that
is, when no more productions can fire — an architectural decision
procedure interprets the preferences in working memory according to their
fixed semantics. If the preferences uniquely specify an object to be

selected for a role in a context, such as selecting the current operator for a
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state, then a decision can be made. and the specified object becomes the
current value of the role. The whole process. an elaboration pbase

followed by a decision. then repeats.

If the decision procedure is ever unable to make a selection — because
the preferences in working memory are either incomplete or inconsistent —
an impasse occurs in problem solving because the system does not know
how to proceed. When an impasse occurs. a subgoal with an associated
problem-solving context is automaticaily generated for the task of
resolving the impasse. The impasses. and thus their subgoals. vary from
problems of selection (of problem spaces. states and operators) to
problems of generation (e.g., operator application). Given a subgoal, Soar
can bring its full problem-solving capability and knowledge to bear on
resolving the impasse that caused the subgoal. For example. if an
operator-tie impasse occurs because multiple operators are competing for
selection with insufficiently distinguishing preferences. then a subgoal is
created in which Soar can (among other things) execute operators to
evaluate the competing alternatives.  Productions can then create

preferznces based on these evaluations. allowing the decision to be made.

When impasses occur within impasses — if, for example. there is
insufficient knowledge about how to evaluate a competing alternative —
then subgoals occur within subgoals. and a goal hierarchy results (which
therefore defines a hierarchy of contexts). The top problem space consists

of task operators: such as, to recognize an item. The subgoals are
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genecated as the result of impasses in problem solving. \ <ubgoal

terminates when the impasse is resolved.

Soar learns by acquiring new productions that summarize the processing
that leads to the results of subgoals. a process called chunking. The
actions of the new productions are based on the results of the subgoal.
The conditions are based (Sn those working memory elements in supergoals
that were relevant to the determination of the results. Felevance is
determined by using the traces of the productions that fired during the
subgoal. Starting from the production trace that generated the subgoal's
result, those production traces that generated the working-memory
elements in the conditions of the trace are found. and then the traces that
generated their condition elements are found. and so on until. elements are
reached that are in supergoals. Productions that only generate desirability
preferences do not participate in this backtracing process — desirability
preferences only affect the efficiency with which a goal is achieved, and

not the correctness of the goal's results.

Soar’s perceptual-motor behavior is driven by a set of asvnchronous
modules, and mediated through the state in the top context. Each
perceptual and motor modality (module) has its own state attribute to
which perceptual information is added and/or motor commands are taken.
New sensory information arrives in working memory whenever it is
available. and motor commands are sent to the appropriate motor

modules as soon as they are added to working memory. Sensory
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j
information can be retained by explicitly attaching it to other eyxisting

structures. Otherwise. it will be «isplaced when new information arrives.

Figure 1-1 summarizes the major functional and structural components
of the Soar architec-ure — its memories. basic computational ecycle.
learning, and interfaces.

e Purpose of Research: Architecture for general intelligence.
e Organizing Framework: Goals and problem spaces

o Long-term Memory: Recognition-based productions.

e Short-term Memory: Objects and attributes.

e Basic Computation Cycle: Elaboration (access LTM until
quiescence) and decision.

e Decisions: Preference-based for problem spaces. states. and
operators.

e Subgoal Creation: Impasses in decision scheme.

e Learning: Chunking — summarize processing of <ubgoal as 2
production.

o Interface to External Environment: Asynchronous through top-
state.

Figure 1-1: Summary of Soar.
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2. Architectural Support for Knowledge

The conventional description of Soar provided in the previous section
does not always make clear the ways in which the architecture directly
supports knowledge. That is the task for this section — to make explicit
the ways the architecture directly supports knowledge in general. and
procedural. episodic. and declarative knowledge in particular. The
question of indirect architectural support is left to the later sections. which

examine each of these three tvpes of knowledge in detail.

General support is provided by productions. the elaboration phase.
impasses. subgoals. problem space search. working memory, and chunking.
Productions provide for the explicit storage oi‘ knowledge. The knowledge
is stored in the actions of productions, while the conditions act as access
paths to the knowledge. The process of retrieving knowledge by the
matching and firing of a production comprises a search of the system'’s
explicitly stored long-term knowledge. It is thus termed knowledge search
(or k-search). Knowledge retrievable by k-search — i.e.. by the firing of a
production — is termed k-retrievable knowledge. K-search is efficient, but

relatively limited in its capabilities.

Knowledge that is not retrievable by the firing of a single production
may still be retrievable by the firing of multiple productions in a single
elaboration phase. This happens when information retrieved early in an
elaboration phase provides the cues that allow the desired information to

be retrieved by a later production firing. It also happens when the desired
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information is distributed among the actions of multiple productions.
which retrieve it by firing jointly within the same elaboration phase. This
is termed A*-search. and Knowledge retrievable through elaboration i<
termed k*-retrievable knowledge. k*-<earch is exhaustive but efficient.
allowing the svstem to use a significant body of knowledge in its decisions

even under relatively stringent time constraints.

The creation of impasses provides a means for determining when the k*-
retrievable knowledge is an inadequate basis for making a decision. The
decision procedure ecan detect incompleteness and inconsistency in the set

of k*-retrievable preferences. but cannot directly detect incorrect or sub-

optimal knowledge.

Subgoals provide contexts in which knowledge that is not k*-rebr.'ievable
can be retrieved by problem-space search (or ps-search). Knowledge that
is retrievable by ps-search is termed ps-retrievable knowledge. Because
problem-space search (ps-search) is always eventually grounded in
production firings (k*-search), there is a fairly direct relationship between
ps-retrievable knowledge and k*-retrievable knowledge.® Knowledge that
is ps-retrievable in the current context is constructed from pieces of
knowledge which are independently k*-retrievable in other contexts. but

not jointly k*-retrievable in the current context. Ps-search allows for the

3Here, and in vhe remainder of this chapter -he terms k*-search and k*-retrievable
knowledge will be assumed to subsume the terms k-search and k-retrievable knowledge.
respectively. except where the distinction is parsicularly crucial.

e
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consideration of alternatives and the deliberate construction of
information. whereas - k*-search provides for only the monotonic
accumulation of knowledge. Problem-space search is selective and slow.
but can with sufficient resources retrieve any knowledge in the system'’s

knowledge level.

Working memory provides a locus where retrieved knowledge can be
examined and used. It also provides a locus where new knowledge can
reside temporarily before it ic stored into long-term memory by chunking.
Chunking provides a means of creating new productions. thus directly
augmenting the system’s store of k*-retrievable knowledge. and indirectly
augmenting its store of ps-retrievable knowledge. Chunking is the

mechanism for converting ps-search to k*-search.

Procedural knowledge is specifically supported by the architecture in
four ways. First, production execution is a primitive form of controiled
action. Executing a production performs 2 form of retrieval in which the
retrieved information is adapted to the current situation before being
retrieved. The nature of the adaptation is determined by the production’s
variables. Variables that are shared between conditions and actions result
in the retrieved information being instantiated to be about existing
objects, Variables that exist only in actions result in the creation of new
objects. Control is exerted on production execution by the match.
Production conditions specify situations that must hold in working

memory in order for the retrieval actions to be executed (Newell,
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Rosenbloom & Laird, 1989). Unlike traditional production svstems. there
is no additional conflict resolution process that participates in the contral

of production execution.

Second. the selection of an cbject for a context slot is also a primitive
form of controlled action. Selections are actions performed by the
architecture that change the focus of problem solving in working memory-.
For example. the selection of a new operator changes what the system is
attempting to accomplish. Preferences represent architecturally

interpretable control information for the selection process.

Third. the concept of a problem-solving operator is partially supported
by the architecture. The architecture provides an operator role in
contexts and the decision procedure that enables the selection of operators
for operator roles. It also provides for the generation of impasses when
there is insufficient knowledge about how to select or execute an operator.
An important form of support not provided is an architecturally
interpretable operator language. Instead. operator execution always
eventually grounds out in memory retrieval (and motor behavior). How
this happens may be quite complicated, involving numerous subgoals. or
the interpretation by productions — that is. by further memory retrieval

— of an arbitrary operator language.

Fourth, the architecture provides motor commands that perform

primitive actions in the external environment. There is not yet a complete
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and standard set of motor commands in >doar. [nstead. what exists is a
text-output module. providing basic text-output commands. and a flexible
mechanism for adding new modules to. for example. control robot arms
(Laird. Yager. Tuck. & Hucka. 1989) and mobile robots. Nelection of
motor commands is not provided directly by the architecture. [t is under
the control of the knowledge (productions) which retrieve the motor

commands into working memory. usuallv under the aegis of operator

execution.

Episodic knowledge is specifically supported by the chunking and
execution of new productions. Chunking acquires new productions based
on problem-solving episodes. The actions of a chunk correspond to
information that was generated as the result of an episode. When the
chunk executes it retrieves information that is similar to that generated
during the episode — though. as mentioned above. the retrieved
information is generally adapted to the current situation rather than being
a verbatim record of the earlier episode’s results, The conditions of the
chunk ensure that the adapted results are onlv retrieved in similar
situations. . ot provided by the architecture is a mechanism that creates

verbatim records of the system's experiences for later examination.

Declarative knowledge is specifically supported by the working and
production memories. Working memory is a transient memory of objects.
with associated attributes and values. These objects are declarative in

that they are examinable (by productions). but they need not have a fixed




Towards the Knowleage Level 1n Soar Page 17

semantics.  Production memory provides for long-term ~torage of
declarative structures — in the actions of productions — which can be

retrieved {and adapted) by production execution.

3. Procedural Knowledge

As mentioned in the introduction, procedural knowledge is knowledge
about the agent’s actions. which includes knowledge about which actions
can be performed. which actions <hould be performed when (control
knowledge). and how actions are performed. Procedural knowledge is
already one of the most well developed and understood parts of Soar.

Soar was. after all. originally developed as a general problem-solving

architecture. Thus this section primarily serves as a review, but it also
ser;/es to develop a number of the basic concept~ used in the subsequent
sections on episodic and declarative knowledge. The discussion is divided
into subsections covering the three subdomains mentioned above:
performable actions. action control. and action performance. For each of
these subdomains. we discuss how the knowledge is represented. stored.
retrieved. used. and acquired. This same suborganization will e followed

in later sections on episodic and declarative knowledse.

3.1. Performable Actions

Performable actions are represented as operators. along with acceptable
preferences that can cause the operators to be considered in some set of
situations. Each operator is represented in working memory as an object

— a declarative structure — rather than a production. For example, an
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;
operator in the Eight Puzzle that slides a tile from one cell on the board
to an adjacent one could be represented as (operator 0! “name slide).
When augmented with parameters specifving the source and destination

cells for the tile., the operator can be represented as (operator ol “name

slide “source ¢! “destination c2). where the symbols ¢1 and ¢2 are the

identifiers of the two cells.

The declarative structure for operator:s. and their acceptable preferences.
are stored in the actions of productions. The entire object can be stored
in the actions of a single production (k-retrievable); it can be distributed
across the actions of a group of productions that all fire within a single
decision cycle (k*-retrievable): or it can be distributed across multiple

productions that fire in a subgoal that constructs the operator, bit by bit

(ps-retrievable).

Problem spaces are a major source of context for operator retrieval. The
production in which the above Eight Puzzle operator is stored will have a
condition which tests that the Eight Puzzle problem space is the one
currently selected in a context before retrieving the operator for the
context. It is also often useful to utilize the operator's preconditions as a
source of retrieval context. If this is done. then the operator is only
retrieved in situations for which it is applicable. An alternative is to
retrieve the operator according to means-ends analysis, that is, when the
operator will reduce the difference betveen the current state and the

desired state. With means-ends analysis. an operator may be retrieved
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even when its preconditions are not ~atistied by rhe current state.

Operators by themselves o aothing,  The architecture does not
understand the language(s) in which perators are written, and therefore
does not know how. based just on the operators themselves, to either
select among them or to perform them. The best the architecture can do
without additional knowledge is to perform various default actions based
on its understanding of their accepiable preferences. It can select an
operator if it is the only candidate available. and generate an impasse if

there is more than one operator. or il the selected wne cannot he executed.

Operators. and their acceptable preferences. are cues for retrieving a
variety of additional knowledge. The operator structure can trigger
knowledge about how to select and perform operators (Sections 3.2 and
3.3).  The acceptable preferences can trigger knowledge in both
prospective and retrospective [ashions. Prospectively. acceptable
preferences for operators determine what operators are being considered
for the next selection.  Retrospectively, acceptable preferences for
operators act as episodic knowledge about what operators were considered

for what states (Section 4).

Operators. and their acceptable preferences. are acquired by the
chunking of problem-solving episodes that generate them as results.
Chunking does not by itself generate new operators. but it can convert ps-

retrievable opcrators in*o k*-retrievable ones, as well as store away in
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production memory riew operators that are generated. The conversion of
operator knowledge from ps-retrievable to k*-retrievable is the obvious
caching effect produced by chunking. Storage of newly generated
operators factors into two cases. If the new operators are generated
internally. then they must have already been ps-retrievable — that is.
retrievable by problem space search — thus reducing this case to the
previous caching situation. If the new operators are based on external
information. chunking can turn unretrievable operators into k*-retrievable

operators. This is a more subtle consequence of chunking that is worth

looking at in some detail.

Yost & Newell (1988) demonstrated how new operators could be
acquired from external information. in the context of a system called TAQ
(Yost. 1987) that acquires new tasks (i.e.. problem spaces) from external
descriptions. In more recent work. this approach has been extended to
take simple English instructions for a range of immediate-reasoning tasks.
such as categorical syllogisms and sentence verification (Lewis. Newell, &
Polk, 1989). Figure 3-1 shows the two basic steps. The first step in task
acquisition is to comprehend an externally provided description of the task
to be acquired. This description can conceptually take a variety of forms
— versions of TAQ have accepted descriptions in simple Engiish sentenccs
and in a formal problem space notation. The outcome of the
comprehension process is the presence in working memory of a declarative

description of a problem space for the task. The second step is to solve

3 g
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the problem using the declarative description interpretively.

That is, =t

each point in task performance. if the next required activity — such as the

generation of an operator — is not directly performable by k*-earch. then

a subgoal occurs. Within the subgoal. the declarative task de<eription i-

examined and interpreted by a set of pre-existing problem spaces that

search throngh the declarative task description for information about what

to do in the current situation.

Interpretation

K*-retrievable

Comprehension
Unretrievable Ps-retrievable
-
External Internal
declarative declarative

specification of
task

specification of
task

—>

Internal action
specification of
task

Figure 3-1: The two stages of acquiring operator knowledge.

The chunks acquired for these interpretation sub<oals directly implement

the required activity.

Chunking the comprehension process converts

unretrievable operators into ps-retrievable operators — using memorization

techniques described in Sections 4 and 5 ~ and chunking of the

interpretation process makes the ps-retrievable knowledge k*-retrievable.
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3.3.:Action Control

Control knowledge — that is. knowledge about how to <elect among
performable actions — is represented to the architecture by operator
preferences. The three types of preferences described in Nection 1 —
acceptability, desirability. and necessity — are used to represent three
qualitatively different types of control knowledge. Acceptability
preferences represent knowledge about whether an operator is to be
considered for execution. ('nconsidered operators have no effect on the
decision procedure: they cannot be selected. nor can they cause an impasse
to occur. Desirability preferences represent heuristic information that can
be brought to bear in determining what operator is likely to lead towards
goal satisfaction. Necessity preferences represent constraints derived from
the goal. They can be used to gnarantee that certain conditions are
always (or never true) during the s2arch, thus climinating the need to
explicitly test them at the end. In the extreme. necessity preferences can
be used to explicitly represent the entire sequence of steps in a proc:dure
that achieves some goal. eliminating the need for an explicit goal test at

the end.

Preferences are stored in the actions of productions. In any particular
situation an arbitrary preference can be k-retrievable, k*-retrievable. ps-
retrievable, or unretrievable. The primary context for preference retrieval
is the object being considered and the objects already selected as part of

the problem solving context. For example. the retrieval context for
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operator preferences in the Eight Puzzle includes the <perator - wing
eonsidered (to <lide a tile trom cell ¢ 1 into cell ¢.). the goal to he achieved
2 somtion to the Eight Puzzler, the problem space (Eight-Puzzle), and the
state to which the operator i~ to be applied. For binary preferences, ~uch

as better worse and indifferent preferences. the retrieval context includes

multiple contending objects.

Preferences are used both by the arehitecture — the decision procedure
— and hy other knowledge.  The architecture uses preferences ro
Jetermine what ~election ro make. or what type of subgoal to generate if
no selection can be made. As mentioned in Section 3.1. preferences can

act as cues about what the decision procedure is going to do. and to

reconstruct what it did in the past.

Preferences are acquired by the chunking of jroblem-solving episodes
that generate preferences as their results. Most of our experience in
acquiring preferences involves the acquisition of lesirability preferences
and that is all that will be discussed here. thongh the nequisition of
acceptable preferences is covered under the -liscussion of operator

acquisition in Section 3.1.

As with knowledge about performable actions. chunking can turn ps-
retrievable preferences into k*-retrievable preferences. and convert
unretrievable  preferences into  ps-retrievable and  k*-retrievable

preferences. The most common way to turn ps-retrievable preferences

[N
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inw;'k,‘l-retrievable ones involves a look-ahead search. This prr.cess has
been described in detail elsewhere (Laird. Newell. & Rosenbloom. 1987).
but the essence is to use Soar's basic search capabiliv; Zlong with
knowledge — about how to evaluate states. how to back up evaluations to
earlier operators and states, and how to generate preferences from
evaluations — to generate, and thus learn via chunking, preferences about

operators that have tied for selection.

As demonstrated in (Golding,. Rosenbloom. & Laird. 1987). it is possible
to use external advice to assist in the process of converting pSoret'rievable
knowledge into k*-retrievable knowledge. If advice is given about what
alternatives are good (or bad, for that matter), the advice can be turned
into preferences which guide the look-ahead search. This can reduce the
amount of search required without changing the chunks that are learned
for the search. Externally provided knowledge can also be used to shift a
piece of control knowledge from unretrievable to k*-retrievable using the

techniques described in Section 3.1 (Yost & Newell. 1988).

3.3. Action Performance

As mentioned previously, Soar does not have a single, architecturally
intemretgble language for action performance. Instead, there are several
distinct ways of representing action performance. One way to represent
action performance, at least for external actions, is as some combination of
motor ‘commands. Retrieval of motor commands into working memory

causes the associated motor systems to behave in appropriate fashions.
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There is a fixed language of motor commands, as determined by rhe

available motor svstems.

A second way to represent action performance is as a snbprocedure that
performs the action when executed. In Soar torms. the subprocedure is
the processing in a ~ubgoal that arises when the results of performing the
action are not k*-retrievable, Within the subprocedure. the types of

» procedural knowledge described in this section would be applied

recursively.

A third way to represent action performance is as the state that results
from applyving the operator representing the action. As with operators.
the entire state can be stored in the actions of a single production (k-
retrievable). it can be distributed across the «ctions of a group of
productions that all fire within a single decision rycle (k*-retrievable). or
it can be distributed across multiple productions that fire under different
circumstances (ps-retrievable). The ps-retrievable case corresponds to the
representation of action performance as subprocedures that is described
above. Such a procedural representation — that is. representation as a
subprocedure. rather than representation of a procedure — can actually be
used for any piece of knowledge. whether the knowledge is itself about

procedures or not.

The primary context for the retrieval of a result state is the conjunction

of relevant features of the previous state and the operator. The result
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state-is used as the basis for further problem solving. by serving as part of
the retrieval context for goal testing, result generation, state and operator
evaluation. and operator generation. selection. and application. The result
state's acceptable preference is used by the decision procedure to select the
state as the current state. As mentioned in the previous subsections. other
knowledge may also use the preference prospectively to determine what
state is going to be selected. and retrospectively to determine what state

was selected. and what operator and state preceded it.

Acquisition of result states occurs by the chunking of problem-solving
episodes that generate such states. One of the most common ways to
acquire a k*-retrievable result state is to chunk over the process of
executing a procedure that represents an action. As with the acquisition
of knowledge about control. external advice can be utilized to speed up
the process of acquiring knowledge about action performance. [n one
version, demonstrated for subtraction. Tic-Tac-Toe, and simple block
manipulation, the system starts out with a set of primitive operators that
are sufficient to implement the individual tests and modifications made by
any operator. Advice is then used to determine which elements the action
should test and generate for the specific operator being acquired. Given

the primitive operators, this approach allows arbitrary operators to be

acquired from advice.

Another way to acquire knowledge abou: action performance is to chunk

over the process of interpreting an externally provided description of the
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action. as in (Yost & Newell, 1988). The process proceeds mueh as «id the
corresponding one in Neetion 3.1. where in this case. one or more chunks

are learned that can retrieve the re<uit ~tate in the future.

3.4. Summary

Procedural knowledge appears to be adequately supported by the current
architecture. This should not be too surprising as it was originally
designed for this: or at least for representing problem-solving knowledge.
One aspect that might come as a surprise is that productions. though they
are a primitive form of action. are not the model for action — operators
are.  Another possibly surprising aspect is that there is no single
architecturally interpreted operator language. The fixed operator language
common to most systems is replaced by the ability to perform operators
by memory retrieval — either k*-retrieval or ps-retrieval — in conjunction
with motor commands. The flexibility of this approach allows
performance knowledge to be represented either directly in action form or
as declarative structures that are interpreted. In fact. with the aid of
software interpreters it should be possible to construct arbitrary operator
languages. One example of such an approach is the language and

interpreter used in the task acquisition work.

Learning has an important place in the use of procedural knowledge. By
converting ps-retrievable knowledge into k*-retrievable knowledge. it can
improve the system's ability to retrieve relevant knowledge under real-

time constraints, and thus improve the system's approximation to the

vt
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prindipie of rationality. It can convert interpreted behavior into direct
action. It can also acquire new knowledge from the outside world.
allowing the system to expand the tasks it can work on and the knowledge

that it can use on those tasks.

4, Episodic Knowledge

Episodic knowledge is knowledge about what has occurred. I[n general.
the individual elements of episodic knowledge can be viewed as instances
of a binary predicate, Occurred(x. y), where r is an object. action. or
sequence of actions that has occurred — for simplicity we will refer to all
such members of the class of things that can occur as events — and y is a
context in which the event occurred. Two loose but illustrative examples
are Occurred("gaf", "List 1 of Experiment 2"). which denotes that a
particular object (the nonsense trigram "gaf") occurred in a particular
context (during the first list of experiment 2), and Ocecurred("pull-knob
then turn-knob". "setting time on watch"), which denotes that a
particular sequence of actions (pulling out of the watch’s knob followed by

turning of it) occurred in a particular context (the setting of the watch).

There are two notable features about the role of episodic knowledge in
Soar. First, episodic knowledge can be represented at many different
levels of explicitness. Second, although the representation. storage,
retrieval, and use of episodic knowledge is rather straightforward, the
acquisition of some forms of episodic kn,wledge is quite challenging. It

leads us to posit the existence of comparatively complex strategies for
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acquiring these forms of episodic knowledge.

4.1. Representation
One way to represent episodie knowledge is completely as derlarative
structures; that is. as objects with attributes and values,  In such 2

representation. the above two examples might appear as follows,

(occurred el “event 0l “context ¢l)
(object 01 "name gaf)
(context ¢l “experiment 2 “list 1)

(occurred e2 “event s/ “context ¢.)
(sequence sI “actionl al “action2 uJ)
(action @/ "name pull-knob)

(action a2 “name turn-knoh)

(context ¢2 “name setting-time-on-watch)

However. not all of this knowledge need be vepresented directly as
declarative structures. The alternative is to omit ~ome of the components
from the explicit representation. and assume them implicitly by default.
The key to making this work is an understanding of the episodic nature of
chunking: that is. that chunks are acquired as the result of problem-
solving episodes, and execute in contexts that are <imilar to the ones in
which they were learned. Spinning out the consequences of this
understanding leads to a sequence of ways of omitting and modifyving

components of the representation.

The first component that can be omitted is the context. The conditions
of a chunk represent both the context in which the information was

learned and the contexts in which it should be retrieved. Therefore. when
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information is retrieved from long-term memcry it can be assumed that it
was learned in a situation that was similar to the retrieval situation.
Eliminating the explicit context from the example above leaves the

following explicit structures.

(occurred el “event ol)
(object ol “name gaf)

(occurred e2 “event s1)

(sequence sl “actionl al “action2 a2)
(action al “name pull-knob)

(action a2 “name turn-knob)

The next component that can be omitted is the occurred predicate.
which, now that the context is removed, just states that its event
occurred. If it is assumed that all knowledge that is retrieved from long-
term memory got there via chunking — even if the system starts out with
a number of productions. after sufficient time nearly all of its productions
should have been acquired by chunking — then it can be assumed that any
structures retrieved from long-term memory must have been seen before.
Therefore. the explicit predicate can be eliminated in favor of the
assumption that anything that is retrieved has occurred. Eliminating the
occurred predicate from the example leaves the following explicit
structures.

(object 01 “name gaf)

(sequence s1 "actionl al “action2 a?2)
(action al "name pull-knob)
(action @2 “name turn-knob)
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/
The episodic knowledge about the zal' event is now representeq piite

~imply as a typical Soar ohject — nli ~tructures that were introduced ~oey
for their role in representing episodic knowledge have heen sleleted. This
is thus its tinal form. However, for the wateh event. two additionai steps
are needed to convert its action sequence into its final form. The tir<t
step involves a change in nomenclature to replace actions with operators,
Operators are intended to represent actions that can be performed rather
than actions that were performed. but the assumptions made <o far imply
that it an operator is retrieved in 1 context then it must have been learned
in a <imilar context. Operators can therefore stand in for actions that
have occurred. Making this change eliminates the need for creating new
structures to explicitly represent actions that have occurred. using the

existing operator structures instead.

(sequence s/ “operatorl «l ‘operator2 a?)
(operator a/ “name pull-knob)
(operator a2 “name turn-knob)

The second. and final, step is to replace the explicit representation of
operator sequences with preferences. As mentioned in the previous
section. preferences can be used retrospectively to -ietermine what objects
were selected. Through their context fields — the goal. problem-space.
state. and operator fields — they can also be used to determine what
objects were current in the context at the time the object was selected.
The following recoding of the example represents that operator «l was

acceptable in the situation characterized by gl. pl. and sl: that state 3.
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was-acceptable in the situation where operator al was additionally selected
(it is al's result); and that operator a2 was acceptable in the situation

where state s/ has been replaced by state s2.

(preference al “value acceptable “role operator
“goal g1 problem-space p! “state si)
(operator a. “name pull-knob)
(preference s2 “value acceptable “role state
“goal gl problem-space pl “state s "operator al)
(preference a2 “value acceptable “role operator
“goal g1 problem-space pI “state 32)
(operator a2 “name turn-knob)

As was true of the gaf event earlier, the watch event is now represented i
without the use of any structures introduced solely for their role in

representing episodic knowledge. The explicit structures that are left may
actually be larger than some of the previous (this is not true of the gaf

example), but they are structures that are already available because of

e €

their role in problem solving. This is thus Soar’s native form of episodic
knowledge. The significance of this is three-fold. First, this is the form of
episodic knowledge which is available without positing additicaal
semantics (or apparatus). Second. this form of episodic knowledge will
always be around anyway, so it needs to be taken into consideration.
Third, because it posits no additional apparatus, it should automatically

compose well with the other capabilities in the system.
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4.2. Storage

The manner of ~torage of episodic knowledge is a function of the
representation that is nsed, Components that are directly represented ns
declarative structures are stored in the actions of productions. The "gaf™
example might be <tored in a production like the following {or across

multiple productions).
->
(occurred <el> “event <ol> “context <cl>)
(object <ol> "name gaf)
(context <¢l> experiment 2 ‘list 1)

Though this production i~ <shown without conditions. as described in
Section 3. it is necessary {and possible) to add additional conditions to

restrict the situations in which such declarative structures are retrieved.

Assumed parts are simply omitted from the actions. However. for the
context assumption to work. a representation of the context must appear
in the conditions of the production. This doesn’t allow the context to be
retrieved as an explicit structure. but does constrain the explicit structures
to be retrieved only in contexts similar to the ones in which they were
learned. The "gaf" example above would be stored as a production like

the following one.

(context <cl> ‘experiment 2 “list 1)
--> (object <ol> “name gaf)

4Symbols enclosed in angle brackets, such as -~ e1>>, are variables.
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Exg;iicit episodic knowledge is retrieved in the same way as are other
declarative structures; that is. by a combination of k*-search and ps-
search. Omitted components are retrieved by assumption. If the context
of occurrence is omitted, then it is assumed to share critical features with
the retrieval context. If the predicate is omitted. occurrence is assumed
for retrieved information. If actions are omitted, operator retrieval is
assumed to denote an action that was executed. If sequence information is
omitted, preferences are assumed to denote sequences of operators and

states that occurred.

4.4. Use

There has not yet been a great need for episodic knowiedge in the tasks
that have so far been implemented in Soar. Nonetheless, it has been used
in several distinct ways. One way is the use of preferences as the basis for
a form of chronological backtracking — a short-term episodic use in which
the preferences remain in working memory throughout. Soar normally
backtracks in look-ahead search by terminating subgoals that lead to
failure. However, there are times when Soar thinks it knows what it is
doing — so no look-ahead search is being performed — yet failure still
occui!i. Backtracking under these circumstances involves examining the
acceptable preference for the state at which failure occurred to find out
which state was current when the faileci state was selected, This prior

state is then reselected, and problem solving is continued.
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A second use is as the basis for recognition and recall tasks (Rosenbloom,
Laird. & Newell. 1987. Rosenbloom. Laird. & Newell. 198831 In =
recognition task the <vstem i~ presented with a list of items 1o be
memorized. [t is then prompted with an item which may or may not be
in the list. [ts task is to ~ay yes il the item was in the list and no if it
wasn't. A recall task is similar. but instead of being prompted with an
item. the system must produce as many of the items in the list as it can.
without producing items not in the list. These tasks require episodic
knowledge because they ask questions about what happened in the

system'’s past.

A third use is as the basis for the transfer of procedural knowledge. The
procedural knowledge that Soar learns can he viewed as really being
episodic knowledge about the past behavior of rhe system. To use this
episodic knowledge as procedural knowledge. there is an implicit
assumption that what is descriptive of the past is normative for the
future. This assumption is maintained until it leads to an error, at which
point the system attempts to recover by doing something other than what

is directly dictated by its past experience (Laird, 19%88).

The issue of errors is actually a key one when native episodic knowledge
is used, because. whenever an assumption is made. the possibility for error
creeps in. There are four classes of situations that can lead to errors.
Some of these are intrinsic in the natur of the world. while others arise

because of specific architectural commitments in Soar. The first class of
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errors arises because of mistakes in credit assignment. Soar cannot
examine the conditions of productions. so when knowledge is retrieved it
can only guess as to which aspects of the retrieval context were shared
with the context in which the knowledge was learned. This can lead to
both errors of commission and omission. Suppose. for example. that the
system is winding a watch at the same time it is trying to recall the
elements that occurred in list 1 of experiment 2. It will retrieve both
*gaf" and "pull-knob then turn-knob". The problem-is that there is no a
priori reason to assume that one of these events is in the list and that the
other is not. In this particular case it might be able to use background or
other contextual knowledge to reason that the watch events were not part

of the list, but in other cases it may not be so lucky.

The second class of situations arises because of mistakes in context
generalization. There is a trade-off between the scope of applicability of
knowledge and its utility as episodic knowledge. The more general is the
context. the more situations in which the knowledge can be retrieved. and
thus be available for use. However, increasing the generality also
decreases the ability to discriminate the situations in which the knowledge
was originally learned from related situations. This can be seen clearly in
the acquisition and use of control knowledge. The more general is the
control knowledge, the more search is eliminated, assuming the
generalization is correct, However. generality also implies that the

knowledge will be retrieved in a variety of contexts, many of which are
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only remotely like the one in which the knowledge was learned,

The third eclass of situations arises because of mistakes in memory
attribution. The only examinable structures in Soar are those in its
working memory. >uch structures could arise from memory retrieval.
from intervention by the architecture (the decision procedure), or from
perception. Only those that arise from memory retrieval embody episodic
knowledge. Normally this shouldn’t be a problem because the decision
procedure and perceptual svstems each create structures in a characteristic
fashion: the decision procedure only modifies certain special attributes of
goals: perception always adds its «tructures to special attributes of the

state in the top context. However, the possibility remains.

The fourth, and final class of situations can be caused by any of the first
three. It occurs because c¢f mistakes in co-occurrence attribution. Such
failures occur when the system mistakenly thinks it has previously
experienced an event t- -ause it has experienced all f its individual pieces.
though never all as jurr of a single event. Suppc~e, for example. that in
one context the system -ces a large ball. and in a ~imilar context it sees a
green ball. A co-occurrence error occurs if the system thinks that it saw
both in the same context, or worse. that it has seen a single large green
ball. In the recognition and recall tasks this problem is partially dealt
with by assuming that k*-retrievable objects have been experienced. while
ps-retrievable and unretrievable objects ave not. The rationale is that

k*-retrieval, being a limited computational mechanism. has a limited
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i
abilisy to put things together in novel ways. while ps-retrieval allows

arbitrary structures to be created.

4.5. Acquisition

Episodic knowledge is acquired by chunking problem-solving episodes.
Though this is somewhat of a tautology for Soar. it is not always as simple
as it sounds. The simple case is the acquisition of episodic knowledge
about objects generated in subgoais. " If such objects are returned as
results of their subgoals. then chunks are created which can later be used
as episodic knowledge about the objects. The variety of subgoal results —
objects, operators, preferences. etc. — leads directly to variety in the

episodic knowledge that can be learned.

Under normal circumstances this episodic knowledge is represented in
what we have referred to as native form: that is, predicates, contexts,
actions, and sequences are represented respectively by chunk existence.
production conditions, operators. and preferences. However. if the system
monitors its own performance. and creates declarative structures
representing what has transpired, then the chunks created for such
structures can be used as explicit declarative-form episodic knowledge
about what has transpired. In addition. such chunks can be used as

native episodic knowledge about the monitoring process itself.

One form of episodic knowledge that cannot be handled this easily is

knowledge about what has happened to the system; that is, knowledge
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about what the system has perceived rather than knowledge about what
the svstem has generated. The "zaf" example presented above is a typieal
perceptual eveuat. The episodic knowledge to be acquired is about the
perception of "gaf" in a particular context (experiment 2. list [l s
described in Section 1, Noar's input mechanism attaches perceptual
information to the state in the top problem-solving context. [n order for
information about the event to be stored into long-term memory by
chunking. an internal episode must be generated in which this perceptual

information is used.

For perceptual events it is relatively easy to acquire a form of episodic
knowledge akin to a familiarity test. The system must simply chunk over
a subgoal in which it examines a representation of the perceptual event
and the context. and generates as a subgoal result an occurred predicate
covering them (Rosenbloom. Laird, & Newell, 1987). A familiarity chunk
for this example might look like one of the following two productions.

depending on whether the context is explicit or not.
(object <ol> “name gaf)
lecontext <cl> “experiment 2 “list 1)
>
(occurred <el> “event <ol> “context <cl>)

(object <ol> "name gaf)

(context <cl1> “experiment 2 “list 1)
-~>

(occurred <el> “event <ol>)

In the systems so far implemented, context is actually ignored in the

learning of episodic knowledge. By having no explicit representation of
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context in either the conditions or the actions of the chunks. the context is
effectively the entire history of the system. [n this form. the "gaf®

familiarity chunk looks like the following:

(object <o0l> "name gaf)
->
(occurred <el> “event <ol>)

Familiarity chunks allow the determination of whether an event has
occurred before in a particular context. Whenever a representation of the
>vent appears in working memory along with a representation of the
context. an occurred predicate will be retrieved for them. Familiarity
chunks can thus support performance in recognition tasks. where the task

is to determine whether a presented object has been seen before.

What familiarity chunks do not directly support is the retrieval of events
that occurred in a particular context. For an event to be retrieved by the
execution of a chunk. the event must be stored in the actions of the
chunk, and not tested in its conditions. A retrieval chunk for the "gaf*"
example should look something like the following (with an assumed

context and predicate):

(context <el> “experiment 2 “list 1)
—->
(object <ol1> “name gaf)

For such productions to be learned by Soar, they must be created by
chunking over some form of problem solving. But chunking is not an

indefinitely flexible mechanism. A chunk's actions are always based on
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j
the results of a subgoal. and its conditions are always bhased on 1
dependency analysis of the results. This immediately imposes two
constraints on the nature of the problem <olving that ean underly the
acquisition of retrieval chunks.

1. For the event to appear in the actions of a chunk. it must be
generated as a result of a subgoal,

2. For the event to not appear in the conditions of the chunk. the

subgoal results must not depend on an examination of the
event.

The first constraint is relatively easy to meet: for example. by creating a
copy of the perceptual event in a <ubgoal. and returning the copy as a
result. However, attempting to meet both constraints at once leads to the
data chunking problem:'if the result is based on examining the object to
be learned. then the conditions of the chunk will also test the object.
allowing it to only be retrieved when it is already :.vailable. For example.
using the copying strategy for the "gaf" example would lead to a chunk

like the following:

(context <ecl> “experiment 2 “list 1)
(object <o1> “name gaf)

->

(object <ol> "name gaf)

In contrast to the desired retrieval chunk. this one tests that "gaf* is
already in working memory before it will retrieve it. So it doesn’t do the

job.

The solution to the data chunking problem is to separate the result
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generaticn process from the use of the perceptual event. Result generation
must be based on what the svstem already knows, rather than on the
perceptual event, One approach involves assembling the result from
components that the system can already retrieve (Rosenbloom. Laird. &
Newell, 1987). For example, if the letters "g", "a". and "f" are
retrievable. then "gaf" can be generated by retrieving and assembling
them. This is a syntactic compositional process which may or may not
respect any specific semantic rules in performing the assembly. Another
approach is to start with the context and to chain through a sequence of
productions which form a pre-existing, though possibly indirect. link
between the context and the event (Rosenbloom. 1988). For example,
(object ol “name gaf) can be generated if {context cI “experiment 2 “list
1) is already in working memory, and if the following two retrieval chunks

exist.

(context <c1> “experiment 2 “list 1)
->
(object <ol> “name fem)

(object <o01> “name fem)
—->
(object <ol> “name gaf)

Either approach requires the system to start out with a set of primitive
elements that can be generated. Other more complex structures can then
be built up out of compositions of these primitive elements. For the work
on recognition and recall, the system was initialized with the ability to
generate the 26 letters. Conceivably, Soar could have been initialized with

an even lower level of primitives, such as simple lines, curves, and points,
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.

from which it would construct the letters. [t ecould also have been
initialized with more meaningtul primitives, such as the primitive ACT~ in
Conceptual Dependency Theory 1~chank. 1975) or the epistemological

primitives in KL-ONE (Brachman, 1979).

Though the perceptual event cannot be used directly in the generation
process. it is still used in two critical ways. The first is a< the basis of a
goal test for the generation process. The generation process can
conceivably return any event that it can either assemble or chain to. so a
goal test is necessary to determine when the desired event has been
generated. The straightforward approach of comparing the perceptual
and generated events does not work. Instead. it leads to a secondary
version of the data chunking problem in which the ~omparison causes tests

of the perceptual event to appear in the conditions of the chunk.

To avoid this secondary data chunking problem. the goal test is based
on a familiarity ¢hunk for the perceptual event rather than direetly on the
event, Given a familiarity chunk for the perceptual event, the generation
goal test is satisfied when a familiar but unretrieved event is generated.
The sest of familiarity guarantees that the event has been seen in the
current context (or a similar one). [f the event is unretrieved. it is one
that the system has not previously learned to generate. This test is
somewhat overgeneral in that it can't guarantee that the generated event
is a copy of the current perceptual event However, at worst it will only

generate a different event that is i'amiliar in the same context. If this

P S PRy
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happens. it is always possible to try again to generate an event that
corresponds to the input event. The use of a familiarity chunk as the goal
test for the generation process makes this is a generate-recognize approach
to recall (see. for example, Watkins & Gardiner, 1979). though focused on

the acquisition phase rather than the retrieval phase.

The second way that the perceptual event is used is as the basis for
controlling the search through the space of events that can be generated.
The goal test determines the correctness of the result. but does not affect
the efficiency of the search. Using the perceptual event as control
knowledge makes the search tractable, potentially removing all
bacl'(tracking, without affecting the correctness of the result. Thus the
result technically does not depend on such control knowledge. The
bottom line js that the use of search control knowledge can speed up
performance without introducing additional conditions into chunks (recall
from Section 1 that chunking does not bactrace through the use of
desirability preferences by the decision procedure). Of secondary
importance is that the use of the percentual event as search control
increases the likelihood that the first event generated will correspond to

the perceptual event rather than to znother familiar but unrctrieved

evapt,

When the generation, goal testing, and control process are all put
together, a retrieval chunk can be learned that is identical to the one that

was desired. Context can be treated in the same ways that it is for
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familiarity chunks. [t can be explicit tin rhe actions), a~sumed tin the
conditions). or completely ignored (nowhere),  The -vstems <o far

implemented have ignored context,

One consequence of this approach to the acquisition of retrieval chunks
is that it forces information storage to be based on an understanding
process. The understanding may be only of syntax (surface =tructure), or
it may be of a deeper <~emantic (deep strueture} nature. but without it.
learning will not occur. There is no <imple assignment operation — such
as the SETQ operation in Lisp — that allows an unanalyzed structure to
be stored in long-term memory. A second consequence is that the
understanding process must be a reconstructive — or analysis-by-synthesis
— process (Bartlett. 1932, Neisser. 1967). in which ~vents are reconstructed
in terms of known structures, A third consequence is that the storage
process is semantically penetrable. Other knowledyge can potentially alter
the reconstruction process. and thus what '~ <tored. leading to
generalization and other forms of tias in the merory struetures rhat are

stored,

4.6. Summary

Soar can represent. store, ratrieve. use. and acquire episodic knowledge.
However, the situation is nowhere near as clean and simple as it was for
procedural knowledge. In fact, if we were to sit down to design a
capability for episodic knowledge from scratch. with no constraints. we

would be unlikely to design it as currently embodied by Soar. \What the
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architecture most directly supports is native episodic knowledge about
structures generated by the system itself. Such knowledge is represented,
stored. retrieved. and acquired without requiring additional cognitive
effort. However, the assumptions required to use such knowledge can lead
to errors. By increasing cognitive effort. more explicit forms of episodic
knowledge can be acquired that require fewer assumptions for use. and
thus hopefully lead to fewer errors. Such structures are not terribly
dissimilar to the structures used in other episodic memory proposals. such

as Scripts (Schank and Ableson. 1977) and E-Mr os (Kolodner. 1985).

The situation is even more complicated for episodic knowledge about
perceptual events. Three features of the architecture yield strong
constraints on how the knowledge is acquired.

1. Chunk actions are based on subgoal results.

2. Chunk conditions are based on the supergoal structures upon
which the results depend.

3. Perceptual information arrives in the top goa~l;
Together these features force a reconstructive approach to knowledge
acquisition. Though this approach is considerably more complicated than
simple verbatim storage of what has transpired. it does have a number of

promising properties.

Given the overall picture of episodic knowledge, as relatively complicated
and messy, it is important to ask whether this signals a need for

modification of the architecture. One key question is the appropriateness

satain e
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of the levels of support and constraint that are provided Py rhe
architeeture. For psvehology. this is 1+ matter of the extent to which the
level of support models human eapabiiities, and the level of consiraint
models human limitations. For Al this i~ a matter of whether the sy~tem
achieves an appropriate level of episodic functionality. A <econd key
question is whether there are more appropriate mechanisms — for either
definition of "appropriate” — for the support of episodic knowledge which

could be integrated cleanly into the architecture. Providing detailed

answers to these two kev questions remains for future work.

5. Declarative Knowledge

Declarative knowledge is knowledge about what is true in the world.
Examples include the facts that dogs have four '»gs and that Fido is a
dog. Declarative representation comes in many lorms. such as natural
language, diagrams. maps. charts. tables. and ¢raphs. This is also the
area with which logic is classically rconcerned. \ logie has a ~yntax
specifving the form that <tatement~ take. and a  nanties which refates
logical statements to an abxtract conceptualization " the world, For first
order predicate calculus (FOPC+ the syntax - 'ased n constants.
variables. predicates, connectives (A. V. =. and D). and quantifiers (V¥ and
3). The mapping between the <syntax and the <emantics. called the
interpretation, is used to determine the truth of statements expressed in

the syntax of the logic.

In this section we will be primarily concerned with the svntactic side of
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;

declarative knowledge. taking advantage of logic's privileged role in Al as
a language for representing declarative knowledge. \We will examine how
declarative knowledge is represented (its syntax). stored. retrieved. used.
and acquired. On the issue of semantics. we will assume that the meaning
of a structures is determined by a combination: of two factors: its

relationship to the outside world. as mediated by the perceptual and

motor systems. and how it is used by internal processes.

As with episodic knowledge. the main challenge will be in the acquisition
of declarative knowledge. The data chunking techniques described earlier

will be extended to handle declarative representations.

5.1. Representation

As with episodic and procedural knowledge, there are several different
ways that declarative knowledge can be represented in Soar.® The most
flexible and general approach is to represent each syntactic component —
whether it be a constant. variable. predicate, connective, or quantifier —
as an object. The details of exactly how this is done are not crucial, but
the general flavor should be clear from the following example which shows

a statement in FOPC and how it could be translated into a set of objects

in Soar.

SIn this section we focus on derivation-based representations for logic. Other
representations are possible, such as validity-based techniques — see, for example, (Polk &
Newell, 1988) and (Polk. Newell, & Lewis, 1989) for research on mental models in Soar.
These have somewhat different properties, but much of the discussion would remain the
same.

. dad
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Yz {P(r) = Qur)j

(quantifier 41 "name forall "variable v1 “hody b1)

(variable 1 1 name Y

{eonnective 5/ pame implies antecedent af  consequent 11
(predicate ! name p argument 1 [)

(predicate ¢! "name 4 ‘argument /)

For simple <tatements containing no quantifiers or variables. no
predicates with more than two arguments. and no connectives except for
A. there is a simpler native representation that takes direer advantage of
Soar’'s object structure. Constants are represented as ohjects, predicates
as attributes, and conjuncrion as simuitaneous occurrence. Here's a simple

example about Fido.
Categoryv(Fido. Dog) A Alive(Fido)

(object 01 “name fido “category 02 "alive)
(object 02 "name dog)

This native representation is more succinct than the one above. but in

exchange it lacks expressibility.

Another variation is to use productions as a repre~entation for a subclass
of implications. A production can represent a universally quantified
implication in which the antecedent is a conjunction of predicates. and the

consequent is an exist .ntially quantified conjunction of predicates.
V(@ joenr2 IC (£ porrenZ ) A v A Ci(xpoenezy) D
(Y proeetm) AT pooesZ Y ppoecllpy) A oo A AL poren i ol e )]

The existential quantifier in the consequent arises from the ability to

create new objects when variables appear in actions that are not in
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conditions. A form of negation as failure is also available in the
antecedent which allows a predicate to be assumed false unless it is

explicitly known to be true (that is, available in working memoryv).

Implica.ions encoded as productions are non-examinable and can only be
used to forward chain. We will not discuss them further here. [nstead we

will focus on examinable structures of either of the first two types.

5.2. Storage
Storage of declarative knowledge is straightforward. As with

declaratively represented procedural and episodic knowledge. declarative

knowledge is stored in the actions of productions.

5.3. Retrieval

Declarative knowledge is retrieved by k*-search and ps-search. I[f the
knowledge is stored directly in productions, k*-search can retrieve it.
otherwise ps-search is required. Hopefully. by this point. this is obvious.
However. less obvious is what the context should be for retrieval of
declarative knowledge. The retrieval contexts for both procedural and
episodic knowledge are straightforward. An element of procedural
knowledge is retrieved when it may be needed to produce betavior. An
element of episodic knowledge is retrieved when a context is established
that is similar to the one in which the episode occurred (at least if tk‘Ie
context is tested in production conditions rather than stored in production

actions). In contrast, declarative knowledge is by it e-sence not
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i
associated with a particular context. The knowledge i~ trie. indepenent

of eontext, and should be usable in any context requiring ir.

On the other hand. if declarative knowledge is stored with no context —
that is. with a null set of produetion conditions — the knowledge will not
only be retrievable in all contexts. it will in fact be retrieved in all
contexts, swamping the system with true but irrelevant information. One
approach to controlling the retrieval of declarative knowledge is to use the
connectedness among facts ua~ a co-relevance heuristic.  This is often
implemented by the mechanism of <preading activation. which retrieves
facts close to those that are already retrieved (Collins & Loftus, 1975.
Anderson. 1983).  Another approach is to control the retrieval of
declarative knowledge by providing a partial description of the knowledge
to be retrieved (Norman & Bobrow. 1979). The oartial description then

delineates the set of things which appear to be relevant.

The approach that we have taken is to store derlarative knowledge in o
discrimination network that allows retrieval f objects by partial
description (Rosenbloom, Laird. & Newell. 198811, Given any partial
description. a single object is retrieved along with the facts about it. The

construction of this discrimination network is «liscussed below. under

acquisition.

One last important aspect of the refrieval of dJeclarative knowledge

concerns the basis for believing that structures retrieved from long-term
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memory represent true facts about the world. This belief must be based
on the implicit assumption that the system knew what it was doing during
the episode in which the structures were acquired. In other words. the
system must trust its past behavior. This is one form of assumption that
cannot be completely avoided by adding more explicit structure. Even if
explicit true-in-world annotations are added to all structures representing
true facts about the world. the system must still trust that in the past it
only added such annotations when the facts were true. It might be more
vcareful® about adding such annotations than it is about adding
structures to working memory in general. but since there is no oracle for
truth, it is still assuming that these annotations were added correctly.
This assumption that the annotations are true is of the same type as the

original one. It may localize the assignment of trust, but can not

completely eliminate it.

5.4. Use

Declarative knowledge has a multitude of uses. It can be used to
describe procedures so that they can be reasoncd about. or followed
interpretively (from which native procedures can be compiled). It can be
used to explicitly describe episodes. It can be used to describe knowledge
whose function is not yet clear. It can be used as the basis for
memorization tasks. A complete list would go on considerably longer, but

this gives a sampling of typical uses.
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5.5. Acquisition

The acquisition of declarative knowledge has much in common with the
acquisition of episodic knowledge. Declarative knowledge that i~ zenerated
as the result of a problem -olving episode is directly acquired by chunking,.
with a retrieval context that corresponds to those elements of the situation
on which creation of the knowledge depended. Likewise. the acquisition of
perceptually originating declarative knowledge utilizes the data chunking
solution described in Section 1.5. Though. to go bevond the types of
structures acquired in the research on episodic knowledge. Soar was
initialized with primitive elements for the 26 letters, plus a set of primitive
attributes (isa. has. color. response. letterl. letter2, letter3, letterd. letter3.
letterB. letter7. letter. letter9. letter10).5 Using these primitives. facts are
represented by aitributes relating named objects. For example. Isa(Fido,

Dog) is represented by the following structures.
(object <f> “letterl <fI1> “letter? <f2> letter3 < f3>
“letterd <f4> isa <d>)

(letter <f1> “name f)

(letter <f2> “name i)

(letter <f3> “name d)

(letter <f4> "name o)

(object <d> “letterl <di1> ‘letter2 <d2> letterd <d.s>)
(letter <d1> “name d)

(letter <d2> “name o)

(letter <d3> “name g)

This is a variation on the native representation described in Section 3.1.

The primary difference is that names., which were unanalyzable atoms in

81n future work we will be examining how to loosen up the requirement that attributes
be pre-existing primitives as well as investigating different levels of primitive elements.

/
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the earlier representation. have been expanded out to where their internal

structure is open for examination and creation.

There are a number of ways in which the acquisition of declarative
knowledge is more complicated than the acquisition of episodic knowledge
in Soar. We have so far isolated three additional issues that must be
resolved in the acquisition of perceptually originating declarative
knowledge. (1) How is a discrimination network to be acquired that can
control the retrieval of declarative knowledge? (2) How is knowledge about

objects acquired incrementally? (3) How do chunks store the components

of an object?

As mentioned earlier, utilizing the data chunking solution alone results
in the acquisition of context-free declarative knowledge.” Acquiring a
discrimination network thus requires an augmentation of the basic data
chunking solution. Abstractly, the approach is to modify the simple
memorization strategy underlying data chunking so that the acquisition of
new knowledge involves relating the new knowledge to what is already
known. If in the process of establishing relations, an explanation is
created as to why the new knowledge is different from similar existing
knowledge, this should lead to discrimination. Similar processing could

lead to generalization, or other alterations of the new knowledge prior to

"There is a corresponding, but not identical, is:ue for perceptually originating episodic
knowledge which has not yet been addressed: how che situational context is incorporated
into chunk conditions.
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its being stored (Anderson. 1986. Rosenbloom. 1988).

The ecurrent implementation in Soar uses ~uch a strategv to perform
object-centered diserimination. Given a new fact. such as [sa(Fido. Dog),
the svstem uses the features of Fido to <ee what object is retrieved from
the discrimination network. [f Fido is retrieved. no discrimination is
necessary. [f some other object. such as Fred. is retrieved. Fido's features
are compared with Fred's to find a difference, such as the letter "d" in
the third position of the name.® This difference is then used as the
justification for generating a new syvmbol representing Fido. and for
rejecting Fred as the object to be retrieved. [f there is more than one

difference. one is picked indifferently.

By thus loosening the prohibition against examining perceptual
knowledge during resuit generation. discriminating conditions are added to
retrieval chunks which control when the acquired knowledge is retrieved.
Schematically, the production resulting from this process looks like the

following.

Retrieved(g35) A = Rejected(g35) A letter3(g35. ¢)
A Perceived(p) A letter3(p. d) --> Reject(g35) A Retrieve(g37) (1)

This production says that if there is a retrieved. but not vet rejected.
object with symbol g35 and an "e" as its third letter. and the perceived

object’s third letter is "d", then reject the retrieved object and create a

81n the current implementation. discrimination is always based on features of object
names. rather than on other facts known about the object.
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new symbol (g37) for the perceived object. Each such retrieval production
forms one link in the discrimination network that is constructed as new
objects are perceived. This discrimination network supports k*-
retrievability — that is, retrievability by a combination of production
firings within a single elaboration phase — rather than the k-retrievability

that is possible for knowledge stored with no context.

Consider what happens when the following three facts are learned in

sequence, ignoring for now all of the learning except for the creation of the

discrimination network.

Isa(Fred, Cat)
Isa(Fido, Dog)
Isa(Carl, Dog)

First, Fred is processed. Because no object has heen learned previously,
no discrimination is necessary, and the only action to be taken is the
creation of a new symbol for Fred. This results in the acquisition of a

production which generates the symbol for Fred if no object has already

been retrieved.
= Retrieved() --> Retrieve(g35) (2)

Second, Cat is processed. Given the features of Cat. the symbol for Fred
(g35) is retrieved by production 2. As described below, the information
about Fred is cued off of Fred’s symbol, so the retrieval of g35 leads to
the retrieval of what is known about Fred. Once this knowledge is
retrieved, Cat is discriminated from Fred. @ The system chooses
indifferently one of the discriminating leters of the objects’ names — in

this case the second letter — yielding the following production.

L e
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Retrieved(g35) A -~ Rejected(g35) A letter2(g35. r)
A Perceived(p) A letter2(p. a) --> Reject(g35) » Rerriever«3ti 13)

Third. Fido i~ processed. Fred i~ retrieved and diseriminated trom Fido
by the third letter. yielding production 1. above. Fourth. Dog i~
processed. Once again. Fred is retrieved. and the discrimination i~ again

based on the third letter, yielding the following production.

Retrieved(g35) A - Rejected(g35) A letter3(g35. e)
A Perceived(p) A letter3(p. g) --> Reject{g35) A Retrieve(g38) (4)

Fifth., Carl is processed. This time Fred is retrieved and then immediately
rejected by production 3, which also retrieves Cat. Carl is then
discriminated from Cat hy the rthird letter, vielding the [following

production.

Retrieved(g36) A — Rejected(g36) A letter3(g35. t)
A Perceived{p) A letter3(p. r) --> Reject(g36) A Retrieve(g39) (5)

Sixth, Dog is processed. Fred is retrieved. and then immediately rejected
by production 4. which also retrieves the symbol for Dog. Because there is
no mismatch between the perceived and retrieved objects. no
discrimination is necessarv, no new symbol is ¢enerated. and no new
production is created. At this point the discrimination network has the

shape shown in Figure 5-1.

Given a partial specification of an object name. the symbol for the
object whose name matches most closely — aceording to the structure of
the discrimination network — is retrieved. The knowledge associated with
the object is acquired with a retrieval context consisting of the object’s

symbol. As with episodic knowledge, this occurs by first acquiring a
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oot

FRED

2/a 3/d 3/g

CAT FIDO DOG
3/r

CARL

Figure 5-1: Discrimination network acquired from sequence of facts.
familiarity chunk for the new knowledge. and then acquiring a retrieval

chunk which depends on the object’s symbol.

Unfortunately, this approach depends on having all of the knowledge
about the object available at once, which raises the second issue: how to
incrementally acquire knowledge about objects. If the familiarity chunk
must recognize the entire object. as it does in the previously published
approaches, no learning can occur about an object until all of the
knowledge about it is available. Conceptually. the solution to this
problem is straightforward. Data chunking is applied to each fragment of
an object individually. The processes of familiarization and generation are
performed independently for each letter of the object’s name, and for each
fact about the object. As an example, the individual familiarity and

retrieval productions for the first letter of Fred's name look like the

L.
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following.
letter1(g35. ) --> Familiariletterl(g35. ) 6)
Retrievedig3s) A = Rejected(glds) --> lettertigss, ) (v}

The implementation of this ~olution allows new facts to be acquired
about known objects. for example, that Color(Fido. Red). However. what
is given up in going with this solution is the ability to use familiarity
chunks to directly perform recognition tasks. Object recognition must
now be based on multiple productions. The obvious way to do this is to
sort the object through the discrimination network. [f the new object is
the same as the one stored in the node at which discrimination ends. then

it is recognized.

The third issue is how references to learned objects should be stored in
retrieval chunks. For primitive objects. such as the letters, the answer is
simple. The value is stored directly in the actions of the retrieval chunk.
as shown in production 7. However. for values that are objects, the
situation is more complicated and leads to 4 sequenced pair of

discriminations. similar to the approach taken by EPAM (Feigenbaum &

Simon. 1984).

Suppose the system has aiready learned about the object bej. a nonsense
trigram. and that the retrieval cue associated with bej is its first letter (b).
Then suppose that the system is presented with a paired associate (a

stimulus-response pair) in which bej is the response, for example
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Response(gaf. bej). This pair would be represented as follows.

(object s “letterl sI “letter2 s2 "letter3 s “response r)
(letter s/ “name g)

(letter 82 “name a)

(letter 83 “name f)

(object r “letterl ri “letter2 r2 “letter3 r3)

(letter r1 “name b)

(letter »2 "name e)

(letter r3 “name j)

If g41 is the symbol for gaf and g42 is the symbol for bej, the obvious
retrieval production to create for this pair (ignoring for now the retrieval

productions for the object’s names) is the following.
Retrieved(g41l) A - Rejected(g41) --> response(g4l. g42) (8)

However, the rule that is actually created will have an additional

condition which tests bej’s retrieval cue (b).

Retrieved(g41) A — Rejected(g41) A Letterl(g42. b)
--> response(g41, g42) (9)

This happens because the retrieval cue is examined in order to retrieve g42
from the discrimination network. Therefore, the appearance of g42 in the
chunk’s actions leads to the cue appearing in the chunk's conditions.
Such a retrieval production cannot support performance in paired-
associate tasks, where after studying a list of stimulus-response pairs, the

subject must generate responses when given just the corresponding stimuli.

One solution to this problem is to include a (partial) description of the
value object in the retrieval production rather than the object itself. If
the description is created anew, by data chunking, from the information

provided in the paired associate, no additional retrieval cues get
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j
incorporated. With this change. the following chunk is learned.
Retrieved(g4l) A — Rejected(g4l) --> response(g+l. letterli-. hyj 110}

Given such a chunk (or ~et of chunks), the paired associate task can he
performed by using the ~timulus features to retrieve its <yvmbol (gl
using the stimulus svmbol to retrieve a (possibly partial} description of the
response (letterl(-. b)), using the description of the response to retrieve the
response symbol (g42). and then using the response symbol to retrieve the

information about the response (bej).

Using this strategy the task now requires two independent retrievals
from the discrimination network — one to retrieve the stimulus symbol

and one to retrieve the response symbol. This is similar to the double

[ 2

discrimination performed by EPAM during paired associate tasks
(Feigenbaum & Simon. 1984). However, it occurs in Soar not because of a
need to match the data, but as a means of enabling responses to be

retrieved from stimuli in the absence of any additional response cues.

5.6. Summary

The representation, storage and use of declarative knowledge are
relatively straightforward in Soar. The architecture provides some
support for these capabilities through the primitive attribute-value
representation. the ability to store declarative structures in productions.
and the ability to examine declarative structures in working memory. The
architecture does not enforce a fixed semantics for declarative knowledge.

nor does it provide default inference mechanisms that automatically

i
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generate structures representing knowledge that is implied by its existing
sm;ctures. Both of these. if part of the architecture. would imply
excessive rigidity in how the system could behave. To the extent they are
needed. provision should be made by adding knowledge and problem

spaces on top of the fixed architecture,

The acquisition and retrieval of declarative knowledge is considerably
less straightforward. Chunking is provided as a means for acquiring

declarative knowledge. but the problem solver must be put through a

number of contortions for the system to acquire the appropriate chunks -

from externally provided knowledge. In addition to the constraint
imposec.i by the data chunking problem. a related architectural constraint
restricts how known objects can be used in the acquisition of new
knowledge. The solution to the problem posed by this constraint leads to

an approach which is increasingly like the discrimination network

structure of the EPAM model of memory.

Retrieval of declarative knowledge is supported by production firing. but
considerable additional complexity arises from the need to constrain
retrieval to what might be relevant. The discrimination network we have
employed provides one approach to this. Though the approach currently
seems somewhat ad hoc, the abstract characterization of the process as
relating the new knowledge to existing knowledge, leads to the hope that

it will eventually be placed on a principle.1 footing.
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Further work is clearly called for in developing and evaluating the
acquisition and retrieval mechanisms that have been proposed (and

implemented).

6. Conclusions

Taking an architecture seriously means living within its constraints and
using what support it provides, at least until it is clear that the
architecture must be modified. In this chapter we have taken a step
towards evaluating the level of support and vonstraint which the Soar
architecture provides for the knowledge level, a concept that is closely
related to the idea of general intelligence. This helps us to understand the
extent to which the architecture’s current levels of support and constraint
are adequate for achieving general intelligence. It also provides an
alternative way of viewing Soar in which its architectural mechanisms are
subjugated to their role in supporting knowledge. This complements other
efforts that view Soar as a set of mechanisms (Laird., Newell. &
Rosenblcom. 1987), a hierarchy of meta-levels (Rosenbloom. Laird. &
Newell, 1988b), a hierarchy of cognitive levels at different time scales
(Newell, 1989, Rosenbloom. Laird. Newell, & Mc‘ arl, 1989). a physical
symbol system (Newell, Rosenbloom & Laird. 1989). and a general goal-

oriented system (Rosenbloom, 1989).

Or - particular focus in this step has been on how the Soar architecture
supports and constrains the representat’on. storage. retrieval. use, and

acquisition of three pervasive forms of knowledge: procedural. episodic,
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and declarative. The analysis reveals that Soar adequately supports
procedural knowledge — to some extent it was designed for this — but
that there are still significant questions about episodic and declarative
knowledge. These questions arise primarily because of consequences of the
principle source of constraint in Soar, the fact that all learning occurs via
chunking. = Chunking can support the acquisition of episodic and
declarative knowledge. but in so doing it imposes significant requirements
on how the problem solving underlying this acquisition proceeds. These
requirements amount to architecturally-derived hypotheses about how
learning occurs. We have reported here some new results that elaborate
on these hypotheses in the acquisition of declarative knowledge, but
considerable future work is still called for in both the development and

testing of these hypothesss.

One obvious question at this point is why not just add new architectural
mechanisms that directly support the acquisition of episodic and
declarative knowledge? Assuming that appropriate mechanisms could be
developed. there are still at least two critical reasons not to rush into
adding them to the architecture. The first reason is that the integration
of new mechanisms into an existing architecture can have major
consequences. An integrated architecture is more than just a collection of
useful mechanisms. [t must be constructed so that its mechanisms

compose appropriately with each other. The number of potential

interactions that need to be worried about increases rapidly -

era i et L
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exponentially, if there can be interactions among all possible ~ubsets —
with the number of mechanisms. Frequently. the addition of a perfectly
reasonable new mechanism will cause <trongly dysfunctional behavior in
others of the existing mechanisms. Though there are times when an
architectural addition is absolutely required. and a research effort must be
engendered to get the interactions right (as recently occurred for
perceptual-motor behavior in Soar (Wiesmever. 1988)). almost always a

conservative strategy is what i< required.

The second reason is that rushing to add new mechanisms discourages
learning about the limits of the existing mechanisms, and their
combinations. This is essential to understanding the scope and limits of
the architecture. It is also essential to discovering the deeper. nonobvious
consequences of the architecture. If we had jumped to add new learning
mechanisins to Soar, we would never have discovered how the current
mechanisms inherently imply a reconstructive learning strategy. The
discovery of such nonobvious consequences is some of the most interesting

research that can be done with architectures.

This being said, much additional work is still needed. One issue to be
addressed is the origins of the bootstrap knowledge that allows new
procedural, episodic, ai. declarative knowledge to be acquired. The
acquisition of perceived procedural knowledge requires the existence of an
interpreter for the knowledge. The acquisition of perceived episodic and

declarative knowledge requires a set of pre-existing primitive elements plus
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the knowledge about how to familiarize. discriminate. and construct object
representations. [t appears necessary to add some of this to the
architecture. such as the ability to generate a set of primitive elements.
Other parts may just be specific instances of more general capabilities.
which of course must themselves be either innate or learned. For example.
the interpreter for procedural knowledge may be just an instantiation of a
more general comprehension process. The same may also be true of the
discrimination and construction processes for declarative and episodic
knowledge. The current implementation does not quite look like this. and
architectural changes may be required before it does, but this is one

promising path to pursue.

Finally, a number of additional steps must still be taken before the
relationship of the Soar architecture to the knowledge level is completely
tied down. The most important missing aspect is the relationship between
Soar's mechanisms and the principle of rationality. The key issue is how
its architectural mechanisms. such as its decision procedure and subgoal
generator, allow Soar to approximate rationality even under the
constraints of its being a physical system with time and space bounds.
We have commented briefly on how chunking increases Soar’s ability to
bring knowledge to bear under real-time constraints, but much more is

left to be done.
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