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Storage capacity of the linear associator:
Beginnings of a theory of computational memory

Dean C. Mumme
Learning Research and Development Center
University of Pittsburgh

This paper presents a characterization of a simple connectionist-system, the linear-associator. as both a
memory and a classifier. Toward this end, a theory of memory based on information-theory is devised.
The principles of the information-theory of memory are then used in conjunction with the dynamics of the
linear-associator to discern its storage capacity and classification capabilities as they scale with system
size. To determine storage capacity, a set ot M vector-pairs called "items” are stored in an associator
with N connection-weights. The number of bits of information stored by the system is then determined to
be about (N/2) log,M. The maximum number of items storable is found to be half the number of weights
so that the information capacity of the system is quantified to be (N/2jlog,N.

Classification capability is determined by allowing vectors not stored by the associatar to appear at its
input. Conditions necessary for the associator to make a correct response are derived from constraints of
information-throughput of the associator, the amount of information that must be present in an input-
vector and the number of vectors that can be classified by an associator of a given size with a given
storage load.

Figures of merit are obtained that allow comparison of capabilities of general memory/classifier systems.
For an associator with a simple non- linearity on its output, the merit figures are evaluated and shown to
be suboptimal. Constant aftention is devoted to relative parameter size required to obtain the derived
performance characteristics. Large systems are shown to perform nearest the optimum performance
limits and suggestions are made concerning system architecture needed for best results. Finally,
avenues for extension of the theory to more general systems are indicated.'

"This research was sponsored by the Army Research Institute. under Contract No MODAS03-86-C-0149 and Parsonnel and
Training Research Programs Psychological Sciences Dwvision, Office of Naval Research under Contract Nos N-0014-66-K.0107
and N-0014-86-K-0678 Work submitted as Ph D thesis to the University of lllinots
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STORAGE CAPACITY OF THE LINEAR ASSOCIATOR:
BEGINNINGS OF A THEORY OF COMPUTATIONAL MEMORY

Dean C. Mumme, Ph.D.
Department of Computer Science
University of Illinots at Urbana-Champalgn, 1088
Walter Schneider, Advisor

/Thls thesls presents a characterization of a simple connectionlst-system, the linear-assoclator, as
both a memory and a classifler. Toward this end. a theory of memory based on Information-theory Is
devised. The principles of the Information-theory of memory are then used in conjunction with the
dynamics of the linear-assoclator to discern Its storage capacity and classification capablllt:les as they scale
with system size. To determine storage capacity, a set of M vector-palirs called ;ltems' are stored In an
assoclator with /N connection-welghts. The number of dits of Informatlon stored by the system Is then
determined to be about (2'\’/2)log2 M. The maximum number of Items storable Is found to be balf the

number of weights so that the information capacity of the system Is qbantmed to be (N/2)logz N.——
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\Classmcauon capabllity 1s determined by allowing vectors not stored by the a.ssoclat;o} u’ﬁﬁ&ii
its Input. Condltions necessary for the assoclator to make a correct response are derived from constraints
of information theory and the geometry of the space of input-vectors. Results Include derivation of the
Informatlon-throughput of the associator, the amount of Information that must be present in an Ihpub-
vector and the number of vectors that can be ciassifled by an associator of a glven size with a given

storage load.

Figures of merit are obtained that allow comparisoa of capabliities of general memory/classifier
systems. For an assoclator with a simple non-linearity on its output, the merit figures are evaluated and
shown to be suboptimal. Constant attention Is devoted to relative parameter size required to obtain the
derived performance characteristlcs. Large systems are shown to perform nearest the optimum
performance limits and suggestions are made concerning system architecture needed for best resuits.

Finally, avenues for extension of the theory to more general systems are indicated. -
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Preface

The approach of Minsky and Papert in thelr book Perceptrons (35| provided the motivation for this
research. Thelr analysis of the perceptron Introduced useful mathematical tools for understandling
performance-limitatlons of ®*neural-based® systems. In addition, It charted and quantified these limitations
and identifled Important areas for future investigation. As a result, the book Perceptrons identified issues
of iearning and performance that have continued to be of concern to Connectlonlst researchers even now
that the challenge for multi-level learning algorithms has to some extent, been answered. The author
belleves that the mathematical tools developed by Papert and Minsky wlll themselves be useful for better
understanding of connectionist architectures. In Lhe author's view, the only short-coming of the work
done by Minsky and Papert (and perhaps Rosenblatt as weil) was their perspective. They treated the
perceptron from a "computer® polnt-of-view. It was expected, for example, to determine whether or not a
"retinal object® was ®connected® even when the off-on state of a single ®pixel® could determine the

correct answer.

Most certalinly, natural perception-systems don't work in this fashion. Indeed, they must determine
the connectivity of objects despite Inconsistencies or noise in the input-stimull. This eliminates the
possibllity of ®computations® whose resuit s affected by s single stimulus element. The proper
perspective for these systems In the author’'s view is a probabilistlc one in which the system’s proper
response Is characterizable in some way but is robust to uncertain, degraded, Incomplete, and even
inconsistent Information. The classifier Identifled In this work typifies just such a system and the forgone
analysis should exemplify the proper viewpoint and methods for future !nvestigations of systems of this
nature. In this light, this work will bave been of merit If {t has Identifled 1ssues valuable to future efforts

and provides methods for analys.s of perceptual/cognitive systems.
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Chapter 1
Introduction

The systems under consideration are an outgrowth of work done on self-organizing automata and
perceptrons |35, 38| and later work in parallel associative memorles, e.g. [21, 40]. Minsky and Papert
In [35] had carried out rather extenslve mathematical spalysis on perceptrcns reveallng inherent
limitations in the classes of problems they could soive. These systems were ®learning® sutomata expected
to classify input *stimull® based on their past experience on ®training® inputs. Minsky and Papert showed
that multiple-stages of perceptrons were required for many problems of interest yet no training algorithm
guaranteed to converge to a solution was known at the time for multi-level systems. They concluded In

thelr book that the systems held little promise and subsequent Investigation of perceptrons evaporated.

Eventually however, with more powerful computers to carry out simulations, and the development
of several multi-level learning algorithms (9, 22, 36, 40, ch. 5-8|, descendant offshoots of the perceptron
have regained {nterest. Currently a variety of these automata exist and are known by names such as
*Neural-nets®, *Paralle} Distributed Processors® (PDP networks), ®Assoclative Memories®. They are
collectively called ®connectionist architectures® and have been studied as seif-organizing memories of
perception [28] content-addressable memories, helrarchical knowledge bases, and classification
systems (5, 6] modeis of human ®neural-computation® |8, 18] of human task performance and atteational

learning (41, 44] speech performance and natursl language understanding {13, 40, ch. 18, 42|.

These and other efforts have led to guarded optimism for the future of conneciionlst architectures as
knowledge engines or as models of human intelligence. Capabilitles and limitations of both task learning
and performance have been demonstrated.! However, though many mathematical Investigations (e.g.
Barto (9], Golden (15, 14|, Grossberg {19, 18|, Kohonen [28]), have been conducted, including {nformation-
capacity studies (see Abu-Mostara (1, 2|, Amit |3, 4], Keeler [27], Little, et. al. |32]. McEliece, et. al. [34)),

there is much room for development of analytical understanding of the capabilities of these systems.

1Good introductory articles to the subject include the books {21, 40]. For an introduction to the mathematics of
®connectionist® or *neural-based® systems, see (7, 40, ch. 0].




Develo; .~ .nt of connectlonist memory systems In several forms has changed the concept of memory
from storage memory to what the author calls computational memory. Digital and other iocal
memories are examples of storage memory and have been supplimented by the distributed overlayed
memory systems. The latter have more complex characteristics. Interference between Items stored resuylt
In the capability of these systems to Implicitly represent the regularities relationsbips among the ltems.
Subsequently, computation and storage (n the system are no longer distinct processes but lategrai aspects
of the same phenomenon. These systems are *i{nformation englnes® or *computational memory® rather

than *information receptacies®.

A formulation Is needed of memory as a general mode of storage and computation. An information-
theoretic approach appears most natural and promises Lo ldentify the essential features of memory
operation. The purpose of this thesis is threefold:

1. Analytical Models: A germinal characterizatlon of memory theory will be presented. The
capabilities and limitations of any memory should then be expressible in terms of Informatlon
flow. Resultant information-theoretic relations will provide the desired means of analysis and
3 framework for understanding any particuiar memory system as a member of the general
class of computational systems.

. Relavant Issues: Theory in 1 ls used Lo ldentify major issues Lo be addressed for the
understanding of storage memory. These Issues lnclude Identification of *memory tasks®,
amount of information provided by the memory for the task, amount of {nformation required
by the task for a given amount of storage, the maximum number of {tems storable in the
system with respect to the specified task, deflnition of memory load, memory load v.s.
performance. ldentification of particular tasks yseful to computation.

[ &)

3. Evaluation of quantitative performance: Performance of the assocfator with respect to
Issues identified tn objective 2 Is quantified utlilzing the theory from oblective 1. First,
storage-capacity Is evaluated so that the notion of "memory-load® can be devefoped.
Classification capabilities are then evajuated as the memory-load Is Increased. Architectural
considerations and hardware tradeoffs are addressed, as well as performance degradation due
to the Introduction of non-linearities at the system-output. Finally, figures of merit are used
to compare system performance with the optimal.

It s Intended that this work will provide the proper context and starting point for further

Investigation of memory as a computational structure.

1.1. *Neural-based® systems

Matrix models of parallel distributed memories were derived as - simplistic model of brain cell
computation. In the model, the output of each cell |s a real number, y representing the deviaticn of the
cell’'s firlng frequency from some reference frequency. As such, y can be negatlve as well as positive.
The inputs {r,.z,.. ..z } to the cell are simllarly real valued and #ach Input, z; has an assoclated

coupling strength w, to the cell which determines the effectiveness of that input on the cell output. The




cell determines its output by taking the weighted average of the lnoputs,

1 n
y= :Z w'z'.

where (wl, W, . ... wn) Is called the cell’'s *welght-vector®. The matrix memory Is constructed from a
collection of these cells, each sampling the same set of inputs. If n, {s the number of Inputs to the
memory and LN Is the number of cells in the memory, the vector x = (zl,zz, R ,z"m) of inputs when

presented to the input of the system produces an output vector, y = (yl,yz, c. ,yn(o)) given by the

1
relatlon ¥ = n—Wx where W is the matrix of coupling weights vy connecting the ith iaput to the jth
I

cell |21, 28]. We note that each ®cell® or "unit® Is merely taking the dot-product between the Input-

vector and the unit's weight-vector.

To store information In this system, two sets of vectors called the input prototypes {fl'fz' . .fM}
and the output prototypes {31'32' C "M} are used. For each Input prototype fm. the weights cf the
system are adjusted so that the 8,, Vvector resuits at the system output when fm Is presented at the
Input. The system is then sald to assoclate fm with g . For each m=1.2,... .M, the matrix that Is

b

used to assoclate f ~ with g_ (called the m'® assoclatlon) Is the outer-product gmf:: (21, p. 18]. To

store the M assoclatlons, these M matrices are added to obtaln:

M
T
W= Z 8!, (1.1)
mms|
The information for each assoclation Is distributed over the whole of W and therefore is overlaid with the
information for the other assoctations. The resulting interference between associations increases with M,

and ultimately limits the number of associations storable in the system.

In the case that fx'rz' ....t,, are mutually orthogonal, no interference exists. When fk is tnput to

2

M
the system. we have

1 M T
Wt = =3 8.0
Imam)

1 T
= —gf.f
nlskbk

”n
“The symbol || bere refers to the "length® of & vector given by the euclidean norm.




The matrix produces a multiple of g, when fb I3 present at the input. If the fk are chosen so that

if,,lz =n, then g, Isreproduced exactly {8, p. 804. 21, p. 18|.

I

T
We will be concerned with the case Lhat the input protoLypes are not orthogonal. Noting that fmf‘

Is the dot-product fh-fm we can rewrite the product WFb as

M
‘ka = Z (fffm)sm
mam}

Now the dot-product between two vectors Is a measure of how well they *match® (assuming all vectors
have the same length). The product Wfk is therefore a llne;r combination of the output-prototypes with
the coefflclent of g _ being proportional to how well fm matches fh' m=1,2 ..., M. Since the
Input-prototype that best matches fh Is the vector Itself, It follows that the output-prototype that has
the largest coefficlent In the linear combination Is the vector 8, In the chapters that follow, the
prototypes will be chosen randomly In such a way that they will be very nearly orthogonal to each other.
Therefore, the dot-products f,-f ~ will be small for m = 1,2,..., M. m 5 k. This means that as
long as there are not too many prototypes stored In the system, f"-fmg‘t will be the dominant term In the
Jutput prototypes. We conclude that the linear-associator can be seen as a

particular, It produces an output vector that is a best match to the prototype

/ st-matches fk (from among all the Input-prototypes) Is present at the tnput.
\\_. put vector will have contributions from other output prototypes and so is not
strict sense. When a better best-match computation is needed, a device

s used.

1.2. Auto-association

The systems described above are called "hetero-assoclators® because the "Input prototypes® are
distinct from the ®output prototypes®. That ls, fm ;é 8, In fact the dimensionality of the input
prototypes may differ from the dimensionality of the output prototypes as seel above. An *auto-
assoclator® Is simllar to the hetero-assoclator except that the input 2nd output dimensionalitles are the
same as are the input and output prototypes. That Is fm =g, m=1.2.. ., M . After the weights
are adjusted for storage of the M assoclations. retrieval occurs when a *damaged® Input is presented to
the system. The *damage® is due to nolse In the Input signal or the fact that the input may be speciflied

Incompletely. The output that results Is passed through a non-linearity 6, 40. p. 61-65, 324-325, to limlt




the growth of the size of the vector components. The output wlll be a better rendition of the proper tnpyt

prototype provided the matrix Is not overloaded (l.e. provided M 1s not too large).

Since the output Is an Improved version of the Input, the signal can be fed back to the ioput of the
system to obtaln further Improvement. The process Is repeated several times untll the vector stablifzes.
the result Is generally a highly Improved version of the initlal input. The limitatlon keeps the output
vector from growing without limit and tends to force it to stablllze at or very near the proper
prototype |8, 24|. Variations of the auto-assoclator include the *Hopfield net® {23, 24, 25|, the *Brain-

State-in-a-Box® or *BSB® model 8, 14/, and the "Boltzmann Machline® {22].

From the perspectlve of memory systems, the difference between hetero- assoclators and auto-
assoclators is that for the latter, the input signal provides direct information about the output. In the
hetero-associator. the Input serves only as an ®address® or *approximate address® from which the proper
output is to be retrieved. The auto-assoclator's input Is both an address and a partlal specification of the
proper output. In any event, the auto-assoclator produces an output that Is the prototype that best-
matches the Input vector. The algorithm degrades as the system stores more prototypes but should be an

improvement on the hetero-associator for the same storage load.

In the chapters to follow, we will often study the performance of a best-match algorithm that takes
as 1ts Input a vector produced at the output of a linear-associator. The best-match algorithm considered
In the analysis Is arbitrary but could Just as well be an auto-assoclator. The auto-assoclator’s stored
prototypes would be identical to the linear-associator's stored output-prototypes. The analysls will be
concerned with the conditions under which the linear-associator (first-stage) can produce an output vector
*recognizable® by the best-match process (second stage). The best-match algorithm will have
"recognized® the output of the linear-associator If the algorithm produces the output-prototype of the
linear-associator that corresponds to the input-prototype of the assoclator that i{s most simllar to the
assoctator's Input vector (see figure 1-1). In this configuration, the combination of the linear-associator
and the best-match algorithm form a classifier. The linear- ssoctator ®translates® the Input vectors of a
form similar to the input prototypes Into a form similar to the output-prototypes. The best-match
algorithm (possibly an auto-associator) then selects the output prototype that most corresponds to the
Input to the comblned system. Each Input prototype corresponds to a vector that the system [s most
likely to ®see® at the Input or that Is most representative of a class/category of Input that Is Important to
the system. The corresponding output prototype constitutes the system response and Is of a form
corresponding with the system’s internal representation of the category. The combined system produces a
particular output prototype corresponding to the category to which the system Input belongs. Our
concern Is with tle performance of the linear-associator. We wiil 1dentify the condltions under which It

will produce an output vector of high enough ®fidelity® that the comblned system can categorize its input.




F —®1 Associator 9 G —P{ Best-Matchl—p G

Figure 1-1: Linear-associator and Best-Match Classifier

Proper performance In this configuratlon Is considered 2 minimal requirement on the linear-assoclator If It

is to produce output *signals® useful to subsequent Information-processing ®stages®.
g

1.3. Overview of Major Issues

1.3.1. Tasks of Computational Memory

The linear-assoclator Is an example of *computational memory®. As opposed to local memory which
{s merely an Information storage device, computational memory Is characterized as an input-output device
that can respond to inputs that are not explicitly specified during storage. Simllarly, the system can
produce outputs not explicitly stored. The Information stored In the memory Is ®overlald® In the sense
that ail items (assocliations) stored share a common storage medium, resulting in between-item Interaction
of Information. Thils interaction causes the output to be other than those explicitly trained to the
memory. Instead the ouytput is a function of how similar the Input Is to the tralned Inputs, and how
similar the tralned associations are to each other. This and the fact that the memory cad respond to

novel Inputs results In a memory that is capable of varlous *memory tasks® during retrieval.

The most obvious (and mundane) of these {s *item memory®. For this task, ths memory Is treated
Just as a local-storage device by storing assoclations (fm. s, m=12 ... .M and subsequently using
fm as ap *inpul address® to the memory which in turn returns information sbout g = as *data’.
Another memory task Is having the memory system distinguish which among the A output prototypes,

Is the one that matches the Input prototype present at the input. Specifically. one frst stores the




assoclations (fm, g‘(m)) where x s a permutation of the M Indlces 1.2, ..., M. One of the Inpyt
prototy pes, say fb Is then presented to the memory resuiting o an output. This output Is compared with
all the output prototypes to identify one of tbe latter as a best match. The memory Is successful at the

task If g‘( {s the prototype chosen as the best match. This Is called *channel-memory® since the

m)
memory acts analogously to a communication channel. Another term used Is ®*permutation memory*
indlcating that the memory acts as a device that remembers which permutatlon « of the output

prototypes was associated to the Input prototypes.

Though this task may seem artificial, its consideratlon serves two maln purposes. First, proper
performance of this task Is a demonstration that the memory can distingulsh the assocfations It has
stored. If a system has stored too many assoclatlons, It may fall this task. If so. It Is not providing
enough Informatlon at the output to distinguish which prototype output was *intended® as the output of
the memory. The stipulation that the memory succeed at thls task Is a minimal requirement called the
*channel-criterion®. The channel-criterion is used !,9 derive upper bounds on the number of associatlons

storable In the memory.

The second purpose for considering the matrix as a channel-memory Is that we can then study the
system performance with regard to the task of *lnput-classification®. In particular, after the system has
stored M associatlon pairs (fm, gm) , hon-prototype vectors are allowed at the memory input. Assuming
that the Input Is most similar to the prototype f., we will call the input vector fl:" To be successful
classifying f,’, the matrix must generate an output that s most similar to 8, - This Is identical to the
channel-memory task except that more freedom Is allowed at the jnput. The classification task Is
Important for understanding the system's ability to respond to a vector 'l:' that s a partial or degraded
(say, by noise) verston of the ®intended® input 'b' The channel-criterion agaln provides a means of
specifying Iimits on the number of assoclations storable In the memory for proper classification. In thils
case, a tradeoff Is quantified between the number of assoclations permitted In the memory versus how
*sloppy"® fh’ can be as a rendition of f, . Consideration of the classificatlon task allows one to Identlfy
the amount of Information required by a linear-assoclator to classify an input-vector set of a given size

Into a glven number of categorles.

The classification task also brings up the issue of the reilabiiity of the {nformation at the output of
the memory as a function of the rellability of the information presented to the memory input. This
function depends on the number of associatlons stored In the memory. Storing more llems taxes the
memory capabllity and so requires that more reliable information be present at the input to maintain a
glven output reliability. An Important issue |s the determination of conditions necessary for the output
Information of the memory to be more rellable than the Input information. Under such conditlons, the

memory could effectively suppliment incomplete/degraded input Information with Its own stored




Information to provide an output that Is more complete/rellable. The memory task performed would be
that of Information "enhancement®. An assoclator performing this task would be valuable as a *front

end® to later stages of assoclator memorles Or processors that required *high-grade® Information as lnput.

Even more intrigutng s the possible use of this *enhancement memory® to iteratively improve the
information It receives by passing the received information ®through® the memory several times. Using
two memory systems A and B, one stores associatlons (fm, gm) in A and stores thelr snverses
(8, fm) in B. One then sends an degraded copy f" of fh to the input of memory A . The output of
A Is then Input to B whose output Is then fed back to the Input of A. The process is then repeated. If
both memories are ®enhancement® devices, then the Information that Is passed back and forth between
<hem should Improve with each pass through the loop. Using the theory developed In this here, thls
possibllity could be explored as a way to improve the performance of enhancement memories that have

stored 3 given number of assoclations.

A Nnal note concerning memory tasks s that they ldentify modes of *computation® that may serve

as design tools for the architecture of connectionlist *knowledge engines®.

1.3.2. Characterization of Memory

Another important consideration Is the definition of the "storage® of the memory. That Is, defining
the amount of {nformation *contalned® by the memory that is useful for retrieval. In particular, once M
assoclations are stored, we consider the matrix £ whose columns are the Input prototype-vectors
f‘.fz, . ,fM
discussed in the last section, the storage of the memory will be defined as the informatlon that the matrix

and the matrix g whose columns are likewise the output-prototypes. For item memory

f provides about the matrix g via the memory. The question arises as to whether this Is equal to the
*item-information® which Is simply the sum over m = 1,2, ....,M of the information that fm provides
about 8, via the memory. This work indicates an answer in the negative for llnear-assoclative item-
memory, under most conditlons However, channel-memory does have this feature, again under most
conditlons. A memory having this feature will be called *item-accessible® meaning that essentially all the
information that £ provides about g vla the memory can be retrieved ®*ltem-by-item®. Llke digital
RAM memory (local storage), one can apply one Input prototype at a time to the lnput of the memory
and record the matrix output to retrieve all the Information about g. In fact, the information retrieved I

this way Is virtually non-redundant.

Characterization of memory as Item-accessible allows upper bounds to be derfved for the
Information retrievable from the application of a single input vector (calied a single "access®). Since the

system Is symmetrically or uniformly defined over {ts {nput prototypes fl,f,,, C .f“. the Information




]

retrievable on applying Quy of these to the input is the same. From this It follows that the memory
storage Is just M times the amount of lnformatlon retrievable from a single access just as Is the case for
local memory. The bounds that will be derlved for the memory storage can thereby be mapped into
bounds on the amount of Information retrievable for a single memory access. Even for memory that is
fiot item accessibie however, the single-access bound will still bold. The difference Is that the Information
retrieved by applying the M Input vectors ln sequence may ®overlap® (redundancy) and as a result wili
not completely speclfy g. We will characterize memory and address these {ssues after baslc notions of

Information theory are Introduced In the next chapter.

1.4. Methods and Focus of the Investigation

This Investigation views the asymptotic performance of the linear-assoclator. That Is, we examlne
the capabllities of the systems as they are allowed to get arbitrarily large. This wiil allow us to ascertain
how well their performance scales with system size. Large systems benefit from the high diminslonality of
thelr Input/output signals and so perform better. Larger systems will therefore dbe most useful In

memory /classification tasks and deserve the emphasis provided In this work.

The work is confined to finding upper bounds for system performance, though an effort Is made to
keep the bounds tight. Approximations are used extensively, but are accurate for the range of parameter-
val'ues considered. The approximations pertaln particularly well to large-scale systems, with a
correspondingly large number of assoclations stored. Pushing the lower limits of system size that the
theory will accomodate, a system should have input/output dimensionalities of say 50 or 100 and at least
5000 welghts. The number of associations should be at least 8 or 10 times the larger of the Input/output
dimensionalities, but generally no more than At,'he number of weights Iin the system. More typleally
however, the Input/output dimensionalities are taken to be at least several hundred each, and the number
of items stored should be at least 25,000-50,000. The number of weights should generally be twice the

number of stored assoclations or more.

In this work, an attempt has been made throughout to make explicit the range of applicabliity of

the theory. The reader Is advised to note parameter-value restrictions/assumptions made In what follows.
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Chapter 2
Definitions, Identities and Notation

Before the presentation of memory theory, some preliminary material must be presented concerning
the notation used and rejationships that hold among Information-theoretic quantities considered. More

background concerning concepts of information theory can be found In texts {8, 12, 33).

2.1. General Relations of Information Theory

Unless otherwise stated, capitol letters always symbolize random variables whereas lowercase letters .
symbollze a specific value or random-varlable outcome. Script-capitols represent sample-spaces. Within
thls convention, boldface unsubscripted letters represent matrices whereas boldface subscripted variables
represent vectors. The letters W F, G for Instance, are random matrices; W, 5. 9 are their respective
sample-spaces; w,f. g. represent respectively specific outcomes from each sample-space. Similarly
F ,Gm are random vectors with respective outcomes fm, [ The abbreviation ®r.v.® will be
frequently used for ®random variabie® and the abbreviation ®1.1.d.® will be used for ®*independent,
identically-distributed® when this condition appiies to a random variable. The ®equivalence sign®, * = "*
will be used to denote "equallty by definition® or the equlvalence of two random variables. The random

variables tn this work are discrete with finite sample-spaces unless otherwise stated.

It X Is the sample space for the r.v. X and for any z € X, PAX = z) Is the probabllity that
X =z then the entropy of X denoted H(X) Is defined as

HX) = - Z AX = z)log, PX=z)
2E€ET
If we define p(z) = AX = z) then
HX) = - Z pzilog, piz) (2.1)
2€

Heurtstlzally. H(X) is the average Laken over all outcomes of X, of the minimum number of yes. no

juestions required to determine the outcome of X (see sections of '8, 12. 33! relevant to Huffman codling).
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We call H(X) the uncertainty of X, the Informatlon content of X or the Informatlon

represented by X since it 1s the average amount of informatlon required to determine X .

When considering two random variables X, Y the conditional entropy of X given Y is given by

HXIN=-% Y AX=zY=ylog, AX=z|Y=y)
ZEIyEY

where Y and Y are the respective sample spaces of X and Y. This entropy can also be written

HX|V)==3 HX|Y=yRAY=y
ye€Y

where HX |Y=y) = -Zze tAX=2z.Y=ylog, AX =z|Y=y)

The deflnition of entropy can be extended to n-tuples of r.v.'s x” = (Xl,Xz, .. ..X_). Examination of
deflnition (2.1) reveals that H(X) Is not a function of the outcomes of X but of the probabllity functlon
defined on those outcomes. In particular, X in equatlon (2.1) could be the vector-valued r.v. X" or a
matrix-valued r.v. X . If the probabllity function P” Is deflned over the sample space Zn of X" then

substitution of Pn for P In equatlon (2.1) gives

HX,Xp ... X)) = = 3 P(X.X, ... X, =x)log, P (XX, ... X, =x)

n
x € I”
Note that x € I” implies that x is an n-dimenslonal vector whose i‘h component Is a possible outcome
of X'.. Ir Yx'Yz' A ,Ym Is an m-tuple of r.v.’s, then we can extend the definitlon of conditional entropy
to Include H(Xx'xz' . .X" | Y‘.Yz, - .Ym) which Is the entropy of Xx'xz' - .Xn conditioned on
Y;.Yz, ....Y, (see [8, 12, 33]). The Important relatlonships are
n
L OHX,.X, ...X,_ )< HX.X,...X)< Y HX) (2.2)
jmm]

where equality hoids between the first and middle terms If and only if there Is a function [ so
that .\'n = /(.‘(l. .\’2 ..... X"_l) with probabllity one. Equality holds between the second

and third terms if and only If the .\". ‘s are mutually Independent.

2 HIX| X, .. .. X VY, Y ) S HIX WX, . XD YY, Y, ) {2.3)
with equality If and only If .\'l.‘\'z ...... X , are independent of Y , whenever the outcomes of

)l.),., .... )m_l are known.




3. HX X, . . .. X Y. . .. Yi2o (2.4)
with squality If and only If XX, ... . X, are completely determined by of Y., . ... Y
that Is, for each 1 =1.2..... n there {s a function /.. such that .\". = f‘.(Yl.Y,, ..... Ym)

with probability one.

Relation (2.4) holds when m =0, that is

H‘erz' X)) 20 (2.5)

Partlcular inequalities impiled by these relations are of concern, such as

0 < HX|Y £ HX) £ HIX.Y) £ HX) + HY) (2.6)

Equallty holds respectively in each of the above Inequalitles If and only If X = f(Y) with probability one;
X and Y are Independent; Y = f(X) with probadbility one; X and Y are Independent. Finally since

we are only considering only discrete r.v.'s, for any deterministic function f(z) we have

H/X0) € HX HJX |V € HX | (2.7)
HU/XO | X) =0 (2.8)
H(Y| /(X)) > H(Y] X) (2.9)

As remarked earlier, the entropy functions are functions of probabllity functlons deflned over sample
spaces. Therefore the relations above hold even if the r.v.’s that appear In the expressions are scalar,

vector, or matrix valued.

The average mutual information (or briefly *mutual Information®) between X and Y denoted

as (X :Y) can now be defined

IX:YW=HX)-HX|N (2.10)

It can be shown ;12! that /(X' Y) Is symmetric In its arguments so that /(X :Y)= (Y, X). From this

we 3lso have
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KXY --HY - HY|X)

Also by equation (2.6) we have

x-mz=2o0 (2.11)

with IIX;Y)=o0 itandonly if X and Y are Independent.

Consider agaln to the yes/no-question heuristlc for guessing the value of X . Knowledge of ¥ s
the equivalent of being provided answers to some of the questlons required to determine X . This
subsequently reduces the number of questions needed. The reduction given is precisely the yncertainty of
X before Y is known minus the uncertalnty of X after Y Is known (l.e. (dentity (2.10)). We call this
the Information Y provides about X . By symmetry, this Is also the Information X provides about Y.
As Indicated In the previous paragraph, r.v.’'s X and Y provide no loformation about each other If and

only If they are independent.

It [ Is a determlnistic function defined on the sample space X of X then then H(AAX)| X) =0

and so

(X (X)) = H/(X)) (2.12)

That Is, the Information X provides about f(X) Is precisely the information represented by f(X). For
any other rv., Y, we have that H(Y|f(X) 2 HY|/(X).X)=H(Y|X) which impiies
IY: f(X))=HY - HY| /(X)) £ HY)= H(Y| X) and we have

KY: f(X)) £ KY: X) (2.13)

The concept of mutual information can be extended {n ways analogous to the extensions of entropy
outlined above. Two extenslons concern us. First, the information (X .Y, 2) thattworvs Y and Z
Jointly provide about the r.v. X |s defined by considering the pair (Y, 2) as a single r.v. replacing the
Y term In equation (2.10)

XY 2)=HX)-HX|\|Y. 2) (2.14)

Second. the information [(X :Y|2Z) that Y provides about X when Z Is known Is derived from the
equatlon for /(.Y : Y) by condltioning the entroples in (2.10) on Z




14

1(X;Y|Z)=H(X|Z)-H(.\'IY.Z) (2.15)

A useful relat'~n between [(X:Y. 2) and I(X.Y|2) 18

IX.Y.2y=IX:Y|2D+IX:.2 (2.16)

This can readily be shown by substituting for each term above Its definition as a functlon of eatropy.

We also need a fact used later about joint dependence. If W (s a function of two r.v.'s X and Y

Jolntly It Is possible that W s independent of each of X and Y singly. Thatls

IW. X, Y) = HW) (2.17)

IW: X)=0 IW:=o0 (2.18)

An example is where X and Y are Independent-identically-distributed (i.1.d.) r.v's; each takes values
+ 1 with probabllity 1/2 that either value occurs. I W = XY, no Information s conveyed about the

outcome of W given only the outcome of X or glven only the outcome of Y.

2.2. Specific Notation and Relations Required

2.3.1. Notation for Sets and r.v. Distributions

The symbol, R, will be used In reference to the real-numbers. When speaking of a sequence of N

N
entities e, n=12..., N . we will sometimes use the notatlon {a"} For {nfinite sequences, we

nmm] ’
substitute "o0® for N. Now let {X"}:o_l be a sequence of 1.I.d. Bernoulll r.v.'s (30, p. 161], taking
values 4.5 € R with probabllitles p and (1~ p) respectively. If Yn 1s the sum of the first n
Bernoulll r.v.'s, then Yu Is a binomlal r.v. {30, p. 163] and we say Y” iIs * Bin(a.b.p.n)* or more
concisely, we put Yn ~ Bin(a.b.p.n). If a=1b=-1, and p=1/2, then we put
Yn ~ Bin(x1.1/2,n). Notlce that in this case, the varlance of Yn 1Is n. For a normalr.v., X with
mean 4 and varlance ¢%, we put X ~ N(p.o%). A normal r.v. with zero-mean and unit-variance is
called a2 standard normal r.v. and ®* # ® denotes the standard normal distribution function. The
mean of an arbitrary r.v. X s denoted by EX and the variance by VAR X . The term, random. !s
used to refer to selection of an outcome of a uniform r.v. over a particular sample-space. The term

rellably refers to an outcome or class of outcomes that occur with probabllity near one or with

probabllity approaching unity as some relevant parameter gets large.
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Most of the random vectors we conslder will consist of £ 1's for components. We wliil caj] such
vectors +1-vectors or bit-vectors since the components are binary. The set of n-dimensional bit-
vectors Is sometimes denoted by {—1, 1} and often referred to as a *space® even though the set Is not a
proper vector-space over the real or complex numbers. If X = (Xl. .\’2, oL ,X") s a random vector
whose components X'. t=1,2,...,n are [Id. each taking only the values + 1, then X Is called a
Bernoulll vector. For the case that each of the two values 1 s taken with probability 1,2. the
vector X Is called a balanced-Bernoulll vector. Note that choosing an n-dimensional balanced-

Bernoulll vector Is the same as choosing a vector at random from the n-dimeastonzi space of bit-vectors.

2.2.2. Notatlons for Prototype-Vectors and the Assoclator Matrix

The vectors fl.fz, e 'fM and the vectors 8,8, - - - .8, Wil be considered as outcomes of
random Input-vectors Fl'FZ' - 'FM and random output-vectors G‘,Gz. - 'GM respectively. The

Fm ‘s will be called Input-prototypes and the Gm ‘s will be called output-prototypes. These vectors
are assumed to be balanced-Bernoulll vectors with n, as the dimensionality of the lnput-prototypes and
n, 3s the dimensionality of the output-prototypes. We also form the random matrix F whose columns
are Fx'Fz' Ce ,FM In Index-order. Similarly, we form the matrix G from the output prototypes. The
symbols £ and g of course denote particular matrix-valued outcomes of F and G respectively. The

storage equation (1.1) becomes

M
w= Y GF, (2.19)

mes]

in terms of the random prototype-vectors. This can be expressed more conclsely In terms of the matrices
F and G

W = GFT (2.20)

For retrieval, we form the matrix G*' whose columns G'h are glven by

M M
G, = WF, = Y (G FF, = Y (F_F,G,_ (2.21)
mes] mes|
or. In terms of the matrices
G' = WF = GF'F (2.22)
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Another form of storage Is called channel-memory or permutation memory. In this case. the
outputl prototypes are consldered to be known the rectrieval device (later called the detector) and therefore
will be denoted as specific outcomes 31'82' R '8.'.{' The Input-prototypes FI,F,, ..... Fu will still be

considered as random vectors. [n addition, we will have peed for the r.v. K whose outcome « Is one of

M' permutations of the Indeces {1.2,....M}. That Is, x s a functlon that maps any
m € {1.2 ...... \I} to a unique value x(m) from the same set. This permutation is to be applled to
the columns g8, - .. 8y of the g-matrlx to produce the matrix «(m) whose columns are
g‘“),g‘(z), C '8‘:(M)' When consldering the outcome « of K as undetermlned, we denote by K(m)

the r.v. whose outcome is the value x{m). The random matrix that results when £ Is applied to g s

denoted by «(g). Under these conventions the storage equation for permutation storage !s

M
T
w = % 8x(mFm (2.23)

mus]

or more concisely

W = K(gFT (2.24)
one says that the permutatlon K Is stored in the memory.

2.3. Probabilistic Analysis of Sums

2.3.1. Distribution of Sums

Using the rightmost sum In equation (2.21), we can write the expression for the J‘h component

G’b. of the random vector G

1] [}
M

Gy = Z (F,- Fb)ij
mes|
M
mes|; yb k
M
= nG, - Y (F_ FIG_ (2.25)
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To extend the definition, we will have need for calculating the mean, variance, and entropy of such a sum.

For this It will be useful to understand the {ndependence of the terms under the summatlon.

To start. If X, Y .Z are n-dimensional balanced Bernoulll-vectors with respective components
X,.Y,. Z.. then the dot-products X-Y and X-Z are Independent. This follows from the fact that
the products X‘. . Y‘. and X.. . Z‘. are independent of thelir respective factors. In fact, this impiles that
X Y s Independent of X when Y I3 not known and vice-versa. Since the Input-prototypes are
balanced Bernoulll vectors, the dot products F ,-F, and F_ -F, are Independent when m' 3% m.
Also the components of G are Independent so the terms (FM-F‘)GW. in (2.25) are mutually

independent.

Because of this Independence, the variance of the sum is the sum of the variances of the summed
terms. Furthermore, If two r.v.'s are independent with zero mean, then the variance of the product Is the
product of the variances. For each component X.. of an n-dimensional balanced Bernoulll vector X . the
mean EX'. is zero and the varlance Is one. Therefore, IT Y 1is an independent n-dimensional Bernoulll

vector the vartance VAR (X. Y.) Is just (VAR X.J(VARY.) = 1. From this we have the variance
] ] ] ]

n n
VARX.Y) = VAR( ) X, Y;) = Y VAR(X, Y) = n

temi (L3

From this we see that VAR(Fm . P‘) Is n, when m y& k. Since the mean of Gm‘ Is zero and
the variance Is one, we also have that the variance of (Fm . F‘) ij Is n,. These terms in the sum of
(2.25) are Independent and there are M —1 of them so the varlance of the sum Is (M- l)n,.
Considering the mean and variance of the n,G‘,. term as well, we find that the mean of G'bj Is zero and
the varlance s Mn’. The distribution of the sum on the right-hand side of (2.25) s
Bin(£1,1/2,. M- "l) which Is roughly normal. Considering the term an". agaln, we see that it takes
values :tn, with equal probability. We conclude that ij Is bimodal. each mode having a roughly
normal distribution. Since M = 1=v M for large values of M the varlance of each mode Is taken to be

Mn Methods such as thils are used in the chapter on classification to determine the distribution of

Ix
sums.

2.3.2. Binomlal Entropy

Another consideration Is the entropy H(Sn) of a sum Sn of n balanced Bernoulll r.v.'s

X.. =12 ..., n. Io the appendix It !s shown that

HiS ) =1,2)l0g, (en. 2) (2.26)
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Briefly the resuit Is obtained as follows. First define a standard Bernoulll r.v. to be a r.v. that takes
the value one with probabllity 1/2 and the value zero with probabllity 1/2. The sum Sn' of n standard
Bernoulll r.v.'s Is binomlally distributed and takes on values a“' that are in one-to-one correspondence
with the possible values L of the sum S”. To see this, note that the number a”’ Is the number of
summands of Sn' whose value Is one. When the number of 1-valued summands of S_ s s ' there wiil
be n - a"' minus-1-valued summaads of S”. The value of S” will therefore be s =% n — 20.". This

can also be written an' =(n - a")/z completing the correspondence.

Under the one-to-one correspondence, Sn, and Sn' have equivalent probability distributions aad so
have the same entropy. Since the probabliity distribution of Sn’ {s determined by the binomial
coeffictents, we find the entropy of S”’ to get the entropy of Sﬂ. Note that S" Is binomially
distributed and so is approximately normal with varlance n/4. One might expect that the entropy of
S”’ Is approximately the same as that of 3 normal r.v. with the same variance. Appendix A shows that
this is In fact true. That is, the entropy of Sn' Is roughly (1/2)log2 (ren/2) where the approximation

approaches perfection as n gets large. This of course implies that the entropy of 5” Is

(1/2)log2 (men/2).

It {s useful to note that although S” Is roughly pormal with variagce n, It does not have the same
entropy as a normal r.v. with the same variance. Such a normal r.v. would have entropy
(1/2)1032 (27en) = (1/2)logz(xen/2)+ 1 which is 1 bit larger than the actual entropy of Sﬂ. This
discrepancy Is due to the fact that we can multiply a discrete r.v. by any factor thereby changing Its
variance without changing its entropy. There Is no strict correspondence between the variance and the

entropy for discrete r.v.’s.

2.4. Special Functions

An entropy function of particular Interest Is the binary entropy function X(p). Let X be a r.v.

with two outcomes z, and z, and probability p that z, occurs and probabllity 1 — p that z, occurs. Then

#(p) = H(X) = —plog, p = (1 = pllog, (1 = p), 0<p<1 (2.27)

Here A(0) !s taken to be Iim H(p)=0. The function Is continuous over the Interval '0, 1] and
p—0

differentiable on (O, 1).3 It Is strictly tncreasing on |0, 1/2] and strictly decreasing oa 1/2, 1]. By taking

3
For rea) oumbers s < b. the open interval (s, b) is the set of res) pumbers between & and b excluding the
eodpoints. The ciosed interval [a, 8] includes the endpoints.




19

the Taylor series expansion of ¥(z) about z = 1/2 and truncating one can get an approximatlon of x(z)

for z = 1/2. We also approximate $(z) for z near O in the same manner. These approximations are:

H(z) =1 - (2log, e)(z - 1/2) |z=1/2| € 0.38 implles error < 10% (2.28)

1= 4Hz) = (2log2 e}z - 1/2)z same error as above (2.29)
1 z

P(z) =~ 2t = 2} <1 (2-30)

Var

2.5. Measuring Similarity

Just as storage of Information s attributed to & *memory device® retrieval of the informatlon s
attributed to a "detection device® or detector. Both the memory and detector are characterized as
mathematical processes. A particular mathematical process for the detector Is that of measuring
similarity between two vectors as Is the case when the detector Is 8 best-match process. The information
retrievable by the detector will depend upon the similarity measure employed. Therefore, the performance
of a system must be defined with respect to a particular simtlarity measure. We will deflne 3 first order

similarity measure by way of the Hamming-dlstanee function.

Definition 1: Define {—1,1}" to be the set {x € R" |z, € {-1.1}, i=12...n}.
The Hamming-distance between two vectors Is the function HD:{~1.1}" X {-1.1}" - R
lemn
glven by HD(x.y) = ;Z‘._l Iz, =y,

The Hamming Distance Is the number of components at which X and y disagree. Its negatlive is a
prototypical similarity measure on {-l.l}" from which the componentwise similarity measure Is defined.

Definition 2: Componentwise Similarity Measure: If V Is an n-dimen..onal
vector-space, then a (componentwise) similarity measure is a function S:VXV-—= R
having the following propertles:

1. Symmetry: For all X,y € V, we have S(x.y) = S(yx).

[

- Reflexively-Maximized: For x,y € {x € V||x| =1}, S(x.y) Is maximized by
x=y.

w

. Hamming-Conslstency: For vectors x.y. w.8 € {~1.1}", the Hamming-distance
Inequallty ~HD(x,y) < —HD(w, s) impltes S(x.y) < S(w.s).
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4. Flest-Order ln'vuln.ntx It < is a permutation of the Indices 1,2, ....n and x(x) Is
the vector whose components are the components of x permuted by x then

S(x.y) = S(x(x). x(y)) .

Under this type of simlilarity, x and y are to sald to be more similar than w, § whenever
S(x.y) < S(w.s). Conditlon 3 requires the simllarity measure to be consistent with the negatlve
Hamming-distance similarity, —HD(x. y) oo {-1,1}*. We allow the word *minimized® to be replaced by
*maximized® In 2 provided that the second inequality In 3 Is reversed. This resuits in 8 function that is

minimal for similar vectors. The negatlve of a simllarity function Is therefore also a similarity function.

Examples of first-order similarity measures include those based on Minkowski Metrics. That ls, the

form S(x.y) = E:"-x |z, = yl.l" or its negative can be used. An Inner-product can aiso be used, e.g. the

dot-product, S(x.y)= Z?_l zy, -
The notlon of similarity presented here is meant to be *distance-based®. In a vector space, two
vectors of the same length will become similar If their distance (as determined by the appropriate vector-
norm) Is decreased. For vectors of a fixed length, this amounts to decreasing the angle between v.hev
directions of the two vectors. This corresponds to minimizing their dot-product. Distance-based
simllarity measures, particularly the dot-product, sre especlally relevant to the study of the assoclator.
The output of the associator is based upon the simllarity of the input-vector to the assoclator's Input-

prototypees as determined by the dot-product (see equation (2.25)).

We do not discuss detection or best-match processes In this investigation, but polnt out that they
play a role in the considerations made in the analysis. When discussing information that one vector
provides about another, we have assumed the Information Is distance-information. This characterization
of Informatlon Is consistent with the dynamics of most ®*neural-networks®. Each cell or unit computes Its
output as a functi>n of the dot-product similarity of the input-vector and the unit's weight-vector. The

*computation® done by an assoclator Is therefore based on simllarity/distance Information.

A best-match process used for detection (second-stage, as shown in 1-1) can Itself be an associator or
rather. an auto-associator and so wlll base its output upon distance-information relating the (flrst-stage)
assoclator’s output to the output-prototypes of the comblned classifier. When speaking In later chapters
of the Informatlon that the first-stage provides at Its output, we wlll assume the Informatlon Is
distance similarity tnformation so as to be consistent with the nature of the best-match process. We also
mention that the performance of a best-match process as a classification device will depend upon the
similarity measure it uses. When comparing vectors, such a measure must preserve all distance

information for optimal performance. We've assumed that distance Informatlon between two vectors ls
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completely specified by componentwise-simllarity. Under this assumption, the dot-product seems optimal
at least for bit-vectors. When bit-vectors are to be compared, there Is a one-to-one correspondence

between the dot-product and the Hamming-distance so that the dot-product preserves Hamming-distance

Information.
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Chapter 3

Information Theory of Memory

3.1. Introduction: Access v.s. Aggregate Memory

In this chapter a general information-theoretic formulation of memory s presented. Storage Is
characterized as the generation of a memory r.v. called the *memory trace® from two random vartables
called the address and the datum. Even If the memory trace is a deterministic function of the address and
the datum, the address and datum are r.v.'s, so the memory state they generate during storage can be
viewed as a r.v. from the point-of-view of retrieval. Retrieval Is then the process of recovering
Information about the stored datum from the retrieval-address In the presence of the of the memory-state.
The signal conflguration for both storage and retrieval are specified allowing subsequent derivatlon of
information-theoretic relations/limitatlons. These limitations are strongly dependent upon the retrieval
strategy which may not utillze all Information available from the memory. Retrieval methods will be

formulated and performance of the system will be evaluated with respect to a particular retrieval strategy.

3.2. Information-Theoretic Characterization of Memory

3.2.1. Access v.s. Aggregate Retrieval

In this sectlon we characterize memory as a configuration of r.v.’s and subsequently define memory
retrieval. We show how Information Is stored/retrieved as an aggregate and then how It can be
stored/retrieved as a collectlon of seperate datum-elements. The first of these modes Is referred to as
aggregate-memory and the second Is access-memory. When an aggregale memory can be partitioned
Into access memory, we say that it Is accessible and the storage (retrieval) of a datum-element Is called a

storage-access (retrieval-access).

For accessible systems, an upper bound is found for the aggregate-Information the memory can
provide and this Is then used to upper-bound the amount of information the memory can provide during a

single access (called access-Information).
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More explicitly, we have for aggregate memory the random variables called the storage-address
A and the storage-datum D. These are used during storage to generate the rapdom variable T
called the memory trace or simply the memory. During retrieval, the retrieval-address A' is used
in conjunction with the memory trace T to obtain the retrleval-datum D' As a rule, the address
r.v.'s A and A' must share Information. Thatis I(A; A’) > 0 and from this one expects that during
retrieval the memory will provide D* such that I(D:D') > 0. As a rule, the larger the mutual
Information between A and A’ 1is, the larger the mutual laformation between D and D' should bde.
For given r.v.'s A and A°', the memory is optimal if I(D:D') = H(D). That Is, the mutual
information that the retrieval datum provides about the storage datum Is maximized so that the retrieval

datum compietely specifies the storage datum.

For an aggregate memory to be accessible, it must have an address-partition. That Is, there must
exist rv.'s A, Dm, A D' . m=12..., M, that partition A,D, A’ D’ respectively so that
A =(A1' Az' co AR D= (Dl. Dz' e DM), and similarly for A’,D’. The storage and the
retrieval processes must have partitions consistent with the address-partition. In particular, the memory
trace T must be determinable from memory traces T, m=12..., M;each T  Is geoerated
exclusively from Am, Dm. Similarly, the retrieval process should be capable of generating D‘m from
T and A’ alone. Also we require [(A’ A} > 0 and expect that retrleval produces a retrieval
datum D' such that [(D'm:Dm) > 0. In many cases (though not necessarlly), optimal memory
retrieval Is taken to be the case in which each of the retrieval data D’m completely specify each of the

storage data D_.
m

We will make these notions more precise In the next sectlon.

3.2.2. Formal Definitlon of Memory

Storage will be viewed as the generatlon of 2 memory trace T as a function of the storage

address A and the storage datum D

T=¢4A. D) (3.1)

Retrieval is the subsequent generation of the petrieval datum D' as a function of the retrieval

address A' and the memory trace T ¢

‘The memory trace t(-) and the retrieval d'(-) functions trested as determinsetic in this development, bence the use of
lower case letters t.d'. A more general formulation would allow the use of stochastic functions. However the deterministic
case 15 pertinent to our situation snd we deal with it specifically for the sake of simplicity Note that s determisustic
function of random variables produces a raadom variable.
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D'=4d'(T.A") (3.2)

The memory Is defined to be the quintuple (A.D, A’ t ,d'). Notice that the memory trace and
retrieval data are r.v.'s since they are functions of r.v.’s. The retrieval address Is typically identical to the
storage address or is a ®degraded® version of it. We will generally consider the storage and retrleval
Address to be fdentical. If A. D, A" D’ and T are matrices, this retrleval process Is equivaleat to
presenting the entire retrieval-address matrix A’ to the memory to obtaln the retrieval-datum matrix
D' which In turn provides information about the entire storage-datum matrix D . The aggregate-
retrievable information [(D';D) will therefore characterize the Information that the memory can
provide. For a given storage functlon for constructing T, It is desirable to choose a retrieval function

determining D’ that maximizes /(D' : D).

3.2.3. Partitioning Memory: Formal Deflnition of Access-Memory

For access storage and retrieval, one partitions the storage address A and datum D into M parts
Al'Az' .. .AM

independent and identically distributed over a common sample space and simllarly for the Dm's. The

and Dx'Dz' - 'DM respectively. For our situation the Am's will be mutually

storage process is in turn divided Into Af parts given dy the refation

T,=t(A_.D ). m=12.... M (3.3)

The access-storage functinn t, must be chosen so that T specified In (3.1) Is a symmetric functlon
T = ts(Tx' Tz' - .TM') of the Tm 's. In other words. permuting the arguments of ¢, doesn’t

change the value of the function determining T .

The retrieval process Is similarly divided into M parts. The retrieval address A' Is partitioned

into parts A'l.A'z, ....A" , and the retrieval datum D' Into parts

M

D'm = d'A(T. A'). m=12.... M (3.4)

The access-retrieval function d'A must be chosen so that D' specified by (3.2) Is the JM-tuple

D'= (D’l. D, ....D We call the quintuple

M)'

({Am}:-l' {Dm}:-l' {A'm}:l‘-l' tA' d.A)

the access-partition of the memory. A memory that has an access partitioa is called access-memory.
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Under the condltlons stated above, the information I(D'm ; Dm) that the m'® retrieved datum provides
about the m‘h storage datum should be Independent of m . This hasn't been proven here. but the
condition holds for memory systems we are [nterested In. We therefore assume that D' D, ). called
the access-retrievable !information, Is Independeat of m. The access-memory Is sald to be

access-separable or separable if the r.v.'s D' and D and thelr respective partitions satisfy

1. Access-Inclusive: /(D':D_)=ID' :D ) m=12 ... M (3.5)
2. Access-Excluslve: /(D ; D'm) = I(Dm ; D'm) m=12 ... M (3.8)
M
3. Access-Summable: /(D';D) = Z I(D'm ; Dm) (3.7}
mam |

If additionally. the value of I(D'm ; Dm) Is the same for all m, then the memory information Is sald to

be uniformly access-separable or simply uniformly-separable. In this case, for Nixed m
ID':D)=M-ID’_:D ) (3.8)

The first of the three conditlons above states that the information that the mtb retrieval

datum D'm provides as much Information about the m'h
* =3 , ’ ’

tuplet D' = (D x'Dz""'DM)'

Dm that Is avallable from D'. Likewlse, the second condition states that the Information that D'm

stored datum Dm as does the entlre retrieved

The idea is that D'm sncludes all the information avallable about

provides about D Is no greater than the information that It provides about D'm. Agaln, the Idea s
that D' ezcludes information about D,. k % m. Heuristically, the first condition states that D’
provides all the {nformation obtainable about Dm and the second states that It provides only information
about Dm. These two conditions would seem to Imply the third, but the author has no proof for thls.

The conjecture, which could be false, Is left here as an open question.

3.3. Characterization of Storage Capacity

3.3.1. Bounds on Retrievable Information

We now show that when the retrieval-address A’ provides no direct informatlon a*>ut the stored
datum D . the Information. /(D':D). that the retrieval-datum D’ provides about the storage-datum

D 1s bour fed by the storage-matrix entropy. Explicitly, we show
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Theorem 1: Let (A, D, A’ t . d') bea memory with A’ Independent of D. Then

I(D':D) < H(T) (3.9)

Proof: Since D' s a function of A’ and T, we have by (2.13) that
ID':D) < I(A'.T:.D). By (2.16) we have

IA.T:D)=IT;D|A")+ ID:A")

= H(T|A") - H(T|D.A") £ H(T)

where J(D:A") = 0 since A’ isindependent of D . The theorem foilows.

We see from the proof of the theorem that

ID':D) € I(A'.T:D) £ H(T) (3.10)

It A is Independent of D then this relation holds for the case that A' 3 A . If additionally, A s
independent of T then the condition A' = A s optimal In that the second inequality of (3.10) becomes
an equality. Since this will hold for the memory systems we consider, the relation will be displayed for

future reference:

Corallary: When the conditlons of theorem 1 hold for A’ = A and A Isindependent of T we have

I(D':D) £ IT.A:D)=H(T) (3.11)

We now have a bound for the aggregate-retrievable Information. If the memory Is uniformly separable,

then we will have a bound on the information retrievable on each access.

3.3.2. Storage and Storage Capacity

To obdtaln a bound on the information retrievable on the mth access, assume that the memory
(A.D. A’ t d") Is uniformly separable. We then haveforany m=1.2,....M:
M- I(D'm ; Dm) = [(D':D) < H(T) (3.12)

so that




o’ .D,) < HT)/M (3.13)

We wlll call this the uniform-access bound.

The uniform-access bound motlivates the definitlon of storage and storage capacity for uniformiy
separable memory. For the systems we will consider, A' = A s optimal In the sense mentioned in the
previous section. We assume then that the retrieval address Is identical to the storage address and
suppose that I(D'm ; Dm) Is Independent of index m but is a function I{M) of the number A of items

stored. From (3.12), I{M) must satlsfy

M- I(M) € H(T) (3.14)

The product on the left is the information storage of the system. The storage capacity will be defined

as

C. = max M- -I(M) (3.15)

There are two ways to obtaln a maximum of the number M of storable items. The first assumes that
9
the product M. I(M) Increases to a maximum as M Increases to a value, M , then decreases. In this

case equation (3.15) Implies

Co=M M) (3.18)

where the right-hand-side Is bounded above by the entropy H(T) evaluated at M. which we denote

H(T. M'). Ir I(M.) can be determined, then by (3.15)

M < max HT. M)/ M) (3.17)
M

Another bound for M utllizes a lower bound IL{M) for I(D'm;Dm) as a criterfon for system

performance. Specifically., we make the constraint that

Ly < 10w (3.18)

as a requirement for minimal system performance. If L{M) s smaller than (M) for small vaiues of M

but overtakes J( M) as M grows. a bound for Af can be obtalned from the constralnt.




For the case that the memory Is not separable, it may still be uniform Ino the sense that
o Dm) is Independent of m € {1,2...., M}. For the instances we consider, reiations (3.12) and
m
(3.13) still hold so the methods of bounding M explalned above apply. These methods will be utllized {n

the next chapter.
3.4. Relation of Separability of Memory to Performance

3.4.1. Non-Separability of Distributed Memory

For associative item-memory, we make the indentification A,A' = F, D =G, T = W and
D' = G'. Aggregate storage Is then glven by (2.20) and aggregate retrieval by (2.22). The access-
partition of the address and datum Is Just the dlvision of the matrices Into columns corresponding to the
prototype vectors. The input-prototypes partition the address F, each acting as a separate ®address
word® and the output-prototypes partition the stored-datum G, acting as Indlvidual *datum words®.
The datum Gm Is sald to be stored at ®location® Fm. Access-storage Is specified by (2.19) and access-

retrieval is given by (2.21).

From calculations done outside this investigation., the linear-associator as an ‘tem memory Is
conjectured not to be separable except In limited cases. A prellminary development by the author bas
determined that item memory might be access-inclusive when M < n’/s. Further, It may actually be
separable when n,/5 2 M2 ezpz(no). These are submitted as sufficient conditions for separability
but may not be necessary. A memory with an Input-dimensionality exceeding 2-M and an output-
dimensionality a few times log2 M might be separable. Such a configuration is consistent with those
considered later in the chapter on classification. For classification, systems with Input-dimensionality

greatly exceeding the output-dimensionality are most efficiently sulted to the task.

On the other hand, separable memory Is identical in function to digital RAM or local memory. The
fact that matrix-based memories distribute the Information for each association over the entire matrix
means that the Information for each association Is overlasd with that of the others. This feature is what
allows the information for separate assoclations to interact. Regularitles in the lnput-to-output mappings
specified by many assoclations should be ®amplified® whereas lrregularities/inconsistencies would be
attenuated !n the memory's input-to-output map. This Interaction is contrary to the notion of
separabliity. In fact, non-separabllity is the very feature that constitutes the capaclty of distributed
memory for °pattern discovery® '8, 40, ch. 1| and other functions that make them of computational
Interest. The non-separablilty of these systems makes thelr storage capacity more difficult to ascertaln.

However, the property ®super-summable® exists for these systems so that bounds on the per-ltem
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retrieval-Information can be found In terms of the entropy of the mav.rlx.s This results in a3 bound on the

number of ltems storable In the system with respect to a minimal performance criterion.

3.4.2. Super-Summabllity of Item Memory

Assuming that item-memory Is not separabdle, It may pot be summable. However, the Independence

of the entrles G‘J. of the G matrix Insures that the memory Is super-summable. That is

M
IG':G) 2 ) IG",:G,) (3.19)
L

AS we wi]] see, this reiation Is quite useful in subsequent chapters on storage and classificatlon. For the

sake of later analysis then, we will start by showing this inequality and a useful extension of It hoid. To
M

start, H(G) = Z;n_l H(Gk) since the Gh ‘s are independent. Also since G = (Gl. Gz' Ce GM)
and G' = (G'x' G'z. C. .G'M) we have that
M M
HG|G) £ Y HG,|G) £ ) HG, |G
k=1 me=|

always holds. Combining these, we get

I[G':G) = H(G)- HG|G"
M M
= Y HG,) - HG|G) 2 Y (HG)-HG,|G")
kw1 Jpm )

M M
> Y (HG)-HG,|G)) = X IG,:Gy
k)

kass ]
so that (3.19) holds. The extension of this s
M "o
e 2 Y ¥ G, Gy) (3.20)
kmm] rem)

which Is proven in 3 simllar manner by showing

s .

The term. ®super-summable®. is coned 10 snalogy to the term ®sub-sumable® used by matbematicians to descnbe
poo-ligesr functions pz) that obey mz +y) < piz)+ ply). For our purposes, 3 *super-summable® function would bave
the ioequality reversed.
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"o

1G',:G) 2 Y KG,..G.) (3.21)
P

which holds because the components of G‘ are Independent.

The relations (3.19) and (3.20) are useful because I(G'; G) Is bounded above by H(W) and so we

have both

M
ZI(G',,:G‘) < H(W) (3.22)

k=1

and

M "o

Y Y ue,;:G6,) < HW) (3.23)
ko] jum]

Additionally, if the memory Is uniform so that I(G'* ; Gb) is the same for all &, and I(G"b’.: ij) is the

sime for all k. 7, then (3.22) and (3.23) become

IG':G,) £ HW)'M k=12.... M (3.24)

I(G'”.: Gbi) < H(W)/Mno, k=12 ....M, j=1.2. ..., n (3.25)

Thus we get a bound on the information provided by any access-retrievai-data, G" about the storage-
data Gk and also a bound on the amount of information any of the access-retrieval components G'ki

provide about the storage components G‘u"

These arguments hold when G' is replaced by some componentwise function G* = g"'(G") or
rather G"h,‘ = g"(G’bj). as the retrieval function. The Inequalities will be shown here for future

reference

NG",.G,) £ HWy/M (3.28)

(G",; Gyl £ HW), Mg, (3.27)

These bounds will be useful In later chapters on storage and classification.
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3.4.3. Separabllity of Permutation Memory

For permutation memory, the storage address Is the matrix F = (FI‘FZ' ....F The

M) ’
g-matrix (n this equation Is known to the detector and so ls shown as a constant rather than a r.v.
matrix. The storage-datum, D, Is a permutation r.v. K whose outcome x is one of the Af'
permutations of the indlces {1.2, ..., M} . Thatls, x Is a functlon that matches a given value m |n
{r.2. ... .. \f} with a untque value x(m) from the same set. To store the datum K, one applies K to
the columns 8, 8 - . of the matrix g to get the matrix, K(g), whose columns are
8x1) Bi(ay 8x(an) The storage r.v. matrix Is then obtalned from F and K as in equation
(2.24). The retrfeval address F' Is a matrix r.v. with /(F';F) > 0. Often, we will take F®' to be F.

The retrieval-datum, K’ Is a r.v. whose outcome x’ is determined as follows:

1.For m = 1.2..... M, compute the vector G'm = WF'm and select via a similarity
measure the vector 8, from among the output-prototypes that is a best-match of
G'm. (In the case there Is more than one such best-match, select one of them at
random.)

2. Set k'(m) = k.

This process represents the aggregate-retrieval function d'. The access partitlon Is the quintuple
M M M T

({F .}t (KM} AP )t e d’,) where t, lsgivenbdy t (F_.K(m) = gK(m)Fm and the

access-retrieval function d'A Is calculated as shown in the two steps above for only one value of m at a

time.

For storage of a permutation & chosen randomly, the values x{1), x(2), ..., (M) are nearly
Independent for large M. The only restrictlon on the &(m)'s Is that x(m’) 7 x(m) when m' ¥ m.
For large M, this restrictlon introduces little dependence among the values of x(m) m=1,2,..., M.
Since these M values are nearly independent, thelr Jolnt entropy Is approximately the sum of thelr
Individual entroples. The Individual entropy s log2 M blts, so the joint entropy roughly Is M~log2 M
bits. More precisely, the Joint entropy Is log2 M?! bits since the values x(m) specify one of M!
permutations. But log, M!' s roughly M-logzM for large M (say for M 2> 3000). Taking the

values x(m), m=1,2...., ! A\ to be independent Is therefore a good approximation.

In the same way, retrieval of K'(m) always gives some Information about K'(I) for { 3¢ m . This
Is because If the memory Is accurate, then K'(m) = K(m) with probabillty near one. Therefore. since
K(l) # K(m), the value of AR7({) Is not equal to K'(m) agaln with probabllity near onme. Ino short,
knowing the value of K'(m) glves *cross-over® Information about A7(l), [ 3£ m . In particular, the

value of R(l) will probably not be the one observed for A~ 'm). For accurate memory, we can compute
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this cross-over lnformatlon:
IK(m): K() = HKW1) - HKW1) | K(m)

& log, M-logz(.\l—l) =~ /M

This Is negligibie compared to the uncertainty of K'(l) for large M.

Due to the symmetry of the memory. and retrieval functions (the Fm's are 1.1.d.) the probabllity
PK' m) % RA(m)) s independent of m. Letting F’c be this probabllity, we seek the information
I(K '(m): K{m)). To do so, we note that a best-match process that produces K '(m) as its output, acts
probabilistically as an M-ary symmetric communications channel {12] with K (m) as the item to be
*rransmitted® and K '(m) as the ltem produced at the ®recelving end®. We also have P¢ as the
probabllity of error at the recelving end. From this it follows that the Information that the output

provides about the input is given by
I(K’(m) ; K(m)) = log, M- Pelogz M-1)~ X(Pc)

= (1 = P )log, M- }((Pe) (3.28)

which Is the information that the recelved signal provides about a transmitted signal that was sent over
the communlcation channel. For small Pe. I(K'(m); K(m)) is approximately log, M. On the other
hand

log, M < I(K'(m): K(m)) < IK';K(m)) < H(K(m)) = log, M
so that I{K"; K(m)) = I(K'(m); K(m)) so the memory Is access-inclusive.
To show that the memory Is access-exclusive, the arguement Is simllar. Assuming P¢ {s small,

knowledge of either K(m) or of K tells us with high probabliity, what K'(m) will be (namely the same

value as K(m)). We have
I(K(m): K)s~ HK(m)) and I(K'(m): K(m))=s HK(m))
so [(K'(m) . K) = [(K(m), K(m)).

To show the memory Is access-summable, we retaln the assumption that Pe 1s small so that K

and K’ will be |dentical with nea. 'inity probabllity. This gives the relation




IK . K)~ HK)= log, M= ‘\l~log2 M

As mentloned earlter [(K'(m): K(m))=s log, M so

M
IK: K= Y IK(m):K(m)

mms]

We have shown that the memory s access-separable. Unlformity follows from the fact that
I(K'(m);K(m)):::log2 M for all m=1,2,..., M. In the low-error case then, the memory Is
uniformly separable. The question regardlng how separable the memory Is for larger error Is a subject
open for further investigation. Since Pe is independent of M, uniformity should hold even In the case
that P¢ ts large. The author's conjecture 13 that greater error will degrade separabdility gradually and

perhaps negligibly provided that (1 — Pc)log2 M> }I(Pe).

3.4.4. Relation of Performance, Item-Memory and Channel-Memory

The notion of permutation-memory |s mereily a formulation of the memory’s abllity to keep track of
which Input-prototype Is mapped to which output-prototype. For fixed outcomes fm and
g, Mm=L2.... M of the prototypes and two random permutations, K and K', a matrix storing
the assoctatlons (fm, gK(m)) should be different from the matrix storing the assoclations (fm. gx;(m)).
The difference should be reflected in the response of the two matrices to a given input. For associative
memory, the input will be some prototype fk. For the assoctative-classifier, the input will be some bit-
vector f.' that Is closer to f, than [t Is to the other prototypes. For either case, the matrix-output, call
it g" , should reflect which output-prototype, Sx(k) or ‘K’(b) ., was assoclated with f‘ .1 (fh. ‘K(h)) Is
stored, then g" should be closer to ‘x(m) than to the other output-prototypes. Likewise for the case
that ('k' ‘K'(k)) s stored. In elther case, the matrix-output should provide an outside observer (a
detector/best-match-process that has access to the output-prototypes) enough information to decipher
which output-prototype is matched-up with f. within the associator. In efTect, the matrix-output must

provide enough Information about the proper output-prototype (e.g. for the first matrix and

Bxk)
3K'(k) for the second) to distinguish it from among the Af alternatives. Of course, the permutation used
Is imaginary in the sense that we can relabel the output-prototypes so that the matrix [s seen to store the
assoclations (fm. gm). With this conventlon, the output g.’ should provide the detector with enough

information, that is, log, M bits, to allow a detector to decide which output-prototype Is °g,°.

In terms of the random vectors, G'. has a mean determined by Gh but Is independent of the

individual prototypes Gm, m  k,and so G'h provides no laformatlon about any individual Gm.
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The information that G', provides about the output-prototypes to discern G, from among the A

alternative prototypes, should be largely due to the information it shares with Gk . This must be at least

log, M bits so

nG',:G,) 2 log, M (3.29)

would seem to be the necessary constraint on {tem-memory.

The problem is that G', may not be Independent of the set {Gm fm = 1.2 ....M m # k}
as a whole, especlally when Gk Is known. Therefore the Information it provides about the ®correct
chotce® among the prototypes may be dispersed among all prototypes. The author has no precise
formulation for this problem other than the definitlon of access-separadbility mentioned earlier. With
access-separable memory, the information that G" provides about the output-prototypes {s exactly the

informatlon It provides about G‘ so that (3.20) would be a2 natural consequence of the present discussion.

Although item-memory appears not to be separable, our dilemma is resdlved by the following

observations. First, since

KG',:G,. G, ....G,) 2 IG,:G,)

the constraint (3.29) will assure that the left-hand member of the above reiatlon s at least log2 M.
Another consideration is the detector ltself. We assume that it merely compares G’, with each of the
prototypes individually, and then compares the M results. No calculation involving G®, with more
than one prototype at a time is aliowed. A detector of this sort should only be sensitive to nformatlon
G'k provides about individual prototypes. This Information is zero for all prototypes except Gb.
Condition {3.29) will therefore be necessary for the detecior. Of course, a more sophisticated detector
which may not require thiy condition for reliadble performance, may perform better than Indicated In the

subsequent chapters.
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Chapter 4
Evaluation of Information-Storage Capacity

The analysis to follow s concerned with the case that the number, M, of stored assoclations Is
larger than the input dimenslonality, n,.so that the input vectors are linearly dependent and Interference
effects must be accounted for. In thls case the output vector is only an approximation of the proper
prototype output. Our concern is the number M of associations that can de stored fn a mateix of a glven

size before the output becomes unrecognizable.

4.1. Characterizing Storage Capacity

To estimate the storage capacity of the matrix, we examine a system that has stored M
assoclatlons (fm. gm). m=12...,M for some M. The Input-prototype vectors are nl-dlmenslonal
and the output-prototypes are no-dlmenslonal. For simplicity of analysis the prototypes will be balanced
Bernoulli-vectors (see chapter 2, p. 15). All Input-prototypes will then have |fm|2 =n, and all output-
prototypes will have |gm[2 = n,. To motivate the method of storage measurement, we make an analogy
with digital memory. The address to the digital memory can be viewed as an input vector and the
retrieved data as the output vector. A particular address vector and the data vector stored at the address
location can be regarded as a vector-association palr. The number cf bits represented by the data vector
is the Information the system provides upon performing the Input-to-output assoclation. For digital
memory. the number of bits represented is the same as the number of bit-locations 1n the data vector and
so is fdentlcal with the dimensionallty of the data vector. Storage Is defined in this chapter as the
amount of informatlon per assoclation multiplled by the aumber of associtions stored In memory.
Storage capaclty Is the maximum storage the system can provide. In this case, the storage capacity is
limited by the number of storage locations of the memory. Though the dimensionality of both the foput
and output vectors Is specified In advance, the data items are not. That Is, the number of items that can
be stored is not determined by what they are. In effect, being able Lo retrieve data from the memory has
no meaning unless we are atle to store an arbitrary data set at the outset (ROM I3 no exception, when we
consider all memory configurations possibie before burn-in). In essence, the question *What Is the storage-

capacity of the memory’® has no meaning when one Is consldering a specific device whose Ideatity and
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input-to-output mapping Is already determined/unchangeable. A burned-ln ROM for Is no longer 3

storage device, merely a retrieval device,

For the matrix memory, the storage Is llkewise given by the Information-per-association mulitipiled
by the pumber of assoclations stored. The dimensionality of the input and output prototypes are specified
{n advance, but the prototypes themseives are pot. That Is, we cannot assume specific values for the
prototypes in the apalysis to determine the storage capablility of the system. Since the prototypes to be
stored determine the values of the weights of tbhe memory-matrix, the matrix !s ltseif unknown. For this
reason, Lhe storage of the memory is not defined for a particular matrix but rather for a clase of matrices
all of the same size.® The class of outer-product matrix-assoclators of a given size Is the set of ail
matrices that can be generated from balanced-Bernoulll vectors via equation (1.1). The discussion above
indlcates that an association is not considered to be stored ln a particular matrix of the class ualess it Is

explicitly inciuded In the sum, (1.1) that determines the matrix.

The Information-per-association for matrix memory can be characterized in several ways, two of
which are considered here. The first cailed Item-memory chooses an arbitrary & € {1.2,... .M} and
presents the k"’ Input prototype to the system. The matrix-output is then regarded as a probablilstlic

rendition of the k‘h

output prototype. On the average (over all matrices of the class), given M, the
matrix-output will provide a certain amount of Information about the prototype output and this !s takep

as the {nformation provided by the association.

The second method, channel-memory or permutation-memory, acts analogously to an
information channef. The k“‘ Input Is presented to the system and an output is generated. The jatter is
compared with each prototype-output vector via a similarity measure and the best match from the
prototypes Is chosen. To perform correctly, the system Is expected to produce the k't output prototype as
the dest-match. If the I'B output prototype Is chosen, an error is identified with | 3¢ k. The probability
of error averaged over the matrix-class Is taken as the error probabdility for the associator as an M-ary
symmetric channel (see sectlon 3.4.3). The average mutual laformation between the output and faput is

thus defined. This average 13 considered as the Information per assoclation. For channel memory, we

8 . L . . .
In fact, Hinton (personal communication) observed that an n by n identity mstrix seems to have sa exponential amount
. n . . . . . ’
of ®storage® since 2" vector-pairs seem to be ®stored®. That is, using n-dimensional vectors of = 1's, one selects ope from

among the 2" possible. Tbhis veetor is piaced st the input of the system to retrieve the same vector at the output. More
generslly however, this can be done with an ertitrary matrix. Simply select & vector (address) of =+ i's, presens it st the
isput, *digitize® the output into % U's snd say that the resuiting vector (data) is the one ®stored® st that address. This
would pve all matrices exponentssl retmeval but 1here is Do storage process that sliows age to specify which sddresses are to
be known by the msatrix and what datum is stored at each address. This illustrates that storsge and retrieval are aot to be
confused as beiag the same. On the other hand, they are not independent of each other either. Relisble retrieval of a stored
sssociation of “item® will require, for the sssociator st least, ti.~: ‘2ss than an exponential number of items be specified
duriag the storage process.
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Jefine for each palr of positive lntegers (V. M) the matrix channel of size N on M associations It
consists of the ensemble of all possible matrices with n.n , = /N that can be constructed from a set of M
balanced-Bernoulll-vector prototype-palrs (fm. (m). m=1,2 ..., M . Mathematically the ensemble
acts as a communication-ckannel of |nformation theory. Once a particular set of assoclations is chosen
for storage. a partlcular matrix Is selected from the ensemble via equation (1.1). This matrix is

deterministic and Is not Itself a communlicaticn channel and Its storage Ls not deflned.

For both Item and channel memory, the storage Is the product of M and the information [
represented by a single assoclation. Initially, the storage M-I of the matrix Increases proportionally with
M. However the error probabllity lncreases with AM as well so that the Information-per-association [
gradually decreases. For some value M. of M, the Informatlion per assoclatlon beglns to diminish more
rapidly than M increases. At this point, storing more assocfations decreases the total Information storage

of the system. For M= M' , the system has reached its storage capacity.

The fact that the total retrievable Information decreases eventually as A gets large is nct proven
In this work. In fact, this may not be the case. On the other hand, the channel memory provides a
minimai criterion for memory performance. To perform well as a channel, a systemn need only produce an
output that Is more simllar to the appropriate output-prototype than to the others. In effect. this
demands only that the system be able to tell the stored associations apart. This seems a natural minimal
capabllity since item-memory by contrast demands that the matrix actually ®reconstruct® the appropriate
output prototype. A system that can do this even with low fidelity of reproductlon, can still perform well
as a channel. The channel memory defines a lower limit allowable for the fidelity. Slnce fidellty
deteriorates as more items are stored, we obtaln a2 maximum number of useful associations that can be
stored by the system. Channel memory then Is cruclal in determining the *absolute maximum® number of

associatlons to be stored In a system.

4.2. Bounds on Storage Capacity

4.2.1. Restrictions on Relative Magnitudes of Parameters

The analysls that follows assumes important restrictions on the magnitudes and relative sizes of the

parameters. These restrictions are in addition to any others derived later {n this chapter.

We begin with the requirement that the Input prototypes and the output prototypes be distinct
vectors. With this, the number M of prototype-palrs must satisfy [log2 M < n, and
[1032 M < no,- However if each of these relatlons Is ap equality, the prototypes are already

determined. The only thing that can vary i3 which Input prototype s palred to which output prototype.
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There are AM' ways to form the prototype pairs and so M' ways to form the matrix. Therefore the
matrix entropy Is log, M~ .\ﬂog2 M bdits which Is somewhat less than we will find 1L to be when the
prototypes are randomly selected. The ®entropy-degradation® caused by a fixed prototype-sel, would

zelously limit the amount the amount of Information the matrix can provide at Its output.

In order to ensure that the matrix entropy is aot compromised, we must be able to choose either the
input prototypes or the output prototypes (of both) at random. If the randomly chosen lnput-protolypes
are to be distinct with high probability. we must have 2!032 M < n, and if the output-prototypes are to
be randomly chosen, we need '.31011.2 M< no- These requirements ensure that sampling without
replacement 13 virtually identical to sampling with replacement so that no duplicate selections occur. If at

least one of these two requirements 1s met, the matrix-entropy should not be degraded.

More stringent requirements are needed if the prototype vectors are to be dissimilar to each other.
This requirement s necessary for the output prototypes if'a best-match algorithm Is to match the output
of the linear-assoctator with the correct output-prototype. A few errors in the matrix output should not
confuse the best-match process as they would If the prototypes are too similar. The requirement {s also
necessary for the input-prototypes when the linear-assoclator Is doing classification (see next chapter) and
the Inputs to the matrix are expected to be similar but not identical to an input-prototype. To meet the
requirement, the dimensionality of a vector space from which prototypes are to be chosen cannot be too
small. If two balanced-Bernoulli vectors are chosen from an f-dimeasional space then the number of
components that are identical between the two has average n/2 and standard deviation of \/;/2 . Since
agreement of exactly n/2 components corresponds to orthogonality and most vectors will fall within 2 or
3 standard deviations of the mean, the prototypes will be highly orthogonal If the mean Is large compared

to the standard deviation. For this, n should be at least 100 or so.

To ensure dissimilar vectors one must also consider the number of prototypes to be chosen. The
minimal distance occurring between two balanced-Bernoulll vectors from among M vectors chosen from
n-dimenslonal space is roughly n/2 - m \/;/2 (see appendix B). 1In order that the two most
simllar prototypes be dissimliiar, we require that the above minimal distance be nearly n/2. This wliil
occur when m \/;/2 1s small in comparison. As we shall see, the number M of prototype-pairs
to be stored In the matrix should not exceed the number of weights la the matrix. If the matrix Is square,
this means M will not exceed n® where n is both the laput and output dimensionality. For this
maximal value of M we need m \/;/2 to be several times smaller than n/2. This sets a
minimal bound on n. If we require al least an eight-fold difference between n/2 and V2in M- \/;/‘2.
then n must be Just over 1900 or larger. A four-fold difference produces a lower bound Just under 400.
in any event, the prototype dimensionality, both Input and output, should be severai hundred (f an

assoclator is to discriminate weli between a large number of stored prototypes.
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4.2.2. Matrix Entropy

As shown In the previous chapter, the amount of Information retrlevable from the matrix W Is
bounded above by its entropy H(W). In this section. the matrix-entropy Is estimated and used to

ascertaln the storage capacity of the matrix.

Glven the M Input-output prototype-palrs (fm. 8,,) . the matrix defined by equation (1.1) Is seen

as the sum of A outer-product matrices. The mth outer-product or assoclation-plane or plane. 1Is
) th

completely determined by the n,tng bits of fm and g, Its JI"™™ component cj‘. Is the product f"“.gmf

b

which takes values in {—1,1}. The m'® association-plane Is not changed If both f,, and g are muitiplied

by -1. This indicates that the m'h plane represents at most n, + n_. — 1 bits of Informatlon. In fact, the

I o
entries of any given row and column are enough to determine every other entry In the plane. To
Illustrate, examine the k*® row and 1lh column and the entry c].'. = f'm.gmj. These three entries (bits)

¢,..¢,, and Cﬂ determine cj‘. so that the parity of these four numbers is even. The n, + no -~ 1 entries

ki’ Tkl

that make up a particular row and column, are easily seen to be independent, so that nytng = 11s also

o
the lower bound on the Information in a plane. We conclude that each assoclation-plane represents
ezactly n,+ng = 1 bits. We mention also that the entropy of the assoclation plane Is the same even
when the output (input) prototypes are fixed outcomes leaving only the lnput (output) prototypes as
balanced-Bernoulll vectors. From this we have that the matrix-sum W of the assoctation planes has the
same entropy from the point of view of an external process that has knowledge of either (but not both)

the set of Input-prototypes or the set of output-prototypes.

When the association-planes are summed, informatlon Is lost. To assess the matrix entropy. note
that each of the entries W).'. of the matrix 1s the sum of M "bits* fm'.gm,.. m=12,...,M Therefore

Wﬁ ~ Bin(+1,M.1/2). As shown in appendix A, the entropy of W,‘.‘ s

H(W : TeM 1
( j’.) =y 51032—2- (4.1)

As mentloned In the previous chapter, the entropy of a set of random variables Is bounded above by the
sum of the Indlvidual entroples (see equation (2.2)). Since there are N welghts, where N = nlno. and
stnce the welghts have ldentical entropies, the upper bound of H(W) Is obtalned by multiplylng the
common weight-entropy (1/2)10;._,(:reM/2) by N. The entropy H(W) will obtaln this upper bound If
and only If the weights are independent. The assumption that the welghts are Independent Is false for
Indlvidual assoclation planes. However the planes are Independent and the bit-patterns in one plane wiil
not generally be present In the others. For the sum of M such planes where M Is large, the welght-

independence assumption should provide a close approximation the the true matrix entropy when M is

much targer than both n, and "o We conclude then that
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e M

1
HW) =~ =Nlog,
1s a goud approximation when M > n, and M> no

4.2.3. Bound on the Number of Items Storable

Consider the situation In which the k‘h Input-prototype, Fk Is present at the input of the linear-

th

assoclator and some process provides information about the k™" output-prototype Gh on the basis of

what {t sees at the memory output. If the average Information It provides about Gll 13 I bits then from

relation (3.12) of the previous chapter, we must have

M-I £ HW)

Replacing H(W) with Its upper bound

1 reM
M T < EN\og.2 ~

so that

log, M + log, (me;/2)

2./

M

—_— <

N -
We make the approximatlon IOg2 (re/2) = 2 to get

\f 10(2 M+ 2
<

N S T2 (43)

In the case that the process al the output of the matrix Is a best-match algorithm, the matrix Is acting as

a channel. By equation {3.28), page 32, we have

] = log,, M - Pelogz(.\l-l) - H(Pe)

where P, s the probability that the best-match process chooses a prototype other than Gb as the one

most closely resembliling the matrix-output vector. For our purposes, M — 1 =s M and so

['~ (1=Plog, M ~ AP (4.4)
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Equation {4.3) becomes

M
N

tog, M - 2

1
.<_ ; {4.5)

1 - Pc)log,., M - n'\r"e)

Our criterion for minimal channe} performance is that Pe =0 In which case [ =log, M. This gives the

upper bound on M/ N

M 1 1
= - {4.8)
N

< -
- 2 log, M

for perfect channel performance. When M Is large, say log2 M > 168, the upper bound for M;/N s
only negligibly larger than 1,2. Therefore we define the storage load or load. L, of the system to be
the ratio 2M,/NV. A load of 1 corresponds to storing half as many prototype-palrs {n the memory as
there are welghts in the matrix. For iarge systems (50,000 welghts or more), a load latger than one

precludes operation of the memory as a perfect channel.

4.2.4. Trading Storage with Error

To understand how the load trades with error rate Pe , We rewrite equation (4.5) as the quotlent

M log, M+2

1 1
< -
- 2 (1~ Pe)lm;2 M / 1 - }I(Pc)/[(l - Pe)logz M

letting z = }I(Pe)/’}(l - Pe)log2 M) and assuming this fractlon I3 less than 1/3, we use the approximation

1/{l ~z)= 1+ 2 toget

M < 1 logz M+ 2 N(Pe)
— - 1 +
N T 2 (1- Pe)logz M (1- Pe)log2 M
1 1 1 H(Pe)
= - 1 4+ ————
(1= Pe) 2 log, M (1 - Pe)!og2 M

If we assume that Pe < 1,2 and that '.!/(log.2 M)2 is less than say 1,18, then when we multiply out the

right-hand-side, we can ignore the H(Pe).r 1= Pe)(log2 M}2] term to get

1 )((Pe)

[ S
—_
S
—

log, M " 2(1 - Pt)log2 M
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This approximation is good for M 2> 2% when Pe < 1 2. These restrictions ensure that the *z°® term
defined above Is less than 1 3 which in turn ensures that the term we Ignored to get refation (4.7) {s small.

n
-

If we allow Pe to be as large as 3 4, then we obtaln a minimum value, o! . of M required for the

validity of (4.7).

A simpler bound for M.N is afforded for M 2> 218 1p this case, If Pe Is less than 1.2, the term
(1= P )og, M Is much larger than X(P,) so that the latter can be ignored In relation (45). The
refation then becomes
M 1 1

1
- < -+ i
N - - Pe) 2 log, M (4.8)

Notice that this is the bound in equation (4.8) multiplied by the Inverse of the "success rate® (1 — Pe).
The approximation Is valld for more modest values of M when I-"¢ Is smaller than 1/2. Summarizing the
analysis for larger systems, the number N of weights needed to store M assoclations for fixed Pe Is
O (M) . Allowing the load factor L = 2M/N to belargerthanl,say L = 1/(1~-r), 0 < r < 1,

Implles the error rate Pe will be at least as large as r.

4.2.5. Storage Limits for Item Memory

Now we turn our attentlon to ltem-memory. We assume that when the k”“ ‘nput prototype lIs
presented to the matrix, the matrix output Is used ezclusively to produce a bit vector that Is as accurate a

th output prototype as possible. It is assumed that no information other than that

rendition of the k
provided by the matrix-output Is allowed for production of the blt-vector. To be consistent with the other
sectlons of this thesls, we denote the systems ®rendition® of Gk as G"’. The term, [. In equation (4.3)
Is now /(G ".G,). For the case that HGH" = G‘}.) 91, J=1,2,.... M, we have that [ must be

"o bits and so

M (032 M + 2

N n

o

Substituting LTSN for .N and rearranging, a criterton for n, Is found

2M
>
I = jog, M~-2

(4.9)

For large M (say M > 18 ) we can ignore the 2 In the denominator to get
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> 2M
"= log, M

(4.10)

Since the bit-error rate is near zero, Gh" shoulg be virtually tdentical to Gk . If a best-match Is used to
select the output-prototype that is nearest to Gh"' then Gh wlil be chosen with near certainty. In other

words, If we define Pe as the probability that Gk Is not chosen then Pe should be near zero.

For this condition to hold, the memory must provide enough information at its output to act as a
channel with no errors. Therefore relation (4.6) must be satisfled. Using this together with (4.9) and the

fact that N = n,n_ one gets a lower bound on n

ro o

n, 2 log, M + 2

(o]
which 1s a minimal requirement to be made consldering the parameter constraints discussed earlier in the

chapter.

For lllustration, we deslgn a matrix to store M = 50,000 palrs. WIith this large number, reiation
(4.6) Implies that at N ls at least 100,000. The minimal value for n, becomes about 5700 and the

minimum for n_, s about 18. With these values, the number of weights becomes 106,200. We will

o]
compare thls with the matrix parameters derived In the next section In which the system is allowed to

make errors.

4.2.8. Item-Memory with Errors

Now consider the case that the components of Gk" each agree with thelr counterparts In Gk with
probabllity noticeably less than 1. Assume that the probabliity that a palr G:J.and G"i agree is
Independent of j=1,2.... ) and call this probability P The probablility of disagreement between
a palr of components is 1 — Pc which Is non-2ero and so Gb" will contaln a substantlal nyumber of blts
that are In error. In thils case, a best-match algorithm that compares G"' with the output-prototypes

will have a probablility Pe > 0 that the wrong match is made.

The information that Gk" provides about Gh s bounded above by the Information Gk' provides
about Gk and bounded below by the sum Z:r: I(G’k,." ; Gk,') of the {nformation that G‘l provides on a
bit-by-bit basls. The argument that this Is a lower bound Is simllar to the argument given in the previous
chapter to substantiate relations {3.19) and (3.20). The information that Gk’." provides about Gki Is

glven by (1 - H(pc)). Using the above lower bound for [, this implies that relatlon (4.3) holds with [
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replaced by nou—)'l(pcl). Assume that p. < 088 so we can approximate l—)-'lpG) by

('.’log,., e)(pG -1 2)2 as per equation (2.29). Inequality (4.3) becomes

M l032 M - 2
~ < ~ (4.11)
. -— n\*
:.’no(:.'!og,_, e)(pG 1.2)
For M > exp,(18). we can ignore the 2 In the numerator on the right to get
M In M
< < > (4.12)
4 - 0"
We can get a lower bound on n, by replacing N In (4.11) by Mo and rearranging
PRV 4
4M(log2 eps — 1/2) ( )
n 4.13
I = log, M+ 2
Agaln, assuming M 2> 350,000 we can use (4.12) to get
2
n, > 4.14
= in M (4.19)

which holds for larger systems. We assume that p. > 1/2 since Gk” i3 supposed to be a better-than-
chance rendition of Gk. With this assumption the above relatlon can be expressed as an upper bound on

Pg achievable by a given n,

1
P < -2-(1+\/nlln M/ M) (4.15)

Stnce p. Is less than 1, there Is a non-zero probability P¢ that Gk" will be mistaken for some prototype
other than G. . If we assume that a best-match among the output prototypes Is sought using the vector
Gk" then the Information I(Gb":Gk) must exceed that required to operate the best-match process.
The Information required for a best-match process with error rate Pe Is given by (3.28) of the previous

chapter and we can assure that I(Gk" ; Gk) Is larger than this by requliring
nolt = Alpg)) 2 (1 - Pe)log,., M- )((Pe)

Assuming that Pe < L.2sothat (1 - Pe)log,, M > (1/2)log, M. we take M to be larger than 50.000 as

usual. This allows one to Ignore the ;"(Pe) term so that we have
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noll = #pgh 2 (1= P log, M
With the assumption that 12 < Pe < 0.88 we use the approximation (2.29) to get
2
2n,(log, epg —1.2) > (1 - Pe)log2 M

which ylelds the reclprocal relations between the error probabllities

2"0
P 21 - (4.18)
¢ In M(pG - 1/2)2

Pe > 1/2 + V{1 —Pe)ln M/(2n0) (4.17)
To obtaln a bound on the matrix size, n, can also be expressed in terms of the other parameters:
(1 - Pe)ln M
"o > (4.18)

2pg - 1/2)°

Note that relation (4.18) must hold for Pg to satisfy both (4.17) and (4.15) simultaneously. From (4.18)
and (4.14) we have N 2> 2(1 - Pe)M which Is the same bound as given in (4.8) for M large. While n,

and n,. depend on pG , their dependence is reciprocal so the matrix-size needed to store M items (s not

(o]
affected by p. glven a fixed Pe.

We use these refations to design a matrix that can store M = 50,000 ltems with 3 channel error
Pe = 1/2 and a output-blt error P = 3/4. From relation (4.18) we obtain no = 44. From (4.14) we also
have n, > 1156, so that nn, s 50,900. Agaln the matrix is one which "fans-ln® to produce a highly
rellable oytput under a large storage load. Notlce that in accordance with (1 — Pe) = 1/2, this system

is roughly half the size of the one designed earller for *perfect® item retrieval.

Under any of the above clrcumstances, the number of weights needed for storage Is O (M). Allowing
Pe > 0 allows an advantage with M Increasing roughly proportional to 1/(1 = Pe). (Pe < 1/2). Ifa

bit-error p. < 1 Is allowed. then P¢ must be specified to determine n, and n_. as a function of M.

4 o

Notlice that relations (4.13), (4.14) and (4.18) Imply that n, can be made smaller when Pc Is near 1/2,

I

whereas n, must be made larger to meet the same storage requirements since the number of welghts must

satisfy relatlons (4.11) and (4.5). Requiring that the bits of Gk" to be accurate forces elther M or n, to
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be small. That is. either the matrix must store few vectors (smalil ratlo M, .,V ) or the size N = nng of
° the matrix must be due largely to ny. Heuristically, the matrix must be able to gather a large amount of
Information at the Input compared with the amount tt supplles at the output. One would suspect that the
Information supplled at the output is a function of the Information avallable at the fnput. This
observation. whi:h will be shown to be true In the next chapter, will be Instrumental {n deriving results

regarding classification.

4.3. Storage Efficiency

Storage efficlency of a matrix will be defined as the matrix-storage divided by the [nformatlon
required to represent a imatrix assoclator on M assoclations. We know that the number of bits stored by
the matrix Is the matrix entropy H(W). To get the number of bits required to store the matrix, we
examine equation {(1.1) to ascertain the range of values that the weights can assume. This equation
reveals that each entry (weight) in an outer-product matrix is the sum of M bits. The range of values of
each entry Is the set of integers between —AM and M. The extremes are reallzed whenever the bits for
that entry all agree in value. Further, the eatry will be be even If and only If M ls even. It follows that
the number of values an entry can assume Is M+ 1. This means that N weights will require
Mog2 (M+ 1)~ Nlog2 M blts for storage. We define the efficlency n by the matrix-entropy divided by

the numter of bits needed to represent the matrix

H(W) (1/2)N(1032 M+ 2) 1 1
= = & - —— .19
Nlog2 M M032 M 2 M log, M (4.19)

which Is the upper bound for the ratio of M to N . In this case, the efficiency 1s asymptotically 1/2.

This I1s not the best we can do however. From the proof of the ®talls lemma® in appendix A, page
100, the entropy H(Wﬁ) of a weight of the W-matrix can be approximated by considering only 2ry+1
of the most central values that the welght can achieve where r, = [mj This means that
only these values occur often enough to represent a significant amount of the informatlon represented by
the weight. So we can ignore the more extreme values the weight might take and thereby only need

roughly log, (2V2.Mog, M) = (1, 2llog, (2Mlog, M) + 1 bits to store each weight.

Let .\Io be a positive Integer representing the maximum number of associations to be stored in the
matrix. If we restrict the weights to range in valye {rom —[2.\Iolog2 .\!oj to [2.\Iolog,_, Moj then when
the number M of assoclations stored Is no greater than Mo. the talls lemma prescribes the maximum
number of tits of Information lost by making the range restriction. The maximum Information lost Is

given ty rhe upper bound for ¢ !n the talls-lemma which !s 2log, ¢ (e.\{o) (see (.42}, conditlon 2 and

-
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related foothote, page 100). Assuming that this is the amount of information that I3 lost for each weight,
the total lost for the entire matrix 's no more than 21“4‘!<Jg2 e/(eMo) bits. If the matrix is required to lose
no than r bits of (nformation due to the welght restriction, then set Mo equal to N,r so that the
maximum lnformation loss Is 2.\1032 e/(eN/r) = 2riog, e/ess r bits. For the case that the load L s
expected to be less than 1 (that |s we don't intend to overload the matrix), we can set Mo to be N, 2

and will lose no more than one bit for the whole matrix by restricting the weights to the prescribed range.

The efficiency of this new system Is again the matrix-entropy divided by N iimes the logarithm of

the number of values permitted for each weight

(1/2)N(log, M + 2)
N{(1/2)108, (2M) + (1/2)i0g, (log, M) + 1)

log, M

for large M 4.20

log, M + log, (log, M) ¢ (4.20)
which Is asymptotically near 1. Therefore, by simply truncating the range of the weights, we can for a
fully loaded matrix, achleve a storage efficlency near unity while losing an insignificant amount of

Information about the matrix.
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Chapter 5
Classification

5.1. Introduction

Whereas the previous chapter considered the linear-assoclator as a memory, the present chapter wiil
treat It as a classifier. The classifier s merely a generalization of the memory in which the input-vectors
are no longer constrained to be input-prototypes. In this case, Input-prototypes are each a representative
or "prototype® of a distinct category of vectors in the input-space. An vector from the lnput-space
belongs to a category If It Is closer. under the Hamming-distance metric, to the prototype of that category
than to other input-prototypes. The input-prototype and Its category have a corresponding output-
prototype that represents the category In the output vector-space and the associator has stored the
correspondence between the Input and output prototypes. In thls characterization, classification Is similar
to channel-memory (see figure 51). The input-vector by virtue of its membershlp In a particular
category, has a corresponding output-prototype which Is the category’'s corresponding output-prototype.
Proper classification consists of assoclating the Input-vector to an output-vector that Is closer to the

Input-vector’'s corresponding output-prototype than to the other output-prototypes.

The analysis begins with the characterization of the linear-associator as a classification device. A
non-linearity is applied to the associator-output to facilitate the analysis. Minlmal requirements necessary
for proper performance of the classifler are explained and we describe the assoclator’s Information
characteristics relating to achleving these requirements. Methods of generating input-vectors are
formulated and are eventually shown to be equivaient from the point-of-view of the assoclator. The
Information flow from Input to output, called the *throughput® »f the assoclator, 13 then quantified and
related to performance capabllity of the assoclator. We will then be In a position to determine the
minimal size of sub-vectors within Input-vectors that act as ®cues® for the input-vector category. We wlll
aiso quantify the percentage of the Input-space that Is classifiable by the system. We then "revisit®
storage capacity and quantify {ts degradation due to the use of the non-linearity at the associator output.
Near the end of the chapter, the theory s lllustrated with a few classifier deslgns and a discussion of
Important aspects of their operation. Finally, we derlve some merit parameters for judging

storage classification performance of the assoctator as It compares with the best theoretically possible.
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Figure 5-1: Classification by Prototype-Correspondence

5.2. The Associator as a Classifier

5.2.1. Characterization of Classification

Conslder an arbitrary classification device as shown In figure 5-2. The device can recelve any
ndimensional +1-vector as an Input which wilj be referred to as the input-vector. The device has
stored Information about M vectors called Input-prototypes. These prototypes are the nl-dlmenslonal
balanced-Bernoulll vectors FI. Fz' C .FM. Each one is consldered to be an exemplar of a distinct
category of nl-dlmenslonal +1-vectors. An input-vector that is closest 1o Hammling-distance to the
prototype Fl, than to any of the other Input-prototypes will be denoted by Fk' and Is sald to belong to
the k'b category. Thus, there are M categorles, each ®centered® about its exemplar. After receiving the
input Fh" the classifler Is expected to emit the number k at Its output to signal that the Input belongs
to category k. A classification-error (or briefly an ®error®) Is sald to have occurred when the response

of the classifer |s some number other than k. The probabllity of classification error Is denoted Pc.
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’:1_—" F1:F2’ ---,FM _’k

Figure 5-2: General Classifier for ndimensional £1-vectors

It the classification device .5 Lo operate with negiigibly small P_, the Input-vector, F,' must
provide at least log, M bits of Information about Its category-exemplar l-“l . This is due to the ract that
Fk’ must be distingulshed as belonging to one of M categories and the only way the distinction can be
made Is to determine which of Af exemplars Is closest (see the chapter on the Informatlon-theory of

memory). We therefore have the constraint

IF,/:F,) > log, M (5.1)

Now consider the classification sy +em of figure 53. In this case, the classifier Is divided Into two
stages. The first-stage is a linear-assoclator whose output is fed to a Hopfleld-non-linearity (defined
later). This stage, called the associstor, translates nl-dlmenslona.l +1-vectors Into no-dlmenslonal
x1-vectors where n, Is the dimensionality of the associator’s output-prototypes Grcz' . .GM.
The second-stage is a best-match process that compares the output of the first-stage with the output
prototypes. In this case, the M category-exemplars for the classifier are the Input-prototypes
F, F, .... FM :

the kb category wlill be denoted F". The resulting output of the linear-assoclator matrix will be called

As Is the case for the general classifier of figure 52, an input-vector that belongs to

Gk’ and the output of the Hopfleld non-linearity 1s called Gk" .

Upon receipt of Fk' al the Input, the resulting vector, Gk"' at the output Is expected to be closer
to Gk than to any other output-prototype. In this case, the best-match process of the second-stage
process will respond with the number k at the output. We regard the best-match device as an error-free

device  Errors will only occur If the first-stage produces a vector G"’ that Is closer to some output-




51

Associator Best-Match
F2, sse g FM v

ol B
h G, ,G G
1172 My

1st Stage 2nd Stage

-G, —l G, ,G,, ..,Gy | K

Figure 5-3: Assoclator Classifier for n -dimensional £1-vectors

prototype other than Gk‘ In other words, the analysis Is concerned with the performance limitations of
the first stage. The second-stage Is merely an artifice for the sake of the characterization of the
classification ®task® of the linear-assocfator. In fact, the "classification® done by the associator Is just Its
passing information to the output that enables one to determine which input-category is present at the

matrix-input.

We observe that the second-stage of figure 5-3 Is Itself a classifier of an arbltrary sort. Its category
exemplars are the vectors Gl. 62 ..... GM so Its input G"' must provide log, M bits of information
about Gk If the second-stage Is to classify rellably. The assumption that

I(Gb" : G‘) > log, M (5.2)

-

is thereby obtained as a constraint on the output G‘" of the first-stage.

In a later section It wlll be shown that the output-information I(Gk" ; Gk) of the first-stage can
be regarded as a [inear functlon of the {aput-information I(F" ; F‘). The ratlo
1G,". G, IF' Fp

Knowledge of the throughput will allow us to translate the constralnt of (5.2) into a constraint on the

will be denoted by TIW) and Is called the throughput of the assoctator.

Input-veetors Fk' This in turn will reveal the fraction of the input-space 7 that can be classified.

The general 1dea Is to define the input-redundancy (or simply the redundancy) R of the ioput F" to
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be the ratio

R = IF.) F,)log, M (5.3)

The constraint (5.5) then stipulates that R 2 1. The question s just how much redundancy must be
present at the tnput to the associator to ensure rellable classification. The answer lles in the definition of
throughput from which we have I(Gb" : Gk) = TTW)I(F," : Fk) .-and so relations (5.2) and (5.3) Imply
that the inequallity 'ITW)RIog2 M 2> log, M holds. That ls

1

Z 7w i

R

In the case that the assoclator Is not lightly loaded, TUW) will be less than 1 so that by (5.3), the

R of the

constraint (5.4) Is more stringent than relation (5.1). Later It wiil be shown that at most M!~
input-space F is classifiable. A heavily loaded assoclator will have a Jow throughput and so require a

high redundancy. As a resuit, it can classify only a smail portion of the lnput-space.

Since the classifier of figure 5-3 1s merely an associator followed by a classifier, one may wonder why
we should bother with the first-stage associator at all. One reason Is that the assoclator translates input-
vectors into output-vector “codes® that are more useful Lo subsequent processing stages. Another reason
as we shall see, Is the data-compresslon afforded by the assoclator. What data-compression Is and lts

usefulness will be seen near the end of the chapter.

5.2.2. Generatlon of Input Vectors

An Important aspect of assoclative memory 1s the abllity to respond to Input-patterns that devlate
from the stored Input-prototypes. In particular, suppose each lnput-prototype F,, s dlvided up fnto
subvectors called features (see figure 5-4). That Is, some subset of the n, components of F. represent
a "fleld® in which a particular ®plece® of information Is coded. If Fk’ has oniy thls single piece of
Information in common with Fk and nothing (other than colncldental similaritles) in common with the
other fnput-prototypes. then we cail F.' a single-feature vector. It is desirable that an Input-vector
Fh’ be classiftable even If It Is a single-feature vector. Call the number of compoenents of F‘ that
compose a particular feature the feature-eize. We seek the minimal feature-size necessary for rellable

classification of a single-feature vector.

Several methods of incorporating a feature of F& in Fk' or Inserting Information about Fk Into
Fb’ are constdered here. The first Is L0 copy r components of Fk Into Fk' and set the rest of the

components of Fk' to zero. This case can be reduced to analyzing the storage characteristics of an
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Prototype: (feature-1, feature-2,....., feature-k,....., feature-r)
Single-feature
input: (cereeeeee'random™............, feature-k,...."random="...)

Figure 6-4: Features Within Vectors

assoclator with r-dimensional Input. This method therefore Is not as Interesting as other methods which
don’'t allow zeros as components of the input-vector. Zeroing the ®*unused® components however does
have the advantage that no spurlous Information Is incorporated Into the Input-vector. As far as the

matrix Is concerned, r bits of information are actually present at the input.

Another method Is again to copy r of F"s components to Pk' and choose the rest of Fk"s
components as a random selection of +1's. This case Is more Interesting because It corresponds to F"
contalning Information other than that of the r-dimensional feature of F‘. This additlonal Information
however |s not relevant to the prototypes of the assoclator. Rather, It Is used by other assoclator-
classifiers in a multl-classifier system (see figure 5-5). Each associator would sample the {nput-vector and
cnly act on the features the input contalns that are relevant to the prototypes of the assoclator. The
Input might represent the functional description of an object, each feature of the input-vector representing
a different functional aspect of the object. Each associator would have Information about a speclfic

®feature-type® and associate features of this type to relevant *concepts® or *goals® of the system.

This method of generating the input-vectors actually Incorporates r bits of information about Fk
Into Fk’A However, the network Is probably not capable of using all r bits of information. In the first
place, the asso~iatcr has no way of knowing which of the r of l"‘b’ are the coples. What's more, it never
varies the way in which it ®*weighs® a glven component of Fh’ when determining its output Gk"
Whether or not !t happens to weigh the r components of the feature heavier than the other components
of the Input. Is a matter of *happenstance®. Another related problem Is that generating the input-vector

with tn-cn:istent information s nct weli-accounted for by Information theory. An loputl-vector Fk'
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(feature-1, feature-2, ..., feature-q)

Flgure 5-B: A Multi-Assoclator System

should be classified with the éategory-exemplar Fk even when it contalns information in direct opposition
to this cholce of category. More precisely, copy r, components of F‘ to Ft' and copy the negative of
each of s other components to Fb'. Choose the remaining components of Fb' randomly. We assume
TLT Ty > 0 so that the net feature-size is r 2> Ty Again, If r Is large enough, then the
consistent information should ®override® the inconsistent informatlon so that F" Is properly classiflied

into the k‘h category.

From an Information-theory point-of-view however, the mutual information I(F" : F.) Is no longer
r bits dbut ryT Ty bits. An observer of F". knowing which components were copled directiy and which
were negated could infer the T T, values of those components of Fk' Of course, the assoclator treats
all the components of the input-vector the same. If r Is large, the dot-product F,'-F, of equation
(5.12). page 57. will be large and Fh' will be correctly classifiled. From the polnt-of-view of the

assoclator-matrix. the yseful information Is r bits not nt ry bits. A more substantlal argument for this
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view will be given later. The arguement depends on the fact that the distribution of the matrix-output Is

a function of r only and does not otherwise depend on which of the above methods are used to generate

the Input-vector.

Another method of generating the input F" Is to choose It within a regicn surrounding the

prototype F‘ . We define the ball of radius p about F. 10 be the set

Bb(p) = {x € ?IHD(Fh,x) < p} (5.5)

where HD(x.y) Is the Hamming-distance between the vectors x and y. If p > 0 has a value such
that Bk(p) =5 1/M then concesvably, each of the M bdalls Bm(p) m=1,2,..., M could occupy Its
own reglon of the {nput-space ¥ with littie overlap. That Is, most vectors of F would lle In exactly one
ball. The llkellhood of small overiap of all the balls is small but the Important notion Is that the largest

portion of space each can occupy is 1/ M without unavoidable overlap.

Now consider generating Ft' by choosing it at random from B.(p). We will call this method of
input-generation the neighborhood method. An observer of F,' knowing how it was generated, knows
that the Input-prototype Fk lles within p of F.’. Oerly 1/M of the lnput-space Is this near F.’ so
this knowledge constitutes an M-fold decrease in the number of possible values of F‘. Therefore the
vector Fl:’ chosen at random from Bh(p) provides log2 M bits of iaformatlon about Fk' Observe that
If p were decreased so that B‘(p) encompassed only MR of the space, where R > 1, then the Input
Informatlon I(FH:FA;) would Increase to Riog2 M. This observation will be useful later when

comparing the methods of generating the associator-input.

A fNnal method of Input-vector generation is that of flipplng a blased coln to determine for each
component (bit) of the Input-vector Fb' whether It agrees with the corresponding component (bit) of Fb .
This will be referred to as the coin method. If the coln lands ®*heads®. we copy a component of F,' to
F,'. I It lands ®talls®, we copy Its negatlve to F. . Leuting pp be the probabliity of "heads®, the
probabllity that a component of F. ' agrees with its counterpart In F, Is Pp- In order that F,/ bea
better-than-chance rendition of F, . we assume that pp > 1/2. In this case, the Information that F/
provides about Fk Is the sum over all n, components of the Infcrmation that each component of Fb'

provides about Its counterpart In Fk . We can write

n
!
IF:F,) = Y IF/:F,) (5.6)

o

The information I{F/.." : Fh.) Is the function | - }((pF) which Is 1 bit minus the uncertainty }I(pF) that
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F.! agrees with F,.. When p. Is not too pear 1, (say p. < 0.88 ) we can approximate 1 — #(p.) by
% ki F F F

2(log2 e)(p’.- 1/‘2)2 (see approximation (2.29) page 19). The result ls

KF,):F) = nl1-Hpg)

=~ 2n{log, elpp—1/2)° 1/2 < pp < 0.88 (5.7)

We can assess the similarity of the lnput-vector F" to the prototype Ph as measured by the
dot-product. The average number of components of F,' that agree with thelr counterparts In F, Is
L The average number that disagree is n’(l - pp). The components that agree contribute 2 1 to
the value of the dot-product Fk'Fls' and the components that disagree add a -1. Therefore the mean of

the similarity 1s

E(F,,-Fb’) = n’p’.-(l) + nl(l - p,.)(-l) = (2pr— l)n, (5.8)

For the method of copylng r components to generate F. ', the mean simllarity Is r. We therefore set

r= (2p,.— 1)7-., to obsain the same mean similarity as for the coln method. This gives the reciprocal

rejations
r = (2pr—1)nl (6.9)
and
1 r
= = 4 — 6.10
Pr 2 2n, ( )

It will be argued later that the varlous methods we described for generating the lnput-vector are

equivalent, from the point-of-view of the associator, to the coln method with p_ glven in (5.10).
F

§.2.3. Throughput of the Assoclator

To ascertain the throughput of the first stage of the classifier In figure 5-3 we must consider the
probablilty distribution of the components of G,'. For j=1,2,....n,. we show that the probabliity
that G"." = G’,”. Is Independent of j. Calling this probabllity Pg - It 18 shown to be a function of the
probability p, defined earller. Consequently, the output Information I(Gh" ; G.). Itseif a function of

P - 's a function of the Input-Information I(F.’ ; F.) .
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To assess p. . note that G," Is produced from G" via the "Hopfleld® 24, 25; non-linearity
!

{ 1 I Gl:j 20 )

(5.11)

-1 otherwise

The probability that Gk,‘” = ij Is the probablility that Gk’.’-Gk}. > 0 since the two relatlons are
equivalent. As a result, we can compute p,. Once the probabllity distributlon of Gk;‘"Gk;‘ Is known.

Using the fact that Gh’ = WFI.’ where W is glven by (2.19) we have

M
Gh,'"ckj = Z (F m'Fk')Gm,‘Gt,'

ms|
M
= (F,F)G 2+ 3 (F F)G G, (5.12)
m—l.m_?‘ [ ]

Using methods outllned in the chapter on notation, page 16, the probabllity function of the term
(l",'l",")G',q.2 In (5.12), call 1t the °first term®, can be determined. The same can be done for the
summatlon (call It the *second term®) In (5.12). Both the first term and the second term are sums of i.i.d.
r.v.'s so that the central limit theorem implles the two are both normally distributed. The sum of two
Independent normal r.v's {s normal so we conclude that ij"Gh,‘ Is normal. The mean of Gb,.’-Gh. Is the
sum of the means of the first and second terms of (5.12) and simllarly for the vartance. Recalling that
F,,' {s generated by the coiln method with Pp = l/2+r/(2nl), the mean of the first term s
n,(2pF— 1) and the varlance Is 4p,(1 - p’.). The mean of the second term Is zero and the variance Is
(M- l)nl. Therefore the mean of ij"ij Is n[('zpr- 1) = r and the varlance Is
4nlpf(1 - pF) + (M- l)n,. The latter Is very nearly equal to Mn, for any value of Pp provided
M > 10.

Before calculating pG In terms of pF.. we make some observations wlith regard to the effect of

generating F.’ on the distributlon of G‘j'-G‘,.. Wh'n M 2> 10, the varlance of Gk,'"ij Is

determined entirely by the second term of equatlon (5.12). The balanced-Bernoulll vectors.
Fm. m 7‘ k , appearing In the second term are independent of F" regardless of how Fh’ depends on
F_ (see chapter 2, page 16, concerning dot-product Independence). Thus the mean and varlance of

k
Fm‘Fk' will not not be affected by any of the methods of generating a 1-vector Fk' from Fk. From

this we see that the variance of the second term will always be (M — l)nl Irrespective of the method of
generating Ft" Since Fk Is 3 xl-vector, the variance of the first term of (5.12) can never exceed n,.
The first term will therefore not contribute substantially to the variance of ij"Gk,' under any method of

input-generation. Also le' ij Is normally distributed since the second term is a large sum of |.1.4.
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r.v.’s. The nature of the first term 15 inconsequential due to its small varfance. Further the mean of
Gk’.’-GH {s r for any of the methods given for generation of F"A We see then that the prodyst
ij'ij has virtually the same distribution for any method of {nput-generation. In particular, we have
that ij’-G‘J. ~ Nir. Mn[). We conclude that the various methods of generating the input-vector are
virtually equivalent from the viewpolnt of the assoclator. From this point on. these methods will be

discussed interchangeably .7

From this, we have also that the input-information provided by the coin method represents the
maximum amount of Informatlion utilized by the associator for any mode of Input-geperation. This can be

seen by replacing pF—1/2 by the equivaient r/(2nl) In equation (5.7) to get

(log, e)r?

I(Fk’ ¥ o= 2n1 (5.13)

This information is less than r bits when r < nl/logz ¢. This will be the case In the analysis to follow
since (5.13) Is necessary for (5.7) to hold. We conclude that the coln method provides the smallest Input-
Information compared with the other methods (the neighborhood method provides roughly the same
amount of Input-information as the coln method). Because the assoclator sees no difference in these
methods, the Input-information provided by the coin method must de the maximum amount useful to the
assoclator when computing the output vector. The coln method of generation can therefore be used to
ascertaln the performance of the associator despite of the actual method of input-generation. This allows
us to expiolt the simplicity of analysis afforded by the coln method while retaining the generailty to

performance under the other input-generation modes.

We now begin to calculate the probabllity Pg that ij" = Ghj which 1s the same as the
' ' -
probability that ij Gki 2 0. Since the product G,”. G". 1S normal with mean (2PF 1)nl and

variance Mn’. the probability Pe Is easily determined

P = PG,G, 20

= 1 - RG,/G,; S0

"The equivalence of the neighborhood metbod to the coin method follows from the fact that the vast majonty of vectors
10 the interior of the ball in (5.5) lie near the boundary provided the radius is less thao n/2 (see Kagerva [28]). The ball
method and coin method will be consisteat if the radius of the ball is roughly "1“ —pf,) (see appeadix B). The
distribution of vectors gepersted via ejther method is that of » *riog® surrounding the ceptral category-prototype. The
“thickness® of the riag beiag determined by the vanance of the coin method.
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1 - P"Gh,"ckj Is (2pf‘- ”"I/VM"I standard dev's below the mean)

-('.‘pf.- l)nF.

v Mn

{

=1 - ¢

= $((2pp~ 1)Vn M) since $(z) = 1 = @(- 1)

(5.14)

where & s the standard normal distribution function. Since Pc < 1.and M will generally be larger

than n, It foltlows that (2pF— I)Vn‘,/M Is typlcally less than 1, This allows use of the Taylor
approximation to @ given in chapter 2 page 19. We get

1 1 1
pg = ; + -\/—E-;\/n,/ﬂr{(zpr-l) = -2- + \/2n1/7rM(pr—l/2)

(5.15)
In 2 manner similar to the derivation of equation (5.7} we have
G:G,) 2 noil = Hpg))
12
=~ 2n(log, e)(pG - 3) . 05 < PG < o088 (5.18)

Assuming P Is In the stated range, we appeal to (5.15) and substitute v2n[/‘1rM(pF— 1/2) ftor
Pe - 1/2 in (5.18)

2n
[(G):G,) 2 2nlog, e)m(pr- 1/2)?

2n
= WI(F&';F‘E) (5.17)

where the second approximation Is due to (5.7). Dividing by I(F*' : Fk) (assumed larger than zero), we
have 3 lower bound on the throughput of the assoclator

n

o

nw; >

LAY

——

(5.18)
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5.3. Classifiable Inputs

5.3.1. Lower Bounds on Input Informatlon

As stated eariler. the redundancy, R, must be larger than 1/T(W) for reilable classificatlon. Now

that the throughput of the assoclator has been found, we have the lower bound

R > — (5.19)

By definition (5.3), the tnput-information is given by

I(Fk' :F = 1-?1032 M (5.20)

N
Together, (5.19) and (5.20) imply a lower bound on the input-informatlon

7erog2 M
I(F,,' ; F,,) 2>

(5.21)

2no

By our assumption, Fk' s generated by the coiln method. Thus the bitwise Informatlion
IFF). v=12....M s Independent of 1= {1.2,.... M}. Also the loput-Information

I(Fk';l"‘k) Is given by (5.8). We conclude that the Input-information 13 n, times the bitwise

I

information. Dividing relation (5.21) by n,, we get the lower bound

Iz

7erog2 M
KF P 2 2N

for the bit-wise informatlon.

5.3.2. Lower Bounds on Feature Size

-

We can obtaln minimal requirements on pF and r by Inverting the approximatlons of (5.7) and
(5.13) to get each parameter in terms of I(Fh' : Fk)‘ From (5.7) and the assumption that pp > 1,2 we

have

- v'quk’ F . (2nlog, €)

o | —

! /
= =i - VQI‘F;,"FN (ndog, €) ) {5723
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The relation for r Is obtained from (5.13), (5.23) and the fact that r = (2pF— l)nl

r = \/2nr1(Fh';Fk),'log,.,e (5.24)

where l(l"‘,.’:l"k)/log2 e Is the Input-information In natural-logarithm units or *nats®. Using equatlon

(5.20) we get Pr In terms of the redundancy

1
= ; + VRn M,’(2nl) (5.25)

Pr
Simllarly for r,

r = VanRln M (5.28)

The lower bound (5.19) for R glves a lower bound for each parameter

1
Pp 2 5(1 + VzMn M/N) (5.27)
and
r 2 \/(nl/’no)~7r1\'ﬂn M (5.28)

This means that if Fh' Is 4enerated from Fh by copying r of Fb 's components we need to copy at

least f\/(n[, no)n,\ﬂn M] components for classification to be possible. Rellable classification requires
that thls number be the minlmum feature-size allowable for the input-vector if it Is a single-feature vector.
The number of non-overlapping features (sub-vectors) an Input-vector can have Is obviously the
dimensionality of the vector divided by the minimal feature-size l"l’ [W] J It we let
J

min be the minimal feature size and n_ be the maximal number of non-overlapplng features

a2
allowable In an Input-vector. then we have roughly

/ = Vi(n no,'.,\nn.\! (5.29)

min 1

and
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n s VN/(zMo M) (5.30)

mes

AS shown later, the fraction under the radical In (5.30) cannot be less than one for rellable classification.
We see then that {f we are 10 have n pon-overlapping features in our vectors, then the aumber of welghts
In the assoclator will have to exceed xMn M by a factor of n®. This Is a rather heavy price to pay for

the ability to classify vectors on the basis of a single feature.

We make one important observation regarding the information content of ap n-dimensional
+1-vector. If X s the number of 1's that occur In a balanced-Bergoulll vector, A, then X s a r.v.
with mean n/2 and standard deviation \/;/2. It stands to reason therefore, that a sub-vector of A of
length \/;/2 represents a unit of Information of A . To verify this, let R be the redundancy (as defined
by (5.3) for some M > 0) of the Information that A s to provide about another vector, B. If we are
to copy components of B to A, then equatlon (5.26) gives the minimal number r of components that
should be copled (the rest are chosen Independently of the components of B ). This number can be

expressed in terms of the number of standard-deviation-length sub-vectors needed
r = 2V2Rin M(Vn/2) (6.31)

To provide Rlog2 M bits of information, we must copy at least 2\/;;?1_11_;{ sub-vector ®units® of
Information from B . The *square-root® relationship between the aumber of bits of Information and the
number of sub-vector "units® Is due to the quadratic dependence of Information on the probability that a
component of one vector agrees with Its counterpart in another vector (see rejatlon (5.7)). The fact that
information In balanced-Bernoulll vectors Is closely related to \/nj/2-lenath sub-vectors must play a part
of any mode of representation that codes information tnto 1-vectors. If Informatlon coded Into sub-
regions of the Input-vector Is to provide the sole cue to an assoclator for classification, the subregions
must cover at least 2V 2RIn Af sub-vector "units® of the input-vector, where R Is the minimal Input-

redundancy required by the assoclator.

5.3.3. Fractlon of the Input Space that Is Classifiable

An analysls of minimal requirements for the neighborhood method of input-generation are derived In
appendix B. Because thls method Is roughly equivalent to the coin method and because !t gives us an
estimate of the number of vectors that can be classifled, we relate the results here. Flrst, for a ball
centered about an Input-prototype, If a randomly chosen vector from the ball is to provide Rlog,: M bdlts
of {nformation about the protolype, then the ball must comprise MR o the input-space. From

aprpendix B, the radius p is roughly




63

Va,

2

n
I
P~ o= - V2Rin M - In(47Rln M) (5.32)

The lower bound on the redundancy In (5.19) gives an upper bound on the radlus

Vn,

n
1 I
p S T - T-\/me Ming - In(2n*Min M)/n (5.33)

In appendix B. geometrical considerations of the output space suggest that this radlys Is too large. The
excess redundancy required however should not be more than twice the minimum (see appendix B for a

discussion of this point). This gives us a lower bound for p

Vn,

ny !
b2 7 - -2--\/27ern M/ny — In(4x°Min M)/n,, (5.34)

We now derive the upper bound on the fraction of the input-space that can be classified. This result
Is obtalned from the lower bound on the informatlon required at the associator input. Since the associator
produces an output on the basls of the Hamming-distance between the input-vector and the Input-
prototypes, input-vectors providing the assoclator a specified amount of Information about an lnput-
prototype should come from a set of vectors nearest to the prototype. If the set Is a ball of radlus
about the prototype, then random selectlon of a vector from the ball (nelghborhood method of input-
generation) Is roughly equivalent to the coin method of Input-generation when p =3 "l“ - pF). When an
input-vector Fk' Is generated by the neighborhood method, and the Informatlon it provides about Fk Is
IF.. Fk), the ball It comes from will encompass expz(—I(Fb’ : Fk)) of the total Input-space. For our
system, there are M balls surrounding M Input-prototypes so the total fraction of the Input space
covered by the M balls Is at most M'expz(-l(l-‘k' : Fk))' The reglons could overlap, though the overlap
will be negligible if the input-lnformation ts at least 2log2 M. Now if R is the redundancy of the Input.

then the input information {s Rlog, M bits and the fractlon £ of the Input-space that Is classifiable Is

e ‘\’I—R (5.331

-

Using the lower bound on R we have the upper bound on { In fact, as we shall see later. M will

usually be greater than n . by a large factor so that the fractlon of the space that s classiflable wil] te

o
auite smaitl.
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¢ < M'TMIGng (5.36)
where M 1s assumed to be larger than n,-

5.3.4. Restrictions on Matrix Dimensions

The inequality of (5.33) Is required for reliable classification, whereas {nequality (5.34) Is merely a
reasonable bound on how small the value of p need be made to insure the system wlll work. Therefore
inequality (5.33) must be larger than zero {f the system ls Lo classify {ts laputs. This constraint leads to a
lower bound on .V which will be derived by different means iater (see equation (5.42)). The lower bound
on N Is the minimal number of vectors required mereiy for storsing the prototypes when the Hopfield

non-lineartty is present at the associator output.

An even tighter constraint on the required matrix size {s obtained when we require that the system
be capable of classifying "highly-degraded® input-vectors. A highly-degraded Input-vector Is a vector that

Is nearly orthogonal to Iits category-exemplar (the nearest input-prototype). From (5.33), we see that

classification of such inputs Is possible when n, Is large compared to VrAMin M'\/n[/no. In this case, If
p Is near the theoretical maximum given in (5.33), the {nput-vectors at the edge of the nelghborhood of a

prototype will be at a Hamming-distance nearly "1/2 from the prototype. A reasonable way to make

n, large enough Is to require n, > 8\/1ern M~Vn,/no. Multiplying through by n,ny and

1
squaring both sides of this inequality glves us a lower bound on the humber N of weights

N 2 64azMn M (5.37)

Comparing this to the requirement (5.42) for storage, we see that classification of ®highly-degraded®
input-vectors requires roughly 50-100 times the number of welghts required for merely storing the

prototype vectors.

We note a few restrictions on the parameters inferred by the analysis [n appendix B. First, If the
Input-vector is to have a redundancy no greater than R (keeping R low, makes a larger portion of the
Input-space 2lassifiable. see equation {5.35)), then we must have p > O In equation (B.8), page 109. This

becomes Lhe constraint

n, > 2R M (5.38)

I

This constraint applies squally well for the output dimensionality with R between 1 3nd 2 so that
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n, > 2n M (5.39)
s 2 minimal requirement for the output-dimensionality (see equation (B.8)). In the "throughput® section.
restrictions on the parameters n.n, and M were also made to obtaln the approximations used to
obtain the assoclator throughput. The linear approximation made in equation {5.14) assumed that M
was al [east as large as n,. Thls assumption assures that the argument to @ was no larger than 1 so

that higher terms in the Taylor approximatlon to ® can be dropped.

The assumption that the argument to @ In equation (5.14) was less than 1 leads to a restriction on

P This assumption together with (5.15) gives the upper bound
1 1
Pg < - - = 09 (5.40)
< 2n

These relations lllustrate the limitatlons of the theory that has been developed. A designer of an
associator on M assoclations must stay within the parameter-assumptions In order for the performance

predictions of the theory to apply.

5.4. Performance Degradation Due to Non-Linear Output

The "Hopfleld non-linearity® In figure 5-3 was Introduced for the sake of simplifying the analysis.
The problem of determining the Information I(Gk' R Gh) avallable directly from the associator-matrix is
somewhat more difficult than finding the Information I(Gk";Gk) avallable from the non-linearity.
Unfortunately, however, additlon of the non-linearity eliminates much of the Information avallable from

Gh’. That this is so Is evidenced by the degradation of storage capacity due to the non-llnearity.

To estimate the storage capacity of the non-linear associator |n figure 53, put pF= 1 to constraln
the Input vectors to belong to the set of Input-prototypes. The formula Pg that gives Pg In terms of

pp becomes

1
> -1+ V'an,’nM) (5.41)

Pg

This approximation Is good when P s near 1/2, so In particular, M must be at |east n, an (5.41).
The approximation was obtained from (5.15) which Is a linearization of the normal distribution functlon
$(z) about r = O It overestimates Po With the overestimate becoming large as p; nears 1. In fact

one pays a high penaity In storage capacity when insisting that each bit of Gk" match its counterpart in
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G, with high probabllity  This Is due seen from the fact that when n, M 1s increased p; does not

increase as rapidly as (5.15) would indlcate. In any event, using equation (5.15) will give an upper bound

on the storage ~apacity.

As stated in the chapter on storage capacity. useful storage requires the output information to be at
least log, M bits. During retrieval, the number of bits present at the input is n. If we muitiply n, by
the throughput TYW) and require the result to be larger than log2 M, a constraint on the matrix size is
obtained. Unfortuneately TIW) was obtained by assuming Pp Was not too near 1. We wiil have to use
equations (5.41) and {5.18) Instead to get the constraint. Remember however, (5.41) assumes Po Is not

too near 1, which will be the case It M > 2n,. From (5.41) and (5.18) we have

A\"ng e
M

IG,”:G,) =~

By the constraint (5.2), the right-hand-side must be larger than log, M. The resulting inequality can
2

then be rearranged to get

2AMn M

2]
~ =1 (5.42)

To put (5.42) another way, N must be at least O (Min M). This !s a stronger requirement than the one
derlved for storage In the previous chapter. This new bound !mplies that if 1) Is O(in M), then n,

must be O (M).

If errors are allowed at the output of the second stage of figure 53 then the storage can be

—

increased. If Pe is the error probabiitty, then for 0 < Pe < 1/2, M large, we need (1 —P,)los._, M

bits at the output. From this and (5.16) we have

ng(log, elipg = 12 2 (1= P)log, M (5.43)

and from (5.41)

n

!
2n(log, em > (- I"’e)log2 M

which gives

*Mn M 1
- > (5.441
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As with the case with storage treated In the previous chapter, the number of required weights Is

proportional to 1 — Pe. On the other hand, the maximal value of M no longer lncreases in proportion

to 1/(1 — Pe)‘

The reason the non-linearity decreases the Information content of the output of the associator is
that It forces the best-match process of figure 53 to *count® the number of places that the output G"
disagrees In sign with Gh (recall the method of computing G"’ ). This can be seen from figure 53 with
the non-linearity removed and from equation (5.12) which Is the formula for one summand-term In the
dot-product Gk"Gh' If the best-match process in figure 53 uses the output of the associator-matrix
directly, It can use the dot-product simllarity-measure to compare G" with every one of the output-
prototypes. Now, a single summand In the dot-product E,.G‘,.'-G". 13 blnomially distributed with
positive mean (2pF— l)"l' Such a term will tend to have larger magnitude when it Is positive than when
it {s negative. This means that the dot-product can da more than "count® how many positions G".’
agree in sign with thelr counterparts G:,,'- The dot-product also uses ®magnitude® information to
ascertain the "confidence® that a specific component of Gb' Is of the proper sign. On the other hand,
whether the performance limits of the previous chapter can be achleved depends on whether retrieval In
the llnear-associator Is optimal. For this to be so, the full entropy of the matrix (per storage item) must
be available at the memory output. What's more, the information avallable must be useful to the best-
match process.

The analysis of the linear case should entail evaluation of the Informatlon content of Gb' by

evaluating It as a rendition of the *signal® G‘ with added binomial *noise®. The ®signal-to-nolse ratio®

as a function of M would then be used to quantify ihe Information content. The analysls Is similar In
concept with evaluation of Informatlon contained by a gaussian signal In the presence of gaussian noise
(see Gallager, |12, p. 32, Example 4|). The difference Is that the °®signal® components Gki are not
gaussian but Bernoulll r.v.'s and the ®noise® In Gh' due to the associator-matrix Is binomial rather than
gausstan. These differences are responsible for the difficulty In determining the Informatlon I(Gb’ ; Gb).
The difficuities are not Insurmountable, but the analysis may be as involved as that In Appendlx A, since
the problem of approximating a discrete entropy with a continuous one In the appendix seems related to

the problem of approximating the information in Gh"

5.5. Classifier Design Considerations

At this polnt,we are ready to illustrate the design of an assoclator to meet specific requirements.
Two desians will be given to show how the relative sizes of parameters interact. Glven the number M of

~ategories, a fraction a of the space to be classified and the maximum classification error-probability,
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P . we wish to find the dimensions n, and ) that result 1o a matrix of minimal size .V that meet the
¢

requlrements.' To begin, let P¢ = 0 for s‘mplicity. Notice that a ball B‘(p) about a prototype must

contaln about a/M of the lnput space. Since the fraction of input-vectors in the ball Is

expz(-I(Fh' : Fk)) . we have

a
K; = expz(-[(F":Fk)) (5.45)

so that
I(Fk';Fk) = logzM -~ log, a (5.468)
Now R = I(Fb':l"‘h)/log,_, M so by (5.46) we have logza - log, M = —Riog2 M. Rearranging

and converting to natural logarithms gives a more convenient forin

-in a
In M

R = 1 + (5.47)

The two classiflers we produce will be called the large-a model and the small-a model.” The large-a

mode! will have —In a proportional to 1n M, 30 that for scme positive K 2> 10 we write

-ina = Kin M (5.48)

The small-a modet assumes that —In a Is proportional to M. In thls case we put

M (5.49)
-lna = = .
K
with K < M/(10in M) . Calculating the redundancy from (5.47) for the large-a model we have
R = 1+K ~ K {5.50)

and for the small-a model

8 . . .
Of course, s design prodblem may differ as to which parsmeters are initislly specified. Most gotably is the case whep a
designer is dealing with an 10put-space whose vector-dimensionslity ", is already known.

[ . "

Since 0 < a < 1. the quantity ~la a is positive and grows without bound as a — 0. The terms *large-a” and
*smail-a® are of course relative. A large-a model will ooly classify a smail portion of the input-spsce. A small-a model w.li
classifly a portion orders of magoitude smaller. Even in the case of the small-a model bowever, there are exp.,('\l) possitle

1put-vectors so that the actyual number of vectory classifiable is still very large.
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M M
'Kt T R

Recall that relatlon 15.19) must hold for reliablie classification. From this we get the lower bound op n

o
M
n, 2 R {5.52)
For the large-a model, this impiles
ns 2 M/ (2K) (5.53)
For the smail-a model
r
n, = ;‘;K!n M (5.54)

To get a constraint on n,. we use the fact that the maximum Hamming-distance between an Input-

vector an its category-exempiar Is roughly

ny ‘/"-1
p = 7 - -;-\/m (5.58)

maz

it we are to classify vectors that are nearly orthogonal to their category vectors. then Penaz should be
nearly nl/z, For the large-a model, this {s more Important than for the smail-a model since the former
must classifly more of 1ts Input-space. The closer P ez 1s to n,/‘z however, the more weights are
required for either model given a fNxed vajue of K. For the sake of comparison then, we will use the
same value p = ('z/asn,/'z for both models. This isn't much of 3 constralnt. A better one (s
sz = (9/10)n,, 2 but the number of weights required would be about 10 times as large. From

equation (5.55) and our constralint, we get

\/;;_ = 3VoRin M

1

so that

R, = 18SRin M = 20Rn M {5.58)
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For the large-a model R= K so

nl = 20KIn M (5.57)
whereas the small-a model has R = M, (Kin M) so
0M

The number N of welghts in both cases Is 107Min M or 10 times the minimum required for storing M

prototypes.

The thing to notice Is that the large-a model has n, of order In M and no of order M. In other
words, the input-dimensionality far exceeds the tnput-dimenslonality. In order to classify such a large
portion of the Input-space, the Input-redundancy must not be large. This Is seen from relation (5.47).
When a — 1, we have —Ilna — 0 so that R == 1. The throughput of the system must be large so

many units are needed to produce the output.

For the small-a the situation is reversed. The Input-dimensionality is large and so can accomodate
the large input-redundancy (The redundancy can never exceed nI/log,, M). The number of units can dbe

small since the high redundancy insures adequate output informatlon even with low throughput.

As a numerical example, suppose that M = 50,000 and to assure M > n, in (5.58), let
K = 50. For the large-a model, R = 50 so by (5.57) n, =5 10.800 . and by (5.83) n,= 1570. For
the small-a model R = 92, equation (5.58) lniblles n, = 20.000 and (5.54) glves ng = 850 . Both
models have roughly 1.7.107 welghts.

Now let ¢ be the number of classiffable vectors In each case. We wantl to estimate the entropy
long of the classiflable portion of the Input-space. By equatlon (5.35), this entropy Is roughly

log, (M!'~ Rexbz(n,)) . or approximately ¢ = n + (1 = R)log, M . By equatlon (5.47) we have

(= n,+logya (5.59)
For the large-a model, {=n,= Klo¢2 M 210,000 . For the small-a model,
240

= n - .\.nog,., e K = 18,600 . The proportlon of the space classifled by the large-a model is 10~

0 —440

whereas the small-a model ciassifles roughly 1 of its Input-space (computed from the respective

values of a ).
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The moral however, 15 that the small-a does not classify fewer vectors than does the large-a mods!.
The Input-space for the small-a mode! Is so much larger than that of the large-a mode! that the actual
number of vectors classiflable by the small-a Is much larger. In fact. the number of vectors that can be
classified by the small-a model dwarfs the number of vectors In the entire Input-space of the large-a

model.

One way of viewing this numerical advantage of the small-a model Is in terms of data
compression. Whereas the number of input-vectors to be classified Is potentially very large, the number
M of categories at the output s relatlvely miniscule (the number of categorles should be less than the
number of welghts or even smaller). The entropy of the output reiative to that of the input is therefore
quite small and this Is what Is meant by ®data-compression®. The fact that the matrix faces less
Information at its output than at its input should be reflected by its architecture If high-performance |s
expected. For a classifier with N weights that Is to classify a large number of input-vectors, the output-
dimenslonality should be as small as possible (within the constralnts described In appendix B) compared
with the Input-dimensionality. Such a system will classify a maximal number of laput-vectors for a given

number of assoclations (categories) stored.

One should also notice that the classifier classifies only a very small portion of the Input-space. This
results In a *double-data-compresslon®. Most lnputs are simply not considered to be valld Input ®signals®.
Those that are will then be mapped to a relatively small number of categories. The flnal result is an
output that has far less entropy than the total input-space. We conclude that the assoclator-as-classifier
assumes that most of the space of possible Inputs are irrelevant to Its task. The portion of the space that
Is considered relevant is specified by the collection of prototype-vectors. These In turn specify the
pertinent informatlonal-features of the Input-space. All other information Is Ignored, resuiting in an

output that I1s a compact representation of the sallent features of the input.

5.6. Maximal Performance and Figures of Merit

5.6.1. Merit Parameters and Figures of Merit

We define 2 merit-parameter to be some measure of system performance with regard to storage
or classificatlon. In the case that there is 2 maximal value for the merit-parameter, we dlvide the merit-
parameter by the maximal value to get a figure-of-merit. Tne maxtmal value for the parameter !s
determined via information-theoretic constralnts on an arbitrary memory/classification system and so is
independent of features specific to a particular device. The figure-of-merit will generaily take on a value
between zero and one with the value ®1° corresponding to optimal performance. Thus the merit-figure

~an be used for comparison of vartous systems whose merit-figures are known.
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5.6.2. Load, Efficiency, Throughput and Retrievable Information

In the chapter on storage, we derived a figure-of-merit L called the load. It was defined as the
ratio of the number of ltems stored {(a merit-parameter) divided by the number of items storable. Another
figure-of-merit we deflned was cailed the efficlency, n. that was the ratlo of the number of bits stored In
the memory divided by the number of bits required to represent the memory itself. For classification, it is

also desirable to obtain relevant merit-parameters and figures-of-merit.

An obvious merit-parameter for classification ls the throughput T{W) defined earlier. The optimal
value T can be be derived for an arbitrary memory obeying relation (3.13). The throughput-merlt.
r, of a system Is then deflned as T(W) /To. To obtain Ta, we divide the maximum-possible output-
information by the miplmum allowable input-information. For systems obeylng equation (3.13), the
maximum output-information per association is H(W, M)/M. The minimal input-information required is

log2 M blts so we have

T, = HW.M)/(Mog, M) (5.60)

[

So the throughput-merit Is given by

nw) m) A’ﬂO(2 M
r = =

T HW, M)

L]

whera

M!og.2 M M-[(Gk" : Gk)
< <
HW Ay — HW, M) -

1 (5.61)

If we use the fact that H(W, M)m(l/z)Nlog2 M then the figure-of-merit r for llnear-assoclator

systems satisfles

r = ————— = (Wpre— = TIW)L {5.82)

TIW) Mog, M oM
(1.21\og, M N

where L Is the load. Thus the throughput-merit for the outer-product associator Is just the product of
the two merit parameters derived eariler. This product however has the additional property that {t can
never exceed 1. 1L would be of Interest as to whether the throughput-merit for the linear-assoclator
twithout the Hopfield non-ilnearity) Is roughly equal to 1 (or at least constant) for a large range of values

of the ioad If so. we'd have that the throughput trades directly with load as more assoclations are stored.
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In any event, we have that

nw) < = - (5.63)

~1 -
i
<

for the linear-assoctator. For the assoclator with no non-linearity then, the upper bound can be quite large

when M Is much smaller than N,

For the case that the Hopfleld non-linearity is present at the matrix-output, we can obtaln the
maximum 7 achlevable by the assoclator (see figure 6-3). By (5.42), the number N In (5.62) Is larger

than 7Min M. Replacing N by thls value In (5.62) gives the upper bound

°M 2TTW)
< TIW) = )
T = ‘Min M nin M (5.64)
Since W) = 2no/(7rM) , we have the bound
2n0 2 Qno
= (5.85)

X—A'? min M ”ZMnM

which s much smaller than 1 If the number of stored prototypes !s larger than no- By way of
comparison, the linear assoclator could concelvably have a r as large as 1. However this has not been

established since the throughput of the llnear-associator has not been determined.

A figure-of-merit relevant to the memory s apparent from the resuits of chapter 2. By relatlon

(3.13), we have I(Gk" : Gk) < H(W). Therefore the retrievable-fraction of stored information is

MIG,":G,)

T, (5.68)

*©
I

The retrievable fraction, by relation (3.14), cannot exceed 1.

For the non-llnear assoclator, we can find the maximal retrievable-fractlon from knowledge of the

throughput. Remembering that the largest that the input-lnformation can be lIs n, bits, we use the

definition of throughput to get

MTIWHIF, . F)) Al('.‘.'no,ﬁ.\ﬂn, 4

< = eee——
(1 2:Nog M T (1.2%Mog, M Tlog, M
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This parameter s quite small for large systems that store many associations. For the Horfleld-non-ilnear

assoclator, sysiems become extremely sub-optimal as the system-size gets large.

5.8.3. Search for an Overall Figure of Merit for Memory

It would be preferable If an overall fligure-of-merit for memory-performance could be found. This
ngure. called the memory-merit, M . should reflect all aspects of memory operation and have the
property that a memory could In principle attalno 3 memory-merit of one. An attempt to define M might

Involve taking the product of r. g, and n to gel

M = ruy (5.68)

For memory systems whose load L can be defined, one can restrict consideration Lo memoties that are

not overioaded {l.e. L. < 1). The joad could then be incorporated Into M

M = runl (5.89)

The efficlency n lis Just related to the representation used for the weights of the memory and is therefore
Indicative of limitations of the memory’'s implementation. This parameter shouid be dropped If only the

memory's inherent properties are to be considered

M = rmul (5.70)

If there is a general figure-of-merit for memory, this last one may be close Lo the mark. On the otper
hand, we saw (n relations (5.81). (5.62) and (5.68) that r ls related to both u and L, so one may wonder
If M in (5.70) may contaln redundant Iinformation. Also, there may be tradeoffs that force the value of
one of the faclors in (5.70) to be low when the other Is high. If this true even in principle, then It 1s
possible that no memory can achleve a merit of one and the memory-merit would not satlsfy the
definition of a figure-of-merit. This possibllity seems unlikely based on calculations done by the author.
In fact. If *he outer-product iinear-assoctator has an optImal throughput ! » near one for Jarge systems), it

Is possibie that 'L could be have a memory-merit apprcaching one as the associator size gets large.

5.0.4. Classification Figures of Merit

For classiN:ation. 3 merit parameter that can be "normalized® to produce a figure-of-merft is hard
to ottaln without imposing artificlal constraints. One merlt measure worthy of consideration however s
the ratio of the tits needed 1o encode the classiftable input set to the number of bits needed to represent

the categeries 3t the output. This s called the fan-in. The parameter Is of Interest because |t represents
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the capabllity of the system to react Lo a very large Input-space when It has stored a relatlvely small
*representation-space®. [ndeed, this is the very essence of classification. A clissifler *fllters out® non-
essentlal informatlon allowing subsequent systems to provide for far fewer contingencies. Unfortunately, a

classifier can achieve 2 high fan-in by classifying all possible Input-vectors into one "category®.

One remedy, Is to multiply the fan-in by the storage-load of the system. A system with a large load
will have stored a maximal number of categories and so the product of the fan-ln and load will be
maximized by systems that can classify a large portlon of the input-space even when storing a large
number M of categories. With this {n mind, we consider the fan-in alone when the number of categorles

is a fixed value M. We will derive the optimal of fan-in for this number of categorles and use it to find

the "normalized® fan-in merit.

To calculate the fan-in merit fm for the linear-associator, note that the logarithm of the classifiable
space is roughly n, + (1 = R)log, M by equatlon (5.38), where R is the redundancy. The aumber of bits

needed to label the M different categories Is log2 M bits so the fan-in [ Is

nl+(1-R)log2 M n,

/o= logz M = logzM +1-R

where R Is the input redundancy. Note that nl/log2 M s the maximum redundancy that can be
facllitated by the Input. To gel a normalized figure of merit, we first make the constraint that the input-
space has entropy n, and the output-space being composed of M categorles, has entropy log2 M. Also

note that R 2 1'TIW) > l/To . so by (5.60)

Mlog2 M
D — 5.71
2 HW) (5.71)
and so the largest value j’a of [ is defined by
n, Mog, M
= -1 = 5.72)
/s log,, M H(W) N
The fan-tn merit f Is then
m
o= I/ (5.73)

To gst the ment for the non-linear assoclator. recall from relation (5 42) that .V > =An M so that




76

Miog, M. HW) < 2/(nn M) and because R > mM/(2n)) we have

< ny M "y . 2 s
- - — —_— - T4
fm = log, M ! 2n, log, M rin M )

One final consideration Is a parameter that measures the ratlo of the size of the classification space
£ to the size of the Input space F. The higher the ratio, the more of the input Is classiflable. The ratlo
will be called the Inclusion [ and !s defined by

1|

i = = (5.75)

R

The theoretical maximum for this ratiots M!'~® where R equals the lower bound In (5.71), so

I < M1~ Mgy M/HIW) (5.76)

So the inclusion-merit ¢ is ] divided by this theoretical maximum. The result Is

I
A1 = Mlogy M/H(W)

From previous conslderations, the ¢ for the non-linear assoclator has the upper bound

L < M- rM/(ZnO)/‘wl -2/rla M _ ‘w'..’/(rln M) - rM/(zno) (5.78)

A good overall merit parameter for classification might be the product of the load. the fan-in merit,
and the inclusion merit. The Issue of finding an overall figure-of-merit for memory and classification
might not be hard to address. The author has only recently deflned these merit measures and has not yet

fully explored the alternatlves.

In passing. we might add that these figures of merit can be quantified for the linear-assoctator once
the throughput of the llnear version of the classifier can be determined. We conjecture that the linear-
assortator may be very nearly optimal In most respects when the matrix size Is large. As {ar as non-
ilneartties are concerned. any non-linearity will cause performance degradation. However, ®*sigmold® non-
ilnearities ysed in sO0 many -onnectionist systems (see 22, 24, 401), will perform reasonably well If they are
not too ®:teep® In particular, of the rising portion of the sigmold Is troad enough to encompass most of

the variance of the somponents of the matrix-output-vector, most of the matrix-outgut information w!!
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be retained. Tnough the author has not made the attempt, *maximal steepness® necessary for negligible

tnformatton loss should be easily obtainable using something like the talls-lemma of appendix A. Here one

wouid use the sigmoid to iimit the range of values thatl the components can assume as was done for the

matrix-weights in the previous chaptef to lmprove efficlency. in any event, the Hopfleld non-linearity

represents a sigmold with sinfinite steepness® and sO provides the tower-bound on performance for

sigmold-non-linear outer-product assoclators.
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Chapter 6
Summary

6.1. Contributions and Accomplishments

The most important contribution of this work Is the characterization of memory and storage in
terms of {nformation theory. For memory, the primary accomplishment was evaluation of the matrix-
entropy and the proof that It bounds the retrievable information. The bound was subsequently used to
determine the amount of informatlon stored as a functioa of matrix-size and number of assoctatlons
stored. A criterion for minimal performance was obtalned through the definition of channe! memory.
This criterfon was then used to bound the number of items storable. We also dealt with the notlon of
retrieving Information via separate ®accesses® to the memory, one for each item stored. Though
information obtained this way {s not the same as that actually stored In the matrix, we find that the

latter Is an upper bound on the former.

Use of the concept of the matrix-channel allowed us to characterize and evaluate classification of the
assoclator. For this, the fundamental concept defined was the matrix-throughput which is the ratio of the
output Information to the Input Information. The simple linear relatlon between the two for the
assoclator with Hopfleld non-linearity allowed us to quantify the fraction of the Input-space that s
classifiable and obtaln minimal requirements on sub-features of Incomplete-input vectors needed for thelr
proper classification. We ajso noted requirements on the matrix-size as they relate to the task required.
We found that an assoclator with Hopfeld non-linearity, expected to classify inputs that are nearly
orthogonal to thelr category-exemplars, requires 50-100 times as many welghts as does one that merely
stores Its prototypes. The latler system is a "degenerate® classifier. It can properly ®categorize® an input
vector If that vector is an Input-prototype. Such a system would not be very robust in its classificatlon of
Input-vectors that have a significant number of *bits® In error. In any event, there Is obviously a tradeoff
between the number of categories over which the assoclator can divide the Input-space and the fraction of
the input-space that can be classified. The more category discrimination required of the system, the fewer

vectors ¢an be classifled given a Nxed matrix-dimensionalities.
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We mention that in some sense, the associator Is not really dolng classification uniess the output-
dimensionality Is very nearly equal to the logarithm of the number of categories stored. We were merely
interested In conditions under which the assoclator would pass through information useful to a subsequent
stage that Is to determine the category to which the input to the assoclator belongsi (see second-stage of
5-3). An assoctator could be sald to classlfy its inputs if the outputs it produced were much pearer to the
output-prototypes than the respective input-vectors were to their exemplar-prototypes. In the case of the
Hopfeld-non-linear assoclator, the average distance of the matrix-output from the ®correct® output-
prototype is no(l - pG). We can decrease this distance by forcing pg to be near one or by keeping ns
emall. The Qirst of these can only be done by storing less than ny categories where n, s the dimenslon
of the Input-vectors (see equation (5.15), page 590). The second optlon is fortunately in keeping with
optimal performance of the classifier. In fact, we found earller that a large input-dimensionality allows
classification of a very large number of vectors for a given macrix-size and storage-load. This Is probably
the most Important finding concerning associator-classification. A matrix that ®fans in® so that its input-
dimenslon ls much larger than Its output dimension will give the best classificatlon performance for 3 fixed
matrix-size and number of stored categories. Thus we have an architectural specification based on
Information theory. A classifier does data-compression so that the output-handles much less entropy than

does the input and the matrix dimensionalities should reflect this fact for optimal performance.

After evaluation of the performance of the system, we obtalned figures of merit for both memory
and classification performance. These were ®*normalized® with respect to optimal information-theoretic
performance limits and so serve as a basls of comparison of general memory/classifler systems. The
assoclator with Hopfield non-linearity was shown to perform suboptimally, in fact, disappointingly so. On
the "up side", the Hopfleid-non-linear system provides a lower bound for performance of assoclators with

*sigmoid® type non-linearities.

8.2. Limitations of this Investigation and Future Directions

The main imitation of this work was that it did not address the Information content of the actual
matrix-output {labelled Gk' in figure 53). The problems with the analysis are mentloned on page 67.
Once this lssue !s addressed. one may be able to determine the optimal performance of any assoclator with
sigmoid nen-linearity on !ts output. What's more, the storage bound was merely an upper bound to
performance. Knowledge of the amount of Information present in the matrix-output would determine just
how tight this bound Is. We also assumed that the information at the output of the matrix Is all useful to
1 second-stage process that must classify the output-vectors. This Is not necessarily true butls probably a
good assumption Jue to the fact that the associator maps similar Inputs to similar outputs and the fact

that we characterized nformation at both input and output in terms of vector-similarity.
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A rather sertous shortcoming of the analysis was that It assumed that the prototype vectors were
chosen randomly, that Is they were ®balanced-Bernoulll® vectors. In reality, If a system acquires its
prototypes by encoding representations of *stimull® or ®concepts® etc., It will most likely have correlated
prototypes. So whlle we did not require orthogonallty of the prototypes, the requirement that they be
uncorrelated (randomly selected) is too stringent. The problem s confounded by the fact that storage
capacity most probably degrades {n the preseance of lInter-prototype correlation. the sensitivity to
correlation becomes more pronounced as the system-size gets larze.m This Is a serious flaw since it
Indicates that the storage capaclity may not be achievable in practice. On the other hand, the relation of
mutual information to vector geometry outlined In appendix B may provide a means by which a set of
prototypes can be strategically chosen so as to minimize correlation or equivalently maximize mutual
Hamming-distance. If such a method could be easily Incorporated into the encoding process, these systems
could in fact achieve better-than-optimal performance since ®de-correlation® could produce prototypes

more mutually distant than random selection can.

Another issue not addressed was classification performance when the number of stored categories
was less than the Input-dimensionality. The analysls In the classification chapter would probably extend
to this case If the linear apnroximation to # o page 59 was changed to a quadratic one for more
accuracy. Even without this change however, the linear approximation overestimates Pg SO the
performance bounds derived in the classificatlon chapter apply to the case that the number of stored
categories {s small. The upper bound merely becomes looser. As the number of stored categories Is
diminlshed, Pe Increases but not as rapidiy as the linear approximation would Indicate. Note that even
when the number of categorles is less than the input-dimensionality, the analysis applles to randomly
selected \nput-prototypes not orthogonalized (forcefully-decorrelated) prototypes. This I1s an advantage

since it represents a relaxation of the orthogonality restriction needed for perfect retrieval (see (21, p. 18,).

Regarding future directions, there are too many possible avenues for continuing thls work to
mention here. Two however are of primary concern to the author. Flirst Is the analysls of the auto-
assoclator as both memory and classifler. This extension Is not without obstac':c however. WIth respect
to memory, the weights of an outer-product matrix are less independent when the output-prototypes are
ldentical to the input-prototypes. On the other hand. the (ndividual weights (excluding those on the
dlagonal which are constant and so contribute nothing to the matrix-entropy) will have the same
distribution as those of the hetero-assoclator and should be nearly independent when many prototypes are
stored. In any event, the matrix-entropy of the assoclator s less than for a hetero-assoclator so the

storage wi.. be limited accordingly. Another problem regards classificatlon. An auto-associator requires

10 . . . . .
The evidence for this was obtained by a ®curvory® investigation conducted by the author. This analysis was not
included since it depended upon errogsecus independence assumptions of vector dot-products and so may have been
inaccurste.
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the output-dimensionality to be the same as that of the laput. The present Investigation indicates this

condition s suboptimal for classification performance.

One method for solving both problems Is to use a hetero-associater (wlith output-dimension smaller
than that of the tnput) but feed back the output information In some constructive fashion. However, even
if this can be done, the amount of output Information must be sizable |n comparison with the amount of
Input Information present at the start of the auto-assoclation process. If the amount of output
information !s less than 1/2 or 1/3 of the amount of input lnformatlon, the {ncremeatal lncrease in
Information available at the output after several ®lterations® of the auto-associator will be only
marginally better than that avallable to begin with. The .ithor bdelleves that the auto-assoclator wiil
therefore have greatly improved classificatlon performance for light storage loads but will not galn much

storage capacity as a result of the auto-associative feedback.

We also mention that theorem 1, page 26, does not apply to the auto-associator since the ®retrieval-
address® is not independent of the datum to be retrieved since the input Is generally a partial readition of
the datum to be retrieved. The theorem could be modified to take this into account, but the bound on
retrievable Information will be different. The auto-assoclator has the advantage that the input partlally
specifies the output, so the auto-assoclator needn’'t *work as hard® when the input specifies a substantial
portion of the output. The result should be improved classification-performance over the hetero-associator
even though the auto-associator has a (perhaps marginally) smaller matrix-entropy. In any event, the
author believes that the methods used to evaluate classification of ®single-feature® vectors might ald

quantification of the performance of the auto-assoclator.

The other direction of research Lo be mentioned {s the storage of prototypes whose components are
zero-mean gausslans. This s a more natural mode of storage for the outer-product associator since the
output vector produced Is best characterized as the proper output-prototype embedded In gaussian noise.
The author beileves that the analysis would begin with the noisy-signal analysis of Gallager in |12, p. 32,

Example 4/ and proceed with evajuation of the matrix throughput.

Lastly, we mention that assoctators bullt from other storage rules such as error correction have not
been treated. This may be a much more difficult problem since evaluation of the matrix-entropy could
problematic. In the event that {t can be determined or approximated, the theory presented here would
then be applicable for performance evaluation. The result could be a theory relevant to multl-layer error-

correction systems such as the Parker; Rummelhart *backpropagation® networks.




82

6.3. Epilog

At this point, I'd [lke to let my editorial halr down and relate a couple interesting observations.
First, notlce that the prototypes were treated as vectors that were to be distinguished as exemplars of
distinct categorles. As such, a premium was put on thelr dissimllarity so that the system could tel] them
apart. Though this may not be desirable ip all assoclator tasks, It points up an Issue regarding the
*symbol® view of intelligence. If we identify the stored prototypes as *symbols® one could view symbols
as a means of performing large-scale data-compression on the environment. This not only enables a
system to vastly simplify its representation of the environment, but the identification of such symbols tn a
cognitive system cculd subseyuent{y provide a parsimonlous theory of cognition (Yes, I know, *traditional
Al* already knows this). Not that the identification would be easy, (If symbols can be sald to exist at all,
they are probably too "plastic® and malleable to be static entities) but in the assoclator at least, the
symbols are the prototype pairs. The Input-prototype reflects the system's ®idea® of a most typlcal
"object type® within a large class of objects, and the output-prototype reflects the system's representation
of the object. The object at this level, i3 known only as It belongs to a generic class of objects. All other
Information s ®discarded® as irreilevant. The analysis done here showed data-compression as a
consequence of the presence of symbol/prototypes. However, the relation should go the other way as well,
as evidenced by studles of "compressed®, *hidden-unit® representations generated within backnropagation
networks. The symbol Is doubtfully an expiliclt feature of the braln, but Is probably an emergent property

of data-compression.

While I'm making conjectures about how the brain works, I might as well take a stab at the amount
of Information It can store. The figures obtained here are doudbtfully accurate for biological brains but

serves as a prediction made by the following simplistic assumptions

1. The whole brain particlpates in storing roughly N items where N Is the number of connections
In the brain.

2. The connection strengths are normally distributed with variance roughly N.

3. The effect of ali connectlons on a neuron Is the linear sum of the individual effects.

How embarassing' Anyway, assuming 10,000 connections per neyron and 10“’ Lo 10“ neurons per brain,
1 v
we get 10" 10 10"° ror the number of connections. The Informatlon storable is then roughly Nog, .V or

015

4.5x10"° to 3x10'® bits, or roughly a billion megabytes.

The oniy thing that will rescue this estimation Is its crudeness. The noteworthy thing though Is that

the theory does make a prediction. It would be interesting If {n the future, a better understanding of
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cognition, braln-dynamics would render better assumptlons than the ones given here and if so, how these
assumptlons affect the estimate in relation to the one I've just made. [leave it o the reader to estimate
the maximum number of stimull the brain can possibly classify. If you come up with a number (boy.
would 1t be blg!) let me know what it Is over dinner and teil me what your assumptions were. Just don't
publish It as a research finding (did you know that we only use 10-percent of our brains® . . ). Well, ['ve

put {n my ten-percent, thank-you!
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Appendix A
Entropy of a Binomial Random Variable

In this section, we show that the entropy of a binomial r.v. Is approximated by the entropy of a
corresponding normal r.v. In this development, a binomlal r.v. S” isasumof n 1l.d. Bernoulll trials,
where a Bernoulll trial Is an r.v. with outcome O or 1. We will only consider binomlal sums of
balanced Bernoulll-trials, that Is, Bernoulll trlals whose two outcomes are equiprobable. Such a blnomial
r.v. has variance n/4, and as we will show, has entropy that approaches that of a normal r.v. of the same
variance. The entropy of a normal r.v. with variance n/4 fs . “-.)log,: (ren/2). Therefore the following

theorem will be proven In this appendix:

Theorem 1: Let Sn be the binomial r.v. associated with the sum of n ll.d. balanced
Bernoulli-trials. Then

Ilm (H(Sn) - (1/2)l0g, (xen/2)) = 0 (A.1)

n =+ 0O
The rate of convergence Is not treated, but numerical tests have indicated it to be fairly rapld. It would
be of Interest to study not only the rate of convergence, but whether or not the convergence is monotone

in n. That is, one would expect that

IH(Sn“) = (1/2)log, (re(n + 1)/2)| < |H(su) - (1/2)log, (ren/2) | (A.2)

forall n=1.2, ...

The rate and manner of convergence are not explicitly dealt with though they possibly could be inferred

from the proof that follows.

A few lemmas are needed to obtain the result. Each lemma specifies that some sequence or class of
sequences exists that ensure that a specific tnequality be true. Constralnts on the sequences sufficlent for
the tnequality to hold are specified by each lemma. After the proof of the lemmas, the proof of the main
theorem begins by showing that a sequence exists that obeys the constralnts of all the lemmas

stmultaneously. All the respective inequalities wlll then hold and they can be linked together with the
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*iriangle-inequality® to glve the result of the theorem. Arguments used In the various proofs were

motivated from developments {n Feller (11 and Rudln (39].

The proofs Lo follow generally require that, given an arbltrarily small real number ¢ > 0, some
positive quantity that is a function of the positive integer n will be smaller thaa ¢ (or all sufficlently
large values of n. No generality Is lost by assuming that e Is less than 1. This assumption will be used
throughout (except where otherwise stated). Further, to simply the arguments and notation, we consider
only even values of n. The arguments for odd n would be the same but n/2 would have to be
replaced by {n = 1)/2. Finally, the result of each lemma will hold when ¢ 1s replaced by ¢/4 slnce ¢ I3

an arbitrary positive constant. This will be instrumental In the proof of the main result.

Notatlonally, ¢a(z) 1s the normal probability-density function, l/(\/2xa)-¢zp(-:2/2az) for a

normal r.v. Xn with a mean equal to zero and variance 0‘2 where ¢ > 0. We will be concerned with

d=\/;/2 and will use this value for ¢ throughout. The standard normal density functlon

l/\/2;~ exp(-12/2) will be denoted ¢(z).

A.l. Ignoring Tails of the Normal Entropy Integral

The entropy of the a normal r.v. with varlance 02 f{s given by the ({ategral
fiooo —¢)(’(z)log2 oa(z)dz . The first lemma aliows approximation of the normal entropy by ignoring the
*tails® of this Integral. We show that for ¢ = g(n) = \/;/2. a positive-integer sequence {rn} . of order

O (Vv nlog,‘. (log,2 n) ) exists that grows rapidly enough so that for any positive ¢, the [ntegral

\4
n
/_' ~9,(z)log, ¢, (z)dz
Is within ¢ of the true entropy for all sufMciently large n. From this It follows that If {an} Is a

sequence whose elements exceed those of {r”} for all sufficiently large n then the integral

L d
- ~oa og, oa z
n
will be within ¢ of the true entropy. This property we will call asymptotle convergence. In
partiular, If {sn} Is of higher order than {r"} then the just mentloned integral has thls asymptotic
property  Our ~oncern Is to Mind a lower estimate of the order of {rn} that fs sufficient to guarantee

ymptctic ronvergence. The following lemma and Its corallary state the result.
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Lemma 2: Foreachn=1,2, ... . let Xﬂ be a normal r.v. with variance o= where

0=\/;/2- Glven ¢ > 0 there exists a positlve-Integer sequence {rn} of order

O (Vnlog, (log, n) ) with the following propertles:

1. First property: There exists a positive integer Nl such that If n 2> Nl then

r

[HIX) - /"—asd(z)!ogzd’a(z)dz] < € (4.3)

-
n

2. Second property:. If {s”} has the property that for some positive integer Nz'
14
n 2 N, implies s > r_then {s } hasthe first property.

Proof: For any n the entropy of Xn 1s defined by

[ o]
H(X") =/ —a:~a,(:r)log2 ¢a(z)dz

-0

14
= lim /—¢a(z)log2d>°(z)dz (A4.4)

P = 00 J=~p

Since Xﬂ Is normal with varlance o> the entropy H(X") Is equal to

l/2log2 2r? < @ {12, p. 32|. Therefore the limit above Is finite and by definition of

Iim *, a positive Integer T'n exists so that r 2> Tn impllies eauation (A.3) with Tn
P = OO

replaced by r. We now show that for fixed ¢ > G, a positive-integer sequence {r"} can be

chosen as an O (\/nlog2 (log2 n) ) function of n so that property 1 hoids.

Note that @o(au) = t/0  ¢(u). Substituting the variable u = z/¢ Into the Integral of
(A.3) and letting 6" =r_ 0.oneobdtalns

r b \
/"—od(z))ogz oa(z)dz = a/;"—%(au)logz aba(au)du ‘

- s “
n

f

4y o(u)
a/ ~ —log, {($(u)/o)du
b g

I

b b
/"-o(u)log,, olu)dy + log,a/"o(u)du (A4.3)
-6 * s J=b

n
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[
We denote fb_b —o(ullog, o(u)du by Ix(b) and denote f-b o(u)du by I,_,(b).

If b Is allowed to approach infinity, then Il(b) converges to the entropy (1 2llog, (27e)
of a standard normal r.v. We can therefore choose a constant by such that & > by implles
that Il(b) Is within ¢ 2 of its limit. No harm Is done If for convenlence we take b0 to be

larger than 1.

Since the lemma is concerned with the dependence of bn on n as n gets large, no

generality Is lost by considering only n > 132 and ¢ < 1 4. For such n, let!!

-

r, = [ (Vn2)V2i0g, (4/¢) (log, (log, (Vn/2))"/2 + b ]

Since n > 132 and € < 1 the quantitles under radlicals are non-negative. Also ba Is

Independent of o, so that bn =0 (\/log2 (log.2 n)). The lemma will follow if we can show for
fixed n > 132 that b 2 bn implles

| HIX ) = (1,(8) + (log, o) L,(8)) | < e (4.6

n

Denote Iim I'.(b) by 1'.(00). t=1,2. From the derlvatlon above one can see that
b — co

H(Xﬂ) = ll(co) + log, 012(00) so that (A.8) Is equivalent to

| 1,(00) + (log, o)} ,(00) — (1,(8) + (log, o)\(b)) | < ¢ (4.

If we show that the conditions

€
L|I(e) =10 < 3

€

2. | [ () = L,(b
== < 2| 10g, 7|

hold for b > bn, then the left-hand-side of (A.7) satlsfles the following

| I,12c) ~ 1og, 0l,(20) = (I,(b) + iog, al,(b)) |

11 . N .. .
Tbhe restriction, n 2 132 is used to diminish the chain of inequalities on the next page concerninog the parameter b
It also allows use of & sequence {rn} whose terms are as small as possible, though this isa t necessary to obtaia a suitable

sequence.
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= [l (%0) = I(b) ~ log, /() = [,(b)) |

IA

[ 1,(00) ~ I,(6)] ~ log, of | [ {o0) = [,(b) |

¢
< ==}log, o} = ¢
2 108, 7| 2|log,, ol

(4.8

and the concluston will follow. Since b > bo, condition 1 Is satisfied by deflnition of b, We

therefore need only consider conditlon 2.

To show condition 2 {5 satisfled, we observe that if #(z) Is the standard normal

distribution function then we have 11, vol. 1. p. 176|

exp(—2z%/2) all z > 0

1-¢(z) <
2rnz

Alsofor b € R, #(—0) = 1 — $(b) so that

[
Iz(b) = /bé(u)du = $b)—-P(=bd) = 26(b) -1

and
1]
Iz(ao)= im o(u)dy = 1
=00 J=b
This gives
[Ty(00) = I(0)] = |1 —(28(b)—1)| = 21— &) = 201 - b))

(4.9)

(A.10)

(A.11)

(A.12)

We make the observation that the equation z+y < z-y Is satisfled for all z 2 4 If
y > 4/3. Identifylng z with lo¢2(4/e) and y with log, (log2 o), we see that under the

assumptions for n and ¢ that have been made on the previous page, we have z > 4 and

y> 4/3. For b 2 bn . we have the following chaln of Inequalitles:

5> b

2 Vzlogn(q,e)\/logz(log,a) + bo

> V2log, (4 ¢) ~ 2log, (log, o)
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= VZlog, ({4 ellog, 7)

b3
-

b ] € n
—— - . -H* 2 ———— .
Therefore —— < log, ({4 ¢)log, 0) SO that exp(=b~ 2) < s Now b > b > 1(by

cholee of bo > 1) and we have by (A.9)

2 ¢
exp(—bz/z) < Zexp(—bz/2) < =
410320 2log, ¢

2(1 = #(b) <
bvanm

Using (A.12) this gives condltion 2.

To finlsh the proof, we note that {r”} as defined Is O (Vnlog, (log, n) ). We have finished
showing that the first property of {r_} holds for N, = 132.

Ir {s,} Is a sequence and N, a positive Integer such that n 2 N, implies s 2.
then set N =max { N. N, }. Since —o (z)iog, ¢,(2) > O for all z, it follows that for
n > ;"V

[ o]
H(X ) =/ —¢,(z)lozz¢a(z)dz

-0

[
> /"-dba(z)Ing 6 ,(2)dz

-0
n

2 /"-db,(z)loz, ¢,(z)dz

bd d
n

$O that

.
| H(X,) -/ " —¢,(2)l0g, ¢,(2)dz |

r

< IH(X”)-/"—éa(z)log? ¢a(z)dz| < €

band 4

From this we see that {3,,} has property 1 mentioned in the statement of the lemma.

"
“We get away with freely intermixing base-2 and natursl-base logarithms due to the use of the inequality. That is, for
"
z < 1, we have that y < log, z implies exp(y) < exp((lo[z e)ln 2) == z]"'-‘e < 2. Iothis case, y = —b7/2 and
z = (f(4log, o).
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The following result Is Immedlate

Corallary: If {s } Is a sequence of order larger than O (Vnlog, (l0g, 1) ). then there is a

positive Integer .\ such that n > N 1mpllesla

[ ]
- n
IH(-\,,)—/ -0, lzlog, ¢ (z)dz| < €

A.2. Discretization of the Normal Entropy Integral

The statement and proof of the next lemma use notatlon borrowed from Rudln in {39, Ch. 6] In his
development of the Relmann-Stelltjes integral. The arguments he gives In theorem 6.8 {30, p. 125} for the
Integrabliity of a continuous function on a closed interval Is extended to our situation. We desire to
approximate an integral with a fielmann-sum, however the Iimits of integration are not fNxed and the
Integrand varies with the number of points on which we sum. Our notation, which is only slightly

different from Rudin’s, Is as follows. If b > 0 then a partition P of the closed Interval [—b, b Is a
?
fm—p

finite set of polnts {z‘.} such that —b = z_, <z <...< z, = b If f(z) is a continuous

—r41 =
function defined over [—b, b|, its maximum and minimum are attained over any closed interval In the
domaln of [ so we put M, = max f(z). m,. = min flz), i = =r.—r+1,....,—1. The
Ii S I S
[25.25+1] [#h.2v+1]
quantities Ub(P.f), and Lb(P,f) will denote the sums

r~—1 ~1
VP = Z Mz = %) and L.y = Z Mz = 2)
{——— ja=—

Ir lanb(P,f) and supr(P.f) are finite and have the same value, thelr common value Is called the
P P

Relmann-Steiltjes Integral of f over [-b b denoted by fb_6 J(z)dz. From the definitlon of the

Integral Just glven, It Is apparent that for any fixed P

)
L(P.N < /_bf(z)dz < U PN

Aiso the same bounds apply to the sum E:l Nz )Nz, —z;) sloce my S fz) S My for

) y fy )

13 1
By ®larger than O (fIn))® where fin) > 0, we mean a sequence {,n) such that for apy coastant C > 0 there is
10 .V sothat n 2> N implies 0. > C-fin).
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Before proceeding to the lemma we state the followinag propositions.

Proposition 3: For any ¢ > 0O the functlons ¢ and f(z) = -9¢(zllog, o(z) have
bounded first-derivatives over the domaln R.

One can show that both |f(z)] and [#'(z)] are continuous over R and approach zero as z — +oc .

These together imply boundedness over R . The second proposition is

Proposition 4: Let g be a function differentiable over a connected domain DC R
and let B be a positive constant so that the derivative ¢ satisfles |g/(z)] < B over D.
Then ¢ Is uniformly contlnuous on D with |g(z) = g(y)| < B-lz—y| forall z.y € D.

Proof: Because g Is differentiable, it It contlnuous and so Integrable over finite
Intervals. We have the following tnequalities

2 2
lg(z) = g(y)| = If gluydu| < /Ia(u)ldu < Bz -y
vy v

yielding the desired result.

We now state and prove

Lemma 5: Let o= Vn/2 and let {r,} be a sequence of positive integers such that

bn) = rn/a is c;(\/;/log2 n). Given ¢ > 0, there exists a positlve Integer N such that
n 2 N implles

r

» n
| | "=, (20g, 8,(2)dz = F7 -6 (illog, ¢,()| < ¢ (4.13)
n (-
n

Proof: We continue to use f(z) = —é(z:)log2 #(z). As shown In the previous lemma,
the Integral In equation (A.13) Is the sum of Il(b(n)) and log,, a-lz(b(n)) where the functions Il
and 1,2 were defined on page 86. In a simllar fashlon, one has

r
n

'n "l
. . 1 1
S —o,litog, 0,(i) = ;z Jiia) + —ogy 0 3 #(i/o) (4.14)

| —r 1O (-
n n n

Let Sl(n) and S,(n) denote the first and second sums on the right hond side respectively. The
lemma will follow if we can find an N so that n 2> .Vimplles
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1 €
|11(b)';5x(")| <3 (4.15)
1 €
log, |8y — =S (n)| < = (4.18)
R o2 2
To obtaln, this we wiil require that /N be large enough so that
lf( , €
-fir /o) < = A7
g n’ ) 4 ( )
1 €
5 logy o)elr, /o) < 2 (A.18)
for all n > N. From proposition 3, we have the numbers B = max|{/(z)] and
R
B, = max|¢/(z)]. Let N,, N, beintegers such that
2 R 1 2
(16B,5(N)))?
1. N, >
1 ¢
(18B,b(:V,) )2
2. N, > - (10g, VN, /2)?

€

and so that all n > N.. satisfles each of these when substituted for N'.. 1=1.2. We also
require that Nl Is large enough that n > Nl implles relatlon (A.17) and N2 Is large

enough that n 2> N, Implles reiatlon (A.18). Such numbers Nl, N2 exist since (b(n))2 and

(b(n)log2 (\/;/'2))2 are o(n) and the left-hand-sides of (A.17), (A.18) are of1}.

Fix n 2 max { V. N, } and for notational convenlence lec r = r_ and b = bn).

Let P = {z‘.}'_, be the partition of [=b b with z. = i/o, i==r —(r=1).....r
(remember r = bo by deflnition of &). Notlce LT = 1/0 = 2’\/;. To show (A.15),
we use the fact that n > .Vl . Now M/.' -m, = J(z) = [(y) tor some z,. y € }z'..z'.“} and
we have |z -yl < 2 V/n. From this one obtains M, - < Bl~2/\/; by proposition 4.

m,.
! £

[4
Since n > ‘Vx' n satisfles [tem 1 above so that 1,"/; <

and w an write
108, d wee

2 €
\I/‘—ml,. < B— < S
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From this it foliows that

r~1
LyPN=-LPH = Z: (M =m Nz, = %,)

r~1 ¢

< 8—5‘-2-'(:'“--:) = -326 = -1-
Also
1 1 4 r—1 1
S5 = =3 Ji/e) = .Z N2z =2) + =fr/o)
I —— -

I

1
Q,(n) + =flr/0)
g

where Ql(n) s the sum }:::l_' f(z'.)(z‘.“ —z). Note that Ql(n) I1s bounded above and
below by Ub(P.f) and Lb(P,f) respectively (by definition of these two latter quantitles). By
definitlon of the integral, Il(b) is bounded above and below by these same quantities. It follows
that |Il(b)-Q‘(n)| < ¢/4. From this and relation (A.17), we have that (1/0)S,(n) 1s
within €/2 of Il(b) 3o that (A.15) holds.

The arguement that equation (A.168) holds is similar. In this case, recall that n > N2 so that
Item 2 holds. Using the notatlon for the function ¢ analogous to that we used for /, we have

28,
M,-m,;, £ — <
Vn sblog, (Vn/2)

€

and
r—1
Uy(P.e) = Ly(P.o) = Z (M, =m Nz, = 2)
1
€ €
< 2W = ———
gtlog, (Vn. 2) slog, (Va 2)
Flnalty, tet @ (nm) = Z'_-" olr )z, — 2, and notlce that Q.(n) 1s bounded above and

below by L'A(PM, and Lb(P.o) respectively as s [, (8).  Therefore we have that
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[1,(0) = Q. (n)} < € 4log, 7 . The Identlty (1/0)52(71) = Qz(n) + (1'0)e(r'g) and relation
(A.18) then Imply the lnequality (A.16). The lemma ‘ollows with N = max {N|.N,}.

A.3. Approximation of Binomial Entropy

A.3.1. Error Bounds for Logarithm Terms

Feller's development {11, vol. 1, p. 179-182| s expanded here for the sake of providing
approximations to terms of the binomial probabllity functlon and bounds on the error of approximation.
First a few observations with respect to logarithm approximation. We start with the Taylor series for

In (1 +¢t) which Is known to be

oo(_t)i
In t)y =t ) =— o t -
(1+1) _Z‘.H < |t] <1 (A.3)
1m0
and for In(1 —~t) itis
[« ) t.’
-ln(1=¢t) =t —— o< |t .
(1=1) ) lt] <1 (A.20)
1==Q
so that
1+t In ( t) In(1=1¢) ¢ - t| A
In = n(l + - In - = 2t - 0 < < 1 .21

1s obtained by adding the two series in (A.19) and (A.20). See [11, vol. 1, p. 61] for detalls of the
derivation. Subtracting 2¢ from both sides of (A.21) glves

1+t s - ¢2
In - 2t = 23, , 0 < |t] <1 A.22
1—¢ Ezu—a el (4.22)

We are Interested only In values of t between O and 1/3 so that the sertes In (A.22) Is positive. In other

14t
words In T 2t 1s positive. Comparing thls with a geometric serles with ¢ = 1/3, we have the chaln

of Inequalities

s 20 t'.‘o' 2!3 oo . 2‘3 0o n 2,3 1 3‘3
ot . < - t? € — 1/3) = —. = -
_Zz.-a 3 Z = 32(’) 3 1-1/9 4
[ X) (L) a0

Since the series in (A.22) contains only positive terms and the first term Is 1, we also have
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3
1+t 2¢
In x—-z -2 > 5 Putting these inequallties together we have
otd 1 -t 33
_— < lnr-—e' - A < _4- when 0 < t < 1,3 (4.23)

Similarly we can evaluate In{(1 +t)—¢ for ¢ In the stated range. Subtraction of ¢ from the series

(A.19] ylelds

In(1+¢t)—¢ = -t"‘z.——-
0]
The serles is absolutely convergent over the range of ¢ consldered.“ One can therefore consider the
terms of the sertes in any order without altering the sum (39, p. 78]. We group the terms of the

summation in palrs to get

b 1 ¢
2 s
( ) Z i+2 i+3
1

Since the terms of the sum are positive, In (1 + t) ~ ¢ is negative. To assess its magnitude calculate

a1 0=t} | ‘2i (—t)"I < = =t
n - - = - ——— .
= j+2 = Z i + 2
1u=( . 1==Q
7 = £
. ¢ = ——
< ¢ Z t —
yu=()

1
Since 0 < ¢t < 1,3. we have Pyt < 3/2 and so

3¢?
fn( -ty—t] < =
2]

and therefors

-3¢°
—— < inil-t=t <0 0 <t < 1/3 (A.24)

I¢ .
A series 1s said to be absolutely convergeat if snd only if it converges when esch of its terms is replaced by its absolute
value.
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A.3.2. Expansion of Blnomial Coefficients

These observations made, one can now follow the development of 11, vol. 1. Ch. VIL.2 ., who defives
an approximation to the *central® binomial coefficients. We will take n to be even throughout and set

v to be n 2 tosimplify notation. The case for n odd would be treated similarly with v = (n = {} 2
Let ¢, = ::""(y:k) be the probabllity that the binomlal sum Sn exceeds the mean. n 2. by k.

Since a_, equals a, we will oniy consider non-negative integers k. Our goal Is the analysis of the error

incurred when 3 ts approximated by the normal density of varlance n, 2.

It Is easy enough to verify that

nv=1)...(v=(k-1)
a, =

% a°'(u+ tWe+2)...(v+ k) (4.25)

There are &k terms in the numerator and in the denominator so we may divide each term by v without
changing the valuye of the fraction
k—1

k .
J J
8 = °o'H 1=2 / H 1+7 (4.28)
=0 put

For & < v/3.and |j| £ k we use the approximation 1 + j/v=s exp(j,/v) to transform the product In

(A.28) Into
k~ k-1 .
t_ 1 ; P
a, = a.exp - - > - -
k 0 v il v
J=1 Jun]
. k~1 .
Using the fact that Z;—n J = k{k=1)/2 one has
a,=a, exp(-kzﬁu) (4.27)
Using Stirling’s formula to approximate factortals, the term 8, = 2'"(:) {s approximately v2 =n and

we obtaln the normal-density approximation to the binomlal coefficient a,

8, > V2 rn. exp(—k° v) (A.28)

votice that the right-hand-side of this equation Is the normal probability-density function of an r.v. X"

o
with variance 0" = n.4 evaluated at k. ¢ standard deviations from the mean. Allowlng ¢, and ¢, to

1
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represent the errors occurring Io the approximatlon (A.27) and in that of 3,

— —k2 -
3, = Gy exXp(—k" v} exp(—¢,)
a, = V2 (7n} exp(e,)

SO r.hat.ls

]
8, = 2/7n exp(—k*, V) exp(—(el - ez))

This deflnes ¢, and ¢

1 2 and the relation

k-1 k-1
exp(=k*/v)expte) = Jla=-im) /| a+km][ a+im
o J=1

is obtalned from equations (A.268) and (A.29). Takling logarithms of both sides

k=1 .
1=-3/v
-Kiv—¢ = In - - In(1+k/v
/v—¢ 2 Py (1+ k/v)
Ju=1
k=1 .
Using the fact that Icz/u = 22}._1 Jj/v + k/v we solve for £
k-1 1+ Jj/v 2 k k
cl=Zln - - = 4+ In 1+= = =
4 1-y/v v v v
Jum ]

A.3.3. Upper Bound on Binomlal Tall Coefficlents

We are ready to state and prove

respectively put

(A4.29)

{A4.30)

(A.31)

(A.32)

(A4.33)

Proposition 8: For Integers v = n,2 and k In the range [Vin] < k < n/6, the

relaton a, < 3, exp(—k° ) holds.

15 "
Hete Feiler omits the lesding sign 1o the error-exponent by setting L 2/ en exp(~4”/v) expl¢, = €a)-
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Proof: The obdservatlons made In the previous section now come [nto play By
hypothesis. we have that k < n 8 so k 1/ < 1 3. We substitute ¢ = k v into equaticn
{A.22) and see that the terms of the sum In equation (A.33) are positive with the J"k term less

k-1 2
than 3(y v1® 4. Since V}_l j‘ = (k{k — 1))° 4, this sum Is less than

et

k=1
3 o 3 K-k k¢
D
i 16 4w

We can get a lower bound on the term to the right of the sum In equation (A.33) by putting

t = k v into equation (A.24). The sum !n (A.24) Is negative and larger than -3 2(k v

From equation (A.33) and these bounds. we get an upper and lower bound on el:lc

3 R k*

——iky) < o, K - (4.34)
o 1 3
- 4

On the other hand, from equation (A.23) each term of the sum in equation (A.33) Is larger than
207 u)a ‘3 so that for k in the stated range the sum ltsell is larger than

2, 2 k=R k*
= Z ivi© = = s 0 S
3 = 3w 8v

Therefore a tighter jower bound on e‘ Is

k! 3 .
8v 2 .

For €. Feller 11, vol. 1, p. 182] shows that

1 1 1 1
——— < g < — =+ (A.36)
4n - 20n 4n 3eon’

<o that 0 < € < n/3 !n any event. Combining this with the lower bound for ¢ we get

1

K 3k 1
(=t > m— - == - —
8.* 2/ 3n
We set
' 3 K 1
—-c=-= >0
8 M v 3n

18
lo this section, only the lower bound will be useful. The upper bound will be useful ip s later section.
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to get a sufficient conditlon for € = ¢ to be positive. This condition Is me. for all

k2 v7n. Therefore for k In the range stated In tue hypothesis. we have that the term

exp(-i(l-c,,)) of equation {(A.31) is iess than 1. Equation (A.31) then implfes that

< a expl—k2 1'; and the lemma Is proved.

O 0

A.4. Ignoring tails of the Binomial Entropy Sum

In this section, we state and prove a lemma (called In this sectlon, the tais lemma) that shows one
can approximate the binomial-entropy by summing relatlvely few terms of the entropy-sum. The

approximation approaches the entropy of Sn as the total noumber n of terms gets lar,,-.

A.4.1. Relations Used in the Proof of the Talls Lemma

Before proving the last two lemmas, a few observations necessary. These relate to the error-

magnitude to be encountered in the talls lemma.
Proposition 7: For ¢ in the range —1/3 < t < 1/3, the relation

|1~ exp(=t)| < 3/2-]¢t]| (A.37)

Proof: This Is easlly seen from the inequalities obtalned from the Taylor series for

exp(—t)
= (=t =, (=t ad
1 — exp(—t = |t- - < |t} - . < |t t|*
| 0] = 1ty el S N gl s X1
1= so=0 som()
1 3
= = & ——It] = >t
1 -t 1-1/3 2
One more observation must be made before pr ceeding to the lemma. Slince Ilm zlog,‘ z = 0 the
z2=—0
functlon rlog, z Is ~ontinuous over the closed Interval [0, 1] provided we deflpe Olo. ,0 = 0 to be
consistent with the mentioned limit. Taking derivatives, (log,zz = (ln z)log, e) one can verify that the
function =zleg, z Is unimodal with maximum value c"'log,,e achleved at z = ¢~ The functlon Is

continuouys on the closed interval 0.1 and so Is uniformly continuous In this range.
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Given ¢ > 0. we seek conditions on z positive such that | zlog, z| < e

Proposition 8: Let ¢ > O be glven. ThenIf z € 0.1] and a Is any oumber [n the

range 0 < a < 1 the inequality

r < (aee log, e)'/(l =0

implles that
| zlog, z| < ¢
Proof: Given the hypothesls, (A.38), solve for ¢ to get

1l—-a

€ > l/a-z -e-‘~logze

Since z¥ € 0.1, It follows that z:"log2 22 < ! log, e. From this we have
| zl0g, z| = -—zlog,z = -z! "’z"log? (2™}

1
l1=—a a a t—-a =1

= —=.2 -z%og, z < -z -¢ " -log, e
- ( g, 1) < g,

Q|-

The last expression Is less than ¢ by relation {A.40) so that the proof Is complete.

For our purposes a = 1/2 can be chosen to give

z < (et/2log, e} = [:logzzl < ¢

A.4.2. Proof of the Binomial Talls Lemma

We are now ready to state and prove the tails lemma.

Lemma 9: Given ¢ > 0, there Is a sequence {rn} of order O (Vniog, n) such that

r
n

| HIS ) - Z -alog,a,| <

n
k-
‘

{A.38)

(4.390)

(A.40)

(A.41)

{4.42)
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S
Proof: For n < 10, we cap take r = n. For n > 10 choose r = |V2niog,n|
and notice r —1 > n Sinee v Is O({Vvnlog, n). we can choose an N large enough

that the following conditions hoid for all n 2 N W

I.r < n,86-—-1
n

2. n 2 (2log, e/(ee))

For fixed n 2> N, let k = r, + 1 and write the following inequalities

k2> \/2_nlo—g:,_ = \/nlog2 n + nlog, n 2 \/nlogz n + nlog, (2log, e/(ee))
so that

k2 2 nlog2 (zmog2 e/(ee)]
and

—2k2,/ n < 21032 (ee/ (2nlog2 e))
This implies

exp(—zkz/n) < (cc/(zmog,‘,e))2

Since v7n € k < n/6, proposition 8 Implies s, < 8, exp(—2k2/n). Together with the

fact that g, < 1 thisimpllesfor | > k:

0

a, < s, < gy exp(—2k*/n) < exp(—2k2/n) < (ee/(:.’nlog2 e))2

{

We see that q, satlsfles the hypothesis of proposition 8 with ¢ replaced by ¢/n and therefore

| ajog,a] <«

§
~
+

A
iN
3

17, . .
Notice that the second condition stipulstes that the left-hand-side of (A.42} will be less than 3oy ¢ > 2log, ¢/(en)

Therefore, Clog, e/(en} s rougbly tbe maximum entropy lost whes Sn is “spproximated® by s random vanable

n
slightly higher probability than the probsability thet Sn will assume these two values.

S ' = mun {S"v - } . We say ®roughly® becsuse we have pot sccounted for \he fact that Sn' wil) equal % ' with a

\
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{s the desired upper bound on *tall® terms of the blnomlal-entropy sum. We can now verify
the concluslon {remember, n Is even)

'n n/2 ’n

| H(S,) - Z -alog, 0| | Z -a,log, 8 - Z —a,log, a, |
k——r" kam—n/2 b—-rn

I

n/2

= |2 Z —a.logza.]

=y 41
n

n/2
<2 Z Iahlogzahl < n-e/n =c¢
k—r”+l

The lemma |s proved. We also have the following corallary for sequences of higher order than
the sequence {r }:

Corallary: For . {r"} as In the lemma, let {a"} be a positive integer sequence such
that n > s 2 r_ forall n,then

’
n

[H(S) - Z —a,log, 8, | < ¢

k=g
n
Proof: The terms in the sum above are all positive. Since n 2> s 2 r,. we have

n n
HS,) = 3 -slog,a, 2 3 -alog,a,
kam—n k-—l”
r
n
> ) o0,
k--r“

Because the leftmost quantity In this string of inequalities Is within € of the rightmost
qua.tity, the result of the corallary follows.
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A.5. Similarity of Binomial and Normal Entropy Approximations

We have "chopped® the tails of the normal entropy Integral and then discretized it to obtain a sum
as a close approximation. The talls of the binomlal entropy sum were also ®chopped® to obtaln an
approximation that Is a2 sum of far fewer terms. We now need to show that the resulting approximations

for the normal entropy and for the binomlal entropy are good approximatlons of each other.

Lemma 10: For n=1.2.... let o=vn,2 and let {r,} be a positive-integer
sequence In O (Vnlog,n). Glven ¢ > 0, there exists a positlve integer .V such that

n 2> .V Implies

, r

n n
| Z —a,log,a, - Z —oa(lc)logz¢a(k)| < € (A.43)
k-—r" b——'”

Proof: The sequence {r_} Isin O(V nlog, n) so we consider the case that r > V3n
for all suffictently large n 18 Also there exists a C > 0 such so that o < C - Vnlog, n

for all n. It follows that a positive integer No can be chosen so that V3n < o < n/6 for
all n 2 No. Let n be in this range and put ¢t = €= where € . €, are defined by

equations (A.29) and (A.30) as functlons of the positive Integer n and & = 1,2, ..., n.
From these two equations we have that e, = éa(k) exp(—t) and for k=1, 2, ce.aT, We

can bound the terms of the difference (A.43):
| -a,log, a, - (—éa(k)lozz ¢o(k)) |
= | =9,k) exp(=tlog, (8, (k) exp(=t)) = (=0 (k)logy ¢,(K)) |
= [0, (k)1 — exp(—t))log, @ (k) + &, (k)-t- exp(=t)108, ¢

< o, (kNog, 8 (k) ||t — exp(=t)| + |& (k)| |t]] exp(—t)|-|log, €| (A.44)

We need upper bounds on the terms |t! and [1 = exp(—t}){. To get an upper bound on |[¢].
consider the following.

3

Since r_ > V3n. we have rn‘/w > 3rn2,’21;. Forany k < r, weaget

lsThe case that " < V3n results in a smaller sumber of terms being summed in relation (A.43). The upper bounds
for the error denved in this section would still applicable to these terms. By summing less terms the total discrepancy

between the two sums in (A.43) wiil be less, hence the case that r. < V3n is subsumed by the case that *n 2 Vin.
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2 4
3k2 37" ru
— < & —

0 - o -_ 3
2 1 4

also k! ’Hus) <'r (w’) . By equation (A.34) then, we Lave that

n

,

n
|cl| < —
4

Since |52l < n/3 we also have ¢, < r”‘/(ws) and so

2
] =l =€l < lel+1e] < r /2

In turn, r"‘/(zus) I1s less than 4C"(log2 n)z/n where C was defined at the beginning of the

proof.

To get a bound on |1 — exp(—t)| we take a positive Integer N, so that n 2 N

implies  that  4C*(log, n)*/n < 1/3. Therefore we have |t| < 1/3 and so
1= exp(—t)] < 3/2/t]| by proposition 7.

Finally, for |t| < 1/3, exp(—t} Is bounded. Let K be a coastant so that
exp(—t) < K for |t] < 1/3. Contlnuing the chain of Inequalitles In (A.44), noting that
| o,k)| < 1.wehave

[ @, (kliog, @ (k)| -1 = exp(=t)| + [@ (k)| ]t]l exp(~t)]]log,¢]|

< e"(log,., e)(3/2)|t] + K(log2 eyl t]
= ((3/2)1e7" + K){log, e)| ¢ |

< ((3/2)e”" + K)(log, )C*(l0g, n)*/n
= A(log,., n)z,’n

where 4 Is the positlve constant ((3/2)-e"l + lﬂ(log2 e)C'. To Nnish the lemma consider
agaln the left-hand-side of (A.43) which Is seen to satlsfy
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r 1 4
n \1]
| Z -o,log, 8, — Z —éa(k)!og.., éa(kH

kom—r k=
n n

r

n

< Z |—aklog2 8, - (—Oa(k)los2 é,(k) |

k——r”

There are 2rn+1 terms in this sum, each positlve and less than A(log2 n)z,’n. Since

r < C- \/nlog2 n ., the sum ls less than

n
2CV niog, n + 1;‘,4(1032 n)z/n

which 1s O((logzn)s/"',\/r:). It follows that there Is a positlve integer N2 such that if
n> N, then

aCvV niog, n + 1!A(log, n)z/" < €

From these inequalitles, the lemma follows with N =max { N, N|. N, }.

A.8. Proof of the Main Theorem

We now restate and then prove the maln theorem.

Theorem 11: Let Sﬂ be the binomial r.v. assoclated with the sum of n 1.1.d. balanced
bernoulll trials. Then

itm (H(S") - (1/’2)logz(ﬂe~n/2)) = 0 (A.45)

n — o0

Proof: We will show that for a given ¢ > 0, there exists a positive Integer N such
that n 2 .V Implles

|H(5n) - (1 2log, (ten. 2)| < ¢ (A.46)

Lemmas 2. 5. 9, and 10 can each be restated with "¢* replaced by "¢ ’4® In their respective
relations: (A.3); (A.13); (A.42); (A.43). These lemmas wlll still be true when modifled In this
way. Each lemma required a sequence that was constrained |n some way to produce that
particular lemma’s result. Our plan is to exhlblt a sequence {s”} that simultaneously satlsfles

the constraints of all four lemmas. The Inequality mentloned in the conclusion of each lemma

will then be true. The triangle Inequality can then be used to show that the inequality (A .46)
holds.
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Let {s } be thesequence

n n <10
3={
n

8% 2nlog, n J otherwise

This Is the sequence used Ia the proof of lemma 9 to render the Inequalily (A.42) (with ®¢*
replaced by ®¢: 4" ). In particular, for some Nl 20

’
n

|H(Sn) - Z —ahlogzahl < €/4

kmm—g
n

forall n > N, .

Since {e”} Is O(\/nlog2 n) > O(\/nlog2 (log, n)) the corallary to lemma 2 implles that

there exists a positive integer N2 such that for n 2 N2 we have

[}
IH(X") - /"—oa(z)logzaa(z)dzl < €/4

’
n

Also ¢ o0 = O(Vlogzn). that s, an/a= o(\/.r:/log2 n) and by lemma 5 there exists a
positlve integer Na so that for n 2> N3 we have

P n

| [ T =ogimmon 0 zidz = B —ogklog, 8, ()] < ¢4
n

kam—p
n

Finally, from lemma 10, we have that there Is a positlve integer N‘ so that n 2 N‘

implies'?
[} e
n n
| Z —g,log,a, — Z -oa(k)logzdbd(k)] < €/4
kum—y hem—g
n n

Now let N = max { N|..N,. V,. ,\"} and consider any n with n > N, Slnce the entropy
of a normal r.v. with variance n/4 is 1/’.3Iog2 (ren/2), we can write

19
T:e requirement that o > V7n in lemma 9 is satisfied for n 2 12. We take one of N, Ny NV, to be grester

than 12 so that these requirements will be met for n 2> max { Nl' N2' N;- N‘ } in what follows.
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1 Ten .
|siog,—= = HIS,)| = |HX,) = HS,)|

0 '" , lﬂ
=|/_t—oa(z)log._, oo(Z)dz -/_. —c>a(z)loa2 oa(z)dz + [_' -9, (zllog, oo(z)dz
n

n n
= X o klogy e (k) + 3 -4 (kiog, o, (k)
kg kwm—g
n n
ln ."
- Z —6,log, 6, + Z —a,log,a, — H(S,)|
k=—an kmm—y

[ o] )
< I/ —¢,(z)log, ¢o(z)dz - /"f -¢a(z)log2 ¢o(z)dz|
-0

-p
n

.

0 n
+ | "—¢,(z)loaz¢,(z)dz - 2 ~0,(k)og, ¢ (k)|
' k——cn
' .”
+ | Z —®,(k)log, ¢ (k) — E —alog, a, |
k--ln k-—l"

L
n

+ | X -sog,0, - HS,) |

kwm—y

Since each of the four absolute-value terms Is fess than ¢/4 by the previous lemmas. thelr sum
Is less than ¢. The theorem Is proved.
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Appendix B
Mutual Information and Vector Geometry

In this appendix, we derive a relation between the mutual information shared by two =l1-vectors,
A and B, and their Hamming-distance. The vector A wlill be a balanced-Bernoulll vector and the
vector B will be chosen at random from within a neighborhood of A of a given radius p. Vector B

will therefore provide Information about A . We will determine the reiation between the information B

provides and the nelghborhood radius.

B.1. Relation of Neighborhood-Size to Neighborhood-Radius

Let A be the set of n-dimensional #1-vectors, and for the moment, let A and B be chosen
randomly from A . We wish to know the fraction of A lying within a given radius p of A. Toward
thls end, consider the ball B(p) of vectors of A that are within a radlus p of A . Slnce all vectors of
A are equiprobable outcomes of B, we can determine the fraction of vectors lylng In B(p) by
determining the probability that B will come from B(p). Because these vectors are chosen at random
from A, they are balanced-Bernoulll vectors. Let X be the number of components of B that disagree
with thelr counterparts in A . The r.v. X is the Hamming-distance HD(A, B) between A and B. It
Is binomially distributed with mean n/2 and variance n/4 [26{. By the centrai-limit theorem, we can
approximate the cumulative binomtal probabilitles with a normal distribution having the same mean and

variance (see Lindgren [30, p. 158]).

From this we see that the probability that B will lle 1n B(p) I1s AX < p) which can be
determined by the normal distribution with mean n/2 and varlance n/4. Half the vectors of A will lle
within a distance of n/2 of A, so so we consider the case that p < n/2 so that B(p) comprises less

than 1/2 of A. Itweput Z = (X - n/2)/(\/:/2) ,then Z is a standard normal r.v. and we can write
AX <9 = AZ < (p=-n/2/(Vn/2) = &-2) (B.1)

where = Is the positive number (n/2 - p)/(‘/;/'z). It I1s known that for z positive (say 2 2> 3) the

approximation
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exp(—:2 2)

$(-:) = (B2)

22
Is quite accurate. ‘11, v. 1, p. 179,

Now suppose we want the ball B(p) to comprise M~R ot 4, where R > 1. We put

AX < p) = MR (B.1) and use the approximation (B.2) to get

L)
exp(—2).'2

MR = (B.3)
b3 ¥4

This can be rearranged to get the *z% in the exponent in terms of the other parameters

vVoRin M —1In (2::2) (B.4)

I

which Is a recursive expression In z. As M grows, z should grow slowly. For targe M then, the
* 2Rn M term under the radical should dominate so that z=s V2Rln M. We put thls value In for the

®:® under the radical In (B.4) to get

z =~ V2Rin M—=In(47Rn M) (B.5)

which Is a good approximation to z when M Is large (this can be verifled by plugging the right-hand-

side of (B.5) In for z in equation (B.3)). The value of p Is ascertalned from the deflnition of z to be

Vn Vn
- —23z - g - —23%.»1?1:1 M— 1o (47Rin M) (B.8)

©
I
S

So a ball encompassing roughly MR o A has the radlus given above.

B.2. Relation of Mutual Information to Neighborhood-Radius

Now suppose B s chosen at random from B(p) rather than from A . An observer of B can Infer
that A lles In a radlus p of B . This radlus Is such that a neighborhood (or ball) about B comprises
MR o4 Knowisdge of B therefore constitutes an MPR.told decrease In the possible values of A .

Therefore the information B provides about A s log, MR = Riog, M bits.
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With regard to the nl-dlmenslona.l Input-vectors, of an assoclator, the vector A represents an
input-prototype F, and B represents the assoclator-tnput Fk' chosen from Bh(") {see the chapter on
classification, page 55). The minimum value of R allowed in this case is nM/(zno) where "o Is the
dimenslon of the assocfator-output and M Is the number of stored assoclatlons. Plugging this {n for R

In (B.8) gives an upper bound for p

n, Vn,

! [V Mo M
p < ..2. - —-5- . nM/no-ln(zx n /no) (8.7)

If we examine the no-dlmenslonal output-vectors on the other hand, the vector A represents the
output-prototype Gk and B !s the associator-output Gb"' We want a classifier sampling B to be able
to categorize It with A on the basis of B 's distance from A (see figure 5-3, page 51). It is the maximal
distance p that B can be from A that must be detéermined. To find this maximal distance, recall that
the minimal (nformation that B must provide about A In this case s log2 M bits, We can substitute
the value 1 for R In equation (B.8) to get an upper bound for the distance that B can be from A . The

bound is

Vn,

"o o
p < el -?-\/mn M = 1n (4710 M) (B.8)

There is a problem however. In this case, each ball about ap output-prototype, of the radlus on the
right-hand-side of (B.8), encompasses 1/M of the total number of possible no-dlmenslonal output-
vectors. This means that each prototype has a 1/M chance of lylng ln the ball about A . Since there
are M =1 output-prototypes aside from A Itseif, we would expect one of them (on average) to lle ln the
ball about A. We call this 3 colllslon. In the case of a collision of two output-prototypes, the ball
about one prototype would largely overlap with the ball about the other. Many of the vectors within p
of one of the prototypes would not get classified with that prototype. This problem exists for all the
output-prototypes. That Is, each prototype will have a collislon with an average of one other when p |s

given by the right-hand-side of (B.8)

To remedy the problem, we make the radlus, p. small enough so that each ball contaips only

M? of the outbut-space. Now any Lwo output-prototypes have a 1/ M2 chance of collision with each
other. Since there are roughly .\{2 /2 possible pairs of output-prototypes. less than one such palr on
average will suffer from collision. If the associator produces B to lle within this smaller nelghborhood of

A . then A will be reflably classiflable. Since the ball constitutes A ™2 of the output space, we put
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R = 2 In (B.6) to get

)

n
o o
b2 - - Vialn M = In (871n M) (B.9)
This is shown as a lower bound on p since it i3 sufficlent but not necessary for proper performance. In

other words, some vajues of g Intermediate between that of relatlon (B.¢) and relation (B.8) should be

workable. In fact, using

0§|

V3in M (B.10)

"o
=7

2

would result In O (V M) colllslons among the M output-prototypes so that a vanishingly small fraction
of the prototypes represent *degenerate® categorles. We conclude then, that large systems having stored
a correspondingly large number of prototypes should be able to operate nearly optimally. That Is, an
output-vector, B, will be constralned to lle within pM of Its output-prototype A , where pM nears the

upper-bound in (B.8) as M gets large. On the other hand, for smaller M we may need a redundancy at

the fnput that is 1-1/2 to 2 times the minimal xM/(2no). This assures the output informatlon Is

(3/2)Iog2 M to 21032 M respectively as required by (the respective) relations (B.10) or (B.9).
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