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Storage capacity of the linear associator:
Beginnings of a theory of computational memory

Dean C. Mumme
Learning Research and Development Center

University of Pittsburgh

This paper presents a characterization of a simple connectionist-system, the linear-associator. as both a
memory and a classifier. Toward this end, a theory of memory based on information-theory is devised.
The principles of the information-theory of memory are then used in conjunction with the dynamics of the
linear-associator to discern its storage capacity and classification capabilities as they scale with system
size. To determine storage capacity, a set of M vector-pairs called "items' are stored in an associator
with N connection-weights. The number of bits of information stored by the system is then determined to
be about (N/2) 1og 2M. The maximum number of items storable is found to be halt the number of weights
so that the information capacity of the system is quantified to be (N/2)log 2N.

Classification capability is determined by allowing vectors not stored by the associatir to appear at its
input. Conditions necessary for the associator to make a correct response are derived from constraints of
information-throughput of the associator, the amount of information that must be present in an input-
vector and the number of vectors that can be classified by an associator of a given size with a given
storage load.

Figures of merit are obtained that allow comparison of capabilities of general memory/classifier systems.
For an associator with a simple non- linearity on its output, the merit figures are evaluated and shown to
be suboptimal. Constant attention is devoted to relative parameter size required to obtain the derived
performance characteristics. Large systems are shown to perform nearest the optimum performance
limits and suggestions are made concerning system architecture needed for best results. Finally,
avenues for extension of the theory to more general systems are indicated.'

'This research was sDonsord by the Army Research Institute. under Contract No MOA903-86-C.0t49 and Personnel and
Training Research Programs Psychological Sciences Division. Office of Naval Research under Contract Nos N.0014-66-K-0107
and N.0014.86 K.0678 Work submitted as Ph D thesis to the University of Illinois
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This thesis presents a characterization of a simple connectlonist-system, the linear-assoclator. as

both a memory and a cla.ssifler. Toward this end, a theory of memory based on Information-theory is

devised. The principles of the Information-theory of memory are then used In conjunction with the

dynamics or the linear-assoclator to discern Its storage capacity and classification capabilities as they scale

with system size. To determine storage capacity, a set of M vector-palrs called "itemsO are stored In an

assoclator with N connection-weight3. The number of bits of information stored by the system is then

determined to be about (N/2)log 2 M. The maximum number or Items storable is found to be half the

number of weights so that the Information capacity of the system is quantified to be (N/2)log, N. -

Classification capability Is determined by allowing vectors not stored by the assoclator to appear at

Its Input. Conditions necessary for the assoclator to make a correct response are derived from constraints

or inrormation theory and the geometry of the space or Input-vectors. Results Include derivation of the

Information-throughput or the assoclator, the amount or Information that must be present In an Input-

vector and the number of vectors that can be classified by an associator of a given size with a given

storage load.

Figures of merit are obtained that ailow comparison of capabilities of general memory/classifier

systems. For an assoclator with a simple non-linearity on Its output, the merit figures are evaluated and

shown to be suboptimal. Constant attention Is devoted to relative parameter size required to obtain the

derived performance characteristics. Large systems are shown to perform nearest the optimum

performance limits and suggestions are made concerning system architecture needed for best results.

Finally, avenues for extension or the theory to more general systems are Indicated. -
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Preface

The approach or Minsky and Papert in their book Perceptrons 1381 provided the motivation for this

research. Their analysis or the perceptron Introduced useful mathematical tools for understanding

performance-limitations of "neural-based' systems. In addition, It charted and quantified these limitations

and Identified Important areas for future Investigation. As a result, the book Perceptrons Identified issues

of learning and performance that have continued to be of concern to Connectionlst researchers even now

that the challenge for multi-level learning algorithms has to some extent, been answered. The author

believes that the mathematical tools developed by Papert and Minsky will themselves be useful for better

understanding or connectionist architectures. In the author's view, the only short-coming of the work

done by Minsky and Papert (and perhaps Rosenblatt as well) was their perspective. They treated the

perceptron from a 'computer' point-of-view. It was expected, for example, to determine whether or not a

'retinal object' was 'connected' even when the orT-on state o a single $pLxel' could determine the

correct answer.

Most certainly, natural perceptlon-systems don't work In this fashion. Indeed, they must determine

the connectivity of objects despite Inconsistencies or noise In the Input-stImuii. This eliminates the

possibility of 'computations" whose result Is affected by a single stimulus element. The proper

perspective for these systems In the author's view Is a probabilistic one in which the system's proper

response is characterizable In some way but is robust to uncertain, degraded. Incomplete. and even

inconsistent Information. The classifier Identified In this work typifies Just such S system and the forgone

analysis should exemplify the proper viewpoint and methods for future Investigations of systems of this

nature. In this light, this work will have been of merit If It has Identified Issues valuable to future efforts

and provides methods for analysis of perceptual/cognitive systems.
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Chapter 1

Introduction

The systems under consideration are an outgrowth of work done on self-organizing automata and

perceptrons 35, 381 and later work In parallel associative memories, e.g. 121. 401. Mlnsky and Papert

In 135] had carried out rather extensive mathematical analysis on perceptrcas revealing Inherent

limitations In the classes ot problems they could solve. These systems were 'learning' automata expected

to classity Input 'stimuli' based on their past experience on 'tralning' Inputs. Mnsky and Papert showed

that multiple-stages or perceptrons were required for many problems o Interest yet no traIning algorithm

guaranteed to converge to a solution was known at the time for multi-level systems. They concluded In

their book that the systems held little promise and subsequent Investigation of perceptrons evaporated.

Eventually however, with more powerful computers to carry out simulations, and the development

o several multi-level learning algorithms [0. 22. 38, 40, ch. 6-g1, descendant offshoots o the perceptron

have regained Interest. Currently a variety ot these automata exist and are known by names such as

'Neural-nets'. 'Parallel Distributed Processors' (PDP networks). 'Associative Memories'. They are

collectively called "connectionist architectures' and have been studied as self-organizing memories o

perception [281 content-addressable memories, helrarchlcal knowledge bases, and classiflcatlon

systems 15, 8] models o human 'neural-computatlon' 10, 181 or human task performance and attentlonal

learning 141, 44] speech performance and natural language understanding 113. 40. ch. Is. 42].

These and other eftorts have led to guarded optimism for the future o conner..oalst architectures as

knowledge engines or as models o human Intelligence. Capabilities and limitations o both task learning

and performance have been demonstrated.1 However, though many mathematical Investigations (e.g.

Barto 191, Golden '15. 141. Grossberg jig, 1S], Kohonen 1281), have been conducted, Including information-

capacity studies (see Abu-Mostara i1. 21. AmIt 13. 41. Keeler 127]. Little. et. al. [321. McEllece. et. al. 134!).

there is much room for development or analytical understanding or the capabilities or these systems.

IGood introductory articles to the subject include the books 121. 401. For an introduction to the mathematics of
*oanectiooist' or "neural-bued* systems, see 17, 40, eh. 01.
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Develo;. r nt or connectionlst memory systems in several forms has changed the concept or memory

from storoge memory to what the author calls computational memory. Digital and other local

memories are examples or storage memory and have been supplimented by the distributed overlayed

memory systems. The latter have more complex characteristics. Interference between Items stored result

In the capability or these system3 to implicitly represent the regularities relationships among the Items.

Subsequently, computation and storage In the system are no longer distinct processes but lntegrai aspects

of the same phenomenon. These systems are 'Information engines' or *computational memory' rather

than 'information receptacles'.

A formulation is needed or memory a.s a general mode of storage and computation. An information-

theoretic approach appears most natural and promises to Identify the essential features of memory

operation. The purpose or this thesis Is threefold:

1. Analytical Models: A germinal characterization or memory theory will be presented. The
capabilities and limitations or any memory should then be expressible In terms or Informatlon
flow. Resultant Informatlon-theoretlc relations will provide the desired means of analysis and
a framework for understanding any particular memory system as a member of the general
class or computational systems.

2. Relavant Issues: Theory In I Is used to Identlry major Issues to be addressed ror the
understanding or storage memory. These Issues Include Identlicatlon of 'memory tasks',
amount or Information provided by the memory for the task, amount oF InformatIon required
by the task for a given amount or storage, the maximum number of Items storable in the
system with respect to the specified task, definition of memory load, memory load v.s.
performance. Identification of particular tasks useful to computation.

3. Evaluation of quantitative performance: Performance or the associator with respect to
issues identified In objective 2 Is quantifed utilizing the theory from objective 1. First,
storage-capacity Is evaluated so that the notion oF 'memory-load' can be developed.
Classification capabilities are then evaluated as the memory-load is Increased. Architectural
considerations and hardware tradeoffs are addressed, as well as perrormance degradation due
to the introduction or non-linearltles at the system-output. Finally, figures or merit are used
to compare system performance with the optimal.

It Is Intended that this work will provide the proper context and starting point for further

Investigation or memory as a computational structure.

1.1. "Neural-based' systems

Matrix models oF parallel ,11strIbuted memories were derived a.s : simpl~stic model of brain cell

computatlon. In the model, the output of each cell Is a real number. y representing the deviaticn of the

,:eli's Fnrlng frequency from some reference frequency. As such, y can be negative as well as positive.

The Inputs zz1 ,z2  . z) to the cell are similarly real valued and each Input, z, has an associated

coupling strength u- to the cell which determines the efiectiveness of that input on the cell output. The
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cell determines Its output by takIng the weighted average or the inputs,

'I

where (w , w2 ..  ) Is called the cell's 'weight-vector'. The matrix memory Is constructed from a

collection of these cells, each sampling the same set or inputs. If ni Is the number or Inputs to the

memory and n o Is the number or cells in the memory, the vector x = (z,z 2 . .. Zn( )) of Inputs when

presented to the Input or the system produces an output vector, y M-(y1Y2 . . Y n(O)) given by the
I

relation y -Wx where W Is the matrix of coupling weights tw.. connectlng the Ith Input to the Ith

cell 121. 281. We note that each 'cell' or OunitO Is merely taking the dot-product between the Input-

vector and the unit's weight-vector.

To store Information In this system, two sets o vectors called the Input prototypes {ff2. .fM}

and the output prototypes {(g.g 2 . . . . . . . M. are used. For each Input prototype fr' the weights of the

system are adjusted so that the g m  vector results at the system output when f Is presented at the

Input. The system Is then said to associate fM with gtM. For each m=1,2 ... M. the matrix that Is

used to associate f with Sm (called the mth association) Is the outer-product g fr 121. p. 181. To

store the M associations, these Ml matrices are added to obtain:

M

rn-T

IV E 9,-n,)

The Informatlon for each association Is distributed over the whole or W and therefore Is overlaid with the

Informatlon for the other associations. The resulting Interference between associations Increases with M.

and ultimately limits the number or associations storable In the system.

In the case that f1 .f 2.  f are mutually orthogonal, no Interference exists. When ft Is Input to

the system, we have 2

I

"The symbol II here refers to the *length of a vector given by the euclidetn norm.



4

! k'n- f , I ,.k = 1 .2 . . . . .. V .
nI

The matrix produces a multiple or gt when f is present at the input. It the fk are chosen so that

if *12 = n, then g. Is reproduced exactly iO, p. 804. 21, p. 181.

We will be concerned with the case that the Input prototypes are not ortbogonal. Noting that fTfk

Is the dot-product f,. we can rewrite the product WF as

M
Wvfg F (f~ ).

rn-

Now the dot-product between two vectors Is a measure of how well they 'match' (assuming all vectors

have the same length). The product 1,'f k is therefore a llnear combination of the output-prototypes with

the coefficient of g, being proportional to how well f matches fk, m = 1,2....M. Since the

Input-prototype that best matches f, Is the vector Itself, It follows that the output-prototype that has

the largest coefficient In the linear combination Is the vector 'k. In the chapters that follow, the

prototypes will be chosen randomly In such a way that they will be very nearly orthogonal to each other.

Therefore, the dot-products ftkfM will be small for m = 1. 2 ...... V'. m 3 k. This means that as

long as there are not too many prototypes stored In the system, f-ft g. will be the dominant term In the

)utput prototypes. We conclude that the linear-assoclator can be seen as a

particular. It produces an output vector that is a best match to the prototype

it-matches f. (trom among all the Input-prototypes) Is present at the Input.ji put vector will have contributions from other output prototypes and so is not

strict sense. When a better best-match computation Is needed, a device

s used.

1.2. Auto-association

The systems described above are called "hetero-assoclators' because the 'Input prototypes' are

distinct from the *output prototypes'. That is, fn # gm , In fact the dimensionality of the input

prototypes may differ from the dImenslonallty of the output prototypes as sec above. An 'auto-

assoclator* Is similar to the hetero-assoclator except that the Input and output dimenslonalitles are the

same as are the Input and output prototypes. That Is fm M gm m = 1.2 .. ... f. A.V ter the weights

are adjusted or storage of the .Md associations, retrieval occurs when a 'damaged' Input Is presented to

the system. The 'damage' Is due to noise In the Input signal or the fact that the Input may be specified

Incompletely, The output that results Is passed through a non-linearity 6. 40. p. 61-65. 324-325, to limit
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the growth or the size ot the vector components. The output will be a better rendition of the proper Input

prototype provided the matrix is not overloaded (I.e. provided Af Is not too large).

Since the output Is an Improved version or the Input, the signal can be red back to the Input of the

system to obtain further Improvement. The process Is repeated several times until the vector stabilizes.

the result Is generally a highly Improved version or the Initial Input. The limitation keeps the output

vector from growing without limit and tends to force It to stabilize at or very near the proper

prototype [8. 241. Variations or the auto-assoclator Include the 'Hopfleld net' 123. 24. 251. the 'Brain-

State-In-a-Box' or 'BSB' model 8d. 141. and the oBoltzmann Machine' 1221.

From the perspective or memory systems, the difference between hetero- assoclators and auto-

associators Is that for the latter, the Input signal provides direct Information about the output. In the

hetero-associator. the Input serves only as an 'address' or 'approximate address' from which the proper

output Is to be retrieved. The auto-assoclator's Input Is both an address and a partial specification of the

proper output. In any event, the auto-assoclator produces an output that Is the prototype that best,-

matches the Input vector. The algorithm degrades as the system stores more prototypes but should be an

Improvement on the hetero-associator for the same storage load.

In the chapters to rollow, we will orten study the performance or a best-match algorithm that takes

as Its Input a vector produced at the output of a Ilnear-assoclator. The best-match algorithm considered

In the analysis Is arbitrary but could Just as well be an auto-assoclator. The auto-assoclator's stored

prototypes would be Identical to the 1lnear-assoclator's stored output-prototypes. The analysis will be

concerned with the conditions under which the linear-associator (flrst-stage) can produce an output vector

"recognizable' by the best-match process (second stage). The best-match algorithm will have

'recognized' the output or the 1lnear-assoclator If the algorithm produces the output-prototype or the

linear-associator that corresponds to the Input-prototype or the assoclator that Is most similar to the

a.ssociator's Input vector (see figure 1-1). In this configuration, the combination of the Inear-assoclator

and the best-match algorithm form a classifier. The linear- ssoclator 'translates' the Input vectors or a

rorm similar to the Input prototypes Into a form similar to the output-prototypes. The best-match

algorithm (possibly an auto-assoclator) then selects the output prototype that most corresponds to the

Input to the combined system. Each Input prototype corresponds to a vector that the system Is most

likely to 'see' at the input or that Is most representative of a class/category of input that Is Important to

the system. The corresponding output prototype constitutes the system response and Is or a form

corresponding with the system's Internal representation of the category. The combined system produces a

particular output prototype corresponding to the category to which the system Input belongs. Our

concern Is with tie perrormance or the Ilnear-assoclator. We will Idently the conditions under which It

will produce an output vector or high enough 'fidelity' that the combined system can categorize Its Input.
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F Associator { . G Best-Match Gk

Figure 1-1: Linear-assoclator and Best-Match Classifier

Proper performance In this contlguratlon Is considered a minimal requirement on the Ilnear-assoclator It It

Is to produce output 'signals' useful to subsequent Intormation-processing 'stages'.

1.3. Overview of Major Issues

1.3.1. Tasks of Computational Memory

The 1lnear-assoclator Is an example of 'computational memory'. As opposed to local memory which

is merely an Information storage device, computational memory Is characterized as an Input-output device

that can respond to Inputs that are not explicitly specified during storage. Similarly, the system can

produce outputs not explicitly stored. The Information stored In the memory Is 'overlaid' in the sense

that all Items (associations) stored share a common storage medium, resulting In between-Item inte-actlon

or information. This Interaction causes the output to be other than those explicitly trained to the

memory. Instead the output Is a function of how similar the Input Is to the trained Inputs, and how

similar the trained associations are to each other. This and the fact that the memory can respond to

novel Inputs results In a memory that Is capable or various 'memory tasks' during retrieval.

The most obvious (and mundane) of these Is 'item memory'. For this task. tb-' memory Is treated

just as a local-storage device by storing associations (f.. g ), m -= 1.2 .... M and subsequently using

Tf as an *input address' to the memory which In turn returns Information about . as 'data'.

Another memory task Is having the memory system distinguish which among the M output prototypes.

is the one that matches the Input prototype present at the Input. SpecifIcally, one first stores the
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associations (fro g(n)) where K Is a permutation or the M Indices 1.2 ... Af. One or the Input

prototypes, say tb Is then presented to the memory resulting In an output. This output is compared with

all the output prototypes to Identify one or the latter as a best match. The memory Is successful at the

task If g,(, ) Is the prototype chosen as the best match. This Is called "channel-memory' since the

memory acts analogous!y to a communication channel. Another term used Is "permutation memory'

Indicating that the memory acts as a device that remembers which permutation K or the output

prototypes was associated to the Input prototypes.

Though this task may seem artificial. Its consideration serves two main purposes. First. proper

performance or this task Is a demonstration that the memory can distinguish the associations it has

stored. If a system has stored too many associations. it may rail this task. It so. It Is not providing

enough Informatlon at the output to distinguish which prototype output was 'intended' as the output or

the memory. The stipulation that the memory succeed at this task Is a minimal requirement called the

'channel-criterion'. The channel-criterion Is used to derive upper bounds on the number of associations

storable In the memory.

The second purpose for considering the matrix as a channel-memory Is that we can then study the

system performance with regard to the task of 'input-class ilcation'. In particular, after the system has

stored M association pairs (f.' gm) , non-prototype vectors are allowed at the memory Input. Assuming

that the Input Is most similar to the prototype fk we will call the Input vector f,'. To be successful

classifying ft , the matrix must generate an output that Is most similar to g. . This Is Identical to the

channel-memory task except that more freedom Is allowed at the Input. The classiflcation task Is

Important for understanding the system's ability to respond to a vector fk' that Is a partial or degraded

(say, by noise) version of the 'intended' Input fk" The channel-criterion again provides a means of

specifying limits on the number or associations storable In the memory for proper classification. In this

case. a tradeoff Is quantified between the number of associations permitted In the memory versus how

'sloppy* f can be as a rendition of f. . Consideration of the classificatlon task allows one to Identify

the amount or Information required by a lnear-associator to classify an Input-vector set or a given size

Into a given number or categories.

The classification task also brings up the Issue or the reliability or the Information at the output or

the memory as a function of the reliability or the Information presented to the memory Input. This

function depends on the number or associations stored In the memory. Storing more Items taxes the

memory capability and so requires that more reliable information be present at the input to maintain a

given output reliability. An Important Issue is the determination of conditions necessary for the output

Information or the memory to be more reliable than the Input Information. Under such conditions, the

memory could effectively suppilment Incomplete/degraded Input Information with Its own stored



Information to provide an output that Is more complete/reliable. The memory task performed would be

that or information 'enhancement'. An assoclator performing this task would be valuable as a "rront

end' to later stages or assoclator memories or processors that required 'high-grade' Information as input.

Even more Intriguing Is the possible use or this 'enhancement memory* to iteratively improve the

information It receives by passing the received Information *through' the memory several times. Using

two memory systems A and B. one stores associations (fm' S m) in A and stores their inverses

(fr' fm ) In B. One then sends an degraded copy fk' of fk to the input or memory A. The output or

A Is then Input to B whose output Is then fed back to the input or A . The process Is then repeated. U

both memories are 'enhancement' devices, then the Information that Is passed back and forth between

,hem should Improve with each pass through the loop. Using the theory developed In this here, this

possibility could be explored as a way to improve the performance or enhancement memories that have

stored a given number of associations.

A flnal note concerning memory tasks Is that they Identify modes of 'computation' that may serve

as design tools for the architecture or connectlonist 'knowledge engines'.

1.3.2. Characterization of Memory

Another important consideration is the deflnition of the 'storage' or the memory. That is. deflning

the amount of Information 'contained' by the memory that Is useful for retrieval. In particular, once Al

associations are stored, we consider the matrix f whose columns are the Input prototype-vectors

t,12 . t.. Sm and the matrix S whose columns are likewise the output-prototypes. For Item memory

discussed in the last section. the storage or the memory will be defined as the information that the matrix

f provides about the matrix S via the memory. The question arises as to whether this Is equal to the

'Item-information' which Is simply the sum over ,m = 1,2 ...... V of the Information that fm provides

about gM via the memory. This work indicates an answer In the negative for linear-associative Item-

memory, under most conditions However, channel-memory does have this feature, again under most

conditions. A memory having this feature will be called 'ltem-accessible' meaning that essentially all the

Information that f provides about g via the memory can be retrieved 'item-by-item'. Like digitai

RAM memory (local storage), one can apply one Input prototype at a time to the Input of the memory

and record the matrix output to retrieve all the Information about *. In fact. the Information retrieved In

this way Is virtually non-redundant.

Characterization or memory as Item-accessible allows upper bounds to be derived for the

Information retrievable from the application of a single input vector (called a single 'access'). Since the

system Is symmetrically or uniformly defined over its Input prototypes '1.f'2. . . . . . . the Information
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retrievable on applying any or these to the Input is the same. From this it follows that the memory

storage is Just At times the amount of Information retrievable from a single access Just as is the case for

local memory. The bounds that will be derived for the memory storage can thereby be mapped Into

bounds on the amount or Information retrievable for a single memory access. Even for memory that Is

not Item access ble however, the single-access bound will still hold. The difference is that the Information

retrieved by applying the M Input vectors In sequence may 'overlap' (redundancy) and as a result will

not completely specify g . We will characterize memory and address these issues after basic notions of

information theory are introduced In the next chapter.

1.4. Methods and Focus of the Investigation

This investigation views the asymptotic performance of the linear-assoclator. That Is, we examine

the capabilities or the systems as they are allowed to get arbitrarily large. This will Lllow us to ascertain

how well their performance scales with system size. Large systems benefit from the high dlmlnslonality of

their input/output signals and so perform better. Larger systems will therefore be most useful in

memory/classification tasks and deserve the emphasis provided In this work.

The work is confined to finding upper bounds for system performance, though an effort is made to

keep the bounds tight. Approximations are used extensively, but are accurate for the range of parameter-

values considered. The approximations pertain particularly well to large-scale systems, with a

correspondingly large number of associations stored. Pushing the lower limits of system size that the

theory will accomodate. a system should have Input/output dlmenslonaltles of say 60 or 100 and at least

5000 weights. The number of associations should be at least 8 or 10 times the larger of the Input/output

dImensionalltles. but generally no more than the number of weights In the system. More typically

however, the Input/output dilmensionaliltles are taken to be at least several hundred each, and the number

of items stored should be at least 25,000-60.000. The number of weights should generally be twice the

number or stored associations or more.

In this work, an attempt has been made throughout to make explicit the range of applicability or

the theory. The reader Is advised to note parameter-value restrictions/assumptions made In what follows.
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Chapter 2

Definitions, Identities and Notation

Before the presentation or memory theory, some preliminary material must be presented concerning

the notation used and relationships that hold among Information-theoretic quantities considered. More

background concerning concepts of information theory can be round In texts (8. 12, 331.

2.1. General Relations of Information Theory

Unless otherwise stated, capitol letters always symbolize random variables whereas lowercase letters

symbolize a specific value or random-variable outcome. Script-capitols represent sample-spaces. Within

this convention, boldrace unsubscripted letters represent matrices whereas boldface subscripted variables

represent vectors. The letters W. F. G for Instance. are random matrices: W. 7, ; are their respective

sample-spaces: w.f. ,g . represent respectively specific outcomes from each sample-space. Similarly

F M , G. are random vectors with respective outcomes f M' m" The abbreviation 'r.v." will be

frequently used for 'random variable* and the abbreviation 'lihd.' will be used for 'independent.

Identically-distributed' when this condition applies to a random variable. The 'equivalence sign'. '

will be used to denote 'equality by dennition' or the equivalence of two random variables. The random

variables in this work are discrete with finite sample-spaces unless otherwise stated.

If X Is the sample space for the r.v. X and for any z E Z. P X = z) is the probability that

X = z then the entropy or X denoted H(X) Is defined as

H(Y) = - F 'X Z)log 2 R'X=z)

Z4E Z

if we define p(z) m {X = z) then

p(z)Iog, pIZ)

ZE

Heurlstlcally. Mi(X) Is the average taken over all outcomes or X , or the minimum number or yes, no

,uesclons required to determine the outcome of X (see sections of 8. 12. 33) relevant to *uffman coding).
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We call H1(X) the uncertainty of X, the Information content of X or the Information

represented by X since it is the average amount or Information required to determine X.

When considering two random variables X. Y the conditional entropy or X given Y Is given by

H(XJ 11 = - 7' ~ ~ .~~lgX zY yH(Xl 4_ 1 - :,. P(X I '. Y-- )10&2 JX --- X I Y= Y)

zE XyZE Y

where X and Y/ are the respective sample spaces of X and Y. This entropy can also be written

H(X 1Y)= -E X I Y = i)P(Y = y)
yE Y

where H(X I Y= y) = -- ,E RP(X = z, Y= )log2 P(X = z I Y= y)

The definition of entropy can be extended to n-tupies of r.v.'s X n M (X 1IX 2 .... .Xn). Examination or

definition (2.1) reveals that H(X) Is not a function or the outcomes of X but of the probability function

defined on those outcomes. In particular. X In equation (2.1) could be the vector-valued r.v. X or a
9,

matrix-valued r.v. X. If the probability function P. is defined over the sample space X. of X. then

substitution of P for P In equation (2.1) givesn

H(X,X .  X) = - P(XX.... .X = .)og2 PCXVX 2 .... X, =X)
xE I

N

Note that x E Zn Implies that x Is an n-dimensional vector whose itb component Is a possible outcome

or XI .Ir Y'Y2 .... Y is an m-tupe or r.v.'s. then we can extend the definition of conditional entropy

to Include H(X1.X2 .  X YY ) which Is the entropy of X.X2 .... .X conditioned on

1'Y2 ..... . (see 18, 12. 33j). The Important relationships are

1. H(XI.X2 .  .X , 1 ) :5 H(XI.X 2 . X) H(X.) (2.2)
i-1

where equality holds between the first and middle terms if and only if there is a function f so

that "n =- f(XI, X 2..... ' X,_) with probability one. Equality holds between the second
and third terms If and only If the X ,'s are mutually Independent.

2. H(XX ..... X Y. .... _ ) < H(X X . X ,)IY. ..... Y t2.3)

with equality if and only If X .'X 2. X,, are Independent of YI whenever the outcomes of
...... I are known.

I2 rn-1
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3 H(xx 2  .X 1I ..... Y > 0 2.4)

with equality If and only It X.X ..... X are completely determined by or Yt.1 ...... I

that is. for each i = 1.2 ..... n there is a function f, such that X (17.1 ...... 1 )

with probability one.

Relation (2.4) holds when m =0 . that Is

H(X ,X2 ..... X) >_ (2.5)

Particular Inequalities Implied by these relations are of concern, such as

0 < H(XY) < H(X) : H(X.Y) H(X)+H(Y) (2.6)

Equality holds respectively In each or the above Inequalities If and only if X = f(Y) with probability one;

X and Y are Independent: Y= f(,Y) with probability one: X and Y are Independent. Finally since

we are only considering only discrete r.v.'s, for any deterministic function f(z) we have

H(f(X)) 5 HA ) H(f(X) IY) < H(X 11) (2.7)

H(I(X) K) = 0 (2.8)

H(Y[ I (X')) H(Y I A-) (.9)

As remarked earlier, the entropy functions are functions or probability functions defined over sample

spaces. Therefore the relations above hold even If the r.v.*s that appear In the expressions are scalar.

vector, or matrix valued.

The average mutual Information (or briefly Omutual Information*) between X and Y denoted

as I(X' ) can now be defined

I(X : ) = H(X) - H(X 1 1) (2.10)

It can be shown i12i that (X ; 1) is symmetric In Its arguments so that I(X ; V) -= (Y; Y) . From this

we also have
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I(X; Y, -: H(Y) - H(YI X)

Also by equation (2.0) we have

I(X: Y) > 0 (2.11)

with J(X; Y) = 0 If and only If X and Y are Independent.

Consider again to the yes/no-question heuristic for guessing the value of X. Knowledge or Y is

the equivalent of being provided answers to some of the questions required to determine X. This

subsequently reduces the number of questions needed. The reduction given Is precisely the uncertainty of

X before Y Is known minus the uncertainty of X after Y Is known (i.e. Identity (2.10)). We call this

the Information Y provides about X. By symmetry, this is also the Information X provides about Y.

As Indicated In the previous paragraph, r.v.'s X and Y provide no Information about each other It and

only if they are Independent.

It f Is a deterministic function deflned on the sample space Z of X then then H(1(X) I X) = 0

and so

I(X; f(X)) = H(f(X)) (2.12)

That Is, the Information X provides about (X) is precisely the Information represented by f(X) . For

any other r.v.. Y, we have that H(YI f(X)) 2_ H(YI 1(X). X) = H(YI X) which implies

I(Y; f(X)) = H(0) - H(Yj f(X)) :_ H(Y) - H(YJ X) and we have

I(Y: (AX)) < (Y: X) (2.13)

The concept of mutual Information can be extended in ways analogous to the extensions of entropy

outlined above. Two extensions concern us. First, the information (X: Y, Z) that two r.v.s Y and Z

Jointly provide about the r.v. X is defined by considering the pair (', Z) as a single r.v. replacing the

Y term in equation (2.10)

A(X ; 1' Z) = H(A) - H(X I Y. Z) (2.14)

Second. the Information I(X ; Yj Z) that Y provides about X when Z Is known is derived from the

equation for I(X )1 by conditioning the entropies In (2.10) on Z
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I(X; Yf Z) = H(X I Z) - H(X I 1. Z) (Y2.sZ

A usetul relat!, n between I(X" Y, Z) and I(X; YI Z) is

I(X: Y. Z) = !(X; YI _) + I(X:;Z (2._7)

This can readily be shown by substituting tor each term above Its definition as a tunction of entropy.

We also need a tact used later about Joint dependence. It W is a function or two r.v.'s X and Y
Jointly It Is possible that W Is Independent or each o X and Y singly. That Is

I(W; X. 1) = H(w) (2.17)

I(W: X) = o I(W;Y)-o (2.18)

An example Is where X and Y are Independent-identically-distributed (i.l.d.) r.v's; each takes values

d* 1 with probability 1/2 that either value occurs. If W a X.Y, no information Is conveyed about the
outcome ot W given only the outcome of X or given only the outcome of Y.

2.2. Specific Notation and Relations Required

2.2.1. Notation for Sets and r.v. Distributions

The symbol. R . will be used In reference to the real-numbers. When speaking o a sequence or N
entities a , n = 1. 2 . N. we will sometimes use the notation ( .4N For infinite sequences, wen
substitute 'Ooo tor N. Now let {X ),.I be a sequence ot i.l.d. Bernoulli r.v.'s 130. p. 1811. taking

values a. b E R with probabilities p and (I - p ) respectively. If Y is the sum or the first n
r'

Bernoulli r.v.'s, then Y is a binomilal r.v. 130. p. 1831 and we say Y is • Bin(a.b.pn) or more
concisely, we put Y I Bin(a.b,p,n). If a = 1. b 1 - . and p = 1/2, then we put

Y "- Bin(*I, 1/2,n) . Notice that In this case. the variance of Y is n . For a normal r.v., X with

mean u and variance o2. we put X - N(p, o2). A normal r.v. with zero-mean and unit-variance is
called a standard normal r.v. and • 0" denotes the standard normal distribution runctlon. The

mean o an arbitrary r.v. X Is denoted by EX and the variance by VARX. The term. random, is

used to refer to selection o an outcome o a uniform r.v. over a particular sample-space. The term

reliably refers to an outcome or ciass or outcomes that occur with probability near one or with

probability approaching unity as some relevant parameter gets large.
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Most or the random vectors we consider will consist or -t l's ror components. We will call such

vectors ±1.vectors or bit-vectors since the components are binary. The set or n-dimensional bit-

vectors is sometimes denoted by (-1. 1}" and often referred to as a 'space' even though the set Is not a

proper vector-space over the real or complex numbers. If X = (X X 2 ..... .X) Is a random vector

whose components X. i = 1. 2 .... n are L.i.d. each taking only the values :* I . then X is called a

Bernoulli vector. For the case that each of the two values ± 1 Is taken with probability 1,2 . the

vector X Is called a balanced-Bernoulli vector. Note that choosing an n-dimensional balanced-

Bernoulli vector is the same as choosing a vector at random from the n-dlmenslonaz space or bit-vectors.

2.2.2. Notations for Prototype-Vectors and the Ausoclator MatrLx

The vectors ?. t .... fM and the vectors gl.g2 ..... SM will be considered as outcomes of

random Input-vectors F .F 2 .  FM and random output-vectors GrG .... G. M respectively. The

Fm *s will be called Input-prototypes and the G "*s will be called output-prototypes. These vectors

are assumed to be balanced-Bernoulli vectors with na s the dimensionality of the input-prototypes and

n as the dlmensionality or the output-prototypes. We also form the random matrix F whose columns
are F IF 2 . .. FM In Index-order. Similarly, we form the matrix G from the output prototypes. The

symbols f and g of course denote particular matrix-valued outcomes or F and G respectively. The

storage equation (1.1) becomes

Mw = T (2.19)

rn- I

In terms of the random prototype-vectors. This can be expressed more concisely In terms of the matrices

F and G:

W = GF T  
(2.20)

For retrieval, we form the matrix G' whose columns G'k are given by

M M

G'k = wE E (GF T)F = (Fm. Fk)G (2.21)
minl mjin

or. In terms or the matrices

G' = WF = GFTF (2.22)
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Another rorm or storage Is called channel-memory or permutation memory. In this case. the

output prototypes are considered to be known the retrieval device (later called the ddector) and therefore

will be denoted as specific outcomes gl.g ..... g.4. The Input-prototypes F1 .F,.F will still be

considered as random vectors. In addition, we will have need for the r.v. K whose outcome P is one or

Af ! permutations or the Indeces {1.2 ...... } . That is, K Is a runctlon that maps any

m E (1.2 ...... V ) to a unique value K(m) from the same set. This permutation is to be applied to

the columns .. 2 ....... or the g-matrix to produce the matrix (m) whose columns are

11z(1)'9c(2) . *''11x(,. When considering the outcome Kc or K a3 undetermined, we denote by K(m)

the r.v. whose outcome Is the value KIm) . The random matrix that results when K Is applied to g Is

denoted by K(g) . Under these conventions the storage equation for permutation storage Is

M

w F (2.23)
Z K(m) m

rn-I

or more concisely

W = K(g)FT (2.24)

one says that the permutation K Is stored In the memory.

2.3. Probabilistic Analysis of Sums

2.3.1. Distribution of Sums

Using the rightmost sum In equation (2.21). we can write the expression for the component

G'. of the random vector GA

-. = 1 (FM Fk)Gm.
rn-Il

M

= (F k F)GA, - I (F.F" )G M)

Mr1: 0 k

= nIG .- i (F,- Fk)G. (2.25)

M-I, 9 A
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To extend the definition, we will have need for calculating the mean. variance, and entropy or such a sum.

For this It will be useful to understand the Independence or the terms under the summation.

To start. If X. Y , Z are n-dimensional balanced Bernoulli-vectors with respective components

.., . Z .. then the dot-products X Y and X Z are Independent. This rollows from the ract that

the products .i. ' and X, . Z,. are Independent of their respective factors. In fact. this Implies that

X. Y Is Independent of X when Y Is not known and vice-versa. Since the Input-prototypes are

balanced Bernoulli vectors, the dot products F ",,', P and F . Fk are Independent when m' 3 m.

Also the components of G are Independent so the terms (Fm- Fk)Gmj in (2.25) are mutually

Independent.

Because ot this Independence, the variance of the sum is the sum of the variances of the summed

terms. Furthermore, if two r.v.'s are Independent with zero mean. then the variance of the product is the

product of the variances. For each component X'. of an a-dimensional balanced Bernoulli vector X. the

mean EX. is zero and the variance Is one. Therefore, Ir Y is an independent n-dimensional Bernoulli

vector the variance VAR (Xi • Y) is just (VAR X)(VAR Y) = 1 . From this we have the variance

VAR(X ) = VAR( EXY) = VAR(X..) = n
i;= *.It

From this we see that VAR (Fm .Fh) Is n, when m #' k. Since the mean of Gra Is zero and
the variance Is one, we also have that the variance of (F. • F k) GM) Is n. These terms in the sum of

(2.25) are Independent and there are M- I of them so the variance of the sum Is (M- 1)n1 .

Considering the mean and variance of the n Gk) term as well, we flnd that the mean or Oki is zero and

the variance is Mn The distribution of the sum on the right-hand side of (2.25) is

Bin(*i1, 1/2, M. n,) which Is roughly normal. Considering the term nIGh, again, we see that It takes

values +n!, with equal probability. We conclude that G., is bimodal, each mode having a roughly

normal distribution. Since M- 1 s M for large values of M the variance of each mode Is taken to be

,fnI . Methods such as this are used In the chapter on classification to determine the distribution or

sums.

2.3.2. Binomial Entropy

Another consideration Is the entropy H(S ) of a sum S of n balanced Bernoulli r.v.'s

X i i = 1.2....... n In the appendix It Is shown that

HiS ) =(1.2)og, (,ren, 2) (2.28)
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Briefly the result Is obtained as follows. First define a standard Bernoulli r.v. to be a r.v. that takes
the value one with probability 1/2 and the value zero with probability 1/2. The sum So' o n standard

Bernoulli rv.'s Is binomially distributed and takes on values a 4' that are In one-to-one correspondence

with the possible values a. or the sum So . To see this. note that the number a f Is the number at

summands of S ' whose value Is one. When the number or 1-valued summands t S Is a ' there will
be n - . ' minus-i-valued summands of S . The value of S will therefore be . a n - 2#,, This

can also be written 8. ' = (n - 8,)/2 completing the correspondence.

Under the one-to-one correspondence. S,"' and S,' have equivalent probability distributions and so
have the same entropy. Since the probability distribution of So' is determined by the binomial

coemcients, we find the entropy at S' to get the entropy ot S . Note that 5o,' Is binomially

distributed and so Is approximately normal with variance n/4 . One might expect that the entropy or

S ' Is approximately the same as that o a normal r.v. ,with the same variance. Appendix A shows that

this Is In fact true. That is, the entropy of S ,' Is roughly (1/2)log, (?ren/2) where the approximation

approaches perfection as n gets large. This o course Implies that the entropy of So Is

(1/2)log2 (ren/2).

It is useful to note that although S Is roughly normal with variance n, It does not have the same

entropy as a normal r.v. with the same variance. Such a normal r.v. would have entropy
(1/2)log2 (21ren) = (1/2)log 2 (iren/2) + I which Is I bit larger than the actual entropy of S . This

discrepancy is due to the fact that we can multiply a discrete r.v. by any factor thereby changing Its

variance without changing Its entropy. There Is no strict correspondence between the variance and the

entropy for discrete r.v.'s.

2.4. Special Functions

An entropy function of particular interest is the binary entropy function M (p). Let X be a r.v.

with two outcomes z I and z 2 and probability p that z I occurs and probability I - p that z2 occurs. Then

; (p) w H(X)= -plog 2 p- (1 -p)1i 2 (1 -p), 0 < P < 1 (2.27)

Here ;(0) Is taken to be Ilm A(p)- 0. The function is continuous over the Interval '0, 1[ and

p-O

differentlable on (0. 1).3 It Is strictly Increasing on [0, 1/21 and strictly decreasing on :1/2, I]. By taking

SFor real numbers a < b. the open interval (a. b) is the set of reLl numbers between a and b excluding the
endpoints. The dosed interval Is, b] includes the endpoints.



the Taylor series expansion or Y(z) about Z = 1/2 and truncating one can get an approximation at ;(Z)

tar z =t 1/2. We also approximate #(z) tar z nea~r 0 in the same manner. These approximations are:

M(z) 1-(210g2 e)(z - 1/2) 2 Iz - 1/21 :5 0.38 Implies error < 10% (2.28)

I1- Y(z) = (21ag,2 e)(z -1/2)2 same error as above (2.29)

1 z
O(Z) MW + -1X (2.30)2 1:1-27

2.5. Measuring Similarity

Just as storage at information Is attributed to a Omemory device' retrieval of the Information Is

attributed to a 'detection device' or detector. Both the memory and detector are characterized as

mathematical processes. A particular mathematical process tot the detector is that Of measuring

similarity between two vectors as Is the case when the detector Is a best-match process. The Information

retrievable by the detector will depend upon the similarity measure employed. Theretore, the performance

at a system must be defined with respect to a particular similarity measure. We will define a first order

similarity measure by way at the Hamming-distance tunction.

Definition 1: Define (-1.1)" to be the set (x E R" I zi E (11.i12 i)

The Hamming-istance between two vectors Is the function HD:{-i.i)ft X {i1" R
given by HD(x~y) = 1~ n z iI

The Hamming Distance Is the number of components at which x and y disagree. Its negative 1s a

prototypical similarity measure on (.)"from which the componentwise similarity measure is defined.

Definition 2: Componentwise Similarity Measure: If V is an n-dimen.ional
vector-space, then a (camponentwise) similarity measure is a tunction S: VXV- R
having the following properties:

1. Symmetry: For all XY E V. we have S(X.y) = S(yxz).

2. Reflexively-M&axmi zed: For X. Y E (Z E V1 fxj = 1)., S(x~y) is maximized by
X = y.

3. Ham ming- Consistency: For vectors X. Y, w, a E { 1 )fthe Hamming-distance
Inequality -HD(x. y) :5 -HD(w, a) Implies S(x. y) <5 5(w. a).
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4. First-Order Invarianti o c is a permutation of the Indices 1.2 . n and OC(x) is
the vector whose components are the components ot x permuted by i then
S(x. y) = S(K(x). I(y))

Under this type o similarity, x and y are to said to be more similar than w, I whenever

S(xy) < S(ws) . Condition 3 reqtires the similarity measure to be consistent with the negative

Hammlng-distance similarity, -HD(x. y) on {-Ii}. We allow the word 'minimized" to be replaced by

'maximized' In 2 provided that the second inequality In 3 Is reversed. This results in a function that is

minimal for similar vectors. The negative o a similarity function is therefore also a similarity function.

Examples or tirst-order similarity measures include those based on Minkowaki Meric8. That Is. the

form S(x. y) = I... Iz - or its negative can be used. An Inner-product can also be used. e.g. the

dot-product. S(x.y) = X--t z;y,"

The notion o similarity presented here is meant to be OdIstance-based'. In a vector space, two

vectors or the same length will become similar it their distance (as determined by the appropriate vector-

norm) is decreased. For vectors of a fixed length, this amounts to decreasing the angle between the

directions of the two vectors. This corresponds to minimizing their dot-product. Distance-based

similarity measures, particularly the dot-product, are especially relevant to the study of the associator.

The output of the associator is based upon the similarity of the Input-vector to the assoclator's input-

prototypees as determined by the dot-product (see equation (2.26)).

We do not discuss detection or best-match processes in this investigation, but point out that they

play a role in the considerations made In the analysis. When discussing information that one vector

provides about another, we have assumed the information Is dIstance-Information. This characterization

of Information is consistent with the dynamics of most Oneural-networks'. Each cell or unit computes Its

output as a tunctitn of the dot-product similarity o the Input-vector and the unit's weight-vector. The

'computation' done by an assoclator Is therefore based on simllarity/distance Information.

A best-match process used for detection (second-stage, as shown In 1-1) can Itself be an associator or

rather, an auto-assoclator and so will base Its output upon dIstance-lnformation relating the (first-stage)

assoclator's output to the output-prototypes o the combined classifier. When speaking In later chapters

of the Information that the rlrst-stage provides at its output, we will assume the information is

distance, similarity Information so as to be consistent with the nature o the best-match process. We also

mention that the performance or a best-match process as a classiflcation device will depend upon the

similarity measure It uses. When comparing vectors, such a measure must preserve all distance

InFormation for optimal performance. We've assumed that distance information between two vectors is
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completely specifled by comrnponentwlse-sl MllarltY.- Under 0bl3 assumption, tbe dot-product Seems optimal.

at least fr bit-vectors. When bit-vectors are to be compared, there Is a one-to-one correspondence

between the dot-product and the Hamming-distance so that the dot-product preserves Hamming-distance

information.
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Chapter 3

Information Theory of Memory

3.1. Introduction: Access v.s. Aggregate Memory

in this chapter a general Information-theoretic formulation or memory Is presented. Storage is

characterized as the generation of a memory r.v. called the 'memory trace' from two random variables

called the address and the datum. Even If the memory trace Is a deterministic function of the address and

the datum, the address and datum are r.v.'s, so the memory state they generate during storage can be

viewed as a r.v. from the point-or-vlew of retrieval. Retrieval Is then the process or recovering

Information about the stored datum from the retrieval-address In the presence of the of the memory-state.

The signal configuration for both storage and retrieval are specified allowing subsequent derivation or

information-theoretic relations/limitations. These limitations are strongly dependent upon the retrieval

strategy which may not utilize all Information available from the memory. Retrieval methods will be

formulated and performance or the system will be evaluated with respect to a particular retrieval strategy.

3.2. Information-Theoretic Characterization of Memory

3.2.1. Access v.a. Aggregate Retrieval

In this section we characterize memory as a configuration or r.v.'s and subsequently define memory

retrieval. We show how Information Is stored/retrieved as an aggregate and then how It can be

stored/retrieved as a collection or seperate datum-elements. The first of these modes Is referred to as

aggregate-memory and the second Is access-memory. When an aggregate memory can be partitioned

Into access memory, we say that It Is accessible and the storage (retrieval) of a datum-element Is called a

storage-&ccess (retrieval-access).

For accessible systems, an upper bound Is round for the aggregate-informatlon the memory can

provide and this Is then used to upper-bound the amount of Information the memory can provide during a

single access (called access-information).
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More explicitly, we have for aggregate memory the random variables called the storage-address

A and the storage-datum D. These are used during storage to generate the random variable T

called the memory trace or simply the memory. During retrieval, the retrieval-address A' Is used

In conjunction with the memory trace T to obtain the retrieval-datum D'. As a rule. the address

r.v.'s A and A' must share Information. That Is (A A') > 0 and from this one expects that during

retrieval the memory will provide D' such that I(D ;D') > 0. As a rule, the larger the mutual

Information between A and A' is, the larger the mutual Information between D and D' should be.

For given r.v.'s A and A', the memory Is optimal If I(D ;D') = H(D). That Is, the mutual

Information that the retrieval datum provides about the storage datum is maximized so that the retrieval

datum completely specifles the storage datum.

For an aggregate memory to be accessible, it must have an addres.-partltlon. That Is, there must

exist r.v.'s A., D M , A' , D'm , m = 1, 2 . M.. , that partition A. D. A'. D' respectively so that

A =(All A 2 .  AM). D = (D1 . D 2 ..... DM), and similarly for A'. D' . The storage and the

retrieval processes must have partitions consistent with the address-partition. In particular, the memory

trace T must be determinable from memory traces T [mI m = 1. 2 ..... M; each Tim Is generated

exclusively from An I D m . Similarly, the retrieval process should be capable or generating D'm from

T and A' alone. Also we require I(A' ;Am) > 0 and expect that retrieval produces a retrieval

datum D' such that !(D'M;DM) > 0. In many cases (though not necessarily), optimal memory

retrieval Is taken to be the case In which each or the retrieval data D'm completely specify each or the

storage data Dm

We will make these notions more precise In the next section.

3.2.2. Formal Definition of Memory

Storage will be viewed as the generation of a memory trace T as a function or the storage

address A and the storage datum D:

T = t(A. D) (3.1)

Retrieval is the subsequent generation of the retrieval datum D' as a function of the retrieval

address A' and the memory trace T 4

4The memory trace t(.) and the retrieval d'(.) functions treated u determinitic in this development, hence the use of
lower case letters t, d'. A more general formulation would allow the use of stochastic functions. However the deterministic
case Ls pertinent to our situation and we deal with it specifically for the sake of simplicity Note that a determinLstic
function of random variables produces a random variable.
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D' = d'(T. A') (3.2)

The memory Is defined to be the quintuple (A. D. A'. t. d'). Notice that the memory trace and

retrieval data are r.v.'s since they are functions of r.v.'s. The retrieval address is typically Identical to the

storage address or is a 'degraded" version of It. We will generally consider the storage and retrieval

address to be Identical. if A. D. A'. D' and T are matrices, this retrieval process is equivalent to

presenting the entire retrieval-address matrix A' to the memory to obtain the retrieval-datum matrix

D' which in turn provides information about the entire storage-datum matrix D . The aggregate-

retrievable Information (D' ;D) will therefore characterize the Information that the memory can

provide. For a given storage function for constructing T, It is desirable to choose a retrieval function

determining D' that maximizes I(D' D).

3.2.3. Partitioning Memory: Formal Definition of Acem-Memory

For access storage and retrieval, one partitions the storage address A and datum D Into M parts

AIA 2 ... .AM and D 1 ,D 2 . DM respectively. For our situation the Am's will be mutually

independent and identically distributed over a common sample space and similarly for the Do's. The

storage process is In turn divided into M parts given by the relation

To = tA(Am , DM) - m = 1. 2 ..... M (3.3)

The access-storage functinn tA must be chosen so that T specified In (3.1) Is a symmetric function

T w ts(T . T ..... T M) of the T M 'S. In other words. permuting the arguments of t doesn't

change the value of the function determining T.

The retrieval process Is similarly divided Into M parts. The retrieval address A' is partitioned

Into parts A*IA' 2 .. . A' and the retrieval datum D' Into parts

D'rn = d'A(T. A'). m= 1.2 ..... M (3.4)

The access-retrieval function d' A must be chosen so that D' specified by (3.2) is the M-tuple

Do = (D D' .. D',). We call the quintuple

({A},-' {D,}-. (A'm)' I' d'
h on ot me Mooern A A

the acces- partition or the memory. A memory that has an access partition Is called access-memnory.
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Under the conditions stated above, the Information I(D'm ' D) that the m'h retrieved datum provides

about the mth storage datum should be Independent or m . This hasn't been proven here, but the

condition holds for memory systems we are Interested In. We therefore assume that I(D' D) . caiiej

the access-retrievable Information, Is Independent or m . The access-memory Is said to be

acces-eparable or separable If the r.v.'s D' and D and their respective partitions satisty

1. Access-Incluslve: I(D' D ) = (D'" D) m= 1,2. M (3.)

2. Access-Exclusive: AD ; D'm) = I(Dm D' M ) m = 1.2. . (3.)

M
3. Access-Summable: I(D' ; D) = I l(D' m ; Dm) (3.7)

Ir additionally. the value or I(D'm ; DM) Is the same for all m . then the memory Information Is said to

be uniformly access-separable or simply unIformly-separable. In this case, for fixed m

(D' : D) = M. I(D'M ; D M ) (3.8)

The first or the three conditions above states that the Information that the mth retrieval

datum D'M  provides as much Inrormation about the mth stored datum D as does the entire retrieved

tupIet D' M (D'1. D' .  D'M) . The Idea Is that D'm includes all the Information available about

D that Is available from D' . Likewise, the second condition states that the Information that D'

provides about D Is no greater than the Information that it provides about D'm. Again, the Idea Is

that D'. excludes Information about D, k # m. Heuristically, the first condition states that D'm
provides all the Information obtainable about D m and the second states that It provides only Information

about Dm . These two conditions would seem to imply the third, but the author has no proor tor this.

The conjecture, which could be raise, is left here as an open question.

3.3. Characterization of Storage Capacity

3.3.1. Bound* on Retrievable Information

We now show that when the retrieval-address A' provides no direct information a' &ut the stored

datum D . the Intormation. I(D" D) . that the retrieval-datum D' provides about the storage-datum

D Is bour led by the storage-matrix entropy. Explicitly, we show
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Theorem It Let (A. D. A'. t. d') be a memory with A' Independent of D . Then

I(D'; D) < H(T) (3.9)

Proof: Since D' is a function of A' and T, we have by (2.13) that
(D' D) < (A', T; D). By (2.10) we have

I(A'. T; D) = (T; D I A') + I(D; A')

= H(T I A') - H(T I D, A') _5 H(T)

where I(D ;A') = 0 since A' Is Independent of D . The theorem follows.

We see from the proof or the theorem that

I(D'; D) :5 I(A', T : D) < H(T) (3.10)

If A Is Independent of D then this relation holds for the case that A' = A. If additionally. A is

independent of T then the condition A' = A is optimal In that the second Inequality of (3.10) becomes

an equality. Since this will hold for the memory systems we consider, the relatlon will be displayed for

future reference:

Corallary: When the conditions or theorem I hold for A' w A and A Is Independent of T we have

(D' ; D) : (T, A: D) = H(T) (3.11)

We now have a bound for the aggregate-retrievable Information. If the memory Is uniformly separable.

then we will have a bound on the information retrievable on each access.

3.3.2. Storage and Storage Capacity

To obtain a bound on the Information retrievable on the mth access, assume that the memory

(A. D. A'. t, d') is uniformly separable. We then have for any m = 1.2 .... M:

A - I(D' M D m) = I(D' D) < H(T) (3.12)

so that
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1(D' M  D) < H(T)/'M (3.13)

We will call this. the uniform-access bound.

The uniform-access bound motivates the definition of storage and storage capacity for uniformly

separable memory. For the systems we will consider. A' =- A is optimal In the sense mentioned In the

previous section. We assume then that the retrieval address Is Identical to the storage address and

suppose that I(D'm ; D ) is independent of index m but is a function I(M) or the number Af or Items

stored. From (3.12). I(,M,) must satisfy

M. I(M) < H(T) (3.14)

The product on the left is the information storage or the system. The storage capacity will be defined

as

C = max M. 1(M) (3.15)
M

There are two ways to obtain a maximum or the number M of storable Items. The first assumes that

the product M. I(M) Increases to a maximum as M increases to a value. M . then decreases. In this

case equation (3.15) implies

C. 1() (3.18)

where the right-hand-side Is bounded above by the entropy H(T) evaluated at A; which we denote

H(T. dI). ir [(M) can be determined, then by (3.15)

Ml < max H(T. N) / 1(M) (3.17)
M

Another bound for A utilizes a lower bound L(M ,P) for I(D' n D.) as a criterion tor system

performance. Specifically. we make the constraint that

L.%,f) < 1(.%f) (3.18)

as a "equlrement for minimal system performance. ir L(M) Is smaller than I(.M') for small values or ,,

but overtakes 1( A ) as A grows, a bound ror Af can be obtained from the constraint.
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For the case that the memory Is not separable. It may still be uniform In the sense that

A(D' : DM) is Independent of m E (i. 2 .... A . For the Instances we consider, relations (3.12) and

(3.13) still hold so the methods of bounding M explained above apply. These methods will be utilized in

the next chapter.

3.4. Relation of Separability of Memory to Performance

3.4.1. Non-Separability of Distributed Memory

For associative Item-memory, we make the Indentitication A. A' w F. D an G, T w W and

D' =- G'. Aggregate storage is then given by (2.20) and aggregate retrieval by (2.22). The access-

partition or the address and datum Is Just the division of the matrices Into columns corresponding to the

prototype vectors. The Input-prototypes partition the address F . each acting as a separate 'address

word' and the output-prototypes partition the stored-datum G, acting as Individual 'datum words'.

The datum Gm Is said to be stored at 'location' F. . Access-storage Is specifled by (2.19) and access-

retrieval Is given by (2.21).

From calculations done outside this Investigation. the lInear-assoclator as an Item memory is

conjectured not to be separable except In limited cases. A preliminary development by the author has

determined that Item memory might be access-Incluslve when M < n1 /S. Further, It may actually be

separable when n,/5 > M > ezp 2(nO) . These are submitted as sufficient conditions for separability

but may not be necessary. A memory with an input-dimensionallty exceeding 2.M and an output-

dimensionality a tew times log2 M might be separable. Such a configuration Is consistent with those

considered later In the chapter on classification. For classification, systems with Input-dimenslonality

greatly exceeding the output-dlmensionality are most efficiently suited to the task.

On the other hand. separable memory Is Identical In function to digital RAM or local memory. The

fact that matrix-based memories distribute the Information tor each association over the entire matrix

means that the Information for each association Is overlaid with that or the others. This teature Is what

allows the Information for separate associations to Interact. Regularities In the Input-to-output mappings

specified by many associations should be 'amplified' whereas Irregularities/Inconslstencles would be

attenuated In the memory's Input-to-output map. This Interaction is contrary to the notion or

separability. In fact, non-separability Is the very teature that constitutes the capacity or distributed

memory for 'pattern discovery' '6, 40. ch. i and other functions that make them ot computational

Interest. The non-separability or these systems makes their storage capacity more difficult to ascertain.

However. the property 'super-summable' exists for these systems so that bounds on the per-Item
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retrievai-Ifltormatofl can be round In terms or the entropy or the matrix.5 This results in a bound on the

number at items storable in the system with respect to a minimal perrormance criterion.

3.4.2. Super-Sunmmability of Item Memory

Assuming that Item-memory Is not separable. It may not be summable. However. ttie independence

or the entries Gk at the G matrix Insures that the memory i3s uper-summabie. That Is

M

k-i

As we will see. this relation Is quite usetul In subsequent chapters on storage and ciassiflcation. For the

sake at later analysis then, we will start by showing this Inequality and a usei'ui extension or it bold. To

start. H(G) = Em H(Gk) since the G s3 are Independent. Also since G w (GI, G2  .  GM

and G' _=(G' 1 1 G'2 .  G'M) we have that

M M

H(G IG') H(G I G') .H(GkIG')

always holds. Combining these, we get

I(G' ;G) H(G) - HG IG-)

Al M
= F(G*) - H(G IG') > F -H(k)H(Gk G'))

Al M

E ( H(Gk) -H(Gk IG'h) E I (G'k;Gk)
k-I k111i1

so that (3.19) holds. The extension or this is

M "0

!(G'.;G) Z E (G' : Gk) (3.20)
k-I j'-I

which Is proven In a similar manner by showing

5The term. Osuper-summable*. is coined in analogy to the term Osub-sumablel used by mathematicians to descnbe

non hnoesr runctioas pszI tbat obey pqz +y) !5 p~z + Oy) .For our purposes, a *super-summabie* runctioa would have

the inequality reversed.
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10

I(G'k;Gk) > !(G'ki; Gkj) (3.21)

which holds because the components or G. are Independent.

The relations (3.1) and (3.20) are useful because I(G' G) Is bounded above by H(W) and so we

have both

M

E J(G'k ;Gk) < H(W) (3.22)
k-1

and

M no
E E I(G'ki :Gki) <  H(3W) (3.23)

k-I j-,l

Additionally, Ir the memory Is uniform so that I(G'; GA) Is the same tar all k. and [(GA.: GA,) Is the

sime tor all k. j. then (3.22) and (3.23) become

/(G'k G) . H(W)iM k = 1, 2. M (3.24)

I(G'kA.G k) < H(W)/Mn 0 .  k= . 2 ... M, j= 1.2. . n 0  (3.25)

Thus we get a bound on the Information provided by any access-retrieval-data. G'k about the storage-

data G k and also a bound on the amount of Information any of the access-retrieval components G'kA

provide about the storage components Gki.

These arguments hold when G' Is replaced by some componentwise function G" =£ 9"(G') or

rather G". V )(G'k.). as the retrieval function. The Inequalities will be shown here tor future

rcrerence

!(G" k ; G k) < H(W)/ M (3.26)

s(Gebu ; Gwi) l H(W)atn (3.oc7)

These bounds will be useful In later chapters on storage and cla.slflcartlon.
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3.4.3. Separability of Permutation Memory

For permutation memory, the storage address Is the matrix F (= (FI, F 2 . V) The

g-matrix In this equation Is known to the detector and so is shown as a constant rather than a r.v.

matrix. The storage-datum. D , Is a permutation r.v. K whose outcome K Is one or the AP

permutations or the Indices {1.2 ...... .. That Is, K is a function that matches a given value m In

(1.2 ...... V,)} with a unique value K(m) from the same set. To store the datum K, one applies K to

the columns g,, g2...... .. or the matrix S to get the matrix. K(g) , whose columns are

9K(l)' 9K(2) . K(M) ' The storage r.v. matrix is then obtained from F and K as in equation

(2.24). The retrieval address F' is a matrix r.v. with J(F' ; F) > 0 . Often, we will take F' to be F

The retrieval-datum. K" Is a r.v. whose outcome x' is determined as tollows:

1. For m = 1.2 ...... W. compute the vector G'. = W ' . and select via a similarity
measure the vector g. from among the output-prototypes that Is a best-match or

G'm . (In the case there Is more than one such best-match, select one or them at
random.)

2. Set K'(m) = k.

This process represents the aggregate-retrieval function d' . The access partition Is the quintupleF T({ }M 1 . {K(m)}M1,-{F',}M 1 tA d'A) where tA is given by tA(F. K(m)) - )FT and the
,)M=M_ M A'A) t tA(== K(mm

access-retrieval function d'A Is calculated as shown In the two steps above for only one value or m at a

time.

For storage or a permutation K chosen randomly, the values K(1), K(2) . K(M) are nearly

Independent for large 31. The only restriction on the (Mn)'s Is that K(m') 7 K(M) when m' 7 m.

For large ,f. this restriction Introduces little dependence among the values or r(m) m = 1, 2 ..... M.

Since these .f values are nearly Independent, their joint entropy Is approximately the sum or their

Individual entropies. The Individual entropy Is log 2 M bits. so the joint entropy roughly Is Alog2 M1

bits. More precisely, the joint entropy Is Iog2 M1! bits since the values K(m) specify one or Af!

Permutations. But log, ,%,f! Is roughly Af.log2 M for large M (say tor Af > 3000 ). Taking the

values K(m), m = 1.2 . f to be independent Is therefore a good approximation.

In tre same way, retriemal or K'(m) always gives 8ome Information about K'(1) ror I 3 m . This

is because it the memory Is accurate, then R'(m) = K(m) with probability near one. Therefore. since

K(I) 3 K(m) , the value or K'() Is not equal to K'(m) again with probability near one. In short,

knowing the value or K'(m) gives 'cross-over" Inrormatlon about K'(1), I 3, m. In particular, the

value or 1'(1) will probably not be the one observed for J"'.m) . For accurate memory, we can compute
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this cross-over Information:

I(J'(m) K'(1)) = H(K'(1)) - H(K'(t) I W(m))

g log2 M- l og2 (M -  ) C I/M

This Is negligible compared to the uncertainty or K'(L) for large M.

Due to the symmetry of the memory. and retrieval functions (the F 's are I.I.d.) the probability

IK' m) 6 K(m)) is Independent or m . Letting P be this probability, we seek the Information

I(K'(in) : K(m)). To do so. we note that a best-match process that produces K'(in) as its output, acts

probabillstIcally as an M-ary symmetric communications channel [121 with K(m) as the item to be

Itransmitted" and K'(in) as the Item produced at the 'receiving endO. We also have P as the

probability or error at the receiving end. From this it follows that the Information that the output

provides about the Input Is given by

I(K (m) : K(m)) = log, M- P log2 (M- 1) - X(P)

(1 - Pt)lo2 M- W(P) (3.28)

which Is the Information that the received signal provides about a transmitted signal that was sent over

the communication channel. For small P , I(K'(m) ;K(m)) Is approximately log 2 M. On the other

hand

log2 M :5 I(K'(m) ; K(m)) < I(K' ; K(m)) < H(K(m)) = log2 M

so that I(K' ; K(m)) =v (K'(m) : K(m)) so the memory is access-inclusive.

To show that the memory is access-exclusive, the arguement Is similar. Assuming P Is small.

knowledge of either K(m) or of K tells us with high probability, what K(n(m) will be (namely the same

value as K(m) ). We have

I(K"(m) ; K) o H(K(m)) and (K(m): K(m)) m H(K(m))

so /(K'(m)" K) = (K'(m). K(m}).

To show the memory Is access-summable, we retain the assumption that P Is small so that K
a

and K' will be identical with ne i: 'inity probability. This gives the relation
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I(K K) = H(K) = log2 V! . log Af

As mentioned earlier I(K'(m) : K(m)) c log, Af so

M

We have shown that the memory Is access-separable. Uniformity follows from the tact that

I(K'(m) K(m)) log 2 M for all m = 1.2 .... M. In the low-error case then, the memory Is

uniformly separable. The question regarding how separable the memory Is for larger error Is a subject

open for further Investigation. Since Pe Is Independent of M, uniformity should hold even In the case

that Pe Is large. The author's conjecture is that greater error will degrade separability gradually and

perhaps negligibly provided that (I - Pc)log 2 M> X(PC).

3.4.4. Relation of Performance, Item-Memory and Channel-Memory

The notion or permutaton-memory Is merely a formulation of the memory's ability to keep track of

which input-prototype Is mapped to which output-prototype. For fIxed outcomes f and

lm , m =1. 2 . M of the prototypes and two random permutations. K and K7, a matrix storing

the associations (fM' K(m)) should be dllTerent from the matrix storing the associations (fmr. lKn(m))

The difference should be reflected In the response of the two matrices to a given Input. For associative

memory, the input will be some prototype f. . For the assoclatlve-classflier, the Input will be some bit,-

vector ft' that Is closer to fk than It Is to the other prototypes. For either case. the matrix-output, call

It 9'k ' should reflect which output-prototype, *K(k) or *K'(k) - was associated with fr/. " (fh' IK(k)) Is

stored, then g', should be closer to £K(m) than to the other output-prototypes. Likewise tor the case

that (fk' 9K'(k)) Is stored. In either case, the matrix-output should provide an outslde observer (a

detector/best-match-process that has access to the output-prototypes) enough Informatlon to decipher

which output-prototype Is matched-up with fk within the assoclator. In eflect, the matrix-output must

provide enough Information about the proper output-prototype (e.g. SK(k) for the first matrix and

3 K'(k) for the second) to distinguish It from among the Af alternatives. Of course, the permutation used

Is Imaginary In the sense that we can relabel the output-prototypes so that the matrix Is seen to store the

associations (f Mgm) . With this convention, the output g,,' should provide the detector with enough

Intormatlon. that Is, log,, A bits, to allow a detector to decide which output-prototype Is as a

In terms or the random vectors, G', has a mean determined by G, but Is Independent of the

indivtidual prototypes G , m y& k, and so G', provides no Information about any individual Gm.
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The information that G', provides about the output-prototypes to discern Gk from among the %f

alternative prototypes. should be largely due to the Intormation It shares with G . This must be at leat

log2 M bits so

I(G' G ) > log, M% (3.22)

would seem to be the necessary constraint on Item-memory.

The problem Is that G', may not be Independent of the set {Gm I m = 1.2..... ,. m k

as a whole, especially when G. Is known. Therefore the Information It provides about the 'correct

choiceg among the prototypes may be dispersed among all prototypes. The author has no precise

formulation for this problem other than the definition or access-separability mentioned earlier. With

access-separable memory, the Information that G', provides about the output-prototypes is exactly the

Information It provides about G. so that (3.29) would be a natural consequence of the present discussion.

Although Item-memory appears not to be separable, our dilemma is resolved by the tollowing

observations. First, since

!(G'/h;G 1. G 2 ..... GM) >: I(G'h Gk)

the constraint (3.29) will assure that the left-hand member of the above relation Is at least log2 M.

Another consideration Is the detector Itself. We assume that It merely compares G', with each of the

prototypes individually. and then compares the M results. No calculation involving G' . with more

than one prototype at a time Is allowed. A detector of this sort should only be sensitive to Inrormatlon

G', provides about Individual prototypes. This information Is zero for all prototypes except Gk1

Condition (3.29) will therefore be necessary for the detector. or course. a more sophisticated detector

which may not require this condition for reliable performance, may perform better than Indicated In the

subsequent chapters.
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Chapter 4

Evaluation of Information-Storage Capacity

The analysis to follow Is concerned with the case that the number, M, of stored associations Is

larger thin the Input dlmensionality, nI,, so that the Input vectors are linearly dependent and Interference

efrects must be accounted for. In this case the output vector Is only an approximation or the proper

prototype output. Our concern Is the number M or associations that can be stored In a matrix or a given

size before the output becomes unrecognizable.

4.1. Characterizing Storage Capacity

To estimate the storage capacity of the matrix, we examine a system that has stored M

associations (f.' gr) m = 1,2 .... M for some M. The input-prototype vectors are nf-dlmensional

and the output-prototypes are no-dimensional. For simplicity or analysis the prototypes will be balanced

Bernoulli-vectors (see chapter 2, p. 15). All Input-prototypes will then have ItmI 2 = n I and all output-

prototypes will have I5m12 = no. To motivate the method of storage measurement, we make an analogy

with digital memory. The address to the 4igital memory can be viewed as an Input vector and the

retrieved data as the output vector. A particular address vector and the data vector stored at the address

location can be regarded as a vector-association pair. The number of bits represented by the data vector

Is the information the system provides upon performing the Input-to-output asociation. For digital

memory, the number or bits represented Is the same as the number or bit-locations In the data vector and

so Is Identical with the dimensionality of the data vector. Storage is deflned In this chapter as the

amount of Information per association multiplied by the number ot associtions stored In memory.

Storage capacity Is the maximum storage the system can provide. In this case, the storage capacity is

limited by the number or storage locations of the memory. Though the dimensionallty of both the Input

and output vectors Is specifled In advance, the data Items are not. That Is, the number or Items that can

be stored Is not determined by what they are. in effect. being able to retrieve data ftrom the memory has

no meaning unless we are able to store an arbitrary data set at the outset (ROM Is no exception, when we

consider all memory conrIgurations possible before burn-in). In essence, the question 'What Is the storage-

capacity or the memory?' has no meaning when one Is considering a specific device whose Identity and
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fnput-to-output mapping Is already determined/ unchangeable. A burned-in ROM for Is no longer a

storage device, merely a retrieval devlce,

For the matrix memory, the storage Is likewise given by the lnformatlon-per-a.ssociation multiplied

by the number of associations stored. The dimenslonality of the input and output prototypes are specified

in advance, but the prototypes themselves are not. That Is. we cannot assume specific values tor the

prototypes in the analysis to determine the storage capability of the system. Since the prototypes to be

stored determine the values of the weigbts of the memory-matrix, the matrix is Itself unknown. For this

reason, the storage of the memory is not deflned for a particular matrix but rather tor a class of matrices

all of the same size. 6  The class of outer-product matrix-assoclators of a given size is the set of all

matrices that can be generated from balanced-Bernoulli vectors via equation (1.1). The discussion above

Indicates that an association Is not considered to be stored In a particular matrix o the claws unless It Is

explicitly Included In the sum. (1.1) that determines the matrix.

The Inrormation-per-association for matrix memory can be characterized in several ways, two of

which are considered here. The first called Item-memory chooses an arbitrary k E (1,2 .... M} and

presents the ktth Input prototype to the system. The matrix-output is then regarded as a probabilistic

rendition of the kth output prototype. On the average (over all matrices of the class), given M, the

matrix-output will provide a certain amount of Information about the prototype output and this is taken

as the Information provided by the association.

The second method, channel-memory or permutatlon-memory. acts analogously to an

Information channel. The kth Input Is presented to the system and an output Is generated. The latter is

compared with each prototype-output vector via a similarity measure and the best match from the

prototypes Is chosen. To perform correctly, the system Is expected to produce the ktb output prototype as

the best-match. It the oth output prototype is chosen, an error Is Identified with I k k. The probability

of error averaged over the matrix-class Is taken as the error probability for the associator as an M-ary

symmetric channel (see section 3.4.3). The average mutual Information between the output and Input is

thus defined. This average is considered as the Information per association. For channel memory, we

a1n fact, Hinton (personal communication) observed that an is by ,n identity matrix seems to have an erponential amount

of Ostormge since 2" vector-pairs seem to be estoredO. That is, using n-dimensional vectors of * l's, one selects one from
among the 2" possible. This vector is placed at the input of the system to retrieve the same vector at the output. More
generally however, this can be done with a G4itrarl matrix. Simply select a vector (address) of * I's, present it at the
input, "digitzeo the output into * I's and say that the resulting vector (data) is the one Ostoredm at that address. This
would give all matrices eponentiai releitevol but there is no storage precess that allows one to specify which addresses are to
be known by the matrix and what datum ij stored at each address. This illustrates that storage and retrieval are not to be
confused as being the same. On the other hand, they are not independent of each other either. Reliable retrieval of a stored
association or 'item* will require, for the usoeiator at least. t!.- 'ss than an exponential number of items be specified
during the storage process.
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,eflne ror each pair or positive Integers (.'. Alf) the matrix channel of ei:e N on Al aaeocations It

consists or the en'enble or all possible matrices with n 1nO = N that can be constructed from a set or Al

balanced-Bernoull-vector prototype-pairs (fgmi)" . = 1.2 .... Af. Mathematically the ensemble

acts as a communication-channel o intormation theory. Once a particular set of associations is chosen

for storage, a particular matrix Is selected from the ensemble via equation (1.1). This matrix is

deterministic and Is not Itself a communicatlcn channel and Its storage is not defined.

For both Item and channel memory, the storage Is the product or Vl and the Information I

represented by a single association. Initially, the storage MI1 or the matrix increases proportionally with

Al. However the error probability Increases with Ml as well so that the intormation-per-associatlon I

gradually decreases. For some value A or Ml. the information per association begins to diminish more

rapidly than M Increases. At this point, storing more associations decreases the tota Inormation storage

of the system. For M= M, the system has reached Its storage capacity.

The fact that the total retrievable Intormation decreases eventually as M gets large Is nt proven

In this work. In tact, this may not be the case. On the other hand. the channel memory provides a

minimal criterion for memory performance. To perform well as a channel, a system need only produce an

output that Is more similar to the appropriate output-prototype than to the others. In effect. this

demands only that the system be able to tell the stored associations apart. This seems a natural minimal

capability since Item-memory by contrast demands that the matrix actually 'reconstruct" the appropriate

output prototype. A system that can do this even with low fidellty o reproduction, can still perform well

as a channel. The channel memory detines a lower limit allowable rot the fidelity. Since fidelity

deteriorates as more Items are stored, we obtain a maximum number ot useful associations that can be

stored by the system. Channel memory then Is crucial In determining the 'absolute maxlmum' number or

associations to be stored In a system.

4.2. Bounds on Storage Capacity

4.2.1. Restrictions on Relative Magnltudes of Parameters

The analysis that follows assumes important restrictions on the magnitudes and relative sizes or the

parameters. These restrictions are In addition to any others derived later In this chapter.

We begin with the requirement that the Input prototypes and the output prototypes be distinct

vectors. With this, the number Af of prototype-palrs must satisfy [log 2 A < n, and

flog 2 .Al <_ no . However If each or these relations Is an equality, the prototypes are already

determined. The only thing that can vary Is which Input prototype Is paired to which output prototype.
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There are MI ways to form the prototype pairs and so A'! ways to form the matrix. Thererore the

matrix entropy Is log, f! :t* Aflog. 2Mf bits which Is somewhat less than we will flnd It to be when the

prototypes are randomly selected. The 'entropy-degradation' caused by a flxed prototype-set, would

:erlously limit the amount the amount of Information the matrix can provide at Its output.

In order to ensure that the matrix entropy Is not compromised, we must be able to choose either the

Input prototypes or the output prototypes (or both) at random. If the randomly chosen iput-prototypes

are to be distinct with high probability, we must have 2log M < n and if the output-prototypes are to

be randomly chosen, we need 21o&2 M < n o .  These requirements ensure that sampling without

replacement Is virtually Identical to sampling with replacement so that no duplicate selections occur. If at

least one of these two requirements Is met, the matrix-entropy should not be degraded.

More stringent requirements are needed If the prototype vectors are to be dissimilar to each other.

This requirement is necessary for the output prototypes Ir a best-match algorithm is to match the output

or the linear-assoclator with the correct output-prototype. A few errors in the matrix output should not

confuse the best-match process as they would if the prototypes are too similar. The requirement is also

necessary for the Input-prototypes when the ilnear- assoclator Is doing ciassincation (see next chapter) and

the Inputs to the matrix are expected to be similar but not identical to an Input-prototype. To meet the

requirement, the dimensionality of a vector space from which prototypes are to be chosen cannot be too

small. It two balanced-Bernoulli vectors are chosen from an n-dimensional space then the number or

components that are identical between the two has average n/2 and standard deviation or Vn/2. Since

agreement or exactly n/2 components corresponds to orthogonality and most vectors will tall within 2 or

3 standard deviations or the mean, the prototypes will be highly orthogonal if the mean Is large compared

to the standard deviation. For this, n should be at least 100 or so.

To ensure dissimilar vectors one must also consider the number of prototypes to be chosen. The

minimal distance occurring between two balanced-Bernoulli vectors from among M vectors chosen from

n-dimensional space Is roughly n/2 - Vr2iT' . Vn/2 (see appendix B). In order that the two most

similar prototypes be dissimilar, we require that the above minimal distance be nearly n/2 . This will

occur when V' Af. Vn/ 2 Is small In comparison. As we shall see, the number M of prototype-pairs

to be stored In the matrix should not exceed the number or weights In the matrix. If the matrix Is square,

this means At will not exceed n2 where n Is both the input and output dimensionality. For this

maximal value or A'f we need -V/'n/2 to be several times smaller than n/2 . This sets a

minimal bound on n . It we require at least an eight-fold difference between n/2 and '/27T t. Vn/2,

then n must be Just over tO00 or larger. A rour-rold difference produces a lower bound just under 400.

In any event, the prototype dlmenslonality, both Input and output, should be several hundred If an

a.ssoclator is to discriminate well between a large number or stored prototypes.
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4.2.2. Matrix Entropy

As shown in the previous chapter, the amount of Information retrievable from the matrix W is

bounded above by its entropy H(W') . In this section. the matrix-entropy Is estimated and used to

ascertain the storage capacity of the matrix.

Given the AM Input-output prototype-pairs (f.' M) , the matrix defined by equation (1.1) Is seen

as the sum of Af outer-product matrices. The mth outer-product or aasoclation-plane or plane. Is

completely determined by the n! + no bits of f and g . Its jit1 component c.. Is the product f.g.

which takes values In {-1.1}. The mth association-plane Is not changed if both f ' and g. are multiplied

by -1. This Indicates that the mth plane represents at most nI + n 0 - I bits of Informatlon. In fact, the

entries or any given row and column are enough to determine every other entry In the plane. To

Illustrate. examine the kth row and Ith column and the entry c.. J" fg . These three entries (bits)

ck.. c and c determine c.. so that the parity of these rour numbers is even. The n1 + nO - entries

that make up a particular row and column, are easily seen to be Independent, so that nI + n o - 1 Is also

the lower bound on the Information In a plane. We conclude that each association-plane represents

ezactly n, + n0 - 1 bits. We mention also that the entropy or the association plane Is the same even

when the output (input) prototypes are fixed outcomes leaving only the Input (output) prototypes as

balanced-Bernoulli vectors. From this we have that the matrix-sum W or the association planes has the

same entropy from the point or view or an external process that has knowledge or either (but not both)

the set or input-prototypes or the set or output-prototypes.

When the association-planes are summed, Information Is lost. To assess the matrix entropy, note

that each of the entries W.. of the matrix is the sum of M 'bits fgm.mj, m = 1.2. M4 Therefore

W.. - Bin(-I.M./ 2). As shown In appendix A. the entropy of W.. Is

71 ,ie

I rem
H( -) -log 2 --- (4.1)

As mentioned In the previous chapter. the entropy or a set or random variables Is bounded above by the

sum of the Individual entropies (see equation (2.2)). Since there are N weights, where N-= nIn , and

since the weights have Identical entropies, the upper bound of H(W) Is obtained by multiplying the

common weight-entropy (1/2)log,, (ire.V/2) by N. The entropy H(W) will obtain this upper bound If

and only if the weights are independent. The assumption that the weights are Independent is raise for

Individual association planes. However the planes are Independent and the bit-patterns In one plane will

not generally be present In the others. For the sum of A-f such planes where V1 Is large, the weight-

Independence assumption should provide a close approximation the the true matrix entropy when Af is

much larger than both n, and n o . We conclude then ,hat
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Ff(W) 1 7re&, 42

is a goud alrC' trnwhen At> n I1 and Af >

4.2.3. Bound on the Number of Items Storable

Consider the situation In which the kth Input-prototype, F k is present at the Input or the linear-

associator and some process provides Information about the k l output-prototype Gkon the basis or

what It sees at the memory Output. ir the average Information It provides about G. Is I bits then from

relation (3.12) of the previous chapter. we must have

m -I < H(W)

Replacing H(W) with Its upper bound

' f- < ;"1 092e
- 2

so that

l4 og, Mf+ log, (ire,!2)

< 2!

We make the approximation lo012 (ff e/2) =z 2 to get

Mt lo02 Af + 2

-V< 2 1 (4.3)

In the case that the Process at the output or the matrix Is a best-match algorithm, the matrix Is acting as

a channel. By eq~uation (3.28). page 32. we have

l og. AM - P lot, (.A1 - 1) - (P)

where P eIs the probability that the best-match process chooses a prototype other than G ka~s the one

most ,Iosely relsembling the matrix-output vector. For our purposes. .At- 1 =t5 f and so

,l 1-'og, At -4( (4.4)
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Equation (4.3) becomes

log, At - 2 (4.5
2 (1 P )109, M - F,

e

upper bound on Al /N

< -4 -(4.0)

N - 2 log, Al

for perfect channel performance. When Ml Is large, say log 2 Ml > 18 ,the upper bound for M,'N' is

only negligibly larger than L'2. Therefore we define the storage loed or toad. L , of the system to be

the ratio 2M,'N. A load of I corresponds to storing hair as many prototype-pairs In the memory as

there are weights In the matrix. For laige systems (60,000 weights or more), a load larger than one

precludes operation of the memory as a perfect channel.

4.2.4. Trading Storage with Error

To understand how the load trades with error rate Pe , we rewrite equation (1.5) as the quotient

Al I log 2 M--2 I

N - 2 (0 - P e)log 2 V4 1 - ;J(P)/ I(i - Pe)iog2 .4I

letting z , (P )/1(1 - P )log 2 M and assuming this fraction 13 less than 1/3, we use the approximation

1 /(1 - Z) 1 4- Z to get

Al I log2 MAV+ 2 )(

N - 2 (1 - P e )log 2 M (I - P 9)og 2 IV

~ i(Pe)
1+

(1 - P) 2 log2 7vf (I - P 9)log 2 Al

It we assume that P. < 1, 2 and that 21(log2 , f2 is less than say 1,16. then when we multiply out the

right- hand-side, we can ignore the P(~) (1 C )(log 2 Vpl term to get

N - P eP) 2 log 2 l 201 - P e)log 2
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This approximation is good ror A, > 26 when P < 1 2 . These restrictions ensure that he :'z term

defined above Is less than 1 3 which in turn ensures that the term we ignored to get relation (4.7) !s small.

Ir we allow P to be as large a.s 3 4, then we obtain a minimum value, 212 . or A required ror theC

validity or (47).

A simpler bound ror .,.V Is arforded for A > 216 . In this case, if P e Is less than 1. 2. the term

(I - P)log2 Af is much larger than ;((P) so that the latter can be Ignored In relation (4 5). The

relation then becomes

- < -- (4.8)
N - (I-P) 2 log 2 M

Notice that this Is the bound In equation (4.0) multiplied by the Inverse or the 'success rate' (1 - P)

The approximation Is valid for more modest values of M when P is smaller than 1/2. Summarizing the

analysis for larger systems, the number N of weights needed to store M associations for fixed P Ise

0 (M) . Allowing the load factor L = 2M/N to be larger than 1. say L - /Cl-r). 0 < r < 1

Implies the erro, rate P will be at least as large as rC

4.2.5. Storage Limits for Item Memory

Now we turn our attention to Item-memory. We assume that when the k Input prototype Is

presented to the matrix, the matrix output is used ezciusaively to produce a bit vector that Is as accurate a

rendition of the kth output prototype as possible. It is assumed that no Information other than that

provided by the matrix-output is allowed for production or the bit-vector. To be consistent with the other

sections or this thesis, we denote the systems "rendition' or G k as Gk". The term, 1. In equation (4.3)

is now l(Gk":Gk) . For the case that P(G - G 1 kj) , = 1.2.....M, we have that I must be

n bits and so

M log , Af + 2

N 2n 0

Substituting nln0 or ,' and rearranging, a criterion for nI Is round

2.%f
F e log, M - 2

For large .A, (say .\[ > 16 ) we can ignore the 2 In the denominator to get



43

2M

n, log 2 (4.10)

Since the bit-error rate Is near zero. G." should be virtually Identical to G k  If a best-match Is used to

select the output-prototype that Is nearest to GA". then G. will be chosen wlth near certainty. In other

words. If we define P e as the probability that G. Is not chosen then P. should be near zero.

For this condition to hold, the memory must provide enough Information at Its output to act as a

channel with no errors. Therefore relation (4.8) must be satisfied. Uslng this together with (4.9) and the

fact that N = n1n0 one gets a lower bound on n0

no  ! log2 M + 2

which Is a minimal requirement to be made considering the parameter constraints discussed earlier In the

chapter.

For Illustration. we design a matrix to store M= 80.000 pairs. With this large number, relation

(4.8) Implies that at N is at least 100,000. The minimal value for n. becomes about 5700 and the

minimum for no Is about 18. With these values, the number of weights becomes 108,200. We will

compare this with the matrix parameters derived In the next section In which the system is allowed to

make errors.

4.2.6. Item-Memory with Errors

Now consider the case that the components of G." each agree with their counterparts in G. with

probability noticeably less than 1. Assume that the probability that a pair G:, and G. agree is

Independent of j = 1. 2 . .. no and call this probability pG . The probability or disagreement between

a pair or components Is I -PG which Is non-zero and so G," will contain a substantial number of bits

that are In error. In this case, a best-match algorithm that compares Gk?? with the output-prototypes

will have a probability P > 0 that the wrong match is made.

The Informatlon that G." provides about G, Is bounded above by the Information G,' provides

about G, and bounded below by the sum , f(G4• GA) of the Information that G. provides on a

bit-by-blt basis. The argument that this Is a lower bound Is similar to the argument given In the previous

chapter to substantiate relations (3.19) and (3.20). The Information that GOA!" provides about G,, Is

given by (I - N(pG)) . Using the above lower bound for I. this Implies that relation (4.3) holds with [
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replaced by nO0" - ; (PG)) .-kssume that PG < 0.88 so we can approximate 1 -IpG) by

(2iog, e)(pG - 1 2)2 as per equation (2.29). Inequality (4.3) becomes

log, .f - 2
- < (4.11

2n 0 (2log, e)(pG -I, 2)

For ,%4 > exp,(18) we can Ignore the 2 In the numerator on the right to get

At I n If
-1 2)2(4.12),N -- nO(PG 1 2)

We can get a lower bound on nI by replacing N In (4.11) by n/n O and rearranging

4M(log 2 e)(PG - 1/2) 2

logM->  2(4.13)n, - log 2 M + 2

Again, assuming M > 50.000 we can use (4.12) to get

4M(pG - 1/2)2

.!M (4.14)

which holds ror larger systems. We assume that pG > 1/2 since Gk" Is supposed to be a better-than-

chance rendition of G k With this assumption the above relation can be expressed as an upper bound on

PG achievable by a given n,

1

PG < - (1+ /nln M/M (4.15)

Since PG is less than 1, there Is a non-zero probability Pe that Gk" will be mistaken for some prototype

other than G * If we assume that a best-match among the output prototypes Is sought using the vector

G k then the Information (Gk": G.) must exceed that required to operate the best-match process.

The Information required ror a best-match process with error rate P Is given by (3.28) or the previous

chapter and we can assure that J(Gk" ; G,) Is larger than this by requiring

no(I - Ap )) (2 - P)iog, .f - W(P)

Assuming that Pe <  1,2 so that (I - P)log, M > (,'2)log, .%1. we take ,t to be larger than 50.000 as

usual. This allows one to Ignore the ;,(P) term so that we have
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n (1 - '(pG)) > (1 - P)og., Af

With the assumptlon that 1 ' < P < 0.88 we use the approximation (2.29) to get

2no(log 2 e)(pG 1 2) > ( C - 2

which yields the reciprocal relations between the error probabilities

2n0
P > 1 - (4.18)e -- In M(PG- 1/2) 2

PG> 1/2 + /(1 - P)ln M/(2no) (4.17)

To obtain a bound on the matrix size. n0 can also be expressed In terms of the other parameters:

(1 - P6 )In M
no > 2(4.18)

0 2(PG - 1/2)2

Note that relation (4.18) must hold for PG to satisfy both (4.17) and (4.15) simultaneously. From (4.18)

and (4.14) we have N > 2(1 - Pe)M which Is the same bound as given In (4.8) for M large. While nI

and n0 depend on p. , their dependence is reciprocal so the matrix-size needed to store A, items is not

affected by PG given a fixed P.

We use these relations to design a matrix that can store M= 0.000 Items with a channel error
P = 1/2 and a output-bIt error p. = 3/4. From relation (4.18) we obtain no = 44. From (4.14) we also

have n, >_ 1158 , so that n1n O = 0,900. Again the matrix Is one which 'fans-in' to produce a highly

reliable output under a large storage load. Notice that In accordance with (1 - =e 1/2, this system

Is roughly half the size of the one designed earlier for 'perfectO Item retrieval.

Under any or the above circumstances, the number of weights needed for storage is 0 (Ml). Allowing

P, > 0 allows an advantage with Af Increasing roughly proportional to 1/(1 - PC), (Pc -< 1/2). If a

bit-error PG <  1 Is allowed, then P must be specified to determine n, and no as a function of Af.

Notice that relations (4.13). (4.14) and (4.18) Imply that nI can be made smaller when p0 Is near 1/2.

whereas n0 must be made larger to meet the same storage requirements since the number of weights must

satisfy relations (4 11) and (4.5). Requiring that the bits of G k" to be accurate forces either Afor n o to



be small. That Is. either the matrix must store few vectors (small ratio A!. N ) or the size N - nfn O or

the matrix must be due largely to n . Heuristically. the matrix must be able to gather a large amount or

Inrormation at the Input compared with the amount It supplies at the output. One would suspect that the

Information supplied at the output is a function or the Information available at the input. This

observation, whi.'h will be shown to be true In the next chapter. will be Instrumental in deriving results

regarding classIncatlon.

4.3. Storage Efficiency

Storage emclency or a matrix will be deflned as the matrix-storage divided by the Information

required to represent a matrix assoclator on M associations. We know that the number or bits stored by

the matrix Is the matrix entropy HCW) . To get the number of bitz required to store the matrix, we

examine equation (1.i) to ascertain the range of values that the weights can assume. This equation

reveals that each entry (weight) In an outer-product matrix Is the sum of M bits. The range of values of

each entry is the set of Integers between -M and M. The extremes are realized whenever the bits for

that entry all agree in value. Further. the entry will be be even If and only If Mf Is even. It follows that

the number of values in entry can assume Is M+ I . This means that N weights will require

Alog 2 (M+ 1) P Mog2 M bits for storage. We define the efmciency v7 by the matrix-entropy divided by

the numter or bits needed to represent the matrix

H(W) (1/2)N(log 2 M+ 2) 1 177= = - k - + (4.19)
Niog2 M NMog 2 M 2 log2 M

which Is the upper bound for the ratio or M to N. In this case, the eMclency Is asymptotically 1/2.

This Is not the best we can do however. From the proof of the 'tails lemma" in appendix A. page
100. the entropy H(W..) or a weight of the W-matrix can be approximated by considering only 2r -+ I

of the most central values that the weight can achieve where r = 1V'2Aliog 2 AIJ . This means that

only these values occur often enough to represent a significant amount of the Information represented by

the weight. So we can Ignore the more extreme values the weight might take and thereby only need

roughly log, .2V .. o.. ! (1, 2)log 2 (2 fl og2 %) - I bits to store each weight.

Let Ml0 be a positive Integer representing the maximum number or associations to be stored In the

matrIx. If we restrict the weights to range In value from -[.%f0 log, .kfJ to 12.M0log, AfJ then when

the number A! or associations stored Is no greater than V!. the tails lemma prescribes the maximum

numter or tiLts or information lost by making the range restriction. The maximum Information lost Is

given ty the upper bounl r r ( In the tails-lemma which Is 21og, e (e.\f 0 ) (see (...42). condition 2 and
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related footnote. page 100). Assuming that this is the amount of Information that Is lost ror each weight.

the total lost for the entire matrLx Is no more than 2Nog 2 e,/(e.Sf0 ) bits. If the matrix is required to lose

no than r bits of Information due to the weight restriction, then set f equal to NI r so that the

maximum Information loss Is 2NIog, e/(eN/r) = 2rIog 2 e/e 0 r bits. For the case that the load L is

expected to be less than I (that Is we don't Intend to overload the matrix), we can set ,'40 to be N, 2

and will lose no more than one bit for the whole matrix by restricting the weights to the prescribed range.

The efficiency or this new system Is again the matrix-entropy divided by N "imes the logarithm of

the number or values permitted tor each weight

(1/2)N(log 2 M+ 2)

N((1/2)log, i2P) + (I/2)Iog 2 (log2  + 1)

log 2 M

log 2 ' M + log 2 (log 2 -A) ror large M (420)

which Is asymptotically near I. Therefore, by simply truncating the range of the weights, we can for a

fully loaded matrix, achieve a storage efficiency near unity while losing an Insignificant amount of

Information about the matrix.
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Chapter 5

Classification

5.1. Introduction

Whereas the previous chapter considered the linear-assoclator as a memory, the present chapter will

treat It as a classifler. The classifler Is merely a generalization or the memory In which the Input-vectors

are no longer constrained to be Input-prototypes. In this. case, Input-prototypes are each a representative

or "prototype" or a distinct category of vectors In the Input-space. An vector from the Input-space

belongs to a category it it Is closer, under the Hamming-distance metric, to the prototype ot that category

than to other Input-prototypes. The Input-prototype and Its category have a corresponding output-

prototype that represents the category In the output vector-space and the assoclator has stored the

correspondence between the Input and output prototypes. In this characterization, classification Is similar

to channel-memory (see figure -1). The Input-vector by virtue or its membership In a particular

category, has a corresponding output-prototype which Is the category's corresponding output-prototype.

Proper classification consists or associating the Input-vector to an output-vector that Is closer to the

Input-vector's corresponding output-prototype than to the other output-prototypes.

The analysis begins with the characterization or the 1inear- associator as a classification device. A

non-linearity Is applied to the associator-output to facilitate the analysis. Minimal requirements necessary

for proper performance or the classifier are explained and we describe the assoclator's Information

characteristics relating to achieving these requirements. Methods of generating Input-vectors are

formulated and are eventually shown to be equivalent from the point-or-view or the assoclator. The

Informatlon fow from Input to output, called the 'throughput" or the assoclator, Is then quantified and

related to performance capability o the assoclator. We will then be in a position to determine the

minimal size o sub-vectors within Input-vectors that act as 'cues' for the Input-vector category. We will

also quantity the percentage o the Input-space that Is classifiable by the system. We then 'revisit'

storage capacity and quantity Its degradation due to the use o the non-linearity at the associator output.

Near the end o the chapter, the theory Is Illustrated with a tew classifier designs and a discussion o

Important aspects o their operation. Finally, we derive some merit parameters tar Judging

storage -Iasslflcatlon performance o the assoclator as It compares with the best theoretically possible.
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• WF' G2

Figure 5i: Ciassilcatlon by Prototype-Correspondence

5.2. The Associator as a Classifier

5.2.1. Characterization of Cliasification

Consider an arbitrary classification device as shown In figure 5-2. The device can receive any

nh-dimensional *1-vector as an Input which will be referred to as the Input-vector. The device has

stored information about A, vectors called Input-prototypes. These prototypes are the ni-dimensional

balanced-Bernoulli vectors F, . F2 ..... F' Each one Is considered to be an exemplar of a distinct
category of n -dimensional ±1-vectors. An input-vector that Is closest in Hamming-distance to the

prototype Fk than to any of the other Input-prototypes will be denoted by F,' and Is said to belong to

the Oh category. Thus, there are Mf categories, each Ocentered" about Its exemplar. After receiving the

Input F,', the classlfler Is expected to emit the number k at Its output to signal that the Input belongs

to category k A classifleation-error (or briefly an 'error') Is said to have occurred when the response

of the cl3.ssifler Is some number other than k . The probability of cliassification error is denoted P



5o

FF

1 F ' k

Figure 5-2: General Classifier for n/-dimenslonal *:l-vectors

If the classification device is to operate with negligibly small P , the Input-vector. Fk# must

provide at least log M bits or Information about Its category-exemplar F,. This Is due w the fact that

F, must be distinguished as belonging to one of M categories and the only way the distinction can be

made Is to determine which of Af exemplars Is closest (see the chapter on the Information-theory of

memory). We therefore have the constraint

I(Fk';Fk) > log2 M (5.1)

Now consider the classification sy em or fIgure 5-3. In thls case, the classifier Is divided Into two

stages. The flrst-stage Is a linear-assoclator whose output Is fed to a Hopfleld-non-llneamrlty (defined

later). This stage, called the amsoclatoa, translates n-dlmens*onal :1i-vectors Into no-dimenslonal

±1-vectors where n0  Is the dimensionality of the assoclator's output-prototypes G1. GG

The second-stage is a best-match process that compares the output of the first-stage with the output

prototypes. In this case, the Af category-exemplars for the classifier are the Input-prototypes

F t , F. ,. FM . As Is the case ror the general classifier of figure -2, an Input-vector that belongs to

the kt h category will be denoted Fk'. The resulting output ot the linear-assoclator matrix will be called

G and the output of the Hopfieid non-linearity Is called G"

Lpon receipt of F5 ' at the Input, the resulting vector. Gk" . at the output Is expected to be closer

to Gk than to any other output-prototype. In this case, the best-match process or the second-stage

process %III respond with the number k at the output. We regard the best-match device as an error-tree

device Errors will only occur If the first-stage produces a vector G, that Is closer to some output-
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Associator Best-Match
F , F F
1 kFk G1 , G 2 , ...,IGM Ia , , . G

1st Stage 2nd Stage

Figure 5-3: Associator Classifier for nh-dimensional :*1-vectors

prototype other than G k . In other words, the analysis Is concerned with the performance limitations or

the first stage. The second-stage Is merely an artifice for the sake or the characterization or the

classification "taskO or the Ilnear-assoclator. in fact, the 'classificatlon' done by the assoclator Is just Its

passing Information to the output that enables one to determine which Input-category is present at the

matrix-Input.

We observe that the second-stage of figure 6-3 Is Itself a classifier of an arbitrary sort. Its category

exemplars are the vectors G1. G2 ... GM so Its Input G," must provide log2 M bits or information

about G k If the second-stage Is to classify reliably. The assumption that

(G 4"; Gk) > log2 M (5.2)

Is thereby obtained as a constraint on the output G k" of the first-stage.

In a later section It will be shown that the output-Information I(Gk" ; GA) or the first-stage can

be regardJed as a linear function or the Input-information I(Fk'; Fk) . The ratio

I(G " G kI F ' F k) will be denoted by 7TW) and Is called the throughput or the a.s.sociator.

Knowledge of the throughput will allow us to translate the constraint of (5.2) Into a constraint on the

Input-vectors F,' This In turn will reveal the fractlon of the Input-space I that can be classified.

The general Idea is to define the Input-redundancy (or simply the redundancy) R or the Input F ' to
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be the ratio

R = I(Fk'. Fh), log, f (5.3)

The constraint (5.1) then stipulates that R >: I. The question Is just bow much redundancy must be

present at the Input to the associator to ensure reliable classlficatlon. The answer lies In the definition of

throughput from which we have I(G." ;Gk) = T('W')(F' ;Fk) . -and so relations (5.2) and (5.3) Imply

that the Inequality 7'TW)Riog2 M" log 2 ' holds. That is

I
R -;: 71w)(5.4)

In the case that the assoclator Is not lightly loaded. 7TW) will be less than 1 so that by (5.3), the

constraint (5.4) Is more stringent than relation (5.1). Later It will be shown that at most M' - R of the

input-space I is classifiable. A heavily loaded assoclator will have a low throughput and so require a

high redundancy. As a result, It can classify only a small portion of the input-space.

Since the classifler of figure 5-3 Is merely an assoclator followed by a classifier, one may wonder why

we should bother with the first-stage associator at all. One reason Is that the assoclator translates input-

vectors Into output-vector "codes" that are more useful to subsequent processing stages. Another reason

as we shall see. Is the data-compresslon afforded by the assoclator. What data-compression Is and Its

usefulness will be seen near the end of the chapter.

5.2.2. Generation of Input Vectors

An Important aspect of associative memory Is the ability to respond to Input-patterns that deviate

from the stored Input-prototypes. In particular, suppose each Input-prototype F. Is divided up Into

subvectors called features (see figure 5-4). That Is. some subset of the n, components of F. represent

a field' In which a particular "plece or information is coded. If F k ' has only this single piece of

Information In common with F and nothing (other than coincidental similarities) In common with the

other Input-prototypes, then we call F,' a single-feature vector. It Is desirable that an Input-vector

F, be classifiable even If It Is a single-feature vector. Call the number or components of F. that

compose a particular reature the feature-size. We seek the minimal reature-size necessary tor reliable

classIfIcation of a single-reature vector.

Several methods or incorporating a feature of F k In FA or inserting information about F Into

F af are considered here. The flrst Is to copy r components or F , Into F,' and set the rest of the

components o F,' to zero. This case can be reduced to analyzing the storage characteristics of an
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Prototype: (feature-i, feature-2 ...... , feature-k ...... , feature-r)

Single-feature
input: (........... "random" ........... , feature-k ..... "random"...)

Figure 5-4: Features Within Vectors

associator with r-dimensional Input. This method therefore Is not as Interesting as other methods which

don't allow zeros as components or the Input-vector. Zeroing the 'unused' components however does

have the advantage that no spurious information Is incorporated Into the Input-vector. As far as the

matrix Is concerned, r bits or information are actually present at the input.

Another method Is again to copy r of Fh's components to F,' and choose the rest of F kI's

components as a random selection or ±1's. This case Is more interesting because It corresponds to F k'

containing Information other than that or the r-dimensional feature or Fk . This additional Information

however Is not relevant to the prototypes or the assoclator. Rather. It Is used by other atssoclator-

classifiers In a multl-classirler system (see figure 6-6). Each assoclator would sample !he Input-vector and

only act on tho features the Input contains that are relevant to the prototypes or the assoclator. The

Input might represent the functional description or an object, each feature or the Input-vector representing

a different functional aspect or the object. Each assoclator would have Information about a specific

'feature-type' and associate features or this type to relevant 'concepts' or 'goals' or the system.

This method of generating the Input-vectors actually Incorporates r bits of Information about F k

into F,' However. the network Is probably not capable or using all r bits or Information. In the first

place, the assoclator has no %ay or knowing which or the 7 or Fk' are the copies. What's more, It never

varies ths way In %hich it 'weighs' a given component or Fk' when determining its output G,'

\Whothpr or not It happens to weigh the r components of the feature heavier than the other components

or tho in ,ut, Is a matter of 'halppnstance'. Another related problem Is that generating the input-vector

%Ith !n.,on:Ist~r.t Information Is nct well-accounted for by Information theory. An input-vector FkA
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k I m

Associator Associator Associator
1 2 3

(..., feature-r ,...) (..., feature-s , .... , feature-t ,

(feature-I, feature-2, ... , feature-q)

Flgure 5-: A Multi-Assoclator System

should be classified with the category-exemplar Fk even when It contains Information In direct opposition

to this choice or category. More precisely, copy r1 components of Fk to Fk' and copy the negative or

each or r2 other components to F' . Choose the remaining components or F k' randomly. We assume

rI- r2 > 0 so that the net feature-size Is r > r -r. Again, ir r Is large enough, then the

consistent Information should 'override' the Inconsistent information so that F k' Is properly classified

Into the kth category.

From an Information-theory point-or-view however, the mutual Information I(Fk' Fk) Is no longer

r bits but r, - r2 bits. An observer of F,'. knowing which components were copied directly and which

were negated could Infer the ri - r2 values or those components or F . Of course, the assoclator treats

all the components or the Input-vector the same. ir r Is large, the dot-product F' Fk or equation
(5.12). page 57. will be large and F k' will be correctly classified. From the point-of-view or the

assoclator-matrlx, the useful Information is r bits not rI + r2 bits. A more substantial argument for this



view will be given later. The arguement depends on the fact that the distribution of the matrix-output Is

a function of r only and does not otherwise depend on which of the above methods are used to generate

the Input-vector.

Another method of generating the Input Fh' Is to choose It within a region surrounding the

prototype F . We define the ball of radius p about Fh to be the set

Bk(p) = {x E 71HD(Fb,x) < p (6.5)

where HD(x. y) Is the Hamming-distance between the vectors x and y . If p > 0 has a value such

that Bk(p) = i/M then conceivably, each of the M bails Bm(p) m = 1. 2 .... M could occupy its

own region of the input-space I with little overlap. That is. most vectors of I would Ile In exactly one

bali. The likelihood of small overlap of all the balls is small but the Important notion is that the largest

portion of space each can occupy Is i/M without unavoidable overlap.

Now consider generating Fk' by choosing It at random from Bh(p) . We will call this method of

Input-generation the neighborhood method. An observer of F' F knowing how It was generated, knows

that the Input-prototype Fk lies within p of Fk'. Only i/M of the Input-space is this near F ' so

this knowledge constitutes an M-fold decrease In the number of possible values of F k Therefore the

vector F k' chosen at random from Bk(p) provides log2 M bits of Information about Fk * Observe that

if p were decreased so that B k(p) encompassed only M - R of the space, where R > I , then the input

Information I(Fk,; Fk) would Increase to Rlog2 M. This observation will be useful later when

comparing the methods of generating the associator-Input.

A final method of Input-vector generation Is that of flipping a biased coin to determine for each

component (bit) of the Input-vector F.' whether It agrees with the corresponding component (bit) of F k '

This will be referred to as the coin method. If the coin lands 'heads', we copy a component of F k to
Fk'. ir it lands 'talls', we copy Its negative to Fk I'. Letting PF be the probability of 'heads', the

probability that a component of F kF agrees with Its counterpart in F k Is P'" In order that F.,' be a

better-than-chance rendition of Fh, we assume that p, > 1/2 . In this case, the Information that Fhf

provides about F , Is the sum over all n I components of the Information that each component of F,1

provides about Its counterpart in F k . 'We can write

n 
I

TFF = I ef,,.';it ha (5. )

The Information I(F 'F ) Is the function i - ((ps) which is I bit minus the uncertainty (P) that
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F ' agrees with F.,. When PF Is not too near 1. (say PF ! 0.88 ) we can approximate 1 - (Pd by

2(log 2 e)(pF- I2) 2 (see approximation (2.29) page 1). The result Is

(Fk'F F) = nj I - I(pF))

=:snign )(p 1,/2)2 1/2 < PF < 0.88 (5.7)

We can assess the similarity of the Input-vector F.' to the prototype F. as measured by the

dot-product. The average number of components or F,' that agree with their counterparts In F k Is

n F . - The average number that disagree is n/i - pF). The components that agree contribute a I to

the value or the dot-product Fk*Fk' and the components that disagree add a -1. Therefore the mean o

the similarity is

E(F.FM') n? p(1) + njI - pF)(-i) = (2p,- 1)n, (6.8)

For the method of copying r components to generate F.', the mean similarity is r . We therefore set

r = (2pF - 1)n to obtain the same mean similarity as for the coin method. This gives the reciprocal

relations

r = (2P -1)n, (6.g)

and

1 r
PF 2n- (6.10)

It will be argued later that the various methods we described for generating the Input-vector are

equivalent, from the poInt-of-view of the associator. to the coin method with PF given In (5.10).

5.2.3. Throughput of the Assoclator

To ascertain the throughput of the first stage of the classifier In figure 5-3 we must consider the

probability distribution of the components of G,'. For j = 1. 2.. . .. no .we show that the probability

that Gk' 0-- G., is independent of j. Calling this probability P0 ' It is shown to be a function or the

probability p. defined earlier. Consequently. the output Information I(G,"; Gk) . itself a function or

PC , is a function or the Input-inrormatlon I(F' ; Fk)



57

To assess PG. note that G." is produced rrom G vla the 'Hopfleld" .24, 25 non-linearity

" = { if G ki P -

-1 otherwise

The probability that G k = Gki Is the probability that GiGki 0 since the two relations are

equivalent. As a result, we can compute pG once the probability distribution or Gki'.Gk. Is known.

Using the ract that G k ? = WF k' where W Is given by (2.19) we have

M
Gk !.Gkj = E (Fm'Fk')G,,iGj

rnml

M

= (FkFk')Gki2 + (FM'Fk')GmjGh (5.12)M-mlM h k

Using methods outlined In the chapter on notation. page 18, the probability function or the term

(Fk.Fk')Gk,.2 in (5.12), call It the 'first term', can be determined. The same can be done for the

summation (call It the 'second term') In (6.12). Both the first term and the second term are sums or i.i.d.

r.v.'s so that the central limit theorem Implies the two are both normally distributed. The sum or two

Independent normal r.v's Is normal so we conclude that GO 'Gk/ Is normal. The mean or GO .G,, Is the

sum or the means or the first and second terms or (5.12) and similarly for the variance. Recalling that

F,' Is generated by the coin method with PF = 1/2 + r/(2n,) , the mean of the first term is

rI2PF- 1) and the variance Is 4p -PF ) . The mean or the second term Is zero and the variance Is

(M- 1)nI . Thererore the mean or Gk'.G,. Is n/2PF- 1) = r and the variance Is

4nlPF,1 - pr) + (M- 1)n,. The latter is very nearly equal to Mn, ror any value or PF provided

M > 10.

Before calculating p. In terms or pF. we make some observations with regard to the effect or

generating FP' on the distribution or Gk .Gk i .  Whn Ml > 10 . the variance of G/ !.Gi Is

determined entirely by the second term of equation (5.12). The balanced-Bernoulli vectors.

Fm . m 3 k . appearing In the second term are Independent of FA' regardless of how F,' depends on

F k (see chapter 2. page 16. concerning dot-product Independence). Thus the mean and variance or

Frn.F k' will not not be arrected by any of the methods or generating a ±1-vector F.' rrom Fk . From

this we see that the variance or the second term will always be (Af - I)nrt Irrespective or the method or

generating F k' Since F. is a ±1-vector, the variance or the first term or (5.12) can never exceed n,.

The first term will thererore not contribute substantially to the variance or G.'.Gki under any method or

lnput-generation Also G ' G. Is normally distributed since the second term Is a large sum or I I.
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r.y.'s. The nature or the first term Is Inconsequential due to Its small variance. Further the mean or
G.'*Gk. Is r ror any of the methods given ror generation of F. We see then that the prouct

G ;'.Gkj has virtually the same 1istribution rot any method of Input-generation. In particular, we have

that Gk .'.GkJ - .(r. nI) . We conclude that the various methods of generating the Input-vector are

virtually equivalent from the viewpoint of the assoclator. From this point on. these methods will be

discussed Interchangeably.
7

From this. we have also that the Input-information provided by the coin method represents the

maximum amount of Intormation utilized by the assoclator rot any mode or Input-generation. This can be

seen by replacing PF -1/2 by the equivalent r/(2n,) In equation (5.7) to get

(log, e)r
2

A(Fk'1 ; ') =V (5.13)
2n!

This Information Is less than r bits when r < n1/log2 e . This will be the case In the analysis to follow

since (5.13) Is necessary ror (5.7) to hold. We conclude that the coin method provides the smallest Input-

Information compared with the other methods (the neighborhood method provides roughly the same

amount of Input-information as the coin method). Because the assoclator sees no difference In these

methods, the Input-inrormation provided by the coin method must be the maximum amount useful to the

assoclator when computing the output vector. The coin method or generation can therefore be used to

ascertain the performance of the assoclator despite or the actual method or Input-generation. This allows

us to expiolt the simplicity or analysis afforded by the coin method while retaining the generality to

performance under the other Input-generation modes.

We now begin to calculate the probability pG that rkj" = G,. which is the same as the

probability that G 'Gi .2! 0 . Since the product G , ,  is normal with mean (2p F - 1)n, and

variance Afn, , the probability p. is easily determined

PG ) k P(Gki i > 0)

- i - G'.Gi < 0)

'The equivalence of the neighborhood method to the coin method follows from the fact that the vut majority or vectors
in the interior of the ball in (5.5) lie near the boundary provided the radius is less than n/2 (see Kaverva 1251). The ball
method and coin method will be consistent it the radius of the ball is roughly nil - pF, (see appendx B). The
distribution of vectors generated via either method is that of a "ring- surrounding the central category-prototype. The
"thickness" 'f the ring being determined by the variance of the coin method.
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t - Gk;G.Is (2p.,- )n/ V n standard dev's below the mean)

-(2Pr- 1)n

0 ,((2p,- 1)/ ;7 ) since O(z) = I - (- z) (5.14)

where * Is the standard normal distribution funetlon. Since p. <  ' and M will generally be larger

than n It follows that (2p.- I) n/r Is typically less than 1, This allows use of the Taylor

approximation to 0 given In chapter 2 page 19. We get

. . + Vn/M(2pF- 1) + 2n((p,,5 /2).15)
2 VIp1/ 2

In a manner similar to the derivatlQn of equation (5.7) we have

/(Gk":Gk) - nO(1 - l(pG))

I 2mtO(log2 e)(pG - 2_

-) o 2 0.5 < PG < 0.88 (8.18)

Assuming PG Is In the stated range, we appeal to (6.15) and substitute V'2;M(PF-- 1/2) for

P0 - 1/2 In (5.16)

2rt2f(Gh" : Gk) 2n o (Og2 e)-, /2)

2n 0
(5.17),'!(Fk' ;Fk)

where the second approximatlon Is due to (5.7). DIvIding by I(Fk? Fk) (assumed larger than zero), we

have a lower bound on the throughput of the assoclator

2no
7 W ) > ,-,-7 (5. g)
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5.3. Classifiable Inputs

5.3.1. Lower Bounds on Input Informatlon

As stated earlier. the redundancy, R . must be larger than 1,' ITW) for reliable classifIcatlon. Now

that the throughput or the assoc~ator has been found, we have the lower bound

?r Al'

By definition (5.3), the I np utInformation Is given by

f(Fk' Fk) = R1og2 M (.0

Together. (5.19) and (5.20) Imply a lower bound on the Input-information

7rliog2 M
!(Fk?'; Fk) 2n0  (.1

By ur ssmpton F. I generated by the coin method. Thus the bitwise tnformation

I Fks MkS) . ' 1, 2 .... Is Independent of i = (1. 2. -- ,An . Also the Input-Informatlon

I(Fk' Fk) Is given by (5.6). We conclude that the Input-Informatlon Is ntimes the bitwlse

Information. Dividing relatlon (5.21) by n1 we get the lower bound

?rMiog 2 M
(F l. ;Fk) > 2N (5.22)

for the blt-wlse Information.

5.3.2. Lower Bounds on Feature Sihe

We can obtain minimal requirements on pF. and r by Inverting the approximations of 5.7) and

(5.13) to get each parameter In terms of I(Fkp' Fk) .From (5.7) and the assumption that PF. > 1,2 we

have

Prv'h F F. (2nyo&, e)

- ' ,2(F 'F ) (ntoge)) (5 23



The relation tot r Is obtained from (5.13). (5.2.3) and the tact that r = (2F - )71i

r =z V2n2J(F.' .F,) log, e (5.24)

where I F F)/'log 2 e Is the input-inrormation In natural-logarithm units or Inats'. Using equation

(5.20) we get PF in terms or the redundancy

P - + V~ ,(n)(5.25)2

Similarly tot r

r vV ~ (5.28)

The lower bound (5l)for R gives a lower bound tot each parameter

PF > -(1 + V7'nMIN) (5.27)

and

r > V(n,//n_)-irMn M (5.28)

This means that if F, 'Is generated trom F k by copying r of F * ,s components we need to copy at

least f Vl'TiA1 M I components tot ciassiflcation to be possible. Reliable classification requires

that this number be the minimum teature-size allowable tor the Input-vector If It Is a singie-teature vector.

The number of nion-overlapping teatures (sub-vectors) an input-vector can have Is obviously the

dime nsionality ot the vector divided by the minimal teature-size 1q11 rV( n 0 )rkfn Af Ij . it we let

f/n be the minimal feature size and nm0 be the maximal number of non-overiapping features

allowable In an Input-voctor. then we have roughly

a~ 0d
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9: m17O -nA (5. 30)

As shown later, the fraction under the radical In (5.30) cannot be less than one ror reliable classification.

We see then that itf we are to have n non-overlapping features in our vectors, then the number or weights

In the assoclator will have to exceed xAfln M by a factor or n: . This Is a rather heavy price to pay for

the ability to classify vectors on the basis or a single teature.

We make one Important observation regarding the Information content of an n-dimensional

*l-vector. If X is the number of 1's that occur In a balanced-Bernoulli vector. A , then X is a r.v.

with mean n/2 and standard deviation V/ n/2. It stands to reason therefore, that a sub-vector or A of

length V/n2 represents a unit o information of A . To verity this, let R be the redundancy (as deflned

by (5.3) for some M > 0 ) o the Information that A Is to provide about another vector, 1B. If we are

to copy components o B to A , then equation (5.25) gives the minimal number r of components that

should be copied (the rest are chosen Independently of the components of B ). This number can be

expressed in terms of the number of standard-devIation-length sub-vectors needed

r = 2V'2 TM(V'/ (.31)

To provide Rio&2 M bits of Information. we must copy at least 2V2/RW sub-vector $units* of

Intormation from B. The *square-rootO relationship between the number of bits o Intormatlon and the

number o sub-vector munitsO Is due to the quadratic dependence of intormation on the probability that a

component o one vector agrees with Its counterpart in another vector (see relation (5.7)). The fact that

Intormation In balanced-Bernoull vectors Is closely related to V%//2-ength sub-vectors must play a part

oa any mode of representation that codes Information Into *1-vectors. It Information coded Into sub-

regions o the Input-vector Is to provide the sole cue to an assoclator tor classification, the subregions

must cover at least 2N/n ATf sub-vector OunitsO o the Input-vector, where R Is the minimal input-

redundancy required by the assoclator.

5.3.3. Fraction of the Input Space that Is Classifiable

An analysis or minimal requirements tar the neighborhood method o Input-generation are derived In

appendix B. Because this method Is roughly equivalent to the coin method and because It gives us an

estimate o the number o vectors that can be classifled, we relate the results here. First. for a ball

centered about an Input-prototype, If a randomly chosen vector from the ball Is to provide Riog, MI bits

o information about the prototype, then the ball must comprise kf -R o the Input-space. From

appendix B. the radius p is roughly
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p - - .V'2Rln M - In (4yrRn SM) (5.32)2 2

The lower bound on the redundancy in (5.19) gives an upper bound on the radius

p < - - V rkn M, 0 - In (21r 2 Mn M)/n 0  (5.33)
2 2

In appendix B. geometrical considerations or the output space suggest that this radius Is too large. The

excess redundancy required however should not be more than twice the minimum (see appendix B for a

discussion of this point). This gives us a lower bound tor p

p - - . V27rV n M/n - In (4f'Mn M)/n 0  (5.34)- 2 200

We now derive the upper bound on the fraction or the Input-space that can be classified. This result

Is obtained from the lower bound on the Information required at the assoclator Input. Since the assoclator

produces an output on the basis or the Harnming-distance between the Input-vector and the Input-

prototypes. input-vectors providing the assoclator a specifled amount or Information about an Input-

prototype should come from a set or vectors nearest to the prototype. If the set Is a ball or radius p

about the prototype. then random selection or a vector trom the ball (neighborhood method or Input-

generation) Is roughly equivalent to the coin method ot input-generatlon when p n( -PF ) . When an

Input-vector F' Is generated by the neighborhood method, and the Information It provides about F. Is

/(T41,; Fk) -the ball It comes from will encompass exp 2(-(F' ] F,)) or the total Input-space. For our

system, there are ,f balls surrounding Mi Input-prototypes so the total fraction o the Input space

covered by the .Af balls Is at most Aftexp 2(-I(Fk'; Fk)) . The regions could overlap, though the overlap

will be negligible If the Input-Information Is at least 2log? .if. Now it R is the redundancy o the Input,

then the Input Information Is Riog, Af bits and the traction : ot the Input-space that Is classifiable Is

.\! - R(5.35,

Using the lower bound on R we have the upper bound on C In fact, as we shall see later. ! ii

usually be greater than n0 by a large factor so that the fraction o the space that Is classiflable will te

'uite small.
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< < - wM/(2n 0 ) (536)

where Af Is assumed to be larger than n o .

5.3.4. Restrictions on Matrix Dimensions

The Inequality of (5.33) Is required for reliable classification, whereas inequality (5.34) Is merely a

reasonable bound on how small the value of p need be made to Insure the system will work. Therefore

inequality (5.33) must be larger than zero it the system Is to classi y its inputs. This constraint leads to a

lower bound on ," which will be derived by different means later (see equation (5.42)). The lower bound

on N Is the minimal number or vectors required merely ftr stori'ng the prototypes when the Hopfleld

non-linearlty Is present at the assoclator output.

An even tighter constraint on the required matrix size Is obtained when we require that the system

be capable of classitying Ihighly-degraded* Input-vectors. A highly-degraded Input-vector Is a vector that

Is nearly orthogonal to Its category-exemplar (the nearest input-prototype). From (5.33). we see that

ciassiflcation ot such Inputs Is possible when nI s large compared to v' vfln M.V'n7/n O . In this case, If

p Is near the theoretical maximum given In (5.33). the input-vectors at the edge or the neighborhood or a

prototype will be at a Hamming-distance nearly n/2 from the prototype. A reasonable way to make

nI large enough Is to require nz, > virvn U4 1 7 0 . Multiplying through by and

squaring both sides or this inequality gives us a lower bound on the number N or weights

NV > 8i4rMhn Mt (5-37)

Comparing this to the requirement (5.42) tor storage, we see that classification or Ohighly-degradedO

input-vectors requires roughly 50-100 times the number or weights required ror merely storing the

prototype vectors.

WVe note a tew restrictions on the parameters Inferred by the analysis In appendix B. First. It the

Input-vector Is to have a relundancy no greater than R (keeping R low, makes a larger portion ot the

Input-spae a.2,slflat~le. see equation (5.3S)), then we must have p > 0 In equation (B.6), page 109. This

becomes the constraint

n, > 2RIn .f (5.38)

This constraint applies eq ually well ror the output dimenslonality with R between I and 2 so that
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n0 > 2in Af (s.39}

Is a minimal requirement tor the output-dimenslonallty (see equation (B.8)). In the 'throughput' section.

restrictions on the parameters n 11 n0 and A were also made to obtain the approximations used to

obtain the assoclator throughput. The linear approximation made In equation (5.14) assumed that At

was at least as large as n This assumption assures that the argument to * was no larger than 1 so

that higher terms In the Taylor approximation to 0 can be dropped.

The assumption that the argument to 0 In equation (5.14) was less than 1 leads to a restriction on

PG " This assumption together with (5.15) gives the upper bound

1 I
< - 0.9 (5.40)

These relations Illustrate the limitations of the theory that has been developed. A designer ot an

assoclator on Ml associations must stay within the parameter-assumptlons In order for the performance

predictions or the theory to apply.

5.4. Performance Degradation Due to Non-Linear Output

The 'Hoptield non-Ilnearity' In figure 5-3 was Introduced for the sake or simplifying the analysis.

The problem of determining the Information I(Gk'; Gk) available directly from the assoclator-matrix Is

somewhat more difficult than finding the Information I(Gk"; Gk) available from the non-linearlty.

Unfortunately, however, addition or the non-linearity eliminates much or the Information available from

Gk' That this Is so Is evidenced by the degradation or storage capacity due to the non-Ilnearity.

To estimate the storage capacity of the non-linear associator In figure 5-3, put pF-= 1 to constrain

the Input vectors to belong to the set of Input-prototypes. The rormula p. that gives PG In terms or

P. becomes

PG -(1 - Vln 1 i/ rM=) (5.41)

This approximation Is good when p0 Is near 1/2. so in particular. At must be at least n, an (5.41).

The approximation was obtained rom (5.15) which Is a linearization or the normal distribution tunctlon

O(z) about z = 0 It overestimates PG with the overestimate becoming large as PG nears 1. In tact

ifone pays a high penalty In storage capacity when Insisting that each bit or G k match Its counterpart in



Gk with high probability This Is due seen from the fact that when n I .A1 is increased PG does not

increase as rapidly as (5.15) would Indicate. In any event, using equation (5.15) will give an upper bound

on the storage ,aDaclty.

As stated In the c.iapter on storage capacity. useful storage requires the output Information to be at

least log2 A, bits. During retrieval, the number of bits present at the Input Is hi. It we multiply nI by

the throughput 21W) and require the result to be larger than log2 M. a constraint on the matrix size is

obtained. Lntortuneately TW) was obtained by assuming pF was not too near 1. We will have to use

equations (5.41) and (5.18) instead to get the constraint. Remember however. (5.41) assumes p. Is not

too near 1. which will be the case It Af > -n I . From (5.41) and (5.10) we have

,N og= e

(Gk" : G) 7rM

By the constraint (5.2), the right-hand-side must be larger than log 2 ,31. The resulting Inequality can

then be rearranged to get

Yfln Xl

<.42)

To put (5.42) another way, N must be at least 0 (Mtn Mt) . This Is a stronger requirement than the one

derived tor storage In the previous chapter. This new bound Implies that If n 0 Is 0 (In X , then n

must be 0 (.M).

It errors are allowed at the output of the second stage ot flgure 5-3 then the storage can be

Increased. It P Is the error probability, then for 0 < P -< 1/2 , tf large, we need (I -P;)Iog 2 A

bits at the output. From this and (5.10) we have

2nO(log2 e)(pG - 1 2)2 > (1 - P)log2 M (5.43)

and from (5.411

2nO(log e) > (I - P)log2 ,f0 2,,A 2'f

which gives

Ailn M1
> (5.4)- i- e
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.s with the case with storage treated In the previous chapter, the number o required weights is

proportional to I - P On the other hand. the maximal value of M no longer Increases In proportion

to 11(1 -Pd

The reason the non-linearity decreases the Information content of the output of the associator Is

that It forces the best-match process o figure 5-3 to 'countO the number o places that the output G k

disagrees in sign with G, (recall the method of computing G."). This can be seen from figure -3 with

the non-linearity removed and from equation (6.12) which is the formula for one summand-term In the

dot-product Gk'.G k . If the best-match process in figure &-3 uses the output o the associator-matrx

directly, It can use the dot-product similarity-measure to compare Gk' with every one of the output-

prototypes. Now, a single summand in the dot-product 1,G,.Gki is binomially distributed with

positive mean (2PF- 1)n 1 . Such a term will tend to have larger magnitude when It is positive than when

it Is negative. This means that the dot-product can do more than 'count' how many positions Gki

agree In sign with their counterparts Gki. The dot-product also uses 'magnitude' Information to

ascertain the 'confidence' that a specific component of GkA' is of the proper sign. On the other hand.

whether the performance limits o the previous chapter can be achieved depends on whether retrieval in

the linear-assoclator is optimal. For this to be so, the full entropy o the matrix (per storage item) must

be available at the memory output. What's more. the Information available must be uaeful to the best-

match process.

The analysis o the linear case should entail evaluation of the Information content of G k' by

evaluating it as a rendition or the 'signal' G, with added binomial 'noise'. The 'signal-to-noise ratio'

as a function o M would then be used to quantify the Information content. The analysis Is similar In

concept with evaluation o Information contained by a gausslan signal in the presence or gausslan noise

(see Gallager, 112. p. 32, Example 41). The difference is that the 'signal' components Gki are not

gaussian but Bernoulli r.v.'s and the 'noise' in G.' due to the associator-matrix is binomial rather than

gaussian. These differences are responsible for the difriculty In determining the information I(G.' Gh).

The difricultles are not Insurmountable, but the analysis may be as Involved as that In Appendix A, since

the problem of approximating a discrete entropy with a continuous one In the appendix seems related to

the problem of approximating the informatIon In G,'

5.5. Classifier Design Considerations

At this point,we are ready to illustrate the design or an associator to meet specific requirements.

Two designs will be Riven to show how the relative sizes o parameters Interact. Given the number .%f of

,,ategorios, a rractLion a or the space to be classified and the maximum classifIcatlon error. probability.



Fp we wish to flnd the dimensions nIand n 0 that result In a matrix at minimal size N that meet the

requirements. 8To begin, let P C= 0 tor s~mPlclty. Notice that a ball Bhl(p) about a prototype must

contain about a/Al at the input space. Since the traction at input-vectors In the ball Is

exp 2(-I(F k Ft)k we have

exp (-f(Fhf ; F k)) (5.45)

so that

IT(k'; F k) = log2 Ml - 1og 2 a (5.46)

Now R = I(Fk; Fk)/l og., M so by (5.48) we have 10o2 a - iog2 Ml -Rog2 M. Rearranglng

and converting to naturai logarithms gIves a more convenient torin

-in a
R + 7n Mj-. (5.47)

The two ciassifiers we produce will be cailed the larg-a model and the smell-a model. 9 The large-a

model will have -in a proportional to In M, 3o that for scrne positive K > 10 we write

-in a = Kin Ml (5.48)

The small-a model assumes that -in a Is proportional to Al. In this case we put

-ina = -(5.4g)

with K < %f1(10ln Af) . Caiculating the redundancy fram (5.47) tar the iarge-a model we have

R = I -4K =iK (5.50)

and tor the small-'2 model

'Of course. a design problem may dilfer Ls to which parameters are initially specified. Most notably is the case when a
designer is dealing with an input-space whose viector-dimensionality I is already known.

0Sinace 0 < a < I . the quantity -Ina *is positive and grows without bound us a - 0 .The terms~ flarge-a* aod
*smali-a* are of course relative. A large-a modei will only classify a smali portion of the input-space. A small-a model %,!I
classiry a portion orders of magnitude smaller. Even in the case of the small-a modei however, there are exp,(ns1 possLe

input-vectors so that the actual number of vectors ciassiriable is still very large.
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R = Al ----- 5t

Kin ; t =Kin At

Recall that relation I519) must hold for reliable claSsiflcatlon. From this we get the lower bound on n.

n ,o f (5.52)

For the large-a model, this Implies

no 2 ir '/(2K_) (5.53)

For the small-a model

If
n -Kin M (554)2

To get a constraint on nI. we use the fact that the maximum Hamming-distance between an Input-

vector an Its category-exemplar is roughly

-. Vr2 Wn (5.55)M a x, , T 2

It we are to classify vectors that are nearly orthogonal to their category vectors, then P 4  should be

nearly i,/2. For the large-a model, this Is more Important than for the small-a model since the former

must classify more or Its Input-space. The closer .e.Is to n,/2 however, the more weights are

required for either model given a fixed value or K, For the sake or comparison then, we will use the

same value p - (2/3)n,/2 for both models. This isn't much of a constraint. A better one Is

19nosa = OlO)nll 2 but the number of weights required would be about 10 times as large. From

equation (5.55) and our constraint, we get

V/n 3V2"R~nf

so that

n = ISRn Mf = 2OThn Al (5.58)
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For the large-a model R z K so

n I -- 20Ki n (557)

whereas the small-a model .as R = A ,(Kin Ml) so

20M
n, K (5.58)

The number N or weights In both cases Is iOxrMkn M or 10 times the minimum required ror storing M

prototypes.

The thing to notice Is that the large-a model has n or order In M and n0 or order M. In other

words, the Input-dlmensionality far exceeds the lnput-dimensionality. In order to classify such a large

portion or the Input-space, the Input-redundancy must not be large. This Is seen from relation (5.47).

When a - 1, we have -In a - 0 so that R -. I. The throughput or the system must be large so

many units are needed to produce the output.

For the small-a the situation Is reversed. The Input-dImenslonallty is large and so can accomodate

the large Input-redundancy (The redundancy can never exceed nl/log 2 AM). The number or units can be

small since the high redundancy Insures adequate output Information even with low throughput.

As a numerical example, suppose that M = 50.000 and to assure M > n, In (5.58). let

K = 50. For the large-a model, R = S0 so by (5.57) n I  10.800. and by (5.53) n 0 s 1570. For

the small-a model R = 92. equation (5.58) Implies n1 - 20.000 and (5.54) gives no = 850. Both

models have roughly 1.7.107 weights.

Now let " be the number or classifiable vectors In each case. We want to estimate the entropy

log 2 " of the classifiable portion of the Input-space. By equation (5.35). this entropy Is roughly

log, (.t' - Rexp 2 (nl)) I or approximately f - n I + (1 - R)log 2 M. By equation (5.47) we have

f = n - log 2 a (5.59)

For the large-a model. f = n I  Klog 2 Af= 10.000. For the small-a model.

= n I - .log., e, K ." 18.600 . The proportion of the space classified by the large-a model Is 10-240

whereas the small-C model classifies roughly 10-440 or Its Input-space (computed trom the respective

values or a ).
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The moral however. 13 that the small-a does not classify fewer vectors than does the large-a model.

The Input-space for the small-a model Is so much larger than that of the large-a model that the actual

number of vectors classiflable by the small-a is much larger. In fact. the number or vectors that can be

classified by the small-a model dwarfs the number of vectors In the entire Input-space o the large-a

model.

One way ot viewing this numerical advantage of the small-a model Is In terms or data

compreusion. Whereas the number of Input-vectors to be classified Is potentially very large, the number

j" of categories at the output Is relatIvely miniscule (the number or categories should be less than the

number or weights or even smaller). The entropy or the output relative to that of the Input Is therefore

quite small and this Is what Is meant by 'data-compression'. The fact that the matrix races less

Information at Its output than at Its Input should be reflected by Its architecture It high-performance Is

expected. For a classifier with N weights that Is to classify a large number of Input-vectors, the output-

dimenslonality should be as small as possible (within the constraints described In appendix B) compared

with the Input-dimensionality. Such a system will classify a maximal number of Input-vectors for a given

number or associations (categories) stored.

One should also notice that the classifier elassifies only a very small portion of the Input-space. This

results In a "double-data-compressoa'. Most Injputs are simply not considered to be valid Input 8signalsO.

Those that are will then be mapped to a relatively small number of categories. The final result is an

output that has far less entropy than the total Input-space. We conclude that the assoclator-as-classilfier

assumes that most of the space of possible Inputs are Irrelevant to Its task. The portion of the space that

Is considered relevant Is specified by the collection or prototype-vectors. These In turn specify the

pertinent inrormational-reatures of the Input-space. All other Information Is Ignored. resulting In an

output that Is a compact representation or the salient features of the Input.

5.6. Maximal Performance and Figures of Merit

5.6.1. Merit Parameters and Figures of Merit

we define a merit-parameter to be some measure ot system performance with regard to storage

or classification. In the case that there is a maximal value for the merit-parameter, we divide the merit-

parameter by the maximal value to get a figure-of-merit. The maximal value for the parameter Is

determined via inrormatlon-theoretlc constraints on an arbitrary memory/classification system and so is

Independent o reatures specific to a particular device. The figure-ot-merit will generally take on a value

between zero and one with the value 01" corresponding to optimal performance. Thus the merit-figure

,'an be used for comparison or various systems whose merit-figures are known.
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5.8.2. Load, Efficiency, Throughput and Retrievable Information

In the chapter on storage, we derived a figure-of-merit L called the load. It was defined as the

ratio of the number of items stored (a merit- parameter) divided by the number or Items storable. Another

figure-of-merit we defined was called the efficiency, tj that was the ratio of the number at bits stored In

the memory divided by the number ot bits required to represent the memory itself. For classification. it is

also desirable to obtain relevant m erit- parameters and tigures-of- merit.

An obvious merit-parameter tar classification Is the throughput 71W) defined earlier. The optimal

value T 0can be be derived tor an arbitrary memory obeying relation (3.13). The throughput- merit.

r, of a system Is then defined as 71W) IT.. To obtain TOwe divide the maximum- possible output-

information by the minimum allowable Input- information. For systems obeying equation (3.13). the

maximum output-information per association Is ff(WA, M)M. The minimal input-information required Is

lo012 Al bits so we have

T= fl(W.M)f/(M1og 2 M(5)

So the throughput-merit Is given by

T(W) _ 2W) Mio 2 M
1* W - =

whereTaHW

Milog 2 M M.!(Gk" ; Gk)

H(W, Ap H(W.AI M

It we use the tact that H(W', M ) mv (I/2)iog 2 M'* then the figure-of-merit r for I1lnear- assoclator

systems satisfies

T1WL)1iog, M42

r == 7TW)- = T!W).L (.

where L Is the load, Thus the throughput-merit for the outer-product assaciator Is just the product or

the two merit Parameters dlerived earlier. This product however has the additional property that It can

nevor ?xceod 1. It would be of Interest as to whether the throughput-merit for the linear- associator

(without (he Hopnlid non-linearity) is roughly equal to I (or at least constant) for a large range or values

of the load If SO. we'd have that the throughput trades directly with load a-s more associations are stored.



73

In any event, we have that

1 N

- L 2M (5.83)

for the llnear-a.ssoctator. For the assoclator with no non-linearity then, the upper bound can be quite large

when M Is much smaller than N.

For the case that the Hopfleld non-linearity Is present at the matrix-output, we can obtain the

maximum r achievable by the assoclator (see figure 5-3). By (5.42), the number N In (5.02) Is larger

than irMn M. Replacing N by this value In (5.62) gives the upper bound

2M 2TtW)
<7IW)-r T VMIn M 7rln M(5.8)

Since TTW) = 2nO/(rM) . we have the bound

2nO 2 4n0
r < - -- (~s

rM rin M 7r2 Min M

which Is much smaller than I if the number of stored prototypes Is larger than n. By way of

comparison, the linear associator could conceivably have a r as large as 1. However this has not been

established since the throughput or the linear-associator has not been determined.

A figure-of-merit relevant to the memory Is apparent from the results or chapter 2. By relation

(3.13), we have I(Gk"" G,) - J-(W) . Therefore the retrievable-fraction of stored information Is

M!(Gk": Gk)

A H(W) (5.66)

The retrievable traction, by relation (3.14), cannot exceed 1.

For the non-llnear assoclator, we can find the maximal retrievable-rractlon from knowledge of the

throughput. Remembering that the largest that the Input-Informatlon can be Is n, bIts, we use the

definItIon or throughput to get

A TIW )I(F ; F ) M (2n , ,f)n 1  4

(I 2:'.Mog A - (1. 2)nlog' Al :log . A1
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This parameter Is quite small tor large systems that store many assoclaclons. For the Hopfleld- non-)) near

assoclator. systems become extremely sub-optimaI as the system-size gets large.

5.8.3. Search fr an Overall Figure of Merit for Memory

It would be preferable If an overall figure-of-merIt. for memory-perrormance could be found. This

figure. called the memory-merit. . should reflect all aspects or Memory operation and have the

property that a memory could In principle attain a memory-merlt or one. An attempt to define X4 might

involve taking the product of T, ;.& . and ?I to get

A = r 17 5.68)1

For memory systems whose load L can be defined, one can restrict consideration to Memories that are

not overloaded O e. L < I ). The load could then be Incorporated into A4

"A rorL (5.6g)

The erflclency Y) Is l~ust related to the representation used fr the weights or the memory and is theretore

Indicative or lIritations ot the memory's Implementation. This parameter should be dropped It only the

memory's Inherent properties are to be considered

'A A,(5.70)

It there Is a ganeral flgure-of-merlt, for memory, this last one may be close to the mark. On the otner

hand, we saw In re~latIons (5.6 -562) and (5.88) that r Is related to both pu and L., so one may wonder

It A4 In 1,5 70) may contain redundant Information. Also, there may be tradeoffs that torce the value ot

one of the factors In (5.70) to be low when the other Is high. Uf this true even in principle, then It Is

possible that no memory can achieve a merit of one and the memory-merit would not satlsty the

derInItIon of a figure-of-merIt. This possibility seems unlikely based on calculatlons done by tbe author.

in ract. It '!e outer- product [Inear-assoclator has an optimal throughput !rnear one tot large systems). It

Is pcssibie! th-it t, ouj I te have a, memor Y-merIt approaching one as the assocl:.tor size gets large.

5.5.4. Classification Figures of Merit

For as:l-to.a merit parameter that can be "normalized" to produce a %iure-of-merft Is hard.

to ott aln WlthOUt Imposing artfincIal constraints. One merit measure worthy of consideration however Is

the ratio of the t1t3 n-PAi-I to encode the classifiable Input set to the number of bits needed to represent

the 'Ate~gcrls at the out~ut. Thfs Is called the fan-in. The parameter is or Interest because It reprtsents
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the capability or the system to react to a very large Input-space when It has stored a relatively small

'representaton-spaceg. Indeed, this Is the very essence or classification. A c!'-islfler 'fiters out, non-

essential Information allowing subsequent systems to provide ror rar rewer contingencies. Unfortunately. a

classifier can achieve a high ran-in by classifying all possible Input-vectors Into one 'category'.

One remedy, Is to multiply the ran-In by the storage-load or tbe system. A system with a large load

will hve stored a maximal number or categories and so the product or the ran-in and load will be

maximized by systems that can classfy a large portion or the Input-space even when storing a large

number ml or categories. With this In mind, we consider the ran-in alone when the number or categories

is a fixed value Af. We will derive the optimal or ran-In for this number or categories and use It to find

the 'normalized' fan-in merit.

To calculate the ran-in merit fM for the llnear-assoclator, note that the logarithm or the classinable

space Is roughly n I + (I - R)iog2 M by equation (5.38), where R Is the redundancy. The number or bits

needed to label the Ml different categories Is log2 Ml bits so the ran-In f Is

nI + (1 - R)log 2 M n

f = Rlog 2 M log2 M

where R Is the Input redundancy. Note that n1 /log 2 M Is the maximum redundancy that can be

racliltated by the Input. To get a normalized figure or merit, we first make the constraint that the input-

space has entropy n and the output-space being composed or M categories, has entropy log 2 Al. Also

note that R > i, 7W) > 1,T .so by (5.80)

Mlog 2 Al

H(W) (5.71)

and so the largest value f. or f Is defined by

nI! ,Alogq Al
fo --- l(5.72)

0 log,, .\ H(W)

The fan-in mprt f Is then

f fo 5.731

T gt th morit r,,r th, non-,lnoar 3zso,:ator. re-all rom relation (5 42) that .\ > -.Afln Mt So that
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Mlog .f H(W) < 2 '(irn At) and because R > )rM,'(2n/) we have

n SV n 1 2 (5.74)
- log2 M 2n 0 /og 2 M +inir M

One final conslderatlon Is a parameter that measures the ratio or the size or the classification space

C to the size or the Input space 7. The higher the ratio, the more or the Input Is classifiable. The ratio

will be called the Incluslon ' and Is defined by

(5.75)

The theoretical maximum for this ratio Is MI'- R where R equals the lower bound In (5.71). so

I < Mi1 -Mio 2 M/t)W) (5.70)

So the Incluslon-merlt t Is 2 divided by this theoretical maximum. The result Is

I
M- og, M/H(W) (577)

From previous considerations, the t for the non-linear assoclator has the upper bound

L < kfi - rM/(2,O) / ,1rI - 2/rIn M = .I2/(,ni M) - rM/(2n )  (5.78)

A good overall merit parameter for classification might be the product o the load, the ran-In merit,

and the Inclusion merit. The issue o finding an overall figure-o-merlt for memory and classitication

might not be hard to address. The author has only recently defined these merit measures and has not yet

fully ,xplored the alternatives.

In rassing, we might add that these rlgures o merit can be quantified for the 1lnear-assoclator once

the throughput o the linear version o the classifier can be determined. We conjecture that the linear-

assaclator may be very nearly optimal In most respects when the matrix size is large. As far as non-

flnparitles are ,:oncerned. any non-linearity will cause performance degradation. However. "slgmold" non-

llnearitup used In so many ,-onnectlonlst systems (see 22. 24. 40), will perform reasonably well If they are

not t)o "ztep* In arti~u~ar. ,f the rising portion of the sigmold is broad enough to enompass most of

,np -iran-e of the ornponents or tne matrix-output-vector, most o the matrlx-out ut information 'Alli
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be retained. ThOUgh the author has not made the attempt. & ,maxImaj steepness
° necessary for negligible

Information loss should be eusily obtainable using something like the taIls-lemma of appendix A. Here, one

would use the slgmold to limit the range of values that the components can assume as was done for the

matrx-welgts In the previous chapter to Improve efimciency. In any event, the Hopfleld non-linearity

represents a sigmoid with 'nlfnte steepness' and so provides the lover-bound on performance for

sigmoid- non- linear outer-product associaLtors.
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Chapter 6

Summary

6.1. Contributions and Accomplishments

The most Important contribution o this work Is the characterization or memory and storage In

terms or Information theory. For memory, the primary accomplishment was evaluation or the matrix-

entropy and the proor that It bounds the retrievable Information. The bound was subsequently used to

determine the amount of Information stored as a function o matrix-size and number of associations

stored. A criterion for minimal performance was obtained through the definition of channel memory.

This criterion was then used to bound the number or Items storable. We also dealt with the notion or

retrieving Information via separate OaccessesO to the memory, one for each item stored. Though

Information obtained this way Is not the same as that actually stored In the matrix, we find that the

latter is an upper bound on the former.

Use or the concept o the matrix-channel allowed us to characterize and evaluate classification o the

associator. For this, the tundamental concept defined was the matrix-throughput which Is the ratio o the

output Information to the Input information. The simple linear relation between the two for the

associator with Hopfleld non-linearity allowed us to quantity the fraction or the Input-space that Is

classifiable and obtain minimal requirements on sub-teatures of Incomplete-input vectors needed for their

proper classification. We also noted requirements on the matrix-size as they relate to the task required.

We round that an associator with Hopfleld non-linearity, expected to classify Inputs that are nearly

orthogonal to their category-exemplars, requires 50-100 times as many weights as does one that merely

stores Its prototypes. The latter system Is a 'degenerate' classifier. It can properly 'categorize' an Input

vector If that vector Is an Input-prototype. Such a system would not be very robust in its classification of

Input-vectors that have a significant number or Obits' In error. In any event, there Is obviously a tradeott

between the number or categories over which the associator can divide the Input-space and the traction ot

the Input-space that can be classified. The more category discrimination required or the system, the rewer

vectors can be classified given a flxed matrix-dlmensionalltles.
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We mention that In some sense, the assoclator is not really doing classification unless the output-

dimensionality Is very nearly equal to the logarithm or the number or categories stored. We were merely

Interested In conditions under which the assoclator would pass through Information useful to a subsequent

stage that Is to determine the category to which the Input to the assoclator belongi (see second-stage of

5-3). An associator could be said to classify Its inputs if the outputs it produced were much nearer to the

output-prototypes than the respective Input-vectors were to their exemplar-prototypes. In the case or the

Hopnleld-non-linear associator, the average distance of the matrix-output from the *correct* output-

prototype is no(" - PG) We can decrease this distance by torcing pG to be near one or by keeping no

small. The first or these can only be done by storing less than n, categories where n I Is the dimension

of the input-vectors (see equation (5.15), page 39). The second option Is fortunately in keeping with

optimal performance or the classifier. In fact, we found earlier that a large Input-dlmensionality allows

classification of a very large number or vectors for a given matrix-size and storage-load. This Is probably

the most Important finding concerning assoclator-classiflcation. A matrix that *fans in' so that Its Input-

dimension Is much larger than Its output dimension will give the best classification performance for a fixed

matrix-size and number of stored categories. Thus we have an architectural specification based on

Information theory. A classifier does data-compression so that the output-handles much less entropy than

does the Input and the matrix dimensionalltles should reflect this fact for optimal performance.

Arter evaluation or the performance or the system, we obtained figures of merit for both memory

and cla.ssiflcation performance. These were 'normalized' with respect to optimal lnformation-theoretlc

performance limits and so serve as a basis or comparison of general memory/classifler systems. The

associator with Hopfleld non-linearity was shown to perform suboptimally. in ract. disappointingly so. On

the 'up side', the Hopfleld-non-llnear system provides a lower bound for performance of assoclators with

'sigmold' type non-linearitles.

6.2. Limitations of this Investigation and Future Directions

The main limitation of this work was that It did not address the Information content of the actual

matrix-output (labelled G,' In figure 5-3). The problems with the analysis are mentioned on page 67.

Once this Issue Is addressed, one may be able to determine the optimal performance of any assoclator with

sigmold non-1lnearity on its output. What's more, the storage bound was merely an upper bound to

performance. Knowledge of the amount of Information present In the matrix-output would determine Just

how tight this tound Is. We also assumed that the Information at the output of the matrix Is all useful to

, second-stage roce4s that must classify the output-vectors. This Is not necessarily true but is probably a

good msumrtlon Jue to the fact that the associator maps similar Inputs to similar outputs and the fact

that w. ,,aractrllzed information at both Input and output in terms of vector-51miiarltY.
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A rather serious shortcoming of the analysis was that It assumed that the prototype vectors were

chosen randomly, that Is they were *balanced-Bernoulli' vectors. In reality, If a system acquires its

prototypes by encoding representations of *stimuli' or 0concept.s etc., it will most likely have correlated

prototypes. So while we did not require orthogonality of the prototypes, the requirement that they be

uncorrelated (randomly selected) Is too stringent. The problem Is confounded by the ract that storage

capacity most probably degrades In the presence or inter-prototype correlation; the sensitivity to

correlation becomes more pronounced a.s the system-size gets large.' 0  This is a serious flaw since it

Indicates that the storage capacity may not be achievable In practice. On the other hand, the relation or

mutual Information to vector geometry outlined In appendix B may provide a means by which a set or

prototypes can be strategically chosen so as to minimize correlation or equivalently ma x-imize mutual

Hamming-distance. If such a method could be easily Incorporated Into the encoding process, these systems

could in fact achieve better-than-optimal performance since Ode-correlation' could produce prototypes

more mutually distant than random selection can.

Another Issue not addressed was classification performance when the number or stored categories

was less than the Input-dimenslonallty. The analysis in the clas fication chapter would probably extend

to this case it the linear arnroximation to P on page 59 was changed to a quadratic one for more

accuracy. Even without this change however, the linear approximation overestimates PG so the

performance bounds derived In the classificatlon chapter apply to the case that the number or stored

categories Is small. The upper bound merely becomes looser. As the number of stored categories Is

diminished, p. Increases but not as rapidly as the linear approximation would indicate. Note that even

when the number or categories Is less than the Input,-dimensionallty, the analysis applies to randomly

selected Input-prototypes not orthogonallzed (forcefully-decorrelated) prototypes. This Is an advantage

since It represents a relaxation ot the orthogonality restriction needed for perfect retrieval (see !21. p. 181).

Regarding tuture directions, there are too many possible avenues tor continuing this work to

mention here. Two however are o primary concern to the author. First is the analysis of the auto-

assoclator as both memory and classifer. This extension is not without obstac,:: however. With respect

to memory, the weights ot an outer-product matrix are less Independent when the output-prottypes are

Identical to the input-prototypes. On the other hand. the Individual weights (excluding those on the

diagonal which are constant and so contribute nothing to the matrix-entropy) will have the same

distribution as those or the hetero-assoclator and should be nearly Independent when many prototypes are

stored. In any event, the matrix-entropy of the assoclator Is less than tor a betero-assoclator so the

storage wI;. be limited accordingly. Another problem regards cla.s.siication. An auto-assoclator requires

10 The evidence for this wa obtained by a *cursory" investigation conducted by the author. This analysis was not
included since it depended upon erroneous independence asuumptions of vector dot-products ad so ray have been
inaccurte-



the output-dlmenslonalltY to be the same 3 that of the Input. The present Investigation indicates this

condition is suboptimal for cla ifcation performance.

One method tor solving both problems Is to use a hetero-associat-r (with output-dimension smaller

than that o the Input) but reed back the output Information In some constructive fashilon. However. even

if this can be done, the amount or output Information must be sizable In comparison with the amount of

Input Information present at the start of the auto-association process. Ir the amount or output

Information Is less than 1/2 or 1/3 of the amount of Input information. the Incremental Increase in

Information available at the output after several 'IterationsO of the auto-a-ssoclator will be only

marginally better than that available to begin with. The _ithor believes that the auto-associator wIll

therefore have greatly improved classifIcatIon performance for light storage loads but will not gain much

storage capacity as a result of the auto-associative feedback.

We also mention that theorem 1. page 28, does not apply to the auto-associator since the Oretrleval-

address* Is not Independent of the datum to be retrieved since the input Is generally a partial rendition of

the datum to be retrieved. The theorem could be modified to take this Into account, but the bound on

retrievable Information will be different. The auto-a.ssoclator has the advantage that the Input partially

specifies the output, so the auto-assoclator needn't 'work as hard' when the Input specIfles a substantial

portion ot the output. The result should be Improved classiflcation-performance over the hetero-associator

even though the auto-assoclator has a (perhaps marginally) smaller matrix-entropy. In any event, the

author believes that the methods used to evaluate classification o 0slngle-feature* vectors might aid

quantification o the performance of the auto-asoclator.

The other direction o research to be mentioned is the storage o prototypes whose components are

zero-mean gausslans. This Is a more natural mode of storage tor the outer-product associator since the

output vector produced is best characterized as the proper output-prototype embedded In gaussian noise.

The author believes that the analysis would begin with the nolsy-slgnal analysis ot Gallager In :12, p. 32,

Example 4 and proceed with evaluation o the matrix throughput.

Lastly, we mention that assoctators built from other storage rules such as error correction have not

been created. This may be a much more difficult problem since evaluation o the matrix-entropy could

problematic. in the event that It can be determined or approximated, the theory presented here woulI

then be applicable for performance evaluation. The result could be a theory relevant to multi-layer error-

correction system5 such as the Parker, Rummelhart $backpropagation' networks.
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6.3. Epilog

At this point. I'd like to let my editorial hair down and relate a couple Interesting observations.

First. notice that the prototypes were treated as vectors that were to be distinguished as exemplars of

distinct categories. A.s such, a premium was put on their dissimilarity so that tbe system could tell them

apart. Though this may not be desirable In all associator tasks. It points up an Issue regarding the

'symbol' view of intelligence. If we Identify the stored prototypes as 'symbols' one could view symbols

as a means or performing large-scale data-compression on the environment. This not only enables a

system to vastly simplify its representation of the environment, but the identification of such symbols In a

cognitive system could subse4 uently provide a parsimonious theory of cognition (Yes, I know, *traditional

AI already knows this). Not that the Identification would be easy, (if symbols can be said to exist at all.

they are probably too *plastic' and malleable to be static entitles) but In the assoclator at least, the

symbols are the prototype pairs. The Input-prototype reflects the system's 'ideal of a most typical

'object type' within a large class of objects, and the output-prototype reflects the system's representation

of the object. The object at this level, is known only as It belongs to a generic class of objects. All other

information is 'discarded' as irrelevant. The analysis done here showed data-compression as a

consequence of the presence of symbol/prototypes. However, the relation should go the other way as well.

as evidenced by studies of 'compressed*, Ohidden-unit' representations generated within backoropagation

networks. The symbol Is doubtfully an explicit reature or the brain, but Is probably an emergent property

or data-compression.

While I'm making conjectures about how the brain works. I might as well take a stab at the amount

of Informatioi, it cn store. The figures obtained here are doubtfully accurate for biological brains but

serves as a prediction made by the following simplistic assumptions

. The whole brain participates In storing roughly N Items where N is the number of connections
In the brain.

2. The connection strengths are normally distributed with variance roughly N.

3. The effect of all connections on a neuron Is the linear sum of the individual effects.

How embarassing Anyway, assuming 10.000 connections per neuron and 1l0 to 101, neurons per brain.

we get 1014 to 1025 for the number or connections. The information storable Is then roughly N og. S or

4.SxI0 I $ to 5x10 18 bits, or roughly a billion megabytes.

The only thing that will rescue this estimation is Its crudeness. The noteworthy thing though Is that

the theory does make a preliction. It would be interesting If in the future, a better understanding of
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cognition, braln-dynamics would render better assumptions than the ones given here and It so, how these

assumptions affect the estimate In relation to the one I've Just made. I leave It to the reader to estimate

the maximum number or stimuli the brain can possibly classify. If you come up with a number (boy.

would It be bi') let me know what it Is over dinner and tell me what your assumptions were. Just don't

publish It as a research finding (did you know that we only use 10-percent of our brains! . . .). Well. I've

put In my ten-percent, thank-you!
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Appendix A
Entropy of a Binomial Random Variable

In this section, we show that the entropy of a binomial r.v. Is approximated by the entropy or a
corresponding normal r.y. In this development, a binomial r.v. S is a sum or t I.i.d. Bernoulli trils ,

where a Bernoulli trial Is an r.v. with outcome 0 or I . We will only consider binomial sums or

balanced BernoulIlI-trials. that Is. Bernoulli trials whose two outcomes are equiprobable. Such a binomial

r.v. has variance n/4 . and as we will show, has entropy that approaches that or a normal r.v. or the same

variance. The entropy of a normal r.v. with variance n/4 is . )log 2 (Fen/2). Therefore the rollowing

theorem will be proven In this appendix:

Theorem 1: Let S be the binomial r.v. associated with the sum of n i.i.d. balanced

Bernoulli-trials. Then

lm (H(S) - (1/2)log 2 (Xen/2)) = 0 (A.1)
n - 00

The rate of convergence is not treated, but numerical tests have Indicated It to be fairly rapid. It would

be of Interest to study not only the rate or convergence, but whether or not the convergence is monotone

In n. That Is. one would expect that

I H(S+ - (1/2)log 2 (Yre(n + 1)/2)1 5 1 H(Sm) - (1/2)log2 (7en,r'2) j (A.2)

tor all n = 1. ....

The rate and manner ot convergence are not explicitly dealt with though they possibly could be Inferred

rrom the proof that follows.

A tew lemmas are needed to obtain the result. Each lemma specifies that some sequence or class o

sequences exists that ensure that a specific Inequality be true. Constraints on the sequences sutficient or

the Inequality to hold are specitied by each lemma. After the proot o the lemmas, the proot or the main

theorem begins by showing that a sequence exists that obeys the constraints o all the lemmas

simultaneously All the respective Inequalities will then hold and they can be linked together with the
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'trangle-inequalitya to give the result of the theorem. Arguments used In the various proofs were

motivated from developments In Feller '11 and RudIn [391.

The proots to follow generally require that, given an arbitrarily small real number ( > O some

positive quantity that Is a function or the positive Integer n will be smaller than ( for all sufficiently

large values or n. No generality Is lost by assuming that e is less than 1. This a8umption wil be used

throughout (except where otherwise stated). Further, to simply the arguments and notation, we consider

only even values or n . The argumenta for odd n would be the same but n/2 would have to be

replaced by (n - 1)/2 . Finally, the result or each lemma wIll hold when e Is replaced by C/4 since ( is

an arbitrary positive constant. This will be Instrumental In the proor ot the main result.

Notatlonaly, . (z) Is the normal probability-density function, i/(V 0xa) • ezp(-z 2 /2 0r 2 ) for a

normal r.v. X with a mean equal to zero and variance o2 where a > 0. We will be concerned with

a= Vn/2 and will use this value for o throughout. The standard normal density function

I/v/,.- exp(-z2/2) will be denoted O(z).

A.1. Ignoring Tails of the Normal Entropy Integral

The entropy of the a normal r.v. with variance f2 is given by the integral

f-0 - 0 (z)log 2  a(z)dz . The flrst lemma allows approximation or the normal entropy by Ignoring the

'tails' or this Integral. We show that for a = O{n) =_ v/n/2, a posItlve-integer sequence {r.}. of order

O (vnlog2 (log2 n) ) exists that grows rapidly enough so that for any positive c , th, Ir!!egral

/n. --/P(- )log 2 0,a(z)dz

Is within e or the true entropy tor all sufflciently large n . From this It follows that it {S.) is a

sequence whose elements exceed those or (r tfor all sufficlently large n then the Integral

-_ log 2 0 dz

will be within f or the true entropy. This property we will call asymptotic convergence In

partl''ilar, If () is or higher order than (r) then the Just mentioned Integral has this asymptotic

property Our -oncorn Is to ln'd a lower estimate of the order or (rj} that is sufficlent to guarantee

35yMJcti. "on",-rgenrp The following lemma and Its corallary state the result.
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Lemma 2: For each n - . 2..... let Xn be a normal r.v. with variance o" where

a= V n,2. Given f > 0 there exists a positive-integer sequence {r} of order

0 (v log 2 (log 2 n) ) with the following properties:

i. First property- There exists a positive Integer N i such that ir n > i then

1H(X) - - 0 (z)og 2 0(z)dz I < e
'n

2. Second property: If (8,J has the property that ror some positive Integer N 2 .
n > N 2 implies s ,_ rn then (on) has the first property.

22Proof- For any n the entropy or X.Is defined by

H-(Xn) =--- -a(X)Iog2 OC(zlcdz

= Ulrn J (X)Iog I0 (z)dz (A.4)

Since X is normal with variance e the entropy H(X) is equal to

I,2tog2 2ro2 < oc 12. p. 321. Therefore the limit above Is finite and by definition or
Ilrn . a positive Integer rM exists so that r > r Implies euation (A.3) with r.

r - CO

replaced by r . We now show that for fixed e > 0 . a positive-integer sequence (r} can be

chosen as an 0 (V'nio&2 (log 2 n) ) function of n so that property I holds.

Note that ,(Clu) = I;X -(u) . Substituting the variable u = z/a Into the integral or

(A.3) and letting 6 = r . one obtains

ri b

- (z)og&, 0(z)dz = a -0 (o'u)log2 0(au)du

bft

- - -log 2 (€ (u)/ )du
'

SJ -~Ou)log2 P(u)du + iog, a" (u)du A.5)
91
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We denote fb -(u)log 2 o(t)du by 1i(b) and denote fb b o(u)du by [,(b)

If b Is allowed to approach Infinity, then I(b) converges to the entropy (I 2)Iog, i2 ,, e)

of a standard normal r.v. We can therefore choose a constant b such that b > b Implies

that fI(b) Is within f 2 of Its limit. No harm Is done if for convenience we take b0 to be

larger than 1.

Since the lemma Is concerned with the dependence of bn on n as n gets large, no

generality Is lost by considering only n > 132 and f < 1 4 . For such n. let i1

r= (vn,2);v2log- (4/ e)(log2 (log1 (0//2)))1/2 + b 1

Since n > 132 and f < I the quantities under radicals are non-negative. Also b0 Is

Independent of a . so that b. = 0 (/Vig o 2 n) ). The lemma will follow If we can show for

fixed n > 132 that b > b Implies

I H(X) - (Ii(b) + (log 2'a) .12 (b)) I < (A.8)

Denote lim .(b) by I.(00), i = 1, 2. From the derivation above one can see that

H(X) = I(oo)+ logo aI2(o) so that (A.8) Is equivalent to

I 1(OC) - (log 2 C) ) - (1 !(b) + (log 2 a)12(b))l < (A.)

If we show that the conditions

1. 1 t(O) - I1(b) < -
2

2. 1 1,oc -l(b) I <
2 ~ 21 log2 a

hold for b > b , then the left-hand-side of (A.7) satisfies the following

(,i)C) - log, aI.(0) - (I (b) + log, a12 (b)) I

1iTbe restrictioO n > 132 is used to diminiih the chain of inequalities on the next page concerning the prameter 6
It also allows use of a sequence { n} whose terms are as smail as possible, tbough tbLs La t necessary to obtain a suitable

sequence.
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= I (0c) - 1 (b) - log2 C112 (x) - 12(b)) I

cI (c) - I (b)( - flog2 alI c :(oc - [ I

< -- log..,oI.... s;<- 2log2 lg]

and the conclusion will rollow. Since b. > b0. condition I Is satisfled by definition or b0. We

therefore need only consider condition 2.

To show condition 2 Is satisfied, we observe that if O(z) Is the standard normal
distribution function then we have :11. vol. 1. p. 1781

1 2,
1- O(z) - exp(-z ,'2) all z > 0 (.4.g

Also for b E R. 0(-b) 1 - 0(b) so that

12 (b) .= J0(u)du = 0(b)- #(-b) = 20(b) - 1 (A.1o)

and

12() - = (A. 1)

This gives

I(oo) - 12(b)l = I1 - (20(b) - 1)1 = 211 - 0(b)l 2(1 - O(b)) (A.12)

We make the observation that the equation z + y < z y Is satisfied tor all z > 4 If

Y > 4/3 . Identifying z with log2 (4/c) and y with Iog2 (Iog2 a) , we see that under the

assumptions ror n and e that have been made on the previous page, we have z > 4 and

y > 4/3. For b > b . we have the foilowing chain or inequalities:

b> b

> v210g2 (4 )vlog2 (log 2 a) ..-

> 12og2 (4 2) - .10g2 (10g 2 a

I m • • ii2
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2 /0o2 ((4 0iog 0

b2  2) <o t 2> b

Therefore -- < -log, ((4, )og, 0) 50 that exp(-b ) < - O b, > I (by
2 2 fog, a

choice or b0 > I) and we have by (Ag)

2 _ b e p

2(1 - (b)) < - exp(-b 2 2) < 2 exp(-6 2/2) <
41o0 2 a 2Iog., a

Using (A.12) this gives condition 2.

To finish the proot, we note that {r.} as deflned Is 0 (v'lg 2 Iio g2 n )  We have finished

showing that the first property or {r } holds for N, = 132.

ir {,} is a sequence and N2 a positive Integer such that n > N2 implies a _ r

then set N max { N1 . N 2 }. Since -0,,(z)Iog 2 0,(z) > 0 for all z, It follows that for

S> N

H(X) 0 (z)&og 2e(z)dz

= - o(Z)2 0,(z)dz
1-6

ft

f> -0,(z)lo2 0,(z)dz

so that

In

H(X,,) - f -O(z)log2 0,(z)dz I

< I H(X,) - f 00 (X)iog 2 4(z)dz I <

From this we see that {3,} has property I mentioned in the statement of the lemma.

we get away with freely intermixing ba.se-2 and natural-bue logarithms due to the use of the inequality. That is, for

z < I ,we bave that Y < log,, z implies exp(ly) < exp((o 2 e) lo) 2 e < z. In thi ease, y - -b/2 andSz -, /I(41O, e).

! z
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The roilowIng result Is Immediate

Corallary: If {3} is a sequence of order larger than 0 ( /niog, -(og, n) ) then there Is a

positive integer .N" such that n > N implies13

IH(X ) -f --(w(Z)lg 2 0 a(z)dz I < c

A.2. Discretization of the Normal Entropy Integral

The statement and proof of the next lemma use notation borrowed from RudIn in 139. Ch. 51 In his

development of the Relmann-Stelltjes Integral. The arguments he gives in theorem 0.8 13). p. 1251 for the

Integrability or a continuous function on a closed Interval Is extended to our situation. We desire to

approximate an Integral wlth a lRelmann-sum. however the limits of Integration are not fixed and the

Integrand varies with the number or points on which we sum. Our notation, which Is only slightly

different from Rudln's. Is a.s follows. If b > 0 then a paittllon P or the closed interval -. bI is a

finite set or points {zi},,_such that -b = z-f < z-,+- - " ... < z = b. If f(z) Is a continuous

function defined over 1-b, b, Its maximum and minimum are attained over any closed Interval In the

domain of f so we put Mfi = max 1(Z). Mfi = imn m (z), i = -r,-r+l .... r-1. The
(zs~zi+l i Xi ,Zi+ I I

quantities Ub(P.f). and Lb(PJ) will denote the sums

p--I p-I

(P.tV= M(z.+t - z.) and L(P')= m(i., -i+ - )

If InrUb(Pf) and supLb(P,.f) are finite and have the same value, their common value Is called the
P P

Retmann-StelltJes Integral or f over f-b. bl denoted by f_6 f(z)dz. From the definitlori or the

Integral just given, It Is apparent that ror any fixed P

SIb 5Pbff(z)dz)

.Ajso the same bounds apply to the sum I f(zi)(zi+4  - z,) since rnl < f(z) < 1 forfor
- -?-.r- 1.... -I.

13By 'larger thin 0 (1n)), where fin) > 0, we mesa a sequence {g) such that for Ley constant C > 0 there is

Sn N so that n > N implies o > C.fn).



Before proceeding to the lemma we state the following propositions.

Proposition 3: For any a > 0 the functions P and f(z) -- 0(z)log, P() have

bounded fIrst-derivatives over the domain R.

One can show that both If(z)l and j0'(z)I are continuous over R and approach zero as z - ±3c

These together Imply boundedness over R . The second proposition Is

Proposition 4: Let g be a function differentiable over a connected domain D C R
and let B be a positive constant so that the derivative g' satisfies Ig(z)1 < B over D.
Then g Is uniformly continuous on D with jg(z) - g(y)l - B'!z - y[ for all z. y E D.

Proof: Because g Is differentiable, It It continuous and so Integrable over flnite
Intervals. We have the following Inequalities

fg(z) - g(y)l = I g(u)du I - f1 g(u) Idu < B jz -

yielding the desired result.

We now state and prove

Lemma 5: Let a = Vn/2 and let (r.) be a sequence of positive Integers such that

b(n) M rn / is o(Vni'log2 n) . Given f > 0. there exists a positive Integer N such that

n > N Implies

f

I ] 0(Z)IOg 2 or(z)dz - 0 (i)og2 0 () I < (A. 13)

Proof: We continue to use f(z) w -i(z)log 2 O(z). As shown In the previous lemma.
the Integral In equation (A.13) Is the sum or I (b(n)) and log2 a./ 2 (b(n)) where the functions I
and 4 were deflned on page 86. In a similar fashion. one has

-%llgel() lf Po) l4.4

n n
ft ft ft

Let S (n) and S,(n) denote the flrst and second sums on the ,!ght h:,cd sl *. respectively. The

lemma will follow it we can flnd an N so that n > N Implies
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I (

log., ajl, b) - -S,(n)l < - (A."16)
a °2

To obtain, this we will require that N be large enough so that

1
41 e

-- (Iog a)(P(r /a) < - (A. ISa 2 n 4 (.8

for all n > N. From proposition 3, we have the numbers B, maxlf(z)l andR

B 2 = max I1(z) . Let N, N 2 be Integers such that
R

(ioB Ib(,N))2

2.N>

2. N2 > ( (log 2 '

and so that all n > N. satisfies each or these when substituted for N., i = 1. 2 . We also
require that N Is large enough that n > N, implies relation (A.17) and N2 Is large

enough that n > N_ Implies relation (A.18). Such numbers N,, N 2 exist since (6(n))2 and

(b(n)log 2 (vn/2))2 are o(n) and the left-hand-sides of (A.17). (A.18) are o(l).

Fix n > max ( N 1, N 2 ) and for notational convenience let r = r and b b(n).

Let P = {z.} be the partition of -b. bl with z. = j', a = -r. -(r -). r

(remember r = boa by definition of b). Notice zi+ l - z. = 1/a = 2/V/'n. To show (A.15),
we use the ract that n > N . Now MA. - /= f(z)-f(y) for some z. y E :z, z and

we have 1z - YJ < 2 v/n. From this one obtains ,i' - mfi < B .2/v/n by proposition 4.

Since n > "V\' n satisfies item I above so that l,'VK-n < and we can write

2
"fMb- nI < B- < -

Vn 8b
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From this It follows that

U6(P 'D) - Lb(P 'D = (M i -m f)(z i+I zr)

p-!

8b 4

Also

! 11

;SI(n) - - f i/,) = zd fz.)(z. -z=) + -(r/c)

- Q1(n) + -f(ro')

where QW(n) Is the sum 71_f(z)(z. 1 - zz). Note that Ql(n) Is bounded above and

below by Ub(P.J) and Lb(P.f) respectlvely (by definition of these two latter quantities). By

definition of the Integral. 11(b) Is bounded above and below by these same quantities. It follows

that J1 (b) - Q1(n)l < C/4. From this and relation (A.17). we have that (1/c)S(n) is

within E/2 or 1,(b) so that (A.15) holds.

The arguement that equation (A.l0) holds Is similar. In this case. recall that n > N 2 so that
Item 2 holds. Using the notation for the function 0 analogous to that we used for I, we have

2B2

. O- < sblog2 (Vn/2)

and

Lb(P.) - L6(P,¢) = . (Mi - Min)(zi+1 - zi)

< 2b -

8b0og. (V/'-, 2) 410, (v'n 2)

FInaln. let Q,,n - .- (z )(z. - z ) and notice that Q,(n) Is bounded above and
- -? i +1 i

below by ''P ^ and L (P.0) respectively as Is 1,(b). Therefore we have that
6
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112(b) - Q,(n)I < f 410g, o,. The Identity (1/a)S2(n) Q2 (n) - (1'o) (r'o) and relation

(A.18) then Imply the Inequality (..16). The lemma -oliows with V = max {. ..

A.3. Approximation of Binomial Entropy

A.3.1. Error Bounds for Logarithm Terms

Feller's development 111. vol. 1. p. 179-1821 Is expanded here for the sakle of providing

approximations to terms o the binomial probability function and bounds on the error or approximation.

First a tew observations with respect to logarithm approximation. We start with the Taylor series for

In (l + t) which Is known to be

00 (-_),

In (I + t) = t.i o It < (AI:<)

and tor In (l - 0 it is

o tI

-in(1-t) = t.-00;+ 0 < ItI <i (A.20)
i-O

so that

1 t on t2i

in- = In(1+t) - In(I-t) = 2t.-* - 0 < ItI < I (A.21)-t 2I +1

Is obtained by adding the two series In (A.19) and (A.20). See [11. vol. 1. p. 61 for details o the

derivation. Subtracting 2t from both sides o (A.21) gives

St 00 t2i
In- - 2t = 29 - 0 < It I < 1 (A.22)

We are Interested only In values o t between 0 and 1/3 so that the series In (A.22) Is positive. In other

words In 2t Is positive. Comparing this with a geometric series with t = 1/3, we have the chain

of Inequalities

4 2t a  3t3
7_-. < -= " -_- =

21 *-3 3 E- /i = 0 inoO is w

Since the serlps In (,A.22) contains only positive terms and the first term Is 1. we also have



In -- 2t > 2 . Putting these Inequalities together we have
i-i 3

203  1 - t 3

- < In - 2t < - when 0 < t < 113 (.4.23)
3 1-t 4

Similarly we can evaluate In (1 + t) - t for t In the stated range. Subtraction of t from the series

(A.19) yields

In (1 -'- t) - t -t - t2 : -
i-n0

The series Is absolutely convergent over the range of t considered. 14 One can therefore consider the

terms of the series In any order without altering the sum 13, p. 781. We group the terms of the

summation In pairs to get

2 O i t

in (1 +t)-t = -ti2

Since the terms of the sum are positive, In (1 + t) - t Is negative. To a.ssess Its magnitude calculate

00 H) ( i t 00l(ti

o t 2  F - I + 2

< t2  00 ti  - 2

E - ti1-C

Since 0 < t < 1,3. we have - < 3/2 and so

3C2
In (I -t) - tI <

and therefore

- 3t2

- < In (1 t)-t < 0 0 < t < 1,3 (.A.24)

144 series is said to be absolutely convergent it and only if it converges wbet each of its terms is replaced by its absolute
value.
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A.3.2. Expansion of Binomial Coefficients

These observations made. one can now follow the development or it. vol. 1. ch. V11.2. who derives

an approxImation to the 'central* binomial coeMclents. We will take n to be even throughout and set

v to be n 2 to simpilfy notation. The ca-se for n odd would be treated similarly with v - (n - ), 2

Let a =- -n( n ) be the probability that the binomial sum S exceeds the mean. n 2. by kk + k FS. b

Since ak equals ak. we will only consider non-negative integers k . Our goal Is the analysis of the error

Incurred when a, Is approximated by the normal density of variance n, 2,

It Is easy enough to verity that

L.v - i). (v- (k-
a ok (A4.25)ak -- 0 (v + )(v - 2) ... (P -k) ( .5

There are k terms In the numerator and In the denominator so we may divide each term by v without

changing the value ot the fraction

k-i kJ ° II I
= .-- 1I (A.28)

j-m0 P-1

For k < L113. and I < k we use the approximation I + j/'v : exp(J LI) to transform the product In

(A.28) Into

k- k
ak = aoexp k-I - E  -

k-iI

lsing the tact that Z I k -- k(k - 1)/2 one has

a , : a 0  ex p (- k 'Li,)( , . 7

Using Stlrllng's formula to approximate factorials. the term a 0  2 -(f) Is approximately V and

w, obtin the normal-.ensity approximation to the binomial coeMclent a.

aZ V .'n expi-k2 v) (.A.28)

N otice that the right.hand-side o this equation is the norm al probability-density function o an r.v . ' I

'Aith variance 72 n,4 evaluated at k a standard deviations from the mean. Allowing and f, to
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represent the errors occurring In the approximatlon (A.27) and In that or a0 respectively put

a, = a0 exp(-k 2 , e( (A.2g)

a0 = 1/7 "). exp(() (A.30)

so that
1i

ak = V' r exp(-k 2, ) exp(-((1 -1 2 )) (A.31)

This defines e! and f2 and the relation

k-1 k-i

exp(-k 2/') exp(f 1 ) = 11(1 -i/a) / (-I + k/v)Il (I + j/V) (A.32)

Is obtained rrom equations (A.26) and (A.29). Taking logarithms ot both sides

k-I

-k/ = In I n(I + k/v)

Using the ract that k2/v 2 J= I j/'V + k/v we solve for t

h-I
1- - -j L, 2j k k

=I Z In - + In 1+- - - (A.33)

A.3.3. Upper Bound on Binomial Tall Coefficients

We are ready to state and prove

Proposltion 6: For Integers v m n/2 and k In the range fv,n l < k < n/O the
relation a k :_ a O exp(-k 2 v) holds.

Here Feiler omits the leading sign in the error-expotent by setting *h - 2 1- exp(-k2/) exp(( - 2)
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Proof: The observations made In "he Previous section now come into play By
hypothesis, we have that k < n 8 so k L, < 1 3. We substitute t - k u' Into equa'icn

(A.22) and see that the terms or the sum in equation (A.33) are positive with the j'L" term !eS

than 3(j ,)3 4. Since - 3 = (k(k - 1))2 4. this sum Is less than

3 k-I 3 k' - k2 0

- 3  (J" = -. .. . < -40 18 3  4 3

We can get a lower bound on the term to the right or the sum in equation (A.33) by putting

t = k v into equation (A24). The sum in (A.24) is negative and larger than -3 2(k L,2

From equation (A.33) and these bounds, we get an upper and lower bound on fI:1

3 q 0
- - .k ) - < < - ( 4 .3 4 )
21 43

On the other hand. rrom equation (A.23) each term of the sum In equation (A.33) Is larger than
2(j, v) 3 3 so that for k In the stated range the sum Itself Is larger than

k-I k4 -k 2  k

2 2 -_ jlL) = _ .> -
33 4v3 8L3

Therefore a tighter lower bound on f Is

04  3
1 > . . ..- (k'"v)2  (.4.35)

8v3 2k! /

For f 2' Feller II. vol. 1, p. 1821 shows that

1 1 1 1
< 2 < 4 (A.36)

4n 20n3 4n 380n 3

;o that 0 < E2 < n/3 In any event. Combining this with the lower bound for (1 we get

0 3 k2  1

1 2 8V3 2 V2 3n

We set

3 k" I
> 03  

el - 3n

10 this section, only the lower bound will be useful. The upper bound will be useful in alater section.



to get a sumclent condition tor f- e2 to be positive. This condition Is me. tor all

k > V7n. Theretore tor k In the range stated In the hypothesis. we have that the term

exp(-, - or)) at equation (A.31) Is less than 1. Equation (A.31) then implies chat

ak < a 0 exp (- k 2L) and the lemma Is proved.

A.4. Ignoring tails of the Binomial Entropy Sum

In this section, we state and prove a lemma (called In this section, the talts lemma) that shows one

can approximate the blnomIal-entropy by summing relatively rew terms or the entropy-sum. The

approximation appro.ches the entropy or S as the total number n or terms gets lar,,.

A.4.1. Relations Used In the Proof of the Tails Lemma

Before proving the last two lemmas, a rew observations necessary. These relate to the error-

magnitude to be encountered In the tails lemma.

Proposition 7: For t In the range -1/3 < t < 1/3 , the relation

I I- exp(-t) I < 3/2 .ItI (A.37)

Proof: This Is easily seen rrom the Inequalities obtained trom the Taylor series tor

exp(-t)

0 (-t) " (-t)'

ji - exp(-t)I = -t. E <-- ItI'[ I _, IF, " I'

t 1 3= IT-I < -TT. tj = -. ItI
1-= - 1-/ 2

One more observation must be made betore pr ceedlng to the lemma. Since lm zlo& z = 0 the
z-0

functlon zlog, z  Is ontlnuous over the closed interval ;0. 11 provided we denne Oo , 0 = 0 to be

consistent with :he mentioned limit. Taking derivatives. (log.2 z = (In x)log 2 e) one can verity that the

tunctlon -zlcg, z Is unlmodal with maximum value e- Ilog, e achieved at z = e- I The tunction Is

,ontlnuous on the closed Interval 0.1 and so Is unitormly continuous In this range.
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Given ( > 0 we seek conditions on z positive such that ziog, z < C.

Propoeltion 8: Let ( > 0 be given. Then if z E '0. C and a Is any number in the

range 0 < a < i the inequality

z < (aef log 2 e)u/( - (A. 38)

Implies that

Izlog 2 zI < (.4.39)

Proof: Given the hypothesis, (A.38). solve for e to get

f > 1/a.z ! -  .e -lOg 2 e (A40)

Since z* E 0.1!. It follows that zolog2 z* < i - 1 lo&2 e. From this we have

{Iog 2 z = -Zlog 2 z = -Z -Zio (:)1/01

a -. (-zi log2 z0 ) < 12 z e ioge

The last expression Is less than ( by relation (A.40) so that the proof Is complete.

For our purposes a = 1/2 can be chosen to give

z < (ec '21og 2 e)2  im IZlog2 ZI < e (.4.41)

A.4.2. Proof of the Binomial Tails Lemma

We are now ready to state and prove the tails lemma.

Lemma Q: Given i > 0 there Is a sequence (r. ) of order 0 (v nijn) such that

H - - aiog 2 a I <..4 f

*1
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Proof: For n < 10 we can take r= n. For n > 10 choose r -,'2nlog, rJ

and notice r - I > ,rr, S!n,- , Is 0 (V/nn). we can choose an N large enough

that the rollowing conditions hold for all n > N.17

l.r < n! 6-I

2. n > (21og 2 elf(ef))

For fixed n > N, let k = r + I and write the following inequalities

k > inog n+nl&2n n> Vniog2 n + nin&2 (21og 2 e/(ee))

so that

k2  > nlog (2nlog2 e/(ec)l

and

-2k 2 /n < 21og2 (ee/(2niog2 e))

This Implies

exp(-2k
2 /n) < (ec/(2nlog 2 e))2

Since V7n < k < n/8. proposition 5 Implies a, < a. ex p (- 2 k / n ). Together with the

fact that a 0 < I this Implies for I > k:

a, < ak f a0 exp(-2k2//n) < exp(-2k 2 /n) < (et,'(2nlog2 e))-2

We see that aI satisties the hypothesis of proposition 8 with e replaced by e/n and therefore

f

a log at I < - r + I < I < n

T Notice that the second condition stipulates that the left.-hand-side of (A.421 will be less than any ( 2 21og, e/(enl
Therefore. 2og, r/(en I is rougbly the miaximum entropy lost when S Ms approximated" by a random vanable

$,,1 m {Sn  } We say 'roughly' because we have not accounted for the fact that S' will equal -t r. with a
slightly higher probability than the probability that S n will usume these two values.

I I I a
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Is the desired upper bound on *taii terms or the binomial-entropy sum. We can now verify

the conclusion (remember. n Is even)

rn n/2

HI ,, - -a ,og, a, ~ I akIog2 a, a l a~og, ak

k--n/2 A

n/2

= 12 1 -alog 2 akI
k-rn+1

n/2
2< E I ak og 2 k1 < n'f/n -
k-r rk+I

The lemma Is proved. We also have the rollowing corallary ror sequences or higher order than

the sequence {r}"

Corallary: For f. {r} as In the lemma, let (a) be a positive Integer sequence such

that n > a > r for all n, then

n n

IH(sM) - E. - aklog: 2 ak <
k=--#

Proof: The terms In the sum above are all positive. Since n >a r we have

n n

H(s) - -akiog -> & - iog&2

n

E -akl. a k

kkm--i

Because the lertmost quantity In this string or Inequalities Is within or the rightmost
quaatity. the result or the corallary follows.
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A.5. Similarity of Binomial and Normal Entropy Approximations

We have *chopped' the tails of the normal entropy integral and then discretized It to obtain a sum

as a close approximation. The tails or the binomial entropy sum were also 'chopped* to obtain an

approximation that is a sum or tar fewer terms. We now need to show that the resulting approximations

for the normal entropy and for the binomial entropy are good approximations or each other.

Lemma 10: For n 1..2. let a = vn/ 2 and let (r,} be a positive-integer

sequence In 0( niog. n) Given f > 0, there exists a positive Integer N such that

n > N Implies

S-%og 2 'k -00-(k )og 2 0(k) I < (A.43)
ki--s ~m-

Proof: The sequence {r,} Is In 0 (vnlog2n) so we consider the case that r, > v/n

for all sufficiently large n Also there exists a C > 0 such so that r < C. nVog2 n

for all n. It toliows that a positive Integer N can be chosen so that Vn < rn < n/0 for

all n > N 0 . Let n be in this range and put t=- --(-2 where f.'2 are defined by

equations (A.2g) and (A.30) as functions of the positive Integer n and k = 1. 2 ... n.

From these two equations we have that ak 0(k) exp(-t) and for k = 1. 2. r we

can bound the terms or the difference (A.43):

-a log 2 a, - (-0(k)'og2 Oa(k)) I

= I -0e(k) exp(-t)log2 (0,(k) exp(-t)) - (-0 a(k)log 2 00 (k)) I

= 10(k)(1 - exp(-t))Iog 2 00(k) + 00(k)t.. exp(-t).log2 ei

< 10_(k)iog2 0 (k) I.1 - exp(-t)l + 10 (k)l.It.l exp(-t).llog, el (A.44)

We need upper bounds on the terms I t I and I - exp(-t). To get an upper bound on t

consider the following.

Since r > v3,. we have r n, 4v 3 > 3r 2/2M . For any k < r we get

isThe ease that f < / results in a smaller number of term. being summed in relation (A.43). The upper bounds

for the error denved in tbis section would still applicable to these terms. By summing less tern. the total discrepancy

between the two sums in (A.43) wil be less. bence the case that r n < A is subsumed by the case that r n > Vin
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3k2 3r r 4
3k3

also k 4 '(4 VA 3 r n(V3 By equation (A.34) then, we have that

4

I~I < S

Since f2£ < n,,3 we also have ' 2 < r.4 1 (4v3 ) and so

= I£ f,- 21 I f1I +I1 21 < r.4/(2v 3 )

In turn, rn 4/(2v3) is less than 4e4(10g 2 n)2/n where C was defined at the beginning or the

p root.

To get a bound on 1-exp(-t) Iwe take a positive Integer N, so that n > N

Implies that 4C40iog, n) 2 /n < 1/3. Thererore we have t~ I < 1/3 and so

I1 - exp(-t) I < 3/21 t Iby proposition 7.

Finally, for It I 1/3, exp(-t) Is bounded. Let K be a constant so that
exp(-t) < K for I t < 1/3. continuing the chain or inequalities In (A.44). noting that

Oa 1k . we have

I (0 k)log, (k) III - exp(-t) I + I~(k) f 1 tf exp(-t) IIlog2 e

E-(iog,, e)-(3/2)-j t I+ K(iog2 e).I t I

=((3/2)e' + K)(iog 2 e)I t I

< ((3/2)eC' + K)(log, e)C4(iog n)2 /n2

= A(iog, nt) n~

where .4 Is the positive constant ((3/'2)e 1 +r K)(log., e)C4. To flnish the lemma consider

again the left-hand-side or (A4.43) which Is seen to satisfy
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F, -%0g a -0 (k)iog. '0(k)

< 1-a klog 2 ab k (- )log2 ~0 (k))

There are 2r,~ -- 1 terms In this sum, each positive and less than A(Iog2 n)2 ,,n. Since

r, < C - V"nlg, the sum Is less than

2C~log n+ 1;A(log2 n) /n

which Is 0 ((log 2 n)2 V'). It follows that there Is a positive Integer N 2such that it

n > N, then

From these Inequalities, the lemma follows with N =max ( N , N N2 }

A.B. Proof of the Main Theorem

We now restate and then prove the main theorem.

Theorem It: Let Sn e the binomial r.v. associated with the sum of n I.i.d. balanced

bernoull trials. Then

lim (H(S) n (1/2)Iog 2 (7ren/12)) = 0 (A.45)
M - I

Proof: We will show that far a given e > 0. there exists a positive Integer N such
that n > N implies

IH(S,) - (I 2)log, (,-en, 2)I (A46)

Lemmas 2. 5. 9, and 10 can each be restated with 90 replaced by le'4 In their respective
relations: (A.3): (.A.13): (A.42); (.A43). These lemmas will still be true when modified In this
way. Each lemma required a sequence that was constrained in some way to produce that
particular lemma's result. Our plan Is to exhibit a sequence (3,, that simultaneously satisfies

the 'onstraints or all tour lemmas. The Inequality mentioned In the conclusion ar each lemma
will then te true. The triangle Inequality can then be used to Show that the Inequality (A.48)
hold s.
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Let {5j be the sequence

n n < 10

= LV2nlog 2. n otherwise

This Is the sequence used In the proof of lemma 9 to render the inequality (A.42) (with 'e

replaced by c, 4 . In particular. ror some N, > 0

n

I I(S) - -alog, a 1 < /

km--a'
n

for all n > N.

Since {} Is O(VnIoig ) > O(Vnlog2 (log2 n)) the corallary to lemma 2 Implies that

there exists a positive Integer N 2 such that ror n > N2 we have

/22

I H(X) - -0a(z)log 2 0°(z)dzl < C/4

Also an a = 0 (loVg',n), that Is. an/o= o(Vn/log2 n) and by lemma 5 there exists a

positive Integer V so that for n > N 3 we have

a
5I

n -&(z)lo& 2 00(z)dz - E -0(k)lo 2 0a(k) I < (/4
-n k-a

Finally, trom lemma 10, we have that there Is a positive Integer N 4 so that n > V 4

Implies 
1

a n

~2 -a log, ak- -0(k)Iog 2 ~0 (k) I< (,14
v t

Now let N - max { N , N2 N3 . N4 ) and consider any n with n > N. Since the entropy

or a normal r.v. with variance n/4 Is 1/21og2 (yre/) , we can write

gTe rquirement that s > V/n in lemma 0 is sstLfed for n > 12. We take one o4 N 2 N V 4 to be feater

thin 12 so that tbese requiremeots will be met for n 2 maz { N1. N , N 3 N 4 ) in what follow..
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1 ren
I;o~-- H(S%)I = H(XF1) - H(S,)I

-y(Z)og2 , 0(zjaz - 0 (Z)log2 (P(z)dz + ] -o (z)l og, o (z)dz

-0 -(k)log 0 (k) + ~- 0 (k)og, o(k)

n n

- -"kiog 2 'k + 1: -akiog2 Gak - H(Sn)
k--a k--c

f 00 J -(Z)Iog. 2 0 z)dz - - (z)1o12 0(z)dz

± i] -(z)lo& 2 0,(z)dz - -0 -(k)log 2 Oa(k)j

--(k)iog 2 0(k) - F, a Glog2 Gak

k n- k=-

EI k dlog 2 Ga - H( S)

Since each or the rour absolute-value terms Is less than f/4 by the previous lemmas, their sum
Is less than e.The theorem Is proved.
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Appendix B
Mutual Information and Vector Geometry

In this appendix, we derive a relation between the mutual Information shared by two *1-vectors.

A and B, and their Hamming-distance. The vector A will be a balanced-Bernoulli vector and the

vector B will be chosen at random from within a neighborhood of A of a given radius p. Vector B

will therefore provide Information about A . We will determine the relation between the Information B

provides and the neighborhood radius.

B.1. Relation of Neighborhood-Size to Neighborhood-Radius

Let A be the set or n-dimensional *1-vectors, and for the moment, let A and B be chosen

randomly from 4 . We wish to know the fraction of .4 lying within a given radius p of A. Toward

this end, consider the ball B(p) or vectors of A that are within a radius p of A . Since all vectors of

A are equiprobable outcomes of B , we can determine the fraction of vectors lying In B(p) by

determining the probability that B will come from B(p) . Because these vectors are chosen at random

from A , they are balanced-Bernoulli vectors. Let X be the number of components of B that disagree

with their counterparts In A. The r.v. X Is the Hamming-distance HD(A. B) between A and B. It

is binomlally distributed with mean n/2 and variance n/4 1261. By the central-lilmit theorem, we can

approximate the cumulative binomial probabilities with a normal distribution having the same mean and

variance (see Lindgren [30, p. 1581).

From this we see that the probability that B will lie in B(p) is P(X < p) which can be

determined by the normal distribution with mean n/2 and variance n/4 . Half the vectors of A will lie

within a distance of n/2 of A. so so we consider the case that p < n/2 so that B(p) comprises less

than 1/2 of A.. If we put Z = (X - n/2)/(V/n12) , then Z Is a standard normal r.v. and we can write

PX < p) = PrZ < (p - n/2)/(V/'n/2)) * z) (B-i)

where . Is the positive number (n/2 - p)/(Vrn'/2) . It Is known that for z positive (say Z > 3 ) the

approximation
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exp(-f 2)@(- :) (B.2)

Is quite accurate. '11. v. 1. p. 17S

Now suppose we want the ball B(p) to comprise ,-R or A where R > 1. We put

F X < p) = AfR In (B.i) and use the approximation (B.2) to get

exp(- ), 2
kf - e -- (B.3)

This can be rearranged to get the 1z' In the exponent In terms of the other parameters

z= V'2Rn If - In (2,rZ") (B-4)

which is a recursive expression in z . As Ml grows. z should grow slowly. For large M then. the

' 2RIn Af term under the radical should dominate so that z o V/2WX1. We put this value In for the

0 under the radical In (B.4) to get

z v2 Rn ,A,- In (4lrRln Vf) (BS)

which Is a good approximation to z when M Is large (this can be verified by plugging the right-hand-

side of (B.5) In for z In equation (B.3)). The value or p Is ascertained from the definitlon or z to be

p - - -Z - - - V2Rln A- In (4?rRn Al) (B.0)
2 2 2 2

So a ball encompassing roughly kf -R or A has the radius given above.

B.2. Relation of Mutual Information to Neighborhood-Radius

Now suppose B Is chosen at random from B(p) rather than from A . An observer or B can Infer

that A lies In a radius p or B . This radius is such that a neighborhood (or ball) about B comprises

.If - R oF .. Knowledge or B thereFore constitutes an AfR-rold decrease In the possible values o A

Therefore the Informatlon B provides about A is log2 %f R = Rlog2 Af bits.
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With regard to the n 1 dlmensional Input-vectors. or an assoclator. the vector A represents an

Input-prototype Fk and B represents the assoclator-input F' chosen from B,(p) (see the chapter on

cla.ssification. page 55). The minimum value or R allowed In this case Is ?rAP/(2no) where n. is the

dimension of the associator-output and kf Is the number of stored associations. Plugging this In for R

In (B.6) gives an upper bound tor p

n Vn
P < - - g .iMn Af/n - In (2x 2Mn M/n o ) (B.7)

-- 2 2

If we examine the n0 -dimenslonal output-vectors on the other hand, the vector A represents the

output-prototype G k and B Is the associator-output Gk". We want a classifier sampling B to be able

to categorize it with A on the basis of B 's distance from A (see figure -3, page 61). It is the maximal

distance p that B can be from A that must be determined. To flnd this maximal distance, recall that

the minimal Information that B must provide about A In this case is log2 M bits. We can substitute

the value I tor R In equation (B.0) to get an upper bound for the distance that B can be from A . The

bound Is

n0 0np < - - -/2nM - In (,In (B.8)
2 2

There Is a problem however. In this case, each ball about an output-prototype, ot the radius on the

rlght-hand-side of (B.8), encompasses i/M of the total number of possible no-dlmenslonal output-

vectors. This means that each prototype has a i/M chance of lying In the ball about A. Since there

are M- I output-prototypes aside from A Itself, we would expect one of them (on average) to lie In the

ball about A . We call this a Colliio,. In the case of a collision of two output-prototypes, the ball

about one prototype would largely overlap with the ball about the other. Many of the vectors within p

or one or the prototypes would not get classified with that prototype. This problem exists for all the

output-prototypes. That Is, each prototype will have a collision with an average of one other when p is

given by the right-hand-side o (B.8)

To remedy the problem, we make the radius, p . small enough so that each ball contains only

.I 2 o the output-space. Now any two output-prototypes have a i/Al 2 chance or collision with each

other. Since there are roughly .2/2 possible pairs of output-prototypes, less than one such pair on

average will surfer trom collision. If the assoclator produces B to lie within this smaller neighborhood o

A . then A will be reliably classifiable. Since the ball constitutes A - 2 or the output space, we put
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R = 2 In (B.6) to get

p > -V4nM In8!In f (BQ)- 2 2

This Is shown as a lower bound on p since It Is sumrlclent but not necessary for proper performance. in

other words, some values or p Intermediate between that or relation (B.9) and relation (B.8) should be

workable. In fact. using

P - / (B-1o)
2 2

would result In 0 (Vi) collisions among the M output-prototypes so that a vanishingly small fraction

of the prototypes represent 'degenerate' categories. We conclude then. that large systems having stored

a correspondingly large number or prototypes should be able to operate nearly optimally. That Is. an

output-vector. B. will be constrained to lie within pM of Its output-prototype A , where pM nears the

upper-bound In (B.8) as M gets large. On the other hand. for smaller M we may need a redundancy at

the Input that Is 1-1/2 to 2 times the minimal 9M/(2no) . This assures the output Information Is

(3/2)log2 Af to 21og 2 Ml respectively as required by (the respective) relations (B.IO) or (B.9).



112

References

1. Abu-Mostafa. Yaser S. ConnectIvIty Versus Entropy. T Conference on Neural Information
Processing Systems - Natural and Synthetic. IFEE. November. 1987.

2. Abu-Mostaf&. Yaser S. and St. Jaques. Jeannlne-Marie. elnrormation Capacity of the Hopfleld
Model'. IEEE Transactions on Information Theory IT-8I, No. 4 (July 1086). 481-484.

S. Amit. Daniel J.. Gutfreund. Hancoch. Sompilasky. H. OSpln-Glas Models of Neurvl Networkse .

Physical Review A Sf. 2 (August 1986). 1007-1018.

4. AMtoR. Daniel J.. Gutfreund. Hancoch. Somplinsky. H. 8Soring Infinite Numbers of Patterns In a Spin-
Glass Model or Neural Networks'. Phjlical Review Leittr 55, 14 (September 1986). 1630.1633.

1. Anderson. James A.. Silversteln. Jack W.. Rit.. Stephen A.. and Jones. Randall S. DistLInctive
Features, Categorical Perception, and Probability Learnlng: Some Application$ o a Neural Model'.
Pscological Review 84. 6 (1977). 413-461.

8. Anderson. James A. 'Cognitive and Psychological Computation with Neural Models'. IEEE
Transactions on Ssterns, Man, and Cybernetics SMC-I3. 6 (September/October 1983).

7. Anderson. James A.. Golden. Richard M.. Murphy. Gregory L.. S.P.I.E. Institute on Hydrid and
Optical Computing, Ed. 1.1 S.Z.U. Volume :Concepts in Ditributed Syteme. S.Iel.. eilingham. WA.

1os8.

6. Ash. Robert B.. Inter-Scienee Tracts in Pure and Applied Mathematics. Volume ig:Information
Theory. John Wiley and Sons. New York, New York. 10

0. Barto. A. G. 'Learning by Statistical Cooperation Of Sei-Interested Computing Elements'. Human
NeurobiologY 4 (19S). 229-258.

10. Cont.. Samuel D., and de Boor. Carl. International Series in Pure and Applied Mathematics.
Volume :Elementary Numerical Analysis, An Algorithmic Approach, 3rd Ed. McGraw-1U Books. 1050.

11. Feller. William. An Introduction to Probability Theory and its Applications 3rd. Ed. John Wiley
and Sons. New York. New York. 1904.

12. Gallager. Robert G.. Information Themy and Reliable Communication. John Wiley and Sons. New
York. New York. 1908.

13. Golden. Richard M. Modelling Causal Schenata in Human Memoryj: A Conned ioniat Approach.
Ph.D. Tb.. Dept of Psychioly. Brown University. Providence Rhode Iland, 1988.

14. Golden. Richard M. 'The 'Braln-State-in-a-Boxg Neural Model Is a Gradient Descent Algortbm'.
Journal of Mathmatical Psyjchology 30. I (March 1988). 73-80.

It. Golden. Richard M. 'A Unifled Framework for Connectiontst Systems'. Biological Cyberntics .1-1t
(January 1088). . Recently submitted for publication. bibliographic Informatlon on ths article is
Incomplete.



113

18. Greene. Peter H. 'Superimposed Random Coding or Stimulus Response Cunnectiorso. Bulletin of

17. Gross. D J . Mezard, NI1*. 'The Simplest Spin Glass*. Nuclear Physics B240, T'S12. (1984), 431-452.

18. Grossterg. Steven. Boston Studies in the Philosophy of Science. Volume 70:Studies of Mind and
.rin eural Principles~ of Learning, Perception, Development, Cognition and Motor Control.

D. Reldel Publishers, Boston, Mlass.. 1982.

19. Grossberg. Stephen. Competive Learning: From Interactive Activation to Adaptive Resonance.
Article obtained In personal communication, bibliographic Information not complete.

20. Harris, Dale A. Information Theory In Neuropysiology. Dept. of Physiology. Harvard Medical
School. Bibliographical Information Incomplete.

21. Hinton, Geoffrey E_, and Anderson. James A.. Parallel Models of Associatite Memory. Lawrence
Eribaum Associates, 385 Broadway. Hllsdale, New Jersey 07642, 1981,

22. Hilnton. Geoffrey E. 'Boltzmann Machines: Constraint Satisfaction Networks that Learn'.
Cognitiv'e Science 9 (19845), 147-169.

23. Hopf~eld. J. J. 'Neural Networks and Physical Systems with Emergent Collective Computational
Abilities'. National Academy of Sciences, U.S.A., Biophysics 79 (April 1982), 2564-2558.

24. F-oprleld. J. 3. 'Neurons with Graded Response have Collective Computational Properties like those
or Two-State Neurons'. Proceedings of National Acadamy of Science, U.S.A., Biopity,ce 81 (May
1984). 3088-3092.

25. Hopfleld. J.J. and Tank. D.W. Neural' Computation of Decisions In Optimization Problems'.
Biological Cybernetics XX (1985).

25. Kanerva. Penitti. Self-Pr'opagating Search: A Unified Theory of Memory. Ph.D. Th.. Stanford
L'nlverslty. 1983.

27. Keeler, James D. Capacity for Patterns and Sequences I- Kanerva's SDM as Compared to Other
Associative Memory Models. Tech. Rept. 87.N.. Research Institute for Advanced Computer Science.
NASA Ames Research Center, December, 1987.

28. Kohonen, Tuevo. Springer Series in Information Sciences. volume 8:Self-Organizat ion and
A4ssociative Memory. Springer-Verlag. New York. New York. 1984.

29. Lansner. Anders. and Ekeberg, Orjan. 'Reliability and Speed of Recall In an Associativ le Network'.
IEEE Transactions on Pattern Analysis and Machine Intelligence P.AM!-, No. .4 (July 1985), 490-498.

30. Llndgren. Bernard W. Statistical Theory, 3rd Ed. MacMillan Publishing, New York, New York.
19716.

31. Lit,,i. \%' .A. 'The Existence of Persistent States In the Brain'. Mathematical Biosciences 19
!1974,. 101-120

32. Little. W.Shaw. Gordon L. *Analytic Study or the Memory Storage Capacity or 4 Neural
Network' Mathematiral Bioq'ciences .99 (1978), 281-290.

33. WIElle,7r. Rotert, J. Encyclopedia of Math evatic3 and its A4pplications. Volume 3:The Theory of
In! -fal ion ird Coding Ad Ilson-Wes~ey, Reading, Mass.. 1977.

34. \l Fz) --. R I prt J P,-snpr. Edward c-.. Rodemlch, Eugene R.. Venkatesh. Santosh S. The Capac :t)
t ~ Ii4r~ii ~ ::]v.01-rory California Institute of Technclcgy. January. 1986. Submitted to

1EITrara,,tions on Irrormation Theory.



114

35. Minsky. Marvin and Papert, Seymour. Perceptrons, An Introduction to Computational Geometry.

M.I.T. Press. Cambridge. Mass.. 1989.

36. Parker. David B. Learning Logic. Tech. Rept. TR-47, Center ror Computational Research In

Economics and Management Science, M.I.T., April. 1985.

37. Pearimutter. Barak A. and Hinton Geoffrey E. G-Maxlmlzation: An Unsupervised Learning

Procedure tor Discovering Regularities. Neural Networks for Computing. American Institute of Physics.

1986.

38. Rosenblatt. Frank. Principles of Neurodynamics. Spartan Books. New York. New York. 1962.

3g. Rudln, William. International Series in Pure and Applied Mathematics. Volume "Principles of

Mathematical Analysis, 3rd Ed. McGraw-Hill, New York, N.Y., 1978.

40. Rumelhart. David E.. McClelland. James L.. and the PDP Research Group. Parallel Distributed

Processing, Ezplorations in the Microstructure of Cognition. M.I.T. Press. Cambridge, Mass.. 1988.

41. Schneider. Walter and Mumme, Dean C. Attention. Automatic Processing and the Compiling of

Knowledge: A Two-Level Architecture rot Cognition. To appear In Psychology Review.

42. SeJnowski, Terrance J. and Rosenberg, Charles R. NETtalk: A Parallel Network that Learns to

Read Aloud. Tech. Rept. JHU/EECS-86/ 1O. The Johns Hopkins University Electrical Engineering and

Computer Science, 1986.

43. Shaw, Gordon L.. and Roney. Kathleen J. 'Analytic Solution or a Neural Network Theory Based on

an Ising Spin System Analogy'. Physics Letters 7.A. 1.2 (October 1979). 146-160,

44. Shilffrin, Richard M. and Schneider. Walter. 'Controlled and Automatic Human Information

Processing: II. Perceptual Learning, Automatic Attending, and a General Theory'. Psychological Review

84. 2 (1977). 127-189.

45. Tanaka. F.. Edwards. S. F. 'Analytic Theory or the Ground State Properties of a Spin Glass:

I. Ising Spin Glass'. J. Physics F: Metal Physics 10 (1980), 2789-2778,

46. Tanaka, F.. Edwards, S. F. 'Analytic Theory of the Ground State Properties of a Spin Glass: I. X Y

Spin Glass'. J. Physics F: Metal Physics 10 (1980), 2779-2792.

47. Viterbl. A. J. 'On Coded Phase-Coherent Communications'. IRE Transactions on Space

Electronics and Telemetry (March 1981). 3-14.



Using Rules and Task Division to Augment Connectionist Learning

William L. Oliver

and

Walter Schneider

University of Pittsburgh

Learning Research and Development Center
3939 O'Hara St.

Pittsburgh, PA 15260
(412) 624-7496

This paper has been submitted for publication in the Proceedings of the Tenth Annual
Conference of the Cognitive Science Society.



Dedication

This work Is dedicated to my parents who
put up with my twelve-year college habit.



STORAGE CAPACITY OF THE LINEAR
ASSOCIATOR: BEGINNINGS OF A THEORY

OF COMPUTATIONAL MEMORY

BY

DEAN C. MUMME

B.S., Massachusetts Institute of Technology, 1g9g
M.S., Idaho State University, 1g82

THESIS

Submitted In partial fulfillment or the requirements
for the degree of Doctor of Philosophy In Computer Science

In the Graduate College of the
University or Illinois at Urbana-Champaign, 188

Urbana, Illinols



0Copyright
Dean C. Mumme



116

Vita

Dean C. Mumme He received his Bachelor of

Science In Aeronautics and Astronautics In 1979 from the Massachusetts Institute of Technology. He then

studied Mathematics for tour years at Idaho State University, earning a Muter of Science Degree In

December, 1982. After studying gradute-level mathematics for an additional year. he began working for

his Ph.D. at the University of Illinois, at Urbana Champaign In August 1983. During the summer of 198.

he moved with his thesis-advisor to Pittsburgh. Pennsylvania to complete his thesis research at the

Learning Research and Development Center. University or Pittsburgh. He joined the University of Idaho

as Assistant Professor In August 1987 where he Is currently teaching and conducting research In

connectionist systems.


