
M FILE C.Oa.
00

A preliminary analysis of the Soar architecture

as a basis for general Intelligence

Technical Report AlP: 64

Paul S. Rosenbloom
John E. Laird

Allen Newell

Robert McCarI

The Artificial Intelligence
and Psychology Project

"A

Departments of
Computer Science and Psychology W fl
Carnegie Mellon University

Learning Research and Development Center
University of Pittsburgh

Approved for public release; distribution unlimited.

90 03 12 02A

A preliminary analysis of the Soar architecture

as a basis for general Intelligence

Technical Report AlP - 64

Paul S. Rosenbloom

John E. Laird

Allen Newell

Robert McCari

Paul S. Rosenbloom
Information Sciences Institute

University of Southern California

John E. Laird
Department of Electrical Engineering and Computer Science

University of Michigan

Allen Newell

School of Computer Science

Carnegie Mellon University

Robert McCarl
Department of Electrical Engineering and Computer Science

University of Michigan

8 May 1989

In Kirsh, D. and Hewitt, C. (Eds.), Proceedings of the Workshop on Foundations of Artificial
Intelligence. MIT Press, Cambridge, MA, 1989.

This research was sponsored by the Proceedings of the Defense Advanced Research Projects Agency
(DOD) under contract number N00039-86-C-01333 and by the Sloan Foundation. Computer facilities
were partially provided by NIH grant RR-00785 to Sumex-Aim. This research was also supported by the
Computer Sciences Division, Office of Naval Research, under contract number N00014-86-K-0678.
Reproduction in whole or in part is permitted for any purpose of the United States Government. Approved
for public release; distribution unlimited.

Unclassif ied

REPORT DOCUMENTATION PAGE

Ia. Ro"ir iSiCUMTY CLASSIFCTON lb. RESTRICTIVE MARKINGS
Unclassified

2. SECURITY CLASSiFICATION AUTHORITY 3 DSTRIBUTION I AVAILAIILITY OF REPORTApproved for public release;

2b. DECLASSIFICATON I DOWWA"NG SCHEDULE Distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AIP - 64

6.. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL ?a. NAME OF MONITORING ORGANIZATION
(C eUni y(Okb) Computer Sciences Division

Carnegie-Mellon University Office of Naval Research

6c ADDRESS (ity, State end ZIPCOds) 7b ADDRESS (City, State. and ZIP Code)
Department of Psychology 800 N. Quincy Street
Pittsburgh, Pennsylvania 15213 Arlington, Virginia 22217-5000

Ba. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If dalpplable)

Same as Monitoring Organizatio N00014-86-K-0678

k. ADDRESS CMty, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBER o 40 .201/7-4-8
PROGRAM PROJECT TASK WORK UNITELEMENT NO. NO. No. ,cassioN N

N/A N/A N/A N/A
11. TITLE (Include Security Clew fication)

A preliminary analysis of the Soar architecture as a basis for general
intelligence

12 PERSONAL AUT'-OR(S)
Paul S. Rosenbloom, John E. Laird, Allen Newell and Robert McCarl

13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Year, onh, 04y)- F.PAGE C ?NT
Technical FROM 8 6 SeptJ.5TO91Septij 89 May 8(.

16. SUPPLEMENTARY NOTATION In Kirsh, D. and Hewitt C. (Eds.), Proceedings of the Workshop
on Foundations of Artificial Intelligence. MIT Fress, Uambrioge, L'A, i:9.

17 COSATI COOES 18. SUBJECT TERMS (Continue on reverse if necesary and identify by block number)
FIELD GROUP SUB-GROUP Soar, cognitive science, artificial intelligence,

architectur6; subtraction

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

SEE REVERSE SIDE

20, DISTRIBUTION IAVAILAmIUTY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
O'UNCLASSIFIEDIUNLIMITEO * SAME AS RPT C] OTIC USERS

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Dr. Alan L. Myrovitz (202) 696-4302 N00014

DO FORM 1473.84 MAR 83 APR edition may be used until exhausted. SECURITY LASSIFICATION OF THIS PAGE
All Other editions are obsolete.

Unclassified

a

Abstract

In this article we take a step towards providing an analysis of the Soar architecture as a basis for general
intelligence. Included are discussions of the basic assumptions underlying the development of Soar, a
description of Soar cast in terms of the theoretical idea of multiple levels of description, an example of
Soar performingmulti-column subtraction, and three analyses of Soar: its natural tasks, the sources of its
power, and its scope and limits.

/

In Kirsh, D. and Hewitt, C. (editors), Proceedings
of the !4orkshon on Foundations ofArtificial
Intellinence. MIT Press, Carmbridne, Mass.
989.

In oress.

A Preliminary Analysis of the Soar Architecture
as a Basis for General Intelligence* t

Paul S. Rosenbloom'
Information Sciences Institute

University of Southern California

John E. Laird
Department of Electrical Engineering and Computer Science

University of Michigan

Allen Newell
Department of Computer Science

Carnegie-Mellon University

Robert McCarl
Department of Electrical Engineering and Computer Science

University of Michigan

May 8, 1989

Abstract

In this article we take a step towards providing an analysis of the
Soar architecture as a basis for general intelligence. Included are dis-
cussions of the basic assumptions underlying the development of Soar,

*This research was sponsored by the Proceedings of the Defense Advanced Research
Projects Agency (DOD) under contract N00039-86-C-0133 and by the Sloan Foundation.
Computer facilities were partially provided by NIH grant RR-00785 to Sumex-Aim. The
views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency, the US Government, the Sloan Foundation,
or the National Institutes of Health.

t We would like to thank Beth Adelson, David Kirsh, and David McAllester for their
helpful comments on an earlier draft of this article.

'Much of the work on this article was done while the first author was affiliated with the
Knowledge Systems Laboratory, Department of Computer Science, Stanford University.

a description of Soar cast in terms of the theoretical idea of multiple
levels of description, an example of Soar performing multi-column sub-
traction, and three analyses of Soar: its natural tasks, the sources of
its power, and its scope and limits.

The central scientific problem of artificial intelligence (AI) is to under-
stand what constitutes intelligent action and what processing organizations
are capable of such action. Hluman intelligence -z which stands before us like
a holy grail - shows,to first observationwhat can only be termed general
intelligence., A single human exhibits a bewildering diversity of intelligent
behavior. The types of goals that humans can set for themselves or ac-
cept from the environment seem boundless. Further observation, of course,
shows limits to this capacity in any individual - problems range from easy
to hard, and problems can always be found that are too hard to be solved.
But the general point is still compelling.

Work in AI has already contributed substantially to our knowledge of
what functions are required to produce general intelligence. There is sub-
stantial, thoutgh certairI! not unanimous, agreement about some functions
that need to be supported: symbols and goal structures, for example. Less
agreement exists about what mechanisms are appropriate to support these
functions, in large part because such matters depend strongly on the rest of
the system and on cost-benefit tradeoffs. Much of this work has been done
under the rubric of Al tools and languages, rather than AI systems them-
selves. fowever, it takes only a slight shift of viewpoint to change from
what is an aid for the programmer to what is structure for the intelligent
system itself. Not all features survive this transformation, but enough do to
make the development of AI languages as much substantive research as tool
building. These proposals provide substantial ground on which to build.

The Soar project has been building on this foundation in an attempt to
understand the functionality required to support general intelligence. Our
current understanding is embodied in the Soar architecture [22, 26]. This
article represents an attempt at describing and analyzing the structure of
the Soar system. We will take a particular point of view - the description
of Soar as a hierarchy of levels - in an attempt to bring coherence to this
discussion.

The idea of analyzing systems in terms of multiple levels of description
is a familiar one in computer science. In one version, computer systems are
described as a sequence of levels that starts at the bottom with the device
level and works up through the circuit level, the logic level, and then one

2

Rational Band

-10 sec. Goal attainment
Cognitive Band "1 sec. Simple operator composition

-100 msec. Elementary deliberate operations
10 msec. Symbol accessing

Neural Band ...

Figure 1: Partial hierarchy of time scales in human cognition.

or more program levels. Each level provides a description of the system at
some level of abstraction. The sequence is built up by defining each higher
level in terms of the structure provided at the lower levels. This idea has
also recently been used to analyze human coniition in terms of levels of
description [38]. Each level corresponds to a particular time scale, such as
-100 msec. and -I sec., with a new level occurring for each new order of
magnitude. The four levels between M10 msec. and 10 sec. comprise the

cognitive band (Figure 1). The lowest cognitive level - at 10 msec. -

is the symbol-accessing level, where the knowledge referred to by symbols
is retrievable. The second cognitive level - at 100 msec. - is the level
at which elementary deliberate operations occur; that is, the level at which
encoded knowledge is brought to bear, and the most elementary choices are
made. The third and fourth cognitive levels - at -M sec. and -M0 sec. -
are the simple-operator-composition and goal-attainment levels. At these
levels, sequences of deliberations can be composed to achieve goals. Above
the cognitive band is the rational band, at which the system can be described
as being goal oriented, knowledge-based, and strongly adaptive. Below the
cognitive band is the neural band.

In Section 2 we describe Soar as a sequence of three cognitive levels:
the memory level, at which symbol accessing occurs; the decision level, at
which elementary deliberate operations occur; and the goal level, at which
goals are set and achieved via sequences of decisions. The goal level is an
amalgamation of the top two cognitive levels from the analysis of human
cognition.

- In this description we will often have call to describe mechanisms that

3

are built into the architecture of Soar. The architecture consists of all of
the fixed structure of the Soar system. According to the levels analysis, the
correct view to be taken of this fixed structure is that it comprises the set
of mechanisms provided by the levels underneath the cognitive band. For
human cognition this is the neural band. For artificial cognition, this may
be a connectionist band, though it need not be. This view notwithstanding,
it should be remembered that it is the Soar architecture which is primary
in our research. The use of the levels viewpoint is simply an attempt at
imposing a particular, hopefully illuminating, theoretical structure on top
of the existing architecture.

In the remainder of this paper we describe the methodological assump-
tions underlying Soar, the structure of Soar, an illustrative example of Soar's
performance on the task of multi-column subtraction, a set of preliminary
analyses of Soar as an architecture for general intelligence.

1 Methodological Assumptions

The development of Soar is driven by four methodological assumptions. It
is not expected that these assumptions will be shared by all researchers in
the field. However, the assumptions do help explain why the Soar system
and project have the shapes that they do.

The first assumption is the utility of focusing on the cognitive band, as
opposed to the neural or rational bands. This is a view that has traditionally
been shared by a large segment of the cognitive science community; it is
not. however, shared by the connectionist community, which focuses on the
neural band (plus the lower levels of the cognitive band), or by the logicist
and expert-systems communities, which focus on the rational band. This
assumption is not meant to be exclusionary, as a complete understanding
of general intelligence requires the understanding of all of these descriptive
bands.' Instead the assumption is that there is important work to be done
by focusing on the cognitive band. One reason is that, as just mentioned, a
complete model of general intelligence will require a model of the cognitive
band. A second reason is that an understanding of the cognitive band can
constrain models of the neural and rational bands. A third, more applied
reason, is that a model of the cognitive band is required in order to be able
to build practical intelligent systems. Neural-band models need the higher

1Investigations of the relationship of Soar to the neural and rational bands can be
found in [38, 49, 56].

4

levels of organization that are provided by the cognitive band in order to

reach complex task performance. Rational-band models need the heuristic
adequacy provided by the cognitive band in order to be computationally

feasible. A fourth reason is that there is a wealth of both psychological and

AI data about the cognitive band that can be used as the basis for elucidating
the structure of its levels. This data can help us understand what type of

symbolic architecture is required to support general intelligence.
The second assumption is that general intelligence can most usefully be

studied by not making a distinction between human and artificial intelli-

gence. The advantage of this assumption is that it allows wider ranges of
research methodologies and data to be brought to bear to mutually constrain
the structure of the system. Our research methodology includes a mixture
of experimental data, theoretical justifications, and comparative studies in
both artificial intelligence and cognitive psychology. Human experiments
provide data about performance universals and limitations that may reflect
the structure of the architecture. For example, the ubiquitous power law of
practice - the time to perform a task is a power-law function of the num-

ber cf times the task has been performed - was used to generate a model
of human practice [39, 551, which was later converted into a proposal for

a general artificial learning mechanism [27, 28, 61]. Artificial experiments
- the application of implemented systems to a variety of tasks requiring
intelligence - provide sufficiency feedback about the mechanisms embodied
in the architecture and their interactions [16, 51, 60, 62, 731. Theoretical
justifications attempt to provide an abstract analysis of the requirements
of intelligence, and of how various architectural mechanisms fulfill those re-

quirements [3S, 40, 49, 54, 56). Comparative studies, pitting one system

against another, provide an- evaluation of how well the respective systems
perform, as well as insight about how the capabilities of one of the systems
can be incorporated in the other [6, 50].

The tlird assumption is that the architecture should consist of a small
set of orthogonal mechanisms. All intelligent behaviors should involve all, or
nearly all, of these basic mechanisms. This assumption biases the develop-

ment of Soar strongly in the direction of uniformity and simplicity, and away
from modularity [10] and toolkit approaches. When attempting to achieve
a new functionality in Soar, the first step is to determine in what ways the
existing mechanisms can already provide the functionality. This can force
the development of new solutions to old problems, and reveal new connec-
tions - through the common underlying mechanisms - among previously
distinct capabilities [53]. Only if there is no appropriate way to achieve the

5

new functionality are new mechanisms considered.
The fourth assumption is that architectures should be pushed to the ex-

treme to evaluate how much of general intelligence they can cover. A serious
attempt at evaluating the coverage of an architecture involves a lung-term
commitment by an extensive research group. Much of the research involves
the apparently mundane activity of replicating classical results within the
architecture. Sometimes these demonstrations will by necessity be strict
replications, but often the architecture will reveal novel approaches, provide
a deeper understanding of the result and its relationship to other results, or
provide the ineans of going beyond what was done in the classical work. As
these results accumulate over time, along with other more novel results, the
system gradually approaches the ultimate goal of general intelligence.

2 Structure of Soar

In this section we build up much of Soar's structure in levels, starting at
the bottom with memory and p ,~ in up to decisions and goals. We
then describe how learning and perceptual-motor behavior fit into this pic-
ture, and wrap up with a discussion of the default knowledge that has been
incorporated into the system.

2.1 Level 1: Memory

A general intelligence requires a memory with a large capacity for the storage
of knowledge. A variety of types of knowledge must be stored, including
declarative knowledge (facts about the world, including facts about actions
that can be performed), procedural knowledge (facts about how to perform
actions, and control knowledge about which actions to perform when), and
episodic knowledge (which actions were done when). Any particular task will
require some subset of the knowledge stored in the memory. Memory access
is. the process by which this subset is re'rieved for use in task performance.

The lowest level of the Soar architecture is the level at which these mem-
ory phenomena occur. All of Soar's long-term knowledge is stored in a single
production memory. Whether a piece of knowledge represents procedural,
declarative, or episodic knowledge, it is stored in one or more productions.
Each production is a condition-action structure that performs its actions
when its conditions are met. Memory access consists of the execution of
these productions. During the execution of a production, variables in its
actions are instantiated with values. Action variables that existed in the

6

conditions are instantiated with the values bound in the c6nditions. Ac
tion variables that did not exist in the conditions act as generators of new
symbols.

The result of memory access is the retrieval of information into a global
working memory. The working memory is a temporary memory that con-
tains all of Soar's short-term processing context. Working memory consists
of an interrelated set of objects with attribute-value pairs. For example, an
object representing a green cat named Fred might look like (object o025
"name fred -type cat -color green). The symbol o025 is the identifier of
the object, a short-term symbol for the object that exists only as long as the
object is in working memory. Objects are related by using the identifiers of
some objects as attributes and values of other objects.

There is one special type of working memory structure, the preference.
Preferences encode control knowledge about the acceptability and desirabil-
ity of actions, according to a f xed semantics of preference types. Acceptabil-
ity preferences determine which actions should be considered as candidates.
Desirability preferences define a partial ordering on the candidate actions.
For example, a better (or alternatively, worse) preference .au be used to
represent the knowledge that one action is more (or less) desirable than
another action, and a best (or worst) preference can be used to represent
the knowledge that an action is at least as good (or as bad) as every other
action.

In a traditional production-system architecture, each production is a
problem-solving operator (see, for example, (42]). The right-hand side of
the production represents some action to be performed. and the left-hand
side represents the preconditions for correct application of the action (plus
possibly some desirability conditions). One consequence of this view of pro-
ductions is that the productions must also be the locus of behavioral control.
If productions are going to act, it must be possible to control which one ex-
ecutes at each moment; a process known as conflict resolution. In a logic
architecture, each production is a logical implication. The meaning of such a
production is that if the left-hand side (the antecedent) is true, then so is the
right-hand side (the consequent). 2 Soar's productions are neither operators
nor implications. Instead, Soar's productions perform (parallel) memory
retrieval. Each production is a retrieval structure for an item in long-term
memory. The right-hand side of the rule represents a long-term datum, and

2The directionality of the implication is reversed in logic programming languages such
as Prolog, but the point still holds.

7 m m

the left-hand side -represents the situation- in which it is appropriate to re-
trieve that datu:ai into working memory. The traditional p-,-uction-system
and logic notions of action, control, and truth are not directly applicable to
Soar's productions. All control in Soar is performed at the decision level.
Thus, there is no conflict resolution process-in the Soar production system.
and all productions execute in parallel. This all flows directly from the pro-
duction system being a long-term memory. Soar separates the retrieval of
long-term information from the control of which act to perform :.ext.

Of ourse it is possible to encode knowledge of operators an - logical im-
plications in the production memory. For example, the knowledge about how
to implement a typical operator can be stored procedurally as a set of pro-
ductions which retrieve the state resulting from the operator's application.
The productions' conditions determine when the state is to be retrieved
- for example, when the operator is being applied and its preconditions
are met. An alternative way to store operator implementation knowledge
is declarativdly as a set of structures that are completely contained in the
actions of one or more productions. The structures describe not only the
"'suits of the operator, but also its preconditions. The productions' condi-
tions determine when to retrieve this declarative operator descriptioL into
working memory. A retrieved operator description must be interpreted by
other productions to actually have an affect.

In general, there are these two distinct ways to encode knowledge in
the production memory: proceduraily and declaratively. If the knowledge
is procedurally encoded, then the execution of the production reflects the
knowledge, but does not actually retrieve it into working memory - it only
retrieves the structures encoded in the acti(,ns. On the other hand, if a
piece of knowledge is encoded declaratively in the actions of a production.
then it is retrievable in its entirety. This distinction between procedural and
declarative encodings of knowledge is distinct from whether the knowledge is
declarative (represents facts about the world) or procedural (represents facts
about procedures). Moreover, each production can be viewed in either way,
either as a procedure which implicitly represents conditional information, or
as the indexed storage of declarative structures.

2.2 Level 2: Decisions

In addition to a memory, a general intelligence requires the ability to gen-
erate and/or select a course of action that is responsive to the current sit-
uation. The s-cr-nd level of the Soar architecture, the decision level, Is the

8

level at which this processing is performed. The decision level is based on
the memory level plus an architecturally provided, fixed, decision procedure.

The decision level proceeds in a two phase elaborate-decide cycle. During
elaboration, the memory is accessed repeatedly, in parallel, until quiescence
is reached; that is, until no more productions can execute. This results in
the retrieval into working memory of all of the accessible knowledge that
is relevant to the current decision. This may include a variety of types of
information, but of most direct relevance here is knowledge about actions
that can be performed and preference knowledge about what actions are
acceptable and desirable. After quiescence has occurred, the decision proce-
dure selects one of the retrieved actions based on the preferences that were
retrieved into working memory and their fixed semantics.

The decision level is open both with respect to the consideration of ar-
bitrary actions, and with respect to. the utilization of arbitrary knowledge
in making a selection. This openness allows Soar to behave in both plan-
following and reactive fashions. Soar is following a plan when a decision is
primarily based on previously generated knowledge about what to do. Soar
is being reactive when a dx,.i~ion is based primarily on knowledge about the
current situation (as reflected in the working memory).

2.3 Level 3: Goals

In addition to being able to make decisions. a general intelligence must also
be able to direct this behavior towards some end; that is, it must be able
to set and work towards goals. The third level of the Soar architecture,
the goal level, is the level at which goals are processed. This level is based
on the decision level. Goals are set whenever a decision cannot be made:
that is, when the decision procedure reaches an impasse. Impasses occur
when there are no alternatives that can be selected (no-change and rejection
impasses) or when there are multiple alternatives that can be selected, but
insufficient discriminating preferences exist to allow a choice to be made
among them (tie and conflict impasses). Whenever an impasse occurs, the
architecture generates the goal of resolving the impasse. Along with this
goal, a new performance context is created. The creation of a new context
allows decisions to continue to be made in the service of achieving the goal of
resolving the impasse - nothing can be done in the original context because
it is at an impasse. If an impasse now occurs in this subgoal, another new
subgoal and performance context are created. This leads to a goal (and
context) stack in which the top-level goal is to perform some task, and

9

lower-level goals are to resolve impasses in problem solving. A subgoal is
terminated when either its impasse is resolved, or some higher impasse in
the stack is resolved (making the subgoal superfluous).

In Soar, all symbolic goal-oriented tasks are formulated in problem spaces.
A problem space consists of a set of states and a set of operators. The states

represent situations, and the operators represent actions which when applied
to states yield other states. Each performance context consists of a goal,
plus roles for a problem space, a state, and an operator. Problem solving is
driven by decisions that result in the selection of problem spaces, states, and
operators for their respective context roles. Given a goal, a problem space
should be selected in which goal achievement can be pursued. Then an ini-
tial state should be selected that represents the initial situation. Then an
operator should be selected for application to the initial state. Then another
state should be selected (most likely the result of applying the operator to
the previous state). This process continues until a sequence of operators
has been discovered that transforms the initial state into a state in which
the goal has been achieved. One subtle consequence of the ,,se of problem
spaces is that each one implicitly defines a set of coustraints on how the
task is to be performed. For example, if the Eight Puzzle is attempted in
a problem space containing only a slide-tile operator, all solution paths
maintain the constraint that the tiles are never picked up off of the board.
Thus, such conditions need not be tested for explicitly in desired states.

Each problem solving decision - the selection of a problem space,.a
state, or an operator - is based on the knowledge accessible in the pro-
duction memory. If the knowledge is both correct and sufficient. Soar ex-
hibits highly controlled behavior; at each decision point the right alternative
is selected. Such behavior is accurately described as being algorithmic or
knowledge-intensive. However, for a general intelligence faced with a broad
array of unpredictable tasks, situations will arise - inevitably and indeed
frequently - in which the accessible knowledge is either incorrect or insuffi-
cient. It is possible that correct decisions will fortuitously be made, but it is
more likely that either incorrect decisions will be made or that impasses will
occur. Under such circumstances search is the likely outcome. If an incor-
rect decision is made, the system must eventually recover and get itself back
on a path to the goal, for example, by backtracking. If instead an impasse
occurs, the system must execute a sequence of problem space operators in
the fesulting subgoal to find (or generate) the information that will allow
a decision to be made. This processing may itself be highly algorithmic, if
enough control knowledge is available to uniquely determine what to do, or

10

it may involve a large amount of further search.
As described earlier, operator implementation knowledge can be repre-

sented procedurally in the production memory, enabling operator implemen-
tation to be performed directly by memory retrieval. When the operator is
selected, a set of productions execute that collectively build up the represen-
tation of the result state by combining data from long-term memory and the
previous state. This type of implementation is comparable to the conven-
tional implementation of an operator as a fixed piece of code. However, if
operator implementation knowledge is stored declaratively, or if no operator
implementation knowledge is stored, then a subgoal occurs, and the operator
must be implemented by the execution of a sequence of problem space op-
erators in the subgoal. If a declarative description of the to-be-implemented
operator is available, then these lower operators may implement the operator
by interpreting its declarative description (as was demonstrated in work on
task acquisitidn in Soar [611). Otherwise the operator can be implemented
by decomposing it into a set of simpler operators for which operator im-
plementation knowledge is available, or which can in turn be decomposed
further.

When an operator is implemented in a subgoal, the combination of the

operator and the subgoal correspond to the type of deliberately created
subgoal common in Al problem solvers. The operator specifies a task to be
performed, while the subgoal indicates that accomplishing the task should
be treated as a goal for further problem solving. In complex problems, like
computer configuration, it is common for there to be complex high-level op-
erators, such as Conf igure-computer which are implemented by selecting
problems spaces in which they can be decomposed into simpler tasks. Many
of the traditiona goal management issues - such as conjunction, conflict,
and selection - show up as operator management issues in Soar. For ex-
ample, a set of conjunctive subgoals can be ordered by ordering operators
that later lead to impasses (and subgoals).

As described in [541, a subgoal not only represents a subtask to be per-
formed, but it also represents an introspective act that allows unlimited
amounts of meta-level problem-space processing to be performed. The en-
tire working memory - the goal stack and all information linked to it -
is available for examination and augmentation in a subgoal. At any time a
production can examine and augment any part of the goal stack. Likewise,
z. decision can be made at any time for any of the goals in the hierarchy.
This allows subgoal problem solving to analyze the situation that led to
the impasse, and even to change the subgoal should it be appropriate. One

11

not uncommon occurrence is for information to be generated within a sub-
goal that, instead of satisfying the subgoal, causes the subgoal to become
irrelevant and consequently to disappear. Processing tends to focus on the
bottom-most goal because all of the others have reached impasses. However,
the processing is completely opportunistic, so that when appropriate infor-
mation becomes available at a higher level, processing at that level continues
immediately and all lower subgoals are terminated.

2.4 Learning

All learning occurs by the acquisition of chunks - productions that sum-
marize the problem solving that occurs in subgoals [28]. The actions of a
chunk represent the knowledge generated during the subgoal; that is, the
results of the subgoal. The conditions of the chunk represent an access path
to this knowledge, consisting of those elements of the parent goals upon
which the results depended. The results of the subgoal are determined by
finding the elements generated in the subgoal that are available for use in
supergoals - an Element is a result of a subgoal precisely because it is avail-
able to processes outside of the subgoal. The access path is computed by
analyzing the traces of the productions that fired in the subgoal - each pro-
duction trace effectively states that its actions depended on its conditions.
This dependency analysis yields a set of conditions that have been implicitly
generalized to ignore irrelevant aspects of the situation. The resulting gen-
erality allows chunks to transfer to situations other than the one in which
it was learned. The primary system-wide effect of chunking is to move Soar
along the space-time trade-off by allowing relevantly similar future decisions
to be based on direct retrieval of information from memory rather than on
problem solving within a subgoal. If the chunk is used, an impasse will not
occur, because the required information is already available.

Care must be taken to not confuse the power of chunking as a learn-
ing mechanism with the power of Soar as a learning system. Chunking
is a simple goal-based, dependency.tracing, caching scheme, analogous to
explanation-based learning [4, 36, 501 and a variety of other schemes [551.
What allows Soar to exhibit a wide variety of learning behaviors are the
variations in the types of subgoals that are chunked; the types of prob-
lem solving, in conjunction with the types and sources of knowledge, used
in the subgoals; and the ways the chunks are used in later problem solv-
ing. The role that a chunk will play is determined by the type of subgoal
for which it was learned. State-no-change, operator-tie, and operator-no-

12

change subgoals lead respectively to state augmentation, operator selection,
and operator implementation productions. The content of a chunk is deter-
mined by the types of problem solving and knowledge used in the subgoal.
A chunk can lead to skill acquisition if it is used as a more efficient means
of generating an already generatable result. A chunk can lead to knowledge
acquisition (or knowledge level learning [5]) if it is used to make old/new
judgments: that is, to distinguish what has been learned from what has not
been learned (52, 53, 561.

2.5 Perception and Motor Control

One of the most recent functional additions to the Soar architecture is a
perceptual-motor interface [75, 76]. All perceptual and motor behavior is
mediated through working memory; specifically, through the state in the top
problem solving context. Each distinct perceptual field has a designated at-
tribute of this state to which it adds its information. Likewise, each distinct
motor field has a designated attribute of the state from which it takes it com-
mands. The perceptual and motor systems are 2itonomous with respect to
each other and the cognitive system.

Encoding and decoding productions can be used to convert between the
high-level structures used by the cognitive system, and the low-level struc-
tures used by the perceptual and motor systems. These productions are like
ordinary productions, except that they examine only the perceptual and
motor fields. and- not any of the rest of the context stack. This autonomy
from the context stack is critical, because it allows the decision procedure to
proceed without waiting for quiescence among the encoding and decoding
productions. which may never happen in a rapidly changing environment.

2.6 Default Knowledge

Soar has a set of productions (55 in all) that provide default responses to each
of the possible impasses that can arise, and thus prevent the system from
dropping into a bottomless pit in which it generates an unbounded number
of content-free performance contexts. Figure 2 shows the default production
that allows the system to continue if it has no idea how to resolve a conflict
impasse among a set of operators. When the production executes, it rejects
all of the conflicting operators. This allows another candidate operator to
be selected, if there is one, or for a different impasse to arise if there are no
additional candidates. This default response, as with all of them, can be

13

If there is an impasse because of an operator conflict

and there are no candidate problem spaces available

then reject the conflicting operators.

Figure 2: A default production.

overridden by additional knowledge if it is available.
One large part of the default knowledge (10 productions) is responsi-

ble for setting up operator subgoaling as the default response to no-change
impasses on operators. That is, it attempts to find some other state in the

problem space to which the selected operator can be applied. This is accom-
plished by generating acceptable and worst preferences in the subgoal for

the parent problem space. If another problem space is suggested, possibly
for implementing the operator, it will be selected. Otherwise, the selection

of the parent problem space in the subgoal enables operator subgoaling. A
sequence of operators is then applied in the subgoal until a state is generated

that satisfies the preconditions of an operator higher in the goal stack.
Another large part of the default knowledge (33 productious) is.respon-

sible for setting up lookahead search as the default response to tie impasses.

This is accomplished by-generating acceptable and worst preferences for the
selection problem space. The selection problem space consists of operators
that .evaluate the tied alternatives. Based on the evaluations produced by
these operators, default productions create preferences that break the tie
and resolve the impasse. In order to apply the evaluation operators, domain

knowledge must exist that can create an evaluation. If no such knowledge is
available, a second impasse arises - a no-change on the evaluation operator.
As mentioned earlier, the default response to an operator no-change impasse
is to perform operator subgoaling. However, for a no-change impasse on an

evaluation operator this is overridden and a lookahead search is performed
instead. The results of the lookahead search are used to evaluate the tied

alternatives.
As Soar is developed, it is expected that more and more knowledge will

be included as part of the basic system about how to deal with a variety
of situations. For example, one area on which we are currently working is
the provision of Soar with a basic arithmetical capability, including problem

spaces for addition, multiplication, subtraction, division, and comparison.

One way of looking at the existing default knowledge is as the tip of this

14

large iceberg of background knowledge. However, another way to look at
the default knowledge is as part of the architecture itself. Some of the
default knowledge - how much is still unclear - must be innate rather
than learned. The rest of the system's knowledge, such as the arithmetic
spaces, should then be learnable from there.

3 Example: Multi-column Subtraction

Multi-column subtraction is the task we will use to demonstrate Soar. This.
task has three advantages. First, it is a familiar and simple task. This allows
the details of Soar not to be lost in the complexities of understanding the
task. Second, previous work has been done on modeling human learning of
subtraction in the Sierra'architecture [71]. Our implementation is inspired
by the Sierra framework. Third, this task appears to be quite different from
many standard search-intensive tasks common in AL. On the surface, it
appears difficult to cast subtraction within the problem-space framework of
Soar - it iF, . fter all, a procedure. One might also think that chunking could
not learn such a procedure. However, in this example, we will demonstrate
that multi-column subtraction can be performed by Soar and that important
parts of the procedure can be learned through chunking.

There exist many different procedures for performing multi-column sub-
traction. Different procedures result in different behaviors, both in the order
in which scratch marks - such as borrowing notations - are made and in
the type of mistakes that might be generated while learning (72]. For sim-
plicity. we will demonstrate the implementation of just one of the many
possible procedures. This procedure uses a borrowing technique that recur-
sively borrows from a higher-order column into a lower-order column when
the top number in the lower-order column is less than the bottom number.

3.1 A Hierarchical Subtraction Procedure

One way to implement this procedure is via the processing of a goal hier-
archy that encodes what must be done. Figure 3 shows a subtraction goal
hierarchy that is similar to the one learned by Sierra.3 Under each goal are
shown the subgoals that may be generated while trying to achieve it. This
Sierra goal hierarchy is mapped onto a hierarchy of operators and problem

3Sierra learned a slightly more elaborate, but computationally equivalent, procedure.

15

Subtraction

lil-C~m Wri~te-iferance

511nq1€ol um Rest-co lumns

tool-ce Write-difgm!=C SorW ~rits-cop Write-actfetrflcs Uitiple-cOiumrI

seriovi

sorrow- from 3orrow- kno

3arfOwiI

Figure 3: A goal hierarchy for multi-column subtraction.

spaces in Soar (as described in Section 2). The boxed goals map onto oper-
ators and the unboxed goals map onto problem spaces. Each problem space
consists of the operators linked to it from below in the figure. Operators
that have problem spaces below them are implemented by problem solving
in those problem spaces. The other operators are implemented directly at
the memory level by productions (except for multiple-column and regroup,
which are recursive). These are the primitive acts of subtraction, such as
writing numbers or subtracting digits.

I The states in these problem spaces contain symbolic representations of
the subtraction problem and the scratch marks made on the page during
problem solving. The representation is very simple and direct, being based
on the spatial relationships among the digits as they would appear on a
page. The state consists of a set of columns. Each column has pointers
to its top and bottom digits. Additional pointers are generated when an
answer for a column is produced, or when a scratch mark is made as the
result of borrowing. The physical orientation of the columns on the page is
represented by having "left" and "right" pointers from columns to their left
and right neighbors. There is no inherent notion of multi-digit numbers ex-

16

cept for these left and right relations between columns. This *representation
is consistent with the operators, which treat the problem symbolically and
never manipulate multi-digit numbers as a whole.

Using this implementation of the subtraction procedure, Soar is able to
solve all multi-column subtraction problems that result in positive answers.
Unfortunately, there is little role for learning. Most of the control knowl-
edge is already embedded in the productions that select problem spaces and
operators. Within each problem space there are only a few operators from
which to select. The preconditions of the few operators in each problem
space are sufficient for perfect behavior. Therefore. goals arise only to im-
plement operators. Chunking these goals produces productions that are able
to compute answers without the intermediate subgoals.4

3.2 A Single Space Approach

One way to loosen up the strict control provided by the detailed problem-
space/operator hierarchy in Figure 3, and thus to enable the learning of the
control knowledge underlying the subtraction procedure, is to ha",. oiy a
single 4ubtraction problem space that contains all of the primitive acts (writ-
ing results, changing columns, and so on). Figure 4 contains a description
of the problem space operators and the goal test used in this second imple-
mentation. The operators can be grouped into four classes: the basic acts
of writing answers to a single column problein (write-difference, write-top);
borrow actions on the upper digits (borrow-into, borrow-from); moving from
one column to the next (move-left, move-borrow-left); and performing very
simple arithmetic computations (silbtract-two-digits, subtract-I, add-10).
With this simple problem space, Soar must learn the subtraction procedure
by acquiring control knowledge that correctly selects operators.

Every operator in the subtraction problem space is considered for every
state in the space. This is accomplished by having a production for each
operator that generates an acceptable preference for it. The conditions of
the production only test that the appropriate problem space (subtraction) is
selected. Similar productions existed in the original implementation, except
that those productions also contained additional tests which ensured that

4This work on subtraction was done in an earlier version of Soar that did not have the
perceptual-motor interface described in Section 2. In that version, these chunks caused
Soar to write out all of the column results and scratch marks in parallel - not very
realistic motor behavior. To work around this problem chunking was disabled for goals in
this task during which environmental interactions occurred.

17

* Operators:

Write-difference: If the difference between the top digit and the bottom
digit of the current column is known, then write the difference as an
answer to the current column.

Write-top: If the lower digit of the current column is blank, then write the
top digit as the answer to the current column.

Borrow-into: If the result of adding 10 to the top digit of the current col-
umn is known, and the digit to the left of it has a scratch mark on it,
then replace the top digit with the result.

F3,r.nw-frnm. If the result of subtracting 1 from the top digit in the current
column is known, then replace that top digit with the result, augment
it with a scratch mark and shift the current column to the right.

Move-left: If the current column has an answer in it, shift the current
column left.

Move-borrow-left: If the current column does not have a scratch mark in
it, shift the current column left.

Subtract-two-digits: If the top digit is greater than or equal to the lower
digit, then produce a result that is the difference.

Subtract-i: If the top digit is not zero, then produce a result that is the
top digit minus one.

Add-10: Produce a result that is the top digit plus ten.

* Goal Test: If each column has an answer, then succeed.

Figure 4: Primitive subtraction problem space.

18

the operators would only be considered when they were the appropriate ones
to apply.

In addition to productions which generate acceptable preferences, each
operator has one or more productions which implement it. Although every
operator is made acceptable for every state, an operator will actually be
applied only if all of the conditions in the productions that implement it
are satisfied. For example, write-difference will only apply if the difference
between the top and bottom numbers is known. If an operator is selected,
but the conditions of the productions that implement it are not satisfied. an
impasse arises. As described in Section 2, the default response to this type
of impasse is to perform operator subgoaling.

Figure 5 shows a trace of Soar's problem solving as it performs a simple
two-column subtraction problem, after the learning of control knowledge
has been completed. Because Soar's performance prior to learning on this
problem is considerably more complicated, it is described after this simpler
case. The top goal in this figure is to have the result of subtracting 3 from
22. Problem solving in the top goal proceeds from left to right, diving to a
lower level whenever a subgoal Li ,veated in response to an impasse. Each
state is a partially solved subtraction problem, consisting of the statement
of the subtraction problem, a * designating the current column, and possibly
column results and/or scratch marks for borrowing. Operator applications
are represented by arrows going from left to right. The only impasses that
occur in this trace are a result of the failure of operator preconditions -
a form of operator no-change impasse. These impasses are designated by
circles disrupting the operator-application arrows, and are labeled in the
order they arise (A and B). For example, impasse A arises because write-
difference cannot apply unless the lower digit in the current column (3) is
less than the top digit (2).

For impasse A, operator subgoaling occurs when the subtraction problem
space is selected in the subgoal. The preconditions of the write-difference
Qperator are met when a state has been generated whose top digit has been
changed from 2 to 12 (by borrowing). Once this occurs, the subgoal termi-
nates and the operator applies, in this case writing the difference between
12 and 3. In this implementation of subtraction, operator subgoaling dy-
namically creates a goal hierarchy that is similar to the one programmed
into the original implementation.

19

I * 1 I

22 writelifference IN 2 move-left 2% 12 write-op " 12

-3 3 ~ 3 3

9 19 19

22 borrow-into ~1

22 move-left 22 oorrow-from

.3 * 3 - ~ 3

Figure 5: Trace of problem solving after learning for /2 5.

3.3 Performance Prior to Learning

Prior to learning, Soar's problem solving on this task is considerably more
complicated. This added complexity arises because of an initial lack of
knowledge about the results of simple arithmetic computations and a lack of
knowledge about which operators should be selected for which st._ es. Figure
6 shows a partial trace of Soar's pre-learning problem solving. Although
many of the subgoals are missing, this small snapshot of the problem solving
is characteristic of the impasses and subgoals that arise at all levels.

As before, the problem solving starts at the upper left with the ini-
tial state. As soon as the initial state is selected, a tie impasse (A) arises
because all of the operators are acceptable and there are no additional pref-
erences that distinguish between them. Default productions cause the selec-
tion space to be selected for this impasse. Within this space, operators are
created to evaluate the tied operators. This example assumes that evaluate-
object (writ e-di fference) is selected, possibly based on advice from a teacher.
Then, because there is no knowledge avallable about how to evaluate the
subtraction operators, a no-change impasse (B) occurs for the evaluation
operator. More default productions lead to a lookahead search by suggest-
ing the original problemi space (subtraction) and state and then selecting

20

wt it-i|etrence move-|et

Subtract problem space 22 A N 312 X12

-3
\ 9 9

evaluate writifference best

it"Iiere
Selection problem space

success

Subtract problem space 22 - 1t 12

Figure 6: Trace of problem solving before learning for 22 - 3.

the operator that is being evaluated. The operator then applies, if it can,
creating a new state. In this example, an operator subgoal impasse (C)
arises when the attempt is made to apply the write-difference operator -

its prccs:',tions are not satisfied. Problem solving continues in this subgoal,
requiring many additional impasses, until the write-difference operator can
finally be applied. The lookahead search then continues until an evaluation
is generated for the write-difference operator. Here, this happens shortly af-
ter impasse C is resolved. The system was given the knowledge that a state
containing an answer for the current column is a (partial) success - such
states are on the path to the goal. This state evaluation is then converted
by default productions into an evaluation of "success" for the operator. and
from there into a best preference for tule operator. The creation of this pref-
erence breaks the operator tie, terminating the subgoals, and leading to the
selection of the preferred operator (write-difference). The overall behavior
of the system during this lookahead search is that of depth-first search -
where backtracking occurs by subgoal termination - intertwined with op-
erator subgoaiing. Once this search is completed, further impasses (N) arise
to actually apply the selected operator, but eventually, a solution is found.

One way in which multi-column subtraction differs from the classic Al
search tasks is that the goal test is underspecified. As shown in Figure 4,
the goal test used here is that a result has been generated for each column
of the problem. This determines whether some answer has been given for
the problem, but is inadequate to determine whether the correct answer

has been generated. The reason for this is that when solving a subtraction

problem. the answer is in general not already available. It is theoretically

21

(and practically) possible to use an addition procedure -o test whether the
subtraction procedure has generated the correct result. However, that corre-
sponds to a deliberate strlutegy of "checking your work", rather than to the
normal procedural goal test of determining whether the sequence of steps
has been completed.

One consequence of having an underspecified goal test is that the com-
bination of the problem space ant goal test are not sufficient to ensure
correct performance. Additional knowledge - the control knowledge which
underlies the subtraction procedure - must also be provided in some form.

VanLehn provided Sierra with worked out examples which included the or-

der in which the primitive external actions were to be performed [71]. The
approach that we have taken is tc provide advice to Soar [12] about which
task operators it should evaluate first in the selection problem space. This
ensures that the first answer generated during the lookahead search is the
correct one.

3.4 Learning in Suhtrnet;nn

When chunking is used during subtraction problem solving, productions
are created which reproduce the results of the subgoals in similar future
situations. For the subgoals created because of tie impasses, the chunks
create best preferences for the operators that led to the solution. These
chunks essentially cache the resuits of the lookahead searches. A ,et of such
chunks corresponds to a plan (or procc lure) - they determine at every
step what should be done - thus chunking converts Soar's behavior from
search into plan (or procedure) following. When Soar is rerun on the same
problem. the tie impasses do not arise and the solution is found directly, as
in Figure 5.

One important issue concerning the chunked productions is their gener-
ality. Does Soar only learn chunks that can apply to the exact same problem.
or are the chunks general enough so that advice is no longer needed after
a few subtraction problems have been completed? The answer is that the
learned control chunks are quite general - so general that only one or two
are required per operator. Once these chunks are acquired, Soar is able to
solve perfectly all multi-column subtraction problems taat have a positive
answer. One sample control chunk for the borrow-into operator is sho wn in
Figure 7. Similar chunks are learned for each of the other major operators.

One reason for this generality is that operator subgoaling leads to a fine-
grained goal hierarchy. There are a large number of relatively simple goals

22

If the super-operator is write-difference,

and the bottom digit is greater than the top digit,

then make a best preference for borrow-into.

Figure 7: A control chunk for borrow-into.

having to do with satisfying the preconditions of an operator. Because the
problem solving for these goals is relatively minimal, the resulting chunks
are quite general. A second reason for the generality of the learning is that

the control chunks do not test for the specific digits used in the problems
- if such tests were included, the chunks would transfer to many fewer
problems.

5

Though the control chunks that are learned are quite general, many
specialized implementation chunks are also learned for the simple arithmetic
operators. For example, the set of chunks that are eventually learned for
the subtract-two-digits operator comprise a partial subtraction table for one
and two-digit numbers. Conceivably,.these chunks could have been learned
before multi-column subtraction is ever-attempted - one can imagine that
most of these simple digit manipulations are learned during earlier lessons
on addition and single-column subtraction. Alternatively, these chunks can

continue to be acquired as more multi-column subtraction problems are
solved. The control chunks would all be acquired after a few trials, but
learning of arithmetic knowledge would continue through later problems.

4 Analysis of Soar

There are a variety of analyses that could be performed for Soar. In this
section we take our cue from the issues provided by the organizers of the 1987
Workshop on the Foundations of Artificial Intelligence [14]. We examine the

'Chunking would include tests for the digits if their specific values were examined
during the lookahead scarcites. However, the actual manipulation of the numbers is per-
formed by the simple arithmetic operators: add-10, subtract-1 and subtract-two-digits.
Before an operator such as write-difference is applied, an operator subgoal is created in
which subtract-two-digits is selected and applied. The chunk for this subgoal reproduces
the result whenever the same two digits are to be subtracted, eliminating the need for
subtract-two-digits in such situations in the future. In the following lookahead searches,
only pointers to the digits rather than the actual digits are ever tested, thereby leading
to control chunks that are independent of the actual digits.

23

set of tasks that are natural for Soar, the sources of its power, and its scope
and limits.

4.1 Natural Tasks

What does it mean for a task to be natural for an architecture? To an-
swer this question we first must understand what a task is, and then what it
means for such a task to be natural. By "task" we will mean any identifiable
function, whether externally specified, or completely internal to the system.
Computer configuration and maneuvering through an obstacle course are
both tasks. and so are inheritance and skill acquisition. One way to define
the idea of naturalness for a combination of a task and architecture is to say
that a task is natural for an architecture if the task can be performed within
the architecture without adding an extra level of interpretation within the
software. This definition is appealing because it allows a distinction to be
made between the tasks that the architecture can perform directly and those
that can be done, but for which the architecture does not provide direct sup-
port. However, applying this definition is not without its problems. One
problem is that, for. any particular task, it is possible to replace the com-
bination of an interpreter, and its interpreted structures with a procedure
that has the same effect. Some forms of learning - chunking, for example
- do exactly this, by compiling interpreted structures into the structure
of the interpreter. This has the effect of converting an unnatural task im-
plementation into a natural one. Such a capability causes problems for the
definition of naturalness - naturalness cannot be a fixed property of the
combination of a task and an architecture - but it is actually a point in
favor of architectures that can do such learning.

A second problem is that in a system that is itself built up in levels, as
is Soar, different tasks will be performed at different levels. In Soar, tasks
can be performed directly by the architecture, by memory retrieval, by a
decision, or by goal-based problem solving. A task is implemented at a par-
ticular level if that level and all lower levels are involved, but the higher
levels are not. For example, consider the task of inheritance. Inheritance
is not directly implemented by the Soar architecture, but it can be imple-
mented at the memory level by the firing of productions. This implementa-
tion involves the memory level plus the architecture (which implements the
memory level), but not the decision or goal levels. Alternatively, inheritance
could be implemented at the decision level, or even higher up at goal level.
As the level of implementation increases, performance becomes more inter-

24

pretive, but the model of computation explicitly includes all of these levels
as natural for the system.

One way out of this problem is to have pretheoretic notions about the

level at which a particular task ought to be performable. The system is then
natural for the task if it can be performed at that level, and unnatural if it

must be implemented at a higher level. If, for example, the way inheritance
works should be a function of the knowledge in the system, then the natural
level for this capability is at the memory level (or higher).

In the remainder of this section we describe t.,= major types of tasks
that appear to us to be natural in Soar. Lacking any fundamental ways of
partitioning the set of all tasks into principled categories, we will use a cate-
gorization based on four of the major functional capabilities of Soar: search-
based tasks, knowledge-based tasks, learning tasks, and robotic tasks. The
naturalness judgments for these task types are always based on assumptions
about the natural level of implementation for a variety of subtasks within

each type of task. We will try to be as clear as possible about the levels at
which the subtasks are being performed, so that others may also be able to

make these judgrea,- for themselves.

4.1.1 Search-based tasks

Soar performs search in two qualitatively different ways: within context
and across context. Within-context search occurs when Soar "knows" what
to do at every step, and thus selects a sequence of operators and states
without going into a subgoal. If it needs to backtrack in within-context
search, and the states in the problem space are internal (rather than states
of the outside world), it can do so by reselecting a previously visited state.
Within-context search corresponds to doing the task, without lookahead,
and recovering if anything goes wrong. Across-context search occurs when
the system doesn't know what to do, and impasses arise. Successive states
in the search show up in successively lower contexts. Backtracking occurs
by terminating subgoals. Across-context search corresponds to lookahead
search, hypothetical scenario generation, or simulation.

Various versions of Soar have been demonstrated to be able to perform

over 30 different search methods [21, 25, 26]. Soar can also exhibit hybrid
methods - such as a combination of hill-climbing and depth-first search
or of operator subgoaling and depth-first search - and use different search
methods for different problem spaces within the same problem.

Search methods are represented in Soar as method increments - pro-

25

ductions that contain a small chunk of knowledge about some aspect of a
task and its action consequences. For example, a method increment might
include knowledge about how to compute an evaluation function for a task,
along with the knowledge that states with better evaluations should be pre-
ferred. Such an increment leads to a form of hill climbing. Other increments
lead to other search methods. Combinations of increments lead to mixed
methods.

The basic search abilities of making choices and generating subgoals
are provided by the architecture. Individual method increments are at the
memory level, but control occurs at the decision level, where the results of
all of the method increments can be integrated into a single choice. Some
search knowledge, such as the selection problem space, exists at the goal
level.

4.1.2 Knowledge-based tasks

Knowledge-based tasks are represented in Soar as a collection of interact-
ing problem spaces (as are all symbolic goal-orilnted tasks). Each problem
space is responsible for a part of the task. Problem spaces interact ac-
cording to the different goal-subgoal relationships that can exist in Soar.
Within each problem space, the knowledge is further decomposed into a set
of problem space components, such as goal testing, state initialization, and
operator proposal (77]. These components, along with additional communi-
cation constructs, can then be encoded directly as productions, or can be
described in a high-level problem space language called TAQL (77], which
is then compiled down into productions. Within this overall problem space
organization, other forms of organization - such as object hierarchies with
inheritance - are implementable at the memory level by multiple mem-
ory accesses. Task performance is represented at the goal level as search in
problem spaces.

Several knowledge-based tasks have been implemented in Soar, includ-
ing the Ri-Soar computer configuration system [51], the Cypress-Soar and
Designer-Soar algorithm design systems [60, 62], the Neomycin-Soar medical
diagnosis system (73], and the Merl-Soar job-shop scheduling system [16].

These five knowledge-based systems cover a variety of forms of both con-
struction and classification tasks. Construction tasks involve assembling an
object from pieces. Ri-Soar - in which the task is to construct a computer
configuration - is a good example of a construction task. Classification
tasks involve selecting from among a set of objects. Neomycin-Soar - in

26

which the task is to diagnose an illness - is a good example of a classifi-
cation task.6 In their simplest forms, both construction and classification
occur at the decision level. In fact, they both occur to some extent within ev-
ery decision in Soar - alternatives must be assembled in working-memory
and then selected. These capabilities can require trivial amounts of pro-
ceasing, as when an object is constructed by instantiating and retrieving it
from memory. They can also involve arbitrary amounts of problem solving
and knowledge, as when the process of operator-implementation (or, equiv-
alently, state-construction) is performed via problem solving in a subgoal.

4.1.3 Learning tasks

The architecture directly supports a form of experiential learning in which
chunking compiles goal-level problem solving into memory-level productions.
Execution of the productions should have the same effect as the problem
solving would have had, just more quickly. The varieties of subgoals for
which chunks are learned lead to varieties in types of productions learned:
problem space creation and selection; state creation and selection; and oper-
ator creation, selection, and execution. An alternative classification for this
same set of behaviors is that it covers procedural, episodic and declarative
knowledge [56]. The variations in goal outcomes lead to both learning from
success and learning from failure. The ability to learn about all subgoal
results leads to learning about important intermediate results, in addition
to learning about goal success and failure. The implicit generalization of
chunks leads to transfer of learned knowledge to other subtasks within the
same problem (within-trial transfer), other instances of the same problem
(across-trial transfer), and other problems (across-task transfer). Variations
in the types of problems performed in Soar lead to chunking in knowledge-
based tasks, search-based, and robotic tasks. Variations in sources of knowl-
edge lead to learning from both internal and external knowledge sources. A
summary of many of the types of learning that have so far been demon-
strated in S.oar can be found in [61].

The apparent naturalness of these various forms of learning depends pri-
marily on the appropriateness of the required problem solving. Towards the
natural end of the spectrum is the acquisition of operator selection produc-
tions, in which the problem solving consists simply of a search with the set

6 n a related development, as part of an effort to map the Generic Task approach to
expert system construction onto Soar, the Generic Task for classification by establish-refine
has been implemented in Soar as a general problem space [17].

27

of operators for wifch selection knowledge is to be learned. Towards the
unnatural end of the spectrum is the acquisition of new declarative knowl-
edge from the outside environment. Many systems employ a simple store
command for such learning, effectively placing the capability at the memory
level. In Soar, the capability is situated two levels further up, at the goal
level. This occurs because the knowledge must be stored by chunking, which
can only happen if the knowledge is used in subgoal-based problem solving.
The naturalness of this learning in Soar thus depends on whether this extra
level of interpretation is appropriate or not. It turns out that the problem
solving that enables declarative learning in Soar takes the form of an unde.-
standing process that relates the new knowledge to what is already known.
The chunking of this understanding process yields the chunks that encode
the new knowledge. If it is. assumed that new knowledge should always be
understood to be learned, then Soar's approach starts to look more natural,
and verbatim storage starts to look more inappropriate.

4.1.4 Robotic tasks

Robotic tasks are performed in Soar via its perceptual-motor interface. Sen-
sors autonomously generate working memory structures representing what is
being sensed, and motor systems autonomously take commands from work-
ing memory and execute them. The work on robotics in Soar is still very
much in its infancy; however, in Robo-Soar [301, Soar has been successfully
hooked up to the combination of a camera and a Puma arm, and then ap-
plied to several simple biocks-world tasks.7 Low-level software converts the
camera signal into information about the positions, orientations and iden-
tifving characteristics of the blocks. This perceptual iiLformation is then
input to working memory, and further interpreted by encoding productions.
Decoding productions convert the high-level robot commands generated by
the cognitive system to the low-level commands that are directly under-
stood by the controller for the robot arm. These low-level commands are
then executed through Soar's motor interface.

Given a set of operators which generate motor commands, and knowl-
edge about how to simulate the operators and about the expected positions
of blocks following the actions, Robo-Soar is able to successfully solve sim-
ple blocks world problems and to learn from its own behavior and from

'The work on Robo-Soar has been done in the newest major release of Soar (version
5) [24. 63, which differs in a number of interesting ways from the earlier versions upon
which the rest of the results in this article are based.

28

externally provided advice. It also can make use of a general scheme for
recovering from incorrect knowledge [23] to recover when the unexpected
occurs - such as when the system fails in its attempt to pick up a triangu-
lar prism - and to learn to avoid the failure in the future. Robo-Soar thus
mixes planning (lookahead search with chunking), plan execution and mon-
itoring, reactivity, and error recovery (with replanning). This performance
depends on all of the major components of the architecture, plus general
background knowledge - such as how to do lookahead search and how to
recover from errors - and specific problem spaces for the task.

4.2 Where the Power Resides

Soar's power and flexibility arise from at least four identifiable sources. The
first source of power is the universality of the architecture. While it may
seemthat this should go without saying, it is in fact a crucial factor, and thus
important to mention explicitly. Universality provides the primitive capabil-
ity to perform any computable task, but does not by itself explain why Soar
is more appropriate than any other itnivprsa architecture for knowledge-
based, search-based, learning, and robotic tasks.

The second source of power is the uniformity of the architecture. Having
only one type of long-term memory structure allows a single, relatively sim-
ple, learning mechanism to behave as a general learning mechanism. Having
only one type of task representation (problem spaces) allows Soar to move
continuously from one extreme of brute-force search to the other extreme of
knowledge-intensive (or procedural) behavior without having to make any
representational decisions. Having only one type of decision procedure al-
lows a single, relatively simple, subgoal mechanism to generate all of the
types of subgoals needed by the system.

The traditional downside of uniformity is weakness and inefficiency. If
instead the system were built up as a set of specialized modules or agents, as
proposed in [10, 34], then each of the modules could be optimized for its own
narrow task. Our approach to this issue in Soar has been to go strongly with
uniformity - for all of the benefits listed above - but to achieve efficiency
(power) through the addition of knowledge. This knowledge can either be
added by hand (programming) or by chunking.

The third source of power is the specific mechanisms incorporated into
the architecture. The production memory provides pattern-directed access
to large amounts of knowledge; provides the ability to use strong problem
solving methods; and provides a memory structure with a small-grained

29

modularity. The working memory allows global access to processing state.
The decision procedure provides an open control loop that can react im-
mediately to new situations and knowledge; contributes to the modularity
of the memory by allowing memory access to proceed in an uncontrolled
fashion (conflict resolution was a major source of nonmodularity in earlier
production systems); provides a flexible control language (preferences); and
provides a notion of impasse that is used as the basis for the generation
of subgoals. Subgoals focus the system's resources on situations where the
accessible knowledge is inadequate: and allow flexible meta-level processing.
Problem spaces separate control from action, allowing them (control and
action) to be reasoned about independently; provide a constrained context
within which the search for a desired state can occur; provide the abil-
ity to use weak problem solving methods; and provide for straightforward
responses to uncertainty and error (search and backtracking). Chunking
acquires long-term knowledge from experience; compiles interpreted proce-
dures into non-interpreted ones; and provides generalization and transfer.
The perceptual-motor system provides the ability to observe and affect the
external world in parallel with the cognitive activity.

The fourth source of power is the interaction effects that result from
the integration of all of the capabilities within a single system. The most
compelling results generated so far come about from these interactions. One
example comes from the mixture of weak methods, strong methods, and
learning that is found in systems like RI-Soar. Strong methods are based
on having knowledge about what to do at each step. Because strong methods
tend to be efficient and to produce high-quality solutions, they should be
used whenever possible. Weak methods are based on searching to make up
for a lack of knowledge about what should be done. Such methods contribute
robustness and scope by providing the system with a fall-back approach for
situations in which the available strong methods do not work. Learning
results in the addition of knowledge, turning weak methods into strong ones.
For example, in Ri-Soar it was demonstrated how computer configuration
could be cast as a search problem, how strong methods (knowledge) could
be used to reduce search, how weak methods (subgoals and search) could
be used to make up for a lack of knowledge, and how learning could add
knowledge as the result of search.

Another interesting interaction effect comes from work on abstraction
planning, in which a difficult problem is solved by first learning a plan for
an abstract version of the problem. and then using the abstract plan to
aid in finding a plan for the full problem [41, 57, 70, 69]. Chunking helps

30

the abstraction planning process by recording the abstract plan as a set of
operator-selection productions, and by acquiring other productions that re-
duce the amount of search required in generating a plan. Abstraction helps
the learning process by allowing chunks to be learned more quickly - ab-
stract searches tend to be shorter than normal ones. Abstraction also helps
learning by enabling chunks to be more general than they would otherwise
be - the chunks ignore the details that were abstracted away - thus al-
lowing more transfer and potentially decreasing the cost of matching the
chunks tbecause there are now fewer conditions).

4.3 Scope and Limits

The original work on Soar demonstrated its capabilities as a general prob-
lem solver that could use any of the weak methods when appropriate, across
a wide range of tasks. Later, we came to understand how to use Soar as
the basis for knowledge-based systems, and how to incorporate appropri-
ate learning and perceptual-motor capabilities into the architecture. These
deviovments increased Soar's scope considerably beyond its origins as a
weak-method problem solver. Our ultimate goal has always been to develop
the system to the point where its scope includes everything required of a
general intelligence. In this section we examine how far Soar has come from
its relatively limited initial demonstrations towards its relatively unlimited
goal. This discussion is divided up according to the major components of
the Soar architecture, as presented in Section 2: memory, decisions, goals.
learning, and perception and motor control.

4.3.1 Level 1: Memory

The scope of Soar's memory level can be evaluated in terms of the amount
of knowledge that can be stored, the types of knowledge that can be repre-
sented, and the organization of the knowledge.

Amount of knowledge. Using current technology, Soar's production mem-
ory can support the storage of thousands of independent chunks of knowl-
edge. The size is primarily limited by the cost of processing larger numbers
of productions. Faster machines, improved match algorithms and parallel
implementations [13, 65, 66] may raise this effective limit by several orders
of magnitude over the next few years.

Types of knowledge. The representation of procedural and propositional
declarative knowledge is well developed in Soar. However, we don't have

31

well worked-out approaches to many other knowledge representation prob-

lems, such as the representation of quantified, uncertain, temporal, and

episodic knowledge. The critical question is whether architectural support

is required to adequately represent these types of knowledge, or whether

such knowledge can be adequately treated as additional objects and/or at-
tributes. Preliminary work on quantified [43] and episodic (56] knowledge is

looking promising.
Memory organization. An issue which often gets raised with respect to

the organization of Soar's memory, and with respect to the organization
of production memories iin general. is the apparent lack of a higher-order

memory organization. There are no scripts [59], frames [33], or schemas [1]
to tie fragments of related memory together. Nor are there are any obvious

hierarchical structures which limit what sets of knowledge will be retrieved
at any point in time. However, Soar's memory does have an organization,
which is derived from the structure of productions, objects, and working

memory (especially the context hierarchy).
What corresponds to a schema in Soar is an object, or a structured

collection of objects. Such a stra,:uie can be stored entirely in the actions of
a single production, or it can be stored in a piecemeal fashion across multiple
productions. If multiple productions are used, the schema as a unit only
comes into existence when the pieces are all retrieved contemporaneously
into working memory. The advantage of this approach is that it allows
novel schemas to be created from fragments of separately learned ones. The
disadvantage is that it may not be possible to determine whether a set of
fragments all originated from a single schema.

What corresponds to a hierarchy of retrieval contexts in Soar are the
production conditions. Each combination of conditions implicitly defines a
retrieval context, with a hierarchical structure induced by the subset rela-

tionship among the combinations. The contents of working memory deter-
mines which retrieval contexts are currently in force. For example, problem
spaces are used extensively as retrieval contexts. Whenever there is a prob-
lem solving context that has a particular problem space selected within it.
productions that test for other problem space names are not eligible to fire in
that context. This approach has worked quite well for procedural knowledge,
where it is clear when the knowledge is needed. We have just begun to work

on appropriate organizational schemes for episodic and declarative knowl-

edge, where it is much less clear when the knowledge should be retrieved.
Our initial approach has been based on the incremental construction, via
chunking, of multi-production discrimination networks [53, 56). Though this

32

work is too premature for a thorough evaluation in the context of Soar, the
effectiveness of discrimination networks in systems like Epam [7] and Cyrus
119] bodes well.

4.3.2 Level 2: Decisions

The scope of Soar's decision level can be evaluated in terms of its speed, the
knowledge brought to bear, and the language of control.

Speed. Soar currently runs at approximately 10 decisions/second on cur-
rent workstations such as a Sun4/280. This is adequate for most of the types
of tasks we currently implement, but is too slow for tasks requiring large
amounts of search or very large knowledge bases (the number of decisions
per second wojlld get even smaller that it is now). The principal bottle-
neck is the speed of memory access, which is a function of two factors: the
cost of processing individually expensive productions (the expensive chunks
problem) [67], and the cost of processing a large number of productions (the
average growth effect problem) [64]. We now have a solution to the problem
of expensive chunks which can guarantee that all productios ,-ll be cheap

the match cost of a production is at worst linear in the number of condi-
tions 168] - and are working on other potential solutions. Parallelism looks
to be an effective solution to the average growth effect problem [64].

Bringing knowledge to bear. Iterated, parallel, indexed access to the
contents of long-term memory has proven to be an effective means of bringing
knowledge to bear on the decision process. The limited power provided
by this process is offset by the ability to use subgoals when the accessible
knowledge is inadequate. The issue of devising good access paths for episodic
and declarative knowledge is also relevant here.

Control language. Preferences have proven to be a flexible means of
specifying a partial order among contending objects. However, we cannot
yet'state with certainty that the set of preference types embodied in Soar is
complete with respect to all the types of information which ultimately may
need to be communicated to the decision procedure.

4.3.3 Level 3: Goals

The scope of Soar's goal level can be evaluated in terms of the types of
goals that can be generated and the types of problem solving that can be
performed in goals. Soar's subgoaling mechanism has been demonstrated to
be able to create subgoals for all of the types of difficulties that can arise

33

in problem solving in problem spaces [21]. This leaves three areas open.
The first area is how top-level goals are generated; that is, how the top-level
task is picked. Currently this is done by the programmer, but a general
intelligence must clearly have grounds - that is, motivations - for selecting
tasks on its own. The second area is how goal interactions are handled. Goal
interactions shov up in Soar as operator interactions, and are normally dealt
with by adding explicit knowledge to avoid them, or by backtacking (with
learning) when they happen. It is not yet clear the extent to which Soar
could easily make use of more sophisticated approaches, such as non-linear
planning [2]. The third area is the sufficiency of impasse-driven subgoaling
as a means for determining when meta-level processing is needed. Two of
the activities that might fall under this area are goal tests and monitoring.
Both of these activities can be performed at the memory or decision level,
but when they are complicated activities it may be necessary to perform
them by problem solving at the goal level. Either activity can be called for
explicitly by selecting a "monitor" or "goal-test" operator, which can then
lead to the generation of a subgoal. However, goals for these tasks do not
a-ise automatically, without deliberation. Should they? It is not completely
dear.

The scope of the problem solving that can be performed in goals can
itself be evaluated in terms of whether problem spaces cover all of the types
of performance required, the limits on the ability of subgoal-based problem
solving to access and modify aspects of the system, and whether parallelism
is possible. These points are addressed in the next three paragraphs.

Problem space scope. Problem spaces are a very general performance
model. They have been hypothesized to underlie all human. symbolic, goal-
oriented behavior 37]. The breadth of tasks that have so far been rep-
resented in problem spaces over the whole the field of AI attests to this
generality. One way of pushing this evaluation further is to ask how well
problem spaces account for the types of problem solving performed by two of
the principal competing paradigms: planning [2] and case-based reasoning
[20].8 Both of these paradigms involve the creation (or retrieval) and use of
a data structure that represents a sequence of actions. In planning, the data
structure represents the sequence of actions that the system expects to use
for the current problem. In case-based reasoning, the data structure rep-

SThe work on Robo-Soar also reveals Soar's potential to exhibit reactive planning [11].
The current version of Soar still has problems with raw speed and with the unbounded
nature of the production match (the expensive chunks problem), but it is expected that
these problems will be solved in the near future.

34

resents the sequence of actions used on some previous, presumably related,
problem. In both, the data structure is used to decide what sequence of
actions to perform in the current problem. Soar straightforwardly performs
procedural analogues of these two processes. When it performs a looka-
head search to determine wivt operator to apply to a particular state, it
acquires (by chunking) a set of search control productions which collectively
tell it which operator should be applied to each subsequent state. This set
of chunks forms a procedural plan for the current problem. When a search
control chunk transfers between tasks. a form of procedural case-based rea-
soning is occurring.

Simple forms of declarative planning and case-based reasoning have also
been demonstrated in Soar in the context of an expert system that designs
floor systems [47]. When this system discovers, via lookahead search, a se-
quence of operators that achieves a goal, it creates a declarative structure
representing the sequence and returns it as a subgoal result (plan creation).
This plan can then be used interpretively to guide performance on the im-
mediate problem (plan following). The plan can also be retrieved during
later problems and used t3 guide the selection of operators (case-based rea-
soning). This research does not demonstrate the variety of operations one
could conceivably use to modify a partial or complete plan, but it does

demonstrate the basics.
feta-level access. Subgoal-based problem solving has access to all of the

information in working memory - including the goal stack, problem spaces.
states, operators. preferences. and other facts that have been retrieved or
generated - plus any of the other knowledge in long-term memory that it
can access. It does not have direct access to the productions, or to any of the
data structures internal to the architecture. Nonetheless, it should be able
to indirectly examine the contents of any productions that were acquired

by chunking, which in the long run should be just about all of them. The
idea is to reconstruct the contents of the producton by going down into a
subgoal and retracing the problem solving that was done when the chunk
was learned. In this way it should be possible to determine what knowledge
the production cached. This idea has not yet been explicitly edmonstrated
in Soar, but research on the recovery from incorrect knowledge has used a
closely related approach [23].

The effects of problem solving are limited to the addition of information
to working memory. Deletion of working memory elements is accomplished
by a garbage collector provided by the architecture. Productions are added
by chunking, rather than by problem solving, and are never deleted by the

35

system. The limitation on production creation - that it only occurs via
chunking - is dealt with by varying the nature of the problem solving over
which chunking occurs [56]. The limitation on production deletirrl is dealt
with by learning new productions which overcome the effects of old ones
[23].

Parallelism. Two principal sources of parallelism in Soar are at the mem-
ory level: production match and execution. On each cycle of elaboration,
all productions are matched in parallel to the working memory, and then
all of the successful instantiations are executed in parallel. This lets tasks
that can be performed at the memory level proceed in parallel, but not sc
for decision-level and goal-level tasks.

Another principal source of parallelism is provided by the moto: systems.
All motor systems behave in parallel with respect to each other, and with
respect to the cognitive system. This enables one form of task-level paral-
lelism in which non-interfering external tasks can be performed in parallel.
To enable further research on task-level parallelism we have added the ex-
perimental ability to simultaneously select multiple problem space operators
within a single problem solving context. Each of thebe operators can then
proceed to execute in parallel, yielding parallel subgoals, and ultimately an
entire tree of problem solving contexts in which all of the branches are be-
ing processed in parallel. We do not yet have enough experience With this
capability to evaluate its scope and limits.

Desp'te all of these forms of parallelism embodied in Soar, most im-
plementations of the architecture have been on serial machines, with the
parallelism being simulated. However, there is an active research effort to
implement Soar on parallel computers. A parallelized version of the pro-
duction match has been successfully implemented on an Encore Multimax.
which has a small number (2-20) of large-grained processors [66], and un-
successfully implemented on a Connection Machine [15], which has a large
number (16K-64K) of small-grained processors [9]. The Connection M a-
chine implementation failed primarily because a complete parallelization of
the current match algorithm can lead to exponential space requirements.
Research on restricted match algorithms may fix this-problem in the future.
Work is also in progress towards implementing Soar on message-passing
computers [65].

36

4.3.4 Learning-

In (61] we broke down the problem of evaluating the scope of Soar's learning

capabilities into four parts: when can the architecture learn; from what can
the architecture learn; what can the architecture learn; and when can the

architecture apply learned knowledgt.. These points are discussed in Section

4.1, and need not be elaborated further here.
One important additional issue is whether Soar acquires knowledge that

is at the appropriate level of generalization or specialization. Chunking

provides a level of generality that is determined by a combination of the

representation used and the problem solving performed. Under varying cir-

cumstances. this can lead to both overgeneralization [29] and overspecial-

ization. The acquisition of overgeneral knowledge implies that the system

must be able to recover from any errors caused by its use. One solution to

this problem that has been implemented in Soar involves detecting that a

performance error has occurred, determining what should have been done
instead, and acquiring a new chunk which leads to correct performance in the

future (231. This is accomplished without examining or modifying the over-

general production; instead it goes back down into the subgoals for which.
the overgeneral productions were learned.

One way to deal with overspecialization is to patch the resulting knowl-

edge gaps with additional knowledge. This is what Soar does constantly -
if a production is overspecialized, it doesn't fire in circumstances when it
should, causing an impasse to occur, and providing the opportunity to learn
an additional chunk that covers the missing case (plus possibly other cases).

Another way to deal with overspecialized knowledge is to work towards ac-

quiring more general productions. A standard approach is to induce general

rules from a sequence of positive and negative examples [35, 45]. This form of
generalization must occur in Soar by search in problem spaces, and though
there has been some initial work on doing this [48, 58], we have not yet

provided Soar with a set of problem spaces that will allow it to generate
appropriate generalizations from a variety of sets of examples. So, Soar can-

not yet be described as a system of choice for doing induction from multiple
examples. On the other hand, Soar does generalize quite naturaly and ef-

fectively when abstraction occurs [69]. The learned rules reflect whatever
abstraction was made during problem solving.

Learning behaviors that have not yet been attempted in Soar include the

construction of a model of the environment from experimentation in it [46],

scientific discovery and theory formation [31], and conceptual clustering [8].

37

4.3.5 Perception and motor control

The scope of Soar's perception and motor control can be evaluated in terms
of both its low-level I/0 mechanisms and its high-level language capabilities.
Both of these capabilities are quite new, so the evaluation must be even more
tentative than for the preceding components.

At the low-level, Soar can be hooked up to multiple perceptual modalities
(and multiple fields within each modality) and can control multiple effectors.

The critical low-level aspects of perception and motor control are currently
done in a standard procedural language outside of the cognitive system. The
resulting system appears to be an effective testbed for research on high-level
aspects of perception and motor-control. It also appears to be an effective
testbed for research on the interactions of perception and motor control
with other cognitive capabilities, such as memory, problem solving, and
learning. However, it does finesse many of the hard issues in perception
and motor control, such as selective attention, shape determination, object
identification, and temporal coordination. Work is actively in progress on
selective attention [741.

At the high end of I/O capabilities is the processing of natural language.
An early attempt to implement a semantic grammar parser in Soar was only
a limited success [44]. It worked, but did not appear to be the right long-term
solution to language understanding in Soar. More recent work on NL-Soar
has focused on the incremental construction of a model of the situation by
applying comprehension operators to each incoming word [321. Comprehen-
sion operators iteratively augment and refine the situation model, setting
up expectations for the part of the utterance still to be seen, and satisfying
earlier expectations. As a side effect of constructing the situation model, an
utterance model is constructed to represent the linguistic structure of the
sentence. This approach to language understanding has been successfully
applied to acquiring task specific problem spaces for three immediate rea-
soning tasks: relational reasoning [18], categorical syllogisms, and sentence
verification [3]. It has also been used to process the input for these tasks as
they are performed. Though NL-Soar is still far from providing a general
linguistic capability, the approach has proven promising.

5 Conclusion

In this article we have taken a step towards providing an analysis of the Soar
architecture as a basis for general intelligence. In order to increase under-

38

standing of the structure of the architecture we have provided a theoretical
framework within which the architecture can be described, a discussion uF
meLhodoogh,.± assumptions underlying the project and the system, and an
illustrative example of its performance on a multi-column subtraction task.
In order to facilitate comparisons between the capabilities of the current
version of Soar and the capabilities required to achieve its ultimate goal as

an architecture for general intelligence, we have described the natural tasks
for the architecture, the sources of its power, and its scope and limits. If
this article has succeeded, it should be clear that progress has been made,
but that more work is still required. This applies equally to the tasks of
developing Soar and analyzing it.

References

[1] F. C. Bartlett. Remembering: A Study in Experimental and Social
Psychology. Cambridge University Press, Cambridge, Eng., 1932.

[2] D. Chapman. Planning for conjunctive g zai. Artificial Intelligence,
32:333-377, 1987.

[3] H. H. Clark and W. G. Chase. On the process of comparing sentences
against pictures. Cognitive Psychology, 3:472-517, 1972.

[4] G. DeJong and R. J. Mooney. Explanation-based learning: An alter-
native view. Machine Learning, 1:145-176, 1986.

[5] T. G. Dietterich. Learning at the knowledge level. Machine Learning,

1:287-315, 1986.

[6] 0. Etzioni and T. M. Mitchell. A comparative analysis of chunking and
decision analytic control. In Proceedings of the AAAISpring Symposium
on Limited Rationality and Al, Stanford, CA, 1989.

[7] E. A. Feigenbaum and H. A. Simon. Epam-like models of recognition
and learning. Cognitive Science, 8:305-336, 1984.

[8] D. 11. Fisher and P. Langley. Approaches to conceptual clustering. In
Proceedings of IJCAI-85, pages 691-697, Los Angeles, CA, 1985.

[9] R. Flynn. Placing Soar on the connection machine. Prepared for and
distributed at the AAAI Mini-Symposium "How Can Slow Components
Think So Fast", 1988.

39

[10] J. A. Fodor. The Modularity of Mind. Bradford Books, MIT Press.
Cambridge, MA, 1983.

[11] M. P. Georgeff and A. L. Lansky. Reactive reasoning and planning. In
Proceedings of AAAI-87, pages 677-682, Seattle, WA, 1987.

[121 A. Golding, P. S. Rosenbloom, and J. E. Laird. Learning general search
control from outside guidance. In Proceedings of IJCAI-87, Milan, 1987.

[13] A. Gupta and M. Tambe. Suitability of message passing computers for
implementing production systems. In Proceedings of AAAI-88, pages
687-692, St. Paul, 1988.

[14] C. Hewitt and D. Kirsh. Personal communication. 1987.

[15] W. D. Hillis. The Connection Machine. MIT Press, Cambridge, MA,
1985.

[16] W. Hsu, M. Prietula, and D. Steier. Merl-Soar: Applying Soar tr,
scheduling. In Proceedings of the Workshop on Artificial Intelligence
Simulation, The National Conference on Artificial Intelligence, pages
81-84, 1988.

[17] T. IR. Johnson, J. W. Jr. Smith, and B. Chandrasekaran. Generic
Tasks and Soar. In Working Notes of the AAA[Spring Symposium
on Knowledge System Development Tools and Languages, pages 25-28.
Stanford, CA, 1989.

[181 P. N. Johnson-Laird. Reasoning by rule or model? In Proceedings
of the 10th.Annual Conference of the Cognitive Science Society, pages
765-771, Montreal, 1988.

[19] J. L. Kolodner. Maintaining order in a dynamic long-term memory.
Cognitive Science, 7:243-280, 1983.

[20] J.L. Kolodner, editor. Proceedings of the DARPA Workshop on Case-
Based Reasoning. Clearwater Beach, FL, 1988.

[21] J. E. Laird. Universal Subgoaling. PhD thesis, Carnegie-Mellon Univer-
sity, 1983. (Available in Laird, J. E. and Rosenbloom, P. S. and Newell,
A. Universal Subgoaling and Chunking: The Automatic Generation and
Learning of Goal Hlierarchies, Hingham, MA: Kluwer, 1986).-

40

[22] J. E. Laird. Soar user's manual (version 4). Technical Report ISL-15,
Xerox Palo Alto Research Center, 1986.

[23] J. E. Laird. Recovery from incorrect knowledge in Soar. In Proceedings
of AAAI-88, pages 618-623, St. Paul, 1988.

[24] J. E. Laird and K. A. McMahon. Destructive State Modification in
Soar, Draft V. Department of EECS, University of Michigan, 1989.

[25] J. E. Laird and A. Newell. A universal weak method. Technical Report
83-141, Department of Computer Science, Carnegie-Mellon University,
June 1983.

[26] J. E. Laird, A. Newell, and P. S. Rosenbloom. Soar: An architecture
for general intelligence. Artificial Intelligence, 33:1-64, 1987.

[27] J. E. Laird, P. S. Rosenbloom, and A. Newell. Towards chunking as
a general learning mechanism. In Proceedings of AAAI-84, pages 188-

.192, Anstin, 1984.

[28] J. E. Laird, P. S. Rosenbloom, and A. Newell. Chunking in Soar: The
anatomy of a general learning mechanism. Machine Learning, 1:11-46,
1986.

[29] J. E. Laird, P. S. Rosenbloom, and A. Newell. Overgeneralization during
knowledge compilation in Soar. In T. G. Dietterich, editor, Proceed-
ings of the Workshop on Knowledge Compilation, Otter Crest, 1986.
AAAI/Oregon State U.

[30] J. E. Laird, E. S. Yager. C. M. Tuck, and M. Hucka. Learning in
tele-autonomous systems using Soar. In Proceedings of the NASA Con-
ference on Space Telerobotics, Pasadena, CA, 1989. In press.

[31] P. Langley, H. A. Simon, G. L, Bradshaw, and J. M. Zytkow. Scientific
Discovery: Computational Explorations of the Creative Processes. MIT
Press, Cambridge, MA, 1987.

[32] R. L. Lewis, A. Newell, and T. A. Polk. Toward a Soar theory of taking
instructions for immediate reasoning tasks. In Proceedings of the 11th
Annual Conference of the Cognitive Science Society, Ann Arbor, MI,
1989. In press.

41

[33] M. Minsky. A-ramework for the representation of knowledge. In P. Win-
ston, editor, The Psychlogy of Computer Vision. McGraw-Hill, New
York, 1975.

[34] M. Minsky. The Society of Mind. Simon and Schuster, New York, 1986.

[35] T. M. Mitchell. Generalization as search. Artificial Intelligence, 18:203-
226, 1982.

[36] T. M. ,Mitchell. R. M. Keller, and S. T. Kedar-Cabelli. Explanation-
based generalization: A unifying view. Machine Learning, 1:47-80,
1986.

[37] A. Newell. Reasoning, problem solving and decision processes: The
problem space as a fundamental category. In R. Nickerson, editor,
Attention and Performance VIII. Erlbaum, Hillsdale, N.J., 1980.

[38] A. Newell. Unified Theories of Cognition. Harvard University Press,
Cambridge, MA, 1989. In press.

(39] A. Newell and P. S. Rosenbloom. Mechanisms of skill acquisition and
the law of practice. In J. R. Anderson, editor, Cognitive Skills and their
Acquisition, pages 1-55. Erlbaum, Hillsdale, NJ, 1981.

[40] A. Newell, P. S. Rosenbloom, and J. E. Laird. Symbolic architectures
for cognition. In M. I. Posner, editor, Foundations of Cognitive Science.
Bradford Books/MIT Press, Cambridge, MA, 1989. In press.

[41] A. Newell and H. A. Simon. Human Problem Solving. Prentice-Hall,
Englewood Cliffs, 1972.

[42] N. Nilsson. Principles of Artificial Intelligence. Tioga, Palo Alto, CA,
1980.

[43] T. A. Polk and A. Newell. Modeling human syllogistic reasoning in
Soar. In Proceedings of the 10th Annual Conference of the Cognitive
Science Society, pages 181-187, Montreal, 1988.

[44] L. Powell. Parsing the picnic problem with a Soar3 implementation of
Dypar-1. Department of Computer Science, Carnegie-Mellon Univer-
sity. Unpublished, 1984.

[451 J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106,
1986.

42

[461 S. Rajamoney, G. F. DeJong, and B. Faltings. Towards a model of
conceptual knowledge acquisition through directed experimentation. In
Proceedings of IJCAI-85, pages 688-690, Los Angeles, CA, 1985.

[47] Y. Reich. Learning plans as a weak method for design. Department of
Civil Engineering, Carnegie Mellon University. Unpublished, 1988.

[48] P. S. Rosenbloom. Beyond generalization as search: Towards a unified
framework for the acquisition of new knowledge. In G. F. DeJong, edi-
tor, Proceedings of the AAAI Symposium on Explanation-Based Learn-
ing, pages 17-21, Stanford. CA, 1988. AAAI.

[49] P. S. Rosenbloom. A symbolic goal-oriented perspective on connec-
tionism and Soar. In R. Pfeifer, Z. Schreter, F. Fogelman-Soulie, and
L. Steels, editors, Connectionism in Perspective. Elsevier, Amsterdam,
1989. In press.

[50] P. S. Rosenbloom and J. E. Laird. Mapping explanation-based general-
ization onto Soar. In Proceedings of AAAI-86, pages 561-567, P-.:ade- -
phia, 1986.

[51] P. S. Rosenbloom, J. E. Laird, J. McDermott, A. NeweU, and E. Orci-
uch. Ri-Soar: An experiment in knowledge-intensive programming in a
problem-solving architecture. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 7:561-569, 1985.

[52] P. S. Rosenbloom, J. E. Laird, and A. Newell. Knowledge level learning
in Soar. In Proceedings of AAAI-87, pages 499-504, Seattle, 1987.

(531 P. S. Rosenbloom, J. E. Laird, and A. Newell. The chunking of skill and
knowledge. In B. A. G. Elsendoorn and H. Bouma, editors, Working
Models of Human Perception, pages 391-410. Academic Press, London,
1988.

[54] P. S. Rosenbloom, J. E. Laird, and A. Newell. Meta-levels in Soar. In
P. Maes and D. Nardi, editors, Meta-Level Architectures and Reflection,
pages 227-240. North Holland, Amsterdam, 1988.

[551 P. S. Rosenbloom and A. Newell. The chunking of goal hierarchies: A
generalized model of practice. In R. S. Michalski, J. G. Carbonell, and
T. M. Mitchell, editors, Machine Learning: An Artificial Intelligence
Approach, Volume II, pages 247-288. Morgan Kaufmann Publishers,
Inc., Los Aitos, CA, 1986.

43

[56] P. S. Rosenbloom, A. Newell, and J. E. Laird. Towards the knowledge
level in Soar: The role of the architecture in the use of knowledge. In
K. VanLehn, editor, Architectures for Intelligence. Erlbaum, Hillsdale,
NJ, 1989. In preparation.

[571 E. D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial
Intelligence, 5:115-135, 1974.

[58] R1. 11. Saul. A Soar2 implementation of version-space inductive learning.
Department of Computer Science, Carnegie-Mellon University. Unpub-
lished, 1984.

[59] It. Schank and It. Ableson. Scripts, Plans, Goals and Understanding.
Lawrence Erlbaum, Hiilsdale, NJ, 1977.

(60] D. Steier. Cypress-Soar: A case study in search and learning in algo-
rithm design. In Proceedings of IJCAI-87, pages 327-330, Milan, 1987.

[611 D. M. Steier, J. E. Laird, A. Newell, P. S. Rosenbloom, R. Flynn,
A. Golding, T. A. Polk, 0. G. Shivers, A. Unruh, and G. R. Yost.
Varieties of learning in Soar: 1987. In P. Langley, editor, Proceedings of
the Fourth International Workshop on Machine Learning, pages 300-
311, Los Altos, CA, 1987. Morgan Kaufmann Publishers, Inc.

[62] D. M. Steier and A. Newell. Integrating multiple sources of knowledge
into Designer-Soar an automatic algorithm designer. In Proceedings of
AAAI-88, pages 8-13, St. Paul, MN, 1988.

[63] K.R. Swedlow and D.M. Steier. Soar 5.0 User's Manual. School of
Computer Science, Carnegie Mellon University, 1989. In preparation.

[64] M. Tambe. Speculations on the computational effects of chunking. De-
partment of Computer Science, Carnegie Mellon University. Unpub-
lished, 1988.

[65] M. Tambe, A. Acharya, and A. Gupta. Implementation of production
systems on message passing computers: Simulation results and anal-
ysis. Technical Report CMU-CS-89-129, School of Computer Science,
Carnegie Mellon University, April 1989.

[66] M. Tambe, Kap D., A. Gupta, C. L. Forgy, B. Milnes, and A. Newell.
Soar/PSM-E: Investigating match parallelism in a learning produc-
tion system. In Proceedings of A CM/SIGPLAN symposium on Parallel

44

Programming? Experience with Applications, Languages, and Systems,
pages 146-161, 1988.

[67] M. Tambe and A. Newell. Some chunks are expensive. In J. Laird,
editor, Proceedings of the Fifth International Conference on Machine
Learning, pages 451-458, Ann Arbor, MI, 1988.

[68] M. Tambe and P. S. Rosenbloom. Eliminating expensive chunks by
restricting expressiveness. In Proceedings of [JCAI-89, Detroit, 1989.
In press.

[69] A. Unruh and P. S. Rosenbloom. Abstraction in problem solving and
learning. In Proceedings of IJCAI-89, Detroit, 1989. In press.

(70] A. Unruh, P. S. Rosenbloom, and J. E. Laird. Dynamic abstraction
problem solving in Soar. In Proceedings of the Third Annual Aerospace
Applications of Artificial Intelligence Conference, pages 245-256, Day-
ton, OH, 1987.

(71] K. VanLehn.. Felicity conditions for human skill acquisition: Validating
an AI-based theory. Technical Report CIS-21, Xerox Palo Alto Reserch
Center, November 1983.

[72] K. VanLehn and W. Ball. Flexible execution of cognitive procedures.
Technical Report PCG-5, Department of Psychology, Carnegie-Mellon
University, June 1987.

[73] R. Washington and P. S. Rosenbloom. Applying problem solving and
learning to diagnosis. Department of Computer Science, Stanford Uni-
versity. Unpublished, 1988.

[741 M. Wiesmeyer. Personal communication. 1988.

[75] M. Wiesmeyer. Soar I/O Reference Manual, Version 2. Department of
EECS, University of Michigan, 1988.

[76] M. Wiesmeyer. New and Improved Soar 10. Department of EECS,
University of Michigan, 1989.

[77] G. R. Yost and A. Newell. A problem space approach to expert system
specification. In Proceedings of IJCAI-89, Detroit, MI, 1989. In press.

45

