
DTIC FILE COP.1

0
FOUR CAPACITY MODELS FOR

0COARSE-CODED SYMBOL MEMORIES

cTechnical Report AIP - 35

Ronald Rosenfeld & David S. Touretzky

IComputer Science Department

Carnegie Mellon University
Pittsburgh, PA. 15232

The Artificial Intelligence
and Psychology Project

- LECTE
Departments of MAR . 9...'.i;"MAR 12 i9
Computer Science and Psychology
Carnegie Mellon University

Learning Research and Development Center
University of Pittsburgh

Approved for public release, distribution unlimited.

90 03 12 063

FOUR CAPACITY MODELS FOR

COARSE-CODED SYMBOL MEMORIES

Technical Report AIP - 35

Ronald Rosenfeld & David S. Touretzky

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA. 15232

15 December 1987

This research was supported by the Computer Sciences Division, Office of Naval Research
and DARPA under Contract Number N00014-86-K-0678 and by the National Science
Foundation grants IST-8516330 and EET-8716324. The first author was supported by a
National Science Foundation graduate fellowhip.

The view and conclusions in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the
United States Government or the agencies listed above.

Reproduction in whole or in part is permitted for purposes of the United States
Government. Approved for public release; distribution unlimited.

un,: lass if ice
SjCUffTY CLASIFICTION OF '415 PAGE

REPORT DOCUMENTATION PAGE

I& REPORT SECURITY CLASSIFIC.ATION 10 RESTRICTIVE MARKINGS
Unclassifijed ________________________

2a SECURITY CLASSIFICATION AUTHORITY 3 :)sr~'e~uFotN AVAILABILIry OF ;EpO~R
_____________________________________ Approved for public release;

2b DECLASSIPCAflON jDOWNGRADING SCHEDULE Distr ibut ion unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGAJNIZATON REPORT 44L.MBERIS)

AlP - 33

6a NAME OF PERFORMING ORGANIZATION I6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

AI
(if applicable) Computer Sciences Division

6C. ADDRESS (City. State and ZIP Code) 7b AOORESS (City, Stat, end ZIP Code)
Department of' Psychology 800 N. Quincy Street
Pittsburgh, Pennsylvania 15213 Arlington, Virginia 22217-5000

8.. NAME OF FUNDINGISPONSORING B b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMB3ER
ORGANIZATION] (if applicable)

Same as Monitoring Organizatio NOO04-86-K-0678

kc. ADDRESS (City, State. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS j4000ub20 7-4-86
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

N/A N/A N/A N/A

11 TITLE (Include SecuriTY 04iClit lun)

Four Capacity Models for Coarse-Coded Symbol Memories Unclassified

12 ERSNA AUHORS) Rosenfeld, Ronald and Touretzky, David S.

t3a, TYPE OF REPORT 13b TIME COVERED 1 DATE OF REPORT Y'er Aonth, Day) 5.PGCON
Technical FROM 8 6Sept1l5TO9lSeptl 198 Decembe r11

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 5k 8,ECT TERMS (Continue on reverse if necessary and !dentify by block mnmber)

FIELD GROUP ISUB-GROU S'..Connectionist models,> 3 coarse codin '

< 2. distributed representations N ~ ~ -.-

19 ABSTRACT (Continue on revert@ if necessary and'~ idntf by~' blc ;iub

See reverse side.

20 DISTRIBUTION/AVAiLAIILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
C3UNCLASSIFIEWU.NLIMITED IM SAME AS RPT C DTC SRS

22& NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code) 22c OFFICE SYMBOL

IDr. Alan L. Meyrovitz 1(202) 696-4302 1 N00014

DD FORM 147 3, B4 MAR 83 APR editrofl May be used until QXIlausted. SECURtrY CLASSIFICATION OF THIS PAGE-
All o"tir is are obsolete

Abstract

Coarse-coded symbol memories have appeared in several neural network symbol process-

ing models. In order to determine how these models would scale, one must first have some

understanding of the mathematics of coarse-coded representations. We define the general

structure of coarse-coded symbol memories, and discuss their strengths and weaknesses.

Memory schemes can be characterized by their memory size, symbol-aet size and capac-

ity. We derive mathematical relationships between these parameters for various memory

schemes, using both analysis and numerical methods. Finally, we compare the predicted

capacity of one of the schemes with actual measurements of the coarse-coded working

memory ofDCPS, Touretzky and Hinton's distributed connectionist production systemy

;)

Four Capacity Models for
Coarse-Coded Symbol Memories

Ronald Rosenfeld
David S. Touretzky

Abstract

Coarse-coded symbol memories have appeared in several neural network symbol process-

ing models. In order to determine how these models would scale, one must first have some
understanding of the mathematics of coarse-coded representations. We define the general

structure of coarse-coded symbol memories, and discuss their strengths and weaknesses.

Memory schemes can be characterized by their memory size, symbol-set size and capac-

ity. We derive mathematical relationships between these parameters for various memory

schemes, using both analysis and numerical methods. Finally, we compare the predicted
capacity of one of the schemes with actual measurements of the coarse-coded working

memory of DCPS, Touretzky and Hinton's distributed connectionist production system.

S or

T 1-1441

1 Introduction

A distributed representation is a memory scheme in which each entity (concept, symbol)

is represented by a pattern of activity over many units [3]. If each unit participates in the

representation of many entities, it is said to be coarsely tuned, and the memory itself is

called a coarse-coded memory.

Coarse-coded memories have been used for storing symbols in several neural network

symbol processing models, such as Touretzky and Hinton's distributed connectionist pro-

duction system DCPS [7,8], Touretzky's distributed implementation of Lisp S-expressions

on a Boltzmann machine, BoltzCONS [9,101, and St. John and McClelland's PDP model

of case role defaults [5]. In all of these models, memory capacity was measured empiri-

cally and parameters were adjusted by trial and error to obtain the desired behavior. We

are now able to give a mathematical foundation to these experiments by analyzing the

relationships among the fundamental memory parameters.

There are several paradigms for coarse-coded memories. In a feature-based represen-

tation, each unit stands for some semantic feature. Binary units can code features with

binary values, whereas more complicated units or groups of units are required to code more

complicated features, such as multi-valued properties or numerical values from a contin-

uous scale. The units that form the representation of a concept define an intersection of

features that constitutes that concept. Similarity between concepts composed of binary

features can be measured by the Hamming distance between their representations. In a

neural network implementation, relationships between concepts are implemented via con-

nections among the units forming their representations. Certain types of generalization

phenomena thereby emerge automatically.

A different paradigm is used when representing points in a multidimensional continuous

space [2,31. Each unit encodes values in some subset of the space. Typically the subsets are

hypercubes or hyperspheres, but they may be more coarsely tuned along some dimensions

than others [1]. The point to be represented is in the subspace formed by the intersection of

all active units. As more units are turned on, the accuracy of the representation improves.

The density and degree of overlap of the units' receptive fields determines the system's

resolution [6].

Yet another paradigm for coarse-coded memories, and the one we will deal with exclu-

sively, does not involve features. Each concept, or symbol, is represented by an arbitrary

subset of the units, called its pattern. Unlike in feature-based representations, the units in

the pattern bear no relationship to the meaning of the symbol represented. A symbol is

stored in memory by turning on all the units in its pattern. A symbol is deemed present

if all the units in its pattern are active-' The receptive field of each unit is defined as the

set of all symbols in whose pattern it participates. We call such memories coarse-coded

symbol memories (CCSMs). We use the term "symbol" instead of ".oncept" to emphasize

that the internal structure of the entity to be represented is not involved in its representa-

tion. In CCSMs, a short Hamming distance between two symbols does not imply semantic

similarity, and is in general an undesirable phenomenon.

Coarse-coded symbol memories can be further classified by the degree to which they are

structured. In a completely unstructured CCSM, any subset of the units is a legitimate

candidate for representing a symbol. A structured CCSM, on the other hand, imposes re-

strictions on the class of patterns that may be used. These restrictions can be articulated

in terms of the patterns themselves or in terms of constraints on the receptive fields of the

units. Some constraints are very simple, e.g., that all patterns be of the same size. Touret-

zky's and Hinton's DCPS [7] is an example of a CCSM with more complex constraints;

BoltzCONS [9] uses the same memory scheme. In these systems' working memory, the

receptive field of each unit is a three-dimensional cartesian space, randomly chosen from a

common superspace. Imposing structure (i.e., constraints) on the receptive fields might be

expected to reduce the capacity of the memory. When we measured this effect for DCPS

by comparing its memory capacity to that of similar non-structured CCSMs, we found the

actual penalty to be slight.

CCSMs can be very efficient for implementing large, sparse memories. By "large" we

mean memories that are capable of representing many distinct symbols, and by "sparse"

we mean that only a small fraction of these symbols will be simultaneously present in the

memory. An extreme localist representation, in which each symbol is encoded by one unit

and each unit is dedicated to encoding a single symbol, is very inefficient in such cases. For

a given number of symbols, a, a localist representation requires exactly a units, whereas a

CCSM can make do with far fewer than that. Alternatively, the advantage can be recast

in terms of representational power: given N units, a localist representation can represent

exactly N symbols, whereas a CCSM can potentially handle many more. The efficiency

with which CCSM& handle sparse memories is the major reason they have been used in

many connectionist systems, and hence the major reason for studying them here.

The unit-sharing strategy that gives rise to efficient encoding in CCSMs is also the source

of their major weakness. Symbols share units with other symbols. As more symbols are

stored, more and more of the units are turned on. At some point, some symbol may be

'This criterion can be generalized by introducing a visibility threshold a fraction of the pattern that

should be on in order for a symbol to be considered present. Our analysis deals only with a visibility

criterion of 100%, but can be generalized to accommodate noise.

_ S2 S, S S8
U1 0 0 0 S

U 2 0 0 0 0

U 4 . 0 0

U 5 0 0

Figure 1: A memory scheme (N = 6, a 8) defined in terms of units U, and symbols $,.

The columns are the symbols' patterns. The rows are the units' receptive fields.

deemed present in memory because all of its units are turned on, even though it was not

explicitly stored: a "ghost" is born. Ghosts are an unwanted phenomenon arising out of the

overlap among the representations of the various symbols. The emergence of ghosts marks

the limits of the system's capacity: the number of symbols it can store simultaneously and

reliably.

2 Definitions and Fundamental Parameters

A coarse coded symbol memory in its most general form consists of:

" A set of N binary state units.

" An alphabet of a symbols to be represented. Symbols in this context are atomic

entities: they have no constituent structure.

" A memory scheme, which is a function that maps each symbol to a subset of the

units - its pattern. The receptive field of a unit is defined as the set of all symbols

to whose pattern it belongs (see Figure 1). The exact nature of the memory scheme

mapping determines the properties of the memory, and is the central target of our

investigation.

As symbols are stored, the memory fills up and ghosts eventually appear. It is not

possible to detect a ghost simply by inspecting the contents of memory, since there is

no general way of distinguishing a symbol that was stored from one that emerged out of

overlaps with other symbols. (It is sometimes possible, however, to conclude that there are

no ghosts. This is true when every symbol that is visible in memory has at least one unit

that is not shared with any other visible symbol.) Furthermore, a symbol that emerged as

a ghost at one time may not be a ghost at a later time if it was subsequently stored into

memory. Thus the definition of a ghost depends not only on the state of the memory but

also on its history.

Some memory schemes guarantee that no ghost will emerge as long as the number of

symbols stored does not exceed some specified limit. In other schemes, the emergence

of ghosts is an ever-present possibility, but its probability can be kept arbitrarily low by

adjusting other parameters. We analyze systems of both types. First, two more bits of

notation need to be introduced:

Pghost: Probability of a ghost. The probability that at least one ghost will appear

after some number of symbols have been stored.

k: Capacity. The maximum number of symbols that can be stored simultaneously before

the probability of a ghost exceeds a specified threshold. If the threshold is 0, we say

that the capacity is guaranteed.

A localist representation, where every symbol is represented by a single unit and every

unit is dedicated to the representation of a single symbol, can now be viewed as a special

case of coarse-coded memory, where k = N = a and Pghost = 0. Localist representations

are well suited for memories that are not sparse. In these cases, coarse-coded memories

are at a disadvantage. In designing coarse-coded symbol memories we are interested in

cases where k < N < a. The permissible probability for a ghost in these systems should

be low enough so that its impact can be ignored, i.e., Pghost < 1.

Our task is to find memory schemes that will maximize the number of symbols a and

the capacity k while minimizing N, the number of units required. We are also interested in

the tradeoff between a and k for a fixed N. We present four memory schemes, and analyze

each of them in terms of the mathematical relationship among N, a, k and Pghost"

3 Analysis of Four Memory Schemes

3.1 Bounded Overlap (guaranteed capacity)

If we want to construct the memory scheme with the largest possible a (given N and k)

while guaranteeing Pghost = 0, the problem can be stated formally as:

I

Given a set of size V, End the largest collection of subsets of it such that no

union of k such subsets subsumes any other subset in the collection.

This is a well known problem in Coding Theory, in slight disguise. Unfortunately,

no complete analytical solution is known. We therefore simplify our task and consider

only systems in which all symbols are represented by the same number of units (i.e. all

patterns are of the same size). In mathematical terms, we restrict ourselves to constant

weight codes. The problem then becomes:

Given a set of size N, find the largest collection of subsets of size exactly L such

that no union of k such subsets subsumes any other subset in the collection.

We wish to provide two arguments in support of this simplification. First, we believe

it does not significantly reduce the size of the collection. This is because the solution to

the original problem is likely to be composed of subsets of similar size. This can be seen

by considering the effect too small or too large a subset would have on the capacity of

the system. An unusually small subset will have a very high tendency to become a ghost,

whereas an unusually large subset will have a high tendency to create one.

The second argument is a pragmatic one. In order for coarse-coded memories to be

useful, they need to be accessed by some external mechanism. One such mechanism is the

clause space of DCPS. Clause spaces use lateral inhibition to extract a single stored symbol

from a coarse-coded memory. This competitive mechanism works best when patterns are

of uniform size.

There are no known complete analytical solutions for the size of the largest collection

of patterns even when the patterns are of a fixed size. Nor is any efficient procedure for

constructing such a collection known. We therefore simplify the problem further. We

now restrict our consideration to patterns whose pairwise overlap is bounded by a given

number. For a given pattern size L and desired capacity k, we require that no two patterns

overlap in more than m units, where:

M(_)

Memory schemes that obey this constraint are guaranteed a capacity of at least k

symbols, since any k symbols taken together can overlap at most L- 1 units in the pattern

of any other symbol - one unit short of making it a ghost. Based on this constraint, our

mathematical problem now becomes:

Given a set of size N, find the largest collection of subsets of size exactly L

such that the intersection of any two such subsets is of size < m (where m is

given by equation 1.)

Coding theory has yet to produce a complete solution to this problem, but several

methods of deriving upper bounds have been proposed (see for example [41). The simple

formula we use here is a variant of the Johnson Bound. Let abo denote the maximum

number of symbols attainable in memory schemes that use bounded overlap. Then

_b N ,"I I+1 (2)

The Johnson bound is known to be an ezact solution asymptotically (that is, when

N, L, m --. oo and their ratios remain finite).

Since we are free to choose the pattern size, we optimize our memory scheme by maxi-

mizing the above expression over all p issible values of L. For the parameter subspace we

are interested in here (N < 1000, k < 50) we use numerical approximation to obtain:

ab,,(N, k) = ma (Z 1) <__ Ma (3

(Recall that m is a function of L and k.) Thus the upper bound we derived depicts
a simple exponential relationship between a and N/k. Next, we try to construct mem-

ory schemes of this type. A Common. Lisp program using a modified depth-first search

constructed memory schemes for various parameter values, whose a's came within 80% to

90% of the upper bound. These results are far from conclusive, however, since only a small

portion of the parameter space was tested.

In evaluating the viability of this approach, its apparent optimality should be con+-asted

with two major weaknesses. First, this type of memory scheme is hard to construct com-

putationally. It took our program several minutes of CPU time on a Symbolics 3600 to

produce reasonable solutions for cases like N = 200, k = 5, m = 1, with an exponential

increase in computing time for larger values of m. Second, if CCSMs are used as models of

memory in naturally evo'ving systems (such as the brain), this approach places too great

a burden on developmental mechanisms.

The importance of the bounded overlap approach lies mainly in its role as an upper

bound for ..i possible memory schemes, subject to the simplifications made earlier. All

schemes with guaranteed capacities (Pghost = 0) can be measured relative to equation 3.

3.2 Random Fixed Size Patterns (a stochastic approach)

Randomly produced memory schemes are easy to implement and are attractive because
of their naturalness. However, if the patterns of two symbols coincide, the guaranteed
capacity will be zero (storing one of these symbols will render the other a ghost). We
therefore abandon the gal of guaranteeing a certain capacity, and instead establish a
tolerance level for ghosts, Pghost" For large enough memories, where stochastic behavior

is more robust, we may expect reasonable capacity even with very small Pgh.st"

In the first stochastic approach we analyze, patterns are randomly selected subsets of a
fixed size L. Unlike in the previous approach, choosing k does not bound a. We may define
as many symbols as we wish, although at the cost of increased probiility of a ghost (or,
alternatively, decreased capacity). The probability of a ghost appearing after k symbos
have been stored is given by Equation 4:

Pghost(N,L,k,& = 1- N,,L,(k,,c) ((4)

TNL(k, c) is the probability that exactly c units will be active after k symbols have been
stored. It is defined recursively by Equation 5:

TN,L(0, 0) = 1
TN,L(k,c) =0 for eitherk=0andc$0, ork>0andc<L (5)
T=,,L(k, c) = L T(k - 1,c - a). (N-,-.,) CO

We have constructed various coarse-coded memories with random fixed-size receptive
fields and measured their capacities. T1,e experimental results show good agreement with

the above equation.

The optimal pattern size for fixed values of N, k, and a can be determined by binary
search on Equation 4, since Pghost(L) has exactly one maximum in the interval [1, NJ.
However, this may be expensive for largt N. A computational shortcut cai be achieved
by estimating the optimal L and searching in a small interval around it. A good initial

estimate is derived by replacing the summation in Equation 4 with a single term involving
E[c]: the expected value of the number of active units after k symbols have been stored.
The latter can be expressed as:

E[c = . [1 -(1 - LN) k]

:0 <.2
-

0 K-.14

k- L6

k-20

0

0,I I I I

0 100 300 400 500 600

Number of units N

Figure 2: A graph of log a,fp vs. N for even k values from 2 to 20. Pghost = 0.01. The

optimal L was used in each case.

The estimated L is the one that maximizes the following expression:

(E~c]) 7 (N)

An alternative formula, developed by Joseph Tebelskis, produces very good approxima-
tions to Eq. 4 and is much more efficient to compute. After storing k symbols in memory,
the probability P, that a single arbitrary symbol z has become a ghost is given by:

L 1)j L) (N - j) "/ (N) (6P,(N,L,k, a) = EZ(-1)) L / (6)

If we now assume that each symbol's P. is independent of that of any other symbol, we

obtain:

Pghost (1 -(1- p).-k (7)

This assumption -f indcpendence is not strictly true, but the relative error was less than
0.1% for the parameter ranges we considered, when Pghost was no greater than 0.01.

We have constructed the two-dimensional table TNL(k, c) for a wide range of (N, L)
values (70 < N < 1000, 7 < L < 43), and produced graphs of the relationships between N,
k, a, and Pghost for optimum pattern sizes, as determined by Equation 4. A representative
graph is shown in Figure 2. The results show an approximately exponential relationship
between a and N/k. Thus, for a fixed number of symbols, the capacity is proportional
to the number of units. Let a,p denote the maximum number of symbols attainable in
memory schemes that use random fixed-size patterns. Then some typical relationships,
derived from the data, are:

a,/,p(Pghost = 0.01) % 0.0086. e°4 "

arfp(Pghost = 0.001) 0.0008 (8)

3.3 Random Receptors (a stochastic approach)

A second stochastic approach is to have each unit assigned to each symbol with an in-
dependent fixed probability 9. This method lends itself to easy mathematical analysis,
resulting in a closed-form analytical solution.

After storing k symbols, the probability that a given unit is active is 1 - (1 - s)

(independent of any other unit). For a given symbol to be a ghost, every unit must either
be active or else not belong to that symbol's pattern. That will happen with a probability

[1 -s. (1 - S)k]N, and thus the probability of a ghost is:

P-host(a,N,k,a) 1 - [1 (1-]Na -((9)

Assuming Pghst <c 1 and k ,< a (both hold in our case), the expression can be
simplified to:

Pghost(a, N, k,) = a [1 - (1 - 8),1 N

from which a can be extracted:

aflr,(N, k, , ghost) = (10)s
Pzhest(10)[= -- (1 - M

We can now optimize by finding the value of a that maximizes a, given any desired

upper bound on the expected value of Pghost. This is done straightforwardly by solving

49al9 = 0. Note that s - N corresponds to L in the previous approach. The solution is

s = 1/(k + 1), which yields:

= Pghoet 1 k+1 +kl 1

(k + W.)+1 N=Pghet"L (k +" 1,,''+'- kh

= Pghost e e &+t)-,
(1&,)

A comparison of the results using the two stochastic approaches reveals an interesting

similarity. For large k, with Pghost = 0.01 the term 0.468/k of Equation 8 can be seen as

a numerical approximation to the log term in Equation 11, and the multiplicative factor

of 0.0086 in Equation 8 approximates Pghost in Equation 11. This is hardly surprising,

since the Law of Large Numbers implies that in the limit (N, k -+ o, with a fixed) the

two methods are equivalent.

Finally, it should be noted that the stochastic approaches we analyzed generate a family

of memory schemes, with non-identical ghost-probabilities. Pghost in our formulas is

therefore better understood as an expected value, averaged over the entire family.

3.4 Partitioned Binary Coding (a reference point)

The last memory scheme we analyze is not strictly distributed. Rather, it is somewhere in

between a distributed and a localist representation, and is presented for comparison with

the previous results. For a given number of units N and desired capacity k, the units are

partitioned into k equal-size "slots," each consisting of N/k units (for simplicity we assume

that k divides N). Each slot is capable of storing exactly one symbol.

The most efficient representation for all possible symbols that may be stored into a slot

is to assign them binary codes, using the N/k units of each slot as bits. This would allow

2 Nf/ symbols to be represented. Using binary coding, however, will not give us the required

capacity of 1 symbol, since binary patterns subsume one another. For example, storing

the code '10110' into one of the slots will cause the codes '10010', '10100' and '00010' (as

well as several other codes) to become ghosts.

A possible solution is to use only half of the bits in each slot for a binary code, and set

the other half to the binary complement of that code (we assume that N/k is even). This

way, the codes are guaranteed not to subsume one another. Let ap, denote the number of

symbols representable using a partitioned binary coding scheme. Then,

2,t = eo,347"
apbc = 2 T (12)

Once again, a is exponential in N/k. The form of the result closely resembles the

estimated upper bound on the Bounded Overlap method given in Equation 3. There is also

a strong resemblance to Equations 8 and 11, except that the fractional multiplier in front

of the exponential, corresponding to Pghost, is missing. /ghost is 0 for the Partitioned

Binary Coding method, but this is enforced by dividing the memory into disjoint sets of

units rather than adjusting the patterns to reduce overlap among symbols.

As mentioned previously, this memory scheme is not really distributed in the sense used

in this paper, since there is no one pattern associated with a symbol. Instead, a symbol

is represented by any one of a set of k patterns, each N/k bits long, corresponding to its

appearance in one of the k slots. To check whether a symbol is present, all k slots must

be examined. To store a new symbol in memory, one must scan the k slots until an empty

one is found. Equation 12 should therefore be used only as a point of reference.

4 Measurement of DCPS

The three distributed schemes we have studied all use unstructured patterns (as discussed

in the introduction), the only constraint being that patterns are at least roughly the same

size. Imposing more complex structure on any of these schemes is likely to reduce the

capacity somewhat. In order to quantify this effect, we measured the memory capacity

of DCPS (BoltzCONS uses the same memory scheme) and compared the results with the

theoretical models analyzed above.

There are 2000 units in the working memory of DCPS. Its symbols are triples of letters

drawn from an alphabet of size 25. All possible combinations of letters are permitted,

resulting in a three dimensional symbol space of size a = 253 = 15625 triples. The

receptive field of each unit is defined by the cartesian product of three randomly-chosen

sets of six letters each. Thus each receptive field is a three dimensional subspace of form

{(a,b,c) I a E A,b E B,c E C}

where A, B and C are independent, randomly-chosen six letter sets. Units have fixed-size

receptive fields containing 63 = 216 triples. (Each triple counts as one symbol.) DCPS

requires structured receptive fields so that a distributed winner-take-all network called a

"bind space" can be used to decompose triples into their component letters.

Memory Scheme Result

Bounded Overlap cbo(N, k) < 0 167

Random Fixed-size Patterns 12,f p(Pghost = 0.01) ,: 0.0086. eO 46 8

a,/.p(Pgho~~t = .00 1) 2Z 0.08.
°4 3

Random Receptors a,.,. = Phot e l

Partitioned Binary Coding _pb_ = 0
°
.3

47
__

Table 1 Summary of results for various memory schemes.

The symbols in DCPS' working memory do not have fixed pattern sizes. The expected

pattern size is (6/25) 3 • 2000 : 28. Touretzky and Hinton manipulated the receptive

fields as described in [8] to artificially reduce the variance from this mean. In the current

implementation of DCPS, pattern sizes vary from 23 to 33, but most symbols have patterns

containing 26 to 29 units; the standard deviation is only 1.5.

Figure 3 shows Pghost as a function of k for DCPS (based on 10,000 trials) and for the

Random Receptors method as estimated by Equation 11. N is 2000 and a is 15625. The

two curves are quite close. Note that when Pghost is 0.01, we observe an actual capacity

of 48 symbols for DCPS 2 and an expected capacity of 51 symbols for the random receptors

scheme. We thus conclude that for the parameter ranges discussed here, the structure in

DCPS's fixed-size receptive fields (which have been manipulated to assure nearly fixed-size

patterns) results in only a slight penalty relative to the random receptors approach.

5 Summary and Discussion

Table 1 summarizes the results obtained for the four methods analyzed.

Some differences must be emphasized:

" aib and a,. deal with guaranteed capacity, whereas a,1 p and a,, are meaningful only

for Pghost > 0.

" a 0b is only an upper bound.

* a,/P is based on numerical estimates.

"This measurement is based on a 100% visibility criterion, which we use throughout this paper. It

therefore differs from previously-reported values where lower visibility criteria were used [8].

0.0.

103o 0.04

- ACtua OCPS MmuremIt
.... auom Roce~ots ~iOad

0.02

0.01 9

3 40 45 s o 60
Number of Symbols Stored

Figure 3: Pghost as a function of k, measured for DCPS (solid line) and computed for

the Random Receptors method (dotted line). The point on each line where Pghot reaches

0.01 is marked by an asterisk.

* apb, is based on a scheme which is not strictly coarse-coded.

The similar functional form of all the results, although not surprising, is aesthetically

pleasing. Some of the functional dependencies among the various parameters can be de-

rived informally using qualitative arguments. Only a rigorous analysis, however, can pro-

vide the definite answers that are needed for a better understanding of these systems and

their scaling properties.

Acknowledgments

We thank Geoffrey Hinton, Noga Alon and Victor Wei for helpful comments, and Joseph

Tebelskis for sharing with us his formula for approximating Pghost in the case of fixed

pattern sizes.

References

[1] Ballard, D H. (1986) Cortical connections and parallel processing: structure and

function. Behavioral and Brain Sciences 9(1).

!2] Feldman, J. A., and Ballard, D. H. (1982) Connectionist models and their properties.

Cognitive Science 6, pp. 205-254.

[3] Hinton, G. E., McClelland, J. L., and Rumelhart, D. E. (1986) Distributed represen-

tations. In D. E. Rumelhart and J. L. McClelland (eds.), Parallel Distributed Pro-

cessing: Explorations in the Microstructure of Cognition, volume 1. Cambridge, MA:

MIT Press.

(4] Macwilliams, F.J., and Sloane, N.J.A. (1978). The Theory of Error-Correcting Codes,

North-Holland.

[5] St. John, M. F. and McClelland, J. L. (1986) Reconstructive memory for sentences:

a PDP approach. Proceedings of the Ohio University Inference Conference.

[6] Sullins, J. (1985) Value cell encoding strategies. Technical report TR-165, Computer

Science Department, University of Rochester, Rochester, NY.

[7] Touretzky, D. S., and Hinton, G. E. (1985) Symbols among the neurons: details of

a connectionist inference architecture. Proceedings of IJCAI-85, Los Angeles, CA,

pp. 238-243.

[8] Touretzky, D. S., and Hinton, G. E. (1986) A distributed connectionist production

system. Technical report CMU-CS-86-172, Computer Science Department, Carnegie

Mellon University, Pittsburgh, PA.

[9] Touretzky, D. S. (1986) BoltzCONS: reconciling connectionism with the recursive na-

ture of stacks and trees. Proceedings of the Eighth Annual Conference of the Cognitive

Science Society, Amherst, MA, pp. 522-530.

[10] Touretzky, D. S. (1986) Representing and transforming recursive objects in a neural

network, or "Trees do grow on Boltzmann machines." Proceedings of the 1986 IEEE

International Conference on Systerms, Man, and Cybernetics, Atlanta, GA, pp. 12-16.

