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Abstract

A parallel distributed processing model is described that learns to comprehend single

clause sentences. Specifically, it assigns thematic roles to sentence constituents.

disambiguates ambiguous words, instantiates vague words, and elaborates implied roles.

The sentences are pre-segmented into constituent phrases. Each constituent is processed

in turn to update an evolving representation of the event described by the sentence.

The model uses the information derived from each constituent to revise its on-going

interpretation of the sentence and to anticipate additional constituents. The network

learns to perform these tasks through practice on processing example sentence/event

pairs. The learning procedure allows the model to take a long-range statistical approach

to solving the bootstrapping problem of learning the syntax and semantics of a language

from the same data. The model performs very well on the corpus of sentences on

which it was trained, but learns slowly.
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The goal of our research has been to develop a model that can learn to convert a

simple sentence into a conceptual representation of the event that the sentence

describes. Specifically, we have been concerned with the later stages of this process;

the conversion of a sequence of sentence constituents, such as noun phrases, into a

representation of the event. A number of problems make this process difficult. First.

the words of a sentence may be ambiguous or vague. In the sentence, "The pitcher

threw the ball," each content word is ambiguous. "Pitcher" could either refer to a

ball-player or a container; "threw" could either refer to toss or host; and "ball" could

refer to a sphere or a dance. How are the appropriate meanings selected so that a

single, coherent interpretation of the sentence is produced? Vague words also present

difficulties. In the sentences, "The container held the apples" and "The container held

the cola," the word "container" refers to two different objects (Anderson & Ortony,

1975). How does the context affect the interpretation of vague words?

A third problem is the complexity of assigning the correct thematic roles

(Fillmore, 1968) to the objects referred to in a sentence. Consider

1) The teacher ate the spaghetti with the busdriver.

2) The teacher ate the spaghetti with the red sauce.

3) The busdriver hit the fireman.

4) The busdriver was hit by the fireman.

In the first two examples, semantics play an important role. In the'first sentence, it is

the reader's knowledge that busdrivers are people that precludes the reader from

deciding the busdriver is to be served as a condiment. Instead, it must be that both he

and the teacher are eating the spaghetti. Semantic constraints work conversely in the
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second sentence. In the third sentence, semantics do not help determine who is the

agent and who is the patient. Instead. word order determines the thematic role

assignments. The busdriver is the agent because "the busdriver" is the pre-verbal

constituent. Finally, in the fourth sentence, the influence of other morphological

features can be seen. The passive verb tense and the "by" preposition, in conjunction

with the word order, determine that the busdriver is the patient. Thematic ;ute

assignment, then, requires the joint consideration of a variety of aspects of the sentence.

A fourth problem for processing sentences is that a sentence may leave some

thematic constituents implicit that are nevertheless present in the event. For example in

sentences 1 and 2 above, the spaghetti was undoubtedly eaten with forks.

Psychological evidence indicates that missing constituents, when strongly related to the

action, are inferred and added to the description of the event. McKoon and Ratcliff

(1981) found, for example, that "hammer" was inferred after subjects read "Bobby

pounded the boards together with nails."

Our model of the comprehension process centers on viewing the process as a

form of constraint satisfaction. The surface features of a sentence, its particular words

and their order and morphology, provide a rich set of constraints on the sentence's

meaning. Each feature constrains the meaning in a number of respects. Conjunctions

of features, such as word order and passive-voice morphology, provide additional

constraints. Together, the constraints lead to a coherent interpretation of the sentence

(MacWhinney, 1987). These constraints are not typically all-or-none. Instead,

constraints tend to vary in strength: some are strong and others are relatively weak. An

example adapted from Marcus (1980) provides a good illustration of the competition

between constraints.



1) Which dragon did the knight give the boy'

2) Which boy did the knight give the dragon?

3) Which boy did the knight give the sword?

4) Which boy did the knight give to the sword?

Apparently, in the first two sentences, a weak syntactic constraint makes us prefer the

first noun as the patient and the noun after the verb as the recipient. The subtle

semantics in the second sentence, that knights don't give boys to dragons, does not

override the syntactic constraint for most readers, though it may make the sentence

seem ungrammatical to some. In sentence 3, a stronger semantic constraint overrides

this syntactic constraint: swords, which are inanimate objects, cannot receive boys.

Finally, in the fourth sentence, a stronger syntactic constraint overrides the semantics.

It is clear from this example that constraints vary in strength and compete to produce an

interpretation of a sentence. A good method for capturing this competition is to assign

real-valued strengths to the constraints, and to allow them to compete or cooperate

according to their strength.

Parallel distributed processing, or connectionist, models are particularly good for

modeling this style of processing. They allow large amounts f information to be

processed simultaneously and competitively, and they allow evidence to be weighted on

a continuum (McClelland & Rumelhart, 1981, McClelland & Elman, 1986). A number

of researchers have pursued this idea and have built models to apply connectionism to

sentence processing (Cottrell, 1985; Cottrell & Small, 1983; Waltz & Pollack, 1985).

The development of this approach, however; has been retarded because it is difficult to

determine exactly what constraints are imposed by each feature or set of features in a
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sentence. It is even more difficult to determine the appropriate strengths each of these

constraints should have. Connectionist teaming procedures, however, allow a model to

learn the appropriate constraints and assign appropriate strengths to them.

To take advantage of this feature, learming was added to our list of goals. The

model is given a sentence as input. From the sentence, the model must produce a

representation of the event to which the sentence refers. The actual event that

corresponds to the sentence is then used as feedback to train the model. But learning is

not without its own problems. Several features of the learning task make learning

difficult. One problem is that the environment is probabilistic. On different occasions,

a sentence may refer to different events: it may be referentially ambiguous. For

example, a sentence like, "The pitcher threw the ball," may refer to either the tossing of

a projectile or the hosting of a party. The robust, graded, and incremental character of

connectionist learning algorithms leads us to hope that they will be able to cope with

the variability in the environment in which they learn.

A second learning problem concerns the difficulty of learning the mapping

between the parts of the sentence and the parts of the event (Gleitman & Wanner, 1982;

Quine, 1960). Learning the mapping is sometimes referred to as a boot-strapping

problem since the meaning of the content words and significance of the syntax must be

acquired from the same set of data. To learn the syntax, it seems necessary to already

know the word meanings. Conversely, to learn the word meanings it seems necessary

to know how the syntax maps the words onto the event description. The connectionist

learning procedure takes a statistical approach to this problem. Through exposure to

large numbers of sentences and the events they describe, the mapping between features

of the sentences and characteristics of the events will emerge as statistical regularities.



For instance, in the long run the learning procedure should discover the regularity that

sentences beginning with "the boy" and containing a transitive verb in the active voice

refer to events in which a young. male human participates as an agent. The discovery

of the entire ensemble of such regularities provides a joint solution to the problems of

learning the mapping and the meanings of words.

Some aspects of these goals have been addressed by our own earlier work

(McClelland & Kawamoto, 1986: St. John & McCleUand, 1987). However, these

previous models used a cumbersome a priori representation of sentences that proved

unworkable (see St. John & McClelland, 1987 for discussion). Given the recent

successes in using connectionist learning procedures to learn internal representations

(Hinton, 1986; Rumelhart, Hinton, & Williams, 1986), we decided to explore the

feasibility of having a network learn its own representation of sentences.

A final characteristic of language comprehension we wanted to capture is

sometimes called the principle of immediate update (Carpenter & Just, 1977; van Dijk

& Kintsch, 1983; Marslen-Wilson & Tyler, 1980). As each constituent of the sentence

is encountered, the interpretation of the entire event is adjusted to reflect the constraints

arising from the new constituent in conjunction with the constraints from constituents

already encountered. Based on all of the available constraints, the model should try to

anticipate upcoming constituents. It should also adjust its interpretation of preceding

constituents to reflect each new bit of information. In this way, particular sentence

interpretations may gain and lose support throughout the course of processing as each

new bit of information is processed. This immediate update should be accomplished

while avoiding the difficulty of performing backtracking.
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In sum, the model addresses stx goals:

* to disambiguate ambiguous words

* to instantiate vague words

* to assign thematic roles

* to elaborate implied roles

* to learn to perform these tasks

* to immediately adjust its interpretation

as each constituent is processed

Description of the SG Model

Task

The model's task is to process a single clause sentence without embeddings into

a representation of the event it describes. The sentence is presented to the model as a

temporal sequence of constituents. A constituent is either a simple noun phrase, a

prepositional phrase, or a verb (including the auxiiiary verb, if ,y). The information

each of these sentence constituents yields is immediately used to update the model's

internal representation of the event. This representation is called the sentence gestalt

because all of the information from the sentence is represented together within a single.

distributed representation, the model is called the Sentence Gestalt, SG, model because

it contains this representation. This general concept of sentence representation comes

from Hinton's pioneering work (Hinton, 1981). From the sentence gestalt, the model

can produce, as output, a representation of the event. This event representation consists

of a set of pairs. Each pair consists of a thematic role and the concept that fills that

role. Together, the pairs describe the event.



Architecture and processing

The model consists of txo parts One part. the sequential encoder. equentlail',

processes each constituent to produce the sentence gestalt The iecond pan is used to

produce the output representation from the sentence gestalt

Producing the sentence gestalt. To process the constituent phrase', of I

sentence, we adapted ajn architecture from Jordan 1986) that uses the output of

previous processing as input on the next iteration (see Figure 1) Each constituent is

processed in turn to update the sentence gestalt. To process a constituent, it is first

represented as a pattem of activation over the current constituent units. Activation

from these units projects to a hidden unit layer and combines with the activation from

the sentence gestalt units created as the result of processing the previous constituent.

The actual implementation of this arrangement is to copy the activation from the

sentence gestalt to the previous sentence gestalt units, and allow activation to feed

A phrase 1 probe
85 85,85) d den role/filler

too 85

pvious 10 ience ges \o
sentence gestalt 100

- -- -- -copy -- -- -- -- --

Figure 1. The architecture of the network. The boxes highlight the

functional parts: Area A processes the phrases into the sentence gestalt.

and Area B processes the sentence gestalt into the output representation.

The numbers indicate the number of units in each layer.
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forward from there. Activation in the hidden laver then creates a new pattern of

activation over the sentence gestalt units.

Producing the output. A noted previously, several other models have used a

type of .entence gestalt to represent a sentence. McClelland and Kawamoto (1986)

used units that represented the conjunction of semantic features of the verb with the

semantic features of a concept. To encode a sentence, the patterns of activity produced

for each verb/concept were activated in a single pool of units that contained every

possible conjunction. St. John and McCleiland (1987) used a similar conjunctive

representation to encode a number of sentences at once. These representations suffer

from inefficiency and scale badly because so many units are required to represent all of

the conjunctions. The current model's representation is far more efficient.

The model's efficiency comes from making the sentence gestalt a trainable,

hidden unit layer. Making the sentence gestalt trainable allows the network to create

the primitives it needs to represent the sentence efficiently. Instead of having to

represent every possible conjunction, only those conjunctions that are useful will be

learned and added to the representation. Further, these primitives do not have to be

conjunctions between the verb and a concept. A hidden layer could learn to represent

conjunctions between the concepts themselves or other combinations of information if

they were useful for solving its task.

Since a layer of hidden units cannot be trained directly, we invented a way of

"decoding" the sentence gestalt into an output layer. The output layer represents the

event as a set of thematic role and filler pairs. For example, the event described by

"The pitcher threw the ball" would be represented as the set Iagent/pitcher(ball-player),

action/threw(toss), patient/ball(sphere)).
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The output layer can represent one role/fiUer pair at a tUne. To decode a

particular role/filler pair, the sentence gestalt is probed with half of the pair. Activation

from the probe and the sentence gestalt combine in another hidden layer which then

activates the entire pair in the output layer. The entire event can be decoded in this

way by successively probing with each half of each pair.

When more than one concept can plausibly fill a role. we assume that the

correct response is to activate each possible filler to a degree. The degree of activation

of the units representing each filler corresponds to the filler's conditional probability of

occurring in the given context. The network should learn weights to produce these

activations through training. To achieve this goal, we employed an error measure in the

learning procedure, cross-entropy (Hinton, 1987), that converges on this goal:

C = -1 [Tj log2 (Aj) + (1-Tj) log2 (I-Aj)]

where Tj is the target activation and Aj is the output activation of unit j. As with many

connectiorist learning procedures, the goal is to minimize the error measure or cost-

function (cf. Hinton, 1987). The minimum of C occurs at the point in weight space

where the activation value of each output unit equals the conditional probability that the

unit should be on in the current context. In the model, when the network is probed

with a particular role, several of the output units represent the occurrence of a particular

filler of that role. When C is at its minimum, the units' activation values represent the

conditional probability of the occurrence of that filler, in that role, given the current

situation.1 Probing with the filler works similarly. The activation value of each role

unit in the output layer represents the conditional probability of the ptobed filler playing

that role in the current situation. In performing gradient descent in C, the network is



searching for weights that allow it to match activations to these conditional

probabilities.

Environment and training regime

Training consists of trials in which the network is presented with a sentence and

the event it describes. These sentence/event pairs were generated on-line for each

training trial. Some pairs were more likely to be generated than others. Over training.

these likelihood differences translated into differences in training frequency.

The network is trained to generate the ever from the sentence as input. To

promote immediate processing, a special training regime is used. After each constituent

has been processed, the network is trained to predict the set of role/filler pairs of the

entire sentence. From the first constituent of the sentence, then, the model is forced to

try to predict the entire event. This training regime, therefore, assumes th t the

complete event is available to the learning procedure as soon as sentence proctg ing

begins, but it does not assume any special knowledge about which aspects of the e\ tnt

correspond to which sentence constituents. Of course, after processing only the first

constituent, the model generally cannot correctly guess the entire event. By forcing it

to try, this training procedure requires the model to discover the mapping between

constituents and aspects of the event, as it forces the model to extract as much

information as possible from each constituent. Consequently, as each new constituent is

processed, the model's predictions of the event are refined to reflect the additional

evidence it supplies.

An illustration of processing

An example of how a trained network processes a sentence will help illustrate



how it works. To process the sentence. "The teacher ate the soup." the constituents of

the sentence are processed in turn. As each constituent is processed, the netopks

performs a type of pattern completion. The model augments the information supplied

by each constituent with additional information about the event.

With each additional constituent, the model's predictions improve. Early in the

sentence, many possible events are consistent with what little is known about the

sentence so far. The completion process activates each of these alternatives slightly.

according to their support. As more constituents are processed, the additional evidence

more strongly supports fewer possible events.

The pattern of activation over the sentence gestalt can be observed directly, and

responses to probes can be examined, to see what it is representing after processing

each constituent of the sentence (see Figure 2). After processing the first constituent,

"The teacher" of our example sentence, the network assumes the sentence is in the

active voice and therefore assigns teacher to the agent role. The network also fills in

the semantic features of teachers according to its previous experience (i.e. person. adult,

and female). When probed with the action role, the network weakly activates a number

of possible actions which the teacher performs. The network similarly makes guesses

about the other roles for which it is probed.

When the second constituent, "ate," is processed, the sentence gestalt is refined

to represent the new information. In addition to representing both that teacher is the

agent and that are is the action, the network is able to make better guesses about the

other roles. For example, it infers that the patient is food. Since, in the network's

experience, teachers typically eat soup, the network produces activation corresponding

to the inference that the food is soup. After the third constituent is processed, the
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Figure 2 - Sentence Gestalt evolution

see following page

Figure 2. The evolution of the sentence gestalt during processing. On

the left, the activation of part of the sentence gestalt is shown after each

sentence constituent has been processed. On the right, the activation of

selected output units is shown when the evolving gestalt is probed with

each role. The #s correspond to the number of phrases that have been

presented to the network at that point. #1 means the network has seen

"The teacher;" #2 means it has seen "The teacher ate;" etc. The

activations (ranging between 0 and 1) are depicted as the darkened area

of each box.

network has settled on an interpretation of the sentence. The thematic roles are

represented with their appropriate fillers.

Specifics of the model

Input representation. Each sentence constituent can be thought of as a surface

role/filler pair. It consists of one unit indicating the surface role of the constituent and

one unit representing each word in the constituent. One unit stands for each of 13

verbs, 31 nouns, 4 prepositions, 3 adverbs, and 7 ambiguous words. Two of the

ambiguous words have two verb meanings, three have two noun meanings, and two

have a verb and a noun meaning. Six of the words are vague terms (e.g. someone,



The teacher ate the soup.

Sentence Gestalt Activations Role/Fdler Activations
unit 41 #2 #3 #1 #2 13
1 - agent
2 r" person - - -
3 I; adult M M M
4 Z go male
5 I - :- female - - -
6 busdriver
7 h teacher - - M
8 1- E r action
9 - - consumed - m -
10 - - ate r -
11 -- gave r-
12 -hrew(host) i=
13 - I drove(mouv.)r'-
14 patient
15 person CZ)
16 i= M -adult M
17 child r-
18 female I=
19 I= s schoolgirl - -
20 'i'thing w - M m
21 i -- food -i M
22 - - ball(party) a-.
23 r - -steak
24 soup M w
25 crackers r--
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something, and food). For prepositional phrases, the preposition and the noun are both

represented. For the verb constituent, the presence of the auxiliary verb "was" is

likewise encoded by a separate unit. Articles are not represented, and nouns are

assumed to be singular and definite throughout.

The surface role, location, of each constituent is coded by four units that

represent location respective to the verb: pre-verbal, verbal, first-post-verbal, and n-

post-verbal. The first-post-verbal unit is active for the constituent immediately

following the verb, and the n-post-verbal unit is active for any constituent occurring

after the first-post-verbal constituent. A number of constituents, therefore, may share

the n-post-verbal position. For example, the sentence, "The ball was hit by someone

with the bat in the park," would be encoded as the ordered set (pre-verbal/ball,

verbal/(was, hit), first-post-verbal/(by, someone), n-post-verbal/(with, bat), n-post-

verbal/(in, park)) .2

Output representation. The output has one unit for each of 9 possible thematic

roles (e.g. agent, action, patient, instrument) and one unit for each of 45 concepts,

including 28 noun concepts, 14 actions, and 3 adverbs. Additionally, there is a unit for

the passive voice. Finally, there are 13 "feature" units, such as male, female, and adult.

These units are included in the output to allow the demonstration of more subtle effects

of constraints on interpretation (see Appendix A for the complete set of roles and

concepts). This representation is not meant to be comprehensive. Instead, it is meant

to provide a convenient way to train and demonstrate the processing abilities of the

network. Any one role/filler pattern, then, consistq of two parts. For the role, one of

the 9 role units should be active, and for the filler, a unit representing the concept.
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action, or adverb should be active. If relevant, some of the feature units or the passive

voice unit should be active.-

Training environment. While the sentences often include ambiguous or vague

words, the events are always specific and complete: each event consists of a specific

action and each thematic role related to this action is filled by some specific concept.

Accordingly, each event occurs in a particular location, and actions requiring an

instrument always have a specific instrument.

Sentence/event pairs are created on-line during training from scaffoldings called

sentence-frames. The sentence-frames specify which thematic roles and fillers can be

used with that action. Each of the 14 actions has a separate sentence-frame. Four

additional frames were made to cover passive versions of sentences involving the

actions kissed, shot, hit, and gave.

To create a sentence/event pair, a sentence-frame is picked at random and then

each thematic role is processed in turn. (Appendix B contains a sample sentence-

frame.) For example, let's assume that the Ate sentence-frame is chosen. Agent is the

first role processed. First, a concept to fill the role is selected from the set of concepts

that can play the agent role in the Ate sentence-frame. This role/filler pair is added to

the event description. Since some roles, such as instrument and location, may not be

mentioned in the sentence, it is randomly determined, according to a preset probability.

whether a role will be included in the sentence. If the role is to be included, a word is

chosen to represent the filler in the sentence. Otherwise, the role is left out of the

sentence, but it is still included in the event description. Since the agent role must be

included in sentences about eating, it is placed in the sentence, and a word is chosen.
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Assuming busdriver is chosen as the filler concept, a word to describe busdriver is

selected. For example, the word "someone" might be chosen.

Next, the action role is processed. Since the Ate sentence-frame is being used.

the action must be ate. A word to describe ate is then chosen: "consumed". for

example. Then the patient is chosen. The probabilities of choosing particular VAints

depend upon what has been selected for the agent and action. Given the selection of

busdriver as the agent, steak is a much more likely patient than soup. Let's assume

that steak is selected, and that the word "steak" is chosen to represent it. In general, by

changing the probabilities of selecting specific fillers as sentences are built, statistical

regularities among the fillers will develop across the corpus.

In the same way, the remaining role/filler pairs for the sentence-frame are

generated. Assuming only the first three roles are chosen to be included in this

sentence, the input sentence will be, "Someone consumed the steak." The event will be

the entire set of role/filler pairs (agent/busdriver, action/ate, patient/steak,

instrument/knife, location/living-room, etc. }.

In this way, 120 different events can be generated with some being more likely

to appear than others. The most frequent event occurs, on average, 5.5 times per 100

trials, but the least frequent event occurs only 9 times per 10,000. The number of

words that can be chosen to describe an event and the option to include or eliminate

optional constituents from the sentence brings the number of sentence/event pairs to

22,645.

The sentences are limited in complexity because of the limitations of the event

representation. Only one filler can be assigned to a role in a particular sentence. Also,

all the roles are assumed to belong to the sentence as a whole. Therefore, no embedded



-16 -

clauses or phrases attached to single constituents are possible

Training procedure details. Aftcr the processing of each constituent, the error

produced by each role/filler pair is collected and propagated backward through the

network (cf. Rumelhart. Hinton. & Williams, 1986). The weight changes from each

sentence trial are added together and used to update the weights Zter every 60 trials.

The following values were used for the learning parameters. The learning rate.

F_ was set to 0.0005, and momentum was set to 0.9. No attempt was made to optimize

these values, so it is likely that learning time could be improved by tuning these

parameters.

Results

Overall performance

First, we will assess the model's ability to comprehend sentences generally.

Then we will examine the model's ability to fulfill our specific processing goals.

Finally, we will examine the development of the model's performance across training

trials.

When the model was able to process the passive sentences correctly, the

simulation was stopped and evaluated. Correct processing was defined as activating the

correct units more strongly than the incorrect units. After 330,000 sentence trials, the

model began correctly processing the passive sentences in the corpus.

A set of 100 test sentence/event pairs was drawn randomly from the corpus.

These sentence/event pairs were drawn without regard to their frequency during

training, so seldom practiced pairs were as -likely to appear in the test set as frequently

practiced pairs. Of these pairs, 45 were set aside for separate analysis because they
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were ambiguous: at least two different interpretations could be derived from each. Of

the remaining sentence/event pairs, every sentence contained at least one vague -or

ambiguous word, yet each had only one interpretation. These unambiguous

sentence/event pairs were tested by first allowing the model to process all of the

constituents of the sentence. Then the model was probed with each half of each

constituent that was mentioned in the sentence. The output produced in response to

each probe was compared to the target output. Figure 3 presents a histogram of the

results.

Figure 3 - Histogram of unambiguous sentences

see following page

Figure 3. Histogram of the cross-entropy error for random sentences

after 330,000 sentence trials. The sentences were drawn randomly from

the corpus without regard to their frequency. A cross-entropy measure of

between 0 and 10 results from sentences that are processed almost

perfectly. Only small errors occur when an output unit should be

completely activate (with a value of 1), but only obtains an activation of

.7 or .8, or when a unit should have an activation of 0. but has an

activation of .1 or .2. Cross-entropy errors of between 15 and 20 occur

when one of the role/filler pairs is incorrect. For example, if teacher

were supposed to be the agent, but the network activates busdriver, an

error of about 15 would result.
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For these unambiguous sentences. the cross-entropy. summed over constituents.

averaged 3.9 per sentence. Another measure of performance is the number of tunes an

output unit that should be on is less active than an output unit that should be off. This

situation occurred in 14 out of the 1710 possible cases, or on 0.8% of the opportunities

The 14 errors were distributed over 8 of the 55 sentences In five of the eight

sentences. the error involved the incorrect instantiation of the specific concept or a

feature of that concept referred to by a vague word. Two involved the incorrect

activation of the concept representing a nonvague word. In each case, the incorrect

concept was similar to the correct concept. Therefore, errors were not random; they

involved the misactivation of a similar concept or the misactivation of a feature of a

similar concept. The errors in the remaining sentence involved the incorrect assignment

of thematic roles in a passive, reversible sentence: "Someone hit the pitcher" (see the

section on learning for a discussion of this problem).

Additional practice, of course, improved the model's performance. Improvement

is slow, however, because the sentences processed incorrectly are relatively rare. After

a total of 630,000 trials, the number of sentences having a cross-entropy higher than 15

dropped from 3 to 1.

Performance on specific tasks

Our specific interest was to develop a processor that could correctly perform

several important language comprehension tasks. Five typical sentences were drawn

from the corpus to test each processing task. The categories and one example sentence

for each are presented in Table 1.
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Category Example
Role assignment

Active semantic The schoolgirl stirred the kool-aid with a spoon.
Active syntactic The busdriver gave the rose to the teacher
Passive semantic The ball was hit by the pitcher.
Passive syntactic The busdriver was given the rose by the teacher.

Word ambiguity The pitcher hit the bat with the bat.
Concept instantiation The teacher kissed someone.
Role elaboration The teacher ate the soup (with a spoon).

Table I. The four categories of processing tasks and an example

sentence of each. The parentheses denote the implicit, to be inferred,

role.

The first category involves role assignment. The category was divided into four

sub-categories based on the type of information available to help assign the correct

thematic roles to constituents. Sentences in the active semantic group contain semantic

information that can help assign roles. In the example from Table 1. of the concepts

referred to in the sentence, only the schoolgirl can play the role of an agent of stirring.

The network can therefore use that semantic informition to assign schoolgirl to the

agent role. Similarly, kool-aid is something that can be stirred, but ;-annot stir or be

used to stir something else. After each sentence was processed, the sentence gestalt

was probed with the filler half of each role/filler pair. The network then had to

complete the pair by filling in thc cz-ect thematic role. For each pair, in each

sentence, the unit representing the correct role was the most active. Sentences in the

passive semantic category are processed equally well. Of course the semantic

knowledge necessary to perform this task is never provided in the input or programmed

into the network. Instead, it must be developed internally in the sentence gestalt as the

network learns to process sentences. Syntactic information, though available, need not



be used in these cases, the semantic constraints suffice In fact. Lf the surface location

of the constituents is removed from the input, the roles are still assigned correctl\

To process sentences in the active and passive syntactic categories, howke'.er. the

network cannot rely entirely on semantic constraints to assign thematic roles To create

this situation, pairs of reversible events were included in the trainng corpus. such as the

The schoolgirl stirred the kool-aid with a spoon.

• = -.- --

schoolgiri stirred kool-aid spoon

The busdriver was given the rose by the teacher.

busdriver was given roselnoun) teacher

Figure 4. Role assignment. After a sentence is processed. the network

is probed with the filler half of each role/filler pair. The activation over

a subset of the thematic role units is displayed. The first sentence

contains semantic information useful for role assignment, while the

second sentence contains only syntactic infformation.
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busdnver giving a rose to the teacher. and the teacher gP.tng a rose to the budrler

Both of these events were trained wtth equal frequenc. Wi thout a dtfferenc.e Ln

frequency. there is no semantic regularity to help predict which of the tmo e'entj a

sentence refers to The model must rely on syntactic information. such as Aord order.

to assign the thematic roles. Passive sentences further complicate ,rocessLg: the past

participle and the "by" preposition provide cues designating the passive, but in

themselves do not cue which person plays which role. The syntactic structure

information must be used in conjunction with the passive cues to determine the correct

role assignments. Again, for each role/filler pair ui each test sentence, the correct role

was the most active.

The remaining three categories involve the use of context to help specify the

concepts referred to in a sentence. Sentences in the word ambiguity category contain

one or more ambiguous words. After processing a sentence, the network was probed

The pitcher hit the bat with the bat.

&. --M'- %

agent verb patient instrument

Figure 5. Word disambiguation. The sentence "The pitcher hit the bat

with the bat" is processed by the network. The r !twork is then probed

with each thematic role in the event. The activation over a subset of the

tiUers is displayed. The nerwnrk correctly disambiguates each word.
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with the role half of each role/filler pair. The output pattern for the fillers were then

examined. For all pairs in each test sentence, the correct filler was the most active,

Disambiguation requires the competliaon and cooperation of constraints from

both the word and its context. While the word itself cues two different interpretations,

the context fits only one. In "The pitcher hit the bat with the bat." pitcher cues both

container and ball player. The context cues both ball player and busdriver because the

model has seen sentences involving both people hitting bats. All the constraints

supporting ball player combine, and together they win the competition for the

interpretation of the sentence. As can be seen from the present example, even when

several words of a sentence are ambiguous, the event which they support in common

dominates the disparate events that they support individually. The processing of both

instances of "bat" work similarly: the word and the context mutually support the correct

interpretation. Consequently, the final interpretation of each word fits together into a

globally consistent event.

Concept instantiation should work similarly. Though the word cues a number of

more specific concepts, only one fits the context. Again, the constraints from the word

and from the context combine to produce a unique, specific interpretation of the term.

As with the disambiguation task, each test sentence was processed, and then the

network was probed with the role half of each role/filler pair. The output filler patterns

were examined to see if the correct concept and semantic features were intantiated. In

each case, the correct concept and features were the most active.

Depending upon the sentence, however, the context may only partially constrain

the interpretation. Such is the case in "The teacher kissed someone." "Someone" could

refer to any of the four people found in the corpus. Since, in the network's experience.



females only kiss males, the context constrains the interpretation of someone to he

either the busdriver or the pitcher. but no further Consequently. the model can act' ate

the male and person features of the patient while leaving the units repreenting

busdriver and pitcher only partially active. The features adulr and child are also

The schoolgirl :pread something with a knife.

patient

The teacher kissed someone.

i i2 ,9

-.-

patient

Figure 6. Concept instantiation. The network has learned that jelly is

always the patient of spread. When the network processes "The

schoolgirl spread something with a knife," it instantiates "something" as

jelly. For the sentence "The teacher kissed someone," the network

partially instantiates "someone" as a male and person. and either the

pitcher or the busdriver.
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partially and equally active because the busdriver is an adult while the pitcher is a child

(see figure 6). While pitcher is slightly more active in this example. neither is activated

above 0.5 (See the section on ambiguous sentences for an explanation of the difference

in activations). In general, the model is capable of inferring as much information as the

evidence permits: the more evidence, the more specific the inference. Word

disambiguation can be seen as one type of this general inference process. The only

difference is that for ambiguous words both the general concept and the specific

features differ between the alternatives, while for vague words, the general concept is

the same and only some of the specific features differ.

Finally, sentences in the role elaboration category test the model's ability to

infer thematic roles not mentioned in the input sentence. For example, in "The teacher

ate the soup," no instrument is mentioned, yet a spoon can be inferred. For each test

sentence, after the sentence was processed, the network was probed with the role half of

the to-be-inferred role/filler pair. The correct filler was the most active in each case.

For role elaboration, the context alone provides the constraints for making the inference.

Extra roles that are very likely will be inferred strongly. When the roles are less likely,

or could be filled by more than one concept, they are only weakly inferred.

As it stands, there is nothing to keep the network from generalizing to infer

extra roles for every sentence, even for events in which these roles make no sense. For

instance, in "The busdriver drank the iced-tea," no instrument should be inferred, yet

the network infers knife because of its association with the busdriver. It appears that

since the busdriver uses a knife in many events about eating, the network generalizes to

infer the knife as an instrument for his drinking. However, in events further removed
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The teacher ate the soup.

Z - i i -

instrument

The schoolgirl ate.

patient

Figure 7. Role elaboration. After processing the sentence "The teacher

ate the soup," the network is probed with the instrument role. The filler

activations are displayed. The network correctly infers spoon. For "The

schoolgirl ate," the model must infer a patient. Because the schoolgirl is

likely to eat a variety of foods, no particular food is well activated.

from eating, instruments are not inferred. For example. in "The busdriver rose." no

instrument is activated. It appears, then, that generalization of roles is affected by the

degree of similarity between events. When events are similar, elaborative roles may be

generalized. When events are distinct, roles do not generalize, and the model has no

reason to activate any particular filler for a role.
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Immediate update

As each constituent is processed. the information it conveys modifies the

sentence gestalt and strengthens the inferences it supports. But the beginning of a

sentence may not always accurately predict its eventual full meaning. For example, in

"The adult ate the steak with daintiness," the identity of the adult is initially unknown.

After "The adult ate" has been processed. busdriver and teacher are equally active.

After processing "The adult ate the steak," the model guesses that the agent is the

busdriver since steak is typically eaten by busdrivers. Along with this inference, gusto

is inferred as the manner of eating, since busdrivers eat with gusto. The model has, at

this point, been led down the garden path toward an ultimately incorrect interpretation

of the sentence. The next constituent processed, "with daintiness," only fits with the

teacher and the schoolgirl. Since the sentence specifies an adult, the agent must be the

teacher. The model must revise its representation of the event to fit with the new

information by de-activating busdriver and activating teacher.

Figure 8 - Sentence Gestalt garden path

see following page

Figure 8. The sequential processing of a garden-path sentence. After

"the steak" has been processed, the network instantiates "the adult" with

the concept busdriver. When "with daintiness" is processed, network

must reinterpret "the adult" to mean teacher.



The adult ate the steak with daintiness.

Sentence Gestalt Activations Role/Filler Activations
unit *1 #2 #3 *4 #1 *2 #3 #4
1 M r- r - agent
2 WC MI M_- person - - - -
3 M M M M adult M M M M
4 E- 1 KF- child -

5 - - male IC w C=
6 I female I= I -_ I= 2
7 - -busdriver W3 IN M r7
8 EM teacher KZ3 I- r-2 ,3
9 -- action
10 "ate C - -
11 I= shot
12 -' - c I= drove(trans.) -
13 -'drove(motiv.)- -
14 10 so MC patient
15 - - - - person K"
16 ME adult - -
17 - - - child I[=
18 busdriver --
19 - - - schoolgirl i
20 I= thing M - -
21 M food M M - -
22 I" K3 steak C C--
23 I soup
24 - ' 'crackers -
25 J adverb

26 I gusto I3 9- M
27 mL E- 1 I pleare C-
28 daintiness r n
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In general, as each constituent is processed, the information it explicitly conveys

is added to the representation of the sentence along with implicit information Implied

by the constituent in the current situation. When the evidence is ambiguous and

supports may conflicting inferences (such as after "The adult" has been processed) all

the inferences are weakly activated in the sentence gestalt, and when new evidence

suggests a different interpretation, the sentence gestalt is revised.

Ambiguous sentences

The ambiguous sentences in the test set were tested separately. As noted above,

an ambiguous sentence has more than more consistent interpretation. For example, the

adult in the sentence, "The adult drank the iced-tea in the living-room," can be

instantiated with either busdriver or teacher as the agent, but the sentence offers no

clues that teacher is the correct agent in this particular sentence/event pair in the test

set. In these ambiguous cases the model should compromise and activate busdriver and

teacher equally, causing two small errors. What the network typically did, however,

was to activate one concept more than the other.

One reason for these differences in activations is the recent training history of

the network. The sentence/event pairs trained more recently have a major impact on

the weights and, therefore, on subsequent processing. Because selection of training

examples occurs randomly, several sentences involving a particular agent may occur

before a sentence/event involving a different agent is trained. Such training biases can

lead to a bias in the activation of alternatives in ambiguous sentences. We tested this

explanation by training the network on .sentence/event pairs that consisted of an

ambiguous sentence and the subordinate, weakly activated, event. From one to three
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training trials were required to balance the activation of the subordinate event with that

of the previously dominant event.

The network's sensitivity to aberrations is due to the dynamics of the activation

function. Because the function is sigmoidal. it is sensitive to the value of the input in

its middle range and insensitive at its extremes. Activ4tion can be pegged on or off

easily by using large positive or negative weights. The exact size of the weights are

not critical. To obtain activations in the middle range, however, much finer calibration

of the weights must be made. Consequently, recent changes to the weights can have a

significant impact on performance in these subtle cases.

Learning

As the network learns to comprehend sentences correctly, a number of

developmental phenomena can be observed. In fact, the only real failures in

performance stem from a developmental effect. Problems in processing only arise in

processing infrequent and irregular sentences. For example, sentences about the

busdriver eating soup are rare. The network is seven times more likely to see a

sentence about the busdriver eating steak than eating soup. This frequency difference

creates a strong regularity between "The busdriver ate" and the concept steak. In a

sentence about the busdriver eating soup, the word "soup" constrains the patient to be

soup, while "The busdriver ate" partially constrains the patient to be steak. The

constraints compete for an interpretation of the sentence. When the regularities are

particularly strong, the contextual constraints can win the competition and cause the

bottom-up activation from the word itself to be overridden.

Though this effect seems like a serious flaw, it is a flaw that the model shares
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with people. In an illuminating experiment, Erickson and Mattson (1981) asked

subjects questions like, "How many animals of each kind did Moses take on the Ark'"

Subjects typically answered, "Two," despite their knowledge, when later asked. that

Moses had nothing to do with the Ark. Constraints from the context overwhelmed the

constraint from the word "Moses."

In the model, this frequency or regularity effect diminishes with training: the

reliability of a constraint, its probability of correctly predicting the output, rather than

its overall frequency, becomes increasingly important. The word "soup" perfectly

predicts the concept soup: whenever "soup" appears in a sentence, the event contains

the concept soup. On the other hand, the busdriver eats a variety of foods, so "the

busdriver ate" is only 70% reliable as a predictor of steak. With increased training,

even low frequency constraints are practiced. If they are reliable, they gain strength

and eventually outweigh more frequent but less reliable constraints. Similar

developmental trends occur as children learn language (MacWhinney, 1987). Progress

is slow, but after a total of 630,000 trials, even these very infrequent and irregular

sentences are processed correctly.

The early effect of frequency works for syntactic constraints as well as semantic

constraints. As shown in Figure 9, the model masters sentences in the active voice

sooner than it masters sentences in the passive voice. This difference is due to the

greater frequency of sentences in the active voice in the corpus. While 14 sentence

frames use the active voice, only 4 frames use the passive voice. After 330,000 trials,

though, both voices are handled correctly.

The syntactic constraints develop more slowly than the regular semantic

constraints. Yet while every sentence contains word order constraints, only an
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Figure 9. Development of performance. a - active syntactic (The

busdriver kissed the teacher). p - passive syntactic (The teacher was

kissed by the busdriver): r - regular semantic (The busdriver ate the

steak); i - irregular semantic (The busdriver ate the soup). Correct

performance means the correct concepts are more active than incorrect

concepts.

occasional sentence will contain a particular semantic constraint. Based on the

frequency of practice with particular constraints, then, the word order constraints should

be learned much earlier than the semantic constraints. Two caveats to the frequency

rule help explain this result. First, the syntactic constraints involve the conjunction of

word order with the presence or absence of the passive markers, and such conjunctions

are difficult to learn. Second, learning tends to generalize across semantically similar

words, so training on one word can facilitate the learning of similar words.

Representations

While the input to the network ig a local encoding, where each word is

represented by a different unit, the network can create internal representations that are
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distributed and that explicitly encode helpful semantic information. The weights

running from the input layer to the first hicaden layer can be seen as "constraint vectors"

which determine how each word influences the evolution of the sentence gestalt. These

constraint vectors are the model's bottom-up representation of each word. Words that

impose similar constraints should develop similar constraint vectors. A cluster analysis

of the weight vectors reveals their similarity. Separate cluster analyses was performed

for unambiguous nouns and verbs (see figure 10).

The verbs cluster into a number of hierarchical groups. One cluster contains the

consumption verbs. Another contains stirred and spread. These two clusters then

combine into a cluster involving people and food. Kissed, hit, and shot formed another

cluster. For each of these verbs there were passive sentences in the corpus, and each

could take an animate object. Gave, the only dative verb, stands apart from the other

verbs. This clustering reflects the similarity of the case frames of the members of the

figure 10 - cluster analyses

see following pages

Figure 10. Cluster analyses. The analysis computes the similarity

between the weight vectors leading from each input unit to the first

hidden layer. The more similar two vectors or clusters of vectors, the

sooner they are combined into a new cluster. Physical distance in the

figure is irrelevant; only the clustering is important. For instance, stirred

is n9t any more similar to drank than it is to ate.
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different clusters.

The representations of nouns further reflect similarities in the constraints they

impose on the evolving sentence gestalt. This similarity is reflected in two ways. As

with the verbs, semantically similar words cluster: all of the people cluster, and "dog"

and "spot" are very similar. Words that occur together in the same context also have

similar representations. Fcr example, ice cream clusters with park. and jelly clusters

with knife. In the corpus, ice cream is always eaten in the park, and jeUy is always

spread with a knife. Consequently, their constraints on the output event-representation

are similar. Their similar representations follow from the similar constraints they

impose on the events described by the sentences.

Discussion

The SG model has been quite successful in meeting the goals that we set out for

it, but it is of course far from being the final word on sentence comprehension. Here

we briefly review the model's accomplishments. Following this review, we consider

some of its limitations and how they might be addressed by further work.

Accomplishments of the model

One of the principle successes of the SG model is the fact that it correctly

assigns constituents to thematic roles, based on syntactic and semantic constraints. The

syntac(L,- constraints are more difficult for the model to master than the semantic

constraints, even though we have provided explicit cues to the syntax, in the form of

the surface location of the constituents, in the input. The model does, however, come

to master these constraints as they are exemplified in the corpus of training sentences.
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Though syntactic constraints can be significantly more subtle than those our model has

faced thus far, those it has faced are fairly difficult. To correctly handle active and

passive sentences the model must map surface constituents onto different roles

depending on the presence of various surface features elsewhere in the sentence.

The model also exhibits considerable capacity to use context to disambiguate

meanings and to instantiate vague terms in contextually appropriate ways. Indeed. it is

probably most appropriate to view the model as treating each constituent in a sentence

as a clue or set of clues that constrains the overall event description, rather than as

treating each constituent as a lexical item with a particular meaning. Although each

clue may provide stronger constraints on some aspects of the event description than on

others, it is simply not the case that the meaning associated with the part of the event

designated by each constituent is conveyed by only that constituent itself.

The model likewise infers unspecified arguments roughly to the extent that they

can be reliably predicted from the context. Here we see very clearly that constituents

of an event description can be cued without being specifically designated by any

constituent of the sentence. These inferences are graded to reflect the degree to which

they are appropriate given the set of clues provided. The drawing of these inferences is

also completely intrinsic to the basic comprehension process: no special separate

inference processes must be spawned to make inferences, they simply occur implicitly

as the constituents of the sentence are processed.

The model demonstrates the capacity to update its representation as each new

constituent is encountered. Our demonstration of this aspect of the model's

performance is somewhat informal; nevertheless, its capabilities seem impressive. As

each constituent is encountered, the interpretation of all aspects of the event description
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is subject to change. If we revert to thinking in terms of meanings of particular

constituents, both prior and subsequent context can influence the interpretation of each

constituent. Unlike most conventional sentence processing models, the ability to exploit

subsequent context is again an intrinsic part of the process of interpreting each new

constituent. There is no backtracking; rather, the representation of the sentence is

simply updated to reflect the constraints imposed by each constituent as it is

encountered.

The model learns to do all of the things we have described in the face of

considerable ambiguity. Though the majority of sentences the model encounters have

only a single interpretation, a substantial fraction of the sentences have more than one

possible meaning. The model learns to interpret the unambiguous cases predominately

correctly, albeit after a considerable amount of training. For the ambiguous cases, the

model is sensitive to recent learning experiences. Instead of setting activations to

actually match conditional probabilities, the interpretations of aspects of events that

remain underspecified after all of the constituents have been encountered tend to

vacillate based on recent, related training trials. Such vacillations are reminiscent of

the frequent finding that humans generally do not notice ambiguity of sentences.

Instead, they generally settle for one interpretation or the other, unless their attention is

explicitly drawn to the ambiguity. The long-term, average probabilities of picking

particular interpretations may reflect the statistical properties of the environment, while

the moment to moment fluctuations reflect recent experience.

The gradual, incremental learning capabilities of the network underly its ability

to solve the bootstrapping problem, that is, to learn simultaneously abo-ut both the

mapping and meaning of constituents. The problem of learning mapping is central for
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developmental psycholinguistics. Naigles, Gleitman. and Gleitman (1987) state that

learning the mapping between words and concepts based only on statistical information

seems impossible because, "at a minimum, it would require such extensive storage and

manipulation of contingently categorized event/conversation pairs as to be unrealistic."

Yet it is exactly by using such information that our model solves the problem. The

model learns the syntax and semantics of the training corpus simultaneously. Across

training trials, the model gradually learns which aspects of the event description each

constiruent of the input constrains and in what ways it constrains these aspects.

The problem of discovering which event in the world a sentence describes when

multiple events are present would be handled in a similar way, though we have not

modeled it. Again, the aspects of the world that the sentence actually describes would

be discovered gradually over repeated trials, while those aspects that spuriously co-

occur with these described aspects would wash out. For both the bootstrapping and the

ambiguous reference problem, then, our model takes a gradual, statistical approach. We

do not want to overstate the case here, since the child learning a language confronts a

considerably more complex version of these problems than our model does. Our

sentences are pre-segmented into constituents, are very simple in structure, and are

much fewer in number than the sentences a child would hear. However, the results

demonstrate that the bootstrapping and ambiguous reference problems might ultimately

be overcome by an extension of the present approach.

Many of the accomplishments of the SG model are shared by predecessors.

Cottrell (1985), Cottrell and Small (1983), Waltz and Pollack (1985), and McClelland

and Kawamoto (1986) have all demonstrated the use of syntactic and semantic

constraints in role assignment and meaning disambiguation. Of these, the first two
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embodied the immediate update principle, but did not learn. while the third learned in a

limited way, and had a fixed set of input slots.

The greater learning capability of our model allows it to find connection

strengths that solve the constraints embodied in the corpus, without requiring the

modeler to induce these constraints and trying to build them in by hand. It also allows

the model to construct its own representations in the sentence gestalt. and this ability

allows these representations to be considerably more compact than in other cases.

Some previous models have used conjunctive representations in which role/filler

pairs are explicitly represented by units pre-assigned to represent either specific

role/filler pairs (as in Cottrell, 1985; Cottrell & Small, 1983; Waltz & Pollack, 1985) or

particular combinations of role features and filler features (McClelland & Kawamoto,

1986). Particularly when such representations are extended so that triples, rather than

simply pairs, can be represented (St. John & McClelland, 1987; Touretzky & Geva,

1987), these networks can become intractably large even with small vocabularies. The

present model avoids intractable size by learning to use its representational capacity

sparingly to represent just those role/filler pairings that are consistent with its

experience. This ability prevents the model from being able to represent totally

arbitrary events: its representational capacities are strongly constrained by the range of

its experience. In this regard the model seems similar to humans: it is widely known

that human comprehension is strongly influenced by experience (Bartlett, 1932; Chase

& Simon, 1973).

Deficiencies and limitations of the model

The model has several limitations and a few obvious deficiencies. The model
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only addresses a limited number of language phenomena. It does not address

quantification, reference and co-reference, coordinate constructions, or many other

phc nomena. Perhaps the most important limitation is the lumtation on the complexity

of the sentences, and of the events that they describe, that the model can process. In

general, it is necessary to characterize the surface roles and fillers of sentences with

respect to their superordinate constituents. Similarly in complex events, there may be

more than one actor, each performing an action in a different sub-event of the overall

event or action. Representing these structures requires head/role/filler triples instead of

simple role/filler pairs.

One solution is to train the model using triples rather than pairs as the sentence

and event constituents. The difficulty lies in specifying the non-sentence members of

the triples. These non-sentence members would stand for entire structures. Thus they

would be very much like the patterns that we are currently using as sentence gestalts.

It would be desirable to have the learning procedure induce these representations, but

this is a bootstrapping problem that we have not yet attempted to solve.

Another limitation of the model is the use of local representations both for

concepts and for roles. The present model used local representations of concept

meanings only for convenience; in reality we would suppose that the conceptual

representations underlying events would be represented by distributed patterns (Hinton.

McClelland, & Rumelhart, 1986). This kind of representation would have several

advantages. Context has the capability not only of selecting among highly distinct

meanings such as those of flying bats and baseball bats, but also, we believe, of shading

meanings, emphasizing certain features and altering properties slightly as a function of

context (McClelland & Kawamoto, 1986). Both of these phenomena are easily
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captred if w,- view tOe representation of a concept as a distributed patte-:.

Similarly, there are several problems with the concept of role which are solved

if distributed representations are used. It is often difficult to determine whether two

roles are the same, and it is very difficult to decide exactly how many different roles

there are. If roles were represented as distributed patterns, these issues would stmply

fall by the wayside. In earlier work (McClelland & Kawamoto, 1986), it was necessary

to invent distributed representations for concepts, but recently a number of researchers

have shown that such representations can be learned (Hinton, 1986; Miikklainen &

Dyer, 1988; Rumelhart, semantic reps: ). The procedure should also apply to

distributed representations of roles.

Another limitation of the model is the explicit presence in the input of surface

role markings. We had originally hoped that the network would not need such explicit

markings, but would come to represent, in the SG, information about position in the

surface parse. While we have been able to get the network to learn without such

markings, learning time increases dramatically. It may be that the task we have

imposed on the SG, to represent the entire event as soon as possible, conflicts with

maintaining information about position in the string. In a different task, where the

network must attempt to anticipate the next input, there have been several

demonstrations that networks can learn to keep track of parse position, at least for small

finite-state grammars (Elman, 1988; Cleeremans and Servan-Shreiber, personal

communication).

A final limitation is the small size of the corpus used in training the model.

Given the length of time required for training, one might be somewhat pessimistic

about the possibility that a network of this kind could master a substantial corpus.
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I.owever it should be noted that the extent to which learning time grows with corpus

size is extremely hard to predict for connectionist models, and is highly problem

dependent. For some problems (e.g. parity), learning time per pattern increases more

than linearly with the number of training patterns (Tesauro, 1987), while for other

problems (e.g. negation), learning time per pattern actually can decrease as the number

of patterns increases. Where the current problem falls on this continuum is not yet

know.

Learning time per pattern is closely related to generalization in connectionist

networks. One limitation of our experiments on the SG model, though not necessarily a

limitation of the model itself, is that we have not really assessed generalization. As

things stand, a reader might be tempted to suppose that our model has simply

memorized the corpus, and could not generalize at all to sentences containing novel

uses of words. However, our analysis of the input representations produced by the

words used in our simulations suggests that generalization might be possible. These

analyses demonstrate that the network learns to assign input representations to words

that reflect the constraints they impose on the event description. It seems likely that a

considerable part of the specification of these constraints might be derivable by the

network from experience on a subset of the possible contexts where a word can occur.

The interpretation acquired in these experiences would then cause the new word to

behave like other similar words in contexts in which it was not trained. Illustrations

that back propagation networks can generalize in this way are provided by Hinton

(1986), Taraban, McDonald and MacWhinney (In Press), and Rumelhart (1987). We

are not at present in a position to say just how well the SG model would do in this

regard.
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One final deficiency of the model is its tendency to activate fillers for roles that

do not apply to a particular frame. This tendency could perhaps be overcome by

explicit training that there should be no output for a particular role, but this seems

inelegant and impractical, especially if we are correct in believing that the set of roles

is open-ended. The absence of roles seems somehow implicit in events, rather than

explicitly noted. Perhaps event representations that preserved more detail of the real-

world event would provide the relevant implicit constraints.

Conclusion

The SG model represents another step in what will surely be a long series of

explorations of connectionist models of language processing. The model is an advance

in our view, but there is still a very long way to go. The next step is to find ways to

extend the approach to more complex structures and more extensive corpora, while

increasing the rate of learning.
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Appendix A
Input and Output Representations

Input

surface locations:
pre-verbal. verbal, post-verbal-i, post-verbal-n

words:
consumed, ate, drank, stirred, spread, kissed, gave, hit, shot, threw, drove, shed, rose
someone, adult, child. dog, busdriver, teacher, schoolgirl, pitcher, spot
something, food, steak, soup, ice cream, crackers, jelly, iced-tea, kool-aid
utensil, spoon, knife, finger, gun
place, kitchen, living-room, park, bat, ball, bus, fur
gusto, pleasure, daintiness
with, in, to, by
was

Output
roles:
agent, action, patient, instrument, co-agent, co-patient, location, adverb, recipient

concepts:
ate, drank, stirred, spread, kissed, gave, hit, shot. threw(tossed), threw(hosted),

drove(trans), drove(motiv), shed(verb), rose(verb)
busdriver, teacher, schoolgirl, pitcher(person), spot
steak, soup, ice cream, crackers, jelly, iced-tea, kool-aid
spoon, knife, finger, gun
kitchen, living-room, shed(noun), park
rose(noun), bat(animal), bat(basebal), ball(sphere), ball(party), bus, pitcher(container),
fur
gusto, pleasure, daintiness

noun features:
person, adult, child, dog, male, female
thing, food, utensil
place, in-doors, out-doors

verb features:
consumed, passive
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Appendix B

Sample Sentence-Frame

Hit

agent l001
252 busdriver 703 adult 20 person 10

verb 100
100 hit 100

patient 100
25 shed-n 80 something 20

instrument 50

100 bus 80 something 20 with4

40 ball-s 80 something 20
location 50

100 park 100 in
instrument 50

100 bat-b 80 something 20 with
10 bat-a 80 something 20

location 50
100 shed-n 100 in

instrument 50
100 bat-b 80 something 20 with

25 pitcher-p 70 child 20 person 10
location 50

100 park 100 in

instrument 50
100 ball-s 80 something 20 with

25 teacher 70 adult 20 person 10
verb 100

100 hit 100
patient 100

34 pitcher-c 80 something 20
location 50

100 kitchen 100 in
instrument 50

100 spoon 80 something 20 with
33 pitcher-p 70 child 20 person 10

location 50
100 living-room 100 in

instrument 50
100 pitcher-c 80 something 20 with

33 schoolgirl 70 child 20 person 10
location 50

100 kitchen 100 in
instrument 50

100 spoon 80 something 20 with
25 pitcher-p 70 child 20 person 10
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averb 100
veb 100 hit 100

patient 100
40 ball-s 80 something 20

location 50

100 park 100 in
instrument 50

100 bat-b 80 some.thing 20 with
10 bat-a 80 something 20

location 50
100 shed-ri 100 in

instrument 50
100 bat-b 80 something 20 with

25 bus 80 something 20
location 50

100 park 100 in
instrument 50

100 ball-s 80 something 20 with
25 busdriver 70 adult 20 person 10

location 50
100 park 100 in

instrument 50
100 ball-s 80 something 20 with

25 schoolgirl 70 child 20 person 10
verb 100

100 hit 100
patient 100

34 pitcher-c 80 something 20
location 50

100 kitchen 100 in
instrument 50

100 spoon 80 something 20 with
33 spot 80 dog 20

location 50
100 kitchen 100 in

instrument 50
100 spoon 80 something 20 with

* 33 teacher 70 adult 20 person 10
location 50

100 kitchen 100 in
instrument 50

100 spoon 80 something 20 with

lnclude a role in the input the this probability.
2Choose this filler with this probability.
3Choose this word with this probability.
4The word appears in this prepositional phrase.
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Footnotes

IThe situation, as defined in the learning procedure, is the combination of the previous

sentence gestalt, the current constituent, and the current probe. It would be desirable to

define the situation solely in terms of the sequence of sentence constituents. While our
results suggest that the sentence gestalt learns to save all the relevant information from
earlier constituents, we have no proof that it does.

"We originally tried presenting the constituents witl'3ut their surface location, hoping

the network would transform the temporal order of the constituents into a spatial pattern
and then use the spatial pattern to produce syntactic constraints, like word oider, to help
interpret the sentence. Through simulation, we have noted that the network can learn
this process, though only with great difficulty.

3A second output layer was included in the simulations. This layer reproduced the
sentence constitueni that fit with the role/filler pair being probed. Consequently, the
model was required to retain the specific words in the sentence as well as their
meaning. Since this aspect of the processing does not fit into the context of the current
discussion, these units are not discussed further.


