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Abstract

recent connectionist models can be categorized as associative memories or pattern classiaes.

Viewed at the right level of abstraction, the two are the same. Comsectionists smetimes appear to be

trying to squeeze all of cognition into the associative memory paradigm, perhaps becmie it's the only thing

they know how to implement with gradient descent learning algorithms. But the cinldmuwoial struu

of thought and language indicates that the answer to 'How can slow components thik so fail4 lies beyood

mere associative recall We must search for additional copitive prmitives that can be inplemented a

paralel hardware. One modest successor to associative recall is considered
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Abstract

Many recent connectionist models can be categorized as associative memories or pattern classifie.
Viewed at the right level of abstraction, the two are the same. Connectionists sometimes appear to be

trying to squeeze all of cognition into the associative memory paradigm, perhaps because it's the only thing
they know how to implement with gradient descent learning algorithms. But the combinatorial structum
of thought and language indicates that the answer to "How can slow components think so fast" lies beyond
mere associative recall. We must search for additional cognitive primitives that can be implemented in
parallel hardware. One modest successor to associative recall is considered here.

1 Associative Memory and Pattern Classification

If an associative memory is trained on a set of patterns {Pi } and then exposed to a novel pattern P, it
will usually map the new pattern to the closest Pi. In matrix autoassociators such as Hopfield nets or
Anderson's "brain state in a box" model, any subset of the pattern can serve as the cue for retrieving
the whole. These models contain recurrent connections, so their behavior is described by differential
equations and they typically require several iterations to settle into a stable state. Their memories are
fixedpoints of a dynamical system.

A second family of associative memory models permits only feed-forward connections. the weights are
learned by backward error propagation or the perceptron learning rule. Feedforward models can acquire
much wider ses of memories than matrix models, by using intermediate or "hidden" units to recode the
input as necessary [121. A hetero-associator which maps an input pattern 1i to an output pattern Oi can
be viewed as an auto-associalor in which Pi = (lj. Oj) and P" = (r'. 0).

A third family of associative models, which includes competitive learning and adaptive resonance
networks, maintains a prototype for each learned class. A prototype is represented by the connections
made to a dedicated unit. Novel inputs are associated with the prototype whose unit they excite most
strongly. Learning new prototypes requires recruiting new units.
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Associative architectures have been applied to three broad classes of problems: pattern classification,
analog ftmcton saimation. and pattern transformation. When used for pattern rassification, each clas

of patterns is named by the single Oi to which all r in the class are mapped. When used for function
approximation, the goal is to produce an 0' close to f() after training on a set of pairs (JI.f(i,)). In
pattern transformation problems the output pattern contains parts of the input rearranged or transformed
in some discrete, systematic way. The early success of associative memories in the first two areas has
obscured some important facts about their limitations in the third.

Perhaps the best-known connectionist pattern classifier is Sejnowski and Rosenberg's NETtalk pro-
gram [14]. NETtalk maps a seven letter window of English text into a 26 bit output pattern that determines
the pronunciation of the window's middle letter in that context. The output consists of 23 articulatory
features plus three bits for stress and syllable boundary information. By scanning the window across a
body of text and using the back propagation learning algorithm to train the weights, NETtalk can be taught
to "read aloud." What NETtalk actually learns is a set of 26 binary decision problems, which it solves in
parallel. However, since the 26 output units share the same set of hidden units, and certain corelations
exist among the outputs (e.g., the articulatory features LABLAL and Vm-i are mutually exclusive), the 26
classification problems aren't learned independently.

Lapedes and Farber have shown that back propagation can learn to predict the behavior of very complex

(chaotic) functions with better accuracy than previous numerical techniques [7]. Function approximaion
by back propagation is especially promising for control problems, such as predicting the dynamics of a
robot arm from a collection of actual trajectories.

One of the interesting properties of back propagation is that the hidden units evolve to detect regularities
in the input space. Hinton's work on learning the structure of family trees offers a particularly striking
example of this effect [5]. But the regularities the network discovers are not accessible to introspection:
the network cannot reason about what it has learned. For example, the network has no way to compare
the regularities discovered in one group of input units with those discovered in other groups.

2 Pattern Transformation by Multilayer Perceptrons

A pattern transformation machine is potentially computationally universal, since any function may be
described as a transformation from inputs to outputs. But the class of transformations that are learnable
in reasonable time by direct induction from training data is limited.

Allen reports experiments in using back propagation to translate English sentences into Spanish [1].
Starting with a conext-free subset of English with 3300 sentences in it, when the network was trained
on 99% of dm it dlowed good performance on the remaining 1% (33 sentences). This demonstrates
that certain kinds of complex syntactic operations can be learned by back propagation - but only if one
is willing to pay the price of near-exhaustive enumeration.

One of the best-known pattern transformation machines is the Rumelhart and McClelland verb learning
model [13]. This model takes as input a phonetic representation of a present tense English verb and
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produces as output the phonetic representation of the past tense. The model has a single layer of trainable

weights. After training on a mixture of regular and irregular verbs, the model is able so predict the
past tense of novel verbs by transforming their phonetic representations in accordance with the rules that
govern past tense formation in English. It induced these rules from the training data.

Another very interesting pattern transformation machine is the case role assignment model of McClel-
land and Kawamoto [8], which was able to correctly assign the roles agent, patient, with-PP-modifier, and
instrument to noun phrases in novel sentences while simultaneously performing lexical disambiguation.
As in the verb learning model and the NETtalk model, what this feedforward network was really doing
was solving a collection of binary pattern classification problems in synchrony.

3 Why Associative Memory Is Insufficient

The triumph of associative models is that they provide evidence in support of the connectionist hypoth-
esis that problems that appear to require sequential, symbolic inference may be amenable to parallel

solution by some sort of continuous dynamical system (15]. But the evidence is only suggestive. No one
should believe that human-like cognitive mechanisms are efficiently constructible by back propagation.
Rule-following behavior can be successfully approximated by back propagation networks only when the
behavior is relatively simple (no combinatorial structure), or the training data covers most of the input
space, as in Alen's language translation experiment. In other words, the brute force associative approach
to intelligence doesn't scale.

In focusing on simple, trainable pattern recognition machines, connectionists appear to be ducking
the hard problems in cognition, as critics of the approach have been quick to point out. These problems
include:

e The compositional structure of language [4]. People's ability to correctly interpret novel sentences
composed of familiar words, and to put words together in novel ways, cannot be reduced to learning
correlations between input and output patterns in a back propagation network - unless the training
set is near-exhaustive.

* The need to express complex relations between objects, as in Drew McDermott's "she is more
outgoing with her fellow graduate students than with me, her advisor" [9]. The ability to relate
concepts not previously juxtaposed is part of what distinguishes inference from mere associative
recall.

e The need for variables and variable binding [11]. Constraints imposed by certain uses of variable
binding may well be the primary serializing constraint on cognition [10], but variable binding is
nonetheless essential for retrieving and applying knowledge. Variable binding cannot be replaced
by associative memory unless one trains on virtually all the variable values in advance.

There have been some attempts at addressing these problems by designing specialized network archi-

tectures. These include Touretzky and Hinton's distributed connectionist production system, DCPS (18];
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Touretzky's BoltzCONS, an architecture for manipulating linked-list structures (16]; Derthick's micro-
KLONE: a connectionist version of the KL-ONE family of knowledge representation languages [2]: Dyer
and Dolan's comAectiomist model of role instantiation in scripts [31; and Touretzky and Geva's DUCS,

a connectionist frame system [17]. These models did not evolve by subjecting a network with random
initial weights to voluminous amounts of training data. They were designed methodically, using such

techniques as coarse coding, lateral inhibition, and simulated annealing search to produce particular sorts

of symbol processing behavior.

4 Another Cognitive Primitive

In this last section of the paper I will focus on a simple cognitive primitive, "appropriate substitution,"

that highlights the failure of the simple associative approach, but I believe is ripe for connectionist

implementation. Consider the linguistic phenomenon known as metonymy, in which one concept plays
the part of another. An example taken from Lakoff [6] is the waitress' observation

(1) The ham sandwich just spilled beer all over himself.

Here the sandwich is standing in for the customer. Metonymy is quite common in language. Consider

(2) John cut an apple from the tree.

What John actually cut was neither the apple nor the tree, but rather the stem that connected the apple

to the tree. To correctly understand (2) one first needs a way of detecting that the unique selectional

restrictions created by the combination of "cut" and "from the tree" are not met by the direct object
"apple." This motivates a search for something related to "apple" - in an appropriate way - that could

substitute for it as the patient in the cut act. The problem is complicated by the fact that the meanings

of the other words in the sentence aren't fixed. In particular, "cut" is a polysemous verb: its meanings
include sever, section, slice, stab, excise, dilute, diminish, traverse, and move quickly.

Comprehending (2) requires the knowledge that apples are connected to trees by stems, and one of

the senses of cut is to sever a connection. Metonymy clearly involves some sort of associative faculty,

but not the simple retrieval described earlier. One does not want to map apple to stem in all contexts.

Apple certainly doesn't mean stem in either of these sentences:

(3) John ate an apple from the tree.

(4) John cut an apple beneath the tree.

The domain of metonymic reference is so rich that one cannot hope to cover the space with a simple

associative memory, except by using the entire sentence as context and training on an exponential number
of examples. But a hand-designed metonymy machine - one that can dynamically bring together the bits
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of knowledge it needs - should be able to interpret truly novel metonymic references without exhaustive
training. Even though it might never have considered cutting anything like a mooring rope before, a
metonymy machie should have no trouble inferring what is severed in

(5) John cut the boat from the dock.

In my lab at Carnegie Mellon we have begun working on ie design of such a metonymy machine.
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