
4 n6i r-

REPORT DOCUMENTATION PAGE o T W070.418

1 I O W t f l OW r aOf on$*..lt nnl U lnl 9 li E€ tfl tOme@ rS'E.ES, I i fl I t O .ll W ftI S 14. J Ll

fa n "ce af Ma. aqeme@t &no Buaqel. Peowwo.' ft~ductoa prog~t (07044 'U). Wawaisuqtop. DC 20%j).

AD-A218 904REPORT OATE 3. REPORT TYPE AND DATES COVERED

Januarv 1990 FINAL renort. 30 SQD 84 thru 30 Nov 89
S. FUNDING NUMBERS

CONTINUATION AND MULTI-GRID NETHODS FOR BIFURCATION PROBLEM: AFOSR-84-0315
61102F 2304/A3

L AUTHOR(S)

Hans D. Mittelmann

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) U. PERFORMING ORGANIZATION

Department of Mathematics REPORT NUMBER

Arizona State University

Tempe, AZ 85287-1804 J'O'>}K. [- "

9. SPONSORING/MONITORING AGENCY NAMES) AND ADDRESSES) 10. SPONSORING/MONITORING
AFOSR/N4H AGENCY REPORT NUMBER

Building 410
Bolling AFB, DC 20332-6448 "*IifE *t AFOSR-34-0315

II. SUPPLEMENTARY NOTES ~(

12a. DISTRIBUTION/AVAILABILITY STATEMENT U 12b. DISTRIBUTION COol

Approved for pu. llc ".,..e:
iistritut ion unlimite .

13. ABSTRACT (Maximum 200 words)

In the following we give an overview of the work completed under the
grant AFOSR-84-0315 entitled "Continuation and Multi-grid Methods for
Bifurcation Problems" sincepctober 1, 1984. The research under that
grant concerns the numerical solution of bifurcation and nonlinear
eigenvalue problems for parameter-dependent partial differential
equations and systems. The scope of the research is rather wide,
stressing the develoment, study and implementation of computational
methods for several classes of difficult nonlinear problems, but, also
including the derivation of analytic results in cases where these
questions had not been settled before. The work under the grant has
resulted in 26 papers in refereed journals or refereed proceedings
volumes of major conferences; they are listed at the end of this
sect p,

14<,SUBJECT TERMS rI" " , / ,S. NUMBER OP PAGES

17
" - 1 - fr ,', .' - 1 PRICECODE

17. SECURITY CLASSIFICATION Il. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATON OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED .UNCLASSIFIED UNCLASSIFIED SAR

NSN 7S40-I.2 -SSOO " Standard Form 290 (Ret. 2-89)
- .'~"W""twf Am"i SM. D5-Is



Final Technical Report
on Grant AFOSR-84-0315

Continuation and Multi-grid Methods
for

Bifurcation Problems

Duration of Grant: October 1, 1984 - November 30, 1989

Date of Submission: 3 January 1990

Principal Investigator: Hans D. Mittelmann
Department of Mathematics
Arizona State University
Tempe, AZ 85287-1804

TABLE OF CONTENTS

1. Accomplishments under the Grant ..................................................................................... 1

2. Two Major Areas of Completed Research ........................................................................ 2

2.1 Continuation for Variational Inequalities ................................................................... 2

2.2 Bifurcation and Multi-grid for Variational Inequalities ............................................ 3

2.3 Bifurcation for Systems of PDE's ............................................................................ 3

2.4 Continuation and M ulti-grid for PDE's ................................................................... 4

2.5 Differential Equations on M anifolds .......................................................................... 5

2.6 Bifurcation in Interface Problems .............................................................................. 5

2.7 Publications Completed under the Grant ................................................................. 7

3. Vita of Principal Investigator ............................................................................................ 10

90 2



1. Accomplishments under the Current Grant

In the following we give an overview of the work completed under the grant AFOSR-84-0315

entitled "Continuation and Multi-grid Methods for Bifurcation Problems" since October 1,

1984. The research under that grant concerns the numerical solution of bifurcation and

nonlinear eigenvalue problems for parameter-dependent partial differential equations and

systems. The scope of the research is rather wide, stressing the development, study and

implementation of computational methods for several classes of difficult nonlinear problems,

but, also including the derivation of analytic results in cases where these questions had not

been settled before.

The work under the grant has resulted in 26 papers in refereed journals or refereed

proceedings volume; of major conferences; they are listed at the end of this section. The

following section gives an overview of the various results.

2. Two Major Areas of Completed Research

A rough classification of the research completed under the current grant would identify two

major areas given below together with the resulting publications.

(1) Development of computational methods for and study of free boundary problems for

partial differential equations. [1, 7, 8, 9, 11, 13, 14, 17, 20, 21, 23]

(2) Efficient numerical solution and continuation for systems of nonlinear partial

differential equations. [2, 3, 4, 5, 6, 12, 15, 16, 18, 19, 22, 24, 25, 26]

While there is a clear cut between the classes of problems in (1), free boundary problems

usually described by variational inequalities, and (2), systems of nonlinear partial differential

equations with various boundary conditions, the approaches used and the techniques

developed are similar in several instances. Bifurcation of solutions with respect to a

parameter, an important phenomenon in many applications presently of interest, is considered

both in (1), [1, 7, 11, 14, 20] and in (2), [2, 3, 4, 6, 12]. Continuation along solution curves or

on solution manifolds has been studied both practically and theoretically, for the problems

from (1) in [8, 9, 11, 14, 17, 23] and for those from (2) in [2, 4, 5, 6, 15, 18]. Finally, multi-

grid algorithms representing the most efficient methods for the solution of partial differential

equations h4 e been developed and implemented for the boundary problems (2) in [2, 5, 6]

and, for the first time also for the variational inequalities from (1) in [13].

The following two sections deal in more detail with the problems and results listed

above under (1) while the subsequent sections are concerned with the area (2) partly

overlapping with (1) in the last two sections. 10 110
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2.1 Continuation for Variational Inequalities

Formally, a variational inequality may be written in the form lj[u(v - u) > 0, where I. , for

example, denotes the total energy of a physical system and u its state. If u could attain

arbitrary values then the first variation of the energy functional was zero in the solution u01

I'[u0 ] = 0 and a variational equality and corresponding (Euler-Lagrange) differential equation

,xould result. In case, however, that tne state can only vary under certain constraints,

formally denoted by u ( K, then the above inequality defines the solution u = u0 if it holds for

all v E K.

In the case that the functional in the above inequalities does not depend on one or
several parameters X the numerical solution of the associated variational inequalities had

been under research earlier, in particular also by the principal investigator. In particular,

efficient computational methods as preconditioned conjugate gradient [27] and multi-grid

algorithms [28] had been successfully applied. Under the present grant parameter-
dependent variational inequalities were one of the major focal points. Typically, the functional

then has the form I.[u] = f(u) - Xg(u), where f, g represent different components of the

energy and X usually stands for a physical parameter that acts as a force or a load. In the

resulting variational inequality this . enters as eigenvalue parameter, making the resulting

problem a nonlinear eigenvalue problem. It is nonlin, - ., two different ways. Even if f, g
were quadratic functionals and the corresponding Euler-, -ange equation linear for arbitrary
u, the fact that only u r K is admissible makes this problem a nonlinear one. In addition, the

functionals f, g are in general not both quadratic yielding a second form of nonlinearity.

One of the very first papers on continuation for variational inequalities is [8]. At that
time there had only very few papers appeared on this subject at all, from a group of French
mathematicians [29, 30, 31] While several numerical methods were applied to a special

class of second order semilinear variational inequalities in [31], they could not be justified

theoretically. The method of [8] can be analyzed by generalizing earlier results of the

principal investigator. Through the extensive computations in [8] also a phenomenon was

detected and successfully dealt with ('spurious transition points') that had been overlooked

in the earlier work.

The results and observations from [8] were the starting point for a series of further

investigations largely together with one of our collaborators. A lengthy study with the

French group is given in [9], while theoretical and practical results which go well beyond
these are presented in [11, 14, 17, 23]. For the sake of brevity it may suffice here to say that
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a different technique of proof, variational as opposed to fixed-point arguments, permitted a

substantial generalization of the class of problems considered. Secondly, the numerical

methods developed in [8] and refined and justified in [14, 17] are more powerful than what

had been used so far.

2.2 Bifurcation and Multi-grid for Variational Inequalities

The problems described in the previous section are some of the computationally most

involved ones in the context of partial differential equations. While, naturally, in first

approaches to various aspects of these problems not the most complex example from the
applications was chosen, the latter represent the ultimate goal of our work. Continuation

along solution manifolds of variational inequalities necessitates the solution of a series of
highly nonlinear problems. It is thus desirable to utilize the most efficient methods available.

The first development and application of multi-grid algorithms for the class of variational

inequalities considered in [8, 9] could be reported in [13]. While a theoretical analysis of the

method proposed in [13] could not yet be completed, the numerical results of [8, 17] served

as benchmarks to validate the computational procedure.

The problem of bifurcation of solutions is relatively well understood in the case of partial

differential equations. Much less is known for variational inequalities. Together with one of

the experts in the analytical study of this phenomenon we have been able to settle already

several open questions. Of interest are, for example, variational inequalities describing the

deflection of mechanical objects (beams, plates, shells) subject to constraints in the form of

obstacles. While branching takes place at the critical load parameter, as is well-known, the

open question is for which load the object after subsequently contacting the obstacle starts to
lift off again ("snapthrough"). This represents a secondary bifurcation point in a non-

standard framework, however. For beams, and different plates the answer could be given in

[1, 7, 20, 23]. Numerical analysis and computations were crucial in all those papers.

2.3 Bifurcation for Systems of PDE's

In the previous section the term bifurcation was used in the narrow sense that for certain

values of the physical parameters of a system a branching occurs, i. e. the state may follow

several paths on a solution manifold. The mathematical model describing the system in
general contains all possible states while the actual physical development-which branches

are followed-depends on physical imperfections, perturbations, or the history of the process.

Frequently the term bifurcation is already used when there is a non-uniquenss of solutions,
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due, for example, to fold-points along the solution branch and continuation methods have to

be used to overcome these difficulties. While these later methods will specifically be

addressed in the next section, here we are concerned with other aspects of bifurcation

problems.

An important class of bifurcation problems is that where at a bifurcation point from the

primary branch secondary branches of solutions bifurcate along which these solutions exhibit

less symmetry than those on the primary branch. A method for boundary value problems

developed earlier by the principal investigator in [32](generalized inverse iteration). wns

extended to such problems in [33]. While the example considered there was rather simple, a

more complex application showing the power of the approach was studied in detail in [3].

One of the many interesting aspects of parameter-dependent PDE's is the fact that

their discretizations exhibited spurious solutions. In addition to solutions which for finer and

finer discretizations converge to the solutions of the original continuous problem, there are

branches of solutions that do not correspond to "real" solutions and which disappear if the

discretization is refined. For the well-known Bratu problem: - Laplacian (u) = Xe" with

homogeneous Dirichlet boundary conditions no bifurcation (in the narrow sense of the word)

occurs for the continuous solution while spurious solutions may branch off a relevant solution

curve. This situation was addressed in [61.

2.4 Continuation and Multi-grid for PDE's

Many nonlinear PDE problems of interest in the applications in areas as diverse as

solid mechanics, continuum mechanics, solid state electronics, etc., are parameter-dependent

and continuation is necessary to obtain the desired solutions. It is thus natural that

computational methods for this purpose are not only developed and analyzed but also

implemented in software packages which are given to engineers and scientists whose

response and experience with them then serve as a feedback to the mathematician to

reconsider and refine his approaches. While the parameter-dependent problems requiring

continuation can formally be written as G(u , X) = 0, where u denotes the state variables and

X the parameters, in this and the previous section we were assuming that G stands for a

system of nonlinear partial differential equations, i.e., u is a vector function, the number of

components being equal to the dimension of the system. For an important class of second

order PDE's a novel continuation technique was given and analyzed in [2, 4, 5, 6]. The

differential equation is of general divergence from and includes many examples from the

application areas listed above. While details of the method in the scalar case (systems of

dimension 1) are given in [2, 4], three-dimensional systems, in particular that from VLSI
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device simulation were cnnsidered and solved in [5]. The continuation method was

implemented in the multi-grid finite element package PLTMG [34]. This package is widely

used in industry and research labs. A further development of the continuation method,

affecting both the "predictor" and the "corrector" steps, was accomplished in [15] and

implemented in the latest release of the package [35].

2.5 Differential Equations on Manifolds

Recently first results were obtained for a more general class of PDE problems than

considered in the previous two sections. In the case of, say, a PDE on a two-dimensional

domain, the solution above was assumed to have the form u(x, y), (x, y) being a point in the

domain of definition. In this case u is a univalued function of the spatial variables and may be

graphed accordingly. We address now a class of problems where this does not hold anymore.

The differential equation is again of second order but the solution has to be written as

(u, v, w) e R3 and has to be parametrized by writing each of its components as a function of a

variable in a two-dimensional parameter-domain, i.e. u = u(r, s) etc. The solution is thus a

general 2-manifold in 3-space. One example, which is only coincidentally also of interest to

mathematicians, namely differential geometers, is that of capillary surfaces. The problem is

to determine the liquid-liquid or liquid-gas interfaces of amounts of liquid that are confined to

some container. Here, container has to be understood in a very general way; it may, for

example, be a plane on which a liquid drop sits or from which it is pending.

The capillary surface problem is of great interest to physicists and engineers, also, but

not only in situations where experiments are difficult and costly as in a micro-gravity

environment (semiconductor production in space, etc.). A breakthrough in the computational

solution of these and thus similar problems using a finite element method and utilizing

continuation with respect to the parameters of the problem was made in [16, 18, 22]. These

results were deliberately sent to journals in the appropriate areas of applications to reach

that audience. For the sake of brevity we do not give details of the results here. Suffice it to

say that in this context also bifurcation (in the narrow sense) but also multiplicity of solutions

due to hysteresis effects etc. occur.

2.6 Bifurcation in Interface Problems

While the results and the algorithms presented in [16, 18] represent a breakthrough in iLe

approximation of interface problems they only touch on the class of problems that now may be

attacked using this new approach. The long-range goal will be to solve time-dependent
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problems involving both capillary and flow phenomena. Very little work has been done in this
area since the adequate computational treatment of each of those aspects separately still
represents a formidable task. But, in the combination a presently untractable difficulty arises.

While only recently satisfactory results could be obtained for the computational solution of

the Navier-Stokes equations in fixed three-dimensional domains, the problems considered
here would always involve a free boundary. This boundary would, in fact, only be determined

through the coupling of the flow and the capillary effects.
The principal investigator recently started a cooperation with Profs. G. P. Neitzel and D.

P. Jankowski from the Department of Mechanical and Aerospace Engineering at Arizona
State University. This work is on the stability and instability of thermocapillary convection in
models of the float-zone process. It is a pioneering project on the important stability

questions of the process used to grow crystals for semiconductors both in a terrestial setting,
but in particularly for its planned utilization in space. In this technique a poly-cristalline rod
is moved slowly through a heating device which melts a portion of the rod. Ideally, this melt
re-solidifies to form a single crystal, which is then used as a substrate for building micro-
electronic devices. Since surface tension forces must support the zone, the rise of the
revolving crystal is limited in earth-based production. In fact, the surface tension and density

of some materials, e. g., gallium arsenide, are such that crystals of useful size cannot be
grown on earth by the float-zone process. Crystals grown by this method exhibit undesirable
non-uniformities in material properties and considerable effort has been motivated by the idea
that the implementation of the process in a micro-gravity environment, such as exists on the
Space Shuttle, can eliminate, or at least drastically reduce, these problems. Since
experiments in a micro-gravity environment as, e. g., on the Space Shuttle, are expensive and
very limited it is extremely important to develop computer simulations in order to facilitate

space-based crystal growth for solid state electronics purposes.

The first completed papers on this subject are [24, 25, 26]. They show that the
computational procedures proposed there are efficient and robust. In cases where results
from model experiments exist excellent agreement was found. The techniques of [24, 25, 26],

however, allow now the computation of the physically relevant cases, in particular low to zero

gravity and crystal material as silicon. The model experiments had used other substances in
order to be able to visualize the flows. The main result of the papers [24, 25, 26] was an
energy stability bound for the Marangoni convection for wide ranges of the physical
parameters. A region of stability and safe production could be identified which lies below (in
terms of Marangoni number) the first (I-iopf) bifurcation point of the underlying Boussinesq

equations.
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value problems, Rocky Mountain Math. J. 18, 387-401 (1988).
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methods, SIAM J. Numer. Anal. 25, 1409-1431 (1988).
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dependent variational inequalities, J. Comput. Appl. Math. 26, 35-46 (1989).

14. E. Miersemann, H. D. Mittelmann, Extension of Beckert's continuation method to variational
inequalities, to appear, in Math. Nachr.

15. R. E. Bank, H. D. Mittelmann, Stepsize selection in continuation procedures and damped
Newton's method, J. Comput. Appl. Math. 26, 67-77 (1989).

16. U. Hornung, H. D. Mittelmann, A finite element method for capillary surfaces with volume
constraints, to appear in J. Comput. Phys.

17. E. Miersemann, H. D. Mittelmann, Continuation for Parametrized nonlinear variational
inequalities, J. Comput. Appl. Math. 26, 23-34 (1989).
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21. H. D. Mittelmann, The obstacle Bratu problem, to appear in AMS Lectures in Applied
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.)iego
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Federal Institute of Technology, Lausanne, Switzerland
University of Paderborn, Germany

1985 University of Hannover, Germany
University of California, San Diego
University of Darmstadt, Germany

1986 University of Bonn, Germany
Free University of Berlin, Germany
Fraunhofer Institute for Microelectronics, Duisburg, Germany
Southern Methodist University, Dallas

1987 University of Wyoming, Laramie
University of Lyon, France
University of Grenoble, France
Universitit der Bundeswehr, Munich, Germany
University of Erlangen, Germany
University of Darmstadt, Germany
University of Nijmegen, Netherlands
University of Freiburg, Germany

1988 University of Mainz, Germany
University of Konstanz, Germany
Technical University of Berlin, Germany
University of Paderborn, Germany
University of Monster, Germany
University of Cologne, Germany
University of Darmstadt, Germany
University of Augsburg, Germany
University of Wirzburg, Germany
University of Heidelberg, Germany
University of Hamburg, Germany
University of Karlsruhe, Germany
Uriversity of Kaiserslautern, Germany

1989 University of Ulm, Germany
University of Heidelberg, Germany
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1. Die Approximation der Lsungen gemischter Randwertprobleme quasilinearer
elliptischer Differentialgleichungen, Computing 13, 253-265 (1974)

2. Finite-Element Verfahren bei quasilinearen elliptischen Randwertproblemen, in
"Numerische Behandlung nichtlinearer Integrodifferential- und
Differentialgleichungen", R. Ansorge, W. T6rnig (eds.), Springer Lecture Notes in
Mathematics, vol. 395, 1974

3. Stabilit~it bei der Methode der finiten Elemente ffir quasilineare elliptische
Randwertprobleme, in "Numerische Behandlung von Differentialgleichungen", R.
Ansorge, L. Collatz, G. Himmerlin, W. T6rnig (eds.), ISNM 27, Birkhiuser-Verlag,
Basel and Stuttgart, 1975

4. Existenz und Konvergenz von Lbsungen diskreter Variationsprobleme, Z. Angew.
Math. Mech. 55, T255-T257 (1975).

5. Nichtlineare Dirichletprobleme und einfache finite-element Verfahren, Bonn. Math.
Schr. 77, 46-61 (1975).

6. Numerische Behandlung des Minimalflachenproblems mit finiten Elementen, in
"Finite Elemente und Differenzenverfahren", J. Albrecht, L. Collatz (eds.), ISNM 28,
Birkhiuser-Verlag, Basel and Stuttgart, 1975.

7. Zur gleichmissigen Konvergenz einer Finite-Elemente L6sung des
Minimalflichenproblems, Z. Angew. Math. Mech. 56, T304-T306 (1976).

8. Die Methode der finiten Elemente zur numerischen Lsung von Randwertproblemen
quasilinearer elliptischer Differentialgleichungen. Habilitationsschrift, Technische
Hochschule Darmstadt, 1976.

9. 0ber die Methode der finiten Elemente zur numerischen Lisung elliptischer
Randwertprobleme 2. Ordnung (with W. T6rnig), Jahrbuch Uberblicke Mathematik
1977, pp. 89-105, Bibliographisches Institut, Mannheim.

10. On pointwise estimates for a finite element solution of nonlinear boundary value
problems, SIAM J. Num. Anal. 14, 773-778 (1977)

11. Numerische Behandlung nichtlinearer Randwertprobleme mit finiten Elementen,
Computing 18, 67-77 (1977)

12. On the approximation of capillary surfaces in a gravitational field, Computing 18, 141-
148 (1977)

13. On the approximate solution of nonlinear variational inequalities, Numer. Math. 29,
451-462 (1978)
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14. Numerical methods for bifurcation problems - A survey and classification (with H.
Weber), in "Bifurcation Problems and their Numerical Solution", H. D. Mittelmann, H.
Weber (eds.), ISNM 54, Birkhduser-Verlag, Basel and Stuttgart, 1980

15. On the efficient solution of nonlinear finite element equations I, Numer. Math. 35,
277-291 (1980)

16. On the efficient solution of nonlinear finite element equations II. Bound-constrained
probiems, Numer. Math. 36, 375-387 (1981)

17. Some remarks on the discrete maximum-principle for finite elements of higher order
(with W. H6hn), Computing 27, 145-154 (1981)

18. On the efficient solution of nonlinear finite element systems, in "Nonlinear Finite
Element Analysis in Structural Mechanics", W. Wunderlich, E. Stein and K. J. Bathe
(eds.), Springer-Verlag, Berlin, 1981

19. On the numerical solution of contact problems, in "Numerical Solution of Nonlinear
Equations", E. L. Allgower, K. Glashoff and H. 0. Peitgen (eds.), Springer Lecture
Notes in Mathematics, vol. 878, 1981

20. Multi-grid methods for simple bifurcation problems, in "Multi-grid methods", W.
Hackbusch, U. Trottenberg (eds.), Springer Lecture Notes in Mathematics, vol. 960,
1982

21. Bifurcation problems for discrete variational inequalities, Math. Meth. in the Appl.
Sci. 4, 243-258 (1982)

22. A Bibliography on Numerical Methods for Bifurcation Problems, Preprint 56
(Angewandte Mathematik), Universitdt Dortmund, 1982.

23. A fast solver for nonlinear eigenvalue problems, in "Iterative Solution of Nonlinear
Systems", A. R. Ansorge, T. Meis and W. Thrnig (eds.), Springer Lecture Notes in
Mathematics, vol. 953, 1982

24. On multi-grid methods for variational inequalities (with W. Hackbusch), Numer.
Math. 42, 65-76 (1983)

25. An efficient algorithm for bifurcation problems of variational inequalities, Math. of
Comp. 41, 473-485 (1983)

26. Multi-grid solution of bifurcation problems (with H. Weber), SIAM J. Sci. Stat. Comp.
6, 49-60 (1985)

27. Continuation near symmetry-breaking bifurcation points, in "Numerical Methods for
Bifurcation Problems", T. KUpper, H. D. Mittelmann and H. Weber (eds.), ISNM 70,
Birkhiuser-Verlag, 1984.

28. A free boundary problem and stability for the nonlinear beam (with E. Miersemann),
Math. Meth. in the Appl. Sci. 8, 516-532 (1986).
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29. Multi-level continuation techniques for nonlinear boundary value problems with
parameter-dependence, Appl. Math. Comp. 19, 265-282 (1986).

30. An algorithm that exploits symmetries in bifurcation problems (with B. Thomson),
Notes on Numer. Fluid Mech. 16, 52-68 (1987).

31. A pseudo-arclength continuation method for nonlinear eigenvalue problems, SIAM J.
Numer. Anal. 23, 1007-1016 (1986).

32. Continuation and multi-grid for nonlinear elliptic systems (with R. Bank), in
"Multigrid Methods II", W. Hackbusch, U. Trottenberg (eds.), Springer Lecture
Notes in Mathematics, vol. 1228, 1986.

33. Multi-grid continuation and spurious solutions for nonlinear boundary value problems,
Rocky Mountain Math. J. 18, 387-401 (1988).

34. A free boundary problem and stability for the circular plate (with E. Miersemann),
Math. Meth. in the Appl. Sci. 9, 240-250 (1987).

35. On continuation for variational inequalities, SIAM J. Numer. Anal. 24, 1374-1381
(1987)

36. Approximation of obstacle problems by continuation methods (with F. Conrad and R.
Herbin), SIAM J. Numer. Anal. 25, 1409-1431 (1988).

37. Continuity of Closest Rank-p Approximations to Matrices (with J. A. Cadzow),
IEEE Trans. Acoust., Speech, Signal Processing, Vol. ASSP-35, 1211-1212 (1987).

38. On the continuation for variational inequalities depending on an eigenvalue parameter
(with E. Miersemann), Math. Meth. in the Appl. Sci. 11, 95-104 (1989).

39. Continuation methods for parameter-dependent boundary value problems, to appear
in AMS Lectures in Applied Mathematics series.

40. A multi-grid continuation strategy for parameter-dependent variational inequalities
(with R. H. W. Hoppe), J. Comput. Appl. Math. 26, 35-46 (1989).

41. Extension of Beckert's continuation method to variational inequalities (with E.
Miersemann), to appear in Math. Nachr.

42. Stepsize selection in continuation procedures and damped Newton's method (with R.
E. Bank), J. Comput. Appl. Math. 26, 67-77 (1989).

43. A finite element method for capillary surfaces with volume constraints (with U.
Hornung), to appear in J. Comput. Phys.

44. Continuation for Parametrized nonlinear variational inequalities (with E.
Miersemann), J. Comput. Appl. Math. 26, 23-34 (1989).

45. The augmented skeleton method for parametrized surfaces of liquid drops (with U.
Hornung), J. Colloid Interface Sci. 133, 409-417 (1989)

46. Nonlinear parametrized equations: new results for variational problems and
inequalities, to appear in AMS Lectures in Applied Mathematics series.
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47. A free boundary problem and stability for the rectangular plate (with E. Miersemann),
to appear in Math. Meth. in the Appl. Sci.

48. The obstacle Bratu problem, to appear in AMS Lectures in Applied Mathematics
series.

49. The augmented Skeleton method for parametrized capillary surfaces, in Proceedings
of the Fifth International Symposium on Numerical Methods in Engineering. Vol. 2, R.
Gruber, J. Periaux, and R. P. Shaw (eds.) Springer-Verlag, Berlin, 1989.

50. On the stability in obstacle problems with applications to the beam and plate (with E.
Miersemann), submitted to Z. Angew. Math. Mech.

51. Energy stability of thermocapillary convection in a model of the float-zone, crystal-
growth process (with Y. Shen, G.P. Neitzel and D. F. Jankowski), submitted to J.
Fluid Mech.

52. Computing stability bounds for thermocapillary convection in a crystal-growth free
boundary problem, to appear in ISNM, Birkhiuser-Verlag.

53. Stability of Marangoni convection in a microgravity environment, to appear in
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