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Abstract

Autonomous systems reclaire the ability to plan e~fcctivu courses of' action, undier potentialfy uncertain or
unpredictable contingencies. Effective planning requires knowledge of tli,- envircrunlent, and if [Ihe environment is
too complex or chanpies dynamnically, goal-dniveri learning with i-eaclive f eedback becomes a riccessity. 'Ibis papet
addresses tht issue of learning by experimentation as an integral component of PRODIGY, 'I flexible p!,inning sysýteml
augmented w ith capabilities for execution moitoflring and dyn~amic rep~lanninlg upoxn receiving adve.rse feedback.
PR()DRY encodes its domain: knowledge as decla-rative operators, and applies the operator refinement method it)
acquire adlditional lpretondi Liols of posiconldi tions for as operatoirs when obse rved conlsequenices di verge horom
intrnial expccuitions. When in iltiple expliutatiois for the. ohsenvcd divergence are consistent, with the exisi imig
domain knowledge, ex perinent~s to discriumnýinte amtong tliww explanations -lie genlerated. Thus. experimnentationl IS
ticniand -drin en and cxp~i iLs bth~l thle mm it' nina "ci ae of' hie, p Iat1Kncr anid :iany ex tenit fee lba~k ler' ye d . A duLielnIc I
examlple of integrated experiment formuilation in presenricd as Own basis lor a "Sstemmmatitc app()p'Oa toh i)cxien(ing Ca11
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1. Introduction: The Need for Reactive Experimentation
Learning in the context, of prohlerm solving can occur in multiple ways, ranging froin macro-operator fonnmatoo

(Pikes, 1971, Minton. 1985, Cheng & Carbonell, 1986) and generalized chunking (Laird et (i!, 198,6), to onalogical

trasfer of problem solving strategies (Carbonell, 1983, Carboneli, 1986, 1986) and pure analytical or explanation-

driven techniques (Mitchell et a!, 1986, DeJong & Mooney, i986. Minton & Carbonell. 19877). All of' these

techniques, however, focus on the acquisition of control knowledge to solve problems faster, more effeCtively, and

to avoid pitfalls encountered in similar situations. Newly acquired control knowledge may be encoded as prefeired

operator sequences (chunks and macroeperators). irnp!oved heuristic left-hand sides on problem solving operators

(as in LFEX (Mitchell et a!, 1983)), or explicit search--control rules (as in PRODIGY (Minton et a!, 1987).

However importanE the acquisition of search conuol knowledge may be, Ltwh problem of acquiring factual domain

knowledge and representin~g it effectively for problem solving is of at leasE equal significance. Most systems that

acquire new factual knowledge do so by some form of inductive ge'neralization 2, but operate independently of a

goal-driven problem solver, and have no means of proactive interaction with an external environment (with the

exception of some learning work in robotics and the world modelers. project (Carboveil & Hood, 1986)). When one

obseirves real-world learners, ranging from children at play to scientists at work, it appears that active

experimen~iation plays a crucial role in formulating and extending domain theories, whether everyday "naive" ones,

or formal scientific ones. Many actions are taken in order to gather information and learn whether or not predicted

results come to pass, or unforeseen consequences occwr. Of course, experimentation can yield search conrol)

prefemrences, as well as factual knowledge, a' we see in our later example. The focus of this chapter is on experiment

formulation and analytical 1riterpretation in the cr.ntext of PRODIGY (Minton & Carbonell, 1987, Mfinto et at, 1987),
an interactive planning system, rathex than on empirical interpretation of reusfrom pre-forinulated ex,,jctrtments in

a single-par-s lezirning-by-discovery 2approaCh typical Of systemrs such as IIACOUN (Langley et at, 1983) 'and AB1ACUS,

(Falkenhainer & Michaiski, 198(0).

fn order to endow a problem solver widh the capabilifty to experimniut on the external world, we stLart by

interleaving planning and executioni monitoring, so that external feedback is imnmediate. If the plan does nuot urinfld

&; expe~cted (e~g. unfort.-. en uinwreae t1ns take place, actionis have, unexpecied coiisAe(Jidtfices, etc.) ujue systern rep~aiis

Jymuinically Singhctti -known miethods, or suspends planining in order to octvrairineý hic :onlrce of h di(,, lv~'-anl(:y

!lcr'. is winexe c jiiiao IN UlggerCM: diverTgeCel_ floml expec(tedJ itNuks thli, irericew with cxu iylfg ()[I( a piall

fo de.~t'~goal, 1. ohlecr, ( Jiwo teliuit Ow 1?1~ais lo :auigmeiti th-i doni~nnificI),v icg. rk-cord p iCvi 01 t.y
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2. Other Resiearch ini Learning by Experimentation
Machine Learning has not yet addre~sscd centrally the topic of= lering by active cxpc~rimentation, al'though there

has been related wcrin scientific discovery and more recently 3ome attempts to address directly the issue of

experimentation.

TheC SA-'ON mnd GLAtJLIR SysteMS (Langley et al. 1986) arc able to discover qualitative or quantitative empirical

laws, focusing on the empirical interpretation of results from pre-formIulaw~d experiments. The authiors have

pri.)ý-sed combining these systems, having ct.AUBER provide BACON with some qualitative information abuta the

data. BACON~ ivotid then be able to acquire data on its own by formuiating eXPent~nefitS. FAHRENHEIT (Koehn &

Zytkow, 1986) designs limited experiments irn terms of quantitative values of the experiment's parameters, to

dete-rmine the scope of a law given by IIACON.

Lenat's Am and EURISKO systems (Lenat. 19Q3 can~ be said to expenment, but in a limited sense,. Both ultilize

heuristics that change internal concepts which are then tested for "interestrigness', but not necessa~rily for externial

validity. In its symbiotic mode, however, EURISKO received feedback from the user (Doug Le.nati), and was closer to.

a full experimentation system.

In tx.Ex, Mitchell uses a limite~d form of experimentation ila to genera te problems in symbolic integration that

formulate de-sirability conditions fov 'when to select problem solving operators (Mfitchell et al, 1983). His primary

experiment generation m-ethod is to cocmpose a problem that would inaximaPiy reduce the veision space of possible

desirahle application conditions for the o;perator in question.

InI some preliminary workc, (Langley & Nordhauscn, 1986) in the IDS :S ~tcrn in vestigate experix-nontation in a

qualitative physics franiework. Also in initial stages of Investigation, Kuilkink and Sinon (Kulkarai & Sinion.

1987) are developing general and domain-dependent heuristics for scientilic experimentation, and Shen (Shen,

1 987) i:; developing sim lila( mellthodXS for fuaivc expevoniritation.,

Jlw. ADFEJPT %sytcmt (Paj;11lioeY, 1996) iS 0IICemef)d A1i11 C.'ýjwr i rotaIef[nV III draAs Willwcir~l or

li iconri~sct nt them irs. I hr dowain knowlIedge i-S .C pies.ie~d m tC 01 5 o'A qvoAl itawc: phy tics `V wII a colf alwu o I :o I

m th ion- iý in c ý! rypiaulikng afn obcagVation, filer sy5:teIii tv;cs a no lxtI llVj i

II I~~1flI1~ ~l( t;~~~iOl2t N'lt~i,~g. IIL lct fli(7, 1k IC pwxi~tin5'~ i llw ~ hy othl
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3

3. Background: The Role of E~xperimentationl in PRODIGY

The PIwoDIY system (Minton et al, 19817, Mfinton & Carbonefll, 1987) is a general -purpose planner ai CIM{ ilhat

s~erves as the underlying basis for much mlachine-learning research. In eSSeceIP, PRODIGY learns incrementally

through expe~rience In solving increasingly more complex problems in a task domain, and gradually t-anSlubins froma

naive student, to apptrentice, to journeyman, and eventually (we hope) to domain expert Thus far we have

experimented successfully with a version of e xplanation- based learning (EBL) (Mitchel! et al, 1986) thaz can learn

from faied instances (to avoid future failures that share. the same underlying cause) and goal interactions, as well as

the standard EBL. ')ased on deductivcly provable generalization from positive instances. We are also studying the

role of case-based learning in PRODIGY, and are exploring interactive knowledge acquisition from a domain expcri

who looks over dtie proverbia shoulder of the planining system, mak-ing concrete sugge:stions on the current pl~an

being synthesized, and occasionally providing more genera.1 advice.

Whereas experimentation in its broadest sense can be a very powerful and ge-neral learning method, here we

confine our study to a very concrete type of experimentation: operator refinement. In essence, we assume that the

domain knowledge is encoded as a set of declarative operators and inference rules.3 i'tesently, learning is confikied

to the acquisition of new pre and post conditlions foc existing operatons; which start as approximations of externial

reality and are refined to match that reality whenever discrepancies occur between internal expectations and external

o t)servafion. Later we, hope-n to extend the method to Oic acquisition of new domain operators.

Expeximentation mnay be. tw-geted at the acquisition of different kinds of knowledge, though augmntinrtion of an

incomple~te domain theory (via refinement of operators) is our current focus of attention:

Experimentation to acquire and refine cvnty-olknowledgir. When multiple sequences of actions appear
(o achieve the same goal, cxl:ierimentation and 'inalysis are required to dctcrminec which plan is the most
cosrst-effectici' or robust one, and to generalize and compile the approprmrac cortoitions so as to formulate
tbe' prefered plan in future probiemn solving h-rstwices where' the sarnie goai anvd rclevani. iniutli
conditions are present. Thus, expe~rimentation may be guided towards prod~ucing far more effective u'c
of existling domnain kvow tcdge

".'xperimnentation' to augmew an incomplefe domain niear 'Y. Txp-urrmcnts may be forrinlired tko
'ynithesizt neCw oerwiators, lecun I-Ww c'onsc&(uiences of existing olxfato > oi deterninxc plnviously
oniknowrr inireactiotis along exi-Stiiigy operators. Also, pezi onning known actWn tOV on nv.' o)bjects in !,hc

ris, &in;ýi ik asystLiiatic mnannier, and obeiin Qw CO'lw{'ticNICTS skcrVC-; to 'icotlire o

!C 'A 01) a n1; d t'A!Tas y lrci 0 a1cc (0dingl tO ;~l~g11. 'A.' t iV i f : c i u by tIw uie don ir a
liha jcxirrorrrtrimay bc'o gi~dtcd towaids acquixing nz~w domiun kiiowlc-dgt iiit e ( i c; Ow.

to refine aid irncorrect doimain iheoryý No coinprctieiiavte 01tn y vc ism A'

Ike hoto1il y ill ')1. 11 0 itt tii i wlthed r'r it' h e \ Nzn in!?' 'iýws dit a l i t ol (1,ll il lij.t d' I n

A ow 1o , U11 w "'-blvw h w0 "Pl"1 ýýfli,~li in H Ill-d M
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guided at incremental correction of a domain -theory. 4

Our central concern ;s The development of a method to generate operational hypotheses (those that (-n be Tested

through an external experimient) to account for unexpected divergence between predicted and observed

consequences. Experimnentation is invoked when such a divergence prevents the forrnuiation of a plan to solve the

problem at hand; thus "idle curiosity' is not our taget. Moreover, the entire planning conteXt iS used To formlulae

and guide tie exiperiment, in order to focus on the most direct and, economnical way of inferring the mnissring

knowledge. Concessions must be made to other protected goials in the course of the experimentation: asswing safety

of the experimenter, not consuming a resource in the ex~perirnerit that will be required To. carry out the rest of the

plant, etc. 'Thus, experiment formulation, once invoked , id the appropriate constraints, becomes its'elf a meta-
problem amenabie to all the methods in the general purpI4.sc planner, The EBL. metho,1 (or perhaps a s3imilarity-

based method - SBL) may then be invoked to retain not Just the result of the instance experiment, buit its lirovably

correct generalization (or enapirically appropriate one if S1BL is used).

4. The Base-Level Systemn: K(nowledge Required for Planning
Consider an exarnoie domain of expertise: crafti~ng a primary telescope mirror from raw materials (suchý as pyrex

glass, pure alurninum, distilled water, etc.) and pertinent toyols (such as grinding eqJuipmlent. aluMinumn valporIzersi5

etc.). The operators ir. the domnain includeý GRIND-CONCAVE, POLISH, AM-UJMINIZE. and CU~AN. A comnplete

domnain Theory would Include, In addition to these four operators themselves, knowledge of:

" all the relevant pr econdition.; for each operationi to proceed successfuily,

"* all the consequences of applying each ope~rator (stated as chat-gcs to) the global world state),

" and all the ol))ects tok which t-hese operators may be, applied~ to achievo "ic dlesired effects (for mrsuric,
woodI may he giorobund 1111 a1 C one Avc hape, bu Ol e, F(Alli would h n-[ I,- anll i l qaI cl:c
in ilkor).

In addliit ol to thle dowill ciaj th iy , wuo s' pctcsi~~ st',;ll ~IC ie er& to kn't W l )fl 1nn11i 0es Oan i an ins 14ltlý

as welt ats h~lis~n"ci onl ). lrh nis perforiln The l-Ollow:ing tasks,:

SWhen-1 1nUhIple ra pltci 't ', detenssinili whlic 11 MA',Ls To ý,vosM til lwo' il Abs~i,cb oICS 1 Wink Iin 11.
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%w( propose- to do the selection by compiling e-plic~it symbolic reasoning, rather thin a-priori numnerical
rnetriCS. The notion of learning operator preferences in the context of an active. goa1 wVas the centrral task
of LLýX (Mitchell er al, 1983), and is one of Lhe major effects of chunking and universal subgoaling in
SOAR (Laircl et al, 1986). At one end of the spectetm one can view a string of purely detenninisu,.,c
preferences as ttquivalerit to a linear macro-operator (Fikes. 1971, Minton, 1985, Cherig 8z Carbonell,
1986), and at the Other CXUemle as guileing search in preferential directionss based on past experience.

Whi-n Inultiple objects may be chosen onI whicti to) apply the operators, detzrmine which oneis) to
select. Again, these can be cattegorical (polishing and aluminizing the wrong surface of a mnirror will
never yield desired results) or prefernential (choosing a fast rough-grinding tool, vs choosing a slow
fine-grinding one, vs choosing both - the &former for rough shaping, folloA'ed by the latter for fine
adjustment), Preferences may be sitaed in terms of achieving higheir qixaiity plans (MOre efficient ones
to execute, or ones more likely to succeed), or in termis of minimizing planning effort (pro)ducing a
working solution quickly, even if it may be far from an optimal plan).

Tbese decision points erve a dual role in PRODIGY: Learning conuvol rules to make the right decision~s (Minton em al,
1198-7), and providing the handle for the experimentation moduie to direct the problem solver when it must perform

artioi~s to seek newv knowledge before returning to the problem at hand.

S. T ypes of Kqiowledge Acqnived
A domnain theory of the world can be incomrplete in several different senses:

a Facniual pcopertie!s of objects lin the worli could be miassing (sii,, color, category, functionial properties,

etic.)

e Lntive operaturs could t)e mi.ýsslng - t110 planner mlay no() knlow all its Capabillicis.

0 ()pemat0rS could, Lle fartIIIlly specifIJed - the plarvner majy know eniy ;orne of their prec onditLion s ajid
somle oý' Jleir consequenic.-S,

I nteractions"ý lilong ofx. .r~iors could N- unknlown, -insIng palannling faill; 'ý oif p'dIningnefincs

Thusv lul wve navr wUc r(I l Imllor~ ithw u'liOWuu~t~hrs ' kinlk v c1nc the t"uii''' ý n co it's 4t unusui, ;Ig wjic

lecairning control knowIledge toL Cope withl cerainl kitd'z ot opcrator inter;aCtiIo1 III PRODIGY is discusseCd ill Nijlobn

er !O8P and) ilus11n' n u 0 edlitnuik I)n i (ion d ak liu l ii I wkni\ pic 'lini poNI( k)Ihli~llow

ot 1lperatojis .1C are 'nnnunIntd rl h1e cubhjc bouwo inn Ihor.1( int, Ow.t dclfci I xutipic ilh.o I Plows-:. it)
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EXPECTE.D (5 -1;E RV ED RECOVERY LEARN~ING METHOD
OUTCOME BEHAVIOR S T RtAT EGY (E-XPERIMENT GENEPATOR)

all the known at least one plan to binary search on operator
preconditions precondition achieve sequence from establishment
satisfied is Violated the missing of preconditiun to present,
earlier at present preconditioi adding negated precondItion

as postcondittion of the
culprit operator

all the known all the known att.nImpt to compare present failure
prec'onditions preconditions plan without to the last timei operator
sati3fied satisfied tl.i.A operator, applied suc~cessfully,
earlier but operator or failing generating in a binary

fails to apply; that, suspend search intermediate world
postconciitions plan till the descriptions to identify
rem~in undone experiment is the necessary part of the

convlste state, adding it to the
operator preconditions

ortor at leastc one if the unaliat comnpare to last t:ým all
applies and postcondition postcond-ition postconditions were met,
all the fails to be iv inciden~tal parform binary search on
postcovldititon. satisfied ignore it, world state to determ~ine
are satisfiad but- if it 13 necessary part to Achieve

a goal state all postconid-itiona - then
try di-fferent. replace operator with two
opkrator(j) new ones: one wit~h the now

pro(: nUdition And all. thýe
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OPERATORS P__RECNIINSkOSQ3~E

1) GRIHV-C0NCAVK(<ob-j>) ISA(<0bT>. 3;olid) IS-CONCAkVE(<ob3>)

2) POILISH(,<obj>) I!SA(<obj>, glas~s) IS-PN ý'S~rD(<obj>)

IS3-CLEAN (<ob-i))

3) ALUKMINIZE(<obj>) IS-CLFA.N(<obj>) 1S-RZFLEC'TIVE(<obj>)

4) CLEAN(<obj>) ISA(<ob-i>, solid) I S-CLEMN(<ob j>.)

INFERENCE RULES,

1) X1-RZEFLECTI-VZ(<obj>) 6 IS-POLISHXD(<ob-i>) --- > IS -MIRROR t(<ob j>)

2) 1S-r!&TRR0r1k(.<obj>) & IS--CONCAVZ(<obD>) -,> IS-TtLZSC0PE-mIRROR(<obj>)

(riven the operators anid infe'renice rules alhove, let us suppose chat the goal of producing a telescope mi-rioi ariv-se,

aInt we have a glas hlnk~s alnd j wood piece's to Nkork with, noure ot dierr wilth clai or polished surfaces. IT'R0tttG

starts backc~haining liv MatChing the goal state atz~ainmst the right hand Side Ot 0operators Andi Antencej(C rUýte",

ciornidming tihat in ordef to inakc a tekvsclopc tflrf)r it shou110 firmt iniaktr aHitiiToU. ani tirn make, its Sh~apc coOkavc..

111en sXehulg how ii male a inim-or, It concludes that it shookd m~a~eý it frIleCntvc xu10 theni toiish it J), matching

IS- NR RORagoo~ the tca imf sldec ot fhe scýcouoi iuicremt-,i~l letl o.'ý 101~n 110% o hat'ttLt; orci

stcadthe glass blank (it was lisedj fist 'Ls [tic *'.1tin)F object Now It o ntoý ajpp the opeatior A1_Utv1iNlZTI to

ttr i.'ia:;ss %vtoc v!ýquuts tha t o li a sol dice fig'ure o' I to[ the oh~eci hlcl tichx"'. UAi ha~t it be clcektk TIIe hu-'t

pfrcondition v; ýasftiekl (glasiS IS Jo id)1(, A1d the second)( onerew Irusi .o'rrgte ..N q*~vn (h'! 'Tatot- v hiA

suckcrilFs iijott- sp ' 0nit ivy(ii: tsr clieactki ~ >tt~s 't ýh( eAitýil*2LtIt

"1w xi~:~ssiolv. ;uri"o o'i it) hr), ti.tzx goltt II iiittu- ,Iiir& 1sr [1 1 M 1i D- ~ l.N F t - ' t

kctnll nis ~~iIO t!ttz ict ' t~t;ir i. tiIi'0lv O esit ' t1-t

':v
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H-,,,ever, whreas PRODIGY believed that the POLISH operator preconditions were satisfied (it believes in

temporal persistence of states. such ,s IS-CLEAN. unless it learns otherwise•. the environment states the contrary

the glass is not clean. The first learning step occurs in the attribution of this state change to one of the actions that

occurred since the state IS-CLEANF.D was brought about. Since thei: was only one intervemng ope.rator invocation

(ALUMITIZE). it rifers that a previously unknown consequence of this overator is -iS-CLEAN (meamnng rrtracting

TS-CLEX.N from the. current state). If there had been many intermediate operators, specific experiments to pertorm

some but not other steps would have beer, required to isolate the culpnt operator. After applying the CLEI'AN

operator once more. it again attempts to POLISH. but the. operator does not result in the expected slate IS-

POLISHED. This means that either it is missing some knowledge tsome othei' precondition for POLISH is

reqouiid), or its existing knowledge is incorrect ,IS-POLISHE-) is not a cosequence of POLISH). Always

preferring to believe its knowledge correct unless forced otherwise, it preters to examine the former alternative.

But. bow can it determine what pieconditon could be missing'.

;(AL: iS. FELLES •OPt-\IRRt )R

I(RI I I: I'
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'"he ooly posrtAhiilzs are un~alurninizc:d dirty glass bL-Anks and (lLc1y wood blanks, Only g~ass c-an he plised (see

the precoi tuon tabic). anti all die glass blazks air identical to each othier. but diffier'n!' from the cur-ent object in

that thecy alre Wot dirty and tunaluminizedi, so it choses a glass blank. After cleaning it, die POL ISH ope-rator

succee4s, and once again it must. eso blish a recason for the opcirator su ceeding this time, but failing earlier: th- only

diffimoence i~s the glass not. txisg alumninized. TPhus a new precoridition for POLISH- is learned as a result Of a Simple

directed exper-iment: -J-IF. 23iV(OJ) meaning that once coated with aluminum, the substnate subscince,

canno be. polished,

Now hak to the problem at hanki. In cidrlx to POLISH the glass it must unaluminize it, but there is no known

opmrtor that reiroves alumninum. 6 Sj thle IS-,W)ýLISHEt) subgoal fails. and failure propagates to the IS-MIRROR

subgoai, with the cau~se of failure being that the IS-REFLECTIVE prevenv~d POLISH4 from applying. Here there is

a goal interaction 7 that can be solved by reordering the interacting components:

If thre cause of failure of one conjunciive subgoal is a consequence of an operator in an earlier subgoal in
the sewme conijunctive set. try reordering the sub goa~r.

That heuristis succeeds by POLISHing before ALUTMINIZing. Having obtained success in one ordering and fadlur

in another, the system tries to prove to itself that this ordering is alwm~ys required, and sucreeds by constructing the

prixif. AL ICNTMENIZ will always produce IS-REFLECTIVE which blocks POLISH, and since. there nre no othert
knov~n ways to achieve IS-POLISHED, failture is guaranteed. The pirsent version of PRODIGY is capable of
pnwdacug such proofs in failure-driven EE~L mnode (Minton & Carbonell, 1987). Thus, a goal-oidering control rule

is acqýired for this domain: always choose POLISH beore ALUMINIZE, if both are in the ;anie conjunctive goal1

xe and bý th apply to the same object.

Now, ow again, bract wo the problem at hand. T7he systemt tries agvin arid succeeds in pl'oducit.,g a rnirrof, bot

now ne.,.ds to rnake it concave, The only operator to make. TS-CONCAVE z. is GRRt1D-CONCAVIF. fts oýJy

precomLituo is daz the objctv heSolid. and so i( applies. At this point the syst.em rhe'cks whether it finally Uas

achie ed the. toplievtl goal IS-1TFLESCONU-MIRROR. and di'scovefs (mucmh in, as dismay, were4, it capabir- A

tsnlotilons), that all ý!s work oni P01LISfing arid ALUMIINIZing has disappeaxrd. The only operato3r thal af.:phed

5mcc ilv- mnirtor was~ *xiihed asnd ailmh-,Cd was- GFNIND-C'ONCA~V1, and ýck it lteanr fivo new- conIXtlile!.cs 'or

GKLN0DC)N(AV!:1 -lS PUI'4IASF, andi -IS-RI-0.ECUI~Vl- No clilficit t>pnctwas r'Ad norid itne

>,ubg'nd) tit maiake cxim . .g~a k into a a,,mor, and MýI ta a lc iran \VIhO MAdk1g [i~cte:t ifia'r i tnlr

I T -I1[ i inIt tc ý1
5a
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if a result of* a vubgoa1 wcdS utuione when parswing a later %ubgoaul iithe sapne confltinctive set, ,rv
reordering these ;,wo subgoals.

So, PIODCUIY gtves Off and Lriecs the cxpýrimcnt of achieving IS-CONCAVE b.dore achieving 1S-N4IRROIR, eullting

in a more efficient plan.4 A proof prccess would again be invoked to detcermine whether to make it a reoirdering

rule, concluding thax it is always better to achieve IS-CONCAVE fr[st. The chart below, summarizes the niew

knowledge acquired (in italics) as a result of thle problem solving cpisodles. experiments, and proofs, Such~ is t

pro~cess of fleshing out incomplete domnain and control icnowledge through experience and focused i:nteraction with

the task envuronment. .AlLhough in the example all the preconditions are consequences learne.d tire nogated

predicates, the same process applies to acquiring simtple atomic predicates. Howzvef, the process of acquiring

logica.1 combinations of atomic predicates is significaindy more complex.

_--. OPERATýORS _RkECONDITIONS CONSEQUENCES

1) GRIND-CONCAVE (<oLbj>) - U IS(<cibj>, solid) I S-CONCAVE (<ob j>)
-48 -POU1S!ED(<obj>)
-IS -RIEF LECTIVE(<obj>)

2) POLISH(<obj>) ISA (<obj> , gl~us) IS-POLXSHEFD (<obj,-)
IS -CLZ.A14(<ob j>)
4-iS-?E)LECTIVE( < obJz')

3) ALUtMIN1ZE(<obj>) IS-CLZMA(<obj>) I S -EFLEC-T1VE (<ob j>)
TSA (<ob j>, so lid) -IS- CL[CY('<obYj>)

4)EIh2 CP'i <oj> old

I) I~EGI~t~,C-oh~; a POLIZP<oia>) ->TS -MIRR~OR (<obj>)

NFAIILY AGC'r JIPl CONJE iA RU[ -ýS !"- 5; RC()AJ.. ý'YRD I:'BW:

it' t .

K. -e~ t! tI-o' -re ~ \\h CL, khi~
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7. The Current Implenientatiotn
The perao-crf-nmn sategy ias bect, irnplereented in a subset Of' PROD,. augmented widh an execuinon

monitoring compontent. We pani to integrate both exttcution monitoring and experimentation into the full IPr~oLiGY

systemn shortly. To handile, operator arnd object hierarchies, we are representing open. .ars and other djomain

knowledge using Frantekit (Carbovetl.St. Joseph, 1986), a franie-bascd knowledge repre~sentation system,

The planner, vxecueon moniitor, wid experiment proposer combine three sources of dynamic knowledge:
eThe state of the plan I:being developed and its partial execution.,

e PRODIGY'S expectafions of the currcnt status of die ý,.xterna1 world.

- The observed status of the external world, including divergences fromn expectations as determined by
the execution monitor.

Since PRODIGY is not yet connected to an external robot or to the world modelers simulation environment

(Carbonell & Flood, 1986), execution monitoring procee~ds by inteirogating the user about aspects of the external

state it &eems relevant. These aspects consist of expected changes brought about by the application of operators.

For instance, the system checks that expected consetjuences of operatrzs have come to pass, but not, that all

supposedly persistent states have remained untouched. Problems in the Latuer care, ory come to light only when a

pre-sumnably satisficed preconiditior to a later operator is. found, to be violated by tie execution monitor. Then, the

experimentationA prce~ss is invoked to identify which of ;Ne candidiae intervening actions coc d be the culprit

operator, auignenuing its postconditions so tamt next time u,! wlitiont. changc to the external is recorde-d and

ex pec tedl.

N. The Geicrxl 0,perator-Refitieirient Meothod

h III( Sv:;!CI if giei ý-V' plOttJcI arid Coritn-ti knowledige, a uses a ý;tindard výoblci~i sol.ving approacb. In parucular.

iteploys imn.as cm'.,,ds analys is to Select '3n pe .rtror. The)"ni th, system suhgoal, for e.very ple~condition of tile

0111ordit isý (10. i.Iah~ n 0 di o - cun ct tt.Oracv 'Ad the pfLý ulditicos inaUteicd, the planner updates the., state

ait !Ahe swsr"n(wi '.0INAsA_ :otMI the1 U)~r

"A
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T1lE OPHRATO)R REFINEMENT METHOD

For e.very operator 0 selected

for every precondition P of operator C?
it State(P) * World(P)9
then One of the operators previously applied

since P was established has a

previously unknown postcondition. [CS1]

1) Select candidate operators. The candidate
operators a•e all that were applied between
the last time that P was checkcd in the World
and the current check.

2) idt respnsible op.etor. Formulate
experiments by selecting an operator in a
binary search over the candidate operators,
applying it and then checking P in the World. If as a
result of an experiment with operator OE, P is
unexpectedly changed in the World, P is a new
postcondiLion of OE'

3) Add P as a new 2.stcondition of optor Og.

for every potcondition P of operator 0
if• tate(P) • World(P)
then

if]3 Q precondi.ioa of 0 such that State(Q) -# World(Q)
then One of the operators previously applied

shice Q wa est:Ahlished should have had a

posiconditron. affecting Q, A7SE

1) Se•lectc•aln litelopirs. Thm candidatc
operators are all that were applied between
the last t.ime tlat Q was chcýkl and the cuner.t t heck.

2) lhcnfi_'v respcnis ble rwcratoxs. Formulate
experiments by xilcting an opezrator in a
bhj far%7 Sýtch oVK2( thl cairidaie operators
K-4ch cx Wm•Ci tw c ,r11 Vvil t-''sist of applying one od the

utr.rarars and tfhen ch 'ck ( m iit) \VIn ,ltl lfas A
'• ~ ~~~~~rc.'ýIdt ("Ij ;l '[) 11{'In[ ojV .I.•• nV~a!mf(l,-

xch:,,:n.ey Inol the \nd' , f) h; aWord new

if )~ p :\(iditi2 :i�n ( of I ) N ldtilofl ,(A r I ldri )i T
it , .et mirldit S Q oaf i

i i.. . . .

jK. ..
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in all of the- above cases, the systemt attemlpts to recover and fix the plan, using the new informnation eanried. In

addition we use. the following heuristics for cases of goal interaction and plan optimi7zatoio:

If the catise of failur of one conjunctive subgoal is a consequence
ot an operator in zn caxdier subgoal in the samne cowilun~rove set.
try reordering the subgoals.

If a result of a subgoal was undone when pursuing a later
subgoal in the same conjunctive SCEt, try reordering these two subgoals,

9. Concluding Remarks: Beyond Simple Experimentatign

More comprehensive learning could occur by Lstempting to generalize the newly acquired prmconditions and

consequences to other siblin,, operators in the operator hierarchy (see figure 9- 1). For instance, the newly learned

consequences of destroying a polished or alaniaizied surface apply not just to GRIND-CONCAVE, but to any

GRLND operation (such as GRIND-CONVEX, GRIND-PLANAR), However, these consequence-s do not apply to

other RESHAPE operatioins such ts BEND. COMPRESS. etc. 'The process to deterimine the appropriate level of

generalization again requires experitnertation (or asking focused questions to a hurrian expert). For instance,

observing the consequences of GP]IND-PLANAR on a previously aluminized mirror, provides evidence that all

GRINDs behave alike illith tes-pect to destroying sudface attributes, aid obser-vtig Lhe consequenczes o1 bending a

polished reflective glass tube without adverse effects on suirface attributes prevents genei-alization ab~ove GRIND).

OBE'!.N \-RE ( 0~N \ F ~ \t~

- ýU PA AI

POTS ALNW

IU1AR (N ,,C)k-

'jý,%!U,~__ %_ _____~iW 0 1V I
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and little if any ia-priori control knowledge. The impact. of this work should be felt in robotic anid other autonomous

planning domnainis, as well as in expwr~ systems that must deal with a potentially changing e.nvironment of which

they cannot possibly have complete and accurate knowledge be-forehand.
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Appendix: Annotated Program Trace
W,. include here a trace of our program. The example is thes sme as in section The initial state kS:

* (initial- state ((is-gLas glass 1)
(is-solid glassl)
(is-planar glass 1)
(is-glass glass2)
(is-solid glass2)
(is-planar glass2)
(is-wood wood 1)))

and the goal is (is-telescope-mirror glass s).
The trace gives several pieces of information about every' operator 0:

* When the operator is selected: "Trying operator 0".

SWhen a precondition P is checked in the internal state and external world: "Checking for
precondition P".

* When all die preconditions have been matched: "All preconditions checked, the operator 0 is being
applied".

* When a postcondition P is being checked in the internal szate and in the extenal world: "Checking
for postcondition P".

Every time a precondition or a postcondition is checked, the results of die checks with the internal state of the
planner and the external world are shown. The system itself finds the information about the internal status, but
the user has to provide the result of the check with the external world.

Only the interesting parts of the trace hay been included. It has been commented at sorne points to make it more
readable.

I
I

I•

I ... ......... . ..... .. .. . .., ... .



Trying oprtr(stlscopecmrnhIor glas;s I1)

Checkin fo precoridtion (is-rniimr glass I1)
Iterenal Sae -n Simulated World; n

Dyinig oerao a smror glas1)

Solin~g the subgoal (is-nrtlective~)

Trying operator (polish glass 1)

Check~ig for precondition (is-clean glass 1)
Internal State. y Simulated World: n CASE I

SExpetimentation mrggeitdl
**New postcondition: (not (is-cACan glass 1)
SCandidate opewaors: ((aluminize))

'The px~os~ndifion Inot (is-clean glassl))
is being added to the opcrator aluaminize

Solving (Jis-clean glassl)

At! prec onditions rhecked,
c'he operator (poksh glass 1) is being applied

C(irrcking /0' po~stec~ondiU~ ifm li~ glas4
ft!nrrmxlS ~ atr n~ Si"If42erd 9/('rki: V ( A,;` 1,

LDisaei'qxvy bmwten state~ and worfld (Case, 2)

.(,d nkingaa IH oy (r;si plahik gIx'

( ickf Swe Y' , ) wml!Iweif V ~ a

pipcndmi.1 fN ýt~il lflwý,1





19

New postcondifiori: (not (is-poisheti))
Candidate operator-s: ((iluminize) (grind-concavc))

is being added to the operator grinvi-couca~ve

;;; Th subgoal is-minior is solved again,
and tlhe systern can finally make a telescopt mirrct.

Operator (is-telescope -mirror glass.2) successfully applied

Sujccess'!

(plan ((clan glass2)
(polish glass2)
(alumini~ze glais2)
(is-mirirn glass2)
(grixno-wncavc glass2)
(cl=a glass2)
(polish glass?)
(aluminize ýsi~ss2)
(is-mirtor glass2)
(is-telescope-rnirror g'ass2)))

INon optimal plan:

I hC 'sYSei applies the plan uptiiniiationtw~ unmljc:

New ;oa prdefe-ence: Prefer grind-~ov ~e '-j~


