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Autonomous systems require the ability to plan effective courses of action under potentially uncertain or
unpredictable coniingencies. Effective planning requires knowledge of the envircnment, and if the environment is
too complex or changes dynamically, goal-driven learning with reactive feedback becomes a necessity. This paper
addresses the issue of learning by experimentation as an integral component af PRODIGY . a flexible plinning system
angmented with capabilities for execution monitoring and dynamic replanning apon recerving advarse feedback.
PRODIGY encodes its domain knowledge as declaratve operaiors, and applies the operaicr refinement method ©
acquire additional preconditions or postconditions for its operators when observed consequences diverge from
mternal expecwtions. When maltipie explananons for the observed divergence are consistent with the existing
domam knowledge, experiments w discriminate among these explanations are generated. Thus, expenimentation 1s
demand-driven and expioits both the mternal state of the plarner and any externad feedback received. A detailed
example of imtegrated experiment formuolaton n presented as the basis Tor a systematie approach o extending an
incamplete doman theary or correcting a potentiadly maccurate one. !
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Pl research was soupsoned i part by the Detense Advanced Research Projects Agency (DODYARPA order No 4976 uxanred by the A
Force Aviomes Laboratory under contrrei P30S 54 RS20, pant by the Office of Naval Resennch uinder contraoty NOKOTT 88K 098 sl
Conmpater Seitsiees Duvagon, N 86K 0 7% aisd m piret by a bt from the Hlughes Corponton e virr wand condisions contped o thas
docomient e those of the suthers wnd should ot be nterpreted 2¢ epresentingg the offical poliaies, caher capressed or nnphed, of DARPA,
ATOSHCONR, or the US governmeni The suthors would Iike 1o schnowledye the sher mictnbers of the mroboy propect sl CVU Chregs Bizonn,
Crag Konoblodk, Dan Kuokka, Sicve Moo Heonnk Nordin and Blien Kot Yus s the twxt of & Jhapior sppeationg o Machme (earmry,
Violiene T RS Michadshy aud Y Kodintoft editors Reprodas ton i whele oon pant o permmitted tor putposes althe T3 a3y ol
foi public relesse, dstnibagoon unbhmuoed



1. Introduction: The Need for Reactive Experimentation

Learning in the context of problem solving can occur in multiple ways, ranging from macro-operator formation
(Fikes, 1971, Minton, 1985, Cheng & Carbonell, 1986) and generalized chunking (Laird et al, 1986), to analogical
transfer of problem solving strategies (Carbonell, 1983, Carbonell, 1986, 1986) and pure analytical or explanation-
driven techniques (Mitchell er al, 1986, DeJong & Mooney, 1986, Minton & Carboneil, 1987). Al of these
techniques, however, focus on the acquisition of control knowledge to solve problems faster, more effectively, and
to avoid pitfalls encountered in similar situations. Newly acquired control knowledge may be encoded as prefeired
operator sequences (chunks and macrocperaiors), improved heuristic lefi-hand sides on problem solving operators
(as in LEX (Mitchell er ai, 1983)), or explicit search-control rules (as in PRODIGY (Minton e al, 1987)).

However important the acquisition of search contzol knowledge may be, the problem of acquiring factual domain
knowledge and representing it effectively for problem solving is of at least equal significance. Most systems that
acquire new factual knowledge do so by some form of inductive generalization?, but operate independently of a
goal-driven problem solver, and have no means of proactive interaction with an exiernal environment (with the
exception of some learning work in robotics and the world modzlers project (Carboneil & Hood, 1986)). Whan one
observes real-world learners, ranging from children at play to scienusts at work, it appears that active
experimentation plays a crucial role in formulating and extending domain theories, whether everyday "naive" ones,
or formal scientific ones. Many actions are taken in order to gather information and learn whether or not predicted
results come 0 pass, or unforescen consequences occcur. Of course, experimeniation can yield search control
preferences, as well as factual knowledge, as we see in our later example. The focus of this chapter is on experiment
formulation and analytical interpretation in the context of PRODIGY (Minton & Carbonell, 1987, Minton et al, 1987),
an injeractive planning system, rathes than on empirical inierpretation of results from pre-formulated exeriments in
a single-pass leaming-by-discovery approach typical of sysiems such as BACoN (Langley et al, 1983) and ABACUS
(Falkenhamer & Michalski, 1986).

In order 10 endow a problem sclver with the capabiiity w experiment on the extemal world, we stant by
tuterteaving planmng and execuuon monitoring, so that external fecdback is immediate. If the plan does nov unfold
as expecied (e.g., unfore: en inferactions wke place, actions have unexpecied consequences, ete.) the system replans
dymamically usinyg beties-known methods, or sespends planning in order to dewrmine the sonrce of the discrepancy
Here 18 where experimentanon s inggered: divergence from expected cesalts tnil interiere with carying out a plan
for the active goal. The objective of the expenment is o augment the doman iheosy (e, record proviowsly
unknown conseguences, after dewrmung what condisons are needed o bring them about), or w correct that
doman theory fe.g., deleung or 2ltcing the expected elfects o apphcabrhiy conditions ol opeeitors, v order o
force the wemal model 1o accord with external reality). Bapenimentaion »oused 10 wolate e canse of caca
discrepancy, amd make the aunraal modification possible w e wnernal moael e order o estabhish exaenal

consistency  Maoreover, thy metapomeiple of "copmbve et dictates o monotome changes Gubhng new
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2. Other Research in Learning by Experimentation

Machine Learning has not yet addressed centrally the topic of leaming by active experimentation, although there
has been related work tn scientific discovery and more recently some adempts (o address directly the issue of
experimentation.

The BA™ON and GLAUBER systems (Langley et al, 1986} are able 10 discover qualitatve or quantitative empirical
laws, focusing on the empirical interpretation of resulis from pre-formulated experiments. The authors have
prop.osed combining these sysiems, having GLAUBER provide BACON with some qualitative information about the
data. BACON would then be able 10 acquire data on its own by formuiating experiments. FAHRENHET (Koehn &
Zytkow, 1986) designs limited experiments in 'erms of quantitative values of the experiment’s parameters to
determine the scope of a law given by BACON.

Lenat’s AM and EURISKO systems (Lenat, 1983} can be said to expeniment, but in a limited sense. Both utilize
heuristics that change iniernal concepts which are then tested for "interestingness”, but not necessarily for external
validity. In its syinhiotic mode, however, EURISKC received feedback from the user (Doug Lenat), and was closer o
a full experimentation system.

in LEx, Mitchell uses a limited form of experimentation 1t W generate pioblems in symbolic integration that
formulate desirability conditions for when o select problem solving operators (Mitchell er af, 1983). His primary
experiment generation ynethod is W compose a problem that would maximally reduce the version space of possible
desirable application conditions for the operator in question.

In some preiimoinary work, (Langley & Nordhausen, 1986) in the IDS system investigate experimeniation in a
qualitative physics framewark.  Also in imtial stages of investigavon, Kulkarm and Simon (Kulkarai & Simon,
1987) are developing general and domain-dependent hewristics for scientitic experimentation, and Shen (Shen,
1987) is developing similar methods for paive experimentation,

The ADEPT sysweny (Rajwnoney, 1986) is concerned with experiraeniation an domains with inccmplen: or
wconsistent theories. The domain knowledge 15 expressed ia terms of qualitative physics, When g convradi:tion

[SLE NI

mothe process ol eaplatmng an obsesvation, the systens nses a set of behiets wo propose some hypotheses,
several kinds of caperiments are proposed wr test these hypotheses, The design of oo experianent © made {ollowing
an alponddnn that dependy or ahe gype of experament, and thae agonthm deornviues the nocessgy pueces ol

imformation sisocaied with the expernnent ) be performed. Ulurnately the sysicns would design epenmenty that
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3. Background: The Role of Experimentation in PRODIGY

The PRODIGY system (Minton et g/, 1987, Minton & Carbonell, 1987) is a generai-purpose planner ac ChU that
serves as the underlying basis for much machine-learning rosearch. In essence, PRODIGY learns incremenially
through experience in solving increasingly more complex problems in a task domain, and gradually transitons from
naive student, to apprentice, to journeyman, and eventuaily (we hope) to domain expert. Thus far we have
experimented successfully with a version of explanation-based learning (EBL) (Miichel! et al. 1986 that can leam
from failed instances (0 avoid future failures that share the same underlying cause) and goal interactions, as well as
the standard EBL. based on deducunvely provabie generalization from positive instances. We are also studying the
role of case-based leamning in PRODIGY, and are exploring interactive knowledge acquisition from a domain expert
who looks over the proverbial shoulder of the pianning system, making concrete suggesiions on the current plan
being synthesized, and occasionally providing more general advice.

Whereas experimentation in its breadest sense can be a very powerful and general {eaming method, here we
confine our study to a very concrete type of experimeniation: gperator refinement. In essence, we assume that the
domain knowledge is encoded as a set of declarative operators and inference rules.? Presently, leaming is confined
10 the acquisition of new pre and post conditions for existng operators; which start as approximations of gxternal
reality and are refined to match that reality whenever discrepancies occur between internal expeciations and external
observation. Later we hope t extend the method to the acquisition of new domain operators.

Experimentation may be targeted at the acquisition of different kinds of knowledge, though angmentation of an
incomplete domain theory (via refinement of operators) is our current focus of attention:

« Fxperimeniaiion to acquire aad refine consrel knowledge. When multiple sequences of actons appear
oy achieve the same goal, experimentation and analysis are required to dotermine whuch plan is the most
cost-effective or robust one, and to generaiize and compile the appropriate conaitions so as to formulate
the preferred plan in fuwre prubxcm solvmg instanices where the same guai and relevani initinl
conditions are present. Thus, experimentation may be guided towards producing far more effective use
of exisring domain knowledye.

Lxperimentation o augmeni an incompleie domain thaeory. Txpenments may be formulated o
synthesize new operators, lean new consequences of exssting operators o delermie previously
unkNewn eracHons among existing operators. Also, performmg known aciions on pew objects in the
iask domaty m g systematic mamer, and observing thew consequences, serves to acguire propeitics ul
these new objecrs and classify thean acconding to praginane criersg detemaned by the sk domann
Thus sxpenmentaton may be gouded owards aoquining new domain knowledge from the external
COVITOUIET
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guided ai incremental correction of a domain theory.*

Qur central concern is the development of a method 1o generaie operational hypotheses (those that can be tested
through an external experiment) o account for unexpected divergence between predicted and observed
consequences. Experimentauon is invoked when such a divergence prevents the formuaton of a plan to solve the
problem at hand; thus "idle curiosity” is not our target. Moreover, the entire planning coniext is used o formulae
and guide the experiment, in order to focus on the most direct and economical way of inferring the missing
knowledge. Concessions must be made to other proiected goals in the course of the experimention: assuring safety
of the experimenter, not consuming a resource in the experunert that will be required 0 carry out the rest of the
pian, etc. Thus, experiment formulation, once invoked - ith the appropriate constratnis, becomes itself a meta-
problem amenabie w all the methods in the general purpese planner. The EBL method (or perhaps a sintilarity-
based method — SBL) may then be invoked to retain not just the result of the instance experiment, but its provably
correct generalization (or erapirically appropriate one if SBL is used).

4. The Base-Level System: Knowledge Required for Planning

Consider an examole domain of expertise: crafung a pnmary elescope mirror from raw materials (such as pyrex
glass, pure aluminum, disulled water, etc.) and pertinent tools (such as grinding equipment, aluminwm vaponzers,’
ete.). The operators in the domain include: GRIND-CONCAVE, POLISH, ALUMINIZE. and CLEAN. A complete
domain theory would include, in addition to these four operators themselves, knowledge of:

L3

all the relevant preconditions for each operation to proceed successtuily,

all the consequences of applying each operator (stated as changes o the ylobal world state),

and all the obects w which these operators may be applied o achieve e desired effects (for mstance,
wood may be ground into a voncave shape, but the result woudd not bean optcal-qualivy wlescope
mIEvor),

I addiion 1o the doman theory, an opimal-performance svsiem needs w0 know convol roles (thaed 2od fast ones,
as well as hearisiic ones). These rules perform the followmg tsks:

« Wien mugluple goals are present, detenmine which goals w work onc bt - o which ones 1o work ona
all. Formsance, o he gouls ds-polished and is-yrownd-concave are both present, s bener o work on
the fater Test w0 a8 vot o unde polishieg by bs

rogomnding. Shmndady, of the woal of

dhat reduves wenehe ax noads o ioawsy warne b the ghass o the process of makag o
Cinleave, hach g ors Bave besi nvest SoaySIOII e R
(Sacerdou, 1977 Carbonell, 1T Wilersky, 19 . NECR e Al e e
to acgrore knowled
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wr propose to do the selection by compiling explicit symbolic reasoning, rather than a-priori numerical
metrics. The notion of leamning operaior preferences in the context of an active goal was the central task
of LEX (Miwchell er al, 1983), and is one of the major effects of chunking and universal subgoaling in
SOAR (Lawd er al, 1986). At one end of the specirum one can view a siring of purely dewerministic
preferences as equivalent to a linear macro-operator (Fikes, 1971, Minton, 1985, Cheng & Carbenell,
1986}, and at the other exueme as guiding search in preferential directions based on past experience,

» When snultiple objects may be chosen on which o apply the operators, detzrmine which one(s) to
sclect.  Again, these can be catzgorical (polishing and aiuminizing the wrong surface of a mirror will
never yield desired results) or prefevendal (choosing a fast rough-grinding tool, vs choosing a slow
fine-grinding one, vs choosing both — the former for rough shaping, followed by the lauer for fine
adjustment). Preferences may be stated in terms of achieving higher quaiity plans (more «fficient ones
to execute, or cres more likely to succeed), or in teras of minimizing planning effort (producing a
working soluton quickly, even if it may be far from an optimal plan),

These decision points serve a dual role in PRODIGY: Leaming control rules to make the right decisions (Minion er al,
1987), and providing the handle for the experimentation moduie to direct the problem solver when it must perform

actions to seek new knowledge before returning to the problem ag hand.

5. Types of Knowledge Acquived
A domain theory of the world can be incomplete in several different senses:
o Faciual properues of objects n the world could be missing (size, color, category, functional propertics,
e
s Entire operators could be missing — the planner may not kaow all its capabilities.
» Operators could be partally specilied - the planner may know oy some of their precondiuons and
some of their consequences.
« lnteracuons among opersiors could be unknown. causiryg planmung falv s or planming metficiencies.
Thus far we have warked on operator retinement addressing only the latter two categornies of bossing knowiodpe,
Learmung control knowledye o cope with ceruun kinds of operator interactions i PROPIGY 15 discussed in (Minton
et o L9RTY, and allssirared i oor deinted examaple. Oue methods for svquonayg the missang pre and post vondiinons
ot nperators are sumnuuwed i the wble below, and cliboraied o the detaled example that fellows. To easenee,
plan cxecuton Luhoes mipper the expermmentanos and weploomng crovess, T, cach method o adexed by he

flies cadioon to which i apphies, cncoded as ditferenves berween expected and observed ourcames
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OPERATORS PRECONDITIONS CONSEQUENCES
1) GRIND-CONCAVE (<obi>) ISA{<obij>, solid) IS-CONCAVE (<ob>)
2) POLISH (<obij>) ISA (<obij>, glass) IS-P.. (SHED (<obij>)
IS-CLERN (<obi>)
3) ALUMINIZE (<obij>) IS~CLEAN (<obi>) IS-REFLECTIVE (<obj>)

ISA (<obij>, solid)

4) CLEAN (<obij>) ISA (<obi>, solid) IS-CLEAN (<obj>)

INFERENCE RULES:
1) IS-REFLECTIVE (<obj>) & IS~POLISHED (<ocbi>) --> IS-MIRROR{<obj>)

2) IS-MIRROR (<obj>} & IS-CONCAVE (<obj>) --> IS-TELESCOPE~MIRROR (<ob i)

4 ey

Given the operators and inference rules above, let us suppose thal the goal of producing 2 telescope muror anses,
and we have a glass blaoks and a woud preces 10 work with, none ot thern vath clean or polished surfaces. PRODIGY
starts backchaimng by matching the goal srate aganst the nght hand side of operators and .nference rules,
concluding that in order (0 make a telescope murror w sheuld first make a minror, ardd then make s shape concave.
Then seeing how (0 make a murror, 1t concludes that i shouid maxe it reflective ang then polish 1t {by mawchung
[S-MIRROR agaw. tthe nuhit hand side of the second mivrence mide) Letus susume tor now that PRODIGY comrecth
selscted the glass blank (it was Isted first) as the starting object. Now it snust apply the operator ALUMINIZE o
the plass, whych reguues that o be a sofid (see figare o1 for the object weruchv) and that it be clenn. The fiest

precorxdinon s saushed (glass 15 2 sond), and the second voe requires applving the CLEAN ope.ator, whach

succeeds because any solid thing may be cleaned. These specesses onable the ALUMINIZE oporator o apply

successtully . ad go o o the sext goad w the comunctve sebyosl et IS POLISEHEFD csee figine 600 Thos fur

there have been oo surpnsses arki oo eamoig, ust locally successiud periormane s



However, whereas PRODIGY believed that the POLISH overator preconditions were sausfied (it believes
temporal persistence of states, such as [S-CLEAN. unless it learns otherwise). the environment states the contrary:
the glass is not clean. The first learmnyg step occurs 1n the attnbuticn of dus staie change to one of the actions that
occurred since the state IS-CLEANED was brought about. Since there was only one miervenmng operator invocation
{ALUMINIZE). it infers that a previously unknown consequence of this operator is ~{S-CLEAN (meaning meracting
IS-CLEAN from the curtent state). If there had been many imtermediate operators, specific expeniments to pertormn
some but not other steps would have been required to isclate the culprr operator. Afier applving the CLEAN
operator once more. it again aitempts to POLISH. but the operator does not result iy the expecred siate [S-
POLISHED. This means that enther it is missing some knowledge (some other precondition for POLISH is
required), or its existng knowledge s incorrect (IS-POLISHED 1s not a comnsequence of POLISH).  Always
preferming to believe its knowledge correct unless forced otherwise, it prefers to examine the former alternative.

But, bow can it determine what precondition could be missing?

GOAL: IS-TELESCOPE -MIRROR
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|
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The ouly possibilitics are un-duminized dirty glass blanks and dity wood blanks. Only glass can be polished (see
the precoudation takie), and all the glass blanks are identical o each other, but different from the current object in
that they are both dirty and unaluminized, so it choses a glass blank.  After cleaning it, the POLISH operator
succeeds, and once again it must establish a reason for the operator succeeding this tme, but failing earlier: the only
difference 1s the glass not being aluminized. Thus a new precondition for POLISH is learned as a result of a sunple
directed experiment ~IS-REFLECTIVE(<OBJ>), meaning that once coated with alumninurn, the subsirate substance

cannat e polished.

Now back to the problem at hand. In oeder w POLISH the glass it must unaluminize it, but therg is no known
operator that removes aluminum.® So the 1S-IOLISHED subgoal fails, and failure propagates 10 the IS-MIRROR
subgoal, with the cause of failure being that the [S-REFLECTIVE preveni~d POLISH from applying. Here there is
agoal interaction’ that can be solved by recrdering the interacting components:

If the cause of failure of one conjunctive subgoal is a consequence of an operator in an earlier subgoal in
the same conjunciive set, try reordering the subgoals.

That heuristic succeeds by POLISHing before ALUMINIZing. Having obtained success in one ordering and failure
in another, the system tries o prove to itself that this ordering is always required, and succeeds by construczing the
proof: ALUMINTZE will always produce [IS-REFLECTIVE which biocks POLISH, and since there are no other
known ways o achieve IS-POLISHED, failure is guaranwed. The present version of PRODIGY is capable of
preducing sech proofs in faiure-driven EBL mode (Minton & Carbonell, 1987). Thus, a goal-osdering control rule
is acguired for this domain: always choose POLISH btefore ALUMINIZE, if both are w the same conjunctive goal
sex and both apply w the same gbject.

Now, ance again, back 1w the problem at hand. The system nes again and succeeds (n producing a mirror, but
now needs w make it concave. The only operator 10 make [S-CONCAVE vue is GRIND-CONCAVE. [ts ondy
precondinon s dat the obpect be sclid, and so i applies. At this point the sysiem checks whether w finally has
xhieved the top-ievel geal IS-TELESCOPE-MIRROR, and discovers (much @ us dismay, wers i capable of
ssaotions), that all s work on POLISHing and ALUMINIZing has disappeared.  The oaly operiter that applicd
sance the miror was polished and aluonuzed wao GRIND-CONCAVE, and so i leams two new consequences for
GRINOD-CONCAVE: ~1S-POLIGHED and ~'S-REFLECTIVE. N¢ explich expenment was needed as oalyv one

opezator (GRIND-CONCAVE) could have cansed those changes. At dus pomt PROOIGY woudd spawn oft the

subgoal w make the concave glass back mto a wperor, and aft that it learned when makang the Oar glass mro @ iaror

spphes POEISH before ACURMINIZE e prodeang the plas more eihiowntly. Fowtly, the wop devel geoas o)

4 hmd o be achicved mudopie Loy Kewogwonne
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i a result of a subgoal was undone when prrsuing ¢ later subgoal ix the same conjunciive set, iry
reordering these swo subgoals.
So, PRODIGY goes off and wries the cxperiment of achieving (S-CONCAVE t fore achieving 1S-MIRROR, resulting
in a more eificient plan.*

rule, concluding that it is always better 1o achieve IS-CONCAVE fust. The chart below, summarizes the new

A proof process would again be invoked w determine whether to make it a reordering

knowiedge acquired (in iialics) as a result of the problem solving episodes, experiments, and proofs, Such is the
process of fleshing out incomplete domain and conirol knowledge through experience and focused ateraction with
the task environment Although in the example ail the preconditions are consequences learned are negated
predicates, the same process applies o acquinng sirnple atomic predicaws. However, the process of acquiring

logical combinations of atomic predicates is significantly more complex.

OPERATORS PRECONDEITIONS CONSEQUENCES
1) GRIND-CONCAVE (<obi>) TS2 (<ob3>, solid) IS-CONCAVE (<obi>)
~I8-POLISHED(<0bj>)
~IS-REFLECTIVE(<obf>)
2) POLISH (<obi>) ISA (<obi>, gluss) 1$~POLISHED (<objr)
I3-~CLEAN (<obi>)
~i5-RESLECTIVE(<obj>)
3) ALUMINIZE (<obij>) IS~-CLEAN (<obi>) IS-RERFLECTIVE (<obhi>)
LSA{<obij>, solid) 1S CLEAN{ <obj>)
4) CLEAN (<obj>) TSA (<ol >, solid) L5 -CLERN (<oby»)

INFERENCEN:
1)  IS-REFLECTIVE (<obi>! & I$-POLISHED (<obi>) —-3 I5-MTRROR (<objy>)

<Y IS5- MIRROR (<obhi>) & IS-CONDAVE (<obi>) =-> IS5~TELESCOPE~-MIRROR {<obij>»)

NEWLY ACOUTRED CONTROE RULES far SUBGOAL ORDERING:

1Y Selecr IN-FOHISEED (< oy ) before IS-REET ECTIVE v ody ) o both ure

prevent gr ke came cihpgnoiive subgodl sei
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7. The Current Implementation

The operator refinement strategy has been implemented in a subset of PROD: T auymented with an execution
monitoring component. We plan to integrate both exacution nonitoring and cxpenmentation into the {ull PRODIGY
system shortly. To handle operator and object hiexarchies, we are representing operators and other domain
knowledge using Framekit (Carbonell & Joseph, 1986), a frame-based knowledge representation system,

The planner, execution maoiitor, nd experiment proposer combine three sources of dynamic knewiedge:
o The state of the plan being developed and its partial execution.

© PRODIGY s expectations of the current status of the exwemal world.

» The observed stams of the external world, including divergences from expecrations as determined by
the execution monior.

Since PRODIGY is not yet connected o an external robot or o the worid mcdelers simulation environment
(Carbonell & Hood, 1986), execuuon monitoring proceeds by intesrogating the user about aspects of the exiernal
state it deems relevant. These aspects consist of expecied changes brought about by the application of operators.
For instance, the system checks that expected consequences of operators have come to pass, but nog that all
supposedly persistent states have remained untouched. Problems in the latier cate::ory come to light only when a
presuinably satisfied precondition w0 a later operaior is found to be violated by the execution monitor. Then, the
experimentation process ts invoked o identify which of the candidate interveming acuons covid be the culprit
operator, augrnenting s postconditions so that next time ae additionas change to the external is recorded and

expected.

8. The General Cperator-Refinement Method

a6 system is gven complete and correct knowledge, st wses a standard problees solving approach. In particular,
i employs megos-ends analysis o select an operstor. Then e system subgoasis for every precondidon of the
operator that 15 not rapichad W ihe cument state. Once all the precvaditens sre matchbed, the planoer updates the state

with the gostzonditions of the aperator,

Wl cpeomplste dnowiedige, bowever, the sysiem covtmudly montiors e ooside world o check for any

ducsrpaiey ek I intenad state, Whon a discrens. oy arvas, stendisd problom sotviag has @ be modidicd as

Tl oWy




THE OPERATOR REFINEMENT METHOD

For every operator () selected

for every precondition P of operator O
if State(P) » World(F)°
then One of the operators previously applied
since P* was established lias a
previously unknown postcondition. CASE 1

1) Select candidate operators. The candidate
operators are all that were applied between
the last time that P was checked in the World
and the current check.

2) Identify responsible operator. Formulate
experiments by selecting an operator in a
binary search over the candidate operators,
applying it and then checking P in the World. [fasa
result of an experiment with operator O, P is
unexpectedly changed in the World, P 1s a new
postcondition of O,

3} Add P as a new postcondition of operator O,

for every pastcondition P of operator O
if State(P) » World(P)
then

if 3 Q precondizion of O such that State(Q) « World(Q)
then One of ihe aperators previously applied
since Q was established should have had a e
postcondition affecting (). lr(”/\ﬁl ,T]

) Select candidawe opermtors. The candidate
operators are all that were applicd between
the last ume thar Q was checked and the cusrent check.

23 Identify respensible operators. Formulate

cxperiments by seiecting an operator in a

hinary search over the candidate operatwrs.

Zuch expermrent will croesist of applying one ot the
vperators and then chack (@ m e World, 1 as a
resit of an capanment with operator O i
unexprectedly changsd i the World, €5 @ new
prasteomdiiso of Qe

- Warldid )

& precoendition of operadur ©3 prighy he massing, JOAN

U Select canddate precondiinnsy The caniidae
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In all of the above cases, the sysiem attempts to recover and fix the plan. using the new informauon leamed. In
addition we use the following heurisucs for cases of goal interacuon and pian opumizaton:

. If the cavse of failure of one conjuncave subgoal 1s a consequence
of an operator 1 an carlier subgoal 10 the same conuactve set,
try reordering the subgoals.

If a resuli of a subgoal was undone when pursuing a later
subgoal in the same conjunctive set, try reordering these two subgoals.

9. Conciuding Remarks: Beyond Simple Experimentation

More comprehensive leaming could occur by afternpting to generalize the newly acquired preconditions and
consequences to other sibling operators in the operator merarchy (see figure 9-1). For instance, the newly leammed
consequences of destroying a polished or aluminized surface apply not just to GRIND-CONCAVE, but t any
(GRIND operation (such as GRIND-CONVEX, GRIND-PLLANAR). However, these consequences do not apply to
other RESHAPE operatons such as BEND, COMPRESS. ¢etc. The process te determine the appropriate level of
generalization again requires expenmentavon (or asking focused questions to a human expert). For instance,
observing the consequences of GRIND-PLANAR on a previously alumimzed mirror. provides evidence that all
GRINDs behave alike with respect to desiroying surface attributes, and observing the consequences of bending a
polished reflective glass tobe without adverse effects on surface atinbutes prevents generalization above GRIND.

OPER ATOR
MOVE
AAAAAAAA T T A\
SURFACE PREP GRANL
T S /N
i . : i _ . .
POLISH PAINTALUMINIZE GRIND.  GRIND-  GRIND. SUSH CaRRy

PLANAR CONCAVE CONVEXY

Faguve 1 Pragimowt of opegatar T’ hirennchy
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and litle if any a-priori control knowledge. The impact of this work snould be felt in robotic and other autonomous
planning domains, as well as in expert systems that must deal with a potentially changing environment of which
they cannot passibly have complete and accurate knowiedge beforehand.
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Appendix: Annotated Program Trace
W niclnde here a trace of our program. The example is the same as in section . The iniual state is:

(inigial- state ({is-glass glassl)
(is-solid glassi)
(is-planar glassl)
(is-glass glass2)
(is-solid glass2)
(1s-planar glass?)
(is-wood woad 1)))

and the goal is (is-teiescope-mirror glassl).
The trace gives several pieces of information about every operator O:

« When the operator is selected: "Trying operator O™,

¢ When a precondition P is checked in the intemal state and exterral world:  "Checking for
precondition P".

+ When all the preconditions have been matched: "All praconditions checked, the operaior O is being
apphed™.

s When a postcondition P is being checked in the internal siate and in the extermal world: "Checking
for poswcondition P
Every time a precondition or a postcondition is checked, the results of the checks with the internal state of the
planner and the external world are shown. The system itself finds the information about the internal status, but
the user has to provide the result of the check with the external world.
Only the intexesung parts of the trace kav:: been included. It has been commented at some points 10 make it more
readable.



(goal-state (1s-tefescope-muror glass 1))
Frving operator (is-telescope-mircor glassl)

Checking for precondition (1s-mimor glassl)
{nternal State: n Simulated World: n

Trving operator (is-mirror glassi)

. Solwving the subgoal (is-reflective)

Trying operator (polish glass1)

Checking for precondition (is-clean glassl)
Internal Srave: y Simulated World: n . CASE 1

w0+ Experimentation triggered
*++ New postcondition: (not (is-Ciean glassl))
“#¢ Candidate operators: ((aluminize))

The posicondition {not (is-clean glassh))
is being added to the oporator aluminize

o0 Solving (is-clean glass1)

Al preconditions checked,
che operator (polish glassl) is being applied

Checking for postcondision (1s-polished glass?)
friernal State n Simuzlared World: v o CARY 3

2 Discrepaocy between suate and wordd (Case 2)
Y

Checletng agaon for precondition (s

frves ] Niage  y Simudared

Checking sgaw tor precodinog Gy clean glass s

Voo s sacnd Npovrar - 10 t s oo d
Prpermved Neeppe o v 5 rpeed
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The precondition (sot (is-reflective glassi))
is heing added to the operator polish

Reirving operator (polish glassi)

Checking for precondition (1s-glass glass1)
fnternal! State: y Simulated World: y

Checking for precondition {not (is-reflective glassi))
Interna! Stace: n Simulated World.

;s There is no operator to achieve the goal (not (is-reflective glassl)).
;i At this point the sysiem hypothesizes that there is a goal interaction
;s and applies the corresponding heunstic.

New goal prefevence: Prefer is-polisbed over is-reflective

35s Since the system doesn’t inow how to make glass] not reflective,
i it restarts the process with the glass that looks more Like
5y glassi, which is glass2.

55 The subgoal is-mirror 13 solved again, but this tme considering
i the new goal preference rule and ysing the refined operators.
v Then the subgoal is-concave is solved.

All preconditions checked,
the operator (1s-telescope-murror glassd) o being applied

her king for posicondinion (is-telescope-mupror glas

Seternal State y Simulatea World: a CASE D
Checking agam for precondiion s-maror glasa?)
Imtervagd Stase. v Simudared World. o

Checkung agam for preconding (s-concave glass.)
Irmiermai Stave y Somubated World -y

YUK

Cleching s
intermdd Neate v

gEw for prea
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s New posicondition: {not (is-polished))
w8 Candidate operawrs: ((aluminize) {grind-concave))

The pwstcbnditim (mot (is-polished glass2))
is being added to the operator grind-concuve

57 The subgoal is-minvor is solved again,
s and the system can finally make @ telescops mirror.,

Operator (is-telescope-miurror glass?) successfully applied

Success!!

(plan ((clean glass2)
(polish glass2)
(aluminize glass?)
(is-tnirror glass2)
(griné-toncave glass?)
(clean glass2)
{poiish glass?2)
(aluminize klass2)
(is-mirror glass?)
(is-lelescope-mirror glasst)))

Non opumal plan:

o The system applics the plan opumizagion heunisuc:

New goal preference: Prefer grind-concave over s-miror

Ead of trace.




