August 1989 Report No. STAN-CS-89-1282 @

Thesis
=n T "D
,iiu R W M

O
L
\ o0
00 AUTOMATIC RUNTIME CONSISTENCY CHECKING AND
- DEBUGGING OF FORMALLY SPECIFIED PROGRAMS
N
h
Q by
<
Sriram Sankar
Department of Computer Science
Stanford University
Stanford, California 94305
ELECTE
| MAR 12 1390
f??ﬁ'{% 2
Approved for publt : w 0%) ¢ 83
il eodmrae 1 93 12 @96

unclassified
SEC_R ™Y CLASS # CAT.ON OF TH'S PAGE

REPORT DOCUMENTATION PAGE

Form Approved
OMB No 0704-0188

‘a REPORT SECURITY CLASS:FICATION

tb RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

3 DISTRIBUTION /AVAILABILITY OF REPORT
Unclassified: Distribution Unlimited

20 DECLASSIFICATION DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

STAN-CS-29-1222

S5 MONITORING ORGANIZATION REPORT NUMBER(S)

€a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL

(If applicable)
Comnuter Science Dept.

7a NAME OF MONITORING ORGANIZAT G*,

6c ADDRESS (City, State, and ZIP Code)

Stanford Universitv
Stanford, ~A 437F

7o ADDRESS (City. State and ZIP Code)

Ba NAMEI OF FUNDING /SPONSORING 8b OFFICE SYMBOL
ORGANIZATIO (If applicable)
DAZPA

9 PROCUREMENT INSTRUMENT IDENT'F:CAT:ON NUMBER
N00039-84-C-0211

8¢ ADDRESS (City, State, and 2IP Code)

Arlington, VA

10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT
ELEMENT NO NO

TASK
NO

WORK UNIT
ACCESSION NO

TITLE (Inciude Security Classification)

Automatic Runtime Consistency Checking and Debugging of Formallv Specified Programs

12 PERSONAL AUTHOR(S
Sriram Sankar

*3a Tveg gF REPQORT 13b T!IME COVERED
thesis

14 DATE OF REPORT (Year, Month Day} [15 PAGE COUNT

- FROM o 1989-August 210
6 SUPPLEMENTARY NOTATION
7 COsSaTI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FELD GROUP SUB-GROUP

see other side...

‘9 AsSTRACT (Continue on reverse if necessary and identify by block number)

20 DSTRBUTIQON AVAILABILITY OF ABSTRACT

O unciassiFeDunuMiTED [J SAME AS RPT) oTiIC USERS

21 ABSTRACT SECURITY CLASSIFICATION

Z2a NAMIE OF RESPONSIBLE NDIWVIDUAL
Luckham

2¢ OFFICE SYPM2OL

22b T%;%H_O.M,{I_l_‘b?%dffrea Code)

-

DD Ferm 1473, JUN 86

Previous editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

S/N 0102-LF-014-6603

unclassified

~_2.7. S_ASSIFICATION OF THIS PAGE

(07
i

o

AUTOMATIC RUNTIME CONSISTENCY CHECKING AND
DEBUGGING OF FORMALLY SPECIFIED PROGRAMS

Sriram Sankar
Stanford University, 1989

Dissertation Advisor: Prof. David C. Luckham

Abstract: This thesis studies an approach to automate the process of deciding whether a program
is performing correctly, and if not, to discove: the probable cause of the problem. It assumes that
the intended behavior of the program is specified in some formal, high-level specification language.
It studies how ore :an check automatically at runtime whether the program is running consistently
with its specification, and if not, how inconsistencies can be automatically detected and diagnosed.
A methodology of using this checking methodologybfor debugging formally specified programs is
then presented.

The consistency checking methodology depends on the particular specification language con-
structs used. In this thesis, two categories of constructs:are studied: (1) generalized assertions and
(2) algebraic specifications.

Generalized assertions contain boolean expressions that must be satisfied within a specified region
in the underlying program. CAecking functions are generated which test for the truth of these boolean
expressions. Diagnostic messages are given and a debugger is invoked if there is a violation. Checking
functions are called from locations in the program where the specification may have changed value.

For the purpose of this thesis, algebraic specifications are considered to be equations whose
terms comprise abstract data type operations. Algebraic specification checking involves monitoring
the execution of the abstract data type operations. Based on this monitoring and the algebraic spec-
ifications, a theorem prover generates invariants that the program must satisfy. If the program does
not satisfy these invariants, diagnostic messages are given and a debugger is invoked. The theorem
prover has to be specialized so that it operates efficiently in the context of algebraic specification
checking. Methodologies to achieve this using incremental techniques are presented in this thesis.

Based on these ideas, a working system has been built for automatic runtime consistency checking
of Ada programs with spcifications written in Anna. Experiments with this system has led to the

development of a methodology of debugging programs based on formal specifications.

SECURITY CLASSIFICATION OF THIS PAGE

DD form 1473, JUN 86 Reverse:

AUTOMATIC RUNTIME CONSISTENCY CHECKING AND
DEBUGGING OF FORMALLY SPECIFIED PROGRAMS

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT 2% THE REQUIREMENTS
FOR THE L:"4" 7 OF
DOCTOR OF PHILUSOPHY

By
Sriram Sankar
August 1989

© Copyright 1989 by Sriram Sankar
All Righis Reserved

I certify that I have read this dissertation and that in my
opinion it is fully adequate, in scope and in quality, as a

o dissertation for the degree of Doctor of Philosophy.

- David C. Luckham
(Principal Advisor)

I certify that I have read this dissertation and that in my
opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Mark A. Linton

I certify that I have read this dissertation and that in my
opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Natarajan Shankar

Approved for the University Committee on Graduate Studies:

Dean of Graduate Studies

iii

Abstract

This thesis studies an approach to automate the process of deciding whether a program is performing
correctly, and if not, to discover the probable cause of the problem. It assumes that the intended
sehavior of the rrogrom is speeified in some formal, high-leve! specification language. It studies
how one can check automatically at runtime whether the program is running consistently with
its specification, and if not, how inconsistencies can be automatically detected and diagnosed. A
methodology of using this checking methodology for debugging formally specified programs is then
presented.

The consistency checking methodology depends on the particular specification language con-
structs used. In this thesis, two categories of constructs are studied: (1) generalized assertions and
(2) algebraic specifications.

Generalized assertions contain boolean expressions that must be satisfied within a specified
region in the underlying program. Checking functions are generated which test for the truth of
these boolean expressions. Diagnostic messages are given and a debugger is invoked if there is a
violation. Checking functions are called from locations in the program where the specification may
have changed vaiue.

For the purpose of this thesis, algebraic specifications are considered to be equations whose
terms comprise abstract data type operations. Algebraic specification checking involves monitoring
the execution of the abstract data type operations. Based on this monitoring and the algebraic spec-
ifications, a theorem prover generates invariants that the program must satisfy. If the program does
not satisfy these invariants, diagnostic messages are given and a debugger is invoked. The theorem
prover has to be specialized so that it operates efficiently in the context of algebraic specification

checking. Methodologies to achieve this using incremental techniques are presented in this thesis.
Based on these ideas, a working system has been built for automatic runtime consistency checking
of Ada programs with spcifications written in Anna. Experiments with this system has led to the

development of a methodology of debugging programs based on formal specifications.

v

Acknowledgements

[am deeply indebted to my parents for their motivation and support. If not for them, I would
never have embarked on this ambitious project. My wife, Uma, has cheerfully endured with me the
probleras and tensions of my life at Stanford. For this and her constant emotional support I am
extrerely grateful.

My advisor, David Luckham, has been a great source of inspiration. I am grateful for his advice,
motivation and support. I also thank my other committee members, Mark Linton and Natarajan
Shankar, for their comments and suggestions to improve this thesis.

A large number of people have contributed in one way or the other to this research. I am
thankful to Doug Bryan, Neel Madhav, Walter Mann, Sigurd Meldal, Geoff Mendal, Rand~1l Neff,
Arun Swami and Friedrich vonHenke for their contributicns through my interactions with them.

Special thanks are due to David Rosenblum who participated in the initial design and develop-
ment of the generalized assertion checking methodology and the concurrent checking methodology.
The debugging experiments performed by Shuzo Takahashi and David Luckham formed the basis
for Chapter 5.

A lot of support software has been developed within this research group. The Anna semantics
checker was developed by Geoff Mendal. Manas Mandal implemented concurrent checking of some
Anna constructs. Pilot versions of an overload resolution system and the axiom preprocessor were
implemented by Rob Chang and John Sebes respectively.

The Anna Consistency Checking System has been comprehensively tested on large programs by
the DADAISM group, especially by John Kenney. This has helped in creating a more sturdy system
cavable of handling large programs.

Finally, I am thankful to Rosemary Brock for her efficient handling of various administrative

'
details and for helping out with my initial typesetting problems. —?"‘
This research was supported by the Defense Advanced Research Projects Agency under contract O
a
b

N00039-84-C-0211.

By
Di stributi og[-“
Avallability Codes
Avail and/or
Dist Special

Contents

Abstract iv
Acknowledgements v
1 Introduction 1
1.1 Contributions of this Thesis 2
1.i.1 The Anna Consistency Checking System 3

1.1.2 Examples L 3

1.2 Ovganization of this Thesis, R

1.3 Related Work 10
1.3.1 Instrumentation 10

1.3.2 Testing . . o L L e e e e e e 12

1.3.3 Static Analysis L L 13

1.3.4 Symbolic Analysis, . 14

2 Consistency Checking Principles 15
2.1 The Specification Language 15
2.2 Automatic Runtime Consistency Checking 16

3 Generalized Assertions Checking 18
3.1 Overview e e 18
3.2 Checking Functions 19
3.3 Transformation to Basic Annotations 25
3.3.1 Simple Statement Annotations 25

3.3.2 Compound Statciuient AGwalions « . . . o v v v v e e 27

3.3.3 Subprogram Annotations 28

vi

3.6

Transformation of Anna Expressions
3.4.1 Stage 1: Implication Operators and Anna Membership Operators . .
3.4.2 Stage 2: Conditional Expressions
3.4.3 Stage 3: Anna Relational Expressions
3.4.4 Stage 4: Initial Names and Expressions
3.4.5 Stage 3: Renaming of Objects.
3.4.6 Quantified and State Expressions o0
Generation of Checking Code oL
3.5.1 Checking Functions of Subtype Annotations
3.5.2 Checking Functions of Object Annotations
3.5.3 Checking Functions of Result Annotations
3.5.4 Calls to Checking Functions,
3.5.3 Transformation of Exception Annotations
3.5.6 Transformation of Out Annotations

Concurrent Checking of Generalized Assertions

Algebraic Specification Checking

4.1
4.2
4.3
4.4

4.6

Abstract Data Types and Algebraic Specifications
Algebraic Specification Checking
Complexity of the General Problem

4.4.1 An Overview of Proof Theory in Equational Logic
4.4.2 Terminology, Definitions and Lemmas
4.4.3 Matching Abstract Data Types to Thue Systems
The Chromatic Theorem Prover
4.5.1 Some Terminology and Definitions
4.5.2 Constructing Rewrite Rules from Equations
4.5.3 The Neighbor Set, .
4.5.4 The Theorem Proving Step
4.5.5 Termination
Incremental Execution of the Algorithm
4.6.1 Detailed Description of the Algorithm

4.6.2 Coumparison with the Chromatic Theorem Prover

vii

65
65
66
72
IE!
74
5
T8
32

83

ot

14.6.3 A Specialized Two-Color Algorithm I ¢
4.7 Capabilities of the Algorithm o000 96
4.5 Miscellaneous Topicso Lo 100
1.8.1 Going Outside the Subset 100
4.8.2 Undefinedness of Expressions 101
1.3.3 Concurrent Algebraic Specification Checking 102
Debugging Formally Specified Programs 103
5.1 The Anna Debugger oo 103
5.2 Operation Sequences and Structural Levels 106
5.3 Assumptions about Specificationso oL o000 108
5.4 Two-Dimensional Pinpointing 108
535 AdaPackages 112
56 An Ilustrative Debugging Session o0 114
56.1 The QUEUEMANAGER Package 114
5.6.2 The Debugging Session Lo 118
Conclusions 131
An Overview of Ada 134
Al Ada Programs 134
A2 Subprograms ... Lo 135
A3 Packages 137
Asb Exceptions ... L e 139
A Declarations oo 141
A.5.1 Type and Subtype Declarations 141
A.5.2 Object Declarations L. 143
A.5.3 Renaming Declarations oL 144
A6 Statements ... L L L e e 144
A6.1 Null Statementso oL L 144
A6.2 Assignment Statements L. 144
AG3 It Statements . ..o 145
A6 Case Statements 145
A55 Loop and Exit Statementso oL 146

viii

A

Saed

B.1

B.3

C.1
C.2

.3

A.6.6 Block Statements L o oo
AB.T Goto Statements e
Names and Expressions 0oL oL oL oL o
B An Overview of Anna
Anna Formal Comments
B.1.1 Virtual Ada Text L
B.1.2 Annotations
Anna Expressions e
B.2.1 Quantified Expressions L L.
B.2.2 Conditional Expressions
B.2.3 State Expressions
B.2.4 [Initial Expressions L
B.2.5 Anna Operators L
Annotations Lo L e e,
B.3.1 Object Annotations
B.3.2 Subtype Annotations
B.3.3 Statement Annotations,
B.3.4 Subprcgram Annotations and Result Annotations
B.3.5 Axiomatic Annotations L
B.3.6 Context Annotations
B.3.7 Exception Annotations,
C Installation Manual and User Guide
Introduction
Installing the Anna System
(C.2.1 Setting Up the Machine Dependent Parameters
(.2.2 Compiling the Anna Consistency Checking System
(C.2.3 Setting Up the Predefined Environment
Non-Standard Anna Features
(3.1 Annotation Names
("3.2 Anna Pragmas
Transforming Anna Programs
C.4.1 Creating the Self-Clecking Executable,

C.4.2
C.53 Subset
C.5.1
C.5.2
C.5.3
C.h54
C.35.5
C.5.6
C.5.7
C.5.8
C.3.9
C.5.10
C.5.11
C.5.12
C.5.13
C.5.14
C.6 Subset
C6.1
C.6.2
C.6.3
C.6.4
C.6.5
C.6.6
C.6.7
C.6.8
C6.9
C.6.10
C6.11
C.6.12

Bibliography

The Anna Debugger 174
Restrictions: The Ada Reference Manuval 175
Introduction e 176
Lexical Elements Lo L 176
Declarations and Types 176
Names and Expressions 177
Statements L L e e e e e e e e 179
Subprograms Lo e 179
Packages. e e e 179
Visibility Rules o 180
Tasks e e e e e e e 181
Program Structure and Compilation Issues 181
Exceptions e L. 182
Generic Units e 182
Representation Clauses/Implementation-Dependent Features 182
Input-Output e 182
Restrictions: The Anna Reference Manual 182
Basic Anna Concepts i e 182
Lexical Elements 182
Annotations of Declarations and Types 182
Names and Expressions in Annotations 183
Statement Annotations 184
Annotation of Subprograms Lo L oL 185
Packages. 185
Visibility Rules in Annotations 186
Tasks e 186
Program Structure L L 186
Exception Annotations 186
Annotation of Generic Units 186
Annotation of Implementation-Dependent Features 186

187

X

List of Figures

1.1
1.2

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5

(S]]

Uty U e
(= B | R L

Dt

-
i

QO

5.8
5.9

The Anna Consistency Checking System 4
Thesis Reading Guide oL Lo e 11
Transformation of Annotations to Checking Functions 23
Transformation of Simple Statement Annotations 26
Transformation of Compound Statement Annotations 27
Transformation of Subprogram Annotations 28
Transformation of Anna Expressions 30
The Incremental Chromatic Theorem Prover 87
The Four Graphs of Example 4.7 90
The Five Graphs of Example 4.8 91
The Five Graphs of Example 4.9 96
Order 2 Algorithm Graphs of Example 4.10 97
Order 2.5 Algorithm Graphs of Example 4.10 97
The Generalized Assertion Checking/Debugging Subsystem 104
The Algebraic Specification Checking/Debugging Subsystem 105
A Typical Anna Debugger Screen Layout 105
Operation Sequencest uu e e e e e e e e e e e e 106
Structural Levels within the QUEUE Package 113
Result of Interaction 1 119
Result of Interaction 2 e 122
Result of Interaction 3 e 124
Result of Interaction 4 126
5.10 Result of Interaction D L 128

xi

(@])

(S]]

.11 Result of Interaction 6

...........

.12 The Region of Suspicion at Each Interaction

....................

Chapter 1

Introduction

At the start ¢. the programming task, the programmer is supplied with a specification of
the problem. The specification may be as formal as a document which details the intended
behavior of the program in all possible circumstances or it may be as informal as a few
instances of what the program is intended to do. In practice, the programmer has available
several sources of information which comprise the specification. These may include a formal
specification document, a working prototype, instances of program behavior, and a prior:
knowledge about similar software. All of these sources contribute to the programmer’s
understanding of the task. Formal specifications are usually written in some specification
language. Specification languages provide formal, high-level constructs to describe various
properties of programs. An overview of some formal specification techniques is given in [67].

Working from this specification, the programmer develops the program. The validation
of the program lies in the comparison of the program with the specification of intended
behavior. If the specification is completely formal, then validation can be performed by
providing a mathematical proof that compares the program with the formal specification.
This process is termed program verification. An overview of program verification is given
in [68]. However, specifications are hardly ever formalized completely, and even when they
are, they can still contain errors. Even if the existence of a complece and correct specification
is assumed, it is still very difficult to provide the necessary mathematical proof.

It is much easier to perform the validation process for a particular input data. In this
situation it is typically possible to obtain the intended behavior of the program by hand
calculation, textbook requirements or by the application of estimates obtained from simu-

lations. If the specification is completely formal, it may even be possible to automatically

2 CHAPTER 1. INTRODUCTION

determine the intended behavior from the specification. Repeating the process of comparing
the program with the intended behavior on many different inputs can increase the level of
confidence on this program. This process is termed program testing. Program testing can
also test specifications. If the intended behavior of the program determined from the speci-
fications is different from the expected behavior, there is a problem with the specifications.

There are two parts to program testing. First, there is the problem of test-data selection.
Since any test-data will necessarily be a very small sample of all the possible input data,
test-data should be selected in such a way that successful execution of a program on these
test-data give us a reasonable amount of confidence in the correctness of the program for all
possible input data. At the same time, the test-data should be such that redundancy in the
testing process is minimized. The second part to program testing is to run the program on
each test-data to determine whether or not the program implements the intended behavior
for this test-data. An overview of program testing is given in Section 1.3.

The details of determining whether or not the program implements the intended behavior
for a particular test-data is usually not dealt with in program testing theory. Rather an
oracle is assumed to exist. This oracle can judge for any specific test-data, whether or not
the program implements its intended behavior. The idealization of the oracle is essential
for software testing. Various testing strategies have handled the oracle problem in different

ways.

1.1 Contributions of this Thesis

A typical scenario in which the oracle works consists of a specification, a program that has
been designed to be consistent with the specification and some test-data. The specification is
written formally (at least partially) in some specification language. The program is usually
referred to as the underlying program. Hence, at least a part of the work done by the oracle
is in comparing the program with the formal specifications during execution on the input
datal. This thesis provides a methodology to automate this aspect of the oracle’s work.
This methodology is referred to in this thesis as automatic runtime consistency checking.
This thesis does not, however, address the problem of test-data selection.

Obviously, the complexity of the methodology depends on the kinds of constructs avail-

able in the specification language. In this thesis, two different categories of specification

'The other part of the oracle’s work may be in comparing the program with respect to informal
specifications.

1.1. CONTRIBUTIONS OF THIS THESIS 3

constructs are assumed. The first category includes constructs that are generalizations of
assertions. Consistency checking for this category of specification constructs is performed
bv creating functions corresponding to these constructs and instrumenting the program
with calls to these functions. These functions are referred to as checking functions.

The second category of specification constructs is the algebraic specification. Algebraic
specifications describe abstract data types. For the purpose of this thesis, algebraic speci-
fications are defined as equations whose terms comprise the abstract data type operations
and variables that are universally quantified over the domain of the abstract data type.
Consistency checking for this category of specification constructs is performed with the
help of a theorem prover, which performs proofs on sequences of operations executed by
the underlying program. Unless properly performed, this form of consistency checking can
consume an unacceptably large overhead in time. To solve this problem, an incremental
theorem prover has been designed that works on a small but useful subset of abstract data
types and algebraic specifications. This theorem prover is referred to as the Chromatic

Theorem Prover.

1.1.1 The Anna Consistency Checking System

Everything described in this thesis has been fully implemented. The programming language
used is Ada (see Appendix A) and the specification language used is Anna (see Appendix B).
The user-interface of the system includes a specialized Anna Debugger designed to handle
situations where the underlying program becomes inconsistent with the specification. This
system is known as the Anna Consistency Checking System and has been completely im-
plemented in Ada at Stanford University. Various versions of the system have been ported
and are being used at many locations around the world. An installation manual and user’s
guide of the latest release of this system is given in Appendix C. A block diagram of the

system is shown in Figure 1.1.

The Anna specifications are converted to checking-code and this is instrumented into the
underlying Ada program. This process is performed by a tool called the Anna Transformer.
The resulting Ada program is now compiled using a standard Ada compiler and then linked
and loaded together with the Anna Debugger and the Chromatic Theorem Prover. The
result is a self-checking executable. The instrumented Ada program makes calls to the
checking code every time a specification may potentially be violated. The checking code

determines whether or not a violation has taken place. When checking with respect to

X ' CHAPTER 1. INTRODUCTION

Anna Program

Anna Transformer

'

Instrumented Ada Program

Ada Compiler

l

Anna Debugger Object Code

Chromatic Theorem

/ prover

Ada Linker/Loader

Checking Code Chromatic Theorem
Prover

Instrumented Ada

Program
' 1
User Program I/0

Figure 1.1: The Anna Consistency Checking System

1.1. CONTRIBUTIONS OF THIS THESIS 5

algebraic specifications, the checking code makes calis to the Chromatic Theorem Prover.
If the checking code determines that a violation has taken place, control is transferred
to the Anna Debugger. The user can then interact with the Anna Debugger to get more
information on the nature of the inconsistency. The structure of the self-checking executable
is also shown in Figure 1.1. The Chromatic Theorem Prover is described in Chapter 4, while
the Anna Debugger is described in Chapter 5.

The Anna Transformer converts the Anna program to a corresponding parse tree using a
table driven parser. The parse tree data structure and operations on this data structure are
encapsulated together to form the AST (Abstract Syntaz Tree) package. The AST package
is based on DIANA [22]. DIANA is an intermediate tree represencation jor Ada programs.
The AST package extends the DIANA concepts to handle Anna constructs. The Anna
Transformer then transforms the Anna parse tree to an Ada parse tree by changing the
Anna specifications to Ada checking code. The Ada parse tree is then converted to an Ada
program using a reverse parser?. The Anna Transformer also includes a semantic analyzerd
which checks the original Anna program for static semantic correctness. This notion of
correctness is what is determined by compiler front-ends and not the notion of correctness
determined by program verification tools.

The complete transformation process includes the introduction of new constructs like
variable declarations and renaming declarations; transformation of Anna expressions to
equivalent Ada expressions: the transformation of annotations to more basic annotations;
and the generation of checking code. For a complete description of the transformation

process, please refer to {108]. Relevant details of this process will be illustrated in this

thesis.

1.1.2 Examples

Two examples of Anna code fragments (Ada code with Anna specifications) are shown
below. These examples illustrate runtime consistency checking and issues involved in its

automation.

Example 1.1: This example illustrates consistency checking of Anna subtype annotations.

[t contains a subtype annotation which constrains the Ada subtype EVEN to take on only

2Note that the Ada parse tree produced by the Anna Transformer can be fed directly to any Ada compiler
that uses DIANA as its intermediate representation.

*The semantic analyzer was developed by Geoff Mendal.

6 CHAPTER 1. INTRODUCTION

those values that are divisible by 2.

declare
| subtype EVEN is INTEGER;
| ——| where X:EVEN => X mod 2 = 0

| E:EVEN:)
begin
E = 4;
E := E4+1;
end;

The first value assigned to E, namely 4, satisfies the subtype annotation. However, after the
second assignment, the value of E will be 5 and this does not satisfy the subtype annotation.
To implement consistency checking with respect to subtype annotations, a test is inserted
for each of the statements that modify the variable E. During execution, the program passes
the test corresponding to the first assignment statement, but the test corresponding to the

second assignment statement detects an inconsistency.

Example 1.2: In this example, the problem of checking the consistency of abstract data
type operations with respect to algebraic specifications is illustrated. The abstract data type
shown below represents deques. The operations are CREATE, LEFT_PUSH, LEFT_POP,
LEFT_TOP, RIGHT_PUSH, RIGHT_POP and RIGHT_TOP.

package DEQUE_PACKAGE is
type DEQUE is ...;
function CREATE return DEQUE;
function LEFT_PUSH(D:DEQUE:E:ELEMENT) return DEQUE;
function LEFT_POP(D:DEQUE) return DEQUE;
function LEFT_TOP(D:DEQUE) return ELEMENT;
function RIGHT_PUSH(D:DEQUE;E:ELEMENT) return DEQUE; -
function RIGHT_POP(D:DEQUE) return DEQUE;
function RIGHT_TOP(D:DEQUE) return ELEMENT;

1.1. CONTRIBUTIONS OF THIS THESIS 7

--| axiom

-— for all D:DEQUE;E:ELEMENT =>

-—] LEFT_POP(LEFT_PUSH(D,E)) = D,

--] RIGHT_POP(RIGHT_PUSH(D,E)) = D,

--] LEFT_POP(RIGHT_PUSH(D,E)) = RIGHT_PUSH(LEFT_POP(D),E),
- RIGHT_POP(LEFT_PUSH(D,E)) = LEFT_PUSH(RIGHT_POP(D),E),
- LEFT_TOP(LEFT_PUSH(D,E)) = E,

! RIGHT_TOP(RIGHT_PUSH(D,E)) = E:

end DEQUE_PACKAGE;

This example contains six Anna package axioms. These axioms form the algebraic specifica-
tion of the deque package. The deque package is expected to satisfy these axioms; otherwise
it is inconsistent with these axioms. Note however that this is not a complete specification
of deques. For example, the special cases of empty and full deques have been ignored?.
There are also some other facts about non-empty deques that cannot be proved from these

axioms. The following is one such fact:

LEFT_PUSH(RIGHT_PUSH(D, E;),E3) = RIGHT_PuUSH(LEFT_PUSH(D, E;),E;)

where D, E; and E, are assumed to be universally quantified over the appropriaie domains.
The discussion that follows assumes that all facts that the deque package must satisfy can
be derived from just the six axioms mentioned above. Any intuitive facts that cannot be
derived from these axioms (like the one mentioned above) can be either true or false of the
deque package. The deque package will still be consistent with the axioms.

The following is a sequence of statements that invokes the deque package at runtime:

Do := CREATE;

D, LEFT_PUSH(Do, Eo);
E; := LEFT_TOP(D,);
D; := LEFT_POP(D;);

The axioms require that after successful execution of the above statements, E, has to be

equal to Eq and D, has to be equal to Dg. Therefore, runtime consistency checking requires

*Note that undefined expressions do not violate Anna package axioms. Hence, though the third and fourth
equations are undefined (typically) for the empty deque, this does not cause the package to be incunsistent
with the specification.

2 CHAPTER 1. INTRODUCTION

that checks be made at runtime to ensure that these equalities do indeed hold. Hence, in
this example, after the assignment to E;, a check is made to ensure that E, is equal to E,
and after the assignment to D., a check is made to ensure that D, is equal to Dy. Note
however that it is not possible in general to insert these checks inline when the program
is compiled. This is because the performance of the check is based on the execution of
a certain sequence of operations of the deque package, rather tuan just one particuiar
operation. It is not always possible at compile time to determine when such sequences will
be executed. If the second statement in this example was within an if statcment, then the
above-mentioned checks would have to be made depending on whether or not the condition
of the if statement was true. Also note that the sequences of operations after which the
tests need to be performed are not always as simple as in the above example. For example,

after execution of the following sequence of statements:

D3 := CREATE;

Dy := LEFT_PUSH(Dj3,E3);
Ds := RIGHT_PUSH(D4,E3);
D¢ := LEFT_POP(Ds);

D7 := RIGHT_POP(Dg);

the following condition has to hold:
D7 = D3

The problem of inserting checks is solved as follows: After each execution of a package
operation, a message is sent to the Chromatic Theorem Prover with the necessary informa-
tion. The theorem prover maintains a history of the package operations already performed.
Based on this information, the theorem prover decides whether or not a check needs to
be performed. If a check has to be performed, the theorem prover sends the appropriate

message to the checking code.

1.2 Organization of this Thesis

This thesis consists of six chapters and a set of supporting appendices. The aim of the
chapters is to concisely describe the contributions of the thesis. The appendices, on the

other hand, provide useful background information.

1.2. ORGANIZATION OF THIS THESIS 9

Chapter 2 is a short extension of this chapter. It discusses the principles of consistency
checking. It further describes the problem of consistency checking with respect to formal
specifications in more detail. It introduces the two different approaches to consistency
checking and sets the stage for the more detailed description of the consistency checking
methodology.

Chapter 3 describes the checking function methodology. It explains the concept of
checking functions, their use and advantages. A detailed discussion of the transformations
involved for the checking of generalized assertions follows. Many examples in Ada/Anna
are given. Though all transformations described in this chapter are specific to Ada/Anna
programs. they can be applied to other languages with minor modifications. Some of the
transformations discussed in this chapter—like the transformation of Anna expressions—
also apply to algebraic specifications.

Chapter 4 describes the consistency checking of abstract data type implementations with
respect to algebraic specifications. First. all the transformations that need to Le performed
on Ada abstract data types and Anna algebraic specifications are described. Then the
general problem is shown to be undecidable (based on previous work), and hence oniv
partial checking methodologies are possible. The Chromatic Theorem Prover is discussed
in this chapter. This chapter also explains how theorem proving operations can be performed
incrementally, and concludes with describing the capabilities of this prover.

Chapter 5 describes how one can use the Anna Consistency Checking System to de-
bug programs based on formal specifications. This chapter concentrates on the problem
of debugging Ada packages. The methodologies developed in this chapter can be easily
generalized to apply beyvond Ada packages to more complex programs. A session where
a QUEUE_MANAGER package is debugged illustrates the application of the debugging
methodology. In addition, this example also illustrates how the Anna Consistency Checking

System is used.

Chapter 6 concludes this thesis. The contributions of this thesis and possible future
work are discussed.

Appendix A gives a reasonably comprehensive introduction to Ada, and for the reader
not familiar with Ada, this appendix should be sufficient for the purposes of understanding
this thesis. In fact. this appendix can also be used effectively as a self-contained introductory

text to Ada.

Appendix B sunilarly gives a reasonably comprehensive introduction to Anna.

10 CHAPTER 1. INTRODUCTION

Appendix C is an installation manual and user guide for the Anna Consistency Checking
Svstem. This appendix explains in detail how this system can be set up on a machine. and
how it can be used. It also gives a comprehensive description of the limitations of the
svstem.

Figure 1.2 is a reading guide for this thesis. It may be used to determine what needs
to be read before the section of interest is read. In this figure, a solid arrow {from A to B
means that 4 must be read before reading B. A dashed arrow from A to B means that
it will be useful, though not essential to read A before reading B. The sections within the
dotted ovals can be omitted during the first reading of the thesis. It may be useful to read
Appendix A and Appendix B before reading Chapters 3. 4 and 5. Section C.3.1 must be

read before reading Chapter 3.

1.3 Related Work

1.3.1 Instrumentation

Enhancing a program with additional code has been used for a variety of purposes for a
very long time. This process is called instrumentation. The earliest uses of instrumentation
have been to gather statistics about the program. Examples of such statistics are statement
execution counts and branch of control counts. Some of the earliest work in instrumentation
has been by Estrin et al. [21.106] and Knuth et al. [51.53]. Around the mid-70’s, the idea
of using instrumentation for consistency checking began to emerge. Some work in this area
has been done by Yau and Cheung [123] who proposed that introducing redundancy in a
program could create self-checking programs. Stucki [113] was one of the first to implement
automatic runtime consistency checking of a program with respect to assertions. Since then
many systems have been built where assertions have been compiled into runtime checking
code. There are other related uses of redundancy for self-checking purposes. Some obvious
examples are constraint checking that programming languages like Pascal and Ada provide,
and hardware error detection and correction. Another example is data structure error
detection and correction [115]. Bird and Munoz [8] have designed a scheme to generate self-
checking test-data for compilers. The idea here is to introduce extra code in the test-data
(whichisitself a program) which automatically chiecks the correctness of the compiler during
execution of the compiled program (the test-data). Lu [69] describes a method for creating

real-time seif-checking software. A separate processor termed the Watchdog Processor is

1.3

RELATED WORK

™

.-

{3 }»--ﬂ 3.4)

N -

Figure 1.2: Thesis Reading Guide

11

12 CHAPTER 1. INTRODUCTION

used to monitor the running of the underlying program.

1.3.2 Testing
Test-Data Generation

A large number of too!s have been designed for test-data generation since the early-70’s.
The emphasis is to generate test-data that exercises as much of the program code as prac-
tically possible. Some approaches have been to generate test-data that force every program
statement to be executed, while others force every edge in the program’s flowchart to be
traversed. Goodenough and Gerhart {29] attempt to define a theoretically sound, but prac-
tical definition of what constitutes an adequate test. The idea is to divide the test-data into
a finite number of equivalence classes where testing on a representative of an equivalence
class will, by induction, test the entire class. A useful technique for test-data generation
is symbolic execution of the program [11,55]. Symbolic execution can be performed in a
forward traversal or a backward traversal of the program paths. During these traversals,
various constraints are established which are then used to generate the test-data.

All these approaches to test-data generation fall under the general category of white-box
testing. In white-box testing, the structure of the program is examined and test-data are
derived from the program’s logic. The other category is black-boz testing. This is also known
as functional testing. In this case, the internal structure and behavior of the program is
not considered. The objective is to find out solely when the input-output behavior of the
program does not agree with its specifications. In this approach, test-data are constructed
from its specifications [1,89].

Program mutation [18,64] is a technique for the measurement of test-data adequacy. In
mutation testing, test-data is applied to the program being tested and its mutants (programs
that contain one or more likely errors). The test-data is considered adequate {with respect
to the mutants) if the test-data reveals the errors in each of the mutants. If a program
runs successfully on this test-data, it means that the program does not contain the kinds

of errors present in the mutants.

Debugging

Thirty years ago, program debugging typically involved inspection of the core dump of

a program after it reached a probably inconsistent state. Since then a lot of refinements

1.3. RELATED WORK 13

have taken place. The next stage was to provide program tracing and an user-interface from
where a programmer could insert breakpoints and inspect values of variables in the program.
Then came the concept of structured programming [17]—a systematic approach to program-
ming that would reduce the possibility of errors. Structured programming also enhances
the programmers’ understanding of their programs, thus making the debugging process
easier. Other advances in debugging involve the use of assertions to define breakpoints
(this is essentially an application of self-checking programs). Some heuristic approaches to
debugging have also been developed, for example, the Programmer’s Apprentice [102.110].
Here the system is supplied with a plan and it infers the existence and type of bugs in the
program by comparing the program with the plan. Shapiro [111] has developed a debugging
system which diagnoses and attempts to correct bugs based on information accumulated in
a database. This information is based on previous runs of the program and also input from
the user. In yet another approach, algebraic program testing [49], program correctness may
be thought of as a program equivalence problem. Since the equivalence of two programs
written in a powerful enough programming language is undecidable, this approach requires
programs to lie in some restricted class for which testing on a small set of test-data is suf.
ficient to prove program equivalence. Algebraic program testing provides a theoretically
sound way of determining program correctness for restricted classes of programs. More
closely related to the Anna Consistency Checking System are the TSL Monitor [43.41] and
the VAL Transformer [7]. These zre currently being developed at Stanford for runtime

consistency checking against the specification languages TSL [44] and VAL.

1.3.3 Static Analysis

In static analysis, the requirements and design documents and the code are analyzed. either
manually or automatically, without actually executing the code. Only limited analysis of
programs containing array references. pointer variables. and other dynamic constructs is
possible using this technique. Experimental evaluation of code inspection and code walk-
throughs has found these static analysis techniques to be very effective in finding from 30%

to 70% of the logic design and coding errors in a typical program.
Program verification is a static analysis technique. It involves demonstrating the con-
sistency between the program and its specification. The most frequently used verification

method is based on inductive assertions [23,92]. Assertions about the program are placed

14 CHAPTER 1. INTRODUCTION

in the text of the program. The goal of a successful verification is to show that each as-
sertion is true every time the program control passes the location of the assertion. There
is a lot of tedicus work involved in program verification. To assist in this, many program
verification systems have been developed. Some of these verif._.tion systems are: King [56];
Stanford [71,117,114}; and Boyer-Moore [12].

Another static analysis technique is automatic program generation. This involves the
generation of the program automatically from the specification. The generation process is
such that the program is guaranteed to be consistent with the specification. Efforts in auto-
matic program generation include EIFFEL [88,87], REFINE [30,31,32,33] and PROSPEC-
TRA [61].

1.3.4 Symbolic Analysis

During symbolic testing, input data and program variable values are given symbolic values.
The possible executions of a program are characterized by an execution tree. The execu-
tion is performed by a system called a symbolic evaluator whose major components are a
symbolic evaluator and an expression simplifier.

Symbolic execution can be used to prove the correctness of a program. A program may
be thought of as a finite set of assertion-to-assertion paths. If each path is shown to be
correct, then the program is correct. When a program contains loops, the execution tree may
contain infinite branches. Two possible methods for analyzing loops are informal inductive
assertions and recurrence relations describing the behavior of each variable affected by the
loop.

The use of specification languages for the formal specification and documentation of
software brings with it a new set of problems: errors may occur in the specification itself.
Whether using such specifications as a guide to implementation of a software package, or
as an aid in debugging various prototype implementations, the task is greatly simplified by
the assumption that the specifications are correct. Specification analysis tools [73,82,93] are
being developed at Stanford. These tools symbolically execute Ada packages based on the
specifications. This execution results in the updating of the symbolic state of the program.

Queries regarding this state can be made by the programmer. Responses to these queries

by the specification analysis tools aid the programmer in debugging specifications.

Chapter 2
Consistency Checking Principles

In Chapter 1, the problem of consistency checking of a program with respect to its specifi-
cation was illustrated with examples. This problem will be characterized more precisely in
this chapter. This chapter also provides some background on implementation methodologies
for consistency checking. Details of these methodologies will be discussed in the subsequent

chapters.

2.1 The Specification Language

The basic feature of runtime consistency checking is that it is performed while the program is
executing. This is unlike other activities like program verification and automatic program
generation which are performed before the program is executed. Hence the specification
language must define precisely the constraints it places on various intermediate program
states during its execution for runtime consistency checking to make any sense. Anna
defines the concept of an observable state (see Appendix B). Anna specifications constrain
the underlying Ada program only at these observable states. The methodologies discussed
in this thesis will be applicable to any specification language with precise definitions of the
constraints it imposes during the execution of the underlying program.

As has already been mentioned in Chapter 1, this thesis deals with two categories of
specification language constructs—generalizations of assertions; and algebraic specifications.
In Anna, object annotations, subtype annotations, statement annotations, subprogram an-
notations, result annotations and exception annotations fall into the first category. Anna

axiomatic annotations provide the capability of first-order logic to specify programs. Hence

15

16 CHAPTLR 2. CONSISTENCY CHECKING PRINCIPLES

algebraic specifications can be written out as axiomatic annotations. Axiomatic annotations

that are not algebraic specifications will not be dealt with in this thesis.

2.2 Automatic Runtime Consistency Checking

A lot of analysis and testing can be performed on a program with a specification at runtime.
Some of these fall within the realm of automatic runtime consistency checking while others
are beyond its scope. The following rule defines what kind of analyses and tests need to be

performed:

Inconsistencies must be detected as soon as possible (after they occur) during

the execution of the program

The specifications impose constraints on the program at various points during its execution.
If at any of these points, the program execution does not satisfy the constraints imposed
at that point, then there is an inconsistency. The inconsistency is considered to occur only
after the program execution reaches this point. This is an important consideration for the
purpose of this thesis. There may be a confusion, for after all, if the program execution does
reach a point where it becomes inconsistent with its specifications, then the program must
have been inconsistent with its specifications in the first place. That is, the inconsistency
existed ever since the program was written! The confusion is resolved by noting that there
are two different notions of inconsistency being used here. On the one hand, the program
ezecution becomes inconsistent with its specifications when (and only when) it reaches a
point where the program does not satisfy the constraints imposed at that point; while on
the other hand, a program is considered inconsistent with its specifications if it is possible
for the program execution to reach a point where it does not satisfy the constraints imposed
at this point. Note that program execution inconsistency on 2’ particular test-data implies
program inconsistency but not the other way around. That is, a program that is inconsistent
with its specifications may perform correctly for certain test-data. This thesis deals with
methods to detect program execution inconsistencies. Unless explicitly stated, the term
“consistency” in this thesis is used to refer to that with respect to program execution.

As a consequence of the rule stated above, a test needs to be performed after each of the
two assignments in Example 1.1 to check for the consistency of the program execution. In

this simple example, there is scope for optimization for it is quite obvious that execution of

2.2. AUTOMATIC RUNTIME CONSISTENCY CHECKING 17

the first statement does not cause an inconsistency, while execution of the second statement
does. Note however, that such optimizations, though useful, are not required of runtime
consistency checking.

In Example 1.2, a test needs to be performed after the assignments to E,, D, and
D;. As has been pointed out in Chapter 1, it will not be possible in the general case to
determine before the program starts execution when such tests need to be performed. In
the general case, messages have to be sent to a theorem prover which in turn decides when
tests are neressary. The theorem prover bases its decision on its knowledge of the algebraic
specification and the messages it has received so far. If a test has to be performed, the
theorem prover sends the appropriate message to the checking system (see Figure 1.1).
Though it is possible to determine ahead of time that tests have to be performed after the
assignments to E;, D; and D7, such optimizations are not required of runtime consistency
checking.

There is a second rule that characterizes the kinds of analyses and tests that do not

have to be performed. This rule is stated below:

Inconsistencies that do not actually occur during the ezecution of the program

need not be detected

This rule can be rephrased as saying that apart from the tests that need to be performed
as a consequence of the first rule, no other tests have to be performed. For example, it is
not necessary to predict possible future inconsistencies. Hence, in Example 1.1, an analysis
that shows the evaluation of the second assignment will always result in an inconsistent
state need not be performed (one of the optimizations mentioned earlier). Though such
extra tests are certainly useful, they are beyond the scope of runtime consistency checking
and this thesis. Many other forms of program validation do attempt to perform these
tests. Static program verification in fact attempts to make such predictions for all possible
executjons. Limiting the scope of the problem facilitates in the design of more efficient

consistency checking strategies.

Chapter 3 ,
Generalized Assertions Checking

This chapter deals with the details of automatic runtime consistency checking of programs
with respect to generalized assertions. The next chapter deals with algebraic specification

checking.

3.1 Overview

In Anna, object annotations, subtype annotations, statement annotations, subprogram an-
notations, result annotations and exception annotations are all generalizations of assertions.
These constructs fall into two categories—local constraints, which constrain a particular
point in the program, and global constraints, which are constraints over a larger portion
of the program. In Anna, simple statement annotations, exception annotations and out
annotations are local constraints'; all other annotations described in this thesis are global
constraints. While tests corresponding to local constraints are expanded inline, global
constraints are transformed into checking functions. Checking functions are described in
Section 3.2.

The transformation takes place in three logical steps. The first step is to transform
annotations into more basic annotations. Subtype annotations, object annotations and
result annotations are considered the basic annotations. Note that out annotations are a

form of ob ject annotations and are therefore also basic annotations. A simple transformation

'Though exception annotations and out annotations do constrain ail exit points from the scope, they are
still categorized as local constraints for the purpose of this thesis, since they are somewhat more local than
the other global constraints. Also, as will be seen later, the transformation methodologies of these different
forms of local constraints are similar.

18

3.2. CHECKING FUNCTIONS 19

scheme is sufficient to reduce all the Anna constructs into the basic constructs mentioned
above. These transformations are described in Section 3.3. The second step involves a few
preliminary transformations. The most important of the preliminary transformations is the
transformation of Anna expressions to Ada expressions. This is discussed in Section 3.4.
The third step is to transform the basic annotations into checking code. This is when the

checking functions are generated. This is described in Section 3.5.

Note that these three steps are interleaved. For example, the transformation of the
Anna membership test isin requires the appropriate checking function to have already been
generated; while the generation of a checking function containing an Anna membership test

requires the membership test to have already been transformed.

3.2 Checking Functions

A checking function is an Ada function that checks for the validity of annotation(s) and
takes an appropriate action. This action could either be to return a BOOLEAN value
that specifies the result of the check, or to raise an exception if the check shows that the
annotation was violated. At various places where annotations can potentially be violated,
the appropriate checking functions are called. The advantages of implementing checks as
calls to checking functions instead of expanding the checks inline are quite apparent. It is
much simpler to generate checking functions and calls to them since the annotations do not
have to be stored for too long by the Anna Transformer; only the names of the generated
checking functions have to be stored. Also, this decreases the dependence on the visibility
rules of the language. Since it is usually the case that the same annotation has to be
checked for validity at more than one place, the checking function approach lowers space
requirements. However, the effect of expanding checks inline can still be achieved by using

compiler directives.

Any level in an Anna program is constrained by annotations at the current level and by
annotations declared in more global levels. For example, an Ada subtype is constrained by
its own subtype annotation and by the subtype annotation of its base type. In this situation,
the checking functions at the morc nested level make calls to checking functions at the outer
levels. This ensures that when this new checking function is called, both annotations are

checked as required by the Anna semantics.

20 CHAPTER 3. GENERALIZED ASSERTIONS CHECKING

Checking functions are defined for the three basic kinds of annotations. Checking func-
tions that raise an exception (if the annotation is found to be FALSE) are generated for
each of the above kinds of annotations. The structure of these checking functions is shown

below; the braces indicate zero or more occurrences of the enclosed entity:

function CHECKING_FUNCTION(X:T) return T is
declarations
begin
{if not (annotation) then
raise ANNA_EXCEPTION;
end if;}
return X;
exception
when ANNA_EXCEPTION =>
report_violation;
raise ANNA_ERROR;
when ANNA_ERROR =>
raise;
when others =>
report_Ada_error;
report_violation;
raise ANNA_ERROR;
end CHECKING_FUNCTION;

All checking functions that raise exceptions fit into the above template. This template is for
a checking functions that checks a subtype annotation of type T; an object annotation in
which there is a variable of type T; or a result annotation of a function that returns a value of
type T. The declarations in the checking functions are typically Ada renaming declarations,
which though not essential, makes the generation of the rest of the checking function easier.
The if statement evaluates the annotation (with the Anna portions transformed to Ada)
and raises the exception ANNA_EXCEPTION if the annotation is FALSE. As the braces
around this statement indicates, a checking function could check for the validity of more
than one annotation. If all annotations evaluate to TRUE, the checking function returns
the value that was passed to it, namely X, thus acting as a no-op. Typically, the formal
parameter X occurs in the annotations being tested. If this checking function has to call

another checking function, the return statement above is replaced by:

3.2. CHECKING FUNCTIONS 21

return THE_OTHER_CHECKING_FUNCTION(X);

Each checking function has three exception handlers. The first is a handler for the exception
ANNA_EXCEPTION. ANNA_EXCEPTION is raised if this checking function detects an Anna
constraint violation. In this case, a violation is reported and the exception ANNA_ERROR is
raised. The second handler is for the exception ANNA_ERROR. ANNA_ERROR is raised as a
result of a call to another checking function from this checking function. If this other check-
ing function detects an inconsistency, it returns by raising ANNA_ERROR. The handler for
ANNA_ERROR simply reraises this exception. The third exception handler handles all other
exceptions. Typically these exceptions are raised due to Ada errors (such as division by 0)
that may occur during the evaluating of the expression corresponding to the annotation.

This handler reports this situation and then raises the exception ANNA_ERROR.

For subtype annotations there is one additional checking function defined. This function
returns TRUE if the annotation is satisfied, and it returns FALSE otherwise. This checking
function is used to implement the Anna membership test isin. It is also used to check the
initial values of variables and formal parameters. The structure of this checking function is

shown below:

function ISIN_CHECKING_FUNCTION(X:T) return BOOLEAN is
begin
return annotation;
exception
when others =>
return FALSE;
end [SIN_CHECKING_FUNCTION;

This form of checking function is much simpler than the previous one. The annotation? is
evaluated, and this value is returned. In case an exception is raised during the evaluation of
the annotation, it is handled within this function and the function returns the value FALSE.
In case another checking function needs to be called from this checking function, the first

return statement above is replaced by:

Note that the second form of checking function evaluates only one annotation. It will be seen later that
in the case of subtype annotations, even the first form of checking functions evaluates only one annotation.

22 CHAPTER 3. GENERALIZED ASSERTIONS CHECKING

return annotation and THE_OTHER_ISIN_CHECKING_FUNCTION(X);

All checking functions are generated at the beginning of the later declarative region

of the

declarative region where the annotation is declared. Further details of each kind of checking

function and their use are described later. The checking function that is actually generated

by the Anna Transformer is slightly more complex than what has been shown here. This

extra complexity provides a more comprehensive interaction with the Anna Debugger. Some

of the additional features are described briefly below, but will not be discussed further in

this thesis:

1. Checking functions first find out from the Anna Debugger whether or not the anno-

tations to be checked are currently suppressed. If so, no checks are performed.

2. Checking functions have additional parameters which contain information regarding

the location from where the call to them was made. This information along w

ith the

information regarding the location of the annotation is sent to the Anna Debugger in

case an inconsistency is detected.

3. Checking functions allow the Anna Debugger to make decisions regarding whether or

not to raise the exception ANNA_ERROR.

Figure 3.1 illustrates the transformation of basic annotations to checking functions®

Example 3.1: An example of the transformation of subtype annotations to checking func-

tions is now shown. First, the Anna program before transformation is shown below:

procedure P is
subtype EVEN 1is INTEGER;
-—| where X:EVEN => X mod 2 = 0;
subtype POS_EVEN is EVEN;
-—| where X:POS_EVEN => X > 0;
begin

end P;

*Solid arrows with a black box (W) represents a transformation. Dashed arrows indicate that the corre-

sponding entities are just moved over. This convention will be used in all figures in this chapter.

3.2. CHECKING FUNCTIONS 23

- = =~} Declarations (1)

Declarations(l)

- Declarations(2)

Later Declarative.]
Region

-
-
-
- -
- -
- -
-
-
-
-
-
- -
-

Later Declarative
S
Region

Figure 3.1: Transformation of Annotations to Checking Functions

The transformed Ada program is now shown below. Notice the two different kinds of check-
ing functions for each of the two types, and the calls to checking functions corresponding

to type EVEN from the checking functions corresponding to vype rUS_EVEN:

procedure P is
subtype EVEN is INTEGER;
subtype POS_EVEN is EVEN;

function EVEN_CHECKING_FUNCTION(X:T) return T is
begin
if not (X mod 2 = 0) then
raise ANNA_EXCEPTION;
end if;
return X;
exception
when ANNA_EXCEPTION =>
report_violation:
raise ANNA_ERROR;
when ANNA_ERROR =>

raise;

CHAPTER 3. GENERALIZED ASSERTIONS CHECKING

when others =>
report_Ada_error;
report_violation:
raise ANNA_ERROR;
end EVEN_CHECKING_FUNCTION;

function EVEN_ISIN_CHECKING_FUNCTION(X:T) return BOOLEAN is
begin
return X mod 2 = 0:
exception
when others =>
return FALSE;
end EVEN_ISIN_CHECKING_FUNCTION;

function POS_EVEN_CHECKING_FUNCTION(X:T) return T is
begin
if not (X > 0) then
raise ANNA_EXCEPTICN;
end if;
return EVEN_CHECKING_FUNCTION(X);
exception
when ANNA_EXCEPTION =>
report_violation;
raise ANNA_ERROR;
when ANNA_ERROR =>
raise;
when others =>
report_Ada_error:
report_violation;
raise ANNA_ERROR;
end POS_EVEN_CHECKING_FUNCTION;

function POS_EVEN_ISIN_CHECKING_FUNCTION(X:T) return BOOLEAN is
begin

return X mod 2 = 0 and EVEN_ISIN_CHECKING_FUNCTION(X);

3.3. TRANSFORMATION TO BASIC ANNOTATIONS 25

exception
when others =>
return FALSE;
end POS_EVEN_ISIN_CHECKING_FUNCTION;

begin

end P;

3.3 Transformation to Basic Annotations

3.3.1 Simple Statement Annotations

A simple statement annotation is an out annotation on the immediately preceding state-
ment. If the annotation occurs before the first statement in a sequence of statements,
annotation is a constraint on an imaginary null statement just before the annotation.
Simple statement annotations are transformed to out annotations. A block statement is
created at the location of the annotation. The annotation is converted to an out annotation
and placed in the declarative region of this block statement. The statement constrained by
the annotation is placed in the statement part of the block statement. Figure 3.2 illustrates

this transformation.
Example 3.2:
Before:

procedure P is
A:INTEGER :

i
w

After:

procedure P is
AINTEGER := 3:

begin

26 CHAPTER 3. GENERALIZED ASSERTIONS CHECKING

_ e Statements (1)

Statemantas (1) -

- .- e ... ow-

N T T

-~t Anngt_i.t‘i‘;oh

7
b o - - -

St atements (2)

"™ Statements(2)

Figure 3.2: Transformation of Simple Statement Annotations

declare
--| out (A = 3);
begin
null;
end;
declare
--| out (A = in A + 1);
begin
A= A 4+ 1;
end:

end P;

Simple statement annotations are not expanded directly into checks at the location of the
annotation. This is because of the possibility that control never reaches this point, and
therefore the check is never made. This can happen when the previous statement transfers
control to some other point. Examples of such statements are return statements, raise

statements, erit statements and goto statements.

3.3. TRANSFORMATION TO BASIC ANNOTATIONS 27

3.3.2 Compound Statement Annotations

Compound statement annotations have a compound statement immediately following them,
and this statement is the scope of the annotation. If the compound statement is not a block
statement, a new block statement is inserted in the place of the original compound state-
ment. The original compound statement is now placed in the statement part of this new
block statement. The compound statement annotation is transformed to an object annota-
tion and placed in the declarative region of the block statement. If the compound statement
is already a block statement, then the compound statement annotation is transformed to
an object annotation and placed at the beginning of the declarative region of this block
statement. No new block statement is created in this case. ¥igure 3.3 illustrates this

transformation.

| » Statements(l)

--
-

-
--
--

Statemants (1) -9

Statements (2) -~

-~ - -
-

- -
- -
-

™ Statements (2)

Figurg 3.3: Transformation of Compound Statement Annotations

Example 3.3:

Before:
- -| with
—-— A mod 2 = 0

for I in J. K loop

28 CHAPTER 3. GENERALIZED ASSERTIONS CHECKING

A= A+2;

end loop;

After:
declare
--| A mod 2 = 0

begin
for I in J..K loop
A= A+2;
end loop;

end:

3.3.3 Subprogram Annotations

Subprogram annotations are transformed to object annotations and placed at the beginning

of the declarative region of the subprogram. Figure 3.4 illustrates this transformation.

declarations declarations
T sl didie i L and
and
statements statemants

Figure 3.4: Transformation of Subprogram Annotations

Example 3.4:

Before:

procedure P(X:in out EVEN)
-—| where

== X mod 2 = 0:

18

3.4. TRANSFORMATION OF ANNA FXPRESSIONS 29

begin
X = X+
end P;

After:

procedure P(X:in out EVEN) is
--| X mod 2 = 0;

begin
X = X472

end P;

3.4 Transformation of Anna Expressions

This section describes in detail the transformation of Anna expressions to Ada expressions.
Some of the transformations results in the introduction of new variables and aliases to al-
ready existing variables. Hence these transformations generate declarations. The transfor-
mations described in Section 3.3 guarantee that all annotations after these transformations
will occur in one of the basic declarative regions of the program. Hence the declarations
can be inserted just prior to the annotation whose expression is being transformed. The
transformations permit the transformed expression to be moved anywhere in the region
defined by the scope of the original annotation. Figure 3.5 illustrates this transformation

process.

Anna expressions are transformed to Ada expressions through a five stage process. Each

of these stages is discussed in separate sections below.

3.4.1 Stage 1: Implication Operators and Anna Membership Operators

The Anna implication operators —> and <—> are equivalent to the predefined Ada relational
operators (whose arguments are of type BOOLEAN) <= and = respectively. However, the
Anna implication operators have lower precedence than the Ada relational operators. The
precedence information is available in the parse tree and therefore poses no problems for the
Anna Transformer. The Anna implication operators are transformed to function calls to the

corresponding predefined Ada relational operators as illustrated in the following examples:

30 CHAPTER 3. GENERALIZED ASSERTIONS CHECKING

lw» Declarations(l}

-
-
-
- -

-

Declarations(l)

Declarations (2) =

10

Declarations(2)

Figure 3.5: Transformation of Anna Expressions

Example 3.5:

Before: After:
i. A<B —> B>A STANDARD."<="(A<B,B>A)
ii. EVEN(X) <—> not ODD(X) STANDARD."="(EVEN(X),not ODD(X))

The Anna membership operator isin is equivalent to a combination of the Ada member-
ship operator in and possibly a call to a checking function. The call to a checking function
is generated only when a type name is used in the membership operator and a checking

function exists for this type name.

Example 3.6:
Before: After:
i. X isin INTEGER X in INTEGER
ii. X isin EVEN X in EVEN and EVEN_ISIN_CHECKXNG_FUNCTION(X)
ii. X isin MIN..MAX X in MIN. MAX

In the above example, MIN and MAX are assumed to be of type INTEGER. Type EVEN is

assumed to be defined as in Example 3.1.

3.4. TRANSFORMATION OF ANNA EXPRESSIONS 31

3.4.2 Stage 2: Conditional Expressions

A conditional expression in Anna has the following syntax:

if condition then
erpression

{elsif condition then
ezpression }

else
erpression

end if

Hence, if a conditional expression has n conditions, then it has n + 1 expressions. For the
purpose of this section, a simplified notation is used to denote conditional expressions. Let
C = (C1,...,Cy) be the list of all the conditions and E = (E;,..., E,41) be the list of all
the expressions of the conditional expression. Then the conditional expression is denoted
by C(C,E).

The two expressions f(C(C,E)) and C(C, f(E)) are equivalent except in three specific
cases which will be described later. Here, f(E) denotes {(f(E1),..., f(En+1)). This is true
because the evaluation of f cannot have any side-effects since it is part of an annotation®.
This equivalence is used to repeatedly transform the conditional expression until its type
(the type of the E;’s) is BOOLEAN. This is guaranteed to happen because all annotations are
of type BOOLEAN. Hence, when the conditional expression is moved out all the way, its type
becomes BOOLEAN. Transforming BOOLEAN conditional expressions to Ada expressions
will be discussed later. An example of this transformation is shown below. First a set of

type and variable declarations is given below which is used in the examples of this section:

type RELIGION_TYPE is (ISLAM.JUDAISM, CHRISTIANITY);
type SABBATH_DAYS is (FRIDAY,SATURDAY.SUNDAY,NONE):
type RELIGION__REC(ATHIEST:BOOLEAN) is record
case ATHIEST is
when TRUE =>

null;

*An Anna requirement.

32 CHAPTER 3. GENERALIZED ASSERTIONS CHECKING

when FALSE =>
RELIGION : RELIGION_TYPE;
SABBATH :SABBATH_DAYS;
end case;

end record;

R:RELIGION_REC;
S:SABBATH_DAYS;

Example 3.7: This example illustrates the transformation of conditional expressions to

BOOLEAN conditional expressions. In this example, f(z) = (R.SABBATH = z):

Before:
R.SABBATH = if R.RELIGION = ISLAM then
FRIDAY
elsif R.RELIGION = JUDAISM then
SATURDAY
else
SUNDAY
end if;
After:

if R.RELIGION = ISLAM then
R.SABBATH = FRIDAY

elsif R.RELIGION = JUDAISM then
R.SABBATH = SATURDAY

else
R.SABBATH = SUNDAY

end if;

The three cases in which the equivalence f(C{C,E)) = C(C, f(E)) does not hold are now
discussed. In these cases, the above-mentioned transformation cannot be performed. Vari-

ations of this transformation are therefore provided for each of the cases.

Case 1: f encloses its argument within an initial ezpression. That is, f(z) is of the form
g(in(h(z))). In this case, the expressions f(C(C,E)) and C(in(C), f(E)) are equivalent,

and therefore a similar transformation can still be performed.

3.4. TRANSFORMATION OF ANNA EXPRESSIONS 33

Example 3.8: This example is quite similar to Example 3.7, except that the expression is

an initial expression.

Before:
in (R.SABBATH = if R.RELIGION = ISLAM then
FRIDAY
elsif R.RELIGION = JUDAISM then
SATURDAY
else
SUNDAY
end if
)
After:

if in (R.RELIGION = ISLAM) then
in (R.SABBATH = FRIDAY)

elsif in (R.RELIGION = JUDAISM) then
in (R.SABBATH = SATURDAY)

else
in (R.SABBATH = SUNDAY)

end if;

Case 2: f contains an Ada short-circuit operation. For example, f(z) could be of the
form (¢ and then h(z)). In this case, z should not be evaluated if g happens to be
FALSE. The normal transformation would result in C(C,g and then h(E)) which is
incorrect, for C is evaluated even if g is FALSE. However, this is not a problem since the
arguments of an Ada short-circuit operation are of type BOOLEAN. Therefore, a BOOLEAN
conditional expression can be obtained in this case without having to move the Ada short-

circuit operation into the conditional expression.

Example 3.9: In this example, the second expression, which has been derived from the
first using the normal transformations, is not equivalent to the first. However, the third
expression, in which the conditional expression is BOOLEAN, is equivalent to the first. In

this case, the short-circuit operation has not been moved into the conditional expression.

34 CHAPTER 3. GENERALIZED ASSERTIONS CHECKING

1. not R.ATHIEST and then R.SABBATH = if R.RELIGION = ISLAM then
FRIDAY
elsif R.RELIGION = JUDAISM then
SATURDAY
else
SUNDAY
end if;

2. if R.RELIGION = ISLAM then -— Wrong!
not R.ATHIEST and then R.SABBATH = FRIDAY
elsif R.RELIGION = JUDAISM then

not R.ATHIEST and then R.SABBATH = SATURDAY
else

not R.ATHIEST and then R.SABBATH = SUNDAY
end if;

3. not R.ATHIEST and then if R.RELIGION = ISLAM then
R.SABBATH = FRIDAY
elsif R.RELIGION = JUDAISM then
R.SABBATH = SATURDAY
else
R.SABBATH
end if;

SUNDAY

Case 3: f encloses its argument within a conditional expression. If the argument to f is
also a conditional expression, then there is a nesting of conditional expressions. Moving the
inner conditional expression outside changes the meaning of the whole expression and so the
normal transformations cannot be performed. There are two ways in which the conditional
expressions can be nested: f(z) is such that z is within the condition part of a conditional
expression. For example, f(z) could be (if g(z) then ... end if). In this case, since g(z)
has to be BOOLEAN a BOOLEAN conditional expression can be obtained without having
to move the conditional expression z outside the enclosing conditional expression. The

second possibility is that z is within the expression part of a conditional expression. For

3.4. TRANSFORMATION OF ANNA EXPRESSIONS

oxample, f(z) could be of the form (if g then h(z) ... end if). In this case, the outer
conditional expression is transformed completely first, and when this is done, A(z) will have

been transformed to a BOOLEAN expression.

Example 3.10: In this example (as in the case of Example 3.9, the second expression is not
equivalent to the first. However, the third expression iz which all conditional expressions
are BOOLEAN is equivalent to the first. Note that only the inner corditional expression

has been transformed in the second expression.

1. S = if not R.ATHIEST then
if R.RELIGION = ISLAM then
FRIDAY
elsif R.RELIGION = JUDAISM then
SATURDAY
else
SUNDAY
end if
else
NONE
end if;

W™

if R.RELIGION = ISLAM then -— Wrong!
S = if not R.ATHIEST then
FRIDAY
else
NONE
end if
elsif R.RELIGION = JUDAISM then
S = if not R.ATHIEST then
SATURDAY
else
NONE
end if
else
S = if not R.ATHIEST then
SUNDAY

else

36 CHAPTER 3. GENERALIZED ASSERTIONS CHECKING

NONE
end if
end if;

3. if not R.ATHIEST then

if R.RELIGION = ISLAM then

S = FRIDAY
elsif R.RELIGION =
S = SATURDAY

else
S = SUNDAY
end if
else
S = NONE
end if;

JUDAISM then

The rest of this section discusses how BOOLEAN conditional expressions are transformed

into Ada expressions. In this transformation, Ada short-circuit operations are used exten-

sively. This transformation causes some expressions to be evaluated more than once, but

this is an acceptable overhead in most situations.
and then not Cji;; ... and then not C;). The
BOOLEAN conditional expression C(C, E) is transformed to:

Let A (¢,7) denote (not C;

(

or else (N'(1,1) and then (

Gy

or else (V(1,i—1) and then C;

or else (V(1,n—1) and then C,

or else (NM(1,n)

and then E;)
and then E;)

and then E;)

and then E,)
and then E, i)

Example 3.11: This example illustrates the transformation of a BOOLEAN conditional

expression to an Ada expression.

3.4. TRANSFORMATION OF ANNA EXPRESSIONS 37

Before:

if R.RELIGION = ISLAM then
R.SABBATH = FRIDAY

elsif R.RELIGION = JUDAISM then

R.SABBATH = SATURDAY
else

R.SABBATH = SUNDAY
end if;
After:

(

(R.RELIGION = ISLAM
and then R.SABBATH = FRIDAY)
or else (not R.RELIGION = ISLAM and then R.RELIGION = JUDAISM
and then R.SABBATH = SATURDAY)
or else (not R.RELIGION = ISLAM and then not R.RELIGION = JUDAISM
and then R.SABBATH = SUNDAY)

3.4.3 Stage 3: Anna Relational Expressions

Anna relational expressions have the following syntax:
ezpression { relational_operator ezpression}

The Anna relational expression is transformed into a conjunction of Ada relational opera-

tors.

Example 3.12:

Before:
I <= J < K <N

After:
STANDARD. "and"(STANDARD."and"(I<=1J1,J< K),K <N)

38 CHAPTER 3. GENERALIZED ASSERTIONS CHECKING

3.4.4 Stage 4: Initial Names and Expressions

Initial names and expressions are transformed by introducing a constant declaration just
before the annotation within which the initial name/expression occurs, and replacing the
initial name/initial expression in the annotation by that constant. The constant is initialized

to the value of the initial name or expression.

Example 3.13: Assume all variables to be of type INTEGER.

1. Before:
--| A = in A;
After:
NcW_A:constant INTEGER := A;
-—| A = NEW_A;
2. Before:

-~} out (C*C = in (A*A + in (BxB)));

After:
NEW_EXP :constant INTEGER := A*A + B=*B;
~--| out (C*C = NEW_EXP);

3.4.5 Stage 5: Renaming of Objects

To prevent confusion when expressions are moved around during the transformation process.
every object that occurs in an annotation is renamed by a unique identifier and this identifier

is used to refer to the object in the annotation.

Example 3.14: Assume X is of type INTEGER.

Before:
--] X mod 2 = 0

3.5. GENERATION OF CHECKING CODE 39

After:

NEW_X:INTEGER renames X:

function NEW_MOD(X,Y:INTEGER) return INTEGER renames "mod";
function NEW_EQUAL(X,Y:INTEGER) return INTEGER renames "=",
-—| NEW_EQUAL(NEW_MOD(NEW_X,2),0);

3.4.6 Quantified and State Expressions

Anna -juantified expressions and Anna state expressions are not handled completely by the
current version of the Anna Transformer. Future versions are expected to implement trans-
formations for these expressions. In the case of quantified expressions, the programmer may
have to provide iterators for the quantifier domains. The quantified expressions can then

be transformed to use these iterators. For example, in the following quantified expression,
for all S:SYMBOL => MEMBER(S,SYMBOL_TABLE) —> DECLARED(S);

the programmer may be asked to provide an iterator over the SYMBOL_TABLE that re-
turns all SYMBOL’s that are MEMBER's of the SYMBOL_TABRLE. Tlie general solution
to implementing runtime checking for quantified expressions is however a topic for future
research.

State expressions do not pose the same kinds of problems as quantified expressions. They
can be implemented by generating functions that take as parameters the state descriptors
and return the value of the state expression. A pilot implementation for array states has
been completed.

Quantified expressions and state expressions that are part of Anna package axioms are

handled in a different manner. This is discussed in Chapter 4.

3.5 Generation of Checking Code

3.5.1 Checking Functions of Subtype Annotations

Every type® has two checking functions associated with it, whether or not they have a cor-

responding subtype annotation. Example 3.1 in page 22 illustrates these checking functions

*Pere the word “type” refers to both Ada types and subtypes

40 CHAPTER 3. GENERALIZED ASSERTIONS CHECKING

for the case when the type had a corresponding subiype annotation. In the case ot type
without a subtype annotation. the purpose of a checking function is to make = call to a
parent checking function. The reason to introduce this level of indirection is duc to the vis-
ibility rules of Ada. The parent checking functions may not be visible at all locations from
where it needs to be called. Hence the checking functions of a type without a corresponding
subtvpe annotation can be thought of as bridging the gap between other checking functions
and the locations from where they are called. If there is no parent checking function and the
tyvpe does not have a corresponding subtype annotation, checking functions do not have to
be generated. All variables that occur in subtype annotations are replaced by their values
upon elaboration of the annotation. This is done by converting all variables to initial names
and then performing the transformation described in Section 3.4.4. The features of checking

functions of subtype annotations are now summarized:
1. There are two different kinds of checking functions.
2. There are no declarations.
3. The values of all variables are “frozen” at elaboration time.

4. There is either no annotation checked, in which case there is a call to a parent checking
function; or there is exactly one annotation checked (since a type can have only one
subtype annotation), in which case there may or may not be a call to a parent checking

function.

5. The exception handlers are as shown in Section 3.2.

3.5.2 Checking Functions of Object Annotations

(“hecking functions of object annotations are the most complex of the checking functions.
Only the checking functions that raise exceptions are generated. These checking functions
are associated with the variables that occur in the annotations. For example, if an object
annotation has three variables, this results in the generation of three checking functions, one
for each of these variables. However. in any particular declarative region. there is at most
one checking function per variable. This checking function checks all object annotations in
this declarative region in which its corresponding variable occurs. If the variable has been
declared in 2 more global declarative region, then there may be other object annotations

constiuining this variable at more global declarative regions. Hence, there can be different

3.5. GENERATION OF CHECKING CODE 41

checking functions for the same variable at different declarative regions. Each checking
function of a variable includes a call to the next most global checking function of the same
variable (if such a checking function exists). As a result of the language rules, there are no
problems due to visibility rules, unlike in the case of subtype annotations. This is also the

case with result annotations (see Section 3.5.3).

Example 3.15: This example illustrates the generation of checking functions for object
annotations. Note the use of renaming declarations within the checking functions. This

simplifies the generation of the checking functions.

Before:
procedure P is
A,B:INTEGER;
-—| A+B > 0;
-—| B > o;
procedure Q is
C:INTEGER;
--] ¢ > B;
begin

end Q;
begin

end P;

After:
procedure P is
A ,B!INTEGER;

~~ The following renaming declarations are a result of ap-
—- plying the transformations of Section 3.4.5 when applied
~~ to the expressions of the first two annotations in the ez-
-— ample.

A1 INTEGER renames A;

B; :INTEGER renames B;

B2 ! INTEGER renames B;

42

CHAPTER 3. GENERALIZED ASSERTIONS CHECKING

—— The renaming declarations within the checking functions
—— hide the appropriate global renaming declarations.
function A_CHECKING_FUNCTION(X:INTEGER) return INTEGER is
A1 :INTEGER renames X;
begin
if not (A +B; > 0) then
raise ANNA_EXCEPTION;
end if;
return X;

exception
end A_CHECKING_FUNCTION;

function B_CHECKING_FUNCTION;(X:INTEGER) return INTEGER is
B; :INTEGER renames X;
B, :INTEGER renames X;
begin
if not (A;+B; > 0) then
raise ANNA_EXCEPTION;
end 1if;
if not (B; > 0) then
raise ANNA_EXCEPTION;
end if;
return X;

exception
end B_CHECKING_FUNCTION;;

procedure Q is
C:INTEGER"
C;:INTEGER renames C;
B3 INTEGER renames B;

function C_CHECI\'ING_FUNCTION(X:INTEGER) return INTEGER is
C) :INTEGER renames X;
begin
if not (C; > Bj3) then
raise ANNA_EXCEPTION;
end if;

3.5. GENERATION OF CHECKING CODE 43

return \;

exception
end C_CHECKING_FUNCTION;

function B_CHECKING_FUNCTION2(X:INTEGER) return INTEGER is
B3:INTEGER renames X;
begin
if not (C; > B3) then
raise ANNA_EXCEPTION,
end if;
return B_CHECKING_FUNCTION; (X);

exception

end B_CHECKING_FUNCTIONg;

.

begin
end Q;
begin
end P;

In the case of composite ob jects, checking procedures are generated instead of checking func-
tions. This improves the performance of the checking code. Note that checking procedures
are not generated for subtype annotations and result annotations even though there may be
an improvement in the performance of the checking code. In the case of composite objects,
checking functions can be completely replaced by checking procedures, but in the case of
subtype annotations and result annotations, checking functions will still be necessary even
if checking procedures were generated. A design decision was made to generate only one
kind of checking subprogram for each case to avoid a proliferation of checking subprograms.
In any case, the performance of the checking functions can be improved by using a compiler

directive to expand these functions inline.

44 CHAPTER 3. GENERALIZED ASSERTIONS CHECKING

Example 3.16:

Before:
procedure P is
type T is array(1..10) of INTEGER;
X:T;
-—| SUM(X,1,5) > SUM(X,6,10);
begin

end P,

After:
procedure P is
type T is array(1l..10) of INTEGER;
X:T;
procedure X_CHECKING_PROCEDURE(X:in out T) is
begin
if not (SUM(X,1,5) > SUM(X,6,10) then
raise ANNA_EXCEPTION;
end if;
return;
end X_CHECKING_PROCEDURE;
begin

end P;
The features of checking functions of object annotations are now summarized:

1. Only the checking function that raises exceptions is generated.

2. Renaming declarations are generated within the checking function to simplify the

generation of the rest of the checking function.

3. These checking functions correspond to variables, and are generated in any declarative

region where there is an object annotation constraining this variable.

4. Within a declarative region, there is only one checking function for any particular
variable which checks all object annotations within the same declarative region that

constrain this variable.

3.5. GENERATION OF CHECKING CODE 45

5. The exception handlers are as shown in Section 3.2.

6. In the case of composite objects, checking procedures are generated instead of checking

functions.

3.5.3 Checking Functions of Result Annotations

Result annotations can occur as subprogram annotations, object annotations or statement
aanotations. However, as a result of the transformations described in Section 3.3, all result
annotations are guaranteed to be object annotations, i.e., they will occur only within a
declarative region. Checking functions of result annotations are similar to those of object
annotations. There is a renaming declaration within the checking function corresponding
to each annotation checked by the checking function. Also, in every declarative region that
contains result annotations there is one result annotation that checks these annotations.
Unlike in the case of object annotations where object annotations can constrain more than
one variable, result annotations can constrain only one function—the most local function
that encloses the annotation. Also, all result annotations within the same declarative region
constrain the same function. Hence at most one checking function requires to be generated
in each declarative region. Just as in the case of object annotations, result annotations
of the same function can occur in different declarative regions. Here again, each checking

function calls the next most global checking function (if one exists).

Example 3.17: This example illustrates the generation of checking functions for result

annotations:

Before:
function LOG(F:FLOAT) return FLOAT is

——-| return A:FLOAT => A < F;

-~| return B:FLOAT => F<1.0 —> B<0.J0;
begin

end LOG;

16 CHAPTER 3. GENERALIZED ASSERTIONS CHECKING

After:
function LOG(F:FLOAT) return FLOAT is

—— The global renaming declarations are ignored for simplic-
-— ity.

function LOG_CHECKING_FUNCTION(X:FLOAT) return FLOAT is
A:FLOAT renames X;
B:FLOAT renames X;
begin
if not (A < F) then
raise ANNA_EXCEPTION;
end if;
if not (STANDARD."<="(F<1.0,B<0.0)) then
raise ANNA_EXCEPTION;
end if;
return X;

exception
end LOG_CHECKING_FUNCTION;
begin

end LOG;

3.5.4 Calls to Checking Functions

In addition to the call made to a checking function to implement the Anna membership test
(Section 3.4.1), checking functions are also called at places where the variables present in
the corresponding annotations change value. The Ada/Anna language rules guarantee that
annotations can change their values only at such places®. Details of all calls to checking
functions are discussed below. In this discussion, all variables are assuined to be defined (i.e.,
they are initialized in their declarations). If this assumption is not made, it will be necessary

to create a BOOLEAN variable corresponding to every program variable. These variables are

®This applies to sequential programs only. When there are multiple threads of control in the program, it
is assumed that the execution of one thread of control does not affect the value of annotations constraining
other threads of control.

3.5. GENERATION OF CHECKING CODE 47

all initialized to FALSE and changed to TRUE whenever the corresponding program variable
is giver a value. It is necessary to have such a BOOLEAN variable even for components
of composite types. However, experiments have demonstrated that this assumption can
be made without significantly affecting the usefulness of the Anna Consistency Checking

System.

Object Declarations

A check is performed at an objoct declaration if the type of the object has a corresponding
checking function (i.e., the type is constrained directly or indirectly by subtype annotations).
This is performed by generating a dummy ob jeci declaration immediately after the object
declaration in question. This object is initialized by calling a function in the Anna runtime
library. Calling this function has the side-effect of performing the necessary check. This
function usually calls the checking function of the type of the declared object. However,
there is an Ada rule that restricts calls to subprograms until they are elaborated. Hence, if
the type has been declared in the same declarative region as the object declaration, then the
checking function cannot be called. In this situation, the annotation is explicitly checked.
In general, there will be explicit checks corresponding to the relevant types in the same
declarative region as the object declaration, and one call to a checking function declared in

a more global declarative region.

Example 3.18: In this example (as in the case of future examples), the function CHECK
(there is also a procedure with the same name that will occur in later examples) is defined

in the Anna runtime library.

Before:
declare
subtype PERFECT_CUBE is INTEGER;
--| where X:PERFECT_CUBE =>
-=] (INTEGER(CUBE_ROOT(FLOAT(X)))**3) = X;
begin
declare
subtype EVEN_PERFECT_CUBE is PERFECT_CUBE:
--] where X:EVEN_PERFECT_CUBE =>
- X mod 2 = 0

CHAPTER 3. GENERALIZED ASSERTIONS CHECKING

subtype POS_EVEN_PERFECT_CUBE is EVEN_PERFECT_CUBE;
-—| where X:POS_EVEN_PERFECT_CUBE =>
--] X > 0
A:PERFECT_CUBE := 0;
B:EVEN_PERFECT_CUBE := 0;
C:POS_EVEN_PERFECT_CUBE := 0;
begin

end;

end;

After:
declare
subtype PERFECT_CUBE is INTEGER;

begin
declare
subtype EVEN_PERFECT_CUBE is PERFECT_CUBE;
subtype POS_EVEN_PERFECT_CUBE is EVEN_PERFECT_CUBE;

A:PERFECT_CUBE := 0;
A_CHECK :BOOLEAN
:= CHECK(ISIN_PERFECT_CUBE_CHECKING_FUNCTION(A));

B:EVEN_PERFECT_CUBE := 0;
B;_CHECK:BOOLEAN := CHECK(B mod 2 = 0);
B;_CHECK:BOOLEAN

:= CHECK(ISIN_PERFECT_CUBE_CHECKING_FUNCTION(B));

C:POS_EVEN_PERFECT_CUBE := 0;
Cy_CHECK :BOOLEAN := CHECK(C > 0);
C_CHECK : BOOLEAN := CHECK(C mod 2 = 0);
C3_CHECK : BOOLEAN
:= CHECK(ISIN_PERFECT_CUBE_CHECKING_FUNCTION(C));

begin

3.5. GENERATION OF CHECKING CODE 49

end;
end;

Assignment Statements

The expression on the right-hand side must satisfy any annotations on the subtype of the
target variable. It also has to satisfy all object annotations on the target variable. This is
checked by transforming the right-hand side expression to include calls to the appropriate

checking functions.

Example 3.19:

Before:
declare
A,B:EVEN;
--| B<=10;
begin
A = 6;
B = A;
end;
After:
declare
A,B:EVEN;
begin
A := EVEN_CHECKING_FUNCTION(6);

B := B_CHECKING_FUNCTION(EVEN_CHECKING_FUNCTION(A));
end;

Entry into Subprograms

On entry into subprograms, all parameter values of mode in and in out have to satisfy any
constraints on their types. The method of checking these constraints is quite similar to that
of checks performed at object declarations. However, in this case, all types are declared at

some global declarative region and hence no explicit checks need to be generated.

50 CHAPTER 3. GENERALIZED ASSERTIONS CHECKING

Example 3.20:

Before:
procedure ABSOLUTE_VALUE(X:in EVEN;Y:in out POS_EVEN) is
begin

end ABSOLUTE_VALUE;

After:

procedure ABSOLUTE_VALUE(X:in EVEN;Y:in out POS_EVEN) is
X_CHECK:EVEN := CHECK(ISIN_EVEN_CHECKING_FUNCTION(X));
Y_CHECK:POS_EVEN := CHECK(ISIN_POS_EVEN_CHECKING_FUNCTION(Y));

begin

end ABSOLUTE_VALUE;

Exit from Procedures

On exit from procedures, the values of all formal parameters of mode in ou? and out are
assigned to the corresponding actual parameters. The new values of the actual parameters
must satisfy any constraints on their types, and also constraints imposed by object annota-
tions. Dummy assignment statements are generated immediately after the procedure call,
which are then transformed like any other assignment statement. Note that since func-
tions can have only in parameters, these checks do not have to be performed on exit from

functions.

Example 3.21:

Before:

declare
subtype SMALL_POS_EVEN is POS_EVEN;
--| where X:SMALL_POS_EVEN =>

--] X <= 100;
A:EVEN;
B:SMALL_POS_EVEN;
--| B > 10;

begin

3.5. GENERATION OF CHECKING CODFE 51

A= ...
ABSOLUTE_VALUE(A,B);

end;

After:

declare
subtype SMALL_POS_EVEN is POS_EVEN;
A:EVEN;
B:SMALL_POS_EVEN;

begin
A= ...
ABSOLUTE_VALUE(A, B);
B := B_CHECKING_FUNCTION(SMALL_POS_EVEN_CHECKING_FUNCTION(B));

end;

Type Conversions and Qualified Expressions

The values of type conversions and qualified expressions have to satisfy any constraints on
their corresponding types. This is checked by calling the appropriate checking function as

shown in the example below.

Example 3.22:

Before:
declare
A INTEGER;:
B:EVEN;
begin
B := EVEN(A) + EVEN(2);
end;
After:
declare
A:INTEGER;
B:EVEN:

begin

32 CHAPTER 3. GENERALIZED ASSERTIONS CHECKING

B := EVEN_CHECKING_FUNCTION(EVEN(A))
+ EVEN_CHECKING_FUNCTION(EVEN’(2));

end;

Return Statements

When returning from a function, the return value must satisfy any result annotation on this

function. This is checked by calling the appropriate checking function.

Example 3.23:

Before:
function LOG(F:FLOAT) return FLOAT is
——| return A:FLOAT => A < F;
——| return B:FLOAT => F<10 ~> B<0.0;
begin
return LN(F)/LN(10.0);
end LOG;

After:
function LOG(F:FLOAT) return FLOAT is

begin
return LOG_CHECKING_FUNCTION(LN(F) /LN(10.0));
end LOG;

Location of Object Annotations

At the location of all object annotations, a check has to be made to ensure that the object
annotation holds at this point (the initial state ¢« the scope of the object annotation). To

perform this check. no checking function is called, rather the check is explicitly performed.

3.5. GENERATION OF CHECKING CODE 53

Example 3.24:

Before:

declare
A,B.INTEGER := 0;
--| A+B >= o
begin

end;

After:
declare
A,B:INTEGER := 0;
OBJ_ANNO_CHECK : BOOLEAN := CHECK(A+B >= 0);

begin

end;

Checking of Composite Objects

In the case of composite ob jects, checking functions might introduce an overhead due to the
possibility of making a copy of the composite object. This overhead shows itself especially
in the case of the dummy assignment statements that are used to check constraints after
returning from procedures. An optimization can be performed in the case of object anno-
tations to solve this problem. For composite objects, checking procedures are generated
instead of checking functions (see Section 3.5.2). The composite object is passed to the
checking procedure as an in out parameter. The checking procedures are called at slightly
different locations as compared to the checking functions. For example, in the case of as-
signment statements, the checking procedure is called immediately after the assignment
statement. This results in a slightly delayed, but more efficient performance of the check.
Composite objects also present another probiem. When an assignment is made to a
component of a composite object, this could potentially violate constraints on both the
component type and the composite type in addition to any object annotations on the
composite object. In this case, all relevant checks are performed as shown in the example

below.

5 CHAPTER 3. GENERALIZED ASSERTIONS CHECKING

Example 3.25:

Before:
declare
subtype T is INTEGER;
~~| where X:T => X > 0;
type R is record
C: T
end record;
--| where X:R => X.C < 10;
type A is array(l..2) of R
--|] where X:A => X(1).C > X(2).C:
Z:A
--| Z(1).C + Z(2).C > s
Legin
Z(1).C = ezp:

end:

After:
declare
subtype T 1is INTEGER;
type R is record
C:T,
end record;

type A is array(1..2) of R;

7 A

begin
72(1).C = T _CHECKING_FUNCTION(ezp);
Z(1) := R_CHECKING_FUNCTION(Z(1'}:

Z_CHECKING_PROCEDURE(A_CHECKING_FUNCTION(Z));

end

something stin lar can Ge done in the case of access types also. However, in this case there
is the additicnal problem of (dynamic) aliasing”. The only way in which this problem can he
solved is by brute force. Eve v time an access object is changed, all other access objects are

nlso checked for consistency. Since this is extremely ineffic t, some other alternative has

“Static aliasing that is achieved Ly Ada renaming declarations do not pose a problem.

3.5 GENERATION OF CHECKING CODE 55

to be taken. One possible approach (see Chapter 6) is to axiomatize collcctions [79] of access

objects, and use an approach based on algebraic specification checking (see Chapter).

3.5.5 Transformation of Exception Annotations

The Anna Transformer restricts the use of propagation annotations in the following manner:
After the transformations described in Section 3.3, all propagation annotations must occur
before any other declaration or annotation within a declarative region. Hence, after the

transformations of Section 3.3, all frames® have the foliowing structure:

frame_header

all propagation annolations

rest of declarative region
begin

sequence_of_statemenlts
[exception

exception__handlers)

(rll(l,’

The first step in the transformation creates a new Ada block as shown below:

Jrame_header
all propagation annolalions
begin
declare
(1)
rest of decluralive region
begin
sequence_of _statements
[exception
cxception_handlers)
end;
exception
(2)

end;

" .) . .
A frame in Adais rither a block statement or the body of a subprogram, package, task unit, or generic

HHYIS

36 CHAPTER 3. GENERALIZED ASSERTIONS CHECKING

The inner block has the same semantics as the original frame. The function of the outer
frame is to monitor both normal and abnormal exits from the inner block at the same time
maintain the external appearance of the frame just as it was before the transformation. In
the next step of the transformation. the propagation annotations will be transformed into
out annotations (which will be placed at location 1), and checks (which will be placed at

location 2). The transformation of out annotations are described in the next section.

Strong Propagation Annotations

Strong propagation annotations have the form:

(' => raise E;

The condition C is evaluated during elaboration of the annotation and assigned to a variable,
just as in the case of initial expressions. When this variable is TRUE, exit from the block
has to take place abnormally by propagating the exception E. Hence, checks are generated
at all other exit points to ensure that this variable is not TRUE at these points. This is

done as shown below:

Before:
frame_header

--| € => raise E;

begin
declare
rest of declarative region
begin
sequence_of_statements
[exception

exception_handlers]
end;

exception

end;

3.5. GENERATION OF CHECKING CODE 57

After:
frame_header
C; :BOOLEAN := C;
begin
declare
--| out (not C;);
rest of declarative region
begin
sequence_of_statements
[exception
exception_handlers]
end;
exception
when E =>
raise;
when z =>
-~ For all exceptions, z, not equal to E
CHECK(not Ci};
raise;

end;

Weak Propagation Annotations

There are two forms of weak propagation annotations. The first, has the form:

raise E; 1. . %,
This means that it is possible to leave the scope of the annotation abnormally by raising
the exceptions E;.... E,. There is no checking necessary for this kind of annotation, for it
does not restrict the underlying program in any way. It can be considered a form of formal
documentation and some static semantic analysis could be performed based on it.

The other form of weak propagation annotation is:

raise Ey|... |E, => ¢

R CHAPTER 3. GENERALIZED ASSERTIONS CHECKING

This is equivalent to a list of n weak propagation annotations, one for each exception. The
transformations are performed for each of the n exceptions individually. For the rest of this

section, assume the weak propagation annotation being transformed is:
raise E =>

A check is generated in the exception handler for E to ensure that C does in fact hold at

that point. This is done as shown below:

Before:
frame_header
~~-| raise E => C;
begin
declare
rest of declarative region
begin
sequence_of_statements
[exception
erxcepltion_handlers)
end;

exception

end;

After:
frame_header
begin
declare
rest of declarative region
begin
sequence__of statements
[exception
exception_handlers]

end;

3.5. GENERATION OF CHECKING CODE 59

exception
when E =>
CHECK(C);
end;

Example 3.26:

Before:
—— This is slightly different from the OPEN defined in the pre-
- - defined package TEXT_IO.
procedure OPEN(FILE:in out FILE_TYPE;NAME:in STRING) is
-—| not EXISTS(NAME) => raise NAME_ERROR;
~—| IS_OPEN(NAME) => raise STATUS_ERROR;
-—| raise STATUS_ERROR => IS_OPEN(NAME);

begin

end OPEN;

After:

procedure OPEN(FILE:in out FILE_TYPE;NAME:in STRING) is
C) :BOOLEAN := not EXISTS(NAME);
C2 :BOOLEAN := IS_OPEN(NAME);
—-— Note: Cy and C, capture the values of the expressions on
—-— entry into OPEN. These expressions may change value

- - during the erecution of OPEN, but Ci and C; will not
- - change value.

begin
declare
--| out (not C;);
-—| out (not C,);
begin

60 CHAPTER 3. GENERALIZED ASSERTIONS CHECKING

end;
exception
when NAME_ERROR =>
CHECK(not C3);
raise;
when STATUS_ERROR =>
CHECK(not Cp);
CHECK(IS_OPEN(NAME));
raise;
when others =>
CHECK(not Cy);
CHECK(mnot C3);
raise;
end OPEN;

3.5.6 Transformation of Out Annotations

QOut annotations are constraints on the normal exit states of their scopes. After the trans-
formations described in Section 3.3, all annotations will occur as declarative annotations.
Hence the scope of out annotations is either a block statement, the body of a subprogram,
package, task unit or generic unit. Qut annotations have to be checked at all normal exit

points within the scope of the annotation. There are five different kinds of exit points:
1. The end of the sequence of statements
2. The end of the sequence of statements of an exception handler
3. Return statements
4. FErit statements

. Goto statements

i

At each of these exit points, the list of all out annotations to be tested are determined. This
list consists of all out annotations in whose scope the exit point occurs, but not including
those which include in their scope the point to where control is transferred. Each of these

annotations is tested by calling the procedure CHECK in the Anna runtime library.

3.5. GENERATION OF CHECKING CODE

Example 3.27:

Before:
procedure FOO is
--| out Fy;
begin
declare
—-—l out Fo;
begin
loop
declare
~~| out Fs;
begin
exit;
return;

goto L;

end;

end loop;
return;
end;
<< L> >
goto L;

exception

when others =>

end FOO;

61

62 CHAPTER 3. GENFERALIZED ASSERTIONS CHECKING

After:
procedure FOO is

begin

declare

begin
loop

declare
begin

CHECK(F3);

exit;

CHECK(F;); CHECK(F3;); CHECK(F3);

return;

CHECK(F;); CHECK(F3);
goto L;

CHECK(F3);
end;

end loop;

CHECK(F,); CHECK(F,);

return;

CHECK(F3);

end;
<<LL>>

~~ No checks required here

goto L;

3.9.

GENERATION OF CHECKING CODE 63

CHECK(F,);
exception

when others =>

CHECK(Fy);
end FOO;

There is one situation which is not covered in the above framework. This is the case of

returning from a function. In this case, the out annotations have to bte checked after the

return expression has been evaluated. This problem is tackled by generating a function

whose only function is to check the relevant out annotations as a side effect.

Example 3.28:

Before:
function C(N,R:INTEGER) return INTEGER is
NUMERATOR,FACT_R:INTEGER;
--] out (FACT_R = FACTORIAL(R));
begin

return NUMERATOR /FACT_R;
- - Out annotation has to be tested after evaluation of NU-
-- MERATOR /FACT_R

end C:

After:
function C(N,R:INTEGER) return INTEGER is
NUMERATOR,FACT_R:INTEGER;

bhegin

declare
function OUT_CHECK(X:INTEGER) return INTEGER is
begin
CHECK_EXP{FACT_R = FACTORIAL(R));
return X;
end OUT_CHECK:

begin

64

CHAPTER 3. GENERALIZED ASSERTIONS CHECKING

return OUT_CHECK(NUMERATOR /FACT_R);

end;

end C;

3.6 Concurrent Checking of Generalized Assertions

The Anna Transformer has an option using which checking tasks are generated instead of

checking functions. These tasks execute ccncurrently with the underlying program. How-

ever, this approach has the disadvantage that the underlying program may execute for some

time in an inconsistent state. Check-points can be defined at various places where the un-

derlying program can be forced to wait until specified checks are completed. The details of

these transformation and checking methodology are described in [81].

Chapter 4
Algebraic Speciﬁcatlion Checking

In Chapter 1, an example was presented to motivate algebraic specification checking. A
general discussion of the principles of consistency checking was presented in Chapter 2. In

this chapter the details of algebraic specification checking are presented.

4.1 Abstract Data Types and Algebraic Specifications

An abstract data type defines a set of data objects, and a set of operations on these data
objects. These are encapsulated in such a way that the user of the abstract data type can
only manipulate the data objects by using the operations provided.

The Ada package is an encapsulation unit using which abstract data types can be defined.
The data objects are defined by Ada type declarations, and the abstract operations are
defined as Ada subprograms. Example 1.2 in Chapter 1 defines the DEQUE abstract data
type using the Ada package. There are other ways in which an abstract data type can
be defined using Ada packages. For example, procedures could replace the functions; and
the data objects could be defined implicitly by the state of the package. However, for the
purposes of this thesis, an abstract data type is assumed to be implemented as an Ada
package with one type declaration. This package may refer to other type declarations, or
other abstract data types. These types are referred to as the auziliary types. This package
contains functions that operate on the package type and auxiliary types and return values
of these types, but does not contain any procedures. A simple transformation can convert

any arbitrary implementation of an abstract data type to the kind of implementation stated

above.

66 CHAPTER 4. ALGEBRAIC SPECIFICATION CHECKING

As mentioned in Chapter 1, for the purpose of this thesis, an algebraic specification of
an abstract data type is defined as a set of equations whose terms comprise of the abstract
operations and variables that are universally quantified over the domain of abstract objects.
The Anna package axioms in Example 1.2 in Chapter 1 form an algebraic specification of

the DEQUE abstract data type.

4.2 Algebraic Specification Checking

Algebraic specification checking is the task of checking the implementation of an abstract
data type (the package body in Ada) against the algebraic specification of the abstract data
type. First, however, one has to define what kinds of checks are involved in this process.

This is not as obvious as in the case of checking against generalized assertions.

At any point during the execution of a program that uses an abstract data tvpe, there
is a set of ob jects declared to be of the abstract data type. Some of these objects will have
been assigned values from the domain of the abstract data type. Since the only way to
compute values of the abstract data type is to execute the abstract data type operations,
all values that have been assigned to the above-mentioned objects are a result of applying
a composition of these abstract data type operations to the constants! of the abstract data
type. That is, for each value of the abstract data type computed, there is a corresponding
term comprising only of operations and constants of the abstract data type whose evaluation
results in this value. Let @ be the set of all such terms at any particular point during the
execution of the program. Obviously, @ grows in size as the program continues to execute.
The set O after the execution of the first set of assignment statements of Example 1.2 in

Chapter 1 contains:

CREATE

LEFT_PUSH(CREATE, Eg)
LEFT_TOP(LEFT_PUSH(CREATE, Eg))
LEFT_POP(LEFT_PUSH(CREATE, Eg))

and after the execution of the second s=t of statements in the same example, © contains:

; - -
A constant is an operation that does not take anv parameters.

4.2. ALGEBRAIC SPECIFICATION CHECKING 67

CREATE

LEFT_PUSH(CREATE, E)

RIGHT_PUSH(LEFT_PUSH(CREATE, E;).E3)
LEFT_POP(RIGHT_PUSH(LEFT_PUSH(CREATE,E;),E3))
RIGHT_POP(LEFT_POP(RIGHT_PUSH(LEFT_PUSH(CREATE. E;),E3)))

The following definition of algebraic specification checking is the basis of the methodologies

and algorithms discussed in this chapter:

Algebraic specification checking involves comparing the terms in O with each
other. If any two terms can be proved equal based on the algebraic specification,
then the corresponding program values have to be compared with each other. [f
they are not equal, then the program has become inconsistent with the algebraic

specification.

In Example 1.1, since LEFT_POP(LEFT_PUSH(CREATE, E;)) can be proved to be equal to
CREATE, therefore, the corresponding pregram values, namely D, and Dg, have to compared
with each other.

There are some situations which the above definition of algebraic specification checking
does not cover. That is, it is possible for a program to reach an inconsistent state with
respect to an algebraic specification and yet an ideal algebraic specification checking system
(based on the above definition of algebraic specification checking) will not able to detect

this inconsistency. The following example illustrates such a situation:

Example 4.1: Consider the following sequence of statements that execute operations of

:he DEQUE abstract data type of Example 1.2:

Dy := LEFT_PUSH(Dg,Eq);
D3 := LEFT_POP(D;);
if D, = D; then
- (1)
end if;
At location | it can be shown that Dj has to be equal to D, (since Dy = D,). However,

an ideal algebraic specification checking system will not be able to determine this. This is

6 CHAPTER 4. ALGEBRAIC SPECIFICATION CHECKIN

because, though Dy = Dy is true at this location. the algebraic specification checking model
does not make use of it. Extending the model of algebraic specification checking of this
thesis to cover such situations is a topic for future research.

As has been mentioned in Chapter 2, a theorem prover forms part of the algebraic
specificaticn checking system. In this chapter, a specialized theorem prover, called the
Chromatic Theorem Prover is described. Howev r, other similar provers can also be used.
When the program starts erecuting, the theorem prover is initialized with the algebraic
specifications. After this. a call is made to the theorem prover every time an operation of
the abstract data type is executed.

The theorem prover is an Ada generic package. The body of this package incorporates
the specific theorem proving algorithms. The generic package specification is not influenced
reoany way by the underlying algorithms. A simplified version of the generic package

spectfication is shown below:

generic

type ABSTRACT_TYPE is limited private;

with procedure ASSIGN_SLNO(A:Iin out ABSTRACT_TYPE;SLNO:INTEGER);
with function GET_SLNO(A:ABSTRACT_TYPE) return INTEGER:

with function EGQ X, Y:ABSTRACT_TYPE) return BOOLFAN:

with procedure COPY(X:ABSTRACT_TYPE:Y :out AUSTRACT_TYPE);
type AUXILIARY_TYPE is lumited private:

with function EQ(X.Y:AUXILIARY_TYPE) return BOOLEAN:

AXNIOM_FILE STRING:

package AXTOM_CHECKER is
procedure OP_OVER(OP:CHARACTER:

INPUT ABSTRACT_TYPE:
OVTPUT iin out ABSTRACT_TYPE):

4.2. ALGEBRAIC SPECIFICATION CHECKING 69

procedure OP_OVER(OP:CHARACTER;
AUX:AUXILIARY_TYPE;
INPUT:ABSTRACT_TYPE;
OUTPUT:in out ABSTRACT_TYPE);

end AXIOM_CHECKER;

The Anna Transformer maps each of the abstract operations to a character. This map-
ping corresponds to the isomorphism function that will be introduced later in this chapter.

A typical mapping in the case of Example 1.2 is:

CREATE - @
LEFT_PUSH - W
LEFT_POP -
LEFT_TOP - @
RIGHT_PUSH - e
RIGHT _POP -
RIGHT_TOP - g

The generic package exports a family of procedures called OP_OVER. The appropriate pro-
cedure from this family is called at the end of the execution of each abstract operation. The
calls to OP_OVER provides the theorem prover with the information necessary to update
the set © that it maintains. In the above package, two such procedures are shown. The
first has three parameters. OP corresponds to the abstract operation; INPUT to the input
parameter of the operation and OUTPUT to the result of the operation. This procedure is
called by abstract operations which take one abstract data type parameter and returns an
abstract data tvpe value. In Example 1.2, the functions LEFT_POP and RIGHT_POP call
this procedure. The second procedure has an additional parameter which is of the auxiliary
tvpe. This is called by operations with a parameter of the auxiliary type in addition to the
paranieter of the abstract data type. In the case of the DEQUE package, the auxiliary tvpe
is ELEMENT. This procedure is called by the functions LEFT_PUSH and RIGHT_PUSH.
The Anna Transformer performs a transformation on the abstract data type so that a
serial number can be associated with it. One wayv to do this is to create a record structure
with two components—one the original abstract data tvpe and the other the serial number.

The serial number is assigned and used by the theorem prover only. Since the theorem

70 CHAPTER 4. ALGEBRAIC SPECIFICATION CHECKING

prover performs only symbolic manipulations with the abstract objects, the serial num-
bers act as the symbolic representation of the objects. Hence two operations are provided
to the theorem prover as generic formal parameters for this purpose: ASSIGN_SLNO and
GET_SLNO.

The algebraic specification is copied (after transforming the operations into characters)
into a file. This file is read in by the theorem prover during its initialization. The location
of the file is provided by the generic formal parameter AXIOM_FILE.

Whenever a new variable is encou.:icred by the theorem prover, it makes a copy of it.
It is with this copy that any future comparisons for equality are made. The generic formal
parameters EQ (over ABSTRACT_TYPE) and COPY are provided for this purpose. It may
be necessary for the programmer to explicitly provide these two operations in packages
where these operations are not already present.

The DEQUE package of Example 1.2 after transformation

package DEQUE_PACKAGE is
—— The following modification to the type definition is to in-
-~ clude the serial number. [n the case of a private type,
-~ this transformatior. is performed in the fuil type defini-
- — tion in the private part.
type DEQUE is record
SLNO:INTEGER;
end record:
function CREATE return DEQUE:
function LEFT_PUSH(D:DEQUE;E:ELEMENT) return DEQUE:
function LEFT_POP(D:DEQUE) return DEQLUE;
function LEFT_TOP(D:DEQUE) return ELEMENT:
funetion RIGHT_PUSH(D:DEQUE:E:ELEMENT) return DEQUE;
function RIGHT_POP(D:DEQUE) return DEQUE:

/9D

dene

ALGEBRAIC SPECIFICATION CHECKING

function RIGHT_TOP{D:DEQUE) return ELEMENT;
end DEQUE_PACKAGE;

package body DEQUE_PACKAGE is
—— The following two subprograms are provided by the user.
function EQUALS(D1,D2:DEQUE) return BOOLEAN is
(‘3;1.(1 EQUALS;
procedure COPY(D1:DEQUE;D2:in out DEQUE) is
end COPY;

—-~ The following two subprograms and the generic instanti-
—— ation are generated by the Anna Transformer,

procedure ASSIGN_SLNO(A:in out DEQUE;SLNO:INTEGER) is
begin

A.SLNO := SLNO;
end ASSIGN_SLNO;

function GET_SLNO(A:DEQUE) return INTEGER is
begin

return A .SLNO;
end GET_SLNO;

package DEQUE_AXIOM_CHECKER is new AXIOM_CHECKER
(DEQUE,
ASSIGN_SLNO,
GET_SLNO.
EQUALS,
COPY.
ELEMENT,

"deque.ax'):

71

T2 CHAPTER 4. ALGEBRAIC SPECIFICATION CHECKING

function LEFT_PUSH(D:DEQUE;E:ELEMENT) return DEQUE is
begin

-— A return point
OP_OVER('b,E,D,D');

/
return D’;

end LEFT_PUSH;

end DEQUE_PACKAGE;

The rest of this chapter focuses on the theorem prover. The complexity of the general prob-
lem of (the theorem proving aspects of) algebraic specification checking is discussed followed
by some background material. The Chromatic Theorem Prover is then discussed, foiiowed

by a description of how the theorem proving operations can be implemented incrementally.

4.3 Complexity of the General Problem

In this section, the problem of algebraic specification checking is shown to be at least as
complex (computationally) as the word problem.

Given an algebra A? specified by a set of equations ¥, and given two terms ¢; and ¢,
from A, the word problem is the process of deciding whether or not the validity of t; = t,
follows from & (¥ =1 = t3).

For any algebra A, there is a corresponding abstract data type. Corresponding to the
equations ¥ that specify the algebra, there is an algebraic specification that specities the
abstract data type. Consider any two terms ¢; and t; from A. It is possible for the program
using the abstract data type to evaluate the corresponding two terms of the abstract data
type. If it does evaluate these terms and if ¥ =t, = t;, then the program must perform
a check to ensure that the values of these terms are equal to each other. However, if

LH¥ t) = ty, the program must not perform this check. The process of deciding whether or

“An algebra is a domain of values together with a set of operations on these values.

43 COMPLEXITY OF THE GENERAL PROBLEM 73

not this check must be performed therefore involves deciding whether or not L |5t; = t;

and hence, algebraic specification checking is at least as difficult as solving word problems.

Since word problems are in general undecidable, therefore algebraic specification check-
ing is also, in general, undecidable. Hence, the theorem proving operations can only be
performed partially. The Knuth-Bendix algorithm [59] is one already existing algorithm
that can be used to perform the theorem proving operations necessary. The following sec-
tions describe a new theorem proving algorithm which has been designed specifically for
the purpose of algebraic specification checking. This new algorithm focuses on real-life ab-
stract data types, and hence works on a smaller subset than many other theorem provers.
However, this trade-off results in an improvement in the performance of the algorithm.
When implemented incrementally®, the time complexity of this algorithm does not change
as the program generates more and more terms, although the space required increases as

the program continues to run.

The subset for which this algorithm works is characterized as follows®:
1. The operations of the abstract data type have to be unary,

2. There is exactly one constant of the abstract data type®, and

3. The algebraic specifications have to be of the form #;(z) = t2(z)°.

The reason for the choice of this subset is that many real-life abstract data types like stacks,
queues, sets and symbol tables are either already in the subset or can be transformed in a
simple manner to fit into the subset. The mathematical entity that is used to model this
subset is the Thue system [116]".

The next section describes Thue systems and how abstract data types and their algebraic
specifications within the above subset can be matched to them. A few examples (also in

the next section) illustrate that a large number of real-life abstract data types fit into this

subset.

*The nature of this incrementality is discussed in Section 4.6.

*This characterization will be modified slightly later.

*More than one constant creates disjoint problem spaces as will be seen later. Hence there is no loss of
generality by assuming just one constant.

"Note that this disallows any specification that relates constants of the ...~tract data type.

“I'he author is indebted to Deepak I\'apur. for introducing him to Thue Systems.

T4 CHAPTER 4. ALGEBRAIC SPECIFICATION CHECKING

4.4 Thue Systems

Thue systems are rewriting systems specified using equations over strings where the con-
catenation operation satisfies the associativity property. Let ¥ be a finite alphabet. £* is
the set of all finite strings over £. Let the empty string be denoted by A. A is an identity
of the concatenation operation (i.e., Az = 2A = z). A Thue system T is a binary relation
on ©~. Every element of T is called an equation of T. An example of a Thue system which

describes sequences of the unary operators + and - is shown below:

Example 4.2: Let ¥ = {+,—}. Therefore T is the set of all finite sequences of these
unary operators. Let ' = {< +.A >,< —=—,A >}. Then T is a Thue system that describes
how a sequence of these unary operations can be rewritten equivalently.

The rest of this section is devoted to showing how certain abstract data types and their
algebraic specifications can be matched to Thue systems. First some background material

is overviewed, and a few central theorems are stated and proved.

4.4.1 An Overview of Proof Theory in Equational Logic

Let T’ be a set of equations and s = t be an equation (in an algebra A). T logically implies
s =t (I'Es = t) if and only if every model that satisfies all equations in T also satisfies
s = t. A simple methodology is desirable to deduce logical implication, and for this a proof
theory has been developed. I' proves s = ¢ (I' + s = t) if and only if there is a finite sequence

of equations s; = t1,...,8, = t, such that:

e the last equation is s = ¢, and

e each s; = t; is either a member of I'. or of the form ¢t = ¢, or it follows from the

previous equations according to one of the following rules of inference:

—

. symmetry: From s; = ¢t; infer t; = s;
transitivity: From s; = s; and s; = s infer $; = s

composition: From ty = t{,...,t, =t} infer f(t1,...,t) = f(#},....t})

e

substitution: Let t7 denote the substitution of all free occurrences of the variable

z by the expression e. From s; = s;, infer s;% = s;7.

Theorem 4.1 (Birkhoff) Let T' be a set of equations and s = t be an equation. Then
'kFs=tifandonly if TEs=1t.

{.4. THUE SYSTEMS 75

For a proof of this theorem, please refer to either [9] or Page 95 of [14].

4.4.2 Terminology, Definitions and Lemmas

Define a binary relation —7 on L* as follows: for any u,v,z,y in £* such *hat either (u,v)
isin T or {v,u) is in T, zuy —71 zvy. The Thue congruence generated by T, <7, is the
reflexive transitive closure of the relation <. Since the relation — is symmetric, therefore
—7 is an equivalence relation. Deducing whether or not w <% z for any two strings w, z
in £* is an undecidable proolem. This was shown by Post [97] and independently by
Markov [84].

Let A be an abstract data type with only unary operations fi,..., f, and one constant
¢. Consider the terms of A. Since all tae operations are unary, the terms can only be a
repeated application of thesc operations on some vcriable or on ¢. Define 7(z) to be the
set of all terms of A where the operations are applied on z. Therefore each member of 7(z)
will be of the form f;,(...(fi.(z))...) where m > 0 and 1 < ¢1,...,ip, < 7.

Let S be the algebraic specification of A where each equation in § is of the form t,(z) =
t2(z) where z is some variable, and t(z),t2(z) are in 7(z). In other words, each equation
of § is restricted to have the same (implicitly) universally quantified variable on both sides.

Let ¥ = {e1,...,€,} be an alphabet and let £* be the set of all finite strings over .
Define an isomorphism I,8 from 7 (z) to £* as follows: Z,(z) = A, and for all ¢(z) in T(z),
Z:(fi(t(z))) = eiZz(t(z)), 1 < i < n. For example, Z:(fi(f2(f2(2)))) = erezeq. I7! is
the inverse of Z;. Let T be a binary relation on £* defined as follows: For each equation

ti(z) =ta(z) in S, (Tp(t1(x)), Zz(t2(z))) is a member of T. Nothing else is a member of T'.
Lemma 4.2 Ifz.y,2,w € ¥* and z <% y, then wzz —% wyz.
Proof Since —7% is the reflexive transitive closure of «—r, there are two cases to consider:

1. There exists ag,...,a, in £* where n > 0 such that ¢ = ag, y = an, and a; =71 0441,
0<i<n:

Consider a; —7 a;4; for any i. From the definition of —r, there exists u,v,p,q in
L* such that a; = puq and a;4; = pvq and either (u,v) is in T or (v,u) is in T.

Let r = wp and s = ¢z. Again, from the definition of —7, rus —r1 rvs. Since

*The mapping of operations to characters described in Section 4.2 is the implementation of this isomor-
phism function.

76 CHAPTER 4. ALGEBRAIC SPECIFICATION CHECKING

rus = wpuqz = wa;z and Tvs = wpvqzr = wa4+2, therefore wa;z —71 wa;4z.
Also since «7 is the reflexive transitive closure of «—r, wagz ~1 wa,z. Hence,

wrz < wyz.

2.z=1y:

Then wzrz = wyz, and since —7 is the reflexive transitive closure of —r, wzz % wyz.
a

Lemma 4.3 Ift)(z),t2(z) are in T(z), then I (t1(t2(z))) = Zz(t1(z))Z-(t2(2)).

Proof This is proved by induction on the number of operations in ¢;(z).

Base case: The number of operations in ¢;(z) is 0, or ¢;(z) = z. Therefore ¢,(t2(z)) = t2(z)

and hence Iz(t1(t2(z))) = Lz(t2(z)) = Az(ta(z)) = Zz(t1(2)) Tz (t2(2))-

Inductive step: Assume T.(t1(t2(z))) = Zy(t1(z))Z-(t2(z)) for all ¢;(z) with less than

m operations. Now consider any t;(z) with exactly n. operations. Then ¢;(z) is of

the form f;(tj(z)) where t{{z) has exactly m — 1 operations. Therefore Z,(t,(t2(z))) =
I (filty(t2(2)))) = eZz(ti(ta(2))) = el (ty(z))Iz(t2(z)) = TAfi(ti(2)))Io(t2(z)) =

I:(t1(z))I:(t2(z)). O

Lemma 4.4 Ifu is in £*, then I7'(ue;) = I‘Ezz)(u).

Proof This is proved by induction on the length of u.

Base case: The length of u is 0, or « = A. Therefore I !(ue;) = I7Y(e;) = fi(z) =
7N = T7 (5 (w).

Inductive step: Assume I (ue;) = I (r)(u) for all » with length less than m. Now consider

any v with length m. Then u = e;u’ where v’ has length m — 1. Therefore Z 1 (ue;) =

Ir—l(ej’u,'e,') = fj(I;l(ulei)) = f;(Z (x)(ul)) = j' (z)(e_, u') = (I)(u

Lemma 4.5 Ifu,v are in T*, then IZ (uv) is I} (u) with I71(v) substituted for z. Or in
other words, I7!(uv) = I;_}l(v)(u).

Proof This is proved using induction on the length of v.

Base case: The length of v is 0, or v = A. Therefore Z7;'(v) = z and I (uv) = 7' (u) =
II—“(J)().

Inductive step: Assume I]'(uv) = II_ll()(u) for all v with length less than m. Now
consider any v with length m. Then v = v'e; where v’ has length m — 1. Using the

4.4, THUE SYSTEMS I

inductive hypothesis and lemma 4.4, Z7!(uv) = I7 (uv'e;) = If"(y(uv V) = I' o (u) =
ful2)

II—"I(U eq)(u) = 2'"l((u). O
Corollary 4.8 Ifu,v,q arein £ and S - I (u) = , then S+ I-Yuq) = I7(vq).

Lemma 4.7 Ifp.u,v are in &% and S+ I7'(u) = I7 (v), then 5+ I7 (pu) = I (pv).

Proof This is proved using induction on the length of p.

Base case: The length of p is 0, or p = A. Therefore Z7!(pu) = I;'(u) and I7'(pv) =
I;Y(v). Hence, S+ I (pu) = I7Y(pv).

Inductive step: Assume S F I7'(pu) = I7(pv) for all p with length less than m. Now
consider any p with length m. Then p = e;p’ where p’ has length m — 1. Therefore
I\ (pu) = Iy (ep'u) = fi(Z71(p')) and I3 (pv) = I3 (ewpv) = fi(Z71(p'v)). From the
induction hypothesis, § = Z71(p'u) = Z71(p/v) and therefore {using the rule of composition)
SF f(ZF7N(p'w) = f(Z71(p'v)), and hence § I (pu) = I7'(pv). O

Lemma 4.8 Let 31(z) = t1{(z),...,3(2) = to(z) be a sequence of equations in a proof in
A. Then I (si(z)) =7 I(ti(z)), 1 < i< n.

Proof The lemma follows from the proof by induction on j that Zz(s;(z)) —F Z-(t:(z)).
1<i<j.

Base case: j = 0. In this case, the result holds trivially.

Inductive step: Assume that Z;(si(z)) —7F Iz(ti(z)), 1 < i < j. Now consider s;(z) = tj(z).

This equation falls into one of the following categories:
1. s;(z) = t;(z) is a member of S. In this case, obviously I.(s;(z)) —F Z(t;(z)).

2. s,(z) = t;(z) is of the form ¢t = ¢, or follows from one of the previous equations by
symmetry ot transitivity. Since —7 is an equivalence relation, therefore Z,(s;(z)) —7

I,(tj(x)).

3. s;(x) = t;(z) is of the form fi(si(z)) = fe(ti(z)) for some i < j. Then I (s;(z)) =
I:(fe(s:(2))) = exlz(si(z)) and I:(t;(z)) = Z:(fu(ti(z))) = exI(ti(z)). From
the inductive hypothesis and lemma 4.2, €,Z:(s;(z)) —F exZz(ti(z)) and therefore
I.(s51z)) =T Lo(t)(z)).

CHAPTER 4. ALGEBRAIC SPECIFICATION CHECKING

v 8}

1. 5,(z) = t,(r) is of the form s;(u(x)) = ¢t;(u(z)) for some : < j. Then from lemma 4.3.
To(situ(z))) = Iz(si(x))T-(u(z)) and Zy(ti(u(z))) = Zo(t:(z))I-(u(z)). From the
inductive hypothesis and lemma 4.2, Z.(si(7))I-(u(z)) —F Z:(ti(z))Z-(u(z)) and
therefore I:(s;(z)) —F Iz(¢,(x)). O

4.4.3 Matching Abstract Data Types to Thue Systems

The isomorphism 7, defined in the previous section is the method used to match abstract

data types and their algebraic specifications ts Thue systems.

Example 4.3: This is an example of the matching process. The following is a package that
defines an abstract data type with the unary functions PLUS and MINUS. The algebraic

specification within this package describes these functions.

package NUMBER_PACKAGE is
type NUMBER is private:
function PLUS/N:NUMBER) return NUMBER;:
function MINUS(N:NUMBER) return NUMBER;
--| axiom
- for all N:NUMBER =>
-~ PLUS(N) = N,

——| MINUS(MINUS(N)) = N:
end NUMBER_PACKAGE:
By choosing I (PLUS(z)) = + and Z.(MINUS(z)) = -, the above abstract data type and

its algebraic specification can be matched to the Thue system of Example 4.2.

The motivation for performing this matching process is to derive theorems about ab-
stract data types by performing proofs on the corresponding Thue system. For this approach
to be useful. an effective proof system is required for Thue systems. The following theorem

lays the groundwork for this proof system:

Theorem 4.9 If s(z),t(z) are terms from T(zx), then S + s(z) = t(z) if and only if
I.(s(x)) —~T I.(t(x)).

Proof From lemma 4.8, if § F s(z) = t(r) then I;(s(z)) —F I (t(z)). Also, from rorol-
lary 4.5 and lemma 4.7, if p, u,v.q are in * and either (u,v) is in T or (v, u) is in T. then

o

S+ ZI;%u)=1TI7%v), and therefore S + I-!(puq) = I7!(pvq). Hence for any w.z in ==,

4.4, THUE SYSTEMS 79

if w —r z.then § + I7-Yw) = I7!(z), and since —% is the reflexive transitive closure of

—, therefore if w —% z, then §F I;'(w)=1I7%(z). O

Corollary 4.10 (Proof System for Thue Systems) If s(z),t(z) are terms from T(z).
then S F s(z) = t(z) if and only if there exists uy,...,un € X%, n > 1 such that I,(s(z)) =

uy, Ip(H(z)) = un and u; —7 ui41. 1 <1 < 0.

This corollary defines a process of rewriting strings. Any string can be rewritten by replacing
a substring which is any one side of an equation of the Thue system. with the string
corresponding to the other side of the equation. The corollary (together with theorem 4.1)
states that repeated rewriting in this manner is 2 sound and complete proof system for
Thue systems.

There is still one problem remaining. The matching process is capable of matching only
the most simple abstract data types and their algebraic specifications to Thue systems. Even
the DEQUE abstract data type described earlier canrot be matched to a2 Thue system. This
is because some of the operations have more than one parameter. For example, LEFT_PUSH
has an additional parameter, albeit not of the abstract data type. Hence the matching
methods need to be extended to a bigger subset. Such a matching method will be described.

but first the extended subset is described below:

1. The constructors of the abstract data tvpe (operations that return an abstract data
type value) have to be unary with respect to the abstract data type. That is, they
are permitted to have any number of parameters so long as only one of them is of the

abstract data type. In addition, there can be selectors of any form.
2. There is exactly one constant of the abstract data type.

3. The algebraic specifications have to be of the form ¢,(z,y) = t2(z,z), where z is of
the abstract data type.y and z are lists of values from types other than the abstract
data type, and t; and t, consist of only constructors of the abstract data type. The
algebraic specifications have to be universally quantified over all the parameters (i.e.

z,y and z).

Note that the DEQUE abstract data *rpe example talls into this extended subset. By
combining all the types other than the abstract data type into one composite type, a clean

model of this extended subset can be achieved. This model is shown below. The composite

20 CHAPTER 4. ALGEBRAIC SPECIFICATION CHECKING

tvpe of all the non-abstract data tvpes is the auxiliary type in the generic package described

in Section 4.2.

-~ The auziliary type definition
type AUX is ...

package P is

-~ The abstract data type definition
type ADT is ... ;

—~ Constructors
function Ci;(X:ADT;Y:AUX) return ADT;

~— Selectors
function S;(X:ADT;Y:AUX) return AUX;

- - Algebraic specification

~--| axiom

--1 for all X:ADT:Y:.Y2,... :AUX =>

-—] Ciy (oo Con (XY)oYy) = Ciy (oo Crn (X, Y0) -+ Yy)

end P;:

For this model, the matching process is defined in two steps. The first step involves convert-
ing the auxiliary type parameters to subscripts on the constructors. This step gets us back
to the original subset though the number of operations may now be infinite. The result of

applying this transformation on the above model is shown below:

—— The auziliary type definition
type AUX is ...;

package P is

4.4. THUE SYSTEMS 81

—— The abstract data type definition
type ADT is ...:

-~ Constructors
function Cy,(X:ADT) return ADT:

—— Selectors
function S$({X:ADT;Y:AUX) return AUX;

-— Algebraic specification

--| axiom

-~ for all X:ADT;Y;,Y,,... :AUX =>

—_— C,‘”,Jl(... C,‘mYJm(X)...) = Ck”’l, (.. Ck“an(X)' o)

end P;

Note that in the transformed model, the algebraic specifications have been converted to
algebraic specificaticn schemas. By performing the basic matching process now. a Thue
system is obtained. The only difference is that the symbols in the resulting alphabet © may
be subscripted by variables universally quantified over the auxiliary type. This difference
however does not affect any of the theorems derived in this chapter. and hence the proof

system can still be used in its original form®.

Example 4.4: The DEQUE package of Example 1.2 is shown below after being rewritten to
fit into the model of the subset. For simplicity, extra parameters of the auxiliary type are
not added to operations that do not have this parameter to start with. The corresponding

Thue system is also described:

package DEQUE_PACKAGE is
type DEQUE is ... ;
function CREATE return DEQUE;
function LEFT_PUSHE(D:DEQUE) return DEQUE:
function LEFT_POP(D:DEQUE) return DEQUE;

?All proofs assume that strings are finite, but no assumption of the finiteness of the aiphabet is made.

CHAPTER 4. ALGEBRAIC SPECIFICATION CHECKING

e
[V

function LEFT_TOP(D:DEQUE) return ELEMENT:
function RIGHT_PUSHg(D:DEQUE) return DEQUE;
function RIGHT_POP(D:DEQUE) return DEQUE;
function RIGHT_TOP(D:DEQUE) return ELEMENT;
~-| axiom
~-] for all D:DEQUE;E:ELEMENT =>
~~] LEFT_POP(LEFT _PUSHg(D)) = D,
-—i RIGHT_POP(RIGHT_PUSHE(D)) = D,
~=] LEFT_POP(RIGHT_PUSHE(D)) = RIGHT_PUSHg(LEFT_POP(D)).
-] RIGHT_POP(LEFT_PUSHE(D)) LEFT_PUSHg(RIGHT_POP(D)):

—— The other azioms are outside the subset and are therefore

—— ignored.
end DEQUE_PACKAGE;

The Thue system corresponding to the DEQUE package is the following: ¥ is the alphabet
{bg,c.eg, f}, for all E in ELEMENT. The bg’s correspond to the LEFT_PUSHg's, ¢ corre-
sponds to LEFT_POP, the eg’s correspond to the RIGHT_PUSHg’s, and f corresponds to
RIGHT_POP. The Thue system T is {(cbg,A),(feE,), (ceg,egc),{foE,bEf)}.

The subsequent sections describe the theorem proving algorithm and its capabilities. In
these subsequent sections. only mathematical notation will be used. the correspondence to

Ada and Anna should be obvious from the discussion in this and other previous sections.

4.5 The Chromatic Theorem Prover

The theorem proving algorithm will be described in this section. This algorithm is based on
rerm rewriting (corollary 4.10). The equations of the Thue system are used as rewrite rules
durine the theurem proving operations. However, a blind application of such rewrite rules
can cause infinite loops during the theorem proving operztions. To prevent such problems,
the characters in the rewrite rules are colored in a manner described later. Infinite loops
are avoided when the color assignments to the characters are also considered during the
rewriting process. Any number of colors can be used with this algorithm. The more the
colors, the more powerful (and slower) the algorithm. This algorithm has been named the

("hromatic Theorem Prover (of order n, where n is the number of colors).

4.5, THE CHROMATIC THEOREM PROVER 83

4.5.1 Some Terminology and Definitions

As before. let T be an alphabet (£* is the set of all finite strings over ¥) and let T be a
Thue system on £*. Let C be a finite set of n colors with a total ordering relation <. C*
is the set of all finite sequences of colors from C. Let min(C) be the smallest color in C.
Define I' to be © x C. That is. T is the set of all tuples {(a,b) wherea € T and be C. T
is the set of all finite strings over I'. Intuitively, I is the set of all strings over £ colored
using the colors in C.

A few functions are now defined on the above sets. w; is the projection from I' and
[* to £ and T~ respectively. Intuitively 7 can be thought of as the operation of deleting
the colors (or removing their significance) from the colored characters in I' or the colored
strings in I'*. w7 is the projection from T' and I'* to C and C* respectively. Intuitively
gives the colors of the colored characters in I' or the color sequences of the colored strings
in I'*. minmaz maps C* to C. If ¢ is in C*, then minmaz(c) is the smallest color which is
larger than all the colors in ¢. Notice that minmaz is undefined if ¢ contains the largest

color.

4.5.2 Constructing Rewrite Rules from Equations

The first step in the algorithm is to convert the equations of I" into rewrite rules (of order
n). The rewrite rules are defined over I'*. The algorithm for constructing rewrite rules from

equations is now given.

Let (z,y) be an equation in T. This equation translates into a set of rewrite rules which
includes all (and nothing else) rewrite rules of the form a — 3 (a,3 € ") that satisfy the

following conditions:

1. Either my(a) =z, m(3) =y or my(a) =y, m(3) = z, and

2. minmaz(m2(a)) is defined and all colors in the sequence 73(3) are the same and equal

to minmaz(m{a)).

Example 4.5: Let £ = {f,g}, and let C = { [WVhite], [LightGray), [Graz]}, where lthitel <
LightGray] < Grea. Then the rewrite rules generated from the ~anation (fa gf) are

_——#—;

34 CHAPTER §. ALGEBRAIC SPECIFICATION CHECKING

Dld - W [- B
0 - [EE JE - BiE
[le — ElE [- B
[~ EE [- BE

Some examples of illegal rewrite rules are shown below:

E”Z] — [Z] (The RHS has more than one color)
m@ — (The color in the RHS is too large)
@ — (The LHS contains the largest color)

et Rt be the set of rewrite rules obtained in this manner from the equations of T. Note

that if T and n are finite, then Rt is also finite.

4.5.3 The Neighbor Set

For every string z in 5*, a neighbor set N, (of order n) is defined. It is however convenient

to define a colored neighbor set Ny first. NV, is defined as follows:
i. y €.V, where 7;(x) = z and all the colors in T3(x) are the same and equal to min(C).
2. Ifa.b.u,varein [, u— visin Rz and aub is in Vg, then avb is also in V.
3. Nothing else is in M.

The neighbor set N, can now be defined as follows: For every a in V;, mi(a) is in N;.

Nothing else is in V.

Example 4.6: This is based on Example 4.5. Assume z = ffg. Then the following strings

from [* are in .Vz:

(DG B dEfend (B

Hence the following strings from £* are in V;:

ffg. fgf and gff.

fheovrein 4.1l Foranyy, zin N, Try =z

4.5. THE CHROMATIC THEOREM PROVER 85

Proof If y. z are in .V;, then there must be some a. .3 in .V, such that 7 (a) = y. 7i(J) = =.
and both a and 3 have been derived by applying the rewrite miles of Rr repeatedly to Y.
where 71(x) = z and all .the colors in my(x) are the same and equal to min(C). Since
this rewriting process is a restricted version of the proof system developed earlier, therefore
Trz=yand Thkz=2 HenceTHy=2 0

Theorem 4.12 If T, T, C and r are finite, then N is also finite.

Proof Let m be one more than the length of the longest string that occurs in any of the
rewrite rules in R7. Assign weights to the colors in C as follows: Assign 1 to the largest
color. If w is the weight of any color, then the next smaller color is assigned a weight of mw
(i.e., a geometric progression). Define the weight of any string o in '™ as the sum of tne
weights of the colors in the sequence 73{«). Now consider any rewrite rule @ — 3 in Rr.
By definition, the length of 3 is less than m, hence the weight of 3 is less than mw where
w is the weight of minmaz(r2(a)). The weight of « is at least mw since the colors in m;(«)
are all smaller than minmaz(7;(a)). Therefore, in all the rewrite rules in Rr, the left-hand
side has a larger weight than the right-hand side. Hence the application of a rewrite rule
to any string results in a string with a smaller weight than that - “+%~ original string. Also.
the smallest possible weight is 1. Assume that the weight of z 1~ - Hence starring from
z, it is possible to perform rewriting at most w, times before no more rewriting is possible.
Also, if the length of z is I, then the largest string that can be generated is no more than
[z + wz(m — 2) long!®. Note that though it has been shown that any path in the rewriting
process is bounded by w, and hence finite, it has not yet been shown that the number of
paths are finite. But since the length of any string generated by this rewriting process is
bounded, there is also a bound on the number of ways in which one of these strings can be
rewritten in one step. This in turn bounds the number of different paths that the rewriting

process cau take. Hence N is finite. O

Corollary 4.13 [t is possible to generate N; from z in a finite amount of time given that
. T,Candzr a : Fnite

'9The length of the right side of any rewrite rule can be at most m — 2 longer than the length of the left
side.

‘£
o

CHAPTER 4. AILGEBRAIC SPECIFICATION CHECKING

4.5.4 The Theorem Proving Step

The necessary background has now been established to explain how this algorithm attempts
to prove z = y. for any z.y € £*. The algorithm evaluates the neighbor sets of r and y and
then checks to see if these sets have any element in common. If they do, then the algcrithm
Jdeduces £ = y, otherwise it deduces z # y. More precisely, then algorithm deduces z = y
if V.1 N, # o (where o is the empty set). otherwise it deduces r # y. The soundness of

this algorithm follows from theorem 4.11.

4.5.5 Termination

For any z.y € &*. .V; and .V, can be evaluated in a finite amount of time (corollary 4.13).
Also. since .V, and NV, are finite, the intersection of these sets can be evaluated in a finite

amount of time. Hepce, the Chromatic Theorem Prover terminates on all finite inputs.

4.6 Incremental Execution of the Algorithm

In this section, an algorithm that implements the Chromatic Theorem Prover is presented.
This algorithm works in an incremental manner. The incremeniality is ohtained by not-
ing certain properties ot the application—runtime consistency checking. As mentioned in
page B7. the problem in runtime consistency checking is to maintain a set © of all terms
of the abstract data type whose values have already been evaluated by the program. and
then attempt to deduce whether or not t; = t; is a theorem of the abstract data type for
every ti.tp in ©. If so then the actual values of ¢; and ¢t; must be equal to each other. A
simplistic implementation of the algorithm would be to compute V. for every new string
z added to O. and then intersecting V; with the neighbor sets of the strings already in ©
one by one. The time complexity of this implementation is 1 neighbor set construction and
n intersections (where n is the number of strings already in @) every time a new string is
added to ©. This means that the time complexity increases as the program continues to
run both because the size of © keeps growing and because the length of the strings typically
increanoz. {i1s possible, however, to implement the algorithm incrementally in such a way

that its time complexity dore not dopoud on the size of G The fllowing observatiur is

what makes it possible to have an incremental algorithm:

Lemma 4.14 Ift £ O and t is of the form fu, where f isin S and u is in &%, then u € O.

4.6. INCREMENTAL EXECUTION OF THE ALGORITHM

50
-1

This is quite obvious for all it is saying is that for any term to be evaluated. all its subterms
have to be evaluated first.

This algorithm maintains equivalence classes of terms rather than the terms themselves.
Two terms are in the same equivalence class if they can be proved equal to each other based
na the specifications. Whenever a new term is generated, the algorithm decides whether or
not the term belongs to an already existing equivalence class. If so. then this term is added
to the appropriate equivalence class; otherwise, a new equivalence class is created and this

term is inserted into it. This process is depicted pictorially in Figure 4.1.

START

A new term, & is generated.

T can be proved equal 1o the T cannot be proved equal to the T can be proved equal !0 the
representative of exactly one representative of any equivaience representatives of equivaience
equivalence ciass C. class. classes C1,...Cn(n>1).

¢

Create a new equivaience ciass Merge equivaience classes
Add T to equivalence class C. and midalize it to contain C1,...Cn and add T 1o this
only T. new equivalence class.

1 ! }

BACK TO START

Figure 4.1: The Incremental Chromatic Theorem Prover

In this figure, only the high-level details are presented. The shaded third case in the
figure arises due to the fact that there could exist multiple equivalence classes whose terms
are equal to each other. That is, these equivalence classes should really have been one
equivalence class. This happens because of the inability of the theorem prover to prove all
possible theorems. Whenever case 3 is performed, this algorithm is learning in the process.
In these respects, this algorithm is more powerful than the Chromatic Theorem Prover.
However, the Chromatic Theorem Prover is a useful conceptual model of this algorithm for
the purposes u{ analyzing the capabilities and limitations of this algorithm. The rest of this
section will describe the algorithm in detail and then this algorithm will be shown to be at

least as powerful as the Chromatic Theorem Prover.

]

<% CHAPTER 4. ALGEBRAIC SPECIFICATION CHECKING

4.6.1 Detailed Description of the Algorithm

The aleorithm maintains a directed graph which it updates every time a new term is gen-
erated. The graph contains a special initial node which shall be referred to as n,'!. There
is at least one path from n; to each of the other nodes in the graph. The edges of the graph
are labeled by tuples from T. Therefore, every path in the graph corresponds to a string
from I'". If P is a path. let ~(P) € I'" be the string corresponding to P. v(P) is defined
recursively as follows: If P is just an edge (a path of iength 1), then 4(P) is the label on
this edge. If P, is a path from n; to ny and P, is a path from n; to n3, and if P; is the
concatenation of the paths P, and P,, then v(£3) is ¥y(P)v(P1). P is referred to as an
absolute path if all colors in m(4(P)) are the same and equal to min(C). With every node
n is associated a set S(n) containing strings from £*. A string r from £* is in S(n) if and
onlv if there is a path P from n; to n such that my(~(P)) = z. As will be sezn later. the
Siny's correspond to the equivalence classes of Figure 4.1. It is also convenient to define
another set S(n) containing strings from ['*. A string z from I'* is in S{n) if and oniv if
there is a path P from n; to n such that v(P) = z.

The following four properties are the required invariants of this graph {(except maybe

while the graph is being updated):

1. If eq. e; are edges originating from the same node. then 7 (y(e1)) # T1(~v(e2)).

1

2. If r £ £ corresponds to a term already generated by the program then there is an
absolute path P originating from n; to some node n such that m(y(P)) = z. In this

situation. the value of node n is said to be defined.
3. For every node n. if z,y € S(n) then Tz = y.
4. If there is an absolute path P from n; to n, and if 7y(¥(P)) = z. then NV, C S(n).

These properties shall be referred tc as the graph invariants. When the algorithm is initial-
ized, the graph is initialized to contain just the node n; and no edges'?. Hence S(n;) = {A}.
This initial graph trivially satisfies all the four graph invariants. Note that at the time of
initialization, no terms have been generated by the program and therefore the second graph

invariant holds.

''1f there were more than one constant in the abstract data type, there will be an initial node corresponding
to each constant. However, the graphs built from these nodes will always remain disjoint. Hence without
loss of generality, the existence of only one constant can be assumed.

?The constant of the abstract data type is assumed to be evaluated when the program is initialized.

4.6, INCREMENTAL EXECUTION OF THE ALGORITAM 89

Whenever a new term is generated, the graph is updated. It will be shown that the
update operation maintains the four graph invariants. Since the graph invariants hold on
initialization, therefore (by induction) the graph invariants will hold after every update
operation is performed. The update operation will now be described. Assume that the
graph before the update is performed (Go) satisfies the four above-mentioned properties.
Let z € T~ correspond to the new term that has been generated. Let z = ey where e € T
and y € T*. Hence there is an absolute path P from n; to some node n in Gy such that
T1(7(E)) = y. This follows from Lemma 4.14 and the fact that Go satisfies the second
graph invariant. The update algorithm frequently performs the uperation of adding an edge

E to some node n; in the graph. This operation is described below:

1. Check if there is already an edge E’ originating from node ny such that m(v(£)) =
m(v(E).

2. E' exists:
If £ has a éreater color than £ (ma(y(E’)) > ma(v(E)), E’ is replaced by E.
Otherwise E is not added to the graph.

3. E’ does not exist:

Create a new node ny and insert E between n; and n,.

Note that this operation of adding an edge has been designed to maintain the first and
second graph invariants. In the algorithm below. all edges are added to the graph using
this operation.

The update algorithm first adds an edge labeled (e,min(C)) to n. It now repeatedly

performs the following sequence of operations until the graph cannot be updated any more:

1. Choose a path P in the current graph that includes at least one edge or merge
Junction (see below) created during the current updating operation such that there
exists a rewrite rule in My of the form y(P) — 3. Let P originate at node n, and

terminate at node na.

2. Construct a path P’ such that ¥(P') = 3 and add it to the current graph an edge
at a time starting at n;. Assume that this newly added path terminates at node
ns.

3. If the nodes n, and nj do not turn out to be the same, merge these nodes. This
merging operation involves creating a new node n4 and making all edges currently
termuinating in either ny or nj terminate at ng. Make all edges originating from

either na or nj originate from n4. However, if there are edges E, from ny to some

30 CHAPTER §. ALGEBRAIC SPECIFICATION CHECKING

node n% and Ej from nj to some node nj such that 7 (¥(£2)) = m (¥(£3)) then
add only the edge with the smaller color and then perform the merge operation
recursively on nodes ny and nj. Finally delete the nodes n2 and n3 from the
graph. Note that the merge operation also maintains the first and second graph

invariants.

Merge Junctions: Verge junctions are paths in the graph that are created as a result of
the merge operation described above. To illustrate this, assume that nodes n; and n, in
graph Go are merged, resulting in a modified graph G;. If there were paths P; and P; in
Gy such that P originated at n; and P; terminated at n,, then the path P; P, in Gy is a
merge junction created as a result of merging nodes ny and ns.

Two examples are now shown to illustrate the working of this algorithm. In all the
graphs of these examples solid. dashed and dotted edges correspond to the colors .

LightGray| and [GGrag

Example 4.7: (based on Example 4.6) Three operations are performed—first Z;!(g) and

respectively.

then Z7(f) twice—on the constant of the abstract data type, thus starting from the initial

graph and modifying it three times. These four graphs are shown in Figure 4.2.

EY
~

Figure 4.2: The Four Graphs of Example 4.7

In Figure 4.2, the first graph contains just the initial node. The second graph registers
the fact that the operation Z7'(g) has been performed on the constant of the abstract data
type. So far, no theorems have been proved. The third graph is the result of executing

the next operation—Z7'(f). At this stage. the rewrite rules have been used to prove that

4.6 INCREMENTAL EXECUTION OF THE ALGORITHM 91

E@ = EHZ, = m@ However. when an attempt is made to add a path corresponding
to @@ to the graph from n, to nz, it is seen that a path corresponding to [EE] already
exists between n, and n,. Hence. no new path is added. The fourth graph is the result of
executing Z-'(f) one more time. The additional proofs derived at this point are exactly

those of Example 4.6.

Example 4.8: Let T = {a.b.c.d.e}, C = { Vhite|, [LightGray|} and T = {/a.b}.{(b.c). c.d>.

{de.ed)}. The following sequence of opera.ions are performed one after the other on the

constant of the abstract data tvpe: Z-'(ea), Z7(d) and Z7'(b). The four resulting graphs

and the initial graph are shown in Figure 4.3.

X
o0
-

=]

Figure 4.3: The Five Graphs of Example 4.3

The graphs of Figure 4.3 are similar to those of Figure 4.2. However, there is an
interesting observation to be made in the four.n and fifth graphs. When the fourth graph
is constructed, the fact that equivalence classes n; and n3 are the same is not known.
However. when I7'(b) is executed, the gap in the proof is bridged. The result is a merging
of the nodes n; and n3 to form ny3. Hence this can be considered a learning process for the
algorithm. The execution of Z;'94) can be considered a hint to the algorithm. Also note
that in the fifth graph. the path de from n; to n; is a merge junction, since it was created
as a result of merging nodes n; and n3. Hence the need to extend the graph to include the

path ed from n; to n,.

4.6.2 Comparison with the Chromatic Theorem Prover

On Page 88, four invariants of the of the graph used by the incremental algorithm were

listed. These invariants (especially the fourth) are what relates the incremental algorithm

92 CHAPTER j. ALGEBRAIC SPECIFICATION CHECKING

with the Chromatic Theorem Prover. In this section. informal proofs of the validityv of each
of these invariants is given. That the incremental algorithm is at least as powerful as the

Chromatic Theorem Prover can then be concluded.

Theorem 4.15 (Invariant 1) If e;. e; are edgyes originating from the same node. then

Tyter)) # mitler)).

Proof This holds trivially for the initial graph. The only way the graph gets updated is
bv the edge-adding operation and the merge operation. Both these operations have been
designed to satisfy this invariant as has also been noted in the definitions of these operations.

Theorem 4.16 (Invariant 2) If r € T corresponds to a term already generated by the
program then there is an absolute path P originating from n; to some node n such that

Tll"[P)) = UI.

Proof This can be shown by induction. The invariant holds trivially for the initial graph.
Assume that this invariant holds for some intermediate graph G and a new term t is just
generated by the program. Then, from Lemma 4.14. the term u. where ¢t = fu for some f
in T, has already been generated. By the induction hypothesis. ithere is an absolute path
P corresponding to » in /7. The very first thing that the algorithm does is to add ar rhe
and of P an edge with label (f, min(C)). This creates the new path necessary to maintain

the invariant. Also, the algorithm never replaces an edge colored by the smallest color. O
Theorem 4.17 (Invariant 3) For every node n, if z.y € S(n) thenTl=r = y.

Proof This can also be shown by induction. The invariant holds trivially for the initial
graph. Assume that the invariant holds for some intermediate graph G. G can be updated

only by performing one of the following basic operations:

1. By adding an edge: This operation does not change the values of S(n) of any existing
nodes n. Assume that this operation creates a new node n; by adding an edge labeled
(f.c) to some already existing node np. Then S(ny) contains all z in £* of the form
fy where yis in S(n;). Let z,, z; be any two arbitrary elements of S(n;). Assume
that z; = fy; and z; = fy,. From the induction hypothesis, T = 4 = y;. Therefore,
Tk=z, =1,

§.6. INCREMENTAL EXECUTION OF THE ALGORITHM 93

.. By merging two nodes: Assume that two nodes n; and ny are being merged to form
ni2. This only happens when there exists a node n3 such that there are paths P} from
n3 to ny and P from n3 to ng and either ~(Py) — v(FPz) or v(P2) — v(Py) is in Rr.
Also assume that there is a path P; from n; to n3. Obviously. ¥(P3P) in S(nyj is
equal to v(P3P>) in 5(n3). Therefore every element in 5(n;) is .qual to every element
in S(ny) (from the induction hypothesis and the above observat’on). Hence for every
r.yin S(n12), T =x = y. Now consider any zrbitrary node n4 such that S{n4) has
changed as a result of this merge operation. The only way S(n4) can change is by
new strings being added to it. These new :irings will have to correspond to paths
through nj2. Consider any such new path PyP; where P, is a path {rom n, to ni,
and Ps is a path from ny; to ns. Without loss of generality, it can be assumed that
P, ended at ny and Ps originated at n, before the merge operation. S'nce ~(Py) is in
S{ny2), therefore 4(Py) must be equal to v(P;P;) (proved earlier in this paragraph).
Therefore, ¥(Py P5) must be equal to ¥(P; P; Ps). But P3P, Ps was already in the graph
before the merge operation—i.e. v(P;P>Ps) already existed in S{n4). Hence ~(P4 Ps)
has to be equal to all other existing strings in S(n4). O

Theorem 4.18 (Invariant 4) If there is an absolute path P fromn; ton, and if 7{(v(P)) =
r. then N, C S(n).

Proof Define >, a binary relation over ['* as follows: & > 3 (where a,3 € T~) if and only
if 71(a) = m(beta), and for each color in 7,(«a), the corresponding culor in 75(J) is either
the same color or a smaller color.

It will now be shown that if a is in .V, then there is a string 3 (€ ™) in S(n) such that
a > 3. Note that it is possible for a and J to be the same string.

If a is in V; ther there are strings Y1,...,Ym in ['" such that 7,(x1) = z. all colors in
72(1) are the same and equal to min(C), ym = a, and for all 1 < i < m. yi41 is derived
from x,; by the appli. ation of exactly one rewrite rule. Obviously, ~; is in S(n). Assume
that x; is in S(n), where 1 < i < m, such that Y} > x;. Consider the rewrite rule used to
derive y;4; from x;. Then there is another rewrite rule that differs from this one only in
color which can be used to derive \i,, from y}, where xi,; > xi4+1. In the graph, there
must be a path corresponding to ;. Assume that this path originates at n; and terminates
at np. Note that this path must have been newly created at some time (either by adding an

edge, or by merging two nodes). At this time. a path corresponding to |, would !:.ve been

94 CHAPTER §. ALGEBRAIC SPECIFICATION CHECKING

added between n; and n,. In the process of adding this path. some already existing edges in
the graph may have been encountered which may have been used as part of the path being
added. The resulting path P will be such that ¥(P) = \{,,, where x{,; > xi,,. Hence.
\”:1 2 \is1- By induction. it is concluded that for all ¢, there exists a path corresponding
to \” in the graph such that x! > x;. Hence. it can be concluded that 3 is in S(n).

Since m1(3) = m(a). therefore, 71(a) (which by definition is in V;) is in S(n). Hence.

N.C S(n). ©

M

Theorem 4.19 The incremental algorithm just described is at least as powerful as the

Chromatic Theorem Prover.

Proof To realize this, all that has to be noted is that if an attempt is made to create
two paths P, and P originating from n, such that m{(v(P;)) = 7 (¥(Pz)), then this will
result in the creation of one path P3 such that y(P) 2> v(P3) and v(P;) > v(P3). This
is a consequence of invariant 1. Hence if the neighbor sets of two strings z and y have a
non-empty intersection, and if there is an absolute path corresponding to r and y in the

graph. then these two paths have to terminate at the same node. O

4.6.3 A Specialized Two-Color Algorithm

[n this section. a specialized algorithm based on two colors is described. This algorithm is
easier to implement that the general two color algorithm and has a better performance. Its
capabilities’3 lie somewhere between those of the two-color and the three-color algorithms.
This algorithm will be referred as the order 2.5 algorithm. This algorithm is useful enough
for most practical applications.

Assume that C = {c;,c2} where ¢; < ¢;. With two colors, each equation in T contributes
exactly two rewrite rules to Rr. These rewrite rules correspond to the two directions of the
equation. Terms on the left-hand side of the rewrite rules will all be of color ¢;, while terms
on the right-hand side wiil all be of color ¢,. Therefore, in the discussion of this algorithm.
only the equations need be referred to, their correspondence to the rewrite rules will be
obvious.

As in the case of the algorithm described in Page 89, this update algorithm first adds an
edge E labeled (e,c;) to n. It now repeatedly performs the following sequence of opcrations

nntil the graph cannot be updated any more:

'3 Capability is defined precisely just before Theorem 4.23.

4.6, INCREMENTAL EXECUTION OF THE ALGORITHM 95

—

. Choose a path P in the current graph that includes E such that there exists an
<quatioz in T of the form am;{v(P}) = 3 for some o and J in L. Let P originate

at node n, and terminate at node n».

2. Construct a path P’ such that 7 (7(P’)) = J and all the colors in 72(v(F’}) are
the same and equal to c;. Add this path to the current graph an edge at a time

starting at n;. Assume that this newly added path terminates at node nj.

3. Construct a path P"” such that 7 (¥(P”)) = « and all the colors in my(7(P")) are
the same and equal to ¢a. Add this path to the current graph an edge at a time

starting at n,. Assume that this newly added path terminates at node ng.

4. If the nodes n3 and n4 do not turn out to be the same, then merge these nodes

as before.
There are two ways in which this algorithm is different from the two-color algorithm:

1. P only needs to correspond to a suffix of a rewrite rule’s left-hand side. The rest of
the left-hand side is constructed and added on to the graph. This is what happens
when P” is added to the graph. This difference has the consequence that merge
junctions do not have to be considered during the update process. This is illustrated
in Example 4.9 below. It can be shown that this difference does not increase the

capabilities of the algorithm.

2. Only the edge E in P need be of color ¢;. The other edges can be of any color. This
increases the capability of thie algorithm. This increase in capability is illustrated in

Example 4.10.

Example 4.9: This is a repeat of Example 4.8, except that the order 2.5 algorithm is used
instead of the order 2 algorithm. The four resulting graphs and the initial graph are shown
in Figure 4.4.

Note that the fourth graph in this figure is different from the fourth graph in Figure 4.3.
The nodes n, and ns are extra in this Figure as are the edges connecting them to the rest
of the graph. This is due to the first of the above-mentioned two differences between the
order 2.5 and the order 2 algorithm. As a result of this, when nodes n, and n3 are merged,
the nodes n; and ns are also merged, and the resulting graph is the same as the fifth graph
in Figure 4.3. However, in Figure 4.3, a merge junction was considered, whereas this was

unnecessary in this case.

96 CHAPTER 4. ALGEBRAIC SPECIFICATION CHECKING

n,
n
- e
A}
A Y
] a| b m \
n: , \b
4
a| |
s
n ’

ny

Figure 4.4: The Five Graphs of Example 4.9

Example 4.10: This example is based on the DEQUE abstract data type of Example 4.4.
Assume that the sequence of operations, dbca, is evaluated (the subscripts are ignored for
simplicity). The five graphs generated by the order 2 algorithm is shown in Figure 4.3,
while the graphs generated by the order 2.3 algorithm is shown in Figure 4.6. Note that
the order 2 algorithm could not deduce dbca = A, but the order 2.5 algorithm could.

4.7 Capabilities of the Algorithm

Theorem 4.20 Civen sufficient hints, the incremental Chromatic Theorem Prover of any

order (> 2} can prove any theorem.

Proof Assume that T =z = y for some Thue system T and strings z, y in £*. Then there
is a sequence z,...,z, of strings from X~ such that z;y = z, 2, = yand for 1 < i < n.
z; can be obtained from z;_; by the application of exactly one rewrite rule a — 3, where
o = 3 or 3 = nais an equation in T.

[t is quite obvious that for 1 < i < n, the Chromatic Theorem Prover of any order (> 2)
can prove z;_; = z;. Now, if the operations corresponding to z;,...,z, are performed one
after the other, the Chromatic Theorem Prover of any order (> 2) can prove z; = 23,22 =
23,....2n-1 = Zn. This means that in the final graph, the nodes corresponding to z; and =,
are the same, the nodes corresponding to z; and z; are the same, and so on. So, the nodes

corresponding to z; and ~, are also the same. Hence the prover is able to prove r = y if

4.7. CAPABILITIES OF THE ALGORITHM 97
ns
n d
‘\
n bl ¢ n
~ \\
131 ~ .
- ‘ c m J L7 bl ¢
n.-; a ! ¢ ',/" m ’(. Ny
a ‘ L7
¢ m ¢ b
1 a n1 ’
Ny -
a
n;
n;

Figure 4.5: Order 2 Algorithm Graphs of Example 4.10

Figure 4.6: Order 2.5 Algorithm Graphs of Example 4.10

98 CHAPTER 4. ALGEBRAIC SPECIFICATION CHECKING

the operations corresponding to 2y,....z, are performed. Performing these operations can

be considered giving hints to the prover. O

Theorem 4.21 All theorems on stacks which are defined by the equation POP(PUSH(S.X))

= S can be proved by the Chromatic Theorem Prover of order 2 without any hints.

Proof Let © = {f.,g}, f corresponding to POP and g corresponding to PUSH. Then
T = {{fg.\)}. Let C = { White|{LightGray|}. The rewrite rules are:

B - »
» — [Did]

However. note that the theorem proving algorithm is such that the second rewrite rule will
never be used. Also, since the application of the first rewrite rule does not introduce a new
color, the algorithm is capable of deriving all terms from a term « that can be derived from
a by a repeated application of the first rewrite rule. Since only one color will be present in
all terms, colors are omitted from the following discussion for convenience. It follows that
if the theorem prover finds a proof for « = 3, where o and 3 are in I*, then the proof has
to be of the form zy,...,2m,...,Zn Where 21 = @, zo = 8, for 1 < 7 < m, z; is obtained
from z;_, by the application of the first rewrite rule (without considering the colors) and
finally. for m < i < n, z; is obtained from z;4; by the application of the first rewrite rule
(again without considering the coiurs).

However, all proofs for @ = 3 need not be of this form. But it is sufficient to prove that
if there is a proof, then there is at least one proof of the above form. Assume that there is
a proof for & = 3. Then there is a sequence y;,...,y, such that y; = a, y, = 3 and for
1 < i < p, y; is obtained from y;_; by the application of either one of the above rewrite rules
(without considering the colors). A transformation process will now be described which will
convert this proof into a proof of the form generated by the Chromatic Theorem Prover.

Assume that the sequence y;,...,yp is not of the above form. Then there has to be a
subsequence in y,...,yp of the form:

Yi = Yiv1 = Yi+2
Yi+1 is derived from y; by exactly one application of the rule A — fg, and y;, is derived

from yi4+; by exactly one application of the rule fg — A. There are two cases to consider:

L.y = a3, yi41 = afgB. yi+2 = aB: In this case, this subsequence is redundant for

4.7 CAPABILITIES OF THE ALGORITHM 99

the purpose of the proof. and therefore, y;4; and y;4+2 can be thrown away and the

remaining sequence still represents a valid proof.

2. Either yi = aBfgy, vis1 = afgBfgy, yive = afgfy; or yi = afgdy. yin =
afgdfgy, viva = aBfgy: In either situation there is an alternate subsequence in
which y; and y;42 remain the same, but y;4; = aB5. This new subsequence still rep-
resents a proof, but differs from the original subsequence in that the order in which

the two different rewrite rules are applied is reversed.

obviously results in a sequence of the required form. Now all that is left is to show that
this process will in fact terminate. For each sequence, define a weight that is the sum of the
distances of each application of the rules fg — A from the left-hand side and the distances of
each application of the rules A — fg from the right-hand side. It is quite obvious that each
application of the above transformation decreases the weight of the sequence. The weight
of a sequence cannot be less than 0, and hence the transformation process will eventually

have to terminate. O .

Theorem 4.22 For any finite n, there are Thue systems in which certain theorems cannot

be proved with the order n algorithm.

Proof Let © = {ay,...,az2n}, and let T = {{ay, a2),{(az,a3),...,{@2n_1.a2,)}

The algorithm of order n cannot prove a; = a;, without any hints. For the only way
to prove this is to perform the following rewrite operations on a, and a, (the colors in the
symbols below are left out for simplicity):

@ — dy — ... — &

an — G2n-1 — ... — &;

Since there are a total of 2n + 1 symbols in the two rewriting operations above (since q;
occurs twice), therefore the longer of the two sequences has to contain at least n+1 symbols.
Also each symbol in the sequence has to have a color smaller than the color of the symbol
to its left. But there are only n colors. Hence it is impossible to perform the above rewrite
operations. O

If T l=a = 3, then the Chromatic Theorem Prover has the capability to prove this theorem
if and only if in any graph that contains absolute paths corresponding to o and 73, these

paths terminate at the same node.

100 CHAPTER 4. ALGEBRAIC SPECIFICATION CHECKING

One algorithm is considered to have a greater capability than another algorithm if the
former has the capability to prove all the theorems that the latter has the capability to

prove and in addition has the capability to prove some more theorems.

Theorem 4.23 The order 3 algorithm has a greater capability than the order 2.5 algorithm,

which in turn has a greater capability than the order 2 algorithm.

Proof Example 4.10 has already demonstrated that there are situations in which the or-
der 2.5 algorithm has more capabilities than the order 2 algorithm. Also, as an obvious
consequence of the algorithm definitions, the order 2.5 algorithm does everything the order 2
algorithm does and more. Hence the order 2.5 algorithm has a greated capability than the
order 2 algorithm.

In Example 4.9, if the order 3 algorithm was used instead of the order 2.5 algorithm.
then a = d could have been proved without having to evaluate the operation 4. Hence
there are situations in which the order 3 algorithm has more capabilities than the order 2.5
algorithm. To conclude this proof, it has to be shown that the order 3 algorithm is capable
of proving all theorems that the order 2.5 algorithm is capable of proving. This is shown
informally below.

The order 2.5 algorithm can be redefined using three colors instead of two. Whenever P”
(Page 95) is not empty, then make all colors in P’ (defined one paragraph earlier in Page 95)
the same and equal to the third color. This redefinition helps compare the order 2.5 and
the order 3 algorithms more easily. It is quite obvious now that the rewrite rules used by
the order 2.5 algorithm is a subset of those used by the order 3 algorithm. The order 2.3
algorithm does not include rewrite rules whose left-hand sides do not contain at least one
symbol of the smallest color. Hence, when these two algorithms perform without hints, the
order 3 algorithm does better since it has more rewrite rules available. Even though the
order 2.5 2lgorithm does perform a certain form of lookahead operation. it is still constrained

by the rewrite rules available to it. O

4.8 Miscellaneous Topics

4.8.1 Going Outside the Subset

The algorithms described in this chapter work on a limited subset of all possible abstract

data types. Even though a large number of interesting real-life application fall into this

4.3 MISCELLANEOUS TOPICS 101

subset, there are times when it is necessary to go out beyond the subset. In this case, the
algorithms of this chapter will not work as is.

A common situation is one in which there are non-unary operations. A typical example
is of a set package. This package might define operations like union and intersection which
are binary. However, these operations can be defined in terms of other unary operations
like add and remove using Anna subprogram annotations. Once this is done. the binary
operations no longer have to be specified axiomatically. Hence, one solution to the problem
is to split the abstract data type operations into those that fall into the subset and those
that do not, and then to define the latter operations in terms of the former operations
using Anna subprogram annotations. A clean methodology however has to be worked out
to interface the two different modes of checking dealt with in this thesis. For example, how
does the graph maintained by the theorem prover get updated as a result of executing a
binary operation defined in terms of other unary operations? This is a topic for future
research.

The above solution will not work always. In such situations (for example, a complex
number package), the incremental methodology can still be used, but a more powerful
theorem prover will be necessary. This theorem prover must be capable of performing
in an incremental fashion. The Knuth-Bendix theorem prover is one that can be used
to replace the theorem prover de.cribed in this chapter. It is not useful to replace the
Chromatic Theorem Prover by the Knuth-Bendix theorem prover when the abstract data

type is within the subset requirements of the former, since the former prover is much faster.

4.8.2 Undefinedness of Expressions

In Anna, undefined expressions are not considered in ascertaining the correctness of the

program!4

. Hence, it is possible in Anna to trivially satisfy all algebraic specifications by
implementing all operations as infinite loops, or such that they always terminate abnormally
by raising an exception.

The Chromatic Theorem Prover cannot recognize when an operation is undefined and
when it is not. The prover could come to wrong conclusions as a result of this. In Exam-
ple 4.8, if the operation ¢ was undefined, then it would be wrong to merge the nodes n,
and n3. One way to solve this problem is to actually evaluate all operations corresponding

to two paths being merged. This may sometimes be inefficient. A clean way to do this is a

'*Partial semantics.

102 CHAPTER §. ALGEBRAIC SPECIFICATION CHECKING

topic for future research.

4.8.3 Concurrent Algebraic Specification Checking

It is quite easy to set up the theorem prover on a separate processor since it does not share
data with the underlying program (unlike in the case of generalized assertion checking).
The only communication required is through the subprogram calls defined in the generic
theorem prover package specification. There is not much of an overhead in sending the
necessary messages between the processors since the messages are quite compact.

As in the case of generalized assertion checking, there is the problem of the underlying
program running inconsistently while earlier check requests are still being processed by the
checking system. It may be acceptable to let the underlying program execute. but wait everv

time it invokes an abstract data type operation until any earlier chechs are completed.

Chapter 5

Debugging Formally Specified

Programs

Specification languages present an opportunity to develop new techniques in all phases of
software production. There are two aspects to developing these new techniques—developing
a new capability, and defining methods of applying this capability. The previous chapters
of this thesis have described a new capability—automatic runtime consistency checking of
programs against their formal specification. In this chapter, a method of applying this
capability, namely debugging based on formal specifications. is described!.

Debugging has always been a creative endeavor. A great deal of ingenuity and effort has
gone into using the current generation of debugging tools to discover errors in programs.
The main point of this chapter is that much more powerful debugging techniques can be
developed based on formal specifications and the existence of a runtime consistency checking
tool. These new techniques utilize both the high-level concepts used in specifications and

the abstraction and information hiding constructs used in modern programming languages.

5.1 The Anna Debugger

A basic understanding of the Anna Debugger is essential to appreciate the debugging tech-
niques described in this chapter. A detailed description is available in Appendix C.

The Anna Transformer transforms Anna specifications into Ada checking code. This

'The methodologies described in this chapter are a result of debugging experiments performed along with
Shuzo Takahashi and David Luckham.

103

104 CHAPTER 5. DEBUGGING FORMALLY SPECIFIED PROGRAMS

checking code reports an error whenever it detects that the underlying program has become
inconsistent with the original specifications. The inconsistencies are reported through the
Anna Debugger. The Anna Debugger specifies both where the inconsistency took place as

well as the particular Anna specification that the program became inconsistent with.

Control is transferred to the debugger before the program starts running and then every
time an inconsistency is detected. Through the debugger, the programmer can suppress the
checking of annotations, or un-suppress the checking of annotations which were suppressed
earlier. Consistency checking with respect to suppressed annotations is not performed.
Suppressing annotations not only makes the consistency checking process more efficient
{(by not performing irrelevant checks): it also allows the programmer to concentrate on
particular portions of the program being debugged. The Anna Debugger provides a few
more capabilities. like controlling when the exception ANNA_ERROR is raised. but these

capabilities are not made use of in the techniques described in this chapter.

A schematic diagram of how the Anna Debugger interacts with the generalized assertion
checking subsystem is shown in Figure 5.1 and the corresponding diagram for the algebraic
specification checking subsystem is shown in Figure 3.2. These figures expand on Figure 1.1
and give more details of the interaction with the Anna Debugger. The Anna Debugger
provides a window based user-interface. Figure 3.3 illustrates the screen layout when an
inconsistency is detected. This figure (and other similar figures in this chapter) does not go
into the full details of the debugger user-interface; rather it concentrates on those aspects

relevant to the debugging methodology presented here.

USER DEBUGGER

A
PROGRAM - CHECKING CODE

Figure 5.1: The Generalized Assertion Checking/Debugging Subsystem

THE ANNA DEBUGGER

USER <t DEBUGGER | EQUALITY CHECKER
3

1
PROGRAM THEOREM PROVER

Figure 5.2: The Algebraic Specification Checking/Debugging Subsystem

- OPTIONS:: 1

St | Violation of annotation at

Continue | SPEC of QUEUE MANAGEH INSERT

T

--! out (LENGTH(Q) = LENGTH(in Q) + 1),
Unsup | -~ out (TOP(Q) = if IS _EMPTY (in Q) then E else TOP(in Q) end if),
L"' -=-1 out (IS _MEMBER (E , (e e m—
 PROGRAMIIO
DRIVER>> INSERT(1,Q0):;
OK Q.STORE(Q.IN_PTR) := E;

ORIVER>> INSERT(2,Q0}); Q.SIZE := Q.SIZE + 1;

ANNA_ERROR is detectad.| end INSERT;

Figure 5.3: A Typical Anna Debugger Screen Layout

106 CHAPTER 5. DEBUGGING FORMALLY SPECIFIED PROGRAMS

5.2 Operation Sequences and Structural Levels

The execution of a sequential program can be modeled as the performance of a sequence of
operations in a particular order. Each of these operates on the program data. Figure 3.4
illustrates this pictoriallv. The oval denotes the program data. while the rectangles denote
the operations. The solid arrows show the execution sequence while the dotted arrows

signifv access of program data by the operations.

Common
Data
- — o]] OPi+1 - = —— -~ —f op| - -

Figure 5.4: Operation Sequences

The operations and data of a program can be abstracted at different levels of the pro-
gram. This abstraction process gives the program its structure. Some of these structural

levels of abstraction are discussed below:

The Operating System Command Language Level: The operations at this level are
the progr~ms themselves. Hence. this is not really a structural level of a program. but a
higher level where programs themselves form the basic operations. For example. a [/VIY
shell script is made up of programs like awk, grep, etc. The data at this level is the program

input and output, for example, disk files.

The Program Level: Programs typically comprise of modules. Modules export functions
and procedures that can be called from other modules. These functions and procedures are
the visible module operations and form the sequence of operations at the program level.

The data at this level are the variables and data structures declared within the modules.

5.2, OPERATION SEQUENCES AND STRI'CTURAL LEVELS 107

These form the states of the modules. In Ada. modules are implemented as packages.

The Module Level: At the module level, oniy one module is considered. The execution
of an operation of this module is influenced by the execution of earlier operations of the
same module and operations of the modules that this module depends on. The sequence of
operations at the n.odule level is therefore the subsequence of the program level operations
whose operations are either in this module or dependent modules. The data at this level is

the states of these modules.

The Module Operation Level: The operations at this level are the sequence of state-
ments within the module operation. The data at this level is the set of all program variables

and data structures defined within the module operation.

The Compound Statement Level: This level is quite similar to the module operation
level, the operations are the statements within the compound statement. and the data is
the set of all program variables and data structures defined within the enclosing module

operation.

The Machine Instruction Level: The operations at this level are the machine instruc-
tions. The data at this level are the machine registers and memorv. As in the case ol the
operating system command language !ovel, this level is also not considered to be a program

leve],

Summary: There are a few points to be noted based on what has been described above:

1. At all levels, there is a sequence of operations which interact by sharing some common

program data.

2. The program data accessible to an operation at any particular level includes the data

accessible at higher levels.

3. The choice of a sequence is more flexible at some levels that others. For example, at
the module level, a test program can be written to invoke the module operations in
any chosen order. while at the module operation level, the sequences of statements

are in some respects hard-wired.

CHAPTER 5. DEBUGGING FORMALLY SPECIFIED PROGRAMS

rA
<
A

4. An operation at any particular level is in general composed of other operations which

can be from any level.

5.3 Assumptions about Specifications

It is assumed that relevant aspects of the program behavior are explicitly written out as
formal specifications. These specifications are assumed to occur at all structural levels of
the program. The concepts? used in these specifications are defined at the appropriate level.
For example. at the module level, where the details of the implementation of the abstract
data type are not availavle, the concepts are high-level attributes of the abstract data type
rindependent of the implementation). The writing of the specifications is assumed to take
place at some earlier stage in the software development with the aid of other specialized

3. Hence, for the purpose of the debugging methodology

tools like specification analyzers
described here, the specifications are assumed to be correct. The implementation of the
concepts used in these specifications is also assumed to be correct. These concepts are
assumed to have been debugged earlier, possibly during their development. Though the
specifications are assumed to be correct, they may not be complete. Hence, there may be
certain aspects of the program behavior that may not have been specified.

The assumptions about specifications mentioned above are necessary for the purpose of
developing the debugging methodology described later in this chapter. In real-life situations.
though these assumptions may not strictly apply always, they will still be valid to some

extent. The methodology described here will still aid the programmer in these situations.

5.4 Two-Dimensional Pinpointing

The debugging methodology described in this chapter is termed two-dimensional pinpoint-
ing [76]. It refers to the process that starts at the detection of the first inconsistency and
results in the narrowing down of the location of the problem.

In general. two strategies are involved in debugging a program. First, tests involve exe-
cuting sequences of program operations and using the Anna Consistency Checking System

to compare their runtime behavior with the specifications. Second, only the highest level

“Concepts are functions used in specifications. .
"The Anna Consistency Checking System is not designed for writing specifications, rather it assumes
that the program and the specifications are already available.

5.4. TWO-DIMENSIONAL PINPOINTING 109

specifications are checked unless a violation occurs. Thus. the debugging problem is re-
garded as having two dimensions: the length of the test sequence, and the structural levels
of the program.

Two-dimensional pinpointing starts if and when inconsistencies arise. When an incon-
sistency arises, a region of suspicion is defined. It is a region of the program text (including
specifications), where the problem that caused the inconsistency is guaranteed to be present.
It may include not only the (sub) unit whose execution propagated the inconsistency. but
also other units at the same level that are related to it, or preceded it in the test sequence.
The goal of two-dimensional pinpointing is to reduce the region of suspicion as much as
possible.

Pinpointing strategies utilize the hierarchical structure of the program. New. more
detailed specifications about program behavior, are added to the previous specifications—
this is called augmenting specifications. New specifications are first added at the same level
as the one that was violated. They should be related to the violated one in such a way that
they are likely to be violated by the same test. The same test sequence is then repeated.
A violation of a new specification may reduce the region of suspicion by providing more
information. and possibly by occurring earlier in the test sequence. At any one time only a
few high level specifications are checked on a given test sequence.

When the region of suspicion has been reduced as much as possible by augmenting
specifications at one level, the next lower level is considered. At this new level, the checking
of specifications of those nested units that remain in the region of suspicion is activated.
This strategy is repeated at progressively lower levels of the program. Each time a violation
occurs, the length of the test sequence is shorter, or the level of the violated specification is
lower—i.e., one of the two dimensions of the test is reduced. Once the region of suspicion
has been reduced sufficiently, an attempt can be made to repair the program fragment
corresponding to this region.

This hierarchical use of specifications may be employed with a range of informal or
formal methods. For example, in pinpointing, the methods whereby new specifications are
created may be highly intuitive, such as “guess-and-test”. Alternatively, new specifications
may be formally proved to imply the violated ones before they are tested. When repairs
are made, goal-oriented techniques utilizing the specifications can be used [34]. Or repairs

can be proved consistent with specifications that were previously violated.

The advantages of debugging with specifications over present debugging methods and

110

tools

CHAPTER 5. DEBUGGING FORMALLY SPECIFIED PROGRAMS

include:

The debugging problem is precisely defined.
The set of specifications to be tested constitute formal definition of the behavior to
be tested. If, later on, new specifications are required, analysis of their relationship

to the old specifications will indicate what further tests need to be performed.

Violations of spectfications are detected automatically.

The task of searching output traces in order to recognize errors is eliminated.

Violations can be analyzed for their effect on users of the software.
Violation of a high level specification in the interface of a module or package indicates

explicitly which facilities are unreliable. Users of other facilities may be unaffected.

During debugging, new specifications can be expressed formally at any program level,
and then tested by the same methods and tools.

A user interacts with the Anna Consistency Checking System by formulating new
specifications and submitting them to tests. The user no longer has to deduce whether

an abstract property of the program is violated from more primitive data.

Very complez tests can be formulated easily and checked automatically.
For example. specifications against side-effects on global data are easily formalized

and tested. This is difficult to do with standard debuggers.

Such methods and tools are independent of the language tmplementation.

For example, the Anna Consistency Checking System can be used with any Ada

compiler and runtime implementation.

These methods apply equally well to concurrent programs.
For concurrent software, the methods use specification languages that extend Anna

by providing new constructs for concurrent behavior—e.g., TSL [72].

The two-dimensional pinpointing methodology is now summarized as a set of three general

guidelines for applying this methodology. The example in Section 5.6 illustrates the appli-

cation of these guidelines during the process of debugging a QUEUE package. Before going

into these guidelines, certain ramifications of the assumptions made about specifications in

Section 5.3 are listed:

5.4. TWO-DIMENSIONAL PINPOINTING 111

e No initial (starting) specification may be changed.

This follows from the assumption that the specifications are correct.

o New specifications may be added provided they are consistent with the old ones.
This follows from the assumption that the specifications, though correct, may still be

incomplete.

e Repair may involve any change to ezecuiable code, but data structures may be changed
only to the extent that ther arc not constrained by the specifications.

This also follows frem the assumption that the specifications are correct.

e An ircunsistency of the program behavior with an intuitive intention may occur.
[n this case, the intuitive intention has not been formally expressed, which may indeed

be the case since the specifications are assumed to be incomplete.

e The operation in which the inconsistency is detected by the Anna Consistency Checking
System is not necessarily at fault. The earlier operations in the sequence have to be
included in the region of suspicion.

This foliows from the assumption that specifications may be incomplete. Hence, when
the operation in which the inconsistency was detected began execution, the common
data (see Figure 5.4), may have already been inconsistent due to a problem in one
of the earlier operations in the sequence. This was not detected since this kind of

inconsistency may not have been formally specified against explicitly.

The guidelines are now given below:

1. Adding specifications at the current level: An attempt is made to add new
specifications at the level being tested. This choice is indicated whenever there seem to
be missing specifications. It is obvicusly necessary whenever the program behavior is in-
consistent with an intuitive intention although no specification was violated. This strategy
usually results in reducing the region of suspicion by shortening the test sequence in which

a violation occurs.

2. Going down to a lower level: The program is tested at the next lower level. The
specifications at this level are activated. The region of suspicion will be reduced if one of

these newly activated specifications is violated. The original level will then be excluded

112 CHAPTER 5. DEBUGGING FORMALLY SPECIFIED PROGRAMS

from the new region of suspicion. This choice is taken when there does not seem to be any

missing specifications at the earlier level.

3. Confidence in the completeness of specifications: If there is confidence in the
completeness of specifications that constrain a certain intermediate point during the exe-
cution of the sequence of operations, and this set of specifications is not violated. then the
operations in the sequence that occur before this point can be excluded from the region of

suspicion.

The rest of this chapter illustrates the application of two-dimensional pinpointing to debug-
‘ ging Ada packages. The structure of the Ada package is described followed by a detailed
example where the debugging methodology is carried out on a QUEUE package. Many
topics, such as the use of algebraic specifications. are omitted. A fuller treatment is given
in {73]. Techniques are described there to construct specifications so as to justify the postu-
late that debugging starts with correct specifications. More detailed examples of pinpointing

are given, and the reasoning to justify various steps is discussed in detail, some of it formally.

5.5 Ada Packages

Ada packages are complex units of abstraction with several structural levels. While the
package executes, it performs a sequence of package operations. Details of the structural
ievels of packages are given below. To debug a package, a test sequence—a sequence of
package operations—is first chosen. The package is executed on these operations one after
the other. If an inconsistency is detected, the process of two-dimensional pinpointing is
commenced. At this point, only the specifications at the highest structural level (the package
visible level) are activated.

An Ada package can be considered to be a composition of entities at different structural

levels. A simple package may have the following structural levels:

o The visible level:
The visible level of the package is where the interface of the package to the rest of the
program is defined. The visible level typically consists of a private type and subprogram

declarations.

o The data level:

5.5. ADA PACKAGES

113

At this level is the definition of the data structures and the data objects of the package.

The private part of the package is also part of the data level.

o The subprogram level:

This level consists of the actual bodies of the subprograms inside the package body.

o The statement level:

This level consists of the sequence of statements within the subprogram. Actually. this

level can be split up into more than one level. For example, a compound statement

(e.g. aloop) may be considered at a higher structural level than the simple statements

within it.

In the example of Section 5.6, a QUEUE package with the standard operatious of INSERT,
REMOVE, etc. is presented. The structural levels of this package is illustrated in Figure 3.5.

package QUEUER MANAGER is
type QUEUE is private;

procedure INSERT(...):
procedure REMOVE(...);

lp:ivat- ‘.. {\

end QUEUR MANAGER:

package body QUEUR_MANAGER is

Data structures and
variables "

t——— - Visible level

Data level

Subprogram level

Body of Body of
INSERT REMOVE

Staternent level

end QUEUE_MANAGER;

Figure 5.5: Structural Levels within the QUEUE Package

The test sequences consist of visible package operations. In the example of Section 5 6,

the test sequences consists of repeated applications of the operations INSERT and REMOVE.

114 CHAPTER 5. DEBUGGING FORMALLY SPECIFIED PROGRAMS

5.6 An Illustrative Debugging Session

In this section. the QUEUE_MANAGER package written in Ada/Anna is tested and de-
bugged. using the Anna Consistency Checking System. The example, although simple for

brevity. illustrates the application of the two-dimensional pinpointing methodology.

5.6.1 The QUEUE_MANAGER Package

The QUEUE_MANAGER package provides an abstract queue type, procedures, functions,
and exceptions. The Ada declaration of the package contains the abstract Anna specification
which is visible to the users cf the package. This Ada/Anna package visible specification
defines the behavior of the facilities (types and operations) provided by the package.

The Ada package body, including the Ada private part, contains an implementation. the
details of which are hidden from the users of the package. This hidden part, which has three
structural levels, also contains local annotations specifying how the implementation works.
The hidden annotations refer to the hidden ir.plementation details, and thus will be different
for different implementations. The stages during the development of the QUEUE_MANAGER

package are shown below:

1. Types and exceptions are declared. In particular, the abstract data type QUEUE is

declared as an Ada private type.

2. The functions IS_MEMBER, LENGTH, and TOP are declared. These are referred to
as hasic concepts because they are used to specify all of the other QUEUE_MANAGER

operations.

3. The rest of the operations are declared and specified in terms of the concepts. Actually,
two of the other package operations, IS_EMPTY and IS_FULL, which have very simple
specifications in terms of the basic concepts, are also used as concepts in specifications.
This completes construction of the visible specification. A tool such as the specification

analyzer may be used to ascertain the correctness of the specifications.

4. The abstract data type QUEUE is represented as a record type structure in the private
part of the QUEUE_MANAGER package. This is the first and most critical decision
in the implementation. The values of this structure are subject to a type constraint

which expresses a major decision about its use in this particular implementation.

5.6. ANILLUSTRATIVE DEBUGGING SESSION 115

3. The bodies of the concepts are implemented and tested for correctness.

6. The rest of operations are implemented.

The QUEUE_MANAGER package specification and body are now shown below. Note that
certain annotations have been named. This method of naming annotations is not part of
the Anna language definition, but an extension provided by the Anna Consistency Checking

System. For more details regarding naming of annotations, see C.3.1.

generic
type ELEMENT is private;
MAX :POSITIVE;

package QUEUE_MANAGER is
type QUEUE is private;
EMPTY, FULL :exception;

-~ The following are the definitions of the concepts used in
—— specifications. Note that IS_EMPTY and IS_FULL are
-~ defined in terms of LENGTH.

--: function IS_MEMBER(E:ELEMENT;Q:QUEUE) return BOOLEAN;
function LENGTH(Q:QUEUE) return INTEGER;
function TOP(Q:QUEUE) return ELEMENT:
function IS_EMPTY(Q:QUEUE) return BOOLEAN;
--|] <<SPEC_IS_EMPTY>>

-~| where

-— return LENGTH(Q) = o;

function [S_FULL(Q:QUEUE) return BOOLEAN;
-—| <<SPEC_IS_FULL>>

--| where

-] return LENGTH(Q) = MAX;

-~ The following are the remaining operations of the pack-
—— age. These are specified by the concepts defined earlier.

116

CHAPTER 5. DEBUGGING FORMALLY SPECIFIED PROGRAMS

procedure INSERT(E:ELEMENT:Q:in out QUEUE);
~—| <<SPEC_INSERT>>

--| where

IS_FULL(Q) => raise FULL,

raise FULL => Q = in Q,
out(LENGTH(Q) = LENGTH(in Q)+1),
out(IS_MEMBER(E.Q));

procedure REMOVE(E:out ELEMENT;Q:in out QUEUE);
--| <<SPEC_REMOVE>>

-~| where

private

IS_EMPTY(Q) => raise EMPTY,

raise EMPTY => Q = in Q,
out(LENGTH(Q) = LENGTH(in Q)-—1),
out(E = TOP(in Q));

type QUEUE_ARRAY is array(INTEGER range <>) of ELEMENT;
type QUEUE is record

STORE:QUEUE_ARRAY(1..MAX);
IN_PTR,OUT_PTR:INTEGER range 1..MAX := 1.
SIZE:INTEGER range 0..MAX = 0;

end record;
~~| <<QUEUE_INVARIANT>>
~-| where

—|

in out Q:QUEUE =>
(Q.IN_PTR~Q.OUT_PTR —Q.SIZE) mod MAX = o

end QUEUE_MANAGER,;

package body QUEUE_MANAGER:

-~: function IS_MEMBER(E:ELEMENT;Q:QUEUE) return BOOLEAN is

[:INTEGER := Q.OUT_PTR;

~—: begin

if IS_EMPTY(Q) then
return FALSE;
end if;

5.6. AN ILLUSTRATIVE DEBUGGING SESSION

-— loop

- if Q.STORE(I) = E then
- return TRUE;

-—: end if;

-=: I := 1 mod MAX + I;
-—: if [= Q.IN_PTR then
—-—: return FALSE;

~=: end if;

~-—: end loop;

~—: end IS_MEMBER,;

function LENGTH(Q:QUEUE) return INTEGER is
~-| <<BODY_LENGTH>>
~-| where
~-—| return Q.SIZE;
begin
return Q.SIZE;
end LENGTH;

function TOP(Q:QUEUE) return ELEMENT is
~--| <<BODY_TOP>>
--| where
-—] return Q.STORE(Q.OUT_PTR);
begin
if IS_LEMPTY(Q) then
raise EMPTY;
else
return(Q.STORE(Q.OUT_PTR));
end if;
end TOP;

function IS_EMPTY(Q:QUEUE) return BOOLEAN is
--| <<BODY_IS_EMPTY>>
~-| where
-—| return Q.SIZE = o0;
begin
return Q.SIZE = 0;
end IS_EMPTY;

117

113 CHAPTER 5. DEBUGGING FORMALLY SPECIFIED PROGRAMS

function IS_FULL(Q:QUEUE) return BOOLEAN is
--| <<BODY_IS_FULL>>
-—| where
- return Q.SIZE = MAX;
begin
return Q.SIZE = MAX;
end IS_FULL;

procedure INSERT(E:ELEMENT;Q:in out QUEUE) is
begin

if IS_FULL(Q) then

raise FULL;

end if;

Q.STORE(Q.IN_PTR) := E;

Q.SIZE := Q.SIZE +1;
end INSERT;

procedure REMOVE(E:out ELEMENT;Q:in out QUEUE) is
begin

if IS_EMPTY(Q) then

raise EMPTY;

end if;

E := Q.STORE(Q.IN_PTR);

Q.OUT_PTR := Q.OUT_PTR mod MAX + I;

Q.SIZE := Q.SIZE -1;
end REMOVE;

end QUEUE_MANAGER;

5.6.2 The Debugging Session

A session with the Anna Consistency Checking System aimed at testing and debugging the
QUEUE_MANAGER package is now described. The session consists of six interactions in
which tests are made, results are analyzed, and further actions are taken. Each interac-
tion demonstrates how formal specifications are used in the two-dimensional pinpointing

methodology.

5.6. ANILLUSTRATIVE DEBUGGING SESSION 119

INTERACTION 1

Test: A queue variable Q0 and an element variable EQ is declared. All private part anno-
tations and package body annotations are suppressed to test the behavior o/ the package
body for consistency with visible specifications. The following test sequence of three calls

to package operations is then performed:

INSERT (1, Q0); INSERT(2.Q0); REMOVE(E0.Q0);

Result: No Anna violation occurred at the visible level. But there is an inconsistency
with the intuitive intention of the program since 2 was removed from Q0, whereas the first

element inserted was 1. The Program I/0O window in Figure 5.6 illustrates this interaction.

Continue
Suppress
Unsupprees | DRIVER>> INSERT(1,Q0);
List OK
DRIVER>> INSERT(2,Q0);
OK
JDRIVER>> REMOVE (EQ, 20} ;
EQ = 2;

Figure 5.6: Result of Interaction 1

Explanation: This happened because the visible specifications do not express all the
intuitive requirements of queues—clearly something has been forgotten. At this stage. an

unexpected result has occurred at the end of the sequence:
INSERT(1.Q0); INSERT(2, Q0); REMOVE(EO0, Q0);
where the interaction level is the package visible level. The region of suspicion is the visible

specifications of INSERT and REMOVE, the data level, and the bodies of these package
operations. See Figure 5.12 in page 130.

120 CHAPTER 5. DEBUGGING FORMALLY SP.ECIFIED PROGRAMS

Guideline: Pinpointing the region of suspicion at the visible level.

Starting with the operation that was violated, and working back through the test sequence:
1. Express the violated intuitive requirement as a new formal annotation.

2. Consider how the previous operations of the test influence the violated requirement.
If there seems to be any missing specification of the previous operations that is related
to the violated one, express it formally. Missing specifications at the debnugging stage

are often invariants of visible operations.

Action and Justification: The first general guideline stated in page 111 is followed. One
has to consider why this inconsistency occurred and look for missing visible specifications.

The first guess that comes to mind is:

REMOVE did not return the value TOP(Q0)

However. the visible specification of REMOVE does contain:
-~| out (E = TOP(in Q));

If this was violated. an inconsistency would have be reported by the Anna Consistency
Checking System. However, no inconsistency was reported. Hence, the guess made above

is wrong since TOP is assumed to be correct. The next guess that comes to mind is:

The value TOP((Q0) was changed in one of the ezecutions of INSERT

At this stage, consider the expected behavior of INSERT with respect to the concept TOP.
[t looks obvious that TOP(Q) for a non-empty Q must remain invariant under an INSERT
operation. and that this is missing in the visible specification of INSERT. This missing

specification is formally expressed as:

6. AN ILLUSTRATIVE DEBUGGING SESSION 121

G

procedure INSERT(E:ELEMENT:Q:in out QUEVE):
--| <<SPEC_INSERT>>

-~| where

-= out(TOP(Q) = if IS_EMPTY(inQ) then
__l E

- = else

- TOP(in Q)

-] end if);

This is added to the specification of INSERT and the same test sequence is rerun {see

Interaction 2), in order to determine whether or not the second guess is correct.

Remarks:

1. When the two-dimensional pinpointing methodology is applied at the visible level,
it is important not to reason about the cause of an inconsistency based on a par-
ticular implementation detail such as elements being placed in some positional or-
der in a common data structure as an array or a linked list. At the visible level of
QUEUE_MANAGER. all that is available are the visible operations of this package. and
the abstract relations between these operations. For example, it cannot be assumed
that the value of TOP(QO0) is the first element in an airay.

2. It is possible to prove formally that the newly added specification of INSERT must be

violated by the sequence test.
3. Such invariants as the newly added specification are often overlooked.

4. If a standard debugger were used, the values of low level variables in the package body
would have to be printed, and based on this, the visible level concepts would have to
be manually reconstructed. The Anna Consistency Checking System automatically

performs these operations, once the guesses are expressed formally.

Other Possible Actions: Another possibility would be to add:

122 CHAPTER 5. DEBUGGING FORMALLY SPECIFIED PROGRAMS

procedure INSERT(E:ELEMENT:Q:in out QUECUE):

- -] <<SPEC_INSERT>>

-—| where

-~ out (for all E1:ELEMENT =>

--] (IS_MEMBER(E1,Q) <-> E1=E or IS_MEMBER(El.in Q))):

This might be the result of a guess that INSERT may be deleting some elements from the
queue. However this specification does not constrain against INSERT changing the value of
TOP, which is one of the observations made in this interaction. Hence this choice is not as

good as the one that was actually made.

INTERACTION 2
Test: The same sequence is run again.
Result: An inconsistency is reported, with respect to the newly added specification. by

the Anna Consistency Checking System at the end of execution of the second operation,
INSERT(2.Q0). See Figure 5.7.

[oprions |

Start

Continue

Suppress

~--1 out (LENGTH(Q) = LENGTH(in Q) + 1),
Unsuppresqd __| oyt (TOP(Q) = if IS _EMPTY(in Q) then E else TOP(in Q) end if},
List -=i out (I5_MEMBER (E, frriater

 PROGRAM UG

CRIVER>> INSERT(1,Q0);
OK Q.STORE(Q.IN_PTR) := E;

SRIVER>> INSERT(2,Q0); Q.SIZE := Q.SIZE + 1;
ANNA_ZRRCR i3 detected.| end INSERT:

Figure 5.7: Result of Interaction 2

Explanation: As expected, INSERT has an additional effect (beyond what is specified).

The window displaying the violated annotation shows that the value of TOP is not invariant

5.6. AN ILLUSTRATIVE DEBUGGING SESSION 123

under INSERT's into non-empty queues. Note that it is the second INSERT operation that
caused the inconsistency.

The length of the sequence where a violation occurred has decreased. As a result. the
region of suspicion is now reduced to the visible specification of INSERT. the data level.
and the body of INSERT. See Figure 5.12 in page 130. This, however, does not mean that
REMOVE is correct. It simple means that an inconsistency between the specifications and

the program text exists in the current region of suspicion.

Guideline: Pinpointing the region of suspicion at the data or body level.

1. Test the subprogram against the existing lower level annotations such as data invari-

ants in the private part or body, subprogram body annotations, etc.

2. Add an annotation of the subprogram body which is a transformation of the visible
specification that was violated. In transforming a visible annotation into an equivalent
hidden one, abstract variables are replaced by their lower level (hidden) representa-
tions. Such an annotation can be used as a starting point for further pinpointing at the

body level. It can be used in other situations, too. See the guidelines in Interaction 3.

3. Add more detailed subprogram annotations to the subprogram body. A good can-
didate is an annotation of the subprogram body referring to hidden components or
variables; such detailed annotations are not expressible as subprogram annotations at

the visible level.

Action and Justification: The second general guideline stated in page 111 is followed.
The aim now is to reduce the region of suspicion, interacting at the next lower level in the
package structure, which is the data level. For this purpose, QUEUE_INVARIANT which is
in the private part of the package is un-suppressed. The same test sequence is run again
(see Interaction 3). QUEUE_INVARIANT must be satisfied by all variables (and parameters)
of a QUEUE record whenever a package operation terminates normally. Note that at the

(lower) data level the structure and components of queues are visible.

Remarks:

1. With a standard debugger, the interaction with the program is performed at the same

level as the low-level information shown in the window displaying the location of a

124 CHAPTER 5. DEBUGGING FORMALLY SPECIFIED PROGRAMS

violation. On the other hand. in this methodology, the interaction with the program
is at the same level as the high-level specification shown in the window displaying a
violated annotation. At this stage of the two-dimensional pinpointing process, it is

not clear yet as to how the low-level infor nation relates to the high-level specification.

(3]

. The same remark as stated in Interaction 1 is applicable here. With a standard
debugger, the values of low-level variables Q0.IN_PTR, Q0.OUT_PTR and Q0.SIZE
have to be printed before and after each execution of the operation INSERT. in or-
der to check whether QUEUE_INVARIANT is satisfied or not. However, the Anna

Consistency Checking System does this automatically.

INTERACTION 3

Test: The same sequence is run again.

Result: The Anna Consistency Checking System detects a violation at the first call of
INSERT as shown in Figure 3.8.

Coantinue

r
L

Unsuppress| -—: <<QUEUE_INVARIANT>>
--{ where in out Q:QUEUE =>
List -=1 (Q.IN PTR -~ Q.OUT PTR -~ Q.5I7E) mod MAX = 0;
X F"a(JCiF{AhﬂJI e — 2

DRIVER>> INSERT(L,QuU); i
ANNA_ERROR is deted

Q.STORE(Q.IN_PTR) := E;
Q.SIZE := Q.SIZE + 1.
end INSERT;

Figure 5.8: Result of Interaction 3

Explanation: This means that after an element was inserted, the invariant condition
among Q.IN_PTR, Q.OUT_PTR, and Q.SIZE was violated. Notice that both dimensions,
the length of the violated sequence and the level of the violated specification are reduced.
The region of suspicion has been reduced to the data level and the body of INSERT. See
Figure 5.12 in page 130.

5.6, AN ILLUSTRATIVE DEBUGGING SESSION 125

Guideline: Pinpointing the region of suspicion within a single subprogram,

1. Add a subprogram annotation to the subprogram body which is a transformation of
the visible specification that was violated. This annotation can be used for further

pinpointing as well as for repair.

. Add more detailed subprogram annotations to the subprogram body.

(3]

3. Add statement annotations such as loop invariants or assertions within the code of

the subprogram body.

1. At the subprogram body level, a considerable number of detailed annotations are
available. Thus, it is sometimes advisable to rewrite the body that is under suspicion.
using these annotations, rather than make an attempt to further pinpoint the location

of the problem.

Action and Justification: The length of the sequence is reduced to one operation—
INSERT. The decision taken at this stage is to repair the body of INSERT using a goal-
oriented approach. The body of INSERT must achieve the following four goals as a result
of updating Q.IN_PTR, Q.OUT_PTR, and Q.SIZE:

1. out(Q.STORE(in Q.IN_PTR) = E)
2. out(Q.SIZE = in Q.SIZE + 1)
3. out(Q.IN_PTR = in Q.IN_PTR mod MAX + 1)

4. <<QUEUE_INVARIANT>>

Since the fourth goal was violated, the body did not achieve it. A method of fixing the body
has to be found so that it achieves the fourth goal. Looking at the body, it is obvious that
the body achieves the first and second goals, but not the third one. It can be informally
concluded that if an assignment statement is added to satisfy the third goal, then the fourth
goal is also met. Hence, the following assignment statement is added to the body of INSERT:

Q.IN_PTR := Q.IN_PTR mod MAX + I;

126 CHAPTER 5. DEBUGGING FORMALLY SPECIFIED PROGRAMS

Other Possible Actions:

1. The package can be run on the sequence again after adding the above goals as sub-

program annotations.
2. The correctness of this repair can be checked formally by proof methods. For example

see [34].

INTERACTION 4

Test: The same sequence is run again, checking specifications at all levels.

Result: The Anna Consistency Checking System detects another violation at the visible

level as shown in Figure 5.9.

--| raise EMPTY => Q = in Q,
Unsuppresd --| out (LENGTH(Q) = LENGTH(in Q) =- 1),
~=| out(E = TOP(in Q)):

List

DRIVER>> INSERT(1,Q0);

oK
DRIVER>> INSERT (2,Q0); Q.OUT_PTR := Q.OUT_PTR mod MAX + 1;
OK Q.SI2E := Q.SI2E -T1;

DRIVER>> REMOVE{EZ,Q0); | end REMOVE;
ANNA_ERROR is d I

Figure 5.9: Result of Interaction 4

Explanation: This test serves two purposes:

1. Running INSERT(1,Q0); INSERT(2,Q0) against the specifications at all levels in order
to find out whether or not the repair made in the previous interaction is correct on

this test.

2. Running INSERT(1,Q0); INSERT(2,Q0); REMOVE(EO0, Q0) against visible specifications

for further testing.

5.6. AN ILLUSTRATIVE DEBUGGING SESSION 127

The result shows that INSERT, as repaired. is consistent with all existing specifications on
this particular test sequence. but that another inconsistency occurred with a visible level
specification. The region of suspicion is the visible specifications of INSERT and REj\IOVE.
the data level, and the bodies of these procedures. See Figrre 5.12 in page 130.

Action and Justification: The test sequence leading to a new violation and the level
of the violated annotation is the same as in Interaction 1. However, INSERT is consistent
on this test with all existing annotations at all levels. A judgement is made that the
specifications of INSERT are complete, i.e., there does not seem to be any further missing
specifications. (there is confidence in the correctness of INSERT). Therefore, following the
third general guideline stated in page 112, the region of suspicion is now reduced to the
visible level of REMOVE, the data level, and the body of REMOVE. The aim now is to reduce
the region of suspicion to the data level and the body of REMOVE. At this stage. a strict
adherence to two-dimensional pinpointing requires first attempting to find an inconsistency
at the data level. The explanation of this process is omitted for brevity. An attempt is
made now to further reduce the region of suspicion to the body of REMOVE. The detailed

body annotations for REMOVE must now be provided. The violated visible annotation is:
-~| out(E = TOP(in Q));

This specifies exactly what the value of E in REMOVE should be. The violated visible
specification is transformed into a body annotation of REMOVE, using the following body

level specification of TOP:
-—| return Q.STORE(Q.OUT_PTR);
The resulting specification is:

procedure REMOVE(E:out ELEMENT;Q:in out QUEUE)
--| <<BODY_REMOVE>>

--| where

--| out(E = in (Q.STORE(Q.OUT_PTR)));

This transformed annotation describes exactly how E should be updated in the body of

128 CHAPTER 5. DEBUGGING FORMALLY SPECIFIED PROGRAMS

REMOVE. This transformed specification is added to the body of REMOVE and the same

sequence is run again (see Interaction 3).

INTERACTION 5

Test: The same sequence is run again.

Result: The Anna Consistency Checking System detects a violation of the new body

annotation of REMOVE, as shown in Figure 5.10.

Start

Cantinue
Suppress
Unsuppress | —~! <<BODY REMOVE>>
-=| where
e -1 oUL{E = in Q.STORE(in Q.OUT_PTR));

DRIVER>> INSERT(1,Q0);

OK
DRIVER>> INSERT(2,Q0);
OK

Q.0UT_PTR := Q.OUT_PTR mod MAX + 1;
DRIVER>> REMOVE (E0,Q0); Q.SIZE := Q.SIZE =~ 1:
ANNA_ERROR is det] end REMOVE;

J

Figure 5.10: Result of Interaction 5

Explanation: The region of suspicion has been reduced to the body of REMOVE. See
Figure 5.12 in page 130.

Action and Justification: The annotation BODY_REMOVE specifies the exact compo-
nent in Q.STORE to be returned as the value of E. An inspection of the body of REMOVE
shows that the following repair is needed: IN_PTR needs to be replaced by OUT_PTR in

the assignment statement:

E := Q.STORE(Q.IN_PTR);

Other Possible Actions: The correctness of this repair could also be checked formally

by proof methods.

5.6. AN ILLUSTRATIVE DEBUGGING SESSION 129

INTERACTION 8

Test: After changing the body of REMOVE as mentioned in Interaction 3. the same se-

quence is run again.

Result: This time, no violation is detected. See Figure 5.11.

Suppress | pRIVER>> INSERT(1,Q0);

Un OK
SUPPr®y o VER>> INSERT(2,Q0) ;
Tint oK
DRIVER>> REMOVER (EO,Q0) ;
E0 = 1;

Figure 5.11: Result of Interaction 6

CHAPTER 5.

DEBUGGING FORMALLY SPECIFIED PROGRAMS

package CUXUE_MAMAGER is
type QUEUR is privatae;

pm INSERT(...);

rivate

package QUEUE_MANAGER is
type QUEUE is private;

procedure INEERT(...):

privata

and QUEUR MANAGER :

package QUEUR_MANAGER is
type QUEUE is priwvate;

procedure INGERT(...);

private

i ——————
end QUEUE MANAGER;

and QUEUE MANAGER :

package body QUEUE_MMMAGER is

Data structurea and

variables
Body of Sady of
INBERT REMOVE
and QUEUE_MANAGER:
INTERACTION 1

package body QUEUR MAMAGER is

Data structures and

package body QURUR MANAGER is

Data structures and

variables variables
Body of Body of Body of Body of
INEERT REMOVE INSERT REMOVE
and QUEUR MAMAGER; end CUEUR_MANAGER;
INTERACTION 2 INTERACTION 3

package QUEURE_MAMAGER is
type QUEUR is private;

procedure DISERT(. ..} ;

private

end QURUR MANAGER :

QUEUR_MAMAGER. ia
type QUEUR ia privata;

procadure IMRERT(...);

private

QUEUE_MANAGER is
type QUEUR is privata:

pm INSERT(...):

private

end QUEUE MANAGRR;

and QUEUE MANAGER:

package body QUEUE_MANAGER is

Data structures and
vaziables

package body QURUE_MAMAGER is

Data structures and

package body QOUEUR_MANAGER is

Data struactures and

wvaciables variablea
Sody of Sody of Body of Body of Body of Body of
INEERT REMOVE INSERT REMOVE INGERT REMOVE
and QUEDR_MANAGER and m_mnm; ond m_m:
INTERACTION 4 INTERACTION 5 {NTERACTION 6

Figure 5.12: The Region of Suspicion at Each Interaction

Chapter 6

Conclusions

The Anna Consistency Checking System as described in this thesis has been implemented.
Various subset restrictions are mentioned in Appendix C. This system has been used
extensively both in and outside Stanford. The debugging experiments that resulted in
the two-dimensional pinpointing methodology demonstrates clearly the usefulness of such a
system. The Anna Consistency Checking System has also proved useful in the maintenance
of large programs where consistent updates to the program are usually quite difficult. For
example, an implicit assumption made at some point about the program may be violated
by an inconsistent update many months later (possibly by another programmer). Writing
out this assumption as an annotation and running the updated program through the Anna
Consistency Checking System reveals the problem with the update immediately. Variations
of this system could be useful in program optimization and program verification. The
database group at Stanford has used the Anna Consistency Checking System extensively in
some of their projects. Their code represents some of the largest programs that have been
run through this system—some modules were about 5000 lines long.

The current system has a deficiency in that it does not understand all Ada programs.
For example, array generic formal parameters and Ada aggregates are not handled. Hence,
there are occasions when an Ada program with very simple annotations may : ot be com-
pletely be analyzed by this system because certain Ada constructs used are outside the
currently handled subset. Work is currently underway to extend the capabilities of the
Anna Consistency Checking System so that it can handle any Ada program. The system
is also currently being updated to handle more Anna constructs. For example, modified

subtype annotations will soon be handled. Concurrent checking of generalized assertions

131

132 CHAPTER 6. CONCLUSIONS

is fully implemented, while a similar implementation for algebraic specification checking is

still underway.

The fact that the target language of the Anna Transformer is Ada causes some prob-
lems for the Anna Transformer. It is sometimes quite difficult to create an Ada program
that performs all necessary checks correctly. For example, a transformation is performed
to make equality operators directly visible even when their corresponding types are either
visible indirectly, or visible through the use or a subtype. This is required since there are
situations in Anna where the equality operator is required for the purpose of a transfor-
mation, but would otherwise not be available due to Ada’s visibility rules. Given all this,
if the programmer tries to explicitly redefine the equality operator, the program becomes

semantically incorrect for the Anna Transformer has already defined one.

The used interface to the Anna Consistency Checking System is constantly undergoing
change. The window based user-interface described in this thesis already has the capability
to invoke editors and to customize fonts, colors, menus, etc. In the long run it is hoped
that the system will be completely be revamped to run incrementally. The interactions
described in Chapter 5 can then take place in real-time, rather than having to perform a

complete retransformation and recompilation between every interaction.

A major project that has been proposed is to extend the Anna Consistency Checking
System to handle annotations on access types and objects. Anna defines the notion of a
collection and provides a powerful set of primitives using which they can be annotated.
The current inclination towards the methodology to be used for this purpose is to axioma-
tize collections and access types (using algebraic specifications), and to treat operations on
access types and ob jects as operations of this axiomatized abstract data type. A straightfor-
ward application of the algebraic specification checking methodology will then work. This
approach solves the problem of dynamic aliasing that access types and objects suffer from.
Using the terminology of Chapter 4, all access variables accessing the same objects will be

lumped together into the same equivalence class of objects.

A topic for future research is in attempting to use checking functions for other purposes
than just to check the truth or falsity of annotations. One possibility is for the checking
function to perform proofs, thereby generalizing the results of the checks it has already
performed to a larger domain. In the best case, these “proving functions” could greatly aid
in verifying the program. But at worst, the “proving functions” can be used to perform

optimizations on the amount of checks performed. These kind of optimizations would be

133

performed dynamically. Static optimization by performing as much proof as possible before
the program starts executing is also something to be looked into.

One obvious topic for future research in the case of algebraic specification checking is
in extending the subset of the Chromatic Theorem Prover and in trying to theoretically
characterize the limitations more precisely than has been done in this thesis. Another future
research topic is in cleaning up the definition of algebraic specification checking so as to
include cases like the one in Example 4.1.

The interaction between the generalized assertion checking and the algebraic specifica-
tion checking systems has to be studied in detail. There are situations where an assertion
check may be more comprehensive if previous results of algebraic specification checking is
taken into account. This problem is not as difficult as some of the other possible extensions
to this research. but still needs some time to be devoted to it to come up with a clean
interaction between the two checking subsystems.

Finally, it is hoped that the experience of tool development for Anna will result in the

design of better specification languages and more powerful tools in the future.

Appendix A

An Overview of Ada

The Ada programming language was developed on behalf of the U.S. Department of Defense
to help control the cost of software for computers embedded in larger systems. The Defense
Department sought a standard programming language both because it was using too many
specialized languages and because the languages it was using were technically obsolete.
The first step was to identify and refine the requirements for the standard language. After
determining that these requirements were feasible, but not met by any existing programming
language, the Defense Department awarded contracts for the design of a new language. The
language Ada, which was named after Ada Augusta, the Countess of Lovelace (considered to
be one of the world’s first computer programmers), was the winning design in a competition
that started off with seventeen proposals.

Adais a block-structured language. based on Pascal, offering features such as strong typ-
ing, subprograms, pr.~kages for encapsulation of information, tasks for concurrency, separate
compilation for modular programming, ezceptions for error processing and generic units
to write general-purpose reusable components. The remaining sections of this Appendix
explains Ada in sufficient detail to be able to understand the examples in this thesis. A
knowledge of Pascal, or any other similar programming language is assumed. For a more

extensive coverage of Ada, please refer to [2,16].

A.1 Ada Programs

An Ada program (or Ada program library) is a collection of files (called compilations), each

of which contains a collection of modules (called compilation units). Each compilation unit

134

4.2, SUBPROGRAMS 135

is comprised of two parts—the contert clause which lists the compilation units that this
unit is dependent on, and the remaining part which is either a subprogram. a package or a

generic unit. An example of a compilation unit that is a package is shown below:

-- A Queue Package
with TEXT_IO, LISTS;
package QUEUE is
procedure INSERT(E:in ELEMENT);
function REMOVE return ELEMENT:
end QUEUE;

The first line in this example is 2 comment. Everything between —- and the end of the
line is treated as a comment in Ada. The second line is the context clause which says that
the package QUEUE depends on the compilation units TEXT_IO and LISTS.

Ada programs can be visualized as directed graphs (called dependency graphs), the nodes
of these graphs corresponding to the compilation units and the edges corresponding to the
dependency relations specified by the context clauses. All compilation units must be com-
piled before the compilation units dependent on them, and hence dependency graphs have
to be acyclic. Any compilation unit that {5 a subprogram can be chosen to be the main pro-
gram (the program starts execution at the main program). Available to all compilation units
are a set of predefined entities. Here is where types like BOOLEAN, INTEGER and STRING.
and subprograms like the boolean and integer operations are defined. Also available is a
library of predefined compilation units which offer useful facilities such as input-output. To
use these predefined compilation units, they must be included in the context clauses of the
compilation units that are dependent on them.

Conceptually, there is a predefined package called STANDARD in which all the predefined
entities and all the compilation units in the dependency graph are considered to be declared.
This conceptualization is useful in understanding the visibility rules between compilation

units.

A.2 Subprograms

A subprogram is an abstract operation defined by the user. In Ada, there are two kinds

of subprograms—the procedure and the function. A procedure takes a list of parameters as

136 APPENDIX A. AN OVERVIEW OF ADA

input. operates on them and returns this list of parameters possibly with some updates. A
function takes a list of parameters as input, and uses them to evaluate a result which is
returned as the value of the function. Subprograms occur as declarations and the region of
visibility starts at the point of occurrence of the subprogram and continues until the end
of the construct within which they are declared. As in other block structured languages.
only the name and the parameters (and the return type in the case of functions) of the
subprogram are visible outside the subprogram. If a subprogram is a compilation unit.
then it is visible to all the other compilation units that include the subprogram in their
context clause. Procedures and functions are invoked by pracedure calls and function calls
respectively. A procedure call is a statement, while a function call is an expression whose
value is what the corresponding function returns. Parameters can be passed in one of three
possible modes: in—The subprogram has to treat such a parameter as a constant. and
therefore can only read its value. Any expression can be passed as a parameter in this
manner: in out—The parameter is a variable, and the subprogram is permitted to both
read and update its value; and out—The parameter is a variat'e and the subprogram can
only upate its value. Certain attributes of out parameters can however be read. Functions
can only have in parameters. The return statement in Ada is used to return control from
subprograms. In the case of functions, this statement must include an expression that
becomes the value of the function. An example of a procedure and a function is now shown

nelow:

procedure EXCHANGE(X.Y:in out INTEGER) is
TEMP: INTEGER:

begin
TEMP = X
X =Y
Y := TEMP:

end EXCHANGE:;

function SQR(X:in FLOAT) return FLOAT is
begin

return X xX;
end SQR:

4.3. PACKAGES 137

Examples of calls to these subprograms are shown below:

EXCHANGE(A.B);
S := SQR(5.5);

It is sometimes useful in Ada to split a subprogram into its specification (its interface
with the rest of the program) and its body (its implementation). Some examples where
such splitting is useful are in mutually recursive subprograms and in packages where it
is necessary to separate the interface of the package from its implementation. When a
subprogram is split up, its body remains the same as before, and the specification is just that
portion of the subprogram where its name and parameters are described. The specifications

of the subprograms in the above examples are shown below:

procedure EXCHANGE(X,Y:in out INTEGER);
function SQR(X:in FLOAT) return FLOAT;

In Ada, one can have more than one subprogram with the same name visible at a
time. This is possible when these subprograms can be distinguished by the types of their
parameters (and their result types in the case of functions). This phenomenon is called

overloading. An example of overloaded functions is shown below:

function MOD(X:in INTEGER) return INTEGER,;
function MOD(X:in FLOAT) return FLOAT;

The call MOD(-5) will refer to the first of the above functions, while MOD(-5.0) will
refer to the second function. The process of determining the correct subprogram being

referred to is termed overload resolution.

A.3 Packages

A package is a construct which can be used for encapsulation of information. Packages con-
sist of two parts—the specification which defines the interface of the package with the rest of
the program, and the body which implements the specification. Typically, a package spec-
ification contains declarations of types, constants, subprograms and exceptions, although

any form of declaration can be included in the specification. The package body contains

138 APPENDIX A. AN OVERVIEW OF ADA

the implementation of the declarations in the specification (sometimes no implementation is
necessary. in which case. the package body can be omitted), and also contains (if necessary)
a sequence of statements to initialize the package. An example of a package specification

and body is shown below:

—-— This is the package specification.
package STACK is
procedure PUSH(E:in ELEMENT);
function POP return ELEMENT;
end STACK;

~— This is the package body.

package body STACK is
STORE :array(1..100) of ELEMENT:
TOP:INTEGER range 0..100:

procedure PUSH(E:in ELEMENT) is
begin '

TOP := TOP+1;

STORE(TOP) := E;
end PUSH;

function POP return ELEMENT is
begin

TOP = TOP-1:

return STORE(TOP +1);
end POP;

begin
~— These are the initialization statements.
TOP := o:

end STACK;

Packages can occur wherever subprograms can occur and the visibility of package names
follow the same rules as that of subprogram names. Ir addition all entities declared within
the package specification are also visible at the same places the package name is visible.

However, these entities have to be referred to using a special notation in which the package

A.4. EXCEPTIONS 139

name occurs as the prefix. The example below shows the use of this notation in calling the

subprograms in the above package:

STACK.PUSH(E1);
E2 := STACK.POP;

This notation is sometimes cumbersome, and therefore a declaration called the use clause
is provided which causes all entities in the specified packages to become directly visible. An

example of this declaration is shown below:
use STACK;

It is sometimes necessary to export a type from a package, while at the same time not
revealing the structure of the type. To do this, Ada provides a private type declaration.
The type is declared to be private, and at the end of the package specification is a private
part where the structure of the type is defined. A variation of the earlier stack package with

private type declarations is shown below:

package STACK_PACKAGE is
type STACK is private;
procedure PUSH(S:in out STACK;E:in ELEMENT);
procedure POP(S:in out STACK;E:out ELEMENT);
private
type ELEMENT_ARRAY is array(1..100) of ELEMENT;
type STACK is record
STORE:ELEMENT_ARRAY;
TOP:INTEGER range 0..100 := 0;
end record;
end STACK_PACKAGE;:

In this example, the fact that STACK is a record type is unknown outside the package.

A.4 Exceptions

During execution of a program, events or conditions often occur that might be considered

exceptional. Some examples of exceptional conditions are errors like an arithmetic overflow,

h

140 APPENDIX A. AN OVERVIEW OF ADA

and unpredictable events like reaching the end of a file of an unknown size. While it may
be often possible to insert explicit tests to handle such situations, such extra statements
can quickly obscure the program’s basic structure. Therefore special language constructs
are desirable. Ada provides three related constructs—the ezception declaration, the raise

statement and the ezception handler—to handle exceptional situations.

The exception declaration can be used to declare ezceptions. When the program gets
into an exceptional situation, it can use one of these exceptions to flag the situation. This
process is termed raising the exception. The raise statement can be used to achieve this.
Once an exception is raised, it is propagated until it reaches an appropriate exception han-
dler. Exception handlers are associated with constructs like subprograms, packages and
block statements. These are located after the last statement within these constructs. The
exception handlers make a correspondence between exception names and the action to be

taken if that exception is propagated to this exception handler.

The propagation of an exception takes place in the following manner: If an exception
handler vontaining an action corresponding tc the raised exception exists at the end of
the current subprogram, package, block statement, etc., then control is transferred to this
exception handler. If not, the current subprogram, package, block statement, etc. is left
abnormally, and control is returned to the calling/enclosing construct. The exception is
re-raised at this point. This process continues until either an exception handler which
contains an action corresponding to the exception is found, or when the outermost construct
1s reached. If such an exception handler is found, then the specified action is taken and the
program proceeds normally from here. Otherwise the program terminates execution. An

example with these constructs is now shown below:

—— The ezception declaration

OVERFLOW,UNDERFLOW :exception;

function POP return ELEMENT is
begin
if TOP=0 then
—~ The raise statement
raise UNDERFLOW;
end if;

A.5. DECLARATIONS 141

TOP := TOP-1;
return STORE(TOP +1);
end POP;

procedure MAIN is
E:ELEMENT,;
begin
E := POP;

~~- The ezxception handler
exception
when OVERFLOW =>
PUT("Too many elements have been pushed into the stack!");
when UNDERFLOW => ’
PUT("You are trying to pop out of an empty stack!");
when others =>
PUT("Unknown exception raised!");
end MAIN;

A.5 Declarations

Ada provides a wide variety of declarations, many of which will now be briefly described.
These declarations can be placed in any declarative region of a subprogram, package, block
statement, etc. The entities defined by these declarations are visible from the point of
declaration until the end of the construct in which the declaration exists. There maybe
places within this region where these entities are not directly visible, for example, there
may be a nested subprogram that contains a declaration with the same name. In such a

situation, the entity is considered to be hidden.

A.53.1 Type and Subtype Declarations

- The type and subtype declarations in Ada will be described below. Ada uses named type
equivalence rather than structural type equivalence, and hence objects of two different, but

structurally similar types cannot be mixed.

142 APPENDIX A. AN OVERVIEW OF ADA

Enumeration Type Declarations: This defines an enumeration type and a domain of

values that can be represented as identifiers or characters. For example, the type declaration
type GENDER is (MALE,FEMALE);

defines a type called GENDER with two values MALE, and FEMALE in its domain. These
values are referred to as enumeration literals. For all practical purposes, enumeration literals

are treated in Ada as parameterless functions whose return type is the enumeration type.

Integer and Real Type Dcclarations: These declarations cause new types to be
defined with the properties naturally expected of integers and reals. In the declarations, an
upper and lower bound can be specified. and in addition, in the case of real type declarations.
an accuracy factor can be specified. This can be in the form of a certain number of significant
digits (floating point type declaration) or a certain absolute value of accuracy (fixed point

type declaration). Some examples of these declarations are shown below:

type INDEX is range 0..100;
type SOLUTION is digits 4 range —10.0..+10.0;
type BALANCE is delta 0.01 range 0.00..10000.00:

Derived Type Declarations: A derived type declaration creates a new type based on

an already existing type. Typically all properties and operations are inherited. An example

is shown below:
type DOLLAR is new INTEGER;

Here DOLLAR inherits all the properties of INTEGER, but the two types are different.

Array and Record Type Declarations: These are similar to array and record decla-
rations in other languages. However, in Ada, array types can be declared without specifying
the bounds on the indices. Different variables of the array can then have different bounds

which is useful in some situations. Record types can have discriminants, whose values can

A.5. DECLARATIONS 143

be assigned at a later time which can cause the record to change its structure. Examples

of array and record type declarations are shown below:

type PATTERN is array(NATURAL range <>) of CHARACTER:

type PERSON_REC(SEX:GENDER) is record
NAME :STRING(1..10};
AGE:INTEGER;
case SEX is
when MALE => WIFE_NAME:STRING(1..10);
when FEMALE => HUSBAND_NAME:STRING(1..10);
end case;

end record:

Access Type Declarations: Access (pointer) types in Ada are very similar to those

in other languages. An example of such a declaration is shown below:

type PERSON is access PERSON_REC;

Subtype Declarations: Subtype declarations do not define a new type. Instead they

alias an already existing type. The new name might however include further restrictions on

the existing *v- . '~ -.mple is shown b’

subtype MALE_PERSON is PERSON(SEX => MALE);

All objects of subtype MALE_PERSON have the type PERSON, however their discriminant
values are restricted to being MALE.

A.5.2 Object Declarations

An object (variable or constant) is an entity that contains a value of a given type. An object
declaration declares an object. This declaration can have many forms—the objects can be
given an initial value, the types can be further constrained, the objects can be declared to

be constants, etc. Some examples of object declarations are shown below:

144 APPENDIX A. AN OVERVIEW OF ADA

[:INTEGER;

A, B:constant FLOAT := 0.0;
P:PATTERN(1. .10);

JOHN :PERSON{(SEX => MALE);
S:array(1..10) of INTEGER;

A.5.3 Renaming Declarations

A renaming declaration declares another name for an entity. This entity can be an object,
an exception, a package or a subprogram. Renaming declarations are useful in resolving
name conflicts and in acting as a shorthand. Some examples of renaming declarations are

shown below:

J:PERSON renames JOHN;

O_FL :exception repames OVERFLOW;

package ST renames STACK;

function POP return ELEMENT renames STACK.POP;

A.6 Statements

A.6.1 Null Statements

A null statement is a dummy statement that is useful in filling gaps in the program. It has

no other effect than to pass to the next action. This is how a null statement looks like:

null;

A.6.2 Assignment Statements

An assignment statement is of the form variable := ezpression;. The current value of the

variable is replaced by the value of the expression. Some examples are shown below:

145

A.6. STATEMENTS

I := 0;
JOHN .AGE := 35;

P(1..3) := P(5..7);

A.6.3 If Statements
An if statement selects for execution one or none of the enclosed sequence of statements
depending on the value of one or more of its corresponding conditions. An example is shown

below:

DECEMBER and DAY = 31 then

if MONTH =
MONTH :=
DAY = 1;

YEAR :=
LAST(MONTH) then

elsif DAY
MONTH := MONTH’SUCC;

JANUARY;

YEAR 4+ 1;

DAY := 1;
else

DAY :=
end if;

DAY +1;

The elsif and else parts of if statements are optional.

A.6.4 Case Statements
A case statement selects for execution one of a number of alternative sequence of statements,

the chosen alternative is defined by the value of an expression. An example is shown below

146 APPENDIX A. AN OVERVIEW OF ADA

case MONTH is
when FEBRUARY =>
LAST(MONTH) := 28;
when APRIL | JUNE | SEPTEMBER | NOVEMBER =>
LAST(MONTH) := 30;
when others =>

LAST(MONTH) :

31;

end case;

The case statement must have a sequence of statements for each possible value of the
expression. The others alternative may be omitted if the remaining alternatives include

all possible values of the expression.

A.6.5 Loop and Exit Statements

A loop statement includes a sequence of statements that is to be executed repeatedly until
an ezit condition is satisfied. This exit condition is either (1) part of the loop statement: a
while loop condition—the sequence of statements are executed until the condition evaluates
to FALSE, or a for loop range of values—the sequence of statements is executed once for each
value in this range of values; or (2) in the form of an ezit statemment—the loop terminates if
the exit condition specified by the exit statement evaluates to TRUE or if the exit statement

specifies no exit condition.

Loops can be named. This can be used in qualifying the for loop identifier, if any, and
also by exit statements which can then be used to terminate execution of any loop within

which the exit statement is nested. Examples of loop statements are shown below:

while not END_OF_FILE loop
for [in 1..N loop
GET(A(I));
end loop;

SORT(A);

A.6. STATEMENTS 147

for I in 1..N loop
PUT(A(T));
end loop;

end loop;

GCD_LOOP:
loop
exit GCD_LOOP when X = Y,
if X > Y then
X = X-Y;
else
Y = Y-=-X;
end if;
end loop GCD_LOOP:

A.6.6 Block Statements

A block statement encloses a sequence of statements optionally preceded by a declarative
part and optionally followed by exception handlers. As in the case of loop statements, block

statements can also be named if desired. An example of a block statement is shown below:

SWAP:
declare
TEMP : INTEGER;
begin
TEMP = V;
V= U;
U := TEMP;
end SWAP;

A.6.7 Goto Statements

In addition to the previously mentioned methods of naming loop and block statements.
every statement can also be named by a label. Labels occur just before the statement 1t

names and is enclosed by a pair of angular brackets.

143 APPENDIX A. AN OVERVIEW OF ADA

A goto statement specifies an explicit transfer of control from this statement to a target
statement named by a label. An example of naming statements using labels and using goto

statements is shown below:

<<GCD_LOOP>>
if X = Y then
goto END_OF_LOOP;

end if;
if X > Y then
X:= X-Y,;
else
Y == Y-=-X;
end if;

goto GCD_LOOP;
. <<END_OF_LOOP>>
null;

A.7 Names and Expressions

Expressions in Ada are similar to expressions of most other languages. They are made up
of objects, literals, etc. which are composed to form expressions by operations like +. —,
etc. and by function calls. Examples in the previous sections have already shown many
different kinds of simple expressions.

Declared entities like objects, enumeration literals, functions, etc. are referred to in
expressions by names that represent them. Names are also used to refer to attributes of
these declared entities. Some examples c_vf names that refer to entities declared in previous

examples are given below:

E
-~ The innermost declaration of E.

MAIN . E
—~ The E declared immediately within the innermost declaration
-~ of MAIN. Here MAIN happens to be a procedure.

A.7. NAMES AND EXPRESSIONS 149

JOHN .all
—— Here (the innermost declaration of) JOHN accesses a record
—— object, and hence this name refers to the object it accesses.

JOHN .AGE
—— The component AGE of the record object accessed by JOHN.

‘at

-~ The predefined character literal ‘a’.

STANDARD. "+"

—-— The predefined addition operation. However, this operation
—— 1is overloaded. The correct one must be determined from the
~ - operands.

P(3)
-~ The fifth component of the array P.

JOHN . WIFE_NAME(1..5)
-— Denotes a string with index ranging from [to 5 corresponding
—— to the first ten characters of the string component WIFE_
-~ NAME of the record object accessed by JOHN. This is called
-— an array slice in Ada.

INTEGER'FIRST

—— An attribute of the predefined type INTEGER. This attribute
-— is a constant that denotes the smallest INTEGER available
-— in this implementation.

In addition to names, there are a few other constructs that can occur in expressions—

literals, aggregates, allocators, type conversions and qualified expressions. These will now
be described briefly.

Numeric literals are real numbers or integers. There are many methods of writing these

literals, but these will not be explained here. A couple of simple examples follow:

1. 3.1415, 2.7E-1

150 APPENDIX 4. AN OVERVIEW OF ADA

The null constant is a value that an object of any access type can have. If an access
object has this value. then it currently does not access any object. This constant is written

as:
null

String literals are constant arrays of the predefined type CHARACTER. An example is

shown below:
"HELLO!"™

Aggregates are constants of array or record types. They consist of a list of values of the

components of the type enclosed within parenthesis. A couple of examples are given below:

VAR C)
~— An aggregate of the array type PATTERN.

{MALE, "JOHN L uuwu" 35, "MARY Luuuun")
~— An aggregate of the record type PERSON_REC.

Allocators create a new object of an accessed type. This can be assigned to any object
that is of an access type which accesses objects of the type the allocator created. An example

is shown below:
new PERSON_REC({MALE)

This allocator can be assigned to any object of a type that accesses PERSON_REC, for
exampl - it can be assigned to JOHN which is an object of type PERSON which accesses
PERSON_REC.

Since Ada permits only named type equivalence, objects of structurally similar types
caunot replace each other. However, Ada allows explicit type conversic ‘rom one type to

another structurally similar type. For example,

DOLLAR(I)

4.7 NAMES AND EXPRESSIONS 151

has the type DOLLAR and the value of the INTEGER object I.
Sometimes it may nct be possible to determine the type of an expression by just exam-
ining it and its surrouncing context. Such expressions can explicitly be qualified with the

correct type name. For example,

PATTERN’("HELLO!™)

specifies that the string literal is of the type PATTERN, and not of any other similar type.
for example, the predefined type STRING.

The operator symbols in increasing order of precedence is now shown:

Logical Operators: and, or, xor
Relational Operators: =, /= <, <=, >, >=
Binary Adding Operators: +, —, & (concatenation)
Unary Adding Operatofs: +, —

Multiplying Operators: *, /, mod, rem
Highest Precedence Operators: «+, abs, not

In addition to these, Ada has short circuit control forms: and then and or else. These
have the same precedence as the logical operators, and have the same values as and and or
respectively, except that these control forms evaluate the right operand only if the value of
the left operand cannot determine the value of the whole expression.

Ada also has membership tests: in and not in. These take as their left operand an
expression, and a type or range as their right operand, and return a BOOLEAN value

corresponding to whether or not the expression is a member of the right operand.

Appendix B

An Overview of Anna

Anna (ANNotated Ada) is a language extension of Ada to include facilities for formally
specifying the intended behavior of Ada programs. Anna was designed to meet a perceived
need to augment Ad=2 with precise machine-processable annotations so that well established
formal methods of specification and documentation can be applied to Ada prcgrams. The
design of Anna was initiated in 1980 by Bernd Krieg-Briickner and David Luckham. They
were joined by Olaf Owe and Friedrich W. von Henke during the subsequent development
stages of the Anna design. The current Anna design is based on the ANSI standard version

of Ada and includes annotations for all Ada constructs except tasking.

Anna is based on first-order logic and its syntax is a straightforward extension of the
Ada syntax. Most new concepts in Anna are extensions of concepts already in Ada. For
example. concepts such as scope, visibility and overload resolution also apply to Anna
constructs. Anna constructs appear as formal comments within the Ada source text (within
the Ada comment framework). Therefore, from the point of view of Ada, formal comments
are just comments and hence Anna programs (Ada programs with Anna specifications) can

be accepted by Ada compilers and other Ada tools.

As was the case in Appendix A, this Appendix also explains Anna in sufficient detail to
be able to understand the examples in this thesis. For a more extensive coverage of Anna,

please refer to [73,79].

152

B.1. ANNA FORMAL COMMENTS 133

B.1 Anna Formal Comments

Anna defines two kinds of formal comments, which are introduced by special comment
indicators in order to distinguish them from informal comments. These formal comments
are virtual Ada tert. each line of which begins with the indicator -—:. and annotations.

each line of which begins with the indicator -~|.

B.1.1 Virtual Ada Text

The purpose of virtual Ada text is to define concepts used in annotations. Often the formal
specifications of a program will refer to concepts that are not explicitly implemented as part
of the program. These concepts can be defined as virtual Ada text declarations. Virtual
Ada text may also be used to compute values that are not computed by the actual program.
but that are useful in defining the behavior of the program.

Virtual Ada text is Ada text with a few minor exceptions. That is, if all the virtual Ada
text formal comment indicators (--:) are deleted from an Anna program. then the resulting
program is a legal Ada program (with the few minor exceptions referred to earlier). However,
the virtual Ada text must be such that it does not modify the semantics of the underlying

Ada program. To achieve this the following restrictions are placed on virtual Ada text:

e Virtual Ada text may not syntactically contain actual Ada text. For example. it is

not permitted to enclose actual Ada statements in a virtual Ada block.

o Execution of virtual Ada text statements may not change (directly or indirectly) the

values of actual Ada objects.
e Virtual Ada text declarations may not hide any actual Ada declarations.

e Execution of virtual Ada text statements may not change the flow of control of the
underlying program. Thus return, ezit and goto statements within virtual Ada text

can transfer control only within the largest enclosing virtual block or body.

The STACK example of Appendix A, Page 138 is shown below augmented with a virtual
concept—LENGTH. This virtual concept can be used to specify the operations PUSH and
POP as will be described later.

154 APPENDIX B. AN OVERVIEW OF AVNA

package STACK is
——: function LENGTH return INTEGER;
procedure PUSH(E:in ELEMENT);
function POP return ELEMENT;

end STACK;

B.1.2 Annotations

Annotations are constraints on the underlying Ada program. They are made up of ex-
pressions which are typically boolean-valued. The location of the annotation in the Ada
program together with its syntactic structure indicates the kind of constraints that the an-
notation imposes on the underlying program. Anna provides different kinds of annotations,
each associated with a particular Ada construct. These are annotations of objects, types
and subtypes. statements, and subprograms; in addition there are aziomatic annotations of

packages, propagation annotations of exceptions and contezt annotations of entity visibility.

In addition to Ada .xpressions, expressions in annotations can also contain (amongst
others) quantified expressions, conditional ezpressions, state expressions and Anna member-
ship tests. Every annotation has a region of Anna text over which it applies, called its scope.
The scope of an annotation is determined by the Ada scoping and visibility rules based on
the position of the annotation in the Anna program. For example, if the annotation oc-
curs in the position of a declaration, its scope extends from its position to the end of that
declarative region. Generally, annotations constrain all observable states withic their scope.
An observable state is one that results from either the elaboration of a declaration or by
the execution of a simple statement. What this means is that annotations do not constrain

intermediate program states that occur during the execution of simple statements.

The following sections describe in more detail the different kinds of Anna expressions

" and annotations.

B.2. ANNA EXPRESSIONS L

U
(1]

B.2 Anna Expressions

B.2.1 Quantified Expressions

Both universal and existential quantifiers can be used in Anna expressions. The quantified
variables are referred to as logical variables. Logical variables can be quantified over a
range of values or over all the values of a type. Any Anna constraints on the type being
quantified over also constrains the range of quantification. The range of quantification is
also further constrained to only those values for which the quantified expression is defined.

A few examples are now shown below:

for all X,Y:NATURAL => X—-({X/Y)*Y) = X mod Y
—— This ezpression is true. Note that the range of quantification
—— for Y does not include 0.

exist X:INTEGER => X*X = 100
—— This expression is also true.

B.2 = Conditional Expressions

Conditional erpressions are expressions which can take on one of a set of values depending

on the values of a set of gnards. An example is shown below:

F(X) = if X = 0 then
1
elsif X = 1 then
1
else
F(X~-1)+F(X~-2)
end if

The guards are evaluated in sequence from the beginning until one of the guards eval-
uates to TRUE. The value of the expression corresponding to this guard then becomes the
value of the conditional expression. If all guards evaluate to FALSE then the value of the
expression in the else part becomes the value of the conditional expression. All conditional

expressions must contain an else part.

156 . APPENDIX B. AN OVERVIEW OF ANNA

B.2.3 State Expressions

State erpressions.are useful to describe values of composite objects. especially as a result
of a modification to one of their components. State expressions of arrays. records and
package states are described in the following paragraphs. A fourth form—state expressions
of collections of access types will not be dealt with here. State expressions have the following
format:

value [modification |
Here, value is of the composite type and modification describes a modification to one of its
components. A short form is available to describe values that result from sequences of such
modifications:

value | modification; : modifications |
is equivalent to:

value [modificationy | [modification; |

Array and Record State Expressions

The modification of array and record state expressions have the following format:
component => ezpression

Examples are shown below:

STR[3 => T]

~— This expression has the value of array STR except that the
~— third component is replaced by 'I’.

JOHN[AGE => 36;WIFE_NAME => "LINDAuuuuu")

~— This expression has the value of record JOHN ezxcept that the
~— components AGE and WIFE_NAME are modified.

Package States and Package State Expressions

A package state in Anna is a value that represents the state of a package. The package state
is modeled as a record whose components are the variables that are declared immediately
within the body of the package. There are other components that form part of the package
state like the states of nested packages, but they will not be dealt with here. Within the

package body, where the details of the package state are visible, package state values can

B.2. ANNA EXPRESSIONS 15

be used in about the same way as record values. Outside the package body. package state
values behave similarly to private type values. Anna defines two attributes of packages
that are used in conjunction with package states. If P is a package, P'STATE denotes the
current state of the package P. For notational convenience in annotations, the current state
may be denoted by the package name itself; i.e. the attribute designator STATE may be
omitted. P'TYPE denotes the implicit record type that models the package state. package
state erpressions describe the effects on the package state as a result of executing package
operations.

The modification of package state expressions takes the form of a call to a package
subprogram. The value of the expression is the value of the package state that results when
the subprogram call is executed in the specified package state. Some examples are shown

below:

STACK'STATE[PUSH(E1)]

—— The state of the package STACK as a result of erecuting
-~ PUSH(E!1) on the current state of this package.
STACK[PUSH(E2);POP]

—— Here, 'STATE has been omitted for notational convenience.
-~ This expressions denotes the state of the package STACK as a
-~ result of executing PUSH(E2) followed by POP on the current
- - state of this package

There is another useful operation on package states. The expression S.F(...) where S is a
package state expression and F is a package function denotes the value F(..) returns if it

is called when the package is in state S. An example is shown below:

STACK[PUSH(E2)]. POP

B.2.4 Initial Expressions

An initial ezpression contains the keyword in (referred to as the modifier) followed by an
expression referred to as the modified ezpression. Initial expressions are constants. The
value of an initial expression is the value that the corresponding modified expression had
when it was elaborated. Basically, during elaboration, the initial expression is replaced by

the value of thé expression it modifies. Some examples are shown below:

158 APPENDIX B. AN OVERVIEW OF ANNA

in X
in (X**24+Y*%2)

B.2.5 Anna Operators

There are four new operators in Anna. They are the implication operator. the equivalence
operator, Anna relational operators and Anna membership tests. The implication operator

(=>) and the equivalence operator (<—>) have their usual meawings:

A => B -—-- if A then B
A<—>B -- Aifandonlyif B

The Anna relational operators feature is a syntactic short-hand to express certain com-

monly occurring conjunctions of Ada relations. This is best described by an example:
A<B<=2C

is the same as:
A < Band B <= C

The Anna membership test (isin) is an extension of the Ada membership test. The
Ada membership test A in T checks that the value A satisfies the Ada constraints on T.
However, the Anna membership test A isin T checks that the value A satisfies both the
Ada and the Anna constraints on T. Anna constraints can be placed on T using subtype

annotations (described later).

B.3 Annotations

B.3.1 Object Annotations

An object annotation is a BOOLEAN expression that constrains the values of the variables
occurring in this expression throughout the scope of the annotation. Object annotations

can occur in declarative regions only. In the special case in which there are no variables in

B.3. ANNOTATIONS 159

the expression, the annotation is a constant and hence is really a constraint at the point-of
elaboration of the annotation. A typical example of this special case is an ob ject annotation
whose expression is an initial expression. There is another kind of object annotation. the
out annotation which constrains only the point of exit from the scope. Some examples of

object annotations are now shown:

——| CIRCUMFERENCE = 3.14159 * DIAMETER;
—— This object annotation constrains the variables CIRCUM-
-~ FERENCE and DIAMETER throughout the scope of the an-

-~ notation.

-=| in (X > 0);
—— An object annotation with no variables (though X is a vari-
-~ able, it is within an initial expression). This annotation con-

-~ strains the point at which the annotation is defined.

-~| out (Y = in X);
-~ Anout annotation which constrains the variable Y to be equal
-~ to the value X had when the annotation was elaborated.

B.3.2 Subtype Annotations

A subtype annotation is a constraint on types and subtypes. Unlike in the case of object
annotations, there can be only one subtype annotation for each type or subtype definition.

An example of a subtype annotation is shown below:

type EVEN is new INTEGER;
——~| where X:EVEN => X mod 2 = 0;

This annotation constrains all objects X of the type EVEN to satisfy the constraint X mod 2
= 0. If the subtype annotation contains any variables other than the logical variable (X
in the above example), then these variables are implicitly modified by in (they are re-
placed by their values at elaboration time). Hence subtype annotations only constrain their

corresponding subtypes.

160 APPENDIX B. AN OVERVIEW OF ANNA

B.3.3 Statement Annotations

There are two different kinds of statement annotations—simple statement annotations and

compound statement annotations.

Simple Statement Annotations

Simple statement annotations are constraints on a single statement. This constrained state-
ment is the one immediately before the simple statement annotation. The constraint im-
posed by the annotation has to hold when control leaves the constrained statement—i.e. it
behaves like an out annotation on the constrained statement. If the annotation occurs at
the beginning of a sequence of statements, then it constrains an implicit null statemeni just
before the annotation.

Therefore. in most cases, the simple statement annotation is really a constraint that has
to hold whenever control passes the point where the annotation is located. However. when
the preceding statement transfers control to some other location (as is the case with goto,
return and ezit statements) then the constraint has to hold just before control is transferred
by this statement. An example is given below:

[=2
while T <= N loop

if A(I-1) > A(I) then

EXCHANGE(A(I—1),A(1));

end if:

~-=] A(I) >= A(I-1);

- - This constraint has to hold after the ezecution of the pre-

-~ ceding if statement.

[=14+
end loop;

Compound Statement Annotations

Componnd statement annotations are ronstraints on compound statements. The con-
strained statement occurs immediately after the compound statement annotation. The

annotation is hound to the statement by the keyword with and constrains all observable

B.3. ANNOTATIONS 161

states in the compound statement—i.e. it behaves like an object annotation con the con-
strained statement. The previous example is shown below once again with a compound

statement annotation included:

I = 2
-—-| with 1 < I <= N+41;
—— This constraint must hold at all times within the following
—— while loop.
while I <= N loop

if A(I—1) > A(I) then

EXCHANGE(A(I-1),A(1));

end if;

=] Al >= A(I-1);

I = 1+1;

end loop;

B.3.4 Subprogram Annotations and Result Annotations

Subprogram annotations are used to describe the behavior of subprograms. They are bound
to the Ada subprogram specification by the keyword where. They are useful in describing
the input-output specifications of the subprogram. Result annotations are constraints on the
return values of functions. Result annotations must occur immediately within a function,
but its location is otherwise not restricted. It can be in the place of an object annotation,
a statement annotation, or a subprogram annotation. Result annotations are distinguished
by the keyword return and they constrain all return statements within their scopes. A few

examples of subprogram annotations and result annotations are shown below:

procedure EXCHANGE(X,Y:in out INTEGER);
~~-| where out(X = in Y), out(Y = in X);
~- On output the value of X is the input value of Y and vice-

- — versq.

162 APPENDIX B. AN OVERVIEW OF ANNA

procedure PUSH(E:in ELEMENT);

~—| where out{LENGTH = in LENGTH+ 1);

~~ This procedure is from the STACK package shown earlier.
~— In addition to illustrating subprogram annotations, this also
~— shows how virtual functions can be used for annotation pur-
~— poses. The above annotation says that the ezecution of PUSH
~— causes the the value of LENGTH to increase by 1.

function SQRT(X:FLOAT) return FLOAT;

~~| where return Y:FLOAT => Yx*Y = X;

~— The value Y returned by SQRT is such that its square is equal
~— to the input parameter X.

B.3.5 Axiomatic Annotations

Ariomatic annotations (or package axioms) are constraints on package operations. They
must occur in the package visible part. They are characterized by the keyword axiom
followed by a sequence of BOOLEAN expressions which are usually quantified with respect
to types defined in the package. Axiomatic annotations are promises which can be assumed
wherever the package is visible; and they are also constraints on the implementation of
the package. Algebraic specifications of abstract data types can be written as axiomatic
annotations. The STACK package shown earlier is axiomatically specified in the following

example:

package STACK is
~--: function LENGTH return INTEGER;
procedure PUSH(E:in ELEMENT);
--| where out(LENGTH = in LENGTH+1);
function POP return ELEMENT;
--| where out(LENGTH = in LENGTH-1);

B.3. ANNOTATIONS 163

-—| axiom

-—] for all S:STACK:E:ELEMENT =>

- =] S(PUSH(E); POP] = S,

-—| S[PUSH(E)].POP = E;

—— The above two constraints have to be satisfied by all imple-
~— mentations of this package, and therefore can be assumed
- — wherever the package is visible.

end STACK;

B.3.6 Context Annotations

A contezt annotation constrains the use of global variables within a program unit. Context
annotations take the form of the keyword limited followed by a list of zero or more variables.
It constrains the occurrences of variables declared outside of its scope (the program unit)—
only those outside variables that are listed in the annotation may occur (be used) within

its scope. A context annotation on the stack package mentioned earlier is shown below:

—-—| limited to INTEGER,ELEMENT;
package STACK is

end STACK;

B.3.7 Exception Annotations

Ezception annotations (or propagation annotations) specify the exceptional behavior of
program units. There are two different kinds of exception annotations—strong propaga-
tion annotations, which specify the conditions under which certain exceptions should be
propagated (outside the scope of the annotation); and weak propagation annotations. which

specify what happens when an exception is actually propagated.

Strong Propagation Annotations

Strong propagation annotations specify under which conditions exceptions should be propa-

gated. The conditions are with respect to the initial state of the scope of the annotation. If

164 APPENDIX B. AN OVERVIEW OF AVNA

the conditions are satisfied. then the scope of the annotation must be exited by propagating

the specified exception. Again. examples follow with respect to the stack example:

package STACK is
——: function LENGTH return INTEGER:
UNDERFLOW : exception;

function POP return ELEMENT;

-—] where LENGTH = 0 => raise UNDERFLOW:;

—-— If LENGTH is 0 when POP starts ezecution, then it
-— must terminate by propagating the erception UNDER-
-- FLOW.

end STACK:

Weak Propagation Annotations

Weak propagation annotations specify what happens when an exception is propagated.
It specifies conditions that must be satisfied if the scope of the annotation is exited by

propagating one of the specified exceptions. An example is shown below:

procedure EXCHANGE(X,Y:in out INTEGER);

- —| where raise CONSTRAINT_ERROR => X = in X and Y = in Y;
—-— [f for any reason, the exception CONSTRAINT _ERROR is

-~ propagated out of the procedure EXCHANGE, then the pa-

~— rameters X and Y remain unchanged.

Appendix C

Installation Manual and User
Guide

C.1 Introduction

The installation manual describes how the Anna Consistency Checking System can be
installed on a machine. The machine dependent aspects of the installation process are

discussed in detail.

The user guide describes how to use this system in transforming Anna specifications
into checking code and then executing the transformed program with the Anna debugger.
The various transformation and debug options are described. A detailed subset restriction
based on the Ada and the Anna language reference manuals is also provided.

The current release of the system has been or is currently being ported to the Rational
R1000', DEC VMS DEC-AdaZ, ROLM/DG ADE?, Sun/3-UNIX* VADS®, Sequent/DYNIX®
(both Sequent Balance and Symmetry) VADS, and Apollo/UNIX” VADS and ALSYS?® en-

vironments. The entire system has been written in Ada.

'Rational and R1000 are registered trademarks of Rational, Inc.

IDEC, VMS, and DEC-Ada are registered trademarks of Digital Equipment Corporation.
JADE is a registered trademark of ROLM/DG.

*TNIX is a registered trademark of AT&T Bell Laboratories.

*Verdix and VADS are registered trademarks of Verdix Corporation.

*Sequent and DYNIX are registered trademarks of Sequent Computer Systems, Inc.
"Apollo is a registered trademark of Apollo. Inc.

PALSYS is a registered trademark of ALSYS. Inc.

165

166 APPENDIX C. INSTALLATION MANUAL AND USER GUIDE

A discussion of some of the other related tools is excluded from this appendix. This in-
formation is however available in another more general manual [86]. The tools not described
here include the 4nna Semantics Analyzer. the Anna Package Specification Analyzer and

Anna Teach—an interactive tool that teaches Anna.

C.2 Installing the Anna System

The Anna Consistency Checking System has two components—the transformation system
and the runtime system. The transformation system converts the Anna specifications into
Ada checking code and instruments this checking code into the underlying Ada program.

The runtime system is invoked by this resulting Ada program.

C.2.1 Setting Up the Machine Dependent Parameters

All parameters that are specific to the hardware/operating system are encapsulated into one
package body. The rest of the Anna Consistency Checking System access these parameters
through the visible part of this package which is machine independent. The visible part of
this package is impl.depd.v.a. There are two separate bodies provided for this package.
The first body, impl GENERIC.b.a, can be used as is or as a template into which machine
dependent parameters are incorporated. When used as is, the Anna Consistency Checking
Svstem will assume that the machine has no directory structure, that is. all necessary
files are available in one area and can be accessed by just their file names. This generic
implementation of the package might not work in certain situations. For example. in DOS,
file names can have at most eight characters, but this generic package assumes that file
names can be of any arbitrary length. The second body, impl_VADS_UNIX_b.a. has been
designed specifically for use on VLY machines running the VA DS (Verdiz Ada Development
System) Ada compiler.

The first thing to be done on copying the distribution tape is to implement a body for
this package appropriate for the target system. The operations defined in this package are

described below. All examples are with respect to the VADS/UNIX implementation.
ADA_COMPILER_AND_MACHINE_.NAME:

This is a function which returns a string that describes the environment in which the
Anna Consistency Checking System is being used. The VADS/UNIX implementation
returns “VADS/UNIX™.

C.2. INSTALLING THE ANNA SYSTEM 167

SOURCEDIRECTORY:

This function returns a string which corresponds to the directory into which the
distribution tape has been copied into. The Anna Consistency Checking System at
Stanford resides in the directory /anna/xform/source and hence this function in the
VADS/UNIX implementation has been setup to return a string corresponding to this

directory.

XFORM FILE NAME_PREFIX:

To make the names of all the files generated by the Anna Transformer unique with
respect to all the other files in the same directory. the Anna Transformer prefixes all
its files with the string returned by this function. The VADS/UNIX implementation
returns the string “.x”. Note that in addition to being unique. these files will also be
hidden on a UNIX system.

MAKE_FILE_NAME:

Given a directory name and a file name, this function returns a string that can be
used by the predefined I/O operations (e.g., the operations defined in TEXT_IO) to
access this file. The VADS/UNIX implementation concatenates the directory name

and the file name after inserting a “/” in the middle.

GET DIRECTORY:

Given a file name that can be used to access a file by the predefined I/0 operations.
this function returns a string corresponding to the directory in which this file exists.
The VADS/UNIX implementation determines if the file name starts with */”. If
so, then the portion of the file name until the last occurrence of */” is returned.
Otherwise, this same portion is returned after conca enating it on the left with a

string that describes the current directory.

LIBRARY DIRECTORY:

Typically, compiler vendors place the environment of their Ada systems into a set
of separate directories. The Anna Consistency Checking System handles these direc-
tories differently. for example, it does not create any of its own files in such direc-
tories. This helps keep these directories clean. This function is provided to deter-

mine whether or not the specified directory contains such an environment. If so. this

168 APPENDIX C. INSTALLATION MANUAL AND USER GUIDE

function returns TRUE, otherwise it returns FALSE. The VADS/UNIX implementa-
tion at Stanford returns TRUE if the directory is either */usr/vads5/standard” or

“/usr/vads5/verdixlib”.

ADA_PATH:

This function determines the current search path of the Ada system being used. This
will be a list of directories excluding the current directory. This list is concatenated
after appending each of the directory names with ASCII.NULL, and returned as a
single string. The VADS/UNIX implementation returns a string corresponding to the

directories displayed on typing a.path.

QUIT:

This is used to implement the QUIT command of the Anna Debugger. It is otherwise
nat easy to exit from a user defined Ada program at some arbitrary point during its
execution. The VADS/UNIX implementation implements this procedure by calling
the UNIX function .exit.

The main program which invokes the Anna Transformer is called transformer.a. This
program also contains a few implementation dependent features. For example the main
program in the distribution tape reads the command line and extracts the necessary pa-
rameters from there. This main program has been provided for convenience only. The
distribution tapes that includes all the tools developed at Stanford includes a more com-
prehensive main program with a better structure. It is expected that this main program

will be modified appropriately for the target machine.

C.2.2 Compiling the Anna Consistency Checking System

Once the implementation dependent parameters have been setup, replace the occurrence
of impl _VADS_UNIX_-b.a in the file RECOMPILE with the name of the file that contains the
newly created package body. The file RECOMPILE will then have to be modified for the
target machine. The file names, path names and the commands to the Ada environment
have to be changed appropriately. This version of the Anna Consistency Checking System
uses .X windows for its user interface. Some of the path specifications in RECOMPILE refer
to the directories in which the X windows interface resides. If X windows is not available

on the target machine, ther another version of the Anna Consistency Checking System is

C.3. NON-STANDARD ANNA FEATURES 169

required. which has a simple terminal oriented user-interface. These two versions will be
merged soon.

After RECOMPILE has been modified, the sequence of commands in this file need to be
ezecuted, possibly by submitting it as a batch job.

This results in the creation of an executable called xform. Also. all the units that form

the runtime system of the Anna Consistency Checking System will have been compiled.

C.2.3 Setting Up the Predefined Environment

The last step in the installation process is to setup the predefined environment. This process
involves setting up the symbol table files of units like TEXT_IO. which are assumed to be
already transformed when the programmer begins using the Anna Consistency Checking
System. This is achieved by executing the commands in the file RETRANSFORM. It may be

necessary to modify this file appropriately for the target machine.

Once this is done, the Anna Consistency Checking System is fully installed and ready

for use. The remainder of this appendix forms the user guide for this system.

C.3 Non-Standard Anna Features

C.3.1 Annotation Names

The Anna Consistency Checking System extends the Anna language to make it possible to
name annotations. These names can then be used to refer to these annotations, for example,

through the Anna Debugger.

Annotation names can precede any list of annotations, and its syntax is similar to Ada

label definitions. Examples of naming annotations are shown below:

type EVEN is new INTEGER;
--] <<EVEN_CONSTRAINT>>
--| where X:EVEN => X mod 2 = 0;

170 APPENDIX C. INSTALLATION MANUAL AND USER GUIDE

procedure INSERT(E:ELEMENT:Q:in out QUEUE);
-—| <<SPEC_INSERT>>

-~| where

- IS_FULL(Q) => raise FULL,

-] raise FULL => Q = in Q,

- out{LENGTH(Q) = LENGTH(in Q)+ 1),

- - out(IS_MEMBER(E,Q));

C.3.2 Anna Pragmas

The following list of pragmas have been setup for use with the Anna Consistency Checking
System. They are not part of the Anna language definition. The first pragma in this list
makes sense only when transformed using the -d option, while all the other pragmas have

to be transformed using the ~p option.

SUPPRESS_ANNO:

The argument to this pragma is an annotation name. It can be placed at any point
where the annotation name is visible (the visibility rules are the same as for any other

kind of declaration). This pragma causes the annotation to be suppressed initially.

ANNA_PARALLELLOG_FILE:

This pragma takes a file name as an argument. Since diagnostic information from
a task performing checks concurrently with the execution of the undarlying program
can civtter up the screen, this option is provided to send all such information into the
specifiea ‘le. If this pragma is not provided, this information is sent to the standard
output. This pragma has to be placed immediately after the context clause of the

main program.

ANNA_REPORT_MODE:

This pragma takes one argument which can be one of REPORTING, ABORTING or
IGNORING. This pragma specifies what happens when an annotation is violated. It
can be located anywhere in the program and has effect on all the annotations defined

from this point until the next such pragma. Regardless of the mode of reporting

C.3. NON-STANDARD ANNA FEATURES 171

errors, a diagnostic message with details of the violation is given. Depending on the

reporting mode, one of the following set of actions is then taken:

e REPORTING: If the annotation is being checked sequentially, the exception
ANNA_ERROR is raised immediately. If the annotation is being checked con-
currently, the exception ANNA_ERROR is raised at the next checkpoint (see
below for information on checkpoints). This is the default action that is taken
in the absence of pragmas.

o ABORTING: The entire program is immediately aborted.

e IGNORING: The violation has no effect on the underlying program.

ANNA_PARALLEL_SCOPE:

This pragma takes an optional parameter which can be one of REPORTING, ABORTING
or IGNORING. This pragma causes all annotations in its scope (according to standard
scope rules) to be transformed for concurrent checking. If the parameter is provided.
then the current reporting mode is changed as specified. This pragma overrides the
pragma ANNA_SEQUENTIAL_SCOPE (if any) present in outer scopes. This is the

default in the absence of pragmas.

ANNA_SEQUENTIAL_SCOPE:

This pragma is similar to ANNA_PARALLEL_SCOPE, except that it causes all anno-
tations in its scope to be transformed for sequential checking. This pragma overrides
the pragma ANNA_PARALLEL_SCOPE (if any) present in outer scopes.

ANNA_PARALLEL_ANNOTATION:

This pragma has to occur immediately after an annotation. It is identical to the
pragma ANNA_PARALLEL_SCOPE, except that its scope includes only the immedi-

ately preceding annotation.

ANNA_SEQUENTIAL_ANNOTATION:

This pragma also has to occur immediately after an annotation. It is similar to
the pragma ANNA_PARALLEL_ANNOTATION, except that it causes the immediately

previous annotation to be transformed for sequential checking.

ANNA_CHECKPOINT:

172 APPENDIX C. INSTALLATION MANUAL AND USER GUIDE

This pragma takes an optional list of annotation names as its argument. All these
annotation names have to be visible at the point of the pragma. and must have
been transformed for concurrent checking. The pragma has to be located as part of a
sequence of statements. The effect of the pragma is to suspend the underlying program
when execution reaches the checkpoint until all checks on the specified annotations
are completed. If no list of annotations is specified. then the underlving program
is suspended at the checkpoint until all checks on every annotation being checked

concurrently has been completed.

C.4 Transforming Anna Programs

In this section. the method of transforming Anna programs to Ada programs is explained.
This Appendix does not, however, address issues involved in writing good Anna programs.
This is discussed in [70]. To transform an Anna program, the programmer issues the
command:

xform {options} annafile
annafile.anna is the name of the Anna source file. After transformation, the Ada file
is annafile.a and the parser listing is given in annafile.list. The various options are

listed below:

-0,-0:

This option is used for tracing the overload resolution processor. The trace output
is dumped into a log file called annafile.oload. -0 provides more comprehensive
tracing than -o. This option is usually not very useful, unless this system is being
run without the Anna Semantics Analyzer. The Anna Transformer assumes that the
source file is semantically valid. that is, it has successfully gone through the Anna
Semantics Analyzer. The Anna Transformer does attempt to provide some amount of
diagnostic information in case of errors. the overload resolution tracing is the major

source of this diagnostic information.

This option has to be used when the source file includes the main program. The
Anna Transformer assumes that the last compilation unit in the source file is the

main program.

C.4. TRANSFORMING ANNA PROGRAMS 173

-d:

This option causes the Anna Transformer to include hooks to the Anna Debugger. If
this option is not used, the Anna Debugger is not invoked at runtime on the detecticn

of an inconsistency.

-p:
This option causes the transformations to generate checking tasks instead of checking
functions. Hence the checking can take place concurrently. Note that in this mode.
some annotations can be checked sequentially, while others concurrently. This is
achieved using the pragmas described in C.3.2.

-z
This option is used only to transform predefined units. See the file RETRANSFORM.

-T:
This option invokes a special testing mode, which is useful for regression testing of the
Anna Consistency Checking System. This option is usually not necessary in normal
situations.

-S:

This option causes the transformations to be performed silently. There is no output
to the user console from the Anna Transformer. Instead this output is redirected to
a file called “XFORM.LOG".

Typically, an Anna program comprises of many compilation units. The order of trans-
formation of these compilation units follow the same rules as in the case of the order of

compilations of these units. Within a program, one cannot mix the options -d and -p.

C.4.1 Creating the Self-Checking Executable

Once the compilation units of the Anna program have been transformed, the corresponding
Ada units are available. These Ada units are compiled as usual and then linked and loaded
to get the self-checking executable.

Note that the Ada search path of Anna directories must include the directory in which
the distribution tape has been copied. The Anna Transformer displays this path name, the

first time it is invoked in any directory.

174 APPENDIX C. INSTALLATION MANUAL AND USER GUIDE

C.4.2 The Anna Debugger

The Anna Debugger is invoked in any Anna program in which at least one of the units
has been tiansformed using the -d option. It is invoked once when the program begins
execution, and then subsequently every time an annotation is violated. The unit containing
the violated annotation has to be transformed using the -d option. This section explains the
terminal oriented user interface to the Anna Debugger. The window oriented user interface
provides the same functionality, and the menus. etc. are such that its use is quite obvious.
Once the terminal oriented user interface is understood. the window oriented user interface
can be used easily. Since the user interface module of the debugger is a separate entity. it
is easy to modify it to suit the requirements of each installation. In fact. the user interface
has been continuously undergoing change at Stanford.

The Anna Debugger provides various debugging facilities suited for use with a specifica-
tion language like Anna. The current version does not provide any of the features provided
by a conventional debugger, and therefore for the Anna Debugger to be useful. it should
be used along with a conventional debugger. There are obvious disadvantages to this kind
of usage. For example, one has to switch between the two debuggers, and the conventional
debugger works on the transformed Ada program which is usually not very readabie. To
enhance the Anna Debugger to provide the functionality of a conventional debugger. it has
to be made compiler-dependent and some aspects of the compiler that is chosen have to be
known. Such information is usually not divulged by compiler vendors.

The Anna Debugger has an on-line help facility which can be invoked by typing “?” or
“HELP” at any time. The following features are available, however, they can be used only
with named annotations.

Annotations can be suppressed or unsuppressed. Suppressing an annotation means that
this annotation will have no effect at all. An annotation in the unsuppressed state can

have various different kinds of effects as described below. All annotations are by default

unsuppressed.

Command syntaz:
SUPPRESS annotation_name
—SUPPRESS annotation_name

When an annotation is unsuppressed, it can either be made to invoke the Anna Debugger

C.5. SUBSET RESTRICTIONS: THE ADA REFERENCE MANUAL 17

(W)}

every time the annotation is violated, or not invoke the Anna Debugger. All annotations

by default invoke the Anna Debugger.

Command syntazx:
INVOKE annotation_name
—INVOKE annotation_name

When an annotation is unsuppressed, it can either raise the exception ANNA_ERROR when
an annotation is vivlated, or not raise this exception. All annotations by default raise this

exception.

Command syntaz:
RAISE annotation_name
—RAISE annotation_name

The status of an annotation can be queried by typing:

STATUS annclation_name

The command LIST lists all the named annotations.

To continue execution of the Anna program, type:
CONTINUE
Finally, to exit the Anna Debugger, type:

QUIT

C.5 Subset Restrictions: The Ada Reference Manual

This section and the next explain the subset restrictions of the Anna Consistency Checking
System. This section is organized based on the Ada reference manual, while the next section
is organized based on the Anna reference manual. Hence, for each section in these reference
manual. there is a corresponding section in either this section or the next that explains how

the Anna Counsistency Checking System handles this aspect of the language.

176 APPENDIX C. INSTALLATION MANUAL AND USER GUIDE

C.5.1 Introduction

[rrelevant

C.5.2 Lexical Elements

Fully implemented

C.5.3 Declarations and Types
Declarations

Irrelevant

Objects and Named Numbers

Fully implemented

Types and Subtypes

Fully implemented, except what is specifically excluded in the later sections of this chapter.

Derived Types

Fully implemented

Scalar Types

Fully implemented

Array Types

Fully implemented

Record Types

Records without discriminants are fully implemented. Records with discriminants ar»
treated as if the discriminants were declared as record components themselves. Discrimi-
nant constraints are. however, fully impilemented. However, record types with variant parts

will not be accepted. The attribute CONSTRAINED is not implemented.

C.3. SUBSET RESTRICTIONS: THE ADA REFERENCE MANUAL 177

Access Types

The attributes ADDRESS and STORAGE_SIZE are not implemented.

Declarative Parts

Irrelevant

C.5.4 Names and Expressions

Names

Fully implemented, except for the following attributes: ADDRESS, CALLABLE. CONSTRAINED.
COUNT, FIRST_BIT. LAST_BIT, POSITION, STORAGE_SIZE and TERMINATED.

Literals

Fully implemented

Aggregates

Not implemented

Expressions

Fully implemented

Operators and Expression Evaluation

Fully implemented

Type Conversions

Fully implemented

Qualified Expressions

Fully implemented

178 APPENDIX C. INSTALLATION MANUAL AND USER GUIDE

Allocators

Fully implemented

Static Expressions and Static Subtypes

Static expressions are not evaluated even if they are just literals. Therefore in expressions
containing attributes with static arguments (e.g. FIRST(2), LAST(3-2)) all possible legal
values are tried out (this is a heuristic that may not work always). An example is given

below:

A:array (1..10.'a’..'z’) of INTEGER;
[:INTEGER:

[:= A FIRST(3-2):
—— Right hand side is correctly resolved to INTEGER.

[;= A’LAST(2);
-— Right hand side is incorrectly resolved to INTEGER.

However, the second of the two above expressions is illegal Ada and so is not expected as

input. Even then, problems may arise as shown in the example below:

A:array (1..10.'a’. .’2’) of INTEGER:
function F return INTEGER;
function F return CHARACTER;

if F = A°LAST(2) then
~~ The above expression, though legal, cannot be resolved.

end if;

Universal Expressions

Just as in the case of static expressions, universal expressions are also not evaluated, and

therefore can create ambiguities similar to that shown in the previous example.

-

C.5. SUBSET RESTRICTIONS: THE ADA REFERENCE MANUAL 179

C.5.5 Statements

Fully implemented

C.5.6 Subprograms
Subprogram Declarations

Fully implemented

Formal Parameter Modes

Fully implemented

Subprogram Bodies

Fully implemented

Subprogram Calls

Named parameter association is not supported. Also, in out and out parameters having the
form of a type conversion are not supported.

Function Subprograms

Fully implernented

Parameter and Result Type Profile - Overloading of Subprograms

Fully implemented

Overloading of Operators

Fully implemented

C.5.7 Packages
Package Structure

Fully implemented

180 APPENDIX C. INSTALLATION MANUAL AND USER GUIDE

Package Specifications and Declarations

Fully implemented

Package Bodies

If the transformation of a package specification causes the generation of subprogram declara-
tions in the package specification, then a body must be provided to generate the subprogram
bodies in. If the original package specification does not require a body. an empty body can
be provided.

Private Types and Deferred Constant Declarations

Fully implemented

Example of a Table Management Package

Irrelevant

Example of a Text Handling Package

Irrelevant

C.5.8 Visibility Rules
Declarative Region

Fully implemented

Scope of Declarations
Fully implemented
Visibility

Fully implemented

Use Clouses

Fully implemented

C.5. SUBSET RESTRICTIONS: THE ADA REFERENCE MANUAL 181

Renaming Declarations

Not implemented

The Package Standard

Fully implemented

The Context of Overload Resolution

The fact that a type is private or limited private is not considered during overload resolution.

C.5.9 Tasks

Nothing except the delay statement is implemented.

C.5.10 Program Structure and Compilation Issues
Compilation Units - Library Units

Fully implemented

Subunits of Compilation Units

Not implemented

Order of Compilation

The order in which compilation units are transformed follow the same rules as for the order

of compilation. All units must be iransformed first and then compiled.

The Program Library

The program library follows the same structure as the library maintained by the Verdix
Ada Compiler. No special library set-up commands are required, all necessary information
is inherited from the Verdix library. If the working directory does not have a Verdix library

set up. then the standard default paths are assumed.

132 APPENDIX C. INSTALLATION)[.-1.\'('.-11; AND USER GUIDE

Elaboration of Library Units

Fully implemented

Program Optimization

Irrelevant

C.5.11 Exceptions

Fully implemented

C.5.12 Generic Units

Fully implemented except that generic formal parameters that are arrays are not allowed.

C.5.13 Representation Clauses/Implementation-Dependent Features

Not implemented

C.5.14 Input-Output

Fully implemented

C.6 Subset Restrictions: The Anna Reference Manual

C.6.1 Basic Anna Concepts

Fully implemnented

C.6.2 Lexical Elements

The dnna special characters are not implemented.

C.6.3 Annotations of Declarations and Types
Declarative Annotations

[rrelevant

C.6. SUDSET RCSTRICTIONS: THE ANNA REFERENCE MANUAL 183

Annotations of Ob jects

Object annotations are not allowed within the private part of packages and within generic
formal parts.

Annotations of Type and Subtype Declarations

Fully implemented

Annotations of Derived Types

Fully implemented

Operations of Scalar Types

The attribute DEFINED is assumed to be true always.

Annotations of Array Types

Fully implernented

Annotations of Record Types

Record states are not implemented.

Annotations of Access Types

Collections are not implemented.

Declarative Parts

[rrelevant

C.6.4 Names and Expressions in Annotations
Names in Annotations

None of the attributes are implemented. However, an assumption is made that all objects
are defined always, i.e. the attribute DEFINED is assumed to evaluate to TRUE always.

Otherwise all other forms of names are implemented unless explicitly mentioned elsewhere.

134 APPENDIX C. INSTALLATION MANUAL AND USER GUIDE

Expressions in Annotations

Fully implemented, unless explicitly mentioned elsewhere.

Operators and Expression Evaluation

Fully implemented

Type Conversions

Fully implemented

Qualified Expressions

Fully implemented

Quantified Expressions

Not implemented

Conditional Expressions

Fully implemented

Modifiers

Fully implemented

Definedness of Expressions

All expressions are assumed to be defined always.

C.6.5 Statement Annotations

Fully implemented

C. 6. SUBSET RESTRICTIONS: THE ANNA REFFRENCE MANUAL 18:

7 2]
O

C.6.6 Annotation of Subprograms

All subprograms (actual and virtual) must be supplied with bodies. If there is a separate
subprogram declaration and body, then their subprogram annotations must conform with
each other. even if the subprogram body appears in a package body. In fact. the annotations

of a subprogram declaration (with a separate body) are actually ignored.

C.6.7 Packages
Package Structure

Fully implemented

Visibie Annotations in Package Specifications

Modified subtvpe annotations are not implemented.

Hidden Package Annotations

Fully implemented. unless specifically mentioned elsewhere.

Annotations on Private Types

Fully implemented

Package States

Not implemented

Axiomatic Annotations

Axiomatic annotations that fall into the subset as described in Chapter 4 are processed for
semantic correctness. Checks are performed to ensure that these annotations do indeed meet
the subset requirements. However, the package and the annotations are not transformed

for runtime checking.

136 APPENDIX C. INSTALLATION MANUAL AND U5ER GUIDE

Consistency of Anna Packages

This section is not implemented. However. the only effect it has is to force the subprogram
annotations in the subprogram specification and body to conform to each other as has
already been mentioned earlier.

Example of a Package with Annotations

[rrelevant

C.6.8 Visibility Rules in Annotations

Fully implemented

C.6.9 Tasks

[rrelevant

C.6.10 Program Structure

Fully implemented

C.6.11 FException Annotations

Both strong and weak propagation annotations are fuily impiemenied. ifowever. iliey aie
restricted to appear as the first set of annotations within any block. For this purpose,
subprogram annotations are also considered part of the subprogram body and considered
to appear earlier than any other annotation in the body. Propagation annotations that do

uot appear as required are ignored. The names of propagation annotations are ignored.

C.6.12 Annotation of Generic Units

Object annotations are not allowed in generic formal parts.

C.6.13 Annotation of Implementation-Dependent Features

[rrelevant

Bibliography

(8]

(9]

Infotech International. Infotech State of the Art Report. Software Testing Volume 1:
Analysis and Bibliography, 1979.

The Ada Programming Language Reference Manual. US Department of Defense. US
Government Printing Office. Febrnary 1983. ANSI/MIL-STD-1315A-19%3.

A. V. Aho. J. E. Hopcroft, and J. D. Ullman. The Design und Analysis of Computer
Algorithms. Addison- Wesley, 1974,

A. V. Aho. R. Sethi. and J. D. Ullman. Compilers— Principles. Techniques and Tools.
Addison-Wesley, 1986.

S. Alagi¢ and M. A. Arbib. T'he Design of Well-Structured and Correct Programs.
Tezts and Monographs in Computer Science, Springer-Verlag, 197R.

A. L. Ambler, D. L. Good, J. C. Browne, W. F. Burger. R. M. Cohen. C. G. Hoch.
and R. E. Wells. GYPSY: a language for specification. ACM SIGPLAN Notices.
12(3):1-10. March 1977.

L. M. Augustin. B. A. Gennart, Y. Huh, D. C. Luckham, and A. G. Stanculescu. Ver-
ification of VHDL designs using VAL. In Proceedings of the 25th Design Automation
Conference (DAC), pages 48-53, Anaheim, CA. June 1988.

D. L. Bird and C. U. Munoz. Automatic generation of random self-checking test cases.
IBM Systems Journal, 22(3):229-245, 1983.

G. Birkhoff. On the structure of abstract algebras. Proceedings of the Cambridae
Philosophical Society, 31:433-454, 1935.

187

TN

,‘
r—

BIBLIOGRAPHY

"B W. Boehm. R. K. McClean. and D. B. Urfrig. Some experiences with automated

aids to the design of large-scale reliable software. In Proceedings of the International

Conference on Reliable Software. pages 105-113. April 1875,

R. S. Bover. B. Elspas. and K. N. Levitt. SELECT—a formal system for testing
and dehugging programs by svmbolic execution. In Proceedings of the International

N

(onference on Reliable Software. pages 234- 245, April 1975.

R. S. Bover and J. S. Moore. Proving theorems about LISP functions. Journal of the
AN 22(1):129-144. January 1973,

M. Brooks. Determining Correriness by Testing. Technical Report 80-204. Depart-

ment of Computer Science, Stanford University, May 1980.

S. Burris and H. P. Sankappanavar. 4 Course in Universal Algebra. Springer-Verlag.
OR1.

50 W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-Verlag, second

adition. 1924,
N. H. Cohen. Ada as a Second Language. McGraw Hill, 1986.

O. J. Dahl. E. W. Dijkstra. and (", A. R. Hoare, Structured Programming. Academic

Press, 1972.

R. A. DelMillo. R. J. Lipton. and F. G. Savward. Program mutation: a new approach
to program testing. In Infotech State of the Art Report, Software Testing, \olume 2:

[nvited Papers, pages 107126, Infotech International. 1979.

" E. W. Dijkstra. A Discipline of Programming. Series in Automatic Computation,

Prentice-Hall. 1976.

A. Ersoz. D. M. Andrews. and E. J. McCluskey. The Watchdog Task: Concurrent
Error Detection U'sing Assertions. Technical Report 85-267, Computer Systems Lab-

cratory. Stanford University, May 1985.

G. Estrin. D. Hopkins. B. Coggan, and S. D. Crocker. SNUPER COMPUTER—a
computer in instrumentation automation. AFIPS—Spring Joint Computer Confer-

ence, 30:645-636, 1967.

BIBLIOGRAPHY 1N

[
)

REY

33]

20 AL Evans, K. J. Butler, G. Goos. and W. AL Walf. DIANA Reference Manual, Revision

3. Tartan Laboratories. Inc.. Pittshurgh. PA. 1933.

R. W. Flovd. Assigning meanings to programs. In Proceedings of a Symposium .
Applied Mathematics of the Amerwcan Mathematical Society, pages 19-32. American

Mathematical Societyv. 1967.

5. L. Gerhart and L. Yelowitz. Observations of fallibility in applications of mod-
ern programming methodologies. [EEE Transactions on Software Engineering. SE-

2(31:195-207, September 1976,

C. M. Geschke. J. H. Morris Jr.. and E. Satterthwaite. Early experience with Mesa.

Communications of the AC. 20(3):540-553, August 1977.

D. . Good. Provable programming. In Proceedings of the International Conference

on Reliable Software. pages 411-419. April 19753.

"' D. I. Good. R. L. London. and W. W. Bledsoe. An interactive program verification

svstem. [EFE Transactions on Software Engineeriny. SE-1(1):39-67. March 1975.

D. I. Good and L. C. Ragland. Nucleus-—a language for provable programs. In

William C. Hetzel, editor, Program Test Methods. pages 93-117. Prentice-Hall. 1373.

J. B. Goodencirh and S. L. Gerhart. Towards a theory of test data selection. In
Proceedings of the International Conference on Reliable Sofiware, pages 493-510. April

1975,

! €. Green and D. R. Barstow. On program svnthesis knowledge. Artificial Intelligence.

10:241-279., 19783,

(. Green. D. Luckham, R. Balzer. T. Cheatham, and C. Rich. Report on a Rnowledge
Based Software Assistant. Technical Report. Kestrel Institute, 1983,

! C. Green. J. Philips. S. Westfold, T. Pressburger. B. Kedzierski. S. Angebranndt.

B. Mont-Reynaud, and S. Tappel. Research on Knowledge-Based Programming and

Algorithm Design. Technical Report, Kestrel Institute, 1981.

C. Green and S. Westfold. Knowledge-Based Programming Self Applied. Technical
Report. Kestrel Institute, 19R1.

190

34

'36]

39!

40]

1]

(42]

[43]

[44]

BIBLIOGRAPHY

D. Gries. The Science of Programming. Tezts and Monographs in Computer Science,

Springer-Verlag, 1981.

J. V. Guttag. The design of data type specifications. Communications of the ACM.
20(6):396—404, June 1977.

J. V. Guttag. Notes on type abstraction (version 2). [EEE Transactions on Software
Engineering, SE-6(1):13-23. January 1980.

J. V. Guttag and J. J. Horning. The algebraic snecification of abstract data types.
Acta Informatica, 10:27-52, 1978.

v J. V. Gutrag, J. J. Horning, and J. M. Wing. The Larch family of specification

languages. IFEE Software. 2(5):24-36. September 1985.

J. V. Guttag, E. Horowitz, and D. R. Musser. Abstract data types and software
validation. Communications of the ACM, 21(12):1048-1064, December 1978.

J. V. Guttag, E. Horowitz, and R. Musser. The design of data type specifications.
In R. T. Yeh, editor, Current Trends in Programming Methodology, Volume {—Data
Structuring, chapter 4, pages 60-79, Prentice-Hall, 1978,

D. P. Helmbold. The Meaning of TSL: An Abstract Implementation of TSL-1. Tech-
nical Report CSL-TR-88-353. Computer Systems Laboratory. Stanford University.
March 1988. Also published by Computer Information Sciences Board, UC Santa
Cruz as UCSC-CRL-87-29.

D. P. Helmbold and D. C. Luckham. Debugging Ada tasking programs. IEEE Soft-
ware, 2(2):47-57, March 1985. (Also Stanford University Computer Systems Labora-
tory Technical Report No. 84-262).

D. P. Helmbold and D. C. Luckham. Runtime Detection and Description of Deadness
Errors in Ada Tasking. Technical Report 83-249, Computer Systems Laboratory,
Stanford University, November 1983. (Program Analysis and Verification Group Re-
port 22).

D. P. Helmbold and D. C. Luckham. TSL: task sequencing language. In Ada in
Use: Proceedings of the Ada International Conference, pages 255-274, Cambridge
University Press, May 1985.

BIBLIOGRAPHY 191

[45] W. C. Hetzel. editor. Program Test Methods. Series in Automatic Computatio...
Prentice-Hall. 1973.

[46] C. A. R. Hoare. An axiomatic basis for computer pregramming. Communications of
the ACM, 12(10):576-581, October 1969.

[47] C. A. R. Hoare. Communicating sequential processes. Communications of the A).
21(8):666—-677, August 1978.

(48] C. A. R. Hoare and N. Wirth. An axiomatic definition of the programming language
PASCAL. Acta Informatica, 2(4):335-355, 1973.

(19] W. E. Howden. Algebraic program testing. Acta Informatica. 10:33-66. 1978.

(50] S. Igarashi, R. L. London, and D. C. Luckham. Automatic program verification I: a

logical basis and its implementation. Acta Informatica, 4:145-182, 1975.

{(51] D. H. H. Ingnalls. FETE, A FORTRAN Ezecution Time Estimator. Technical Re-

port 71-20, Department of Computer Science, Stanford University, February 1971.

{52] K. Jensen and N. Wirth. PASCAL—User Manual and Report. Springer-Verlag,

second edition, 1974.

(53] M. S. Johnson. A software debugging glossary. ACM SIGPLAN Notices. 17(2):53-70.
February 1982.

(54] S. Katz and Z. Manna. Towards automatic debugging of programs. In Proceedings of

the International Conference on Reliable Software, pages 143155, April 1975.

[55] J. C. King. A new approach to program testing. In Proceedings of the International
Conference on Reliable Software, pages 228-233. April 1975.

(56] J. C. King. Proving programs to be correct. [EEE Transactions on Computers.
C-20(11):1331-1336, November 1971.

(57] D. E. Knuth. The Art of Computer Programming, Volume !—Fundamental Algo-
rithms. Addison-Wesley, second edition, 1973.

(58] D. E. Knuth. An empirical study of FORTRAN programs. Software— Practice and
Erperience, 1(2):105~133, April-June 1971.

39]

60!

63]

[66]

67

68]

[69]

[70]

BIBLIOGRAPHY

D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In John
Leech. editor, Computational Problems in Abstract Algebra, pages 263-297. Pergamon
Press. 1969.)

B. Krieg-Brickner. Consistency checking in Ada and Anna: a transformational ap-
proach. Ada Letters, 3{2):46-34. September-October 1983.

B. Krieg-Briickner. Transformation of interface specifications. 1985. PROSPECTRA
Study Note M.1.1.51-SN-2.0.

B. Krieg-Briickner and D. C. Luckham. Anna: towards a language for annotating
Ada programs. ACM SIGPLAN Notices, 15(11):128-138. 1980.

B. W. Lampson, J. J. Horning, R. L. London, J. G. Mitchell, and G. L. Popek. Report
on the programming language Euclid. ACM SIGPLAN Notices. 12(2), February 1977.

R. J. Lipton and F. G. Sayward. The status of research on progfam mutation. In
Digest for the Workshop on Software Testing and Test Documentation, pages 355373,
Ft. Lauderdale, FL, 1978.

B. Liskov. A. Snyder. R. Atkinson. and C. Schaffert. Abstraction mechanisms in
CLU. Communications of the ACM, 20(8):564-376, August 1977,

B. Liskov and S. Zilles. Programming with abstract data tyvpes. SIGPLAN Notices,
9(4):50-59, April 1974.

B. Liskov and S. Zilles. Specification techniques for data abstraction. IEEE Transac-
tions on Software Engineering, SE-1(1):7-19, March 1975.

R. L. London. A view of program verification. In Proceedings of the International

Conference on Reliable Software, pages 534-545, April 1975.

D. J. Lu. Watchdog processors and structural integrity checking. IEEE Transactions
on Computers, C-31(7):681-685. July 1982,

D. C. Luckham. Programming with specifications: an introduction to Anna, a lan-

guage for specifying Ada programs. 1987. Draft report, 450 pages.

BIBLIOGRAPHY 193

gt

D. C. Luckham, S. M. German. F. W. von Henke. R. A. Karp. P. W. Milne. D. C.
Oppen. W. Polak. and W. L. Scherlis. Stanford Pascal Verifier User Manual. Tech-
nical Report 79-731, Department of Computer Science. Stanford University. March

1979. (Program Analysis and Verification Group Report 11).

D. C. Luckham. D. P. Helmbold, S. Meldal, D. L. Bryan. and M. A. Haberler. T'SL:
Task Sequencing Language for Specifying Distributed Ada Systems: TSL-1. Techni-
cal Report CSL-TR-87-334, Stanford University, July 1987. Program Analvsis and
Verification Group Report PAVG-34.

D. C. Luckham and W. Mann. Methodology for using specification analysis to debug

formal specifications. In preparation.

D. C. Luckham, R. B. Neff, and D. S. Rosenblum. 4n Environment for ida Software
Development Based on Formal Specification. Technical Report 86-305, Computer
Systems Laboratory, Stanford University, August 1986. (Program Analysis and Veri-
fication Group Report 31). '

D. C. Luckham, S. Sankar, and S. Takahashi. The methodology of formal specification
and hierarchical debugging. (In preparation).

D. C. Lackham, S. Sankar, and S. Takahashi. Two dimensional pinpointing: an
application of formal specification to debugging packages. Forthcoming Technical
Report.

D. C. Luckham and N. Suzuki. Verification of array, record, and pointer operations in
PASCAL. ACM Transactions on Programming Languages and Systems, 1(2):226-244,
October 1979.

D. C. Luckham and F. W. von Henke. An overview of Anna, a specification language
for Ada. IEEFE Software, 2(2):9-23, March 1985.

D. C. Luckham, F. W. von Henke, B. Krieg-Briickner, and O. Owe. Anna—A Lan-
guage for Annotating Ada Programs. Springer-Verlag—Lecture Notes in Computer
Science No. 260, July 1987. (Also Stanford University Computer Systems Laboratory
Technical Report No. 84-261).

194

30}

190]

[91]

(92]

(93]

BIBLIOGRAPHY

A. Mahmood and E. J. McCluskey. Concurrent Error Detection Using Watchdog
Processors—A Survey. Technical Report 35.266. Computer Systems Laboratory.

Stanford University. June 19835.

M. Mandal and S. Sankar. Concurrent runtime testing of anna annotations. In

preparation.

W. Mann. Representation of an anna subset in predicate logic for specification anal-

vsis. In preparation.

Z. Manna and R. Waldinger. The logic of computer programming. I[EEE Transactions
on Software Engineering, SE-4(3):199-229. May 1978.

A. A, Markov. Impossibility of certain algorithms in the theory of associative systems.
Doklady Akad. Nauk. SSSR, 55:587-590, 1947. (Also appeared in 58:353-356).

S. Meldal. A note on abstraction, in particular with respect to the axiomatics of

access types. (In preparation).

G. Mendal et al. The Anna-1 user guide and installation manual. Computer Systems
Laboratory, Stanford University, Stanford, California - 94305. Jan. 1989. Available
upon request. Forthcoming Technical Report.

| B. Meyer. Eiffel: Reusability and Reliability. In Will Tracz, editor, Software Reuse:

Emerging Technology, IEEE Computer Society Press, 1988.
B. Meyer. Object-Oriented Software Construction. Prentice-Hall, 1988.
G. J. Meyers. The Art of Software Testing. John Wiley & Sons, New York. 1979.

A. Mili. Self-stabilizing programs: the fault-tolerant capability of self-checking pro-
grams. [EEE Transactions on Computers, C-31(7):685~689, July 1982. (Also see
correspondence in I[EEE Transactions on Computers, C-34(1):97-98, January 1985).

D. R. Musser. Abstract data type specification in the AFFIRM system. IEEE Trans-
actions on Software Engineering, SE-6(1):24-32, January 1980.

P. Naur. Proof of algorithms by general snapshots. BIT, 6(4):310-316, 1966.

R. Neff. Ada/Anna package specification analysis. Forthcoming PhD Thesis.

BIBLIOGRAPHY 195

(94]

[98]

[100]

[101]

[102]

[103]

[104]

(105]

S. S. Owicki and D. Gries. Verifving properties of parallel programs: an axiomatic
approach. Communications of the ACM, 19(5):279-283. May 1976.

D. L. Parnas. The influence of software structure on reliability. In Proceedings of the

International Conference on Reliable Software, pages 358-362. April 1975.

D. L. Parnas. A technique for software module specification with examples. Commu-
nications of the ACM, 13(5):330~-336. May 1972.

E. L. Post. Recursive unsolvability of a problem of thue. Journal of Symbolic Logic.
11:1-11, 1947.

T. W. Pratt. Programming Languages - Design and [mplernentation. Prentice-Hall.
1984.

C. V. Ramamoorthy and S. F. Ho. Testing large software with automated soft-
ware evaluation systems. [EEE Transactions on Software Engineering, SE-1(1):46-38.
March 1975.

C. V. Ramamoorthy, K. H. Kim, and W. T. Chen. Optimal placement of software
monitors aiding systematic testing. /EEE Transactions on Software Engineering, SE-
1(4):403—111, December 1975.

B. Randell. System structure for fault tolerance. IEFE Transactions on Software
Engineering, SE-1(2):220~232, June 1975.

C. Rich. Formal representation of plans in the Programmer’s Apprentice. In Proceed-
ings of the Seventh International Joint Conference on Artificial Intelligence (IJCAI).
pages 1044-1052, 1981.

C. Rich and R. C. Waters. Abstraction, Inspection and Debugging in Programming.
Technical Report AIM-634, MIT Artificial Intelligence Laboratory, June 1981.

D. S. Rosenblum. A methodology for the design of Ada transformation tools in
a DIANA environment. [EEE Software, 2(2):24-33, March 1985. (Also Stanford
Urniversity Computer Systems Laboratory Technical Report No. 85-269).

D. S. Rosenblum, S. Sankar, and D. C. Luckham. Concurrent runtime checking

of annotated Ada programs. In Proceedings of the 6th Conference on Foundations

196

'106]

.

107]

"108]

'109]

Pt

110

11

[112]

(113]

BIBLIOGRAPHY

of Software Technology and Theoretical Computer Science. pages 10-33. Springer-
Verlag—Lecture Notes in Computer Science No. 241, December 1986. (Also Stanford

University Computer Systems Laboratory Technical Report No. 86-312).

E. C. Russell and G. Estrin. Measurement based automatic analysis of FORTRAN
programs. AFIPS—Spring Joint Computer Conference. 34:723-732. 1969.

S. Sankar. Specification of history sensitive functions in Anna. (In preparation).

S. Sankar and D. S. Rosenblum. The Complete Transformation Methodology for Se-
quential Runtime Checking of an Anna Subset. Technical Report 86-301, Computer
Systems Laboratory, Stanford University. June 1986. (Program Analysis and Verifi-

cation Group Report 30).

S. Sankar. D. S. Rosenblum, and R. B. Neff. An implementation of Anna. In Ada in
Use: Proceedings of the Ada International Conference, Paris, pages 285-296. Cam-
bridge University Press, May 1985.

D. G. Shapiro. SNIFFER: A System that Understands Bugs. Technical Report AIM-
638, MIT Artificial Intelligence Laboratory, June 1981.

E. Y. Shapiro. Algorithmic Program Debugging. MIT Press, 1983. (An ACM Distin-

guished Dissertation, 1982).

E. M. Soloway, B. Woolf, E. Rubin, and P. Barth. MENO-II: an intelligent tutoring
system for novice programmers. In Proceedings of the Seventh International Joint
Conference on Artificial Intelligence (IJCAI), pages 975-977, 1981.

L. G. Stucki and G. L. Foshee. New assertion concepts for self-metric software valida-
tion. In Proceedings of the International Conference on Reliable Software. pages 59—
65, April 1975.

N. Suzuki. Verifying programs by algebraic and logical reduction. ICRS, 1975.

D. J. Taylor and J. P. Black. Principles of data structure error correction. [EEE
Transactions on Computers, C-31(7):602-608, July 1982.

A. Thue. Probleme iieber verinderungen von zeichenreilen nach gegebenen regeln.
Kra. Vidensk. Selsk. Skrifter. I. Mat. Nat. Kl., 10, 1914.

BIBLIOGRAPHY 197

117]

(123]

124]

125]

[125)

[127]

F. W. von Henke and D. C. Luckham. A imncthodology for verifving programs. ICRS.

975.

p—

F. W. von Henke. D. C. Luckham. B. Krieg-Briickner. and O. Owe. Semantic speci-
fication of Ada packages. In Ada in Use: Proceedings of the Ada International Con-
ference. pages 185-196. Cambridge University Press, May 1985,

N. Wirth. Algorithms + Data Structures = Prcgrams. Prentice-Hall. 1976.

] N. Wirth. Program development by stepwise refinement. Communications of the

ACM, 14(4):221-227, April 1971,

D. B. Wortman. On legality assertions in EUCLID. [EEE Transactions on Software
Engineering, SE-3(4):359~-367. July 1979.

W. A. Wulf, R. L. London. and M. Shaw. An introduction to the construction and
verification of Alphard programs. IEEE Transactions on Software Engineering. SE-
2(4):253-265, December 1976.

S.S. Yau and R. C. Cheung. Design of self-checking software. In Proceedings of the
International Conference on Reliable Software, pages 450-457, April 1975.

R. T. Yeh. editor. Current Trends in Programming Methodology, Volume ! —Software

Specification and Design. Prentice-Hall, Inc., 1977.

R. T. Yeh, editor. Current Trends in Programming Methodology, Volume 2— Program
Validation. Prentice-Hall, Inc.. 1977.

R. T. Yeh, editor. Current Trends in Programming Methodology, Volume {— Data
Structuring. Prentice-Hall. Inc., 1978.

S. N. Zilles. Algebraic Specification of Data Types. Project MAC Progress Report 11.
Massachusetts Institute of Technology, 1974.

