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\quipotential surfaces I of the Earth's external gravity field* This leads

to a clarification of the role of local coordinates on the surfaces of 1, the

imbedding of 2 in Euclidean 3-space, and the occurrence of singularities on

surfaces of Y.



CONTENTS

Page

1. Introduction ...................................................... 1

2. The Vicinity Assumption ........................................... 4

3. The Smoothness Assumption ......................................... 9

4. Local Surface Theory .............................................. 10

5. Topological Considerations ........................................ 18

Acknowledgement ........................................................ 22

Appendix ............................................................... 27

References ............................................................. 34

Acces,o(,Fo

NTIS CrfA?,1 .
DTI(" 7AB [J

By
D .t r ib io,: /

D . .is t A v . .

JJ

• AdL____" , O

Oilii.2a

Q -~



Preface

The following report is a revised version of an invited paper "The

Mathematical Foundations of the Hotine-Marussi Approach to Geodesy" which was

presented on June 5, 1989 at the Second Hotine-Marussi Symposium in Pisa. The

talk in Pisa essentially consisted of an informal discussion of the basic

ideas/results in the manuscript and was illustrated by examples and figures

not included in the original paper. In the present report these examples and

figures are included together with additional material derived from

discussions with participants at the Symposium. This has resulted in almost a

50% increase in the size of the original manuscript.

The material addresses the topological foundations which underlie the

entire Marussi-Hotine formulation of differential geodesy. It also furnishes

an outline of some of the mathematical preliminaries required in the

investigation of the hierarchy of questions related to the Marussi Hypothesis

which is the primary topic of our research contract. A subsequent report, now

in preparation, will be devoted to a mathematical appreciation of Marussi's

contributions to geodesy and will contain an introduction to the Marussi

Hypothesis in its original formulation.



1. Introduction

The Scottish mathematician and natural philosopher Sir James Ivory began

one of his papers in The Phitosopbical Magazine and Journal for 1824 with the

words:

"It is not my intention to trace minutely the various labours of

philosophers on the Figure of the Earth, but to state concisely the

present mathematical theory on the subject, and to add some

observations upon it."

Although I cannot aspire to attain either Ivory's eloquence, or lucidity

of exposition, in the present report I will attempt to imitate his endeavors

by an examination of mathematical foundations of the Marussi-Hotine approach

to geodesy. This approach is based on an essential and extensive use of

differential-geometric and tensor-theoretic methods which abandon the

traditional views of H. Bruns (1878) and F. Helmert (1880) of geodesy as "the

science of the measurement and mapping of the Earth's surface."

Indeed, in 1952 MARUSSI [11 summarized his approach by the statement that

"Geodesy is the science which is devoted to the study of the

Earth's gravity field."

From this viewpoint it follows that our primary object of concern is the

family f of external equipotential surfaces of the Earth, and following F.

Bocchio (1972) we will call the investigation of these surfaces differential

geodesy. This terminology is slightly more general than Marussi's intrinsic

geodesy [2], and less general than Hotine's mathematical geodesy [3].

Although Marussi's approach stressed the importance of conceptually

formulating his theory in a coordinate-free manner, in practice much of his

work was coordinate-deperdent. He assumed the existence of an adequate supply
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of natural physically relevant coordinates which he called in,-ttistc

coordinates, and we term this assumption the Ma'rissf Hj pothests. Hotine was

less insistent and emphatic in this regard, but much of his analysis was

inextricably tied to coordinates. However, it should be noted that some of

his treatise foreshadows the leg formalism of E. Grafarend (1986), and B.

Chovitz (1982) has pointed out that in his final work Hotine recognized the

efficacy of differential forms. These were subsequently employed in geodesy

by Grafarend (1971, 1975) and N. Grossman (1974) and their study of holonomic

measurables has shed doubt on the general validity of the Marussi Hypothesis.

Despite its visionary nature the approach of Marussi and Hotine was

essentially of a formal character, viz they did not make any attempt to seek

either the precise conditions under which their calculations were valid or to

address questions of existence and uniqueness. This is not intended to be a

criticism, since virtually oil pioneering work which applies mathematics to

physical problems is formal. By necessity, pioneers are more concerned with

the value and utility of an idea, and not with the ultimate consequences or

restrictions under which their methods retain their meaning.

Our study is focussed on the members of the family 2 and what must be

assumed - both mathematically and physically -- in order for 7 to be

susceptible of geodetic and geometric study. In doing this we make no direct

appeal to the physical equations whose solutions define 2, and consequently

our inquiry may be regarded as a geometric preliminary, or a geometric

constraint, on the theory of the geodetic 1oundarg valute problem. The

analytical aspects of this problem have been extensively investigated by

Bjerhammar, Holota, Iirmander, Moritz, Sacerdote, Sans6, and Tscherning.

Our immediate concern is with the general properties of surfaces in 2,

and these include not only local properties where one deals with a piece of a

equipotential surface S, but global properties characterizing the entire

2



surface S. We will see that both of these require topological notions.

Indeed if differential geometry is regarded as providing a geometric

constratnt on questions in physical geodesy, then topology furnishes a

topologtcal constraint on differential geometry.

Topological considerations are perhaps new to mathematical geodesists;

however, they have played a significant role in modern mathematics. They have

allowed mathematicians to systematically dissect and analyze the fundamental

notions of what is meant by the terms space, continuity, differentiability,

etc. This has permitted one to recognize the aspects of these concepts which

are strictly Euclidean as well as those which are more general. Indeed, in

1939 Hermann Weyl, one of the giants of twentieth century mathematics,

remarked that

"In these days the angel of topology and the devil of abstract

algebra fight for the soul of each individual mathematical domain."

The last half-century of mathematical endeavors have vigorously confirmed

Weyl's comments.

Mathematically such considerations are not new, and date back to Leibniz

(1678), who proposed their investigation as analysts situs. This name was

employed into the early part of the twentieth century, when the term topology

came into popular use. It is amusing to note that the same man who coined the

term geoid in 1873 invented the word topology in 1847. He also published an

account of the one-sided PTbius strip four years before A.F. K6bius (1865)1

This was Gauss' student J.B. Listing (1808-1882), and his "Vorstudien zur

Topologie" was one of the earliest systematical treatments of the subject.

Listing's view of topology as a

"kalkulatorische Bearbeitung der modalen Seite der Geometrie,"

is in a sense how we will seek to apply it to differential geodesy.

In differential geodesy two important types of assumptions arise when one

L 
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attempts to pass beyond the formal aspects of the theory. We will call them

the vfctnrtty and smoothness assumpt tons and show that they embody mathematical

and physical requirements.

2. The vicinity Assumption

The uicinity asstuptton incorporates at least two ideas. Physically, it

begins with the idealization of the figure of a uniformly rotating Earth being

roughly spherical. More precisely, one regards the Earth as being

topologically equivalent to a sphere which includes the shape being that of a

sphere, a spheroid, or an ellipsoid. One then asks under what circumstances

can one take the surfaces of 2 to be closed surfaces? Intuitively, the

answer is obvious: the equipotential surfaces must lie 'near' the surface of

the Earth. However, a much more precise answer has long been known -- but

almost forgotten!

The answer was given in 1901 by Paolo Pizzetti (1860-1918), who from

1900-1918 was Professor of Higher Geodesy at the University of Pisa. In

PIZZEITI [41, he proved that when the maximum and mean radii Rmax, Rm of the

Earth are subject to the inequality

(1) Rma - R <- Rmx m 100 M

with ratio m of the centrifugal and gravitational accelerations being

(2) m < 1

then the surfaces of Y are closed for altitudes h above the surface of the

Earth which satisfy the Pizzetti inequal ity:

(3) 0 < h< 5R

He also observed that (3) remains valid when lunar tidal effects are involved,

i.e. m < -. The coefficient of the upper bound in (3) to 4-place accuracy

is 4.8930, but of course Pizzetti's values for the geophysical parameters are
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now obsolete. However, upon taking latest accepted I.A.G. values given by

Moritz, (1988), with m < -L to 3-place accuracy this coefficient is 4.969.290

The choice of the coefficient 5 in (3) is of no particular significance

except it works! The essential idea is that on the basis of very general

assumptions PIZZETTI was able to establish such an inequality.

In [5] W.D. Lambert presented an excellent qualitative discussion of a

similar situation, and traced such considerations back to P.S. Laplace and his

"Traite de M1canique Celeste, Livre III" (see Chapter VII of the Bowditch

translation of 1832). Laplace analyzed the case of the equipotential surface

'marking the outermost limit of the atmosphere' and determined its equatorial

radius to be 6.6 times the radius of the Earth. Lambert did not make

reference to the work of Pizzetti.
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It is immediate that when (3) holds the family I is not only closed,

but also hounded. If we restrict our considerations to non-relativistic

effects, and assume the space in the neighborhood ot the Earth is

3-dimensional and Euclidean, then each S C Y is a compact surface. We will

return to this important topological property in a moment. Henceforth we will

consider only such S E I.

The second aspect of the vicinity assumption is to emphasize that almost

all of the analysis involving differential geometric and tensorial techniques

is local and valid only on a piece, viz in the vicinity of a point P, of a

surface S E 2. Stated more precisely, these considerations hold only on an

open connected subset, i.e., a domain, of S. When this is provided with a

coordinate system xr this domain becomes a coordinate rnetghborhood, or chart

about the point P. Hence, in general, coordinates are local in character,

i.e., valid only in a domain of S, and in order to obtain a

"coordinatization" of even a piece of S it is necessary to employ several

charts. The charts must be compatible, i.e. "mesh-together," and we will

return to this in Section 3. These charts are said to cover the piece of S,

and by virtue of the compactness of each S E 7 the Heine-Borel-Lebesgue

covering property asserts that the entire surface S can be covered by a

finite tunber of charts. This is illustrated by taking S to be

2-dimensional sphere S2 where two charts are required to "patch up" the

coordinate singularities which occur at the North and South poles. An even

better covering of S2P which avoids equatorial singularities, employs six

charts. In Section 4 we will see that such singularities are not the result

of an inappropriate choice of coordinates, but a topological property of S2

and surfaces which are topologically equivalent to it.

7
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Figure 2. This figure is entitled "Limiting surfaces of the atmosphere and
adjacent level surfaces ..." and is taken from LAMBERT [5]. Solid lines
denote limiting equipotential surfaces, dashed lines denote analytical
continuations (for a detailed description see [5]).
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3. The Smoothness Assumption

The smoothness assumptton refers to the degree of differentiability of

the functions and coordinates occurring in our analysis. We briefly review

the relevant notions for functions defined on a domain Q of a 3-dimensional

Euclidean space E3.
ck

A function F defined on 0 is said to be of class C for an integer

k > 0 whenever F and all its partial derivatives up to and including those

of order k are continuously differentiable with respect to the coordinates

xr on Q. In this case we write F C C k or simply F E Ck when Q is

evident. The class C0  corresponds to merely continuous functions and d"

indicates (real) analytic functions. In general 0 < k < - < w and if no

specific value k > 0 is indicated, it is convenient to merely say that the

functions are smooth. An important generalization of these ideas was

introduced by E. Milder (1882) in his classical work on potential theory, and

we will also employ the 61der class Ck 'P for k > 0 and 0< e 1 in

which the kth order partial derivatives satisfy a uniform Iiilder condition of

order P. If 0 < P < 1 membership in CkP is weaker than

differentiability, but stronger than mere continuity.

Quite obviously the first aspect of the smoothness assumption is to

insure that all the functions belong to the appropriate classes in order that

the various operations performed on them are meaningful. These requirements

are not stated in [1], [2] or [3], and often they are likewise taken for

granted in texts on differential geometry and tensors. Such a naive and

uncritical approach is often harmless, but in the case of surface theory one

clearly wants S to admit continuously varying tangent planes, normal

vectors, principal curvatures, etc. and none of these properties is trivial or

automatically true. These considerations will be discussed further in Section

4.
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An even more important aspect of the smoothness assumption is to

ascertain when the data obtained from geodetic measurements is sufficiently

smooth to allow us to even meaningfully speak of a piece of S. The

irregularities in the equipotential surfaces of 7 are dramatically shown in

the beautiful computer-generated pictures recently given by P.J. MELVIN, (6].

While we may assume our current data, or our extrapolations/approximations of

it for a S E 2, are adequate for an application of differential geometric

techniques, as a first step we should unequivocally establish the precise

nature of these requirements.

4. Local Surface Theory
The notion of a smooth S E 2 in E3  is very complicated. Technically

it is that of a 2-dimensional smooth oriented Riemannian manifold

isometrically imbedded in E3. The process of developing the requisite ideas

is lengthy. It begins with a connected topological space X (consisting of

suitable collections of sets called a topolog!j) in which the elements of the

sets are points. One next imposes axioms of separation and separability (the

Hausdoi-ff and Second Cou11tabiitty Axioms) in order to obtain abstract

Euclideanlike properties. Coordinates are introduced by making X into a

topological manifold, and the dimension of the manifold is obtained as a

byproduct of this procedure. Locally, a topological manifold Xn  looks like

a domain of En* The apparatus of differential calculus is obtained only when

Xn is provided with a differentiable structure and becomes a differentiable

manifold M n . Finally, Mn  must be supplied with a smooth Riemanniaii

structure, given an orientation, and the resulting smooth Riemanniaii manifold

Vn imbedded in an Euclidean Em.

In his report to the Third Hotine Symposium (Siena, 1975), GROSSMAN [7)

gave a delightful discussion of the possibilities and difficulties. One of

10



his comments rplative to the above procedure bears repeating since it is just

as true now as it was then. He said

"The predominant view is that space near the Earth is a manifold.

The unpleasant fact of life is that no one has ever described a

method for coordinatizing that supposed manifold in a way consonant

with physical reality."

Stated more succinctly we can paraphrase this by saying that although the

procedure, or predominant view, is clear it remains an open challenge to

implement it in practice. Until this is done, much of differential geodesy is

at best wishful thinking, and at worst a mathematical fiction.

Keeping Grossman's comment in mind, let us survey the situation in view

of the vicinity and smoothness assumptions.

The first step is to introduce a Gaussian parametrization of the

Euclidean coordinates x r on a piece of S. By the Implicit Function Theorem

1 2 3
this amounts to solving the implicit equation of S F(x , x , x ) = 0 for

one of the coordinates and introducing an arbitrary set of parameters

u = (U1 , u ) into the coordinate chart on S. For those S which are

topologically equivalent to a 2-sphere S2 this entails a square root

involving the other two coordinates, and choosing the two signs on this

radical yields two coordinate charts on S. The above process can be done in

three different ways (one for each x r ) and this leads to the six charts

mentioned previously.
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Figure 3. The covering of the 2-sphere S2  by six charts as given in the

textbook Differential Geometry of Curves and Surfaces by M. DO CARMO, page_ 56
(Prentice-Hall, 1976). For more details, see our Appendix, equations
(A.l)-(A.3).

Suppose this has been done, and that a piece of S is locally given a

Gaussian parametrization

(4) xr , xr(ul u2)

Then the ua  are regarded as independent parameters on the coordinate chart

(U, xr) of S, and this is said to be a ck (k > 0) piece of S whenever

the coordinates x r in (4) are Ck functions of the parameters ua. This is
written, xrECk and S is locally a ck-surface whenever the coordinate

charts covering S are selected in a manner such that a coimn value of k

can be assigned to all the charts covering S. As mentioned in Section 2, by

the compactness of each S E ., a finite number of charts suffices to cover

each S 4E I. Let ua and u denote the parameters in a pair of charts

12



whose intersection U n U contains an arbitrary point P C S. Then the ua

-aand u are related by the parameter changes

-a f(u u2
(5)a a 1 -u 9 (U r ,

k
where fa, ga E Ck  In other words, the local parameter descriptions are

reversible and C k-related to each other. In order to insure that outward

pointing unit normal vectors r on S retain their outward pointing

character, it is necessary that S be orierntable. This requires that the

functional determinants have a fixed sign, viz an orientation, say

-1 -2
(6) a(u 'u > 0

a(u ,u

and this guarantees reversibility of the parametrizations in (5).

The ck-character of (5) is inherited by the coordinates xr in (4). The

Inverse Function Theorem then requires that at least one of the functional

determinants

1 2 2 3 3 1(7) O(xl'x2) O(x 2x ) O(x 3x

8(u ,u2 ) o(u ,u2 ) a(u ,u

be non-vanishing, and this is tantamount to the linear independence of the

tangent vectors axr/dul, ax r/2 on the piece of S, i.e., to the

non-vanishing of a component t) r of i,. If all three of the determinants in

(7) vanish then the Inverse Function Theorem fails to hold, and the xr are

said to have a singularity. Some of these may be artificial, i.e., due to a

poor choice of parameters, while others are of a topological nature and cannot

be avoided. This is responsible for the non-existence of a single global

singularity-free coordinate system on $2' and explains the necessity of

several local coordinate charts on S2 and its topological equivalents. In

effect, ultimately this is a byproduct of a celebrated theorem of L.E.J.

13



Brouwer (1909-10), see J. MILNOR, [8] and [9], that an n-sphere Sn  admits a

globally defined field of non-vanishing smooth tangent vectors if and only if

n is odd. We will return to this question at the end of Section 5.

The above discussion has indicated the meaning and delicacy attached to

the requirement that S be a Ck-surface. In the remainder of this section it

is understood that references to S are strictly local in character, and

refer only to a piece of S. We now determine the smoothness requirements on

the various geometric quantities associated to S in Gaussian differential

geometry.

Mathematically, the most striking property of S is that it is imbedded

in E3. Let xr be Cartesian coordinates on a domain Q C E3, with 
6 rs

being the components of the constant Eulidean metric tensor, i.e., the

"infinitesimal" square of the distance between a pair of points P, Q E Q is

given by

(8) ds2  6rs

If now ua are local parameters on a surface S in E3 with P, Q E S, then

we also have (4) and for P, Q E P n s:

2(9) ds = aa duaduP

where aa are the components of the sutrface metryic tensor, i.e. the

coefficients of the first fundamental for-m. The agreement of (8) and (9) on

Q n S immediately yields
xr 5x

(10) a1 = x r _x

al0 = 6rs al ( uP

which is not only the defining equation for the a O , but also the basic

imbedding equation. The equality of these two expressions for ds2  is the

identity of the notions of distance on E3  and S. This is what is meant by

an isometric imbeddirng of S in E3. It is a nontrivial requirement since it

14



involves S being a subspace of E3  and possessing both a metric and

topology induced by those of E3. For the moment, let us suppose that this

imbedding has been achieved -- we will consider it in more detail at the end

of this section.

Since S is a C k-surface (k > 1) by definition the xr E C , and hence

k-Iby virtue of (10) it immediately follows that the aa E C Moreover,

since the determinant a : detila apl is a polynomial function it follows that

aj3 k-1a, Nfa-, and the Leut-Ciuita surface dualizors f a/3 E are of class C

By inspection of their definitions, the components v r of the unit normal t,

k-1 a k-2to S are also of class C and r E C The coefficients b of
f3-r aj3

the second fundamental form, the determinant b detllb ap1, as well as the

Gaussian (total) curUature K, the Germain (mean) curvature H, and the higher

k-2order fundamental tensors (see (10]) are all of class Ck . Hence, when

k > 3 all the basic quantities occurring in surface theory are smooth!

Such a smoothness requirement allows one to answer the question of the

local existence and uniqueness of - surface S which is assumed to be

isometrically imbedded in E3. 0. Bonnet (1867) proved the following:

Fundamental Theorem of Local Surface Theory

Let the aa0 , b ap be defined on a chart of S C E Then a

necessary and sufficient condition that a pair of quadratic

differential forms having these tensors as coefficients, be the

first and second fundamental forms of S is that locally S be of

class C3, with

(i) a > 0,

and that these tensors satisfy

(ii) the G(uss equation

R b b-b b

afXP aN\ fP allfl

15



and

(iii) the Codazz -Matnardt equa t tons

b -b =0.

Moreover, if (i)-(iii) are satisfied, then locally a C -surface S

is uniquely determined up to position, i.e., a rotation and

translation, in E3.

Both (ii) and (iii) are integrability conditions of a system of

differential equations known as the Causs formulae, and (ii) is essentially

the Theorema Egregtum of Gauss. An obvious question is whether Bonnet's

theorem can be improved, i.e., can the differentiability conditions be

weakened? In other words, can these results be established for C -surfaces?

r 2This would be attractive since in such a situation: x E C , a61 and

1r 1 0
C CI , and b aE C , which would still allow for a continuouslyD a3

differentiable tangent plane and normal v,. This was done by P. Hartman and

A. Wintner (1950) who by an ingenious argument replaced (ii) and (iii) by

integral equations. No other improvement of the theorem is known, or seems

possible.

We now return to the question of the existence of a local isometric

imbedding of S in E3. By definition this involves finding a singulatty-

fiee solution x r(u , u 2 ) of (10), which is said to provide a realization of
a . This requires regarding (10) not as a definition for aa, but as a

system of three non-linear first order partial differential equations for the

r when the a a are specified. The obvious procedure is to appeal to the

well-known Cauchy-Kovalevska Theorem; however this requires S to be a (real)

analytic surface, i.e., xr and aan ( d". This is a severe requirement, but

unfortunately a common one in pure mathematics!

Suppose for the moment we generalize the situation and replace S by an

16



n-dimensional Riemannian manifold Vn , and E3  by Em.  Then the Greek

indices range over the values 1 to n, and the Latin indices over 1 to m

in (10). L. Schlbifli (1873) conjectured that in this case, since a., has

n(n + 1)/2 independent components, it suffices to take m - n(n + 1)/2. This

was proven by M. Janet (1926), and some missing details were later supplied by

C. Burstin (1931). Hence we have

The Fundamental Theorem on Local Isometric Imbedding

Any Riemannian manifold V having a d'-metric tensor can ben

locally isometrically imbedded analytically in an E with

m = n(n + 1)/2.

Hence, when V2 - S, so that n = 2, the problem is solved for

&-surfaces by taking m - 3. It has proved remarkably difficult to replace

the stringent requirement of analyticity by weaker conditions of

differentiability. The best result in this direction is due to H. JACOBOWITZ

[i], who proved the following:

Weakened Fundamental Theorem on Local Isometric Imbeddings

Let S be a surface which admits a metric a O C k, with

k > 3 and 0 < P < 1, and which possesses a local CkP

realization in E . Then
m

(i) if S has Gaussian curvature K > 0, then m = 3, and

(ii) with no restrictions on the sign of K, then m = 4.

It is likely that this is the best possible result, since A.V. Pogorelov

(1971) constructed a S having a C ' metric a ( which admits no

C2-realization in E3. The classic example is that of D. Hilbert (1901), viz.

a e-surface having constant K = -1, which cannot be analytically realized in

E3 without the occurrence of singularities.

The above discussion is intended to illustrate that the question of a

local isometric imbedding of S in E3 is by no means either obvious or even
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possible.

5. Topological Considerations

In Section 4 we have indicated the steps involved in the notion of a

smooth surface S E 2 which is imbedded in an E3. We now discuss how

various global topological notions enter into the picture.

E 3  is a topological space, and its usual topology T is Hausdorff and

possesses a countable basis. we denote this topological space by (E3, T).

Since S is topologically a subspace of (E3, T), its induced topology is

also Hausdorff and second countable. By Pizzetti's result, each S is closed

and bounded, hence since ! is in E3, each S E 7 is compact.

E 3  is also a 3-dimensional topological man ifold, and each S is a

2-dimensional topological s,,manifold of E3. Moreover, both E3 and each S

are metric spaces, which we denote by (E3, p) and (S, (7), where p and a

are respectively the metrics, i.e. distance funictiorns, on E3  and S. The

metrics p and c then generate the usual topologies on E3 and S, with a

being induced by p. It can be shown that E3  and each S can be provided

with compatible differentiable structures and hence E3  and S are

differentiable manifolds. When provided with the Riemanian metrics 6 andrs

a 71 (the former being regarded as a flat Riemannian metric), both E3  and

each S are Riemannia n manifolds. As a metric space, the distaorce a(P, Q)

between a pair of points P, Q E S is given by the i,,flmtn of lengths L(C)

of all piecewise smooth curves joining P and Q.

Our immediate goal is to show that each (S, a) is a complete metric

space. By the property of completeness we mean that every Cauchy sequence of

points on S is a convergent sequence. Stated intuitively, completeness

guarantees that every sequence of points on S which tries to converge

succeeds in the sense that it finds a point in (S, a) to converge to. In a
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moment we will translate this into a geometric/geodetic property of S.

The completeness of (S, a) is easily established. First, a standard

theorem in topology states that a compact metric space is automatically a

complete metric space. An alternate argument is that the metric space

(E3, p) is complete, and that a subspace (S, a) of (E3, p) is complete

whenever S is closed in E3. But this is guaranteed by Pizzetti's result!

Hence the metric space (S, a) is complete.

We now assume that each (S, u) is a connected space. This means that

each S consists of a single piece, i.e. it is not the union of a pair of

disjoint pieces. Such a requirement is obvious physically, for if it were not

true there would be no possibility of moving from point to point on S. The

geometric/geodetic consequences of completeness are then given in the

following result of H. HOPF and W. RINOW [12].

Hopf-Rinow Theorem

If a connected surface S is complete as a metric space, then

any two points P and Q of S can be joined by a unique

geodesic I which has length O(P, Q) and is the curve of shortest

length joining these points.

Indeed a classical result of 0. Bonnet (1855) goes even further, and

provides a bound on a(P, Q):

Bonnet's Theorem

On a compact surface S having Gaussian curvature K,

0 < k 0  K, where k0  is a constant, the distance is bounded by

ri(P, Q) I

In [1] Marussi stated that a goal of his intrinsic geodesy was to carry

out geodetic investigations witlin,gt imposing any additional hypotheses

relative to the selection of a particular spheroid or ellipsoid. The Hopf-

Rinow theorem, which essentially involves translating a geometric/geodetic
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situation into a topological setting, assvres us that geodesics on the

equipotentia surfaces S E I are indeed curves of minimal length!

We ara now in a position to obtain a rather sharp global topological

characterization of all S C :. Assume that each S has K > 0 (with K

not necessarily constant) or, equivalently, that each S is a convex surface.

Geodetically, such surfaces are characterized by the fact that on them plumb

lines (i.e. the outward pointing normals) at neighboring points do not

intersect. By our previous analysis we know that each S is a complete

surface. In E3  we then have the following classification theorem of A.D.

ALEKSANDROV [131.

Aleksandrov Theorem

Every complete convex surface S in E3  is topologically

equivalent to either a 2-sphere S2 , a plane, or a cylinder.

The latter two possibilities have K = 0, and hence can be eliminated.

Thus all our S E 7 are topologically equivalent, i.e. homeomor-phlic, to a

2-sphere S 2  This equivalence includes spheres, spheroids, ellipsoids, as

well as "bumpy" spheroids, and each of these satisfies the topological

properties of being compact and connected as well as being complete and

orientable. Obviously S2 is trivially a topological space, a metric space,

a topological manifold, and is a subspace of E3. Moreover, S2  can be

provided with a unique differentiable structure, a smooth Riemannian metric,

and as a Riemannian manifold it is isomehrically imbedded in E3. Hence each

S E ! is not only homeomorphic but also differentiably equivalent, i.e.,

diffeomorphic, to S In other words, topological transformations of S are

not only continuous but smoothly differentiable. Not2 that although

diffeonorphisms are homeomorphisms, i.e., differentiability implies

continuity, the converse is not true.

We may sumnarize these considerations in the following.
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Theorem

All the closed equipotential surfaces 2 of an idealized sphere-

shaped uniformly rotating Earth, i.e., those which satisfy the

Pizzetti inequality (3), are diffeomorphic to a 2-sphere S2.

Our argument has been based on translating the following fiue physical

requirements:

(i) tne space near the Earth is Euclidean and 3-dimensional;

(ii) each S E E consists of one piece;

(iii) one can measure distances between different points on each S E 2;

(iv) each S E 2 admits an upward pointing direction;

(v) neighboring plumb lines on each S E 2 do not intersect;

into precise topological and geometric requirements.

Finally, the Gauss-Bonnet theorem for S yields

SKdA = 27rr(s)

where dA is the area element on S and x(S) is the Euler-Potncare

characteristic on S. For S topologically equivalent to S 2 (S) - 2. The

significance of this quantity is given by the

Poincare-Hopf Theorem

If v is a smooth vector field on a compact orientable surface

S, and v has only a finite number of zeros, then the sum of the

indices of singularity j of v is equal to x(S).

The result X(S) = 2j = 2 then explains the inevitability of the

singularities of a smooth tangent vector on S, as mentioned in Section 3.

Typically one has two singularities on S, viz., a pair of sources, sinks, or

centers with each singular point having a singularity index j = +1. The

diversity of possible singularities involving saddle points, dipoles, etc.,

21



but with the sum of the indices being constrained by <(S) - 2, also indicates

the various choices of coordinate systems having 'simpler' or more 'severe'

types of singularities.

The intent of our discussion has been to show that the mathematical

foundations of the Marussi-Hotine approach to geodesy are both rich and

intricate. A failure to succeed in resolving a particular question may not be

attributable merely to a lack of ingenuity or initiative -- a solution need

not exist! Lord Butler once said that "politics is the art of the possible."

We would suggest that a similar remark is apropos in differential geodesy,

where topology is the art of the possible.
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Figure 4. The singularities of the tangent vectors on the 2-sphere. In the
left figure the latitudinal tangents have singular points at the North and
South poles, each having an index j = +1 corresponding to a "source" and
"sink" respectively (using the language of hydrodynamics). In the right
figure the longitudinal tangents are illustrated. Notice that as the
geographical parallels are moved northward or southward, one obtains
singularities again having index j - +1 corresponding to "vertices" at the
North and South poles. The values of the indices are not direction dependent!.
This figure is taken from Intuitive Topolog. (in Russian) by V.G. BOLTYANSKII
and V.A. EFREMOVICH, page 68, (Nauka, 1982).
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Figure 5. Examples of singular points of vector fields, and their indices.
The indices of these singularities are j = +1 in (a), (b), (c); j - -1 in
(d), j - -2 in (e) and j - +2 in (f). This figure is taken from H. HOPF:
Differential Geometry in the Large, Lecture Notes in Mathematics 1000, page 12
(Springer-Verlag, 1983).
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j=+! j=+2

Figure 6. Examples of singular points of vector fields, and their indices.
This shows that the curves, i.e. the trajectories of the vector fields, need
not be as regular-shaped as illustrated in Figure 5. This figure appears in
Topology from the Differential Viewpoint by J.W. MILNOR, page 33 (The
University Press of Virginia, 1965).
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Figure 7. An example of a number of singular points occurring in a single
chart, say on a surface of irregular shape. This figure occurs on page 73 of
the Russian textbook cited in the caption of Figure 4.
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Appendix

In this Appendix we will illustrate some of the ideas in Sections 4 and 5

for the case of a 2-sphere S2' None of the results are new, but the approach

may be useful in showing how the calculation are done when topological notions

are taken into account.

For the 2-sphere S2 the implicit equation is given by

1 2 3 1 2 d22 3 2(A.1) F(xI , x , x3  (Xl) + (x2)2 + (x3) 1 = 0

where

X= X = (x 1 , x 
2 , x )

denote Cartesian coordinates in Euclidean 3-space E3. Let

(A.2) Ajk = ll-(xj)2-(xk)
2

denote the solution of (A.1) for one of the coordinates, say x , in terms of

the other two, viz. xj  and xk  with i, j and k being different. Then

upon taking into account the choice of signs on the radical in (A.2), and the

fact one can solve for the Ajk in three different ways, we obtain the

following six charts on S2:

(UI, x) = (XI , x2 , +A12)

(U2, x) = (x
I , x2, -A12)
1 x3

(A.3) (U3, x) = (x , +A13 , x

(Ur, X) (x, -A 13 '

2 3
(Us, x) = (+A 23' x , x)

2 3
(U6 , x) = (-A23, X , x

The inclusion of x in the above equations is necessary to indicate the
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coordinatization used on the neighborhoods. Note that the union of the

coordinate neighborhoods U1 and U 2, denoted by U1  U 2  covers S2 except

for the equator

(x12 + (x2 2 = 1,

and it is easy to see that by forming the sixfold union U1 U U2 U ... U U6

we obtain a covering of all of S2. The six coordinate neighborhoods are

illustrated in Figure 3.

Using Hotine's notation the Gaussian parametrization on the 2-sphere S2

is given by

(A.4) ua = ( P )

where w is the longitude, and 0 is the latitude as illustrated in Figure

4. We take these to range over the open intervals:

(A.5) 0 < ( < 2r, -ir/2 < < 7r/2

and hence we have excluded the meridian o - 0 from our parametrization.

Note that this meridian also contains the North pole

N (w 0, = 2)

and the South pole

S : ( , = 0, = /2

If we changed the parametrization (A.4) to

where (0 remains the longitude, and 0 is the colatitude, i.e.

(A.7) (A = (0

= /2 - 0

with

(A.8) 0 < w < 2Tr, 0 < < < w ,

then

(A.9) a(w,,) - 1
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This sign is opposite that employed in (6), however all that was required is

that the functional determinant have a fixed sign.

In terms of the Cartesian coordinates x = xr = (x1, x2 , x3) and the

parametrization (A.4) and (A.5) we have the following parametrization:

x = COS (') COS t

2
(A.10) X = sin (,i cos .0

3
x = sin ,

which by (A.5) omits the North and South poles N and S respectively, i.e.

(0, 0, 1) for 0 - r/2 and (0, 0, -1) for 0 -r/2.

By direct calculation we have

a(x 1x - cos sin ,a (, ,,4

(A.11) (x2'x3) 2
(Al1 ( ,x) = cos (,, cos ,

a(x3,x)

a3 X1 )Cs2cJ~ , )= sin cos2 ;

O(),,O)

and the requirements of the Inverse Function Theorem are satisfied. Note that

at the excluded poles N and S, all three of these functional determinants

are identically zero.

Thus, the partial covering of S2 by coordinate neighborhoods (U, x)

consists of a pair of right and left hemispheres which omits the meridian of

reference wd = 0.

Corresponding to the parametrization (A.10) the tangent vectors to the

longitude and latitude are respectively given by
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axr/a - (-sin w cos 4, cos u cos *, 0)
(A.12) xr/ = (-cos w sin , -sin w sin 0, cos ).

We denote these by x, x# respectively, and note that on the equator 0 = 0

we have

x (-sin G,, cos , 0),

x = (0, 0, 1);

however at the excluded poles N and S

x = (0, 0, 0),

x C = + COS, sin w,, 0).

This suggests that -- at least in this parametrization -- both N and S are

singular points since the longitudinal tangent vector x vanishes at these

points.

By using (10) we obtain the following expression for the first

fundamental form (9)

(A.13) ds2 = cos2 do2 + d02 ,

i.e.

(A.14) IIa/ 1 c=f 0 i

with

(A.15) a = cos 0

Note that a > 0, and a 0 only at the exclude poles N and S.

The covariant components of the unit normal i are defined by

(A.16) r 1 m n F a
r 2 -rn a X

and hence

(A.17) = (cos (, cos 0, sin (o cos 0, sin 0).
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On the equator (w, 0 = 0) we have

1P = (cos ,, sin ,, 0)

and curiously at the excluded poles N and S

1, = (0, 0, f1).

This is surprising since as noted previously the longitudinal tangent vanishes

at both N and S. The result occurs since in (A.16) the Levi-Civita

dualizor eaf involves a factor of l/Va which cancels with a common factor

of cos 0 in the vector product of x and x

If we regard (A.10) as being the imbedding equations of S2 in E3, then

the range (A.5) of values of (,, 0 omits not only the reference meridian

- 0, but the poles N and S. Hence (A.10) cannot be taken as defining all

of S2  in E3. The expressions (A.Il)-(A.17) show no analytical difficulties

along the reference meridian except at the excluded poles 0 = Y I/2.

Likewise, computing the coefficients b O of the second fundamental form

by

(A.18) b = - r xr s
an3 rs a

we have

(A.19) 
II b II =

an3 0 1
and

(A.20) 
b cos2 .

Note that again b > 0, and b = 0 only at the excluded poles N and S. By

taking the usual definitions of the Gaussian (total) and Germain (mean)

curvature we find that

K = , H = -i

By direct calculation using the Gauss-Bonnet formula, since the area

element of dA on S2 is
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dA = cos o & do,

we have

K dA = r/22 2T cos o do dp = 4wr
S2  -T/20

Hence, -(S2  2 as claimed. This is a correct result, however the

calculation should be done more carefully. We consider a partial covering of

S2  consisting of the Northern hemisphere

UN : (x )2 + (x )2 + (x3 2 = 3 > 0);

the Southern hemisphere*

US : (x )2 + (x )2 + (x 3 2 (x3 < 0);

and denote the equator by

C0  : (xI)
2  + (x2) = 1.

Then one calculates

{fNK d + a° ds ,

(A.21) 
N 0

fU K dA + 0ads

S 0O

where a is the geodesic curvature of CO, ds is the element of arc length

on Co, and the line integral is taken in a sense such that each of the

hemispheres remains on the left-hand side of CO. In terms of the Gaussian

parametrization we have

0 < w < 2r -2r < w < 0
(A.22) UN : ; US  : < ( 00 <_ * _< i/2-= < <0

Then each of the surface integrals is equal to 2w, and when the two

expressions in (A.21) are added, the line integrals cancel. Actually since

C0  is a great circle, then a = 0 and the integrands of each of the line

integrals is identically zero. This can be verified by using the classical
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expression for a:

(A.23) a 1 =-
1 22 COS 0 d

11 22
more generally for a parallel C = (Po of S2  we have the geodesic

curvature

(A.24) a = tan 0

and applying this to the equator C0 we get a = 0. Thus, we obtain

(A.25) K dA = ffNK dA + K dA = 47.
S2  U N US
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