
*. ~ A 4 1 L-6" -V(~
JNCLASSIFIED ?-ASTER COPY - . FOR REPRODUCTION PURPOSES

,EUIYCLASSIFICAIO THS PGE

REPORT DOCUMENTATION PAGE
CO REPORT SECURITY CLASSIFICATION Y~ Ij f" ~1b. RESTRICTIVE MARKINGSr

410 Unclanq tI Uv I a !L ___________ __________

W SECURITY CLASSIFICATION AUTHO LnT 3. DISTRIBUTION/ AVAILASIUTY OF REPORT

I'V%~~~ . EEASFCAINI ONGAI CX19 Approved for public release;
0ECLSSIICAION DONGRDI~fC~fWU 990distribution unlimited.

PERFORMING ORGANIZATION RE04W MBER(% P1 5. MONITORING ORGANIZATION REPORT NUMBER(S)

_____________________________App -,91&L/J
NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Center of Excellence in AI W kbe
University of Pennsylvania ,jU. S. Army Research Office

- ADDRESS (City, State, and 2IP Code) 7b. ADDRESS (Cfty, State, and ZIP COde)

Dept ofC pter & Information Science P. 0. Box 12211
200 S. 33idStreet -68
Philadelphia, PA 19104-68 Research Triangle Park, NC 27709-2211

Sa. NAME OF FUNDING /SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

U. S. Ariry Research Office '-99
8c. ADDRESS (City, State, and ZIPCod2) 10. SOURaEOF FUNDING NUMBERS

P. 0. Box 12211 PROGRAM jPROJECT ITASK ~ WORK UNIT

Research Triangle Park, NC 27709-2211 EMNTO.I NO OIC:SINN

11. TITLE (include SocurrC1 Cawficaton)
Communicating Shared Resources: A Model for Distributed Real-Time Systems (MS-CIS-89-26)

12. PERSONAL AUTHOR(S)
Richard Gerber and Insup Lee

13a. TYPE OF REPORT 113b. TIME COVERED 114. DATE- OF REPORT (Year, Month, Day) S. PAGE COUNT

Interim technical IFROM TO IMay 1989 I 30

16.SUPLEENAR NOATONThe view, opinions and/or findings contained in this report are those

ofth authgr(q),and should not be construdi as, an 9fficialD artment of the Army positio

17. COSATI CODES 1g. SUBJECT TERMS (Continu on rwven it necesamy ind identify by block number)

FIEL GR UP S B-G OUPReal-time systems

29. ABSTRACT (Continue on reverse if necessary and Sdendft by block number)

The timing behavior of a real-time system depends not only on delays due to process synchronization, but also on

resource requirements and scheduling. Hlowcver, most real-time models have abstracted out resource-specific details,

and thus assume operating environments such as maximum parallelism or pure interleaving. 1his paper presents a

real-time formalism called communicating Shared Resources (CSR). CSR consists of a programming language that

allows the explicit exprebsion of timing constraints and resources, and a computation niodel that resolves resource

contention based on event priority. We providc a full denotational semantics for the programming language, grounded

in our resource-based computation model. To illustrate CSR, we present a distributed robot system consisting of a

robot arm and a sensor.)

20. DISTRIBUTION /AVALABIUITY OF ABSTRACT . 21. ABSTRACT SECURITY CLASSIFICATION

EOUNCLASSIFIEDAINIUMITED 03 SAME As ctPT. 0DTIC USERS Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 1 22b. TELEPHONE (include Area Code)1 22c OFFICE SYMBOL

DO FORM 1473,s4 mAR 93 APRtditzon may be used untl exhausted. SECURTY CLASSIFICATION OF TIS PAGE
All other edton are obsolete. UNCLASSIFIED

v' /

UNCLASSIFIED
SECURITY CLAISICATIOM OP THIS PAGE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

UNI VERSITY of PENNS rL VANlA

COMMUNICATING SHARED
RESOURCES: A MODEL

FOR DISTRIBUTED
REAL-TIME SYSTEMS

Richard Gerber
and Insup Lee

MS-CIS-89-262
'GRASP LAB-178

Department of Computer and Information Science
School of Engineering and Applied Science

Philadelphia, PA 19104-6389

- ~O O2 26032

COMMUNICATING SHARED
RESOURCES: A MODEL

FOR DISTRIBUTED
REAL-TIME SYSTEMS

Richard Gerber
and Insup Lee

MS-CIS-89-262
GRASP LAB-178

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104

May 1989

F

Acknowledgements: This research was supported in part by ONR grant N000014-89-J-i 131,
NSF grants IRI86-10617, DCR 8501482, DMC 8512838, MCS 8219196-CER and U.S. Army
grants DAA29-84-K-0061, DAA29-84-9-0027f -0 0 3 1-

Communicating Shared Resources: A Model for Distributed

Real-Time Systems *

Richard Gerber and Insup Lee

Department of Computer and Information Science

University of Pennsylvania

Philadelphia, PA 19104

May 7, 1989

Abstract

The timing behavior of a real-time system depends not only on delays due to process syn-
chronization, but also on resource requirements and scheduling. However, most real-time
models have abstracted out resource-specific details, and thls assume operating environ-
ments such as maximum parallelism or pure interleaving. This paper presents a real-time
formalism called Commdnicating Shared Resouices (CSR). CSR consists of a programming
language that allows the explicit expression of timing constraints and resources, and a com-
putation model that resolves resource contention based on event priority. We provide a
full denotational semantics for the programming language, grounded in our resource-based
computation model. To illustrate CSR, we present a distributed robot system consisting
of a robot arm and a sensor.

1 Introduction

During the past several years there has been rapid progress in the development of formal

see H'nVgpi iguages. d'Nebr, most research has treated language

as an abstraction, quite isolated from any valifi operathig enironment. Thus, often unrealistic

assumptions are made about a formalism's underlying computational model. Such assumptions

range from the overtly optimistic (e.g., a one-to-one assignment of processes to processors)

to the bleakly pessimistic (e.g., all interleavings of process executions are possible). These

assumptions rarely hold in practice, and using them to reason about a real-time systemi's

temporal properties can often lead to incorrect conclusions.

•This research was supported in part by ONR N000014-89-J-1131.

I

May 7, 1989 2

It is now understood that models based on pure interleaving semantics are unsuitable as

real-time formalisms. Since interleaving concurrency cannot adequately portray simultaneous
actions, it fails to permit reasoning about a distributed system's temporal properties. Several
real-time process algebras have addressed this issue, among which are ECP [5], TCSP [16] and
Timed Acceptances [19]; each of the semantics underlying these formalisms can successfully
portray "true" concurrency. However they each suffer from the same defect, in that they
place no resource constraints on their underlying computational models. Further, they.each
permit n-way event synchronization between processes which, while algebraically pleasing,
has an unfortunate consequence: processes may delay indefinitely, waiting for communicating
partners that simply do not exist. For example, assume that a system of two processes, P and

P2, exclusively share some event a. Even if they successfully synchronize on a, there still exists
a possibility that they may use a to synchronize with an elusive P3 - although the system
consists only of P and P2. In [16] the hiding operator can force the desired synchronization.
Thus one may trade observational information for correct temporal properties, which seems a
fairly high price to pay.

Recently there has been increasing interest in the maximum parallelism view of concurrency.
first advanced in [17]. In [11] it was coupled with a linear-history semantics [3], and used to

model many temporal properties of Ada [18]. The maximum parallelism model circumvents the
problem of unnecessary idling; if two processes are ready to communicate, the communication
cannot be arbitrarily delayed. To accomplish this, event synchronization between processes is
limited to one sender, and one receiver. Lately,'variants of this semantics have been used to
model a real-time version of occam [7], Statecharts [8] and a design language for distributed,
reactive systems [13].

The main defect in "pure" maximum parallelism is that it assumes unlimited computational
resources: To enforce the constraint of "no unnecessary idling," each process must be mapped
to its own, dedicated processor. Thus the sharing of resources, with all its attendant scheduling
issues, can neither be specified nor analyzed. This is unfortunate, since most real-time systems
do, in fact, share their resources among many processes [10].

To address this problem, we have developed a real-time formalism called Communicating
Shared4Aesburces, or CSR. CSR's underlying computational model is reso urce-based, where a
1 6 _ _;pf,9pessor, an, E"4qet link, or.Wy:pther constituent device in a real-time
system. At any point in time, each resource 4as the.c.apacity to execute oiyly a single action.

However, a resource may host a set of many processes, and at every instant, any number
of these processes may compete for its availability. "True" concurrency may take place only
between resources; on a single resource, the actions of m iltiple processes must be interleaved.
To arbitrate between competing events, CSR employs a priority-ordering among them. This
priority scheme forms the heart of our semantics.

Quite recently there has been some exploration of priorities in both untimed and real-time

May 7, 1989 3

formalisms (see [2, 9, 13]). However, these studies have treated a limited subset of the problem
- that of the priority-based guarded command, such as occam's PRI ALT [15]. CSR's priority
semantics can successfully give meaning to this construct. However, CSR addresses the much

more general issue of resource-sharing by multiple processes, processes that may contain many

such prioritized guarded commands, and that, over time, may continuously have their priorities

altered.

This paper is organized as follows: Section 2 gives an overview of CSR, wi';h both its syntax
and its informal semantics. In section 3 we extend the basic CSR formalism by supplying
higher-level communication primitives. Section 4 presents an example of a real-time, robotics
system, modeled with the extended CSR language. In section 5 we provide the mathematical
semantics for our language. Finally, in section 6, we state our future objectives.

2 Overview of CSR

The CSR language provides the foundation for our real-time specification method. and all
of our higher-level constructs are derived from it. In several ways it syntactically resembles
the variants of real-time CSP found in [7] and [11]. Yet it includes many additional features
that take full advantage of our priority semantics. Furthermore, it has the capacity to specify
many constructs quite common in real-time systems, such as timeouts, periodic processes. and

exception-handling.

2.1 Events

Our basic unit of computation is the event, which we use to model both interprocess commu-
nication as well as local process execution. All of our events are drawn from the finite event
alphabet E. Here we use the following conventions:

" The letters a, b and c range over E.

" The letters A. B and C range over P(E).

" 'iJ 6,l reek letters A and r range over P(P(E)).

Menex tMWI'ttvent cons exactly one tinre Unit. However, this 4Qes-not imply that jor
all actions require exactly the same amount oftime. &n the 'ontrary, the event should only be E
considered a common infinitesimal unit, a building-block with which more complex functions E3
are constructed.

2.1.1 Communication and Computation

In CSR all communication between processes is strictly one-to-o e, and performed by syn-

chronizing on common events. So if a represents such a synchronizi ent, there is a single an Codes

, ', ,

May 7, 1989 4

process P that may utilize a to denote a "write" action, and a single process Q that may use a
to denote a "read." Syntactically, P would contain the "a!" statement, while Q would contain
the "a?" statement. When both processes agree to communicate, they both simultaneously
execute the a event. At that point we say the event is resolved.

As we have stated, events may also be used to explicitly represent local computation within
a process; that is, any action that requires possession of the processor's resources. Syntactically,
one unit of a local computation is simply denoted by an event name, such as "a." Semantically
it is treated as a communication event that has implicitly been resolved.

2.1.2 Event Priority

Both of the two processes that synchronize on an event have their own priorities associated
with it. In other words, each communicating event has two priorities, one for the "reader" and
the the other for the "writer." Two functions, PRIh E E --+ ,,,A and PRI E E - N represent
the respective priority mappings. If a process uses event a to model a read action, the priority
of that action is PRIi(a). Similarly, if a process uses a to model a write, the associated priority

is PRI,(a). On the other hand, if the event a is employed to represent a computation unit.
the function PRI (a) yields the priority of a.

2.2 The Syntax of CSR

The following is a complete grammar for, the CSR language:

(system) (resource)' I (system) ii (system)

(resource) ::= {(process)}

(process) (stint) (process) & (process)

(stint) ::= wait t skip I a? I a! I exec(a, m, n) I (stint) ;(stint) (guard-s) I
(within-s) I (interrupt-s) I (loop.s) I (every.s)

,,(guard-s) [(guard) -- (stmt)O... O(guard) -((stmt)A wait t- (stmt)] I
,. [(guard) stmt)> ,..0. (uard - (stint)]

(guard) ::- aIa?Ia! F ,-

(within-s) ::= within t do (stint) when t -+ (stint) od

(interrupt-s) ::= interrupt a do (stint) when a? - (stint) od

(loops) ::- loop do (stint) od

(every-s) ::- every t do (stint) od

May 7, 1989 5

2.3 Informal Semantics

We now provide a brief, informal semantics for these constructs. In section 5.9 we expand on
the ideas presented here, and we also present the formal semantics for the language.

The wait statement specifies a pure delay for t time units, while skip is syntactic sugar for
the construct wait 1. The read statement, a?, waits indefinitely for a communicating process
to execute the corresponding write statement, or a!. The exec(a, m, n) construct denotes local
computation - the event a may be executed fof a minimum of m, and a maximum of n time
units. Sequential composition is similar to that in the traditional, untimed CSP.

The guarded statement is a prioritized variant of that presented in [11]. In the version
without a timeout, all of the communication guards delay indefinitely, waiting to be matched

with their communicating partners. As soon as the first match is made, the guard with the
highest priority takes precedence, and the statement associated with it is executed. However.
note that we also allow local events as guards, and if one of these is included no delay is
necessary. Thus the priority arbitration occurs immediately. And, if a timeout guard, wait t,
is included in the statement, communication is only attempted for up to t time units, after
which the timeout statement is executed.

The interrupt operator functions in the following manner: To be interrupted, the main
body must currently be executing an event that has lower priority than the interrupting event.
If this is the case, control transfers immediately to the interrupt handler. The within statement
specifies that its body must execute within a specified time limit. If it fails to do so, an exception
statement is executed. Note that this facility provides for the specification of nested temporal
scopes [12]. as wiihin stater ents may themselves be nested. The loop statement specifies
general, unguarded recursion, while the every construct denotes a statement that executes

periodically.

There are two types of concurrent operators: Interleaving is denoted by the "&'% symbol,
while true parallelism is represented by the "11" symbol. True parallelism can take place only
between different resources, whil2 interleaved processes execute on the same resource. In fact.
all expansions of the (resource) nonterminal are required to be executed on a single resource
(or proaesspr). This is guaranteed by the restrictions inherent in the grammar, and assumed
in the construction of the formal semantics.

To a certain ex'e CS provis not only a reatiine programming pazadigm, but also a

configuration language. Unlike other CSP-infuencedranguakes, the structure of our language
mandates that process-to-resource mapping be performed. Processes are allocated to a single
resource by simply expanding the (resource) nonterminal. When no additional process is to
be added, the resource is closed. This is done by using the close operator, or "{ . }." And
after a resource is closed, no other processes may compete for its allocation. At '.,at time it is
considered a resource, and can only be combined in parallel with other resources in the system.

There are several significant restrictions made on the eveitts used both within and between

May 7, 1989 6

resources. First, if an event a represents a synchronizing action, a single resource may not use a

for both reading and writing. Recall that communication is one-to-one, between resources, If a

resource uses both functions of the event it may communicate with itself. And since all actions

on a single resource are purely interleaved, it is impossible for the read and write actions to

occur simultaneously. Thus if interleaved processes need to communicate with each other, they

must utilize intermediate resources such as memory, communication media and the like.

Next, two different resources may not model a common function using the same event. For

example, given an event a, two different resources cannot execute the "a!" statement. This

would also violate our restriction that all communication must be one-to-one. If many-to-one

communication protocols are desired (as in Ada [18]), they must explicitly be modeled through

guarded statements.

One final restriction is that no two resources may share a single local event. Again, a local

event is considered a unique unit from a particular resource. Thus, sharing it would violate

the very resource constraints that we are attempting to model.

To some readers, many of these restrictions may appear overly harsh. Superficially at least,

it seems that two interleaved processes should be able to directly communicate with each other.

Yet cost must be assessed where cost is due, and permitting two such simultaneous actions

would, lead to improper conclusions about the system. At the very least it should require one

time unit for the sender to send, and another unit for the receiver to receive. In most operating

systems this type of communication is performed by mailboxes or signals. Such mechanisms

require time to execute, ,

It should be noted that our grammar excludes some of the constructs permitted by many

other concurrent languages. For example we do not implicitly allow a simple fork-join program,

such as

Q = A;(P2 || P3);JP4

In a typical language this program can be written without regard to such details as resource

allocation, control between processors and the like. Yet if Pi and P3 are to be on separate

resources, we cannot assume that they both begin exactly when Pj ends. It is even more

unlikely-'tthat Pi will start exactly when either P2 or P3 ends, whichever is slowest. Indeed,

at both the fork and join transitions there is always "hidden" resource consumption, such as

operating system overhead. To analyze the correct temporal behavior of such a system, this

type of resource consumption must be explicitly modeled.

3 Extended CSR

The "pure" CSR language described above captures priority-based interleaving subject to re-

source availability, and pure parallelism subject to event synchronization. The language is quite

May 7,1989 7

powerful, and can successfully model a real-time system consisting of shared resources. How-

ever, the mudeling of communication through instantaneous, synchronizing events becomes too

cumbersome a task when describing large, real-time applications. For example, two processes

sharing a single resource cannot directly synchronize with each other; they must communicate

through an intermediate resource, such as memory.

In this section, we augment the basic language with the notion of channels (or commu-

niLation ports), and provide asynchronous send and receive operations on them. While the

communication media must still be cxplicitly modeled, we keep this layer transparent to thE

application processes. The processes may communicate with each other in a homogeneous

manner, regardless of the various resources they use.

The major extension to the language is in the expanded definition of the (process) nonter-

miaal:

(process) ::= (process-header)(stmt)I

(process) & (process)

(process-header ::= process (ident)

[input (channel-defs)]

output (chanael-defs)]

[local (channel-defs)]

(channel-defs) ::= (ident) ((priority)) [, (channel-defs)

Each user process declares the communication channels that it is going to use for messages.

along with their associated priorities: input channels are for receiving messages and output

channels are for sending messages. Local computation events are declared in a similar manner,

although they retain their previous flavor.

Two processes asynchronously communicate on channel c using two primitives, a.send(c)

and a-recv(c). A process that invokes a-send(c) may execute its next statement as soon as
the communication medium accepts a message on channel c. A process that invokes a.recv(c)

is dela.yed until there is a message present on channel c. These primitives are expanded from

the (stmt) nonterminal, and can be used wherever a statement may appear. In fact, they

tran'sMennfft ' Mad and write siatements, ai 'elhall show below. -..

In the'following example, process P1 recgives rnessages'from P2 on channel c. Also, P

reserves the event a for local computation, while P2 uses a local event b.

process P process P2

input c(10) output c(1)

local a(1) local b(2)

process body process body

May 7,1989 8

output c In put c

c.sI c.r?

c.s? c.rI

2 nCommunicalon system

Figure 1: Translation of channels to events

The translation from channels to events is quite straightforward. In P1, the channel c is simply

translated to the event c.r, while in P2, c is mapped to the event c.s (see Figure 1). The

headers of the two processes establish the following event priorities:

PRIi(c.r) = 10 PRI(a) = 1 PRI(c.s) = 1 PRII(b) = 2

As for the translation of the communication primitives, any appearance of a-recv(c) in P is

simply replanced by the statement "c.r?". Similarly, the a.send(c) primitive in P2 is replaced

by "c.s?".
It is the responsibility of the communication medium to synchronize with c.r and c.s. in a

manner such that the asynchronous protocol is maintained. This underlying medium may be

as simple as an interrupt controller, or as complex as a wide-area network. The communication

protocol is highly application-dependent, and must be modeled separately for each real-time

system.

4 An Example: Modeling a Distributed Robot System

Consider a robot system with a tactile sensor. The purpose of the system is to move the robot
arm as determined by the controller until the arm touches an object. This distributed robot
system6hnists of processors, a robot arm, a tactile sensor and a communication link. There

&Yb r-qgw *5O;? ntroler a r*lit: arm driverP, robot and a tactile sensor.

F .-.

4.1 Robot and Sensor Processes

Figure 2 shows communication dependencies between the foar processes. There are six commu-

nication channels, two of which, stopped and touched, carry interrupts. The controller process

sends the next-p to the robot arm driver. The robot arm driver interrupts the controller process
when the arm has stopped through the stopped channel. Similarly, the sensor process sends a

May 7, 1989 9

____________________________Robot

!eti r -s:.top

" """°°"r...

o Process

Figure 2: Communication Structure of the Distributed Robot System

touched interrupt to the robot arm driver when an object has been touched. The robot arm

driver moves the arm by sending r~move, or stops it by sending r~stop.
Figure 3 details each process, written in extended OSR. Every 2S time units, the controller

process determines a new arm position, which takes between 10 and 14 time units, and sends

it to the arm driver process. This procedure continues until the robot arm driver notifies the
controller process that the arm has stopped. Based on the current arm coordinates and the
new position received from- the controller, the robot arm driver computes the joint angles.
This computation requires between 5 and 8 time units, after which the robot arm is moved. A
sensor is attached to the arm, and every 10 time units the sensor process determines whether
an object has been touched. If such a determination is made, the sensor process informs the
robot arm driver, which must stop the robot as soon as possible. Thereafter, the arm driver
process notifies the controller process. For simplicity, the sensor process is modeled as choosing

nondeterministically between skip and a-send(touched).

4.2 A Corplete Robot System

mmnt"cW'or_of tli rotW:systenr dep eh.s not only on synchronization between
processes lut also on resource availability, it isrecessa~y to krow which processes are competing
for the same resource. Suppose that the robot system is to run on three processors connected
by a shared communication link such as an Ethernet. The controller and robot arm processes
are assigned on one processor and the robot and sensor processes are their on own processurs.
Thus, channels nextp and stopped are for local communication, whereas the other channels
are for non-local communication. Figure 4 shows tfl complete robot system written in CSR

using the translations described in Section 3. For example, channel next-p is moeeled using

May 7, 1989 10

process Controller

output next-p(1)

input stopped(2)

local c(1) /* compute next position *1

interrupt on stopped do

every 28 do exec(c,10,14); a-send(next-p) od

when arecv(stopped) --, skip /* task completed */

od

process RobotArm

input next-p(2), touched(3)

output r-move(2), r-stop(2), stopped(2)

local a(2) /* compute joint angles *1

interrupt on touched do

loop do a-recv(next-p); exec(a,5,8); a-send(r-move) od

when a-recv(touched) -* exec(a,5,8); a-send(r-stop); a.send(stopped)

od

process Robot

input r-move(1), r-stop(2)

loop

[a-recv(r-move) -, skip 0 a-recv(r-stop) -+ skip]

od

process Sensor

A'u Ociput touched(2)

every 10 do

[sense , skip 0 sense -- a-send(touched)]

od

Figure 3: Distributed Robot System Written in the Extended CSR

May 7, 1989 11

System = Node, 1 1 Node2 11 Node 3 11 Network

Nodel = { Controller & RobotArm } LCS

Node2 = { Sensor }

Node3 = { Robot }

LCS = { nextp.s?; next-p.r! 1 stopped.s?; stopped.r? }

Network = { [touched.s? -+ touched.r! 0 r.move.s? -- r.move.r! 0 r.stop.s? - r-stop.s!] }

Controller = interrupt on stopped.r do

every 28 do exec(c,10,14); next.p.s! od

when stopped.r? - skip

od

RobotArm = interrupt on touched.r do

loop do nextp.r?; exec(a,5,8); r-move.s! od

when touched.r? -- exec(a,5,8); r.stop.s!; stopped.s!

od

Robot = loop [r-move.r? --+ skip 03 r.stop.r? -- skip] od

Sensor = every 10 do [sense --+ skip 0 sense -+ touched.s! I od

Figure 4: Complete Robot System Written in CSR

two events, nexLp.s and it next-p.r. Processes LCS and Network provide local communications

within Node1 and non-local communications. Nodes 1, 2 and 3 are closed to form resources

since no additional processes are going to be assigned to them. We note that the closing of

the Network process does not change its meaning, since it does not contain any local events.

5 A Denotational Semantics for CSR

The semafitics of our language is based, in rrarge part, onthe linear-history paradigm first

presented in [3]. Updated to model a. real-time variant of CSP in [11], it was further revised

and provided with a corresponding operational semantics in [7]. All three of these models have

contributed to the formulation of our semantics.

The two abovementioned real-time models subscribed to the "maximum parallelism" view

of concurrency, which was presented in [17]. Briefly, maximum parallelism im)plies that within

any given process, delay is kept to a minimum. Or, at any given time instant, if a process is able

May 7, 1989 12

to communicate whenever its partner is ready, it will communicate. Thus "pure" maximum
parallelism implies that the computational resources are unlimited, or at least every process
is mapped to its own processor. There is no interleaving per se - only the guarded command

can model competition for resources.

Furthermore, the "pure" maximum parallelism implies that a static, bi-level priority scheme
underlies the computational model: competition between idling and execution is always re-
solved in favor of the latter. Thus "ties" between simultaneous events are alwvays arbitrated
nondeterministically. For example, consider the system S = Ri1]R211R3, where

R,= {[a? --+ b? b? --+ a?]} R 2 = {a!} R 3 = {b!}

Under maximum parallelism without priorities, we would reason that either event a is com-

municated first, and then b; or, b is communicated first, and then a. The decision betwepn
these alternatives would be "resolved" ncadeterministically. With the use of priorities, our
language allows us eliminate this nondeterminism if desired: thus, if PRI,(a) > PRI,(b), the
first alternative would always hold.

5.1 States

As in [11, 7], th, execution of a process is represented by a collection of (state, history) pairs.
The state component is used merely to depict whether a computation has finiihed. The
two-valued state domain is denoted S = {-,T}, where 1. is associated with an incomplete
computatioh, and T denotes that a computation is complete.- Thus the state T corresponds to
the ,/ element in most trace and failure-based models [1, 5, 6, 16]. We let the symbol a range

over S.

5.2 Histories

A history records a program's behavior over a certain period of time. For example, if the
history has a length of i elements, the recorded period of activity is i time units. The i-th

element represents a possible activity at time i.

P ,,6, history is, cal44..n assump.tjn:,record, which is pair (A, A) E 1'(E) x
P(P(E)). Since the semantics captures true ctncurrency, at qvery time unidlhere may be a set
of events that executes. If an assumption record appears as the i-th element in the history, the
events in the A component may execute at time i. The A component contains other sets of
events that also may execute at time i; however, these sets all have an equal or higher priority
than that of A. The parallel operator ensures that if an A' E A can synchronize with its

communicating events, and if the priority of A' is higher than that of A, the set A will not be

executed.

May 7, 1989 13

For example, examine the R1 fragment in section 5, with PRIi(a) > PRI (b). There are

three assumption records that describe the possible behaviors at the first time unit:

1. (0,{{a}, {b}}) 2. ({b}, {{a}}) 3. ({a},0)

Record 1 shows the possibility of neither a nor b being communicated at time 1, and thus, the
processor may idle. However it also shows that if either event is communicated the record will
be deleted, as both events have a higher priority than idling. Record 2 shows that the event b

may be communicated, but it also shows that competition between b and a is resolved in favor
of a. Thus if a "tie" between a and b occurs, this record is deleted. Record 3 shows that the
event a may be communicated at time 1, and also that it "wins" competitions for its processor.

We let the letters r, s and t range over assumption records. We define two selectors on
assumption records. Letting r = (A, A) we define f1 (r) = A and f 2(r) = A.

As we have stated, the information captured in each assumption record is valid for one
time unit. A real-time behavior of a program is captured by a history, or a sequence of these

records. Histories are denoted by the domain 71 = {r I r E P(E) x 'P(P(Z))'. We let the letter
h range over the domain of histories, and in the spirit of [7], we use the following notation for

them:

" hl h2 represents the concatenation of h, and h 2.

" A is the empty history, where A)h = hA = h.

* rn is the history formed b3y n concatenations of the record r..

" IhI is the length of the history h.

" h[i] represents the i-th record of the history h. If i > Jhi, define h[i] to be (0, 0). For any

history h, h[O] = A.

e h, <h 2 iff3hE H,h$4A.(hl^h=h 2).

5.3 Jharial Ordering, Prefix Closure and Fixed Points

pp ,..pf-i41t.of linear hiski s as Sh = y 7, and we let the letter X range over it.
The domain forms a complete partial order. first, (J=, A) is the least element. The ordering is
formed as follows. If X 1 C_ S7- and X2 g SR-, then X 1 _ X 2 iff X 1 9 X2. Thus, least

upper bounds of chains are determined by taking the union of every set.

We require that the computations of every program are prefix-closed, which ensures that

all of our operators are well-defined. That is, they all generate a least fixed point set of

(state, history) pairs. For a given set X E Si-, we denote the prefix closure of X as

<X = X U {(L,h') I3(a,h) E X.h' < h}

May 7,1989 14

5.4 Sequential Composition of Sets in S7-

Assume that a statement S1 can generate a set of behaviors X1 , and S2 can generate a set

of behaviors X 2, with both X 1 and X?2 in S7H. We often wish to sequentially compose the

behaviors from two sets such as these. That is, if an element of X 1 is finished we may append

an element of X 2. Formally, the sets are composed using the function C E 3H X S7- H- ,

where

C(X 1,X 2)= {(.±,h)i(±,h)E X}U

<<{(o,hih 2)I(T,h) e X 1 A Sh 2 .(a,h 2) E X 2}

5.5 Semantic Representation of Programs

A process . P = (res, imp, exp, p, traces) is defined as follows:

1. res E P(E), the set of events have been resolved in the process P. Whether originally
used to model local computation or synchronization, these events are now resolved and

are local to P.

2. imp E P(E), the set of events that are imported, i.e., those on which P may exercise as
"read" actions.

3. exp E P(E), the set of events that are exported, i.e., trose on which P may exercise as
"rite" actions.

4. p E P(E) x P(E) -+ BOOL, the priority function for P. For two sets of events A and
B, if the predicate p(A, B) holds, we say that the "priority of A is less than or equal to

the priority of B."

5. traces E S1t, the set of potential executions of the process P.

For convenience, we make the following definitions:

p(P) = res i(P) = imp e(P) = exp r(P) = p r(P) = traces
J aditin, we occasionally refer to the alphabet oLa process, or a(P), as its complete set of

observable, events. That is, the alphabet of a process is the union of its reso~ied, imported and
exported events: a(P) = p(P) U t(P) U (P).

'Here, unless ambiguous, we call the semantic representations of all program fragments processes. We use

this terminology whether the syntax of the fragment is a statement, process, resource or system, as defined by

the grammar.

May 7, 1989 15

5.6 Event Consistency

In section 2.3 we discussed some constraints placed on the events in a program's substructures;

now we can treat them formally. Assume that P,,P2,...,P, are processes being combined

to run on the same resource; that is, their syntax was expanded from a single (resource)

nonterminal. The following constraints must hold:

Consistent& = ViVj

t(Pi) n c(Pj) =0 A (P) n lt(Pj) =0 A (1)

(c(Pj) u t(Pj)) n p(Pj)= 0 A (E(Pj) u t(Pj)) n p(P;) = 0 (2)

Line (1) enforces that no two processes, running on the same processor, can instantaneously

communicate with each other. Since the two processes have their executions interleaved, such

behavior would be impossible. Line (2) enforces that local computation and communication

cannot be modeled by the same event. Local computation requires no synchronization with

external resources, while communication does.

Now assume that P1 and P2 are subsystems consisting of closed resources, to be combined

by the "11" operator. We insist that the following constraints must hold:

Consistentil = t(P) n (P2) = 0 A e(P 1) n (P2) = 0A (1)

p(P) n p(P 2) = 0A (A)

.(t(Pi) u c(Pj)) n p(P 2) 0 A (t(P 2) u e(P2.)) n p(P 1) = 0 (3)

Line (1) enforces that communication between resources is strictly one-to-one, with a single

receiver and a single sender. Line (2) mandates that isolated resources are not shared: the

local units of computation from each are private. Line (3) enforces that a single event cannot

model both local computation and communication.

If the program fragments to be combined satisfy such constraints, we call them consistent.

To avoid redundancy in our operator definicions, we assume that all fragments combined are,

indeed, consistent.

5.W T rning n le Priority Finctions ._:...
F

We use two functions to define the priority predicates for our combinators. One is used for

creating processes that execute on a single resource, while the other is employed strictly in

the definition of parallel composition. Let P1, P2 ,... , P,, be a group of processes, all of which

are to run on the same resource. We assume that these processes are consistent, as defined in

the previous section. If we let res = UIJ p(P,), imp = OIU t(Pi), and exp = U cE(P,), then

Compose&(res, imp, exp) completely defines the priority function for this group of processes,

May 7, 1989 16

where:

VA C EVB C E, Compose&(r, i, e)(A, B) = P&(r, i, e)(A) P&(r, i, e)(B),

where

PRI(a) if C n r = {a}
P&(r,i,e)(C)= PRI(a) ifCni={a}

PRI, (a)if C fl e = f{a}

0 otherwise

The definition requires some explanation. First, if a group of processes are to run on a single

resource, together they can only execute one event at a time. If two events are simultaneously

offered from communicating partners, one must be rejected. Thus only singleton sets can have

a nonzero priority. Note also that since the processes are assumed to be consistent, the function

P&(C) is well-defined.
When composing two truly concurrent systems with the "H1" operator, the priority functions

can be composed as follows: ir(P11P2) = Composej(2r(.P1),1r,(P2)), where

VA C Z VB C E, Composell(p 1,p 2)(A, B) = p1(A, B) A p 2(A, B)

Let p.E P(E) x P(E) -'BOOL be a priority function, and let A and B be sets of events.

For convenience we use the following notation:

A <p B iff p(A, B)

A =P B iff A <P B A B <P A

A<pBiffA<pB A B p A

We construct our semantics to exploit this ordering. In particular, our parallel operator guar-

antees that if there is a choice between executing A and B, the selection is made by this priority

ordering.

N.8 A leijlWiitRecord; HIO'ories and. iDrlorities -

Now we can integrate the concepts of assumption records and process priorities. Let P =

(res, imp, exp,p, traces) be d process, and assume that (a,h'(A,A)) (traces. That is. h

concatenated with the record (A, A) is a history of the process' behavior. First. by the con-

struction of the assumption record, VA' E A, A <P A. This implies that for every A' E A.

h-(A', A') is also a history of the process, where

A' = {B E A U {A} I B 0 A' A A' <p B}.

May 7, 1989 17

Now assume that A' E A, with A' >p A. Thus there is some pair (o', h(A', A') in traces.
However, it cannot be said that the events in A' will be active rather than those in A. If some
event is used for communication, another participating process is needed for synchronization.
Thus, only when all of the communications in A' are resolved can we say that A' will be selected
rather than A. When this occurs we delete the history h^(A, A), as it will never be observed.

To formalize this concept, once a processor has been closed, we maintain that all traces are
prioritized, that is: V(u, h) E traces, prioritized(p, h, imp U exp), where

prioritized(p,h,B) iff Vi < IhI VA' E f 2(h[i]), fi(h[i]) <p A' ==* A' n B 0

In other words, assume that h, ^(A, A) is some history of a process P1. If there is a set A' E A
with A <p A', we guarantee that A' contains at least on.e unresolved event from P's alphabet.

That is, in order for all the events in A' to execute, P1 must be .composed in parallel with
some other process. On the contrary, assume that A' contained only local events. In this case
it wouli execute instead of A, and thus hi^(A, A) would not be a history of P1.

5.9 The Meaning Function

In this section we develop a meaning function "[.]", which maps the syntax of CSR to the
domain of semantic processes. Often we make use of the partition function, defined as follows:

partition(p, A, A) = (A, {A' E A U 10}I A 0 A' A A <p A'})

Here A may contain event sets with lower priority than that of A; they are filtered out of the
record returned by the function. We note here that 0 represents an idling behavior, and for

any priority function p, 0 has the lowest priority in the partial order defined by p.

5.9.1 Wait

The wait statement specifies an idle period of exactly t time units, where t > 1. As can be
seen from the associated priority function p, idling has the lowest priority.

• wait t]=.(0,UPmpQse&(q,),<{ f(T, (0))}

5.9.2 Skip F '"

The skip statement is syntactic sugar for wait 1; thus skip requires 1 time unit to execute:

[skip] = jwait 11

May 7, 1989 18

5.9.3 Write

The write construct declares that a resource is ready to synchronize on an exported event. The
statement delays indefinitely until the communication is successful, that is, when the sending
resource issues a corresponding "read" event. The time that this occurs depends on 1) the
priority of the write event with respect to other events competing for its resource, 2) the time
that the corresponding read event becomes ready, and 3) the priority of the read event with

respect to other events competing for its resource.

Ea!] = (0, 0, {a},p, traces)

where

p = Compose& (0, 0, {a})

traces = < {(T, (0, { {a} })'-partitibn(p, {a}, {0})) I i > 0}

The first part of the history, or (0, {{a}})', denotes that after a becomes ready, there may be
an indefinite idling period before the communication is successful. But the presence of the set
{ a} shows that throughout this idling period, the event a remains ready. The second part of

the history is composed of a single assumption record: partition(p, {a}, {0}), which represents
the success of the communication. This record can have two possible values, depending on
the priority function. If PI?10(a) > 0, the record's value is ({a},0), while if PRIo(a) = 0. the
record be-omes ({a}, {0}). In the fist case, the processor cannot arbitrarily delay itself when
the matchipg read event becomes available. In the second case delays may be inserted, which

assigns the choice to communicate exclusively to the receiver.

5.9.4 Read

The read statement is the exact dual of its write counterpart explained in section 5.9.3. Here
a is placed in the import alphabet; the write statement contains a in its export alphabet. Also,

the the priority value for a is taken from the PRIi function.

L "- a?] = (0, {a),0,p, traces)
'o~~~ ~~ ;4w,€ mvd h~ • r ,;: r .,> ",

p =Compose& (0, {a), 0) F .L. I

traces = <{(T, (0, {{} })'partition(p, {a}, {0))) I i > 0}

5.9.5 Exec

The exec statement specifies that local computation events must compete for processor time.
The exact number of time units required may be nondeterministic - thus we allow a range of

May 7,1989 19

time units to be specified. Here, m is the lower bound on the number of executed events, and

n is the upper bound. It is assumed that 1 < m < n.

[exec(a, m, n)] = ({a}, 0,0, p, traces)

where

p = Compose& ({a}, 0, 0)

traces = U rn Pi((T, A))

with

P(X) = C(<{ (T, (0, { {a}})j^partition(p, {a}, f)})) I j > 0}, X)

Note that .here we make use of the trace composition operator, or "C." In effect we compose
between m and n individual executions of the event a, and we include all of the "ready" assump-
tion records that precede each execution. Although the execution time of a does not depend on
any communicating partner, it heavily depends on the priorities of the other events contesting
for processor time. To make the interleaving combinator associative (see section 5.9.12), we
must provide the possible "gaps" that exist between each local execution. They may, of course,
be occupied by other local events of a higher priority. Only when the resource is closed can

the unnecessary gaps be eliminated.

5.9.6 Guarded Choice

Our guarded choice construct is priority-based version of those presented in [11] and [7]. Each
of the guards gi may be one of the following: 1) a read guard, "a?", 2) a write guard, "a!'",

or 3) a local execution guard, "a". The time associated with the wait guard is assumed to be
greater than 0. If no wait guard is present, we assume that the value of t to be infinite. As ini

related languages, the execution of a guard gi is immediately followed by that of Si.

An event-based guard must be executed within the specified t time units; if not, S,+1
is executed. An event-bared guard may be delayed for one of two reasons. In the case of
a local event, there may be contention for local processor time; that is, interleaved. higher-

priority events are given the "right of way." The communicating guards also suffer from local
Wn l "1 they must 1rtr.for thir coi-fefponding communicating partners to be

successfully, executed. It should be noted tlfat these, partners are also affected by the local
competition on their processors. Thus, we can begin to see one of the ramifications of local
competition for resources: although two processes may be willing to synchronize at a given
time, actual communication may be delayed due to local resource contention. This is a radical

departure from the "pure" maximal parallelism model.

May 7,1989 20

[[g - S1 3 ... Og,, -+ S, Await t + = (res, imp, exp, p, traces),

where

res= L- p([i) U UZ-1 P(SiD
imp ULJi (gij) U UZ' (Sd)

exp =' U 1 ,E([giJ) U U'+' <(Si])

p = Compose& (res, imp, exp)

traces =

<{(o,h1^h 2^h3)h E W A ihlI < t A 3i < n.(a,h3) E r([Si])A

h2 = partition(p, a(gi]), {a([gjJ) 11 < j < n})} U

<{(_,h1-h2) Ih1 E W A Ihil = t A (a,h2) E r([S.+il)}

where

W = {(0, {a([gl1),..., ([gd)})n I i > 0}

Example 5.1 This example depicts the interaction between prioritized events. Here a and b

are both imported communication events, with PRIi(a) = 1 and PRhIi(b) = 2:

S = [a? -+ b?Ob? 1 - a?]

Informally, the semantics for S can be explained as: "Wait for either event a or event b to be
received. If event a is received first, accept it and wait for b. If event b is received first, accept

it and wait for a. If both events are received simultaneously, accept event b and wait for a."

The following are the traces of S, as computed by the definition of guarded choice:

__{(T, (0, {{a}, {b}})'^({a}, {{b}})^(0, {{b}})j'({b}, 0)) 1 i,j _ 0} U

<{(T, (0, {{a}, {b}})i^({b}, 0)^(0, {{a}})j^({a}, 0)) 1 i,J > 0}

How is the priority structure reflected in the histories shown here? There is a major difference
between the assumption records -epresenting the two communicating guards. The record

dotglf' st ; Fft manicaiion Villf a is ({a}, {ft} '). This shows that if-event b is received
simultaneously with a, the processor defers to , and t-he histokry is removed. On the other hand,
the record representing successful communication with b is ({b}, 0); that is, no alternative of a
higher priority exists. 0

5.9.7 Sequential Composition

Sequential composition operates in the usual manner: traces from S2 are appended to com-
pleted traces from S1. Fortunately our trace composition operator, "C", does just that; thus.

May 7,1989 21

the definition is straightforward:

[S1; S2] = (res, imp, exp, p, traces)

where

res = p(i1) U p([S21), imp = t([SiJ) U) exp = e2[S, j ' J

p = Compose& (res, imp, exp)

traces = C(r([SiJ), r([S2D))

5.9.8 Within

The within operator denotes that S1 is to be initiated immediately, and that it must be

completed-within the specified t time units. If S, does not finish executing by time t, control

is transferred directly to S2. Thus S2 can be considered a timeout exception handler of sorts.

which is an essential construct in many real-time programs.

[within t do Si when t -+ S2 od] =

(p(isI; S2]), t([Si; S21), ([Si; S2]), r(rSI; S2]), traces)

where traces =

<{(T,h)I(T,h) E r([S]j) A IhI < t}U

<{(a, hl^h 2) 1(l,hi) E r([S,]) A (a, h2? E "(S211) A Ihi I - t

Example 5.2 As an example, consider the following fragment:

S = within 10 do a?;b? when 10 --* exec(c, 1, 1) od

Here, S must receive events a and b within 10 time units; otherwise it will attempt to execute

the local event c. Thus if the exception handler is required, we can reason that the construct
"a?;b?" did not complete one, or both of the communications. This can be seen from the

traces of S (where we assume that PRIi(a), PRIi(b) and PRII(c) are all greater than 0).

A. .~. j

(T, (@, {{a}})i({a},0)^(O, {{b}})j({b},)) I i + j 8} U
V, -IV Ater c}twi) I - I0f

<{(T, (0, {{a}})'^({a}, 0)(0, {{b}})i(0, {{c}}) ({c},)) i + j =9 A k > 0}

0

5.9.9 Interrupt

The interrupt operator takes full advantage of our priority semantics, and we have found it

invaluable in our specifications of robot-sensor systems [4]. The construct initiates S1. which

May 7, 1989 22

will be interrupted only if 1) the imported event a is detected, and 2) the event executing in

S1 has a lower priority than PRIj(a). If both of these conditions are met, 51 is immediately

killed, a is received, and control is transferred to the interrupt-handler, S2 . This is not the

more common type of interrupt construct, where control would be transferred back to S' at

the conclusion of S2. Interrupt handlers of that nature can be specified using the interleave

operator (see section 5.9.12).

[interrupt on a do S, when a? --* S2 od] =

(p([Si]) U p([S2]),t([S]) U t([S21) U {a}, E(Si]) U E(1S2),p, traces)

where

p = Compose,.(p(ISIJ) U p([S2 1), t(ES) U t([5s21) U {a}, c(ES]1) U C(IS 2 1))

traces =

<5 f (T, I(h)) 13(T, h) E 1'([Sij)} U

<(,h'h-) I (0 2,h2) r([S2]) A :.-(,h 1 ^(A,A))E r([S)

h = I(hi)^partition(p, {a}, {A} U A)

where

1(h) = {h' I Vi > 1 3A 3A.

h[i] = (A, A) A h'[i] = partition(p, A, A U {{a}})}.

While somewhat complicated, the above definition for traces is quite easy to understand.

First, the function 1(h) constructs a new history from h in the following manner. For every

assumption record (A, A) in h, if A :5p {a} then {a} is "nserted into A. Otherwise the record

remains as (A,A). Thus 1(h) represents when h may be interrupted by a. So, the first set in

the traces definition contains the original traces of Si, plus this potential interrupt information.

The second set contains the traces showing where S, is interrupted. Each trace contains
three parts, the first of which being the uninterrupted part. The second part consists of single

record, depicting the time at which S, is interrupted. The third and final part is a history

from theinterrupt handler, 52.

P'-~p .' I.

5.9.10 Loop F

The loop construct is our representation of general recursion. Its continuity is contingent on
the continuity of the trace composition operator "C," a proof for which can be found in [11].

[loop do S od] = (p(JS), ,(hS),e(Sj),r(S]), traces)

where traces = Ui> 0 Pi((-1 , A))

with P(X) = C(r(ISj),X)

May 7, 1989 23

Example 5.3 As an example of loop and interrupt, the following fragment continuously

executes the local event a, while waiting to be interrupted by b, at which time c is locally

executed.

interrupt on b do

loop do exec(a, 1,1) od

when b? -+ exec(c,1,1) od

0

5.9.11 Every

The every operator is used to specify periodic behaviors, and is a timed variant of general
recursion. 'Assume that for in a given case S requires i time units to execute. If i < t then
S runs to completion, after which there is a delay of t - i units before the body is restarted.

On the other hand, if i > t, the history is interrupted after t time units, at which time S is
immediately reinitiated.

[every t do S od] = (p([SI), t([SI), E([SJ), 1, rUS]), traces)

where traces = ULj>o Pi((_L, A))

with P(X) = C(YX)

where

Y = <{(T,h) 13(a, h) E T(S;wait t]).IhI = t}

5.9.12 Interleave Operator

The interleave operator accepts two processes, P1 and P2 , and interleaves their histories to
execute on a single resource. This riheans that only one event, either from P or P2 , may
be executed dv. ing a single time period. The arbitration between the two processes is done
according to the priorities of the events ready to execute, in the same manner as guarded

choice.,, .,
Note the first line of the definition, where the composed state a is determined. As intuition

Ce, t WIehistiry s " "sidered coQiAl1te only if both constituent histories are
complete; otherwise it is considered incomplete. Als6; the cbmparable predicate ensures that
if two incomplete histories are composed, they must be of equal length. If only one history

is complete, the length of the complete history cannot exceed that of the incomplete history.

May 7, 1989 2-1

These rules ensure the associativity of the operator.

[PI &P 21 = (P([P1; P2], t([P; P2 1, E([P1; P21,P, traces)

where

p = 7r([Pl; P21)

traces =

_ {(0.,h) 13(0.,hl) E r([P]) 3(o.2,h 2) E r([P2]). (0 = a = 0 2 = T) V (0 = l)A

comparable(a1 , hl, 0.2, h 2) A

Vi > I 3A 1 ,A 2,A ,A 2 .hi[i] = (A1 ,A,) A h2[i] = (A2 ,A 2) A

(h~i] = partition(p, A 1, {A 2} U Al U A2) V h[i] = partition(p, A 2 , {A,} U A, U A2))}

where

comparable(au,hj,. 2,h 2) .= (a, = . 1h2l : 1h1l) A (0 2 = I 1hl _ jh21)

Example 5.4 Now we can specify the type of interrupt handler that returns to an interrupted

program. In the fragments P1 and P2 we assume that

PRIi(al) = PRIi(a2) = PRII(bl) = PRII(b2) = 1, and

PRI (a3) = PRI(b3) = 2

P1 = loop do P2 = loop do

[a,? -+ exec(bl, 3, 10) 0 a2? --* exec(b2,4,6)] [a3 ? - exec(b3,5,-5)]

od od

Now, in P, &P2 we can consider exec(b3, 5, 5) an interrupt service routine, executed as a critical

section to handle the interrupt a3. After the interrupt is handled, P, can resume execution

until another interrupt is detected. 0

5.9.13 .Close Operator

l. 4 skm-&8 -; the clo.e epd.tor erdsuresh a program's resources may no longer
be shared.' This implies that no further procEss combinators may be applied to the operand.

In particular, the predicate "prioritized" eliminates all time "gaps" that were being preserved

for future resource sharing.

I{S}] = (pI[SJ), t([SI), <5]), 7r([,5), traces)

where

traces = <{(a,h) I (,,h) E r([SI) A prioritized(r(JSI1), h, t([)[S]))}

May 7, 1989 25

Example 5.5 We can easily illustrate the meaning of close when we apply it to the statement

S in example 5.2. The traces of rS} are now:

<{(T, (0, {{a}})i^({a}, 0)(0, {{b}})j"({b}, 0)) I i + i < 8} U

<{(T,(0, {{a}})1°'({c},0))} U

S{(T, (0, {{a}})'^({a}, 0)^(0, {{b}})j'({c}, 0)) I i + i 9}

In other words, we no longer have to wait for the execution of the local event c. Once it
becomes ready, it can be immediately executed. 0

5.9.14 Parallel Operator

Finally we. come to the parallel operator, with which we can specify true concurrency. Each of
the operator's arguments are assumed to be closed processors - incapable of sharing any more of
their resources. At this point they interact only with external events. Note how the composod
alphabet is formed. All external events through which the two processes communicate are
resolved, and transformed into local events. At this point they can are considered no differently
than other local computation events.

The state resolution is identical to that in the interleave operator - a resolved trace can
be considered complete only if both contributing traces are complete. Also like the inter-
leave operator, the comparable predicate is used to ensure consistency of history length (see
section 5.9.12 for its definition).

If twvo histories axe to be combined, they must be synchronized on the events through which
the two processes communicate. For example, assume that hi E r(JP1 j) and h2 E r([P.2]).
Also, assume that some event a is imported by 'i and exported by P2. If there is some i such
that a E fi(h[i]) but a . fi(h 2[i]), these two histories cannot be composed. This is because
at time i, P1 is ready to communicate, while P2 is not.

[P, IIP2] = (res, imp, exp, p, traces)

where

Sea = P([P1]) u p([P 2]) u (t([P1J) l E(P21)) U (([P1]) fl t(P2))

'utfmimmrk v 4([PN)) u (4P?2J) - <(PJ)N:

exP = ([P1) - t(JP21)) U (([P 2) - ,[P1 1)--

p = Composejj(ir(P1), 7r(P))

traces =

<{(a,h)13(ui,hi) Er([P)3(2,h2) E r(jP2]). (=.1 = 02 = T)V (a -=L)A

comparable(a1 , hl, 02 , h2) A (Vi > 1 sync(fj (hi [i]), f1 (h2[ij))) A

(Vi > 1 h[i] = combine(hi [i], h2[i])) A prioritized(p, h, imp U exp)}

May 7, 1989 26

where

sync(Al,A 2) 4=* Va E ((t[P1] n "E[P2]) U (cP 1J nl tP 2)), (a E A 1 4* a E A 2)

combine((A1 , A1), (A2, A2)) =

(Al U A 2 ,
{A' U A' Isync(A',A')A

((A' E A, A A' E ({A 2} U A2)) V (A' e A2 A Al E ({A 1 } U A1)))})

Example 5.6 Now we can complete example 5.1. Let P = {S}, or

P= {[a? -+ b? El b? -+ a?]}

and

Q = {a!} R = {b!}

Assume that PRI(a) = PRI(b) = 0; that is, we give the resource P the exclusive right to
choose when the communication occurs. It follows that:

r([Q])= <{(T,(O,{{a!}})'^({a},{0}))li >O}

r([R]) = <{(T,(0,{{b!}}) '({b},{0}))Ii >O}

and that

r([PIIQIIR]) = <{(T, ({b}, {0})^({a}, { 0})}

Since PRIj(b) > PRI (a), this is exactly what we would expect. 0

6 Conclusion

In this paper we have presented a real-time specification language called CSR. This formalism
can be considered as a step toward unifying real-time specifications with their corresponding
implenqentations. The CSR paradigm imposes that specifications be resource-based; a process
must explicitly be declared as resident on a particular resource. Moreover, this resource may
host lerprocesse, as we have shown in our rob6->sensor example (sectioir4). Thus we have

Fdeparted from the "pure" maximum parallelism modhl, which assumes a one-to-one allocation
of processors to processes. To arbitrate between processes competing for a single resource,
we have incorporated a general, event-based priority scheme. With prioritized events we can

model not only occam's PRI ALT and PlI PAR constructs, but more versatile systems, in
which processes continuously alter their priorities over time.

CSR can specify, and give precise meaning to some behaviors necessary in modern real-
time systems. For example, the within statement, with its associated exception-handler, can

May 7,1989 27

specify a temporal scope as described in [12]. The every statement accurately captures the
behavior of a periodic process. The two interrupt-handling mechanisms - one that returns
to an interrupted program, the other that kills it - can help denote the relative criticality
of received events. To formalize all of our constructs, we have provided set of denotational

semantics that captures both CSR's interleaved resource-sharing, and the "pure" concurrency
that occurs between resources.

Much future work remains to be performed. To facilitate automated reasoning about
CSR, we wish to provide it with an operational semantics, fully abstract with respect to the
denotational semantics presented here. We plan to do this with a labeled transition system,
in the spirit of [7]. However, we are not yet certain how its complexity will be affected by our

interleaved, priority-based model.
Also, we are currently investigating whether the CSR formalism can be mapped to a system

of communicating, finite-state machines. This technique has been explored for the "pure"
maximum parallelism model [14], but again, we are unsure how the additional complexity of
CSR will affect such an endeavor. However, if some variant of CSR can be mapped to finite-
state machines, state exploration techniques can be used to statically detect properties such
as liveness and deadlock.

Finally, we are extending the CSR formalism to permit the specification of dynamic priority
schemes. The current model is quite powexful, in that processes can continuously alter their
own priorities over time. However, the main thrust of our research is directed toward analyzing
scheduling behavior. A. scheduler has the ability to dynamically alter the priorities of other
processes, based on the state of the system. Thus, we are currently incorporating the semantics
of variable states into CSR. With this inclusion we will be able to reason about dynamic
priorities, and therefore, about the properties of real-time scheduling algorithms.

References

[1] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A Theory of Communicating Sequential
Processes. Journal of the ACM, 31(3):560-599, July 1984.

A. €.L

MJ4 Cleaveland and M. Henes.. Priorities in .Prqcess Algebras. In Proc. of IEEE Sym-

posium on Logic in Computer Science, 1y88.

[31 N. Francez, D. Lehmann, and A. Pnueli. A Linear History Semantics for Distributed

Programming. Theoretical Computer Science, 32:25-46, 1984.

[4] R. Gerber and I. Lee. The Formal Treatment of Priorities in Real-Time Computation. In
Proc. 6th IEEE Workshop on Real-Time Software and Operating Systems, 1989.

May 7, 1989 28

[5] R. Gerth and A. Boucher. A Timed Failure Semantics for Extended Communicating

Processes. In Proceedings of ICALP '87, LNCS 267, 1987.

[6] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[7] C. Huizing, R. Gerth, and W.P. de Roever. Full Abstraction of a Denotational Semantics

for Real-time Concurrency. In Proc. 1 4 th A CM Symposium on Principles of Programming

Languages, pages 223-237, 1987.

[8] C. Huizing, R. Gerth, and W.P. de Roever. Modelling Statecharts Behavior in a Fully Ab-

stract Way. Technical Report TR. CSN 88/7, Department of Mathematics and Computing

Science, Eindhoven University of Technology, July 1988.

[9] R. Janicki and P. Lauer. On the Semantics of Priority Systems. In Proc. of Int. Conf. on

Parallel Processing, 1988.

[10] M. Joseph and A. Goswami. What's 'Real' about Real-time Systems? In IEEE Real-Time

Systems Symposium, 1988.

[11] R. Koymans, R.K. Shyamasundar, W.P. de Roever, R. Gerth, and S. Arun-Kumar. Com-

positional Semantics for Real-Time Distributed Computing. In Logic of Programs Work-

shop '85, LNCS 193, 1985.

[12] I. Lee and V. Gehlot. Language Constructs for Distributed Real-Time Programming. In

IEEE Real-Time Systems Symposium, 1985.

[131 L.Y. Liu and R.K. Shyamasundar. RT-CDL: A Real Time Design Language and its

Semantics. In IFIP '89, 1989.

[14] L.Y. Liu and R.K. Shyamasundar. Static Analysis of Real-Time Distributed Systems. In

Proc. Symposium of Formal Techniques in Real-Time and Fault-Tolerant Systems, LNCS

331, 1988.

[151 Inmos Ltd. Occam Programming Manual. Prentice-Hall, Inc., 1987.

[16] G.AMU-PReed and A.W. Roscoe. Metric Spaces as Models for Real-Time Concurrency. In

,'-,. , Lo'.4th. Found. oC-p.nputer Sciqn~cq,, LNCS 298, 1987.

[17] A. Saiwicki and T. Miildner. On the Algorithmic'Propdrties of Concurrent Programs. In

Proceedings of Logic of Programs, LNCS 125, 1981.

[18] U.S. Department of Defense. Ada Programming Language. 1983. ANSI/MIL-STD-1815A-

1983.

[19] A. Zwarico. Timed Acceptance: An Algebra of Time Dependent Computing. PhD thesis.

Department of Computer and Information Science, University of Pennsylvania, 1988.

