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1. INTRODUCTION.

This report summarizes the work we have performed over the past 12 months with two primary
objectives in mind:

1. Compare the properties of existing and proposed routing algorithms for communication
networks

2. Investigate network management problems arising in a multiple traffic class environment,
specifically in the presence of real-time traffic

In what follows, we discuss these objectives in section 1.1. We then identify the basic issues
related to routing algorithms in section 1.2, so as to set the stage for our comparative study of such
algorithms. In section 1.3, we present the issues involved in networks required to handle mutiple
raffic classes (e.g. data, voice, video). Finally, in section 1.4, we describe the organization of this
report.

1.1. Project Objectives.

To meet the first objective above, we have considered the following three representative routing
algorithms: (1) the CODEX algorithm [1],[2], implemented at CODEX Corp. and commercially
available, (2) Gallager's distributed algorithm, proposed [3] and widely referenced in the technical
literature but not implemented to date, and (3) the well-known ARPANET algorithm [4], currently
in operation. The choice of these algorithms is largely motivated by their diverse nature and
operating conditions, as will be further discussed below. This report identifies the essential
characteristics and critical issues in these algorithms through experimention under a variety of
traffic and network operating conditions. Details are presented in sections 2, 3, and 4.

A critical issue that has emerged from our comparative study is that of performing efficient
gradient estimation, an essential function in the process of selecting routes in a network. The
interpretation of a "gradient” in this context is the sensitivity of a predefined performance measure
(typically, the average packet delay) with respect to various adjustable routing variables; it is
precisely this information which is systematically processed to implement routing adjustments in an
adaptive sense. Our emphasis has been on obtaining this information on-line (using actual network
data as available in practice), rather than relying on analytical expressions based on often restrictive
assumptions. Details of this ongoing research are provided in section 5.

The second objective of our work has led to the formulation and solution of some fundamental
problems arising when real-time traffic is present in a network. Direct extensions of existing




routing algorithms (including the three algorithms considered in this report) are not possible
without a thorough understanding of the characteristics of such traffic. Our results are reported in
section 6.

1.2. Basic Issues in Routing Algorithms.

This section is devoted to a description of the basic issues related to routing algorithms. Routing is
one of the principal functions of the Network Layer in the OSI reference model, and primarily
deals with deciding the path (i.e. a sequence of links) that a packet originating at one node of a
setwork takes in order to reach its destination. This decision is traditionally based on the following
network-wide objective: the minimization of the mean delay incurred by all packets served by the
network. This consists of queueing delays at intermediate nodes, as well as transmission and
propagation delays on the links traversed.

In what follows, we briefly discuss the main features used in differentiating routing algorithms:

« packet switching schemes: Datagram (DG) vs. Virtual Circuits (VC)

* information dissemination: Centralized vs. Distributed algorithms

+ route selection: shortest path vs. gradient-based algorithms

1.2.1. Datagram vs. Virtual Circuit Packet Switching.

In a datagram packet switching scheme, every packet follows a path from its source to its
destination independent of the paths taken by other packets. On the other hand, in a virtual circuit
environment packets are constrained to follow fixed paths which are established during the call
setup phase.

Thus, the main operational concemns in datagram routing are:

- At every node, determine the outgoing link on which an arriving packet is to be
transmitted. This decision is normally read from a nodal routing table.

- Update all nodal routing tables periodically, in order to accommodate any changes
in the network traffic conditions.

In contrast, the concems of a virtual circuit routing algorithm are :
- Determine the best path (sequence of links) for a new virtual circuit

- Reroute existing virtual circuits periodically, in order to accommodate any changes
in the network traffic conditions.




The ARPANET algorithm is based on a datagram packet switching scheme. The same is true for
Gallager's algorithm, although the route selection mechanism is different (see section 1.3 below).
Finally, the CODEX algorithm employs virtual circuits, except that control packets are still treated
as datagram-based traffic.

1.2.2. Centralized vs. Distributed Routing Algorithms.

In centralized routing, a Routing Control Center (RCC) collects feedback information from all the
nodes in the network and, after processing, sends back all control information required to
implement routing decisions. On the other hand, in distributed routing every node gathers
information from all other nodes in the network, either directly or indirectly, and makes local
routing decisions based on this acquired information. The obvious drawback of a centralized
scheme is that a failure at the RCC may disable the entire network. Thus, a key motivation for
using Gallager's algorithm is precisely its distributed nature.

Clearly, the exact process through which information is disseminated in a network is of great
importance. For the purposes of nur comparative study, however, it is assumed that an appropriate
mechanism is in place which provides all nodes with all information required to implement routing
decisions.

1.2.3. Shortest Path vs. Gradient-Based Routing Algorithms.

Routing decisions are invariably based on routing tables stored at network nodes. Most datagram
networks (e.g. ARPANET [4] and TYMNET (5]) employ shortest path algorithms to find the best
paths between all source-destination pairs. Each link in the network is assigned a "cost” or
"length”, which is specified as a function of the link capacity and the link traffic rate (in packets/sec
or bits/sec). Once all the links have been assigned such lengths, shortest paths may be computed
for all source-destination pairs using several standard algorithms (to be discussed later). The nodal
routing tables are created/updated according to the shortest paths determined.

On the other hand, there have been several approaches based on the formulation and solution of
a constrained optimization problern [3],{6],[7],[8]. The resulting gradient-based algorithms attempt
to optimize a network-wide performance measure by adjusting routing probabilities for all outgoing
links at each node. In this approach, routing probabilities are periodically updated; with each such
update, nodal routing tables are updated. Gallager's algorithm belongs to this class of datagram
routing algorithms.



In the case of virtual circuit switching schemes, there have also been efforts to develop optimal
decentralized routing policies {9],[10],[11]. But the CODEX algorithm is based exclusively on
shortest paths. However , it should be noted that the "costs" assigned to links are different from
those used in shortest path datagram routing.

Shortest path algorithms are generally conceptually simple; however they are heuristic, and do
not guarantee optimality of performance. Moreover, they are known to be highly susceptible to
instabilities manifested in the form of oscillatory behavior in the observed mean delay [12],{13].

Gradient-based algorithms are more sophisiicated and can achieve optimal network-wide
performance under stationary traffic conditions [3]. However, they too are susceptible to
instabilities. Moreover, successful implementation of tuese algorithms relies on the development of
efficient methods for estimating the required gradient information.

The gradient information involved in optimal routing algorithms consists of all individual mean
link delay derivatives with respect to the corresponding link flow rates. One approach to estimating
these derivatives is based on modeling each link as a queueing system (for example, the well-
known M/M/1 queue) for which an analytical expression of the mean delay is available. Hence, the
required derivatives can also be evaluated analytically, provided the link flow rate is known. The
disadvantages of this approach are (a) it is hard to verify that a given link model corresponds to
actual link behavior, and (b) since in practice link flow rates are not known in advance, they have
to be estimated.

A second approach is to directly estimate the derivatives on line by using techniques such as
Perturbation Analysis (PA) techniques [14],[15]. This method js not limited by most restrictive
assumptions regarding the underlying network model. From an implementation standpoint, PA-
based derivative estimators are marginally more complicated than the estimators otherwise required
for link flow rates.

In the context of the comparative study of routing algorithms, this report examines the
operational characteristics of both shortest-path-based and gradient-based routing algorithms under
different traffic conditions. The issue of gradient estimation is further investigated in section 5.

1.3. Network Management in Multiclass Traffic Environments.

The current trend is to design networks with the ability to handle multiple traffic classes, such as
data, voice, and video. Direct extensions of existing routing algorithms are not possible in such a
setting, primarily due to the drastically different nature of some of these traffic classes. Of
particular interest is the case of real-time traffic: a packet in this class is characterized by a deadline,




and the packet is considered lost or useless if it does not reach its destination by that deadline.

Thus, instead of considering the mean packet delay as our performance measure, for real-time
traffic we wish to minimize the fraction of packets violating their deadlines.
As we further discuss in section 6 of this report, there are several issues that need to be

addressed in the context of this enviroument. It is particularly interesting that conventional packet

handling approaches may no longer be desirable; it can be shown, for instance, that the First-In-

First-Out (FIFO) service discipline is sometimes the worst possible policy ior real-time traffic,
with the Last-In-First-Out (LIFO) being the best.

1.4. Report Organization.

The contents of this report may be outlined as follows.

« Section 2: the basic operations of the three algorithms, the CODEX algorithm, Gallager's

*

Section

Section

Section

Section

Section

gradient-based algorithm, and the ARPANET algorithm, are described. This
discussion is limited to those aspects which are important to our comparative
study.

: the experimental setup for our comparative study is described ir detail. This

includes the network configuration and the traffic environments considered, as
well as some of the implementation details.

: the results of the experiments for different parametric and operational variations

are presented and discussed in detail.

: the problem of gradient estimation in gradient-based algorithms is addressed.

Here, we compare approcahes based on analytical approximations to on-line
techniques relying on direct data collection and processing.

: we consider the problem of routing in networks with real-time traffic, identify

some key issues, and address several related problems.

: we present the main conclusions of our study, and outline our ongoing werk

and some future research directions.




2. THE ALGORITHMS.
In this section, we briefly describe the basic operation of the three algorithms to be compared.

2.1. CODEX ROUTING ALGORITHM.

A detailed description of the CODEX routing algorithm along with its implementation methodology
can be found in [1] and [2]. We consider here some of the important issues from a performance
study point of view. The algorithm, in essence, has two processes running concurrently :

- Single path Datagram routing (DG) for network control iraffic

- Virtual Circuit routing (VC) for network user traffic

2.1.1. The Datagram (DG) Routing Algorithm.

Datagram routing is meant for control packets and other system-related traffic. This generally
constitutes a small fraction of the total traffic on the network.

The first function of this algorithm is the assignment of a "length” for every link in the
network. The length of a link (i,j) is denoted by l;j, and is defined to be the mean delay experienced
by packets traversing the link. It is assumed that a link behaves like an M/M/1 queueing system
(specifically: packets are placed in the link following a Poisson process, and packet lengths are
treated as random variables characterized by an exponential distribution). The analytical expression
for the mean packet delay (or "length”) in such a queueing system is

L= ——ie—+f.d

ij

where Cj; is the link capacity (in bits per sec), fj; is the mean flow rate (in bits per sec), and d;j is
the propagation delay on the link (in sec). Note that C;; and d;; are given link parameters, but fj;
must be estimated. This is done by defining an observation interval over which the average flow
rate is measured. At the end of such an interval, node i obtains estimates of the flow rates on all its
outgoing links. Once an estimate of fj; is obtained, I;; is computed from the expression above.

The second function performed, fol'owing link length assignment, is the determination of
shortest paths (sequences of links from source to destination) for every pair of network nodes.
Based on these paths, each node maintains a routing table where each entry corresponds to an
outgoing link leading to a destination node on the shortest path. The table contains such entries for
all possible destination nodes from the node concerned. At the end of an observation interval,
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when new flow estimates are obtained, link lengths are updated, and hence new shortest paths are
computed. These are used to update the corresponding entries in the nodal routing tables.

It should be noted that this d2tagram routing scheme relies on the existence of a broadcast-type
algorithm [1], where every node broadcasts all relevant information, i.e. the estimates of flow rates
on each of its outgoing links, to every other node along a minimum spanning tree rooted at itself. It
is clear that the algorithm is asynchronous in nature due to the fact that it takes some time for
information to travel from one node to another. As a result, some nodes will be updating their
routing tables earlier than others. There is no mechanism in the CODEX algorithm to prevent the
formation of loops caused by inconsistency in routing updates resulting from this asynchronism.
Thus, the algorithm does not guarantee the delivery of control packets within bounded time delays.

However, packets can be lost only in the event of a node/link failure.

2.1.2. The Virtual Circuit (VC) Routing Algorithm.

The CODEX virtual circuit routing algorithm, which is much more sophisticated than its datagram
counterpart above, is used to route the user traffic on the network, which forms the bulk of the
total traffic. As discussed earlier, a broadcast-type algorithm is assumed, through which every
node informs every other node about any traffic changes on a link or any topological change due to
node/link failure.

Traffic between a source-destination pair may be carried on multiple virtual circuits depending
on the number of sessions set up between the two nodes. A session is set up whenever a node
wishes to communicate with another node in the network, and is terminated after both nodes have
finished their waffic transactions. Two paths are associated with each session, one for the outgoing
traffic and the other for the incoming traffic, and they are completely independent. The algorithm is
centralized in the sense that a single node, in particular the destination node for each VC, is
responsible for all routing and rerouting decisions.

A question naturally arises as to how the destination node can make routing decisions at the
time a VC is set up. This is not a problem because every session is associated with one forward
and one reverse path: first, the destination node establishes the reverse path; then, the source node
can establish the forward path. The details of this process can be found in [1].

The VC routing is based on a shortest path algorithm; however, the link length assignment
process is completely different from the one used for datagram routing (see previous section).
Moreover, the algorithm is executed at the destination node only at the time of setting up, and at
time instants when a VC is selected for rerouting. The shortest paths in this case are computed only
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for a particular source-destination pair under considcration; this is in contrast to the datagram
algorithm where this is done for all node pairs.

Finally, the CODEX virtual circuit routing algorithm allows different classes of traffic to be
routed differently according to assigned priorities. In fact, each VC is assigned a number reflecting
the priority of the traffic class it carries. Flow rates on links are estimated separately for virtual
circuits with different priority numbers. As shown below, these priority numbers are incorporated
into the link lengths.

There are two aspects to the VC routing algorithm: the first establishes a VC upon initiation of a
session, and the second allows rerouting of VC's 1o periodically occur in order to account for
changes in the network operating conditions. These two aspects are considered in the subsections
that follow.

2.1.2.1. Routing Policies for VC Setup.

In contrast to the DG routing algorithm, the VC routing algorithm distinguishes between a link
"length" and a link “cost". Thus, the first function of this algorithm is the assignment of a "cost"
for every link in the network. The cost of a link (i,j) is denoted by Djj, and is defined to be a
weighted sum of mean delays experienced by packets of different priorities traversing the link. As
before, an M/M/1 queueing model is assumed for all links. The precise analytical expression used

for Dy is
{ )
-
Djj = zkaﬁ)w 1 +dj ¢
k=1

—"
Ci- D, F
| o

where Cj; is the link capacity (in bits per sec), Fjjk is the mean flow rate (in bits per sec) fora VC
with priority k, d;; is the propagation delay on the link (in sec), and py is a positive weighting
factor representing the priority, with k=1,...,M. As in the DG routing algorithm, C;; and d;; are
given link parameters, but Fjk must be estimated. This is again done by defining an observation
interval over which the average flow rate is measured. At the end of such an interval, node i
obtains estimates of the flow rates for all priorities on all its outgoing links. Once an estimate of
Fjjk is obtained for all k, D;; is computed from the expression above.
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The second function of the algorithm is to assign link "lengths" whenever a new VC is
introduced only. This is done as follows. Suppose a new VC with estimated traffic rate A (in bits
per sec) and priority k is to be set up. We assume that A is available to the destination node. Then,
the length of link (i,j) is the estimated incremental link cost given by

lij = Dij(Fijl, ........ , Fijk + A, ... , FijM) - Dij(Fijl, ........ , FijM)

The first term in the above expression corresponds to the projected link cost (as a result of the new
VC) and the second term to the current cost of the link.

The final function upon setup is performed by the destination node, which computes a shortest
path from the source to itself using these link lengths. The computation is done by Pape's version
of the Bellman-Moore algorithm [16]; this is quite efficient as well as easy to implement. An
outline of the algorithm is presented in Appendix J, with an example to illustrate its operation. A
coded version in the form of a subrouti € (SPATH) can be found in Appendix II. The complete
path resulting from this algorithm is stored at the destination and is sent with a control packet to the
source node while establishing the path. As this packet propagates, the intermediate nodes become
aware of their upstream and downstream neighbors and update their routing tables accordingly.

2.1.2.2. Rerouting Policies for Active VC's.

To make the routing adaptive to changing network conditions, it is essential to have some
mechanism for periodically rerouting some or all VC's. Rerouting may occur due to traffic changes
or topology changes (link/node failure). In either case the procedure is similar.

As already mentioned, the CODEX algorithm uses an observation interval over which link
traffic rates are estimated. At the end of every observation interval, a fraction of the active VC's is
chosen for rerouting. The selection is done randomly, by simply assigning each VC a certain
probability; we shall refer to it as the Rerouting Probability.

If a VC is selected for rerouting, it is viewed as a new VC. Thus, the procedure described in
the previous subsection is invoked: first, link costs are computed for all links bascd on the traffic
conditions that would result if this VC were removed; then, link lengths are evaluated by treating
the VC as a newly arriving one. It is clear that this procedure requires an estimate of the traffic rate
on the virtual circuit, in addition to the latest link flow updates (a link flow typically consists of
traffic due to several VC's using this link). The VC traffic rate is obtained by the destination node
by monitoring the traffic flow on the virtual circuit over its entire active period (from the time it was
established to the rerouting instant).
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As an example, consider a candidate VC with an estimated flow rate A and priority k. So, if
link (i,)) is being currently used by this VC, its length after removal of the VC would be,

I;; = Dy(Fjty e Ky eenn » FyM) - Dyi(Fjt, ........ JFijjk - 4, ... ,» FijM)

On the other hand, if link (i,j) is not currently being used by the VC under consideration, its link
length is

Li; = Dyj(Fj5l, e Fijk + A, ... ,» FijM) - Dyj(Fjl, ........ SFijk, e ,» FijM)

Using these lengths, a new shortest path is computed for the VC. If the resulting cost is lower than
the current one, then the VC is rerouted along the new shortest path. Details of this implementation
can be found in {2].

2.1.3. Algorithm Parameters.

Based on the discussion above, it is clear that there are two critical aspects which affect this
algorithm’s performance:

« the choice of observation interval: too short results in poor traffic rate estimates, too long
delays possible performance improvements

» the choice of rerouting probabilities for VC's: too small limits adaptivity, too large may cause
overloading of some links and lead to oscillations in performance

There is generally no well-defined way of choosing these parameters; the range of suitable values
may vary from network to network.

2.2, GALLAGER'S ALGORITHM.

In this section, we briefly describe the operation and main features of Gallager's distributed routing
algorithm, which is designed for datagram networks. A detailed account of the algorithm can be
found in [3]. ’

This algorithm is applied independently at each node to update the routing tables according to
the latest information acquired from neighboring nodes only. This is in contrast to the broadcasting
required in the CODEX algorithm. The algorithm has been shown to minimize the mean packet
delay under stationary traffic conditions (3], and is expected to perform well under quasistatic
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conditions; quasistatic conditions are present when traffic rates change sufficiently slowly to enable
the algorithm to adapt.

The critical steps involved in Gallager's algorithm may be summarized as follows (details are
omitted, but may be found in [3]):

1. Over an observation interval., each node estimates:

« the traffic rate on each outgoing link

» the sensitivity (gradient) of the mean packet delay on each outgoing link with respect to
the traffic rate through that link - this is also referred to as the link marginal delay

2. At the end of an observation interval, each node:

« identifies the "best" outgoing link, i.e. the link with the smallest marginal delay {giadicnt
estimate)

* decreases the traffic rate into all other outgoing links
* adds the total traffic rate removed from these links into the "best" link
where the amount of traffic rate adjustments is regulated by a step size parameter
3. The process continues until equilibrium is reached, i.e. all ougoing links have the same

marginal delays.

2.2.1. Algorithm Parameters.

In theory, Gallager's algorithm achieves the minimum possible network-wide mean packet delay,
provided step sizes are chosen sufficiently small. In practice, there are three critical aspects which
determine the algorithm's performance:

* the choice of observation interval: too short results in poor estimates, too long delays
improvements

* the choice of step size: too small results in slow convergence, too large may lead to
instabilities

» the method of gradient estimation used
Clearly, the first two choices are the analogs of the observation interval and rerouting probabilities
required in the CODEX algorithm. The issue of gradient estimation is readily resolved if one is

willing to assume that links behave like M/M/1 queueing systems, as is done in the CODEX
algorithm,; then, an analytical expression for a link's marginal delay may be used. However, one of
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our findings is that the behavior of the algorithm is much more sensitive to estimate errors based on
this assumption (see section 5 and [19]), and that on-line gradient estimation techniques may be
preferable.

2.3. ARPANET ALGORITHM.

The original ARPANET algorithm is one of the oldest routing algorithms to be implemented on a
real-life network. It is an adaptive and distributed type of algorithm designed for datagram
networks. Its success generated a great deal of research in this area. However, in the course of
time, some of its major flaws - such as high susceptibility to oscillations - became apparent, and
this led to its eventval replacement by a new and improved version of the algorithm. In this report,
we shall be concerned with this new version only, and discuss some of the features relevant from
our performance study point of view. A detailed account can be found in [4].

There is an important distinction between the datagram routing performed by the ARPANET
algorithm and that used in Gallager's algorithm. The main difference lies in the number of paths
available between any source-destination pair. Whereas in Gallager's algorithm a packet between a
node pair may take any of several available paths depending on the routing assignments at each
node to the outgoing links, in the ARPANET algorithm it is constrained to the single best path
available between this pair of nodes. Therefore, some times this type of an algorithm is referred to
as a single path datagram.

Figure 1: A Simple 2-link Network

For example, in the simple 2-link network shown in Figure 1, Gallager's algorithm would
route a packet from A onlink 1 with probability ¢ and on link 2 with probability (1-¢). But the
ARPANET algorithm would route the packet on either link 1 or link 2 depending on which has a
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lower mean delay based on the most recent estimates. Subsequent packets would also be routed on
the same link until the next update instant, when the other link may have a smaller mean delay.

The path selection is done by employing a shortest path algorithm with "lengths" assigned to
links (similar to the lengths defined in section 2.1.1). Some of the important steps in the operation
of the basic ARPANET algorithm are outlined below.

1. Each node estimates the mean packet delay on each outgoing link over an observation

interval. Individual packet delays are measured by time stamping the packets. This delay
includes the queueing delay, as well as the transmission and propagation delay on the links.

2. If the current mean delay differs from the last update by more than a certain threshold, only
then is it passed on to the other nodes in the network.

3. Mean delay updates are transmitted to all other nodes by employing a form of flooding (for
details, see [4]).

4. At the end of an observation interval, each node uses a shortest path algorithm to find the
minimum delay path between this node and all other nodes. ARPANET employs a version
of Dijkstra's algorithm [17] (some important modifications have been made so that changes
in topology or traffic conditions require only some incremental calculation rather than a
complete recalculation of all the shortest paths). Based on the new shortest paths, the node
updates its routing table accordingly.

It is worthwhile to note at this point that the basic philosophy of operation of the ARPANET
algorithm makes it prone to oscillations in the observed performance. The problem of oscillations,
though not as acute as in the original algorithm, does exist in the new algorithm. The policy of
diverting all the flows to a currently less congested region of the network without any regulatory
mechanism (like the step size in Gallager's algorithm and rerouting probabilities in the CODEX
algorithm) causes this area to be heavily congested at the next update time. Conversely, the region
which is currently congested becomes lightly loaded at the next update, thus making it attractive for
routing. This shifting back and forth of traffic flows gives rise to oscillations. This is very apparent
in the example of Figure 1 where all the traffic would be continuously switching between link 1
and link 2. These oscillations may be damped by adding a bias factor to the link length which may
reduce the sensitivity of the algorithm to network congestion.

2.3.1. Algorithm Parameters.

As already mentioned, the ARPANET has no equivalent to the step size parameter in Gallager's
algorithm and the rerouting probabilities in the CODEX algorithm, in order to regulate the tendency
for instabilities. The main parameter here is the observation interval, which is set to 10 seconds. In
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addition, a threshold of 64 msec is used to trigger reporting a new mean delay estimate in step 2
above. This threshold decreases at the rate of 12.8 msec with every observation interval (10 sec).
Thus, one update is guaranteed every 6 observation intervals. After every update reporting, the
threshold is set back to 64 msec. This mechanism ensures reporting small changes slowly and
large changes more rapidly.

18




3. EXPERIMENTAL SETUP

In this section the experimental setup used to carry out the simulations of the chosen routing
algorithms is described. Most of the experiments were conducted under similar network conditions
as those presented in [18] and [19], where Gallager's distributed routing algorithm employing PA
techniques was considered. This was done to enable us to compare results in that work with some
of our results here. However, some additional experiments investigating the effect of network size
on the mean delay performance of the routing algorithms were also performed using a different
setup; this will be discussed in section 4.5.

3.1. Network Configuration.

A 6-node network, similar to that used in [19], was used for our experimentation. This is shown in
Figure 2. where link capacities are shown in Kbps. It can be seen that the link capacities were
chosen to vary in the range from 9.6 Kbps to 72 Kbps. Also note that some of the links are not
bidirectional, and some bidirectional links are not fully duplex.

3.2. Traffic Arrival Characteristics.

We consider a traffic environment with 19 traffic-generating source-destination pairs. The packet
interarrival time distributions are arbitrarily chosen from a set of exponential and uniform
distributions. A list of these distributions is presented in Table 1, where EX(a) denotes an
exponential distribution with mean o msec and UN(c,) denotes a uniform distribution over the
interval [c,] msec. The same traffic interarrival distributions were used in the performance study
rcportedh [19] as well.

In the case of datagram algorithms, each of the packets is treated independently. But from a
virtual circuit routing point of view, there are 19 virtual circuits corresponding to the 19 traffic
generating source-destination pairs. Alhough in the CODEX algorithm a communication session
between two nodes is expected to have two associated virtual circuits (one for each direction), in
our experiments each session was limited to a single virtual circuit (i.e. the existence of a VC
between node A and node B does not imply that there is a VC from B to A). This, however, causes
no loss of generality for our performance study.
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3.3. Packet Characteristics.

Two types of packets generated: 80% are long (1 Kbit) and 20% are short (128 bits). Long packets
may be viewed as user data packets, while short ones represent system or control traffic. This
distinction does not affect the handling of packets in the datagram routing setting (ARPANET and
Gallager's Algorithms). However, as already described in section 2.1, the CODEX algorithm
routes short packets on a datagram basis and long packets through virtual circuits.

Figure 2: Network Used for Performance Study

20




SQURCE-DESTINATION PAIR INTERARRIVAL TIME DISTRIBUTION

1-3 EX(60)

1-4 EX(200)
1-5 EX(300)
1-6 EX(300)
2-1 UN(80,100)
2-5 UN(80,100)
2-6 UN(60,80)
3-1 EX(70)

3-2 EX(300)
35 EX(300)
4-1 EX(200)
4-3 EX(300)
4-6 EX(90)

5-1 EX(90)

52 EX(90)

53 EX(90)

6-1 UN(60,80)
6-2 UN(80,100)
6-4 EX(70)

TABLE 1. List of External Traffic Distributions Between Node Pairs

3.4. Traffic Generation.

The traffic generation process may be considered in several ways while experimenting on routing
algorithms. The simplest way is to model traffic arriving at the network as a stationary stochastic
process. This means that all traffic streams are switched ON at t = 0, and remain active for the
entire simulation run length. This type of traffic generation has been used in performance studies
such as [19]. It allows one to study the transient (convergence properties, ability to clear
congestion) and steady state behavior of routing algorithms, but it does pose certain practical
problems, described below:

1. If the initial routing assignments are not properly chosen, some of the links may be assigned
packet flows beyond their capacities, thus making them unstable. Under these conditions, most
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of the theory based on modeling links as stable queueing systems becomes invalid, and the
behavior of an algorithm may be unpredictable. This issue is addressed in [3], where it is
assumed that a flow control mechanism is present, which ensures that no link flow ever
exceeds the corresponding link capacity.

2. The method of stationary traffic inputs is not suitable for a performane study of the CODEX
algorithm. Being a VC-based algorithm, its slow rerouting mechanism is not designed to clear
heavy traffic congestions that would arise due to the simultaneous activation of several virtual
circuits upon initialization. This congestion buildup may in fact take an extraordinarily long
time to be cleared, so that steady state conditions can be established. Therefore, this would be
an unrealistic model of the actual CODEX algorithm operation, and is likely to lead to wrong
conclusions (for example: it may appear that large value of rerouting probabilities improve the
adaptivity of the CODEX algorithm; as we shall see in the next section, this is incorrect). In
contrast, datagram routing algoerithms such as Gallager's assume stationary traffic inputs over
reasonably long periods, and may not be able to adapt to very frequent variations in network
traffic resulting from switching virtual circuits ON and OFF.

To accommodate the above considerations, we adopted the following scheme:

VC's are gradually switched ON at time instants offeset by random intervals,
assumed to be exponentially distributed. Once a VC is ON, it remains active for the
entire run length. From a datagram standpoint, the arrival of VC's constitutes
random traffic surges, and the transient response of the datagram algorithms to
these surges can be observed.

The only transient phenomena in this traffic generation model are the arrivals of new VC's. To
introduce more fluctuations into the traffic input process, in some experiments an active VC is
turned OFF after generating a geometrically distributed number of packets. Upon termination, a
VC may also be reactivated after an exponentially distributed time interval.
Some other implementation-related points worth mentioning are:
* For simplicity, the priorities of all virtual circuits have been assumed to be the same.
* Even though in practice the ARPANET uses a modified version of Dijkstra's shortest
path algorithm, and the CODEX algorithm uses a modified version of Moore's shortest

path algorithm, we have used in our experiments only one implementation of Moore's
algorithm (see APPENDIX I). Since we assume no overhead due to processing

22




(estimaiion, shortest path computations, routing table updating) or to communication of
control packets, this simplification does not affect our comparative performance study.

3.5. Algorithm Software.

The code for our implementation of the CODEX and ARPANET algorithms can be found in
APPENDIX II and III respectively. The cude used for Gallager's algorithm was taken from [19]
and suitably modiried for our experimental requirements. All software was implemented in the
SIMAN simulation language using FORTRAN discrete event models. Depending on the
parameters and operating environments of interest, several variations of the software in these
Appendices were actually implemented in the course of this work.
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4. COMPARATIVE PERFORMANCE RESULTS.

In this section, we present the results of our comparative performance study based on the
experimental setup described in section 3. There are two important network performance measures
to consider in comparing routing algorithms.The first is the network throughput, which is a
measure of the quantity of service, and the second is the mean delay experienced by packets, which
is a measure of the quality of service. The latter has been commonly used as a basis for comparing
routing algorithms [19],{20]. The mean delay can be defined as the average amount of time a
packet takes from the time of its arrival to the network until it reaches its destination node. This
delay consists of queueing delays at intermediate nodes, as well as transmission and propagation
delays on the links traversed.

The performance comparison of the three algorithms (CODEX, Gallager's, and ARPANET)
reported here is on the basis of the mean delay performance measure. For comparison purposes,
each algorithm is applied to the same network under similar traffic conditions.

In section 2, the critical parameters associated with each algorithm were identified. A major part
of our work has focused on investigating the effect of these parameters on the behavior of the
algorithms. We reiterate here what these parameters are:

* an observation interval is used by all three algorithms to collect information from the network
before making routing adjustments

* a traffic adjustment parameter is used in the CODEX and Gallager's algorithms at the end of
every observation interval (no such parameter is used in the ARPANET). Traffic adjustments
are accomplished in the CODEX algorithm through the VC rerouting probabilities, and in
Gallager's algorithm through the step size, a scaling factor for transfering packet flows from
one link to another.

Our results in this section are organized as follows.

» In section 4.1, we examine the effect of the observation interval on the mean delay obtained
when each of the three algorithms is used.

+ In section 4.2, we study the effect of the traffic adjustment parameters employed in the
CODEX and Gallager's algorithms. The adaptivity of these two algorithms to varying traffic
conditions are also examined in the context of their mean delay behavior.

+ In section 4.3, we tune the parameters of the CODEX and Gallager's algorithms as well as
possible, and compare their mean delay performances under these conditions.

+ In section 4.4, we study the mean delay performance of the standard ARPANET algorithm,
and compare it to that of the CODEX and Gallager's algorithms.
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« In section 4.5, we investigate the effect of packet resequencing, manifested in datagram
networks as additional end-to-end delay. This allows us to make truely fair comparisons
between Gallager's algorithm and the CODEX algorithm.

+ In section 4.6, we study the effect of network size on the behavior of the algorithms.

- In section 4.7, we summarize our results and conclusions regarding the comparative
advantages and disadvantages of the three routing algorithms.

Apart from the algorithm parameters, the performance also depends on the implementation
methodology of some critical operations such as the gradient estimation process required in
Gallager's algorithm. This issue will be separately examined in section 5.

4.1. Effect of Observation Interval on Mean Delay Performance.

As already described in section 2, the operation of all three algorithms requires some sort of
feedback from the network. The CODEX algorithm requires estimates of individual link flows and
of traffic rates on each of the active virtual circuits. Gallager's algorithm requires estimates of the
sensitivities of individual link delays with respect to corresponding flow rates. The ARPANET
algorithm measures average mean delays over all links, which are then used in shortest path
computations. In all cases, estimation of the expectation of a random variable is involved. This
estimation is normally done over an interval of time which we refer to as the observarion interval.

Assuming stationary distributions for the random variables (typically, mean link delays) whose
means have to be estimated, a large number of samples (infinite in the limit) is required for the
estimation to be sufficiently accurate (strictly speaking: to guarantee almost sure convergence of the
sample mean to the true expectation). This implies that the observation interval has to be
sufficiently long. In practice, however, the traffic input may not be stationary. Under these
conditions, the speed of response of a routing algorithm as traffic conditions change is important,
and the algorithm may respond faster if a short observation interval is used. The speed of response
can be measured in terms of the time the algorithm takes to converge to its new steady state value
from the moment a change in traffic occurs. A proper choice of observation interval length must
take this factor into consideration.

Figure 3 shows the effect of the observation interval on the mean delay performance of the
CODEX algorithm. In this experiment all virtual circuits were initially activated and kept active for
the entire simulation run duration. A rerouting probability of 0.6 is considered here, which is large
enough to bring the network out of the initial congestion i approximately 10 iterations. The
observation interval was then varied from 6 sec, which corresponds to successful departure of
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approximately 1000 packets over the network, to 56 sec, corresponding to 10000 packet
departures approximately. The mean packet delay in msecs is plotted over time in secs. We can see
that the network starts with an extremely large mean delay due to the initial congestion, and
eventually clears out. This transient behavior is not of critical importance here, since in practice
rarely would a virtual circuit network see this much traffic applied at the same instant.

The behavior of the algorithm after clearing the initial congestion is of importance to our study.
It can be seen that a small observation interval of 6 sec produces a highly oscillatory mean delay
profile. This is attributed to the large amount of noise in the estimation of the link flows, resulting
in erroneous reroutings, as well as the large variance of the mean network delay itself. Clearly, as
the observation interval is increased to 30 seconds and then to 56 seconds, the oscillations subside
considerably, although the speed of convergence is relatively slow.

The effect of the observation interval on the mean delay performance of the ARPANET
algorithm is presented i Figure 4. Contrary to our observations for the CODEX algorithm
above, here the oscillations decrease with decreasing observation interval. This behavior is
explained by the fact that the inherent oscillations in the ARPANET are so significant that the effect
of any mean delay estimation errors becomes negligible in comparison. The ARPANET algorithm
is heuristic in nature and there is no guarantee that it can ever find a fair allocation of traffic over all
the links in the network. This problem is exacerbated under moderate to high load conditions; in
such circumstances there would always be some links which are heavily congested while some
others are lightly loaded. The switching of traffic back and forth between these two sets of links
gives rise to the oscillations observed. By taking a larger observation interval we only allow the
congestion to build up before switching to the other set of links where again the congestion builds
up over the interval. Thus, we get oscillations of higher ampiitude as compared to the case of a
smaller observation interval. However, this problcm is not as serious under very iight loads, which
is typically the situation in the ARPA network.

The effect of the observation interval on the performance of Gallager's algorithm was examined
in [19]. The observations there were similar to those applicable to the CODEX algorithm, i.e. a
'onger observation interval produces mean delay results with smaller variance. For the sake of
completeness, some results have been reproduced in Figure S. The observation interval
corresponding to 10000 packets/iteration is equivalent to 56 sec approximately. Other observation
intervals can similarly be obtained by considering the fact that they would be proportional to the
number of packets/iteration. A reasonably small step size of 0.01 E -05 was used to ensure
convergence of the algorithm in this case.
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4.2. Effect of Traffic Adjustment Parameters on Mean Delay.

As discussed in Section 2, the CODEX and Gallager's routing algorithms incorporate regulatory
mechanisms to control the rate at which traffic adjustments are done at each update instant. This
allows them to adapt to traffic changes and to limit undesirable oscillations. Unfortunately,
ARFANET does not have any suci control over flow adjustments and is thus highly susceptible to
oscillations.

The traffic adjustment mechanism appears in the form of VC rerouting probabilities in the
CODEX algorithm, and as a step size in Gallager's algorithm, which scales the amount of outgoing
traffic flow at a node transfered from "bad" links to a "good" link.

« in the CODEX algorithms, the rerouting probability determines the expected number of

virtual circuits which may be considered for rerouting at the end of an observation interval.
As was pointed out earlier, a large rerouting probability causes too many VC's to be rerouted
simultaneously leading to oscillations, while a small value reduces the adaptivity of the
algorithm to traffic changes.

+ In Gallager's algorithm, a small value of the step size causes a slow but steady convergence
to the optimal mean delay, whereas a large value causes the algorithm to oscillate about the
optimum.

The choice of these parameters is therefore very impc.tant from an implementation point of view.
This choice may also depend on other factors, such as the network size and loading conditions.
Gallager's algorithm was shown [3] to require an extremely small value of step size to guarantee
convergence; but in practice, one has to choose a suitable value through experimentation on the
specific network under consideration. Similarly, in the case of the CODEX algorithm, one must
resort to such experimental means, since there are no theoretical guidelines for the choice of
rerouting probabilities,

The experimental results depicting the effect of VC rerouting probabilities on the mean packet
delay in the CODEX algorithm are presented in Figure 6. In this experiment, we activate the
virtual circuits gradually, each with an exponentially distributed offset period. Once activated, a
virtual circuit remains active for the entire duration of simulation. This was done to avoid the inital
congestion which may be irrecoverable in the case of a small rerouting probability. The observation
interval was chosen to be 56 sec, which is a reasonably long period.

It is interesting to note that even when the traffic is stationary after a sufficiently long period
from the start of the simulation, one needs a non-zero value of rerouting probability to obtain a
relatively oscillation-free mean delay. The oscillatory behavior for the case of zero rerouting
probability can be attributed to the variance of the estimated mean delay, which forces the
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determination of shortest paths to constantly change. This can be improved either by using a much
larger observation interval or by choosing a suitable value of rerouting probability. This is
illustrated by the choice of a rerouting probability of 0.4 in Figure 6. From an implementation
stanpoint, the latter is more practical.

However, a very large value of rerouting probability results in extremely large oscillations, as
seen for the value of 0.8 in Figure 6. In fact, over a certain period of time, the mean delay was
too large to be plotted on the same scale. These large oscillations are due to the uncoordinated
rerouting of too many virtual circuits at the same time.

Similar experiments were performed for different values of step sizes for Gallager's algorithm
[19]. The results are shown in Figure 7. The same trend was observed as in the case of rerouting
probabilities for the CODEX algorithm, i.e. a small step size results in a slow but smooth
convergence to the optimal mean delay value, whereas a large value causes rapid convergence at
the expense of oscillations at steady state. Moreover, an extremely small value of the step size is
unable to bring the network out of an initial congestion.

4.3. Comparison of Mean Delay Performance of the CODEX and Gallager's
Algorithms with Tuned Parameters.

In this section, we compare the transient and steady state mean delay performances of the CODEX
and Gallager's algorithms under suitably tuned parameters. The experiments are conducted for two
different traffic environments :

1. Long-run stationary traffic environment: the traffic generating source-destination pairs are
gradually activated with exponentially distributed random offset periods. Thus, the traffic is
initially not stationary, but becomes stationary after a sufficiently long period of time.

2. Quasistatic traffic environment: the traffic generating source-destination pairs are activated
and deactivated at random instants of time as described in section 3.

For both algorithms, a reasonably large observation interval of 56 sec was chosen. The
rerouting probability and step size were tuned (by trial and error) to obtain the best possible
achievable performance in terms of the smoothness of the mean delay convergence profile.
Accordingly, a rerouting probability of 0.6 in the CODEX algorithm, and a step size of 0.01 E - 05
in Gallager's algorithm were chosen respectively.

31




:

§

L
LT PR TR JOR LR T

20 3

<Ko -0 0

o

non3a
T

——— g,

-~
-
———

-

~
/’
>

iteration #

Rerout. Prob.
----- Rerout. Prob.
-------- -- Rerout. Prob.

[T}
soo
- B ]

Figure 6 : Effect of Rerouting Probabilities on the Mean Delay
Performance of the CODEX Algorithm
(6 Node Network, Traffic Streams Activated gradually,
Observ. Interval = 56 sec)

32




110y -

[ I

o

¢t X0 MO

N = O

Do
. s :__*_‘,v'”;'.'.';'.:f.‘.I.'.'-‘—

a6 wn
g
t

— 3 : N N .
t

0 S 10 15 2% 3 3 40 45 O 5 6 6 W 75 0 &

iteration §#

step size = 0.0001E-0S

stcp size = 0.001E-05
--+-- step size = 0.00SE-05
""" step size = 0.Q1E-05

10,000 packets/iteration. Each iteration takes about $6 secc.

Figure 7: Effect of Step Sizes on the Mean Delay Performance of
Gallager's Algorithm
(6 Node Network, All Traffic Streams Activated at the beginning,
Observ. Interval = 10000 packets (approx. 56 sec))

33




4.3.1. Long-run Stationary Traffic Environment.

The results for this case are presented in Figure 8. The mean network delays for the algorithms
are plotted against time measured as the number of iterations implemented (each iteration
corresponding to a 56 sec observation interval).

4.3.1.1. Transient Behavior.

It can be seen in Figure 8 that in the first few iterations, Gallager's algorithm tends to be more
oscillatory compared to the CODEX algorithm (for iterations less than 10), and slower to converge
(up to iteration 20). This is because the CODEX algorithm is better suited to handle new source-
destination sessions by finding the paths of least incremental delays for the new virtual circuits. On
the other hand, Gallager's algorithm adapts slowly to the increased traffic due to the small step size
typically used. Clearly, one could tune the step size for a transient period only, so as to achieve a
behavior similar to that of the CODEX algorithm.

4.3.1.2. Steady State Behavior.

Once the initial transients have died out and stationary traffic conditions have been established,
Gallager's algorithm converges to the optimal mean delay value, while the CODEX algorithm
displays continuously oscillating behavior. One can see that the nominal mean delay is nearly 5%
higher in the case of the CODEX algorithm.

This difference in mean delay at steady state is due to the fact that Gallager's algorithm is
designed to actually converge to the optimal mean delay under stationary traffic inputs (which is the
case here after all the traffic generating pairs have been activated). In contrast, the CODEX
algorithm is heuristic in nature and does not guarantee optimal performance.

The difference in the degree of oscillations for the two algorithms is attributed to the
fundamental difference in the method of traffic adjustments. At any link, Gallager's algorithm can
shift a fraction of the current traffic on the link taking any desired value between 0% to 100%
(depending on the estimated derivatives and the step size); the CODEX algorithm is only allowed to
do so in units of virtual circuits. Therefore, the amount of traffic shifted depends on the traffic rates
of the virtual circuits being rerouted. If the cumulative traffic rate of the VC's being rerouted is
significant, their shifting can give rise to considerable oscillations.

4.3.1.3. Further observations on Steady-State Oscillations
in the CODEX Algorithm.

The fact that rerouting of virtual circuits is indeed the reason for the observed oscillatory behavior
of the CODEX algorithm is corroborated in the results of the following experiments. Now, instead
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of routing short packets as datagrams and long packets as virtual circuits, all the packets are routed
exclusively through virtual circuits. This effectively increases the traffic rates of individual virtual
circuits. It can be seen from Figure 9 that in this case the oscillations are substantially larger
(since there are larger traffic rates on virtual circuits).

Taking an opposite approach, each of the virtual circuits is divided into 20 parts, and each
component VC is routed independently. This effectively reduces the traffic rate of each virtual
circuit by a factor of 20, and increases their total number by a factor of 20. As expnected, the
oscillations in the mean delay were considerably reduced as shown in Figure 10. Of course, the
rerouting probability had to be adjusted to a much smaller value (0.025) compared to its original
value of 0.6. This brings out the fact that the CODEX algorithm performs well in traffic conditions
where there is a large number of virtual circuits each contributing a small amount of traffic to the
total network traffic.

4.3.2. Quasistatic Traffic Environment.

In this case, every traffic generating source-destination pair (a) is activated, (b) remains active until
it generates a geometrically distributed random number of packets (with a mean of 2000), and (c) is
deactivated and remains inactive for an exponentially distributed random period (with a mean of 4
minutes). The active period obviously depend on the traffic generation rates of the individual VC's.
The results are presented in Figure 11, and provide additional insight on the adaptivity of the
algorithms to more rapidly changing traffic conditions.

Even though Gallager's algorithm performed better than the CODEX algorithm under
stationary traffic conditions as shown earlier, it is clear from Figure 11 that it has poorer
adaptivity to fast-changing traffic conditions. The sharp peaks observed in the mean delay response
of Gallager's algorithm correspond to arrivals of new VC's. As was noted in the previous
subsection, the CODEX algorithm is suited to adapt better to arriving VC's through its explicit VC
setup routing mechanism, whereas Gallager's algorithm tries to adapt to the situation rather slowly.
This suggests that in an environment expected to feature such abrupt traffic changes, a combination
of approaches is desirable: an initial setup procedure based on shortest path algorithms, combined
with a gradient-based scheme seeking to optimize the steady-state performance of the network.

Finally, note the nominal mean delays observed in Figure 11 are lower than those seen in
previous cases. This is simply due to the fact that the overall network load is now lower, since
traffic generating source-destination pairs are periodically inactive.
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4.4. Mean Delay Performance of the Standard ARPANET Algorithm.

In this secuion, Uic mecan delay results of applying the ARPANET aigonthm to the network of
Figure 2 are compared to those of the CODEX and Gallager's algorithms under similar traffic
conditions. The implementation details follow the description of the algorithm in Section 2.3, i.e.
an observation interval of 10 sec and the staggered threshold mechanism for reporting changes in
link delays were used. The threshold mechanism avoids frequent reporting of small changes in the
link delay which could cause large shifts in traffic from one region to another in the network. This
mechanism tends to limit oscillations, while ensuring that at least one update takes place over
several successive observation intervals.

As already mentioned, a bias factor equal to the transmission time of a packet is also used to
update the link lengths. This bias factor is added to the link length and acts as a damping factor for
the oscillations. For instance, it ensures that any link which was completely idle over the
observation interval is not assigned a zero link length.

The results are reported in Figure 12. It can be seen that ARPANET displays extremely large
high-frequency oscillations. Moreover, the value of the nominal mean delay is much higher
compared to the CODEX and Gallager's algorithms. The main reasons for this behavior were
discussed in earlier sections: the basic operating philosophy of the ARPANET algorithm causes a
far from optimal performance and high susceptibility to oscillations. However, we were able to
identify a number of factors which may be contributing to the oscillatory performance:

1. Traffic intensity '

2. Nonuniformity of link capacities

3. Size of the network
In the remainder of this section, we examine the first two factors. To investigate the performance
of the algorithm in large networks, substantial modifications of our experimental setup were
required; a discussion of the modified setup and our results are presented in section 4.5.

4.4.1. Effect of Traffic Intensity on Oscillations in ARPANET.

In reality, the ARPANET algorithm may not be performing as poorly as it appears in Figure 12.
One of the reasons may be that it is designed to operate in environments with a very light traffic
load on the network. Under light load condition, the congestion level on various links is not
sufficiently high to

+ make some links appear attractive compared to others; as a result, there are less traffic shifts

» result in extremely large delays causing high amplitude oscillations
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To verify the effect of light load on the observed oscillations, the traffic intensities of each of the 19
source-destination pairs in our experiment were reduced by 50% and then by 20%. Thus, the
overall traffic intensity was reduced by the same factors as well.

The mean delay behavior of the ARPANET algorithm under these light load conditions is
presented in Figure 13. The results are plotted on a log scale to accommodate the large range of
variation. It can be seen that a 50% load reduction results in a drastic improvement in performance,
both in terms of nominal mean delay and the extent of oscillations. A further reduction to 20% of
the original load does not substantially affect the oscillation characteristics (as expected, however,
the mean delay is reduced).

4.4.2. Effect of Nonuniformity of Link Capacities on Oscillations in ARPANET.

It was speculated that the nonuniform link capacities in our network (ranging from 9.6 Kbps to 72
Kbps) could be contributing to the observed oscillations in the mean delay. This is in fact the case,
and reveals a key limitation of algorithms which do not make use of mean delay sensitivity
information.

Considering the simple 2-link network of Figure 1, a little thought can validate the above
speculation. The ARPANET algorithm takes into account only the absolute mean delays on the two
links, without considering the delay sensitivities with respect to their corresponding traffic rate. As
a result, two links having the same absolute delay are treated the same, whereas they may
obviously have critically different sensitivities depending on their respective capacities.

In a large network, however, it is difficult to examine the effect of nonuniform capacities in an
isolated manner: any change in link capacity causes changes in the overall loading conditions,
which makes it very hard to achieve similar loading conditions for two different configurations.
Nonetheless, we conducted some experiments which do illustarte the effect of nonuniform link
capacities as speculated above. These results are presented in Figure 14.

First, all link capacities were made uniform by assigning them 2 single capacity of 56 Kbps.
The oscillations were significantly reduced. The mean delay was also reduced because the loading
conditions were substantally lighter and no congestion built up over each observation interval.

Next, we sought another uniform link capacity in the range of 9.6 Kbps to 72 Kbps which
would produce a higher nominal mean delay than the original one. A capacity of 40 Kbps was
found to meet this requirement. The results, as seen in Figure 14, show considerably less
oscillations with a mean delay which is higher by a factor of 10.
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4.5. Effect of Packet Resequencing on Mean End-to-End Delay in
Datagram Networks.

One advantage of using virtual circuits over datagrams is the sequential delivery of packets at the
destination. In the case of datagram networks, the packets have to be resequenced at the destination
nodes before being passed on to the host. A simple way of accomplishing this is to assign a
sequence number to each of the packets for a source-destination pair. At any time, the destination
node is expecting a packet with a particular sequence number. Any arriving packet with a sequence
number less than this is stored in a buffer. When the expected packet arrives, all the packets
forming a sequence are removed from the buffer and passed on to the host. Thus, "resequencing
delays" are the queueing delays experienced by packets stored in this buffer.

For a fair comparison of mean delay petformance one must consider the end-to-end delay,
which includes the resequencing delay, in the case of datagram routing. It should be noted that
even though the CODEX algorithm is a VC-type algorithm, resequencing delays do occur when a
VC is rerouted: when a new path is established, there are still some packets propagating on the old
path; consequently, the destination node must be able to do resequencing for a brief period of time,
until the old path has been completely drained of all the packets. One would, however, expect that
this resequencing delay is very small when averaged over all the packets in an observation interval.

Experiments were performed incorporating the resequencing mechanism described above for
Gallager's algorithm. The comparative results showihg the mean end-to-end delay performance of
Gallager's algorithm with and without resequencing are shown in Figure 15. It can be seen that
the increase in the nominal delay is very small, amounting to approxim .tely 5% of the nominal
mean delay. This mean end-to-end delay performance of Gallager's algorithm with resequencing is
compared with that of the CODEX algorithm in Figure 16. It is clear that under szationary traffic
conditions Gallager's algorithm outperforms the CODEX algorithm with respect to both nominal
mean delay and steady state oscillations. Thus, resequencing delays have little effect on the relatve
performances of the two algorithms. However, the situation may be different for a larger network
where resequencing delays may become significant due to a larger expected number of hops.
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4.6. Effect of Network Size on Routing Algorithm Performance.

So far, all our experiments were conducted on the 6-node, 16-link network of Figure 2. This is a
small network in comparison to most networks in practice. Unfortunately, experimenting on a very
large network is prohibitively expensive. Thus, it is a challenging task to identify adequately large
networks which, in conjunction with a proper design of experiments, can bring out the essential
characteristics of a routing algorithm.

As already pointed out in previous sections, there is sufficient reason to believe that some of
the features we have identified for some of the algorithms may be quantitatively different in large
networks. For example, the sensitivity of the mean delay to rerouting probabilities in the CODEX
algorithm is expected to be smaller in a large network with a large number of virtual circuits each
with a very small traffic rate. Similarly, the effect of packet resequencing on end-to-end delays in
datagram networks may become more apparent in a large network. Some of these issues were
studied for the CODEX algorithm using a large network setup which is described below.

4.6.1. Experimental Setup.

The experimental setup used here is briefly describzd in the next few subsections.

4.6.1.1. Network Configuration.

The large network shown in Figure 17 was set up. This is the same network used in [21] for a
study of finite buffered nodes in store and forward networks. It has 19 nodes and 33 full-duplex
links with capacities ranging from 9.6 Kbps to 50 Kbps. The network configuration is such that it
appears as if two smaller networks have been connected with a few high speed (50 Kbps compared
to 9.6 Kbps and 19.2 Kbps) links.

4.6.1.2, Traffic Arrival Characteristics.

It was assumed that every node generates traffic for every other node in the network with an
interarrival distribution chosen from six such different distributions as shown in Table 2. The
parameters of the distributions are specified in msec. Thus, we have 342 different source-
destination pairs, each one of which generates long and short packets (see section 4.6.1.3 below).
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DISTRIBUTION No. DISTRIBUTION

1 EX(600)

2 EX(2000)

3 EX(3000)

4 UN(800,1000)
5 UN(€00,800)
6 EX(900)

TABLE 2. List of Distributions Used in Large Network

4.6.1.3. Packet Characteristics.

As in the case of our original 6-node network, there are two types of packets generated: 80% are
long (1 Kbit) and 20% are short (128 bits). As before, the CODEX algorithm routes short packets
on a datagram basis and long packets through virtual circuits.

4.6.2. Effect of Rerouting on Mean Delay Performance of the CODEX Algorithin.

The first experiment that we report on here is intended to study the effect of VC rerouting on the
mean delay of the CODEX algorithm applied to the above network. The 342 virtual circuits are
gradually activated with exponentially distributed random offset times. Once activated, a VC
remains active for the entire duration of the simulation. An observation interval of 56 sec (which
corresponds to the departure of over 10000 packets) is chosen as in the case of the small network.
The rerouting probabilities are varied from 0 to 0.5.

The mean delay results are presented in Figure 18. It can be seen that the nominal mean delay
is relatively less sensitive to rerouting probabilities over the range considered, as compared to the
case of the smaller network. Farticularly at the lower range of rerouting probability values this
insensitivity is more apparent. However, this does not imply that one can do away with rerouting
altogether. This is verified in Figure 19, where one can clearly see the reduction in nominal mean
delay (nearly 10%) achieved by choosing to reroute even with a small rerouting probability of
0.05. But any further increase in rerouting probability (as seen for the case of 0.2) does not
improve the steady state mean delay (while certainly incuring additional processing overhead).
When trading off between rerouting and processing overhead, it should be pointed out that the
algorithm is better able to adapt to incoming virtual circuits in the initial 20 to 30 iterations of the
algorithm for a larger value of rerouting probability.
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Finally, note that steady state oscillations in the mean delay are insignificant (less than 5%).
This is consistent with our previous observation and explanation in the context of the small
network, 1.e. 2 large number of VC's, each with a very small traffic rate, tends to reduce
oscillations.

4.6.3. Mean Delay Performance of the CODEX Algorithm Under
Quasistatic Traffic Conditions.

The second experiment on the large network examines the response of the CODEX algorithm to
frequently changing traffic. Similar to the case of the smaller network, traffic generating source-
destination pairs were switched ON and OFF at random instants of time. The active traffic
generation periods of source-destination pairs were defined so that a geometrically distributed
number of packets with a mean of 500 is processed. The idle periods for source-destination pairs
were chosen from an exponential distribution with mean 2.5 min. This creates an environment
where input traffic is rapidly changing.

Our results are shown in Figure 20 (for the large network) and Figure 21 (for the small
network). It is apparent that the large network is better able to adapt to the traffic flu stuations than
the small network iz. There are no sharp peaks observed in the mean delay profile as was the case
in the smaller network. Instead, the network adapts to traffic variations rather smoothly. rhis is
once again attributed to the fact that the traffic rates of individual virtual circuits are very small
compared to the overall network traffic.
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4.7. Summary of the Results and Conclusions.

In this section, we summarize all the results presented above. Our results may be categorized as
follows:

» Results that depict the behavior of the routing algorithms under parametric variations

» Results that depict the behavior under various traffic conditions (long-run stationary vs
quasistatic)

» Results that study the effect of operational and environmental conditions, such as
resequencing in datagram networks and the size of a network.

4.7.1. Parametric Variations.

With respect to the observation interval, it was seen that both the CODEX and Gallager's

1=cithms behave similarly: a longer interval produces fewer steady state oscillations compared to
a shorter interval. This is due to increased accuracy in the required estimates (link traffic rates, link
delay derivatives) in the case of a longer interval. As far as the transient performance is concerned,
the convergence of the algorithms is faster under a small observation interval. This was seen from
the rates at which the initial congestion was cleared in the experiments.

However, in the case of the ARPANET algorithm oscillations tend to increase with longer
observation interval. Here, estimation accuracy is not crucial cowupared to the congestion buildup
over a long uncontrolled observation period; thus, it is more important to make frequent traffic
adjustments to prevent such buildup.

Regarding the effect of traffic adjustment parameters (i.e. the step size in Gallager's algorithm
and the rerouting probability in the CODEX algorithm), our findings suggest that a small value of
the corresponding parameter reduces the adaptivity of the algorithm. This was manifested in the
case of Gallager's algorithm as a slower speed of convergence and in the case of the CODEX
algorithm as larger oscillations.

On the other hand, a large value of the traffic adjustment parameter causes steady state
oscillations in the mean delay behavior of both the algorithms. In the case of Gallager's algorithm
this is due to the well known fact that a large optimization step parameter causes oscillations around
the optimal point. But in the case of the CODEX algorithm the oscillations are caused by
uncoordinated simultaneous rerouting of several VC's (it is again noted that the ARPANET
algorithm does not have any such traffic adjustment parameter).
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One important conclusion is that a dynamic adjustment of these algorithm parameters allows the
network manager the flexibility to trade off between fast convergence and limited oscillatory
behavior at steady state. The precise mechanisms for implementing such dynamic adjustments
depends on the algorithm used and the characteristics of the network itself.

4.7.2. Traffic Variations,

When the algorithm parameters were tuned for our particular network environment, a direct
comparison of the CODEX and Gallager's algorithms revealed certain interesting differences. The
CODEX algorithm produces slightly higher (about 5 % in our experiment) stationary mean delay,
‘and it tends to be more oscillatory. The higher mean delay is due to the suboptimal performance of
the CODEX algorithm, while the oscillations are due to the mechanism of rerouting virtual circuits.

The mean delay behavior of Gallager's and the CODEX algorithms were studied under
quasistatic traffic conditions, where traffic sessions were started and terminated at random instants
of time. The results indicated that the CODEX algorithm has a better adaptivity to such fluctuating
traffic conditions. This is inherent in the routing mechanism of the algorithm, where every new VC
is routed on a path of least incremental delay. On the other hand, if a small step size is used in
order to ensure the convergence of Gallager's algorithm such adaptivity to traffic fluctuations is not
possible. Again, however, this suggests the need for dynamically adjusting the step size parameter.

The mean delay performance of the standard ARPANET algorithm was compared with that of
Gallager's and ihe CODEX algorithms. This comparison indicated that the ARPANET produces a
far from optimal mean delay. Moreover, it displays large-amplitude oscillations. This behavior is
inherent in the shortest path algorithm used in ARPANET. However, we found that the oscillatios
are limited (a) when traffic conditions are lighter, and (b) when link capacities are uniform.

4.7.3. Operational and Environmental Variations.

Regarding the effect of resequencing at destination nodes on the end-to-end mean delay in
datagram networks, our results indicate this effect is negligible (less than 10%) compared to the
mean delay without resequencing. Even after considering resequencing delays, the mean end-to-
end delay in the case of Gallager's algorithm was found to be lower than the mean delay in the case
of the CODEX algorithm.

Our experiments on a large 19-node network with 342 VC's indicate that increased network
size reduces the sensitivity of the CODEX algorithm to VC rerouting and to rapid fluctuations in
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traffic conditions. This is because the traffic contribution of an individual VC switiched ON or
OFF is much smaller in a large setting.
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5. GRADIENT ESTIMATION IN ROUTING ALGORITHMS.

As pointed out earlier, the method of gradient estimation is a critical issue in gradient-based routing
algorithms such as Gallager's. This algorithm requires the derivatives of individual link delays
with respect to the corresponding packet flow rates. One may either use a direct approach of
modeling each link as a queueing system and then analytically evaluating the derivative, or resort to
on-line methods such as the Perturbation Analysis (PA) techniques[14],[15] or the Likelihood
Ratio approach. In the following discussion, we shall focus our attention on comparing analytical
techniques to PA.

Our motivation comes from observations made in a previous study [19], where it was found
that using a simple M/M/1 link model for derivative estimation in Gallager's algorithm results in a
nominally higher mean delay compared to that obtained when PA-based derivative estimationwas
used. Moreover, large steady-state oscillations were observed in the former case. The network
under consideration in this case was the 6-node network of Figure 2. The complexity of the
network configuration makes it hard to gain immediate insight into the above phenomena. Thus, in
this section we consider a simple 2-node, 2-link model on which Gallager's algorithm is applied
using M/M/1 and PA methods of derivative estimation respectively. The resulting observations and
the ensuing discussions provide some understanding of the effects of derivative estimation
methodologies on the overall mean delay performance of a gradient-based routing algorithm.

5.1. Two Approaches to Gradient Estimation.

In this section we review the common analytical method and PA-based on-line methods for
eradient estimation.

5.1.1 The Analytical Method.

The analytical method is based on an assumed queueing model for a link. Usually, one assumes
packets enter a link forming a Poisson process. One then uses the M/M/1 model for a link if the
packet lengths are variable (and assumed to be drawn from an exponential distribution) or the

M/D/1 model if the packet length is known to be fixed. In either case, the underlying idea is that an
analytical expression for the delay on a link (i,j) is available as a function of the link flow rate Ajj:

Djj = f(Aj,Cij)  where f is a known function and Cjj is the link capacity

We evaluate the derivative of this expression at the estimated value of the flow rate, and hence
obtain the desired estimate of the gradient :
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As an example, in case of the M/M/1 model one obtains the formula

A

Bij'(xij) =
2
(Cij - )"ij)

where Gj; is the capacity of link (i,j).
A simple way of estimating the flow rate is to monitor the arrival process until N packets have
arrived. If the time between the arrival instants of the (i-1)th and ith packet is denoted as A;, then

-1
A;=N. (Z Ai)

where Zi A;j =T, an observation interval over which the N packets arrive. Note that this is the
estimated flow rate in packets per unit time; instead, one can readily use the cumulatve number of
bits to obtain the flow rate in bits per unit time.

5.1.2. On-Line Methods Based on Perturbation Analysis (PA).

As opposed to the above analytical approach, which is based on an assumed model for links, PA
techniques [14],[15] do not require explicit knowledge of such models. Instead, they are on-line
methods for estimating gradients, using only actual data obtained during normal operation.
Specifically, one monitors arrivals and departures of packets on a particular link.

There are two PA techniques suitable for estimating link delay derivatives. The first,
Infinitesimal Perturbation Analysis (IPA), is an efficient asymptotically unbiased estimator. The
second, Finite Perturbation Analysis (FPA), may provide small biases, but it does not require any
link flow rate information.

5.1.2.1. The IPA Estimator.

Suppose N packets were transmitted over link (i,j) during an observation interval which consisted
of M busy periods. The number of packets transmitted over the mth busy period is denoted by np,.
Then the IPA estimate of the gradient of mean delay with respect to the average flow rate on the
link is given by




R M P i
Dij’o"ij)=%f- Z Z Z(Ai/e)

m=1i=1j=2
where Aj is the interarrival time between the (i-1)th and ith packets, and 6 = 1/ Ajj; Ajj needs to be
estimated as was the case with the M/M/1 formula in section 5.1.1.

It is worthwhile comparing this estimator with the M/M/1 approach above from an
implementation standpoint. In both cases one needs to estimate lij, the link flow rate. In the M/M/1
case, an arithmetic computation is required to obtain the gradient estimate. Through IPA, the
gradient estimate is directly obtained as a simple accumulator of interarrival times. Note that the
second sum above is reset to zero at the beginning of every busy period. Thus, IPA requires no
computation other than the accumulation of time intervals (one timer and minimal storage for the
accumulator).

Finally, note that the estimate of the link flow, Ajj, appears squared in the denominator of the
M/M/1 formula. This implies that gradient estimates obtained through that formula may be
particularly sensitive to small estimate errors. This could be a serious problem in the case where

only small observation periods are available.

5.1.2.2. The FPA Estimator.

FPA is based on hypothetically perturbing the parameter of interest, which is the mean interarrival
time in our case, and then tracking the effect of propagating this perturbation on the performance
measure under consideration. Let R be the nominal mean link delay and © the nominal mean
interarrival time. Let AO be the perturbation in the parameter 6 which results in a change of AR in
the nominal mean delay. The computation of AR involves keeping track of the perturbed sample
path and a few simple additions and subtractions at the departure of every packet [19]. This gives
AR for each of the departing packet which is averaged over all the departures. The desired estimate
of the gradient is given by

A, AR

I)lj (Kij) =R - Ke—/-e-
An appealing feature of this estimator is that it does not need an estimate of 6. On the other hand,
the choice of a proper A9 is critical. Moreover, the mean square error characteristics are poorer

compared to IPA. In practice, the estimates obtained through IPA and FPA show little difference.
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5.2. Gradient Estimation Case Study.

In this section we describe our ongoing work based on a simple network model. The objective is to
study the effects of the method of derivative estimation on the mean delay behavior of Gallager's
algorithm. First, we present the model under consideration followed by some of our critical
findings to date.

5.2.1. Model Description.

The simple 2-node, 2 link network, used for this analysis is presented in Figure 22. Packets
arrive at node 1 with a uniform interarrival distribution defined over the interval [15, 25] msec.
Packet lengths are assumed to require processing times which are triangularly distributed over the
interval [0, 40] msec. These distributions were chosen to recreate the phenomena observed in [19],
and to ensure that the standard assumptions used in the M/M/1 model are not satisfied.

36 Kbps |

28 Kbps

Figure 22: Simple Network for Studying Gradient Estimation

5.2.2. Routing Performance Comparison Using Analytical and PA-Based
Gradient Estimation.
Gallager's algorithm was applied at node 1 of our network to route the arriving packets onto either
link 1 or link 2. The link delay derivatives were estimated through the M/M/1 formula and PA
methods respectively. The mean network delays were obtained for an observation interval
corresponding to 10000 packet departures on the network and a reasonably small step size of 0.01.
These results are presented in Figure 23, where the mean delays are plotted against the number of
iterations of the algorithm.
The following observations are apparent from Figure 23:
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1. The M/M/1 estimation method gives nominally higher mean delay than the PA method.

2. Large steady state oscillations occur in the case of the M/M/1 estimation method.

3. The M/M/1 approximation leads to faster convergence, but to the wrong steady state value.
We provide below a framework for explaining these observations and gaining further insight into
the issue of gradient estimation in routing.

Let A describe the external arrival process to the network and @ the routing assignment vector
for the links. Then, Gallager's algorithm is expected to optimize a convex cost function of the form
D(A @), representing the mean system delay. For a stationary traffic input, the optimization is
done with respect to &@. In the context of the two link network, @ can be replaced by a scalar ¢, 0 <
¢ < 1, which is the routing probability associated with link 1 (the 56 Kbps link in Figure 22).

If we assume M/M/1 models for the links, we are effectively optimizing a cost function
Dm(x,¢), which would in general be different from the actual cost function D,(A,$) we wish to
optimize. In other words, there are two sources of error in this approach:

1. The flgxc(ti)on D(+) is based on modeling assumptions, and generally differs from the actual

one Dy(+).

A . - . . - -
2. A is only an estimated value of A, which introduces different errors from iteration to
iteraton.

To explain wht the M/M/1 model provides such poor performance, as shown in Figure 23,
consider Figure 24, where the relative locations and shapes of the functions Dm(;\x,¢) and
Da(A,9) are chosen to facilitate our discussion. These conjectured shapes and locations are found
to be in agreement with some approximate constructions based on experimental data. It is
particularly important to note that the shape and location of the M/M/1 cost function Dm(AA,q)) are
changing according to the estimated values of A from iteration to iteration, as shown by the dotted
curve in Figure 24.

We now consider each of the three observations made above with regard to Figure 23:

1. Higher nominal mean delay:

A higher nominal mean delay may result under the optimal routing assignments ¢y for the M/M/1
cost function and ¢;* for the actual cost function, since the two do not coincide (as shown in
Figure 24). In this case the M/M/1 approximation method would result in a higher nominal mean
delay than the actual optimal mean delay. The difference would amount to

| Da(A,9m") - Da(As027) |




2. Larger oscillations:
Larger steady state oscillations in the case of the M/M/1 approximation method can be attributed to
two factors:
1. The change in the location and shape of the M/M/1 cost function as the flow estimates
change

2. A larger sensitivity of the actual cost function D, with respect to ¢ at the value ¢m" which is
optimal routing assignment for the M/M/1 cost function.

To illustrate these points, let us assume that using the M/M/1 approximation method we have
reached the optimal routing assignment ¢m* on the solid M/M/1 cost function in Figure 24. Next,
a small error AA in the estimation of the incoming traffic rate A results in a shift A¢pp" in the

optimal point, where

b A
Adm = ¢’A“ lA-al.AA
oA

*

This change in the optimal routing assignment causes a corresponding change AD, in the observed
actual mean delay, where

dD *
ADa=[ aq)a |¢=¢:n] . Adp

Since such changes may occur with every observation interval, we see that these factors contribute

to the observed oscillations in the case of the M/M/1 approximation method.

3. Faster convergence:

Faster convergence, though to a wrong value, can be attributed to a larger value of the estimated
derivative in the case of the M/M/1 approximation. For a specific choice of step size in Gallagcr's
algorithm, a larger value of derivative would cause the algorithm to converge at a faster rate. A
larger value of the derivative implies a steeper cost function for the M/M/1 method as depicted in
Figure 24.

5.3. Experimental validation

The above conjectures regarding tie possible shape and location of the M/M/1 cost function with

respect to the actual cost function (Figure 24) are corroborated by constructing approximate cost
A

functions from experimental data. The M/M/1 cost function D, (A,$) is constructed by calculating

65




the system delays from the estimated flow rates ?\ at different routing assignments ¢ and then
interpolating them. The actual cost function Da(A,9) is constructed by interpolating the directly
estimated mean system delays for different routing assignments ¢. These are presented in Figure
25.

It can be seen from Figure 25 that the M/M/1 curve is indeed steeper than the actual curve for
this experimental setup. Moreover, the two optimal routing assignments for the two cost functions
do not coincide. The higher delay observed in the M/M/1 approximation (~29 msec) in Figure 23
is indeed the actual delay at the optimal routing assignment for the M/M/1 cost function.
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Figure 24 : A Possible Explanation of the Mean Delay Performance of

Gallager's Algorithm with M/M/1 Derivative Estimation
(2 Node Network, Uniform Interarmival Distn,
Triangular Packet Length Distn)
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6. NETWORKS WITH MULTIPLE TRAFFIC CLASSES.

When multiple traffic classes are present in a network, direct extensions of the routing algorithms
we have considered in previous sections are generally not possible. First, each traffic class may
seek to optimize a different performance measure. And second, additional overhead is incurred at
each node which must now be able to distinguish between the various traffic classes to be
processed.

Of particular interest in current network management developments is real-time traffic. Real-
time traffic is characterized by deadlines within which service must be completed (e.g. [22],[23]).
Thus, when a packet is transmitted, we require that its destination be reached by some given
deadline, characteristic of the packet itself or of the traffic class to which it belongs. If this
condition is not satisfied, the packet is useless and is considered lost. In such problems, the
objective of interest is the minimization of the probability of loss, measuring the fraction of packets
that exceed their deadlines.

In this section, we consider four aspects of network management in the presence of real-time
traffic:

+ In section 6.1, we address a basic flow control and routing problem for real-time traffic. This
is done for a simple model consisting of several links in parallel.

« In section 6.2, we investigate the effect of selecting different performance measures for real-
time traffic, possibly providing suboptimal performance, but simpler in nature than the
"probability of loss" metric mentioned above.

* In section 6.3, we investigate the issue of "scheduling” real-time traffic, i.e. selecting the
next packet to be transmitted at a particular link. We show that the conventional First-In-
First-Out (FIFO) policy is often the worst for this type of traffic, and that the Last-In-First-
Out (LIFO) poticy is often the best one.

* In section 6.4, we address the problem of using simple local control at network nodes in
order to minimize the end-to-end (global) probability of loss of real-time traffic.

Many of the results presented in this section have also been reported in the form of technical
papers, which may be found in APPENDICES IV-VL

6.1. Routing and Flow Control of Real-Time Traffic.

We begin by presenting a basic model for our work. Consider a stream of packets arriving to n
parallel links according to an arbitrary arrival process with rate A, as shown in Figure 26. The
rate of transmission at link i is p; > 0, and all links are independent. We assume that there is the

69




option of rejecting messages before they are assigned to any link; let A, denote the corresponding
flow. In addition, let A; be the flow to link i, for i = 1,...,n. Finally, let D be a random variable
that denotes the deadline associated with a random packet.

FLOW

CONTROL

A 7\

ROUTING

T

Rejected
Messages

A(1-P,)

Delinquent
Messages

Figure 26: Link Assignment Model with Admission Policy

6.1.1. Problem Formulation.

We wish to determine a flow allocation (Ag,...,A;) so as to minimize the probability of loss, where

a job is considered lost if it is either rejected upon arrival or accepted but is delinquent (i.e., misses
its deadline). Let Pf(Aq) be the probability that a random packet is rejected, and let P4(A,,...,A,)) be
the probability that a packet is delinquent given that it is accepted. Then the total probability of loss
is Py = [P* + (1-Pr)-Pd]. We shall assume in what follows that a packet is delinquent if its total
delay T exceeds the deadline D, i.e. Pd = P[T > D]. However, the analysis also applies to other

definitions of delinquency, such as the event that the queueing time of a packet exceeds the

deadline.

It is convenient to translate this flow allocation problem from one of minimizing the probability
of loss to one of minimizing the loss rate, L, where L = A -[PF + (1-Pr)-Pd]. Clearly, for a fixed

load A, the two problems are equivalent. Note that

AP =g, A(-PDP = ) ARG

i=1

where P?().i) is the probability that a packet is delinquent given that it is routed over link i. Thus,

the performance metric can be written as
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LOgue-h) = Ao+ D, AP0

i=1
Furthermore, let
fA) = A:PiQ)  i=1,...0)

Then, a general statement of the optimal flow allocation problem is the following:

n

min fl(l.,)
(hguerrihy) 4
subject to
Z li = X
i=0

)\.iZO, i= 1,...,n

6.1.2. Solution of the Flow Allocation Problem.

Under reasvunable assumptions on the nature of the functions P?(?Li) and f;(X;), we have been able
to solve this problem 1d characterize the optimal flow allocation in terms of the packet loss rate
sensitivities hy(A;) = of:(A))/OA;, for i=0,...,n, where the derivative is defined for A; e [0,u;).
Details may be found in APPENDIX IV. The main result of our analysis is contained in the
following statement:

The optimal solution (X;,...,K;) to the above problem satisfies the following necessary and

sufficient conditions:
A =a if A >0
h(A)2a if A{ =0
such that:

D, hilw=r  a@>0

is.t. ).:>0

Thus, the problem is reduced to that of determining thc value of « satisfying these equations.
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An important corollary of our main result is that there exists a critical load value, A,
given by

n
Aerc= 2, 1D
i=1

The value A, defines the load threshold, beyond which rejection of packets will always improve
performance. This is illustrated in Figure 27, where the effective throughput, A-(1-Pp), is always
higher with A5 >0 than with A = 0 (no admission policy) as long as A > A ;. That is, when the
load exceeds the critical value, the optimal flow policy will reject some positive flow of packets.

A(I'PL)

admission polic
A& no admission policy
A crit H tot

Figure 27: Load Threshold in Optimal Admission Policy
Some additional properties of the optimal flow allocation presented in APPENDIX IV.

6.1.3. An Efficient Algorithm for Implementing Optimal Flow Allocation.

The following algorithm can be used to obtain the solution to the problem of minimizing the packet
loss rate for the system of Figure 26.

Algorithm:
1. Ordering of links:
» order links so that hy(0) 2 h;(0) 2 hy(0) 2. .. 2 h,(0).
2. Determination of the set of active links, A:
* define A(m) = I, g:(h,(0)),
+ use binary search to find m such that A(m) £ A < A(m+1),
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«I={1,...,m}, A={m+l,...,n}.
3. Solve equations presented in previous section to obtain (A,... ,l:).

Details and a simple interpretation of this algorithm are provided in APPENDIX IV. It is important
to note, however, that the above algorithm can only be used if analytical expressions of the loss
rate functions f,(A;) are available. Examples of systems for which this is the case are also provided
in APPENDIX IV.

6.1.4. On-Line Techniques for Implementing Optimal Flow Allocation.

It is often the case that accurate models for the links in Figure 26 are not available, and that
operating conditions frequently change. In such cases, one is limited to observing actual system
data (e.g. packet arrival times at a node) and making admission and routing decisions based on that
information alone. There are several algorithms suitable for such on-line control schemes, mostly
dependent on estimating gradients (sensitivities) of the performance metrics with respect to the
parameters of interest. This approach is similar to the techniques (e.g. Perturbation Analysis)
presented in section 5.1.2 of this report. In what follows, we simply illustrate the use of such
techniques in the context of the real-time traffic flow allocation problem.

If a single link is present, the critical load value identified earlier becomes A;, = h’ll(l).
Recalling the definitions of f;(-) and h;(-), this implies that when A = A, the accepted flow, A,
is determined from

%lep‘{(xl)] =1

which implies that
-1

AS =1 -PiOA))] (ap‘}]
1~ 1\Vv1 akl

with the right hand side evaluated at A = A_;,. If this system is directly observed, an estimate of
P‘:(ll) can be obtained under any admission policy yielding a flow A,. Suppose that, at the same
time, an estimate of the sensitivity of the delinquency probability with respect to the flow,
(anlall), can also be obtained. Then, one would immediately be able to determine whether the
load threshold point shown in Figure 27 has been reached or not, and hence determine the
optimal flow allocation. Furthermore, in an adaptive sense, flows can be adjusted on-line until the
optimal allocation is found. In many cases, this gradient estimation is accomplisiied without
knowledge of the actual load A or the link capacity u; [23].
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6.2. Two Suboptimal Methods for Routing Real-Time Traffic.

In this section, we consider once again the model of Figure 26 without the admission control part
and with slightly different notation, as shown in Figure 28.

A(1-P)

(1) -
Delinquent
jobs

Figure 28: Routing in N-Server Model

Ideally, our objective is to determine a routing vector @ = (¢y,...,¢y) sO as to minimize the
probability of delinquency, where a job is considered delinquent if it misses its deadline. Let P, be
the probability a packet is delinquent with respect to a deadline of 7, and let T be the system time of
a random packet. Then we define

P,=P{T>1} = 1-F({1)
where F1{(-) is the cumulative distribution of T. We assume that the fixed deadlinet is greater than
the mean E[T] that results from our choice of routing variables. Note that for a problem to be
interesting, T must be large enough to be a realistic deadline, and the assumption would hold.
Clearly, P, depends on the routing vector & since the distribution of T is affected by the amount of

traffic routed to each link. We will refer to P(®D) as the objective function. A formal statement of
the optimization problem is

in P (D
T P4
subject to
N
D=1,
i=1
K

0 < ¢" < 'i", i= 1,,N
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where the last two equations represent the flow conservation constraint, and the requirement that
the routing variables must be non-negative and sufficiently small that the capacity of a link is not
exceeded. Note that although packet flow may not exceed the capacity of a link, it may saturate the
link. Let @*(7) be the routing vector that is optimal with respect to the overall performance
objective P () for deadline 7. Unfortunately, for most systems of interest, the distribution of T,
Fz{(-), is unknown and difficult to estimate, hence the objective function cannot be evaluated, and a
closed-form expression for d*(1) cannot be found. This motivates our effort to determine simpler
performance measures which can still provide "near-optimal" behavior in the sense of minimizing
the probability of delinquency.

Suppose that the first and second moments of T can be found, either by calculation or by
estimation. In addition, assume that T has a finite mean and variance. Then, we define two
performance measures that depend exclusively on the first two moments of T and not on the
distribution itself: (1) the mean system time, which we will denote by

M = E[T],
and (2) the normalized distance of the mean system time from the deadline,

D, = T— E[T],
or
where o‘% is the variance of T. Once again, M and D, depend on @, as does 07. Note that the
performance measure M is independent of the value of the deadline, 7. Using the performance
measures defined above, we can formulate two sub-optimal methods for routing jobs to the N

SErvers:

min M() subject to (2) and (3), (Method 1)
W

max D (®) subject to (2) and (3). (Method 2)

Method 1 is simply the existing approach of minimizing the mean delay of packets. Method 2 is a
new method of maximizing a distance function of the mean and variance.

We define @M and PO(7) to be the routing allocations that are optimal with respect to
performance measures M and D for deadline 7. Then, the issue we investigate is whether P (M)
< PAPP(1)) or vice versa, and the overall accuracy of these suboptimal methods. To do so, define
the fractional error in method 1 as
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PO - PD' (D)
PAD (D)
and, similarly for method 2,

Mg =

PA2P(D)-- P (D)

PAD (1) .
Clearly both AM(7) and AP(7) will be positive for all 7> 0 since P (®P*(1)) is optimal. For a given
7, we desire to use the method producing the smallest error. We have evidence that there is a

AP(7) =

critical 7 above which method 2 has a smaller error, and below which method 1 has less error. In
what follows, we summarize results from two simple system examples for which a complete
analytical solution is available; details of the analysis may be found in APPENDIX V.

Example 1: Two Parallel M/M/1 links:

In this case, the fractional errors AM(7) and AP(7) defined above are plotted in Figure 29 as a
function of the deadline 7. Clearly, there is a critical deadline, 7., above which AP(1) < AM(7) and
below which AM(7) < AP(1); in the figure, we observe that 7. = 10 sec. This example supports our
conjecture above, that method 2 results in better performance when the deadline is above some
critical value.

0.10 -
0.08 -
s 1 M
)
g  0.06- A
il -
=
2= 0.04-
a ]
&
0.02 -
0.00 4

Figure 29: Error Resulting from Sub-Optimal Methods (Example 1)
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Example 2: Three Parallel M/M/1 links:

As before, in Figure 30, the fractional errors, AM(7) and AP(7), are plotted as a function of .
Note that these curves have the same general nature as do the curves in Figure 29. Once again,
there exists a critical deadline, 7. = 6, that divides the graph into regions according to which
method results in the least error.

0.06
0.05
0.04 7

0.03

fractional error
in P

0.02
0.01 7

0.00 -
0 2 4 6 8 10 12

T (sec)
Figure 30: Error Resulting from Sub-Optimal Methods (Example 2)

The examples strongly suggest that Method 2 is a promising approach for implementing real-
time traffic routing algorithms based on a performance measure which does not require the
evaluation of the entire delay distribution of packets. Furthermore, there is substantial validation of
our observations which is based on known results from probability theory. Details are provided in
APPENDIX V.

6.3. Scheduling Policies for Real-Time Traffic.

In most network applications, it is taken for granted that packets should be processed on a First-In-
First-Out (FIFO) basis. This, however, need not be the case for real-time traffic, where, as we
have seen, the objective is to maximize the probability that a customer's system time does not
exceed a given deadline.In fact, it can be explicitly shown that for deadlines that are i.i.d. random
variables with concave cumulative distribution functions, the Last-In-First-Out (LIFO) policy gives
the highest probability of success, and FIFO the lowest, over the class of all work-conserving non-
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preemptive service disciplines that are independent of service time and deadline. This is a general
result, applicable to G/G/1 link models, with extensions possible to policies that allow preemption
in G/M/1 systems, deadlines imposed on queueing (rather than system) time, and multi-server
queues. Details of this work can be found in APPENDIX VI (see also [26]).

We have ample experimental results corroborating the optimality of LIFQ. Figure 31
illustrates these results for a simple M/M/1 queueing model, where packets are characterized by
exponentially distributed deadlines. Here, the probability of packets exceeding their deadlines is
plotted as a function of the traffic load A, with R denoting the packet delay and D its deadline.
Clearly, the FIFO policy not only provides poor performance, but it also results in zero effective
throughput in overload situations. In contrast, LIFO and LIFO-P (preemption allowed) guarantee a
substautial throughput even when the system operates above capacity.

1.0
0.8 1
a |
206
o : LIFO-P
0.4
- ] LIFO
0.2 -
J
FIFO
0.0 ~—T Y = 1
0.0 0.5 1.0 1.5 2.0
A

Figure 31: Comparison of LIFO-P, LIFO, and FIFO Service Disciplines for an MIM/1 Queue with
Exponential Deadlines

A special case of interest arises when packet deadlines are all fixed. It can still be shown that
there exists a critical deadline, 7, such that LIFO is better than FIFO as long as D < 1, i.e.the
LIFO policy provides better performance if the fixed deadline is sufficiently tight.

There are numerous problems and related research that emerges from these basic results. Some
of the issues currently investigated, as well as possible future directions are presented in section 7.
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6.4. Controlling End-to-End Packet Loss in Real-Time Applica-
tions

T
MO~ T O—
transmission link
T
o) ]I[H:m__ buffer node
vor

i
i,

=

deadline
Figure 32: A sample network

High-speed networks of the future will have to adequately handle a range of traffic types,
including real-time traffic such as voice, video and sensor data. This section summarizes
research investigating some approaches that strive to minimize the fraction of packets
delayed more than a given end-to-end deadline. (These late packets are referred to as
delinquent and are assumed to be useless to the receiver.) The algorithm presented works
as a gate at each node in the virtual circuit, removing packets that either will “use up”
their alloted time until delinquency at the node or will have so little time left that their
probability of making it in time to the receiver is very small. Among the many possibilities
of implementing this idea, the simplest removes all packets who will spend more than a
prescribed amount of time, the local deadline, in the node or in the buffer. Removing
such packets eases congestion at the node itself and at all “downstream” nodes and will
be shown to benefit the overall loss rate for a properly set

The section is structured as follows. First, we will evoke in Section 6.4.1. the pertinent
characteristics of high-speed networks, in particular those that distinguish them from wide-
area packet switched networks presently in use. The network and traffic characteristics
also explain why traditional, moment-based performance measures are of limited use (Sec-
tion 6.4.2.). Since we are investigating a tandem link rather than an individual queue and
are also interested in percentiles rather than moments, we have to impose some limitations
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on the model, detailed in Section 6.4.4. Section 6.4.5. briefly summarizes how under these
assumptions the overall loss can be computed.

With systems of this complexity, simulation becomes essential in increasing the con-
fidence in the analysis, indicating how reasonable certain simplifying assumptions indeed
are. Since the simulation result represents only a random sample from the family of all
possible outcomes, confidence intervals are used to assess the reliability of the performance
estimates. As traditional methods face difficulties under the simulation conditions preva-
lent here, the method of spectral estimation, described in Section 6.4.6., was investigated
and shown to offer some advantages.

Two models for individual queues treated in the literature were used to evaluate the
network performance. In the first (Section 6.4.7.), only packets whose system time, that
is their waiting plus service time, would fall below the local deadline are admitted to
the system. In the second model (Section 6.4.8.), only a bound on the waiting time is
imposed. Both models fall under the category of queues with impatient customers and have
traditionally been used to model such systems as banks or post. offices, where customers
do not join a queue if their estimate of the time spent in the service facility exceeds their
tolerance level.

Using the two node models mentioned in the last paragraph, we can show that for
suitable local parameters we can avail ourselves to a substantial (factor two) performance
gain by dropping packets within the network. However, since the optimal paramerer value
depends on the system parameters such as length of the virtual circuit and system load,
Section 6.4.9. concerns itself with the determination of the optimal parameter value ana
presents a promising heuristic.

This part of the report concludes by summarizing the insights gained and outlining
some of the issues that need further study.

6.4.1. Characteristics of Broadband Networks

While most current wide-area data networks operate at transmission speeds of between
4.8 KBits/second to 1.544 MBits/second (T1 rate), it is anticipated that future networks
will offer backbone-bandwidths around 1 Gbits/second, with end-user bandwidths in excess
of 140 Mbits/second. Only optical networks will be able to supply this transport capacity.

The increase in bandwidth and change in transmission media has at least four im-
portant consequences for the analysis and control of data networks. First, in high-speed
networks the propagation delay dominates the transmission delay. For example, a 1000
mile transinission line incurs a delay of approximat :ly 9 milliseconds. At a line speed of
10 kBits/second, a typical ARPAnet packet of 1000 bits occupies the transmitter for 100
ms, while at 100 MBits/second this time reduces to 100 us. Since the packet size will
not increase in proportion to the line speed (it may even be lower for some traffic types,
notably voice), the packet rate also increases dramatically. Traditionally, general-purpose
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computers or programmable communication controllers could easily keep up with incoming
packets, reshaping and processing them as needed. At rates of 100,000 packets a second, all
processing will most likely have to be restricted to whatever can be executed in hardware.
Thirdly, the increased significance of propagation delays combines with the computational
limitations to make centralized control and routing algorithms unattractive or impossi-
ble. By the time a master node has processed the information gathered and returned any
control commands, the load at the node has probably changed drastically. Lastly, opti-
cal fibers incur fewer errors than most other media, making it possible to migrate error
correction to the edges of the network.

Current networks usually carry a single type of traffic, for example voice or data; a
major goal of future highspeed networks is the integration of a number of traffic types
within 2 single switching and transmission network. The traffic types envisioned span the
range from telemetry at several hundred bits per second to high-definition television at
several hundred megabits per second. a dynamic range of six orders of magnitude. For our
purposes, we can divide traffic into two broad-classes, depending on whether it imposes a
bound on the delay, the time between start of transmission at the originating node and
completion of reception and processing at the receiving node, or not.

For a number of traffic types, packets that exceed a certain delay are no longer of
value. Traffic types that fall under this category will be termed real-time and include
voice (telephony, but not voice mail), broadcast video and teleconferencing for the higher
bitrates and telemetry (sensor data and control messages) on the lower end of the spectrum.
Network control messages are also delay-sensitive, but are typically to be delivered as fast
as possible and are often handled out-of-band or with a priority scheme. For voice, the
flow of conversation and echo, caused by acoustical coupling in the handset and impedance
mismatches in the analog parts of the circuit, restrict the permissible delay to about 600
ms and 30 to 40 ms. Echo cancellation circuits are used to extend the echo-imposed
bound to about 300 ms [31]. Causes of delay in a typical voice circuit are summarized in
Figure 33 and can be divided into fixed, system-dependent delays, distance-proportional
delays and variable delays. For most voice coding mechanism, the coding and decoding
delay is fixed, while the propagation delay depends directly on the distance. The total
switching delay depends on the number of intermediate nodes a circuit passes through,
but that delay component remains constant through the duration of a session or call. A
packet suffers vanable delays by being queued waiting for resources, with the amount of
delay depending on the network congestion. This last type of delay distinguishes circuit
from packet switched networks and comprises our primary focus of concern.

For other real-time applications, the delay sources are the same. For teleconferencing,
considerations similar to telephony apply as voice and video need to be synchronized. The
focus shifts slightly in the case of broadcast video, as absolute delays are less important
than delay vanability, as it directly determines the necessary size of the playout buffer at
the receiver. For control applications, delays severely liinit the achievable bandwidth and
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may make systems uncontrollable (see, for example, [27, p. 284f]). Real-time comput-
ing typically involves control applications and thus faces the same restraints, except that
communication delays are replaced by computation delays and packets become tasks.

playout
buffer
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125 pus 15ms
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queueing switching propagation
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H for each hop Pl

Figure 33: Delay budget

6.4.2. Performance Measures

As already discussed in the introduction of Section 6, most of the traditional analysis
and control of data networks was concerned with determining and optimizing mean delay
(or throughput), on occasion measuring higher moments such as the variance. While
this performance measure may be adequate for data circuits, it has very little meauing
for delay-bounded traffic. In the latter case, it does not matter exactly when a packet
reaches its destiration, as long as it does so within the permissible delay window. Thus,
percentiles, the fraction of packets arriving within a given a..ount of time, become the
measure of choice. Since we are typically interested in the low losses, we need to concern
ourselves with the “tail” of the delay distribution rather than its central moment. We will
refer to packets that miss their deadline as delinquent. The fraction of delinquent packets

“will be termed packet loss, while the rate of on-time packet arrivals shall be called goodput.

The first two moments are poor predictors of packet loss or gocdput. As an example,

consider Figure 35, showing the cumulative distribution functions for the exponential
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Figure 34: A virtual circuit with an end-to-end deadline

(dotted line) and log-normal distribution (solid line), both with mean and variance one.
The figure shows that distributions with the same first two moments may have significantly
different percentiles.

6.4.3. Local Queue Control

Broadly speaking, queue control policies can be divided into four classes, listed in
increasing order of information used:

non-rejecting, non-deadline based These policies serve all arriving customers, but not
necessarily in the order of arrival. Examples are standard, infinite-buffer queues with
service first-come, first-served or last-come, first served. Within this class of policies
we can further distinguish between preemptive and non-preemptive policies.

probabilistic rejection Policies of this class randomly reject packets with a fixed prob-
ability, independent of current work or the characteristics of the packet

non-rejecting, deadline based Scheduling jobs with least time until extinction first
falls in this category.

rejection based on measure of virtual work Here, customers are rejected if the work
queued and left in service exceeds a certain threshold. All finite-buffer queues and
queues with impatient customers, such as those described in this report, fall into this
category.
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rejection based on customer deadline A customer that has exceeded or is close to its
deadline is rejected, witk the threshoid possibly depending on the current state of
the queue.

All rejection policies can certainly be combined with different service-order policies.

As pointed out in Section 6.4.1., the characteristics of high-speed fiber optics networks
with diverse traffic impose a number of restraints on any algorithm that works with indi-
vidual packets. The algorithm has to be very parsimonious in computation, distributed
and should work with local information only. In addition, as with any network algorithm,
the amount of information carried in the packet header should be minimal as it transiates
into a direct loss of usable bandwidth.

We are primarily interested in virtual-circuit based networks, where a session is estab-
lished and released explicitly. Many high-bandwidth or high-incidence applications such
as video and voice have a very natural concept of a session. The virtual circuit approach
also reduces the per-packet processing necessary to make routing decisions and is there-
fore favored for high-speed, compute-bound networks. The algorithm presented, however,
could be adapted to datagram-based services by including an estimate of the hop count in
the packet header.

The algorithm described in this report aims to improve global performance, that is
packet loss rate, by applying a local control mechanism. We assume that we are given
a global deadline to be met. This deadline would be typically determined by echo and
buffering considerations, as described above and would comprise the variable, that is traffic-
dependent, part of the total delay budget.

We also assume that a certain packet loss is acceptable and can be compensated for.
Packet loss occurs not only because of missed deadlines, but also because of transmission
impairments resulting in bit errors. (If header bits are corrupted, the whole packet appeats
to be lost.) In real-time applications, retransmissions are not feasible and thus a certain
loss cannot be avoided even without delay variations. (Forward error correction may
reduce this loss, naturally.) Missing data could be ignored, as might be the case for a
digital controller or estimated from previous data, as for voice and video. In the simplest
of estimation algorithms, we assume that everything stays the same and reuse the last
received packet.

It is clear that a packet that is going to expend its alloted end-to-end delay at a single
queue in the virtual circuit stands no chance of beating the end-to-end deadline d and may
as well be discarded at that node before it consumes transmission resources at the node
and all nodes “down stream”. We can also argue that packets that come close to spending
their alloted end-to-end time in a single queue will probably miss the deadline, so that on
average discarding them early will incur a gain for other packets, outweighing the single
loss.

The local control mechanism is designed to be easily implementable in hardware. On
arrival, a packet can easily determine how much time it is going to spend in the system as
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Figure 36: The virtual circuit model

the amount of time spent in a transmitter with buffer feeding a circuit of fixed bandwidth is
directly proportional to the number of bits stored in the buffer. Thus, two possible control
mechanisms are :mmediately apparent. First, a packet can be discarded if the waiting
time, that is the time between arrival and the time the packet enters transmission, exceeds
a certain fixed threshold, here labeled r. In the second approach, we take the packet’s
transmission (service) time into account. In practical terms, on arrival of a packet, the
control mechanism would compare the current number of bits in the buffer to a set threshold
and reject the packet if the threshold is exceeded. For the second approach, the control
mechanism would add the length of the arriving packet to the number of bits already in
the buffer. Since the operation is based on additions and a comparison, a fast hardware
implementation is feasible.

In the queueing theory literature, these models are variously refered to as queues with
bounded waiting or system time, finite queues or queues with impatient customers. Queues
of this type could F= nsed to model the behavior of customers entering a bank or post office,
where customers leav the server without obtaining service if their estimate of the waiting
time exceeds their tolerance level. The number of bits queued that a packet sees on arrival
is termed virtual work.

A number of other queueing-theoretical models could also be applied here. If we raise
the granularity from the bit to the packet level, we arrive at a queue with finite customer
capacity, such as the M/M/1/K queue.
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6.4.4. Modeling Assumptions

Since most real queueing systems, especially networks of queues, are too complex to
yield to simple closed-form solutions, we have two choices. First, we can model a real
system by a system that approximately reflects the important characteristics and yields to
analytical effort. Secondly, we can use bounds which hold for very general systems. Since
these bounds are usually not very tight, we chose the first approach. In this section, we
will summarize the assumptions that we had to make in order to use the model described
and give some indication on how restrictive each assumption is. All of the assumptions are
typical for analysis and also allow comparison with other studies. In general, a we model
a virtual circuit as a tandem queue with the following additional assumptions:

Service time exponentially distributed The service time is drawn from an exponen-
tial distripution with mean 1/u. Other possible choices will be discussed in Section
7.2.

Poisson arrivals Arrivals are assumed to follow a Poisson process, with exponentially
distributed interarrival times with mean 1/A. This assumption is justified if the
number of sources feeding into a single queue is large, with each contributing only
a small fraction of the total traffic. While experimental evidence indicates that this
distribution is a reasonable model for reality for data packet traffic and call arrivals
to a telephone exchange, others traffic types, such as a number of voice sources with
silence detection, are less well served by the Poisson model.

We make this assumption for both the traffic entering the virtual circuit and the
internal traffic. However, even if we grant that the traffic into the first node of the
virtual circuit could be represented by a Poisson process, the output process from
the first queue is certainly not Poisson, since the queue may have discarded packets.
On the other hand, the fraction of packets discarded at every node is typically (in the
cases investigated) less than one percent and thus it can be argued that the process
will be reasonably close to the input process. In addition, it would seem that the
dropping mechanism would eliminate packets in periods of congestion rather than
uniformly. Therefore, the actual performance should be better than that predicted
by the model. In later experiments, moments were measured for the input streams
of all nodes and seen to be very close to those expected for a Poisson process.

Kleinrock assumption The assumption is stated in [30, p. 322] as follows: “Each time
a message i. received at a node within the network, a new length is chosen inde-
pendently” according to the service time distribution. This is clearly in violation
of reality since packets maintain their length as they traverse the network, but it is
claimed in [30] that the effect of the assumption on the performance measure has
been shown to be negligible in most interesting networks.
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No interfering traffic In a real network, each node is part of a large number of virtual
circuits. In the analysis and simulation presented, we concentrate on a single virtual
circuit and model the fact that a circuit does not get the full resources of a node by
scaling the service rate appropriately (see [24]).

The last three assumptions ensure the independence of each node from the other nodes.
For simulation, all assumptions can be dispensed with, however, if the Kleinrock assump-
tion is dropped, interfering traffic has to be introduced explicitly to avoid “pipelining”
effects.

6.4.5. Loss Computation

A packet is considered lost if it is either discarded by any of the M nodes it traverses
or if the total time spent in the virtual circuit exceeds a set, fixed deadline d.
The probability that a packet is not-dropped in any of the M (independent) nodes is

M
Pl4) = [] AJ]

=1

where P;[J] denotes the probability that a packet is admitted to queue i. Note that in
computing Pi] the reduced traffic due to packets dropped in nodes 0,1,...,i — 1 needs to
be taken into account, where X; = Pi_[J]Ai1:

Thus, given that the end-to-end distribution of system time for non-discarded packets
is S(d|J), the total loss probability is by the law of total probabilities

PIL] = (1-S(d4))P{4]+ (1 - Pl4])
= 1-S(d)P[4] (1)

The first equation shows the contribution of dropped and late packets to the total loss.

Since each link is assumed to be independent from all others, the VC quantities of
interest can be computed from the individual queue measures. The arrival probability
P[A] becomes the product of the admittance probabilities, and the end-to-end system
time the convolution of the individual system times.

S(IT) = Sy(t]T) * Sa(t|T) % - - - * Sae(t]J)

In the Laplace domain, the convolution becomes multiplication, resulting in

sty = e { T sz)]

1=1

with £-! representing the inverse Laplace tran<form.
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If the Laplace transform of the waiting time is given, an additional integration step

needs to be introduced:
t
S(tJ) = /o ct {

Similar relations hold for the waiting time.

M
TI ﬁ—y—w:(sl.f)} dt (2)

i=1

6.4.6. Confidence Interval Computation

Simulation was used to gain confidence in the approximations and results presented.
However, determining points on the system time distribution for multinode systems using
simulation is difficult.. Compared to the estimation of means and variances, it is necessary
to run simulations for much longer to gain valid results. As part of the investigation, we
looked into methods yielding quantitative indicators for the necessary length of a simulation
or, given a certain run length, its accuracy.

A simulation is nothing but a statistical experiment, whose outcome represents just
one of the many possible outcomes. A confidence interval estimate is an interval centered
about a point estimate for the performance measure derived in the traditional way. A valid
90% confidence should include the true (but unknown) performance measure in nine out
of ten cases. Classical confidence interval estimation methods assume that the underlying
experiments are independent and normally distributed.

For simulations, the literature offers a number of choices on how to arrive at such ex-
periments. For non-terminating systems, that is, systems with no natural end point in
time, independent replications and batch means are most commonly recommended. All
methods assume that the system measured had reached steady-state, with all transient
effects eliminated. The method of independent replications reruns the experiment a num-
ber of times (typically, between ten and fifty times), each time using a different set of -
random numbers to generate arrival and service instances, and then treats each run as
one experiment. The method has the disadvantage that we have to eliminate the transient
phase from each simulation run, wasting computation time. In addition, there is a tradeoff
between running many short or a few long simulations, with effects on the width of the
confidence interval and the bias of the point estimate. The method of batch means di-
vides a single run into segments, treating each as an independent experiment. Again, the
tradeoff between the number of batches and the length of an individual batch is hard to
quantify. The spectral method, proposed by [29], circumvents the problem by eliminating
the necessity of independent observations. The method computes an estimate of the sam-
ple variance by noting its proportional relationship to the zero point of the power spectral
density. The power spectral density is estimated by the magnitude-square of the Fourier
coefficients. Since the zero point of the Fourier spectrum estimates the mean rather than
the variance, the non-zero Fourier spectrum is extrapolated to the zero point by fitting a
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second-degree polynomial to a smoothed version of the logarithmic spectrum. The method
outlined was implemented as part of the author’s discrete event simulation package and
tested extensively for both single queues and queueing networks. It was shown to give
reliable estimates for the confidence interval. All confidence intervals appearing on graphs
in this report were computed using the spectral method.

6.4.7. Model I: Bounded System Time

In the first model investigated, packets are rejected if their total time in the system,
that is, the time spent waiting plus the time of their own transmission, exceeds a given
local deadline 7. Some analytical results for this queue are given in [25] and [28]. As
part of this work, the missing quantities for a single queue (distribution of virtual waiting
time, density and distribution for system time) were found and simplified expressions for
existing quantities (density of virtual waiting time, Laplace transform of virtual waiting
time) derived. Even after these simplifications, the expression for the Laplace transform
still contains two infinite summations which need to be truncated for practical evaluation.

The evaluation of the end-to-end loss for a single value of the parameter 7 follows the
outline shown in Section 6.4.5.. The computation itself requires between five and fifteen
minutes of MicroVAX CPU time for each value of 7, while the simulation consumes about
two hours of CPU time for one million data packets.

Two system models were investigated. Both models operate in the heavy-traffic area,
with 80% utilization at the first node. Here, the average service rate is normalized o one
unit of work per unit time, while the arrival rate is set to 0.8 units of work per unit time.
The end-to-end deadline in each case was chosen such that without applying any local
control, 5% of the packets entering the virtual circuit are delinquent.

Both cases confirm that simulation and analysis are reasonably close. The difference
can at least be partially explained by a simplifying assumption affecting only the analysis,
but not the simulation. In the simulation, the input stream to node 1 is equal to the output
stream of node ¢ — 1, while the analysis presumes that each input stream is Poisson and
independent of the others.

For the simulation, the length of the transient phase was estimated by plotting the loss
probability for each packet arrival over the first 1000 packet arrivals. The loss probability
was estimated by repeating the experiment one hundred times and smoothing the resulting
data points. A typical result is shown in Figure 39. To be on the safe side, the length
of the transient period was estimated from the data at 2,000 packet arrivals. The erratic
behavior of the curve near the right edge is due to the decreasing window size of the
smoothing algorithm.

The Figure 38 shows that proper choice of the local deadline T can result in a sig-
nificant drop in the end-to-end loss, here from 5% to about 2.5%. As is to be expected,
it is better to err on the side of caution in selecting the local deadline; the overall loss
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rises steeply as the deadline is tightened. The results also show that simnply dividing the
end-to-end deadline, here 78.5, by the number of nodes in the circuit, ten, results in far
too stringent local deadlines.

The above results are confirmed by looking at the case of five nodes, as shown in
Figure 37. Again, the end-to-end loss can be cut in half by applying local control.
As before, the best performance achieved under simulation is slightly better than that
predicted by analysis. On the graph, the confidence intervals around the simulation points
(shown as diamonds) are marked with plus signs and are seen to be sufficiently narrow.
The graph also shows that there is no simple, proportional relationship between the length
of a virtual circuit and the optimal deadline. For ten nodes, the optimal deadline falls at
approximately 20, about 0.25 of the end-to-end deadline, while for five nodes the optimal
deadline is 17 and the factor 0.37. However, the graphs also show that using a single local
deadline of 20 would give near-optimal performance in both cases.

In order to investigate the distortion of the arrival process by the dropping mechanism,
we measured the first three moments of the interarrival time of admitted packets and
compared it to the values of an exponential distribution with the same mean. Here, the
local deadline was set to 7 = 12, that is, more packets than optimal were being dropped in
transit. It can be seen from Table 6.4.1 that the simulation distribution has slightly lower
higher moments than would hold for an exponential distribution, possibly explaining the
better performance observed for the simulation as compared to the analytical prediction.

stage | 1st moment 2nd moment 3rd moment
measured | measured theory | measured theory
1 1.262 3.171  3.185 11.92 12.06
2 1.272 3.207 3.236 12.07 12.35
3 1.282 3.251 3.287 12.33 12.63
4 1.290 3.299 3.328 12.58 12.89
5 1.299 3.333  3.375 12.74 13.15

Table 6.4.1: Moments of interarrival time for five-node network

The control mechanism in model I has a slight “philosophical” disadvantage. Since the
packet’s own service time is figured in the decision of whether to accept or reject it, long
packets stand a slightly lower chance of being admitted than short ones. For the range of
parameters investigated here, the effect is slight since the optimal local deadline is about a
factor of twenty higher than the average packet service time. The second model, presented
below, avoids this problem.
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6.4.8. Model II: Bounded Waiting Time

The second model is a slight modification of the first, in that only the waiting time
of an arriving customer is taken into account. This model was studied by [26], providing
admission probability, density of the waiting time distribution and its first moment. For-
tunately, the waiting time density has a closed-form Laplace transform, with no infinite
summations. However, since the waiting time is a distribution with finite support {that is,
it is strictly zero outside a finite interval), tie transform equation is non-rational, that is,
it contains an exponential term. This innocent-seeming fact has severe repercussions for
the determination of optimal deadlines, as discussed in Section 6.4.9..

The results are similar to the first model and not reproduced here.

6.4.9. Uniqueness of Minimum and Optimal Local Deadline

Based on the experimental evidence and numerical examples, this section investigates
two conjectures concerning the uniqueness and location of the optimal local deadline and
outlines the problems facing a formal proof. Since the Laplace transform expression for
model I contains an infinite summaticn, she product and its inverse (not explicitly deter-
minable) are unwieldy candidates for further analysis. As mentioned, things look brighter
for the second model, as a closed-form solution, in both the transform and time dcmain,
exists. However, it can be shown that the time-domain expression for the end-to-end wait-
ing time in a virtual circuit with M nodes contains on the order of M3 terms of the form
tke~t*+<u(—t +c), with k and c differing from term to term. For M = 10, the exact number
is 440. Additional difficulties arise since the u(—t+ ¢) in each term forces it to zero outside
a certain interval.

Conjecture 1 The function of packet loss vs. local deadline has a unique minimum.

A sufficient condition for the uniqueness of a minimum of a function is its concavity.
(A function is concave if it lies below any straight line connecting any two of its function
values.) It is clear and can be shown from the derivatives (for model II) at zero and infinity
that the function of packet loss with respect to local deadline is not concave. Alternatively,
we could show that the first partial derivative with respect to T has a unique zero — given
the difficulties in deriving an explicit expression discussed above for the inverse of the
Laplace transform a rather unlikely prospect.

Thus, we turn our attention to the more practical issue of finding the optimal 7. In the
following, late loss refers to the fraction of packets that traverse the whole virtual circuit
without being dropped, but miss their end-to-end deadline. The fraction of packets that
are dropped by the control mechanism within the network is called drop loss for short.
The uncontrolled loss is incurred if the network applies no local control.
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Conjecture 2 The optimal local deadline T is approzimately at the intersection of late
loss and drop loss. At that point, drop loss and late loss each contribute half of the total
loss.

If this conjecture holds, an on-line control algorithm to find the optimal local deadline
suggests itself. We can assume that the node at the receiving edge of the network can de-
termine how many packets were lost and late, for example by looking at sequence counters
within the packets. Thus, it could send commands back to the transit nodes to raise or
lower the local deadline until the drop loss equals the late loss.

The proof of this conjecture is even more difficult than showing uniqueness. Since
the relation holds only approximately, we would need general closed-form expressions
parametrized on 7 for the total loss as we. as the loss components. Note that the conjec-
ture does not hold for-a single queue, as the optimal local deadline for a single queue can
easily be shown to be the end-to-end deadline, i.e., all packets that are admitted make the
end-to-end deadlin:; in other words, drop loss is equal to total loss.
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7. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS.

This section summarizes our main conclusions based on the results and observations presented in
sections 2-6, and outlines some ongoing and future resea:ch diractions. Section 7.1 summarizes
our conlusions pertaining to the comparative performance study and issues of gradient estimation
(a more detailed account of these conclueinng was glready prcsenied in secuon «4.7). Section 7.2

presents conclusions and open problems related to multiclass traffic networks.

7.1. Comparative Performance Study.

One of the objectives of the performance study was to compare the gradient-based routing
algorithms with the shortest-path-based ones. If traffic conditions are somewhat stationary,
gradient-based algorithms outperform their shortest path counterparts. The reason for this lies in
the basic nature of their respective operations. While gradient-based algorithms lead (under suitably
chosen parameters) to oscillation-free mean delay characteristics at steady state, shortest path
algorithms are known to suffer from instability problems manifested in the form of oscillations.
The shortest path datagram algorithms, such as the ARPANET algorithm, are prene to oscillations
due to lack of any control mechanism to regulate the traffic adjustments at each update instant. On
the other hand, the CODEX algorithm, which is a shortest path virtual circuit algorithm, displays
oscillatory behavior due to its mechanism of rerouting of virtual circuits. However, we have found
that the CODEX algorithm is less sensitive to rerouting probabilities and rapidly changing traffic
conditions when applied to a large network.

On the other hand, we have found that oscilla.:~r: --re considerably reduced under light load
conditions. Under these conditions, the simplicity or ...ortest path algorithms becomes their main
attractive feature. This is probably why the ARPANET algorithm is still a favorite in light traffic
datagram environments. But, under moderate to heavily loaded conditions it performs very poorly
compared to gradient-based routing algorithms such as Gallager's. This poor performance is
accentuated in networks characterized by links with different capacities.

Under quasistatic conditions, where traffic changes appreciably with the initiation and
termination of source-destimation sessions, a gradient-based algorithm may not be able to adapt to
the changing conditions as rapidly as a shortest path algorithm. The adaptivity of gradient-based
algorithm depends on the step size chosen. There is a tradcoff involved in the choice of this
parameter. While a larger value provides greater adaptivity, a smaller one ensures oscillation-free
convergence to the steady state. Consequently, one has to select an appropriate value depending on
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the specific requirements, leading to the strong argument for mechanisms to dynamically adjust this
step size parameter.

Apart from the issue of steady state oscillations, the other important performance measure is the
nominal mean delay achieved by the algorithm. Gradient-based routing algorithms are designed to
produce optimal mean delays, whereas shortest path algorithms are heuristic in nature with no
guarantee of optimality. This was apparent in our performance comparison study. Under
moderately high load conditions, the mean delay in the ARPANET algorithm was about 20 times
higher than the one obtained through Gallager's algorithm; this difference is much less severe
under lightly loaded conditions. In conuast to the ARPANET algorithm, the CODEX algorithm
does achieve near-optimal mean delays. This is attributed to the fact that the CODEX algorithm
computes shortest paths based on incremental link delays rather than the absolute link delays as in
the case of the ARPANET.

Despite their many attractive features, gradient-based routing algorithms have not yet become
popular in practice. One of the reasons has been the lack of simple and efficient gradient estimation
techniques. However, the use of Perturbation Analysis techniques provides an opportunity for
obtaining good gradient estimates without imposing restrictive modeling assumptions on the
network environment. Moreover, PA estimation does not impose any significant computational
burden making it infeasible under real-time conditions. With the use of such techniques, the future
of gradient-based routing algorithms looks promising, and future research direction could be
directed at further exploring the implementation-related issues for such algorithms.

Another objective of our work was the performance comparison of virtual circuit routing and
datagram routing. We have found that one must take several factors into consideration before
drawing any conclusions relevant to this issue. The nature of traffic conditions in the network is
one such important factor. As was mentioned earlier, under stationary traffic conditions the steady
state performance of the VC-based CODEX algorithm displays oscillatory behavior. This can be
attributed to the VC rerouting mechanism. In fact, any VC-based algorithm incorporaiing a
rerouting mechanism is bound to suffer from the problem of steady state oscillations. On the other
hand, it was seen that the rerouting mechanism is indispensable, since, otherwise, no adaptivity
would be possible. However, we have shown that oscillations can be limited by imposing an upper
bound on the traffic rates of individual VC's. Whether such a constraint is desirable or not is a high
level issue, and a subject for further research.

Virtual circuit routing algorithms are designed to operate in session-oriented environments. As
a result, they are highly adaptive to traffic changes caused by the initiation and termination of
sessions. In contrast, in such changing traffic environments, datagram routing algorithms face
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temporary congestions; the time required to clear such congestions depends on the selection of the
respective algorithm parameters.

While comparing virtual circuits to datagrams, a naturally arising issue is that of resequencing.
This is a potential drawback for datagram networks, since (a) additional processing at the end
nodes is required, and (b) packets experience additional buffering delays at the end nodes. We
have found this additional delay to be insignificant compared to the overall mean sysiem delay.
However, the extra processing requirement may pe a more crucial factor, depending on the
network under consideration.

We have also found that differences in link capacities play a critical role in the ARPANET
algorithm. This may be a significant factor in designing routing algorithms for future networks,
intended to operate in a multi-media environment.

In the context of examining different gradient estiriation techniques for routing algorithms,
some interesting observations were made in section 5. These observations provide insight which is
currently only opening up directions for further research. As we have seen, the key issues relate to
two types of errors introduced by analytical approximations: (a) traffic rate estimation errors which
are magnified in commonly used expressions for mean delay derivatives, and (b) modeling errors,
which force any routing algorithm one might select to higher mean delys. The effect of these
errors, however, may greatly depend on the properties of different arrival and packet transmission
processes, which remain to be investigaied.

7.2. Multiclass Traffic Networks.

Our work thus far has focused on network management issues related to real-time traffi~. We have
shown (section 6.1) that when the performance measure of interest is the probability of losing
packets which exceed a given deadline, it is advantageous to apply filow control that deliberately
rejects part of the incoming traffic. Thus, some packets which might be lost anyway are prevented
from accessing the network, a fact which contributes to increasing the fraction of the accepted
packets making their deadlines. Approaches towards developing explicit algorithms to implement
flow control and routing for the case of n parallel links were presented in section 6.1.3 and 6.1.4.
Because of the complexity of the problem, we have also found that some simpler performance
measures (such as the one presented in section 6.2) can be used to obtain adequate suboptimal
performance.

Our work on flow control and routing of real-time traffic appears to be the point of departure
for a variety of interesting extensions. First, it is possible that our explicit results for the M/M/1
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link models may be extended to more general situations, so as to obtain analytical solutions using
the simple algorithm presented in section 6.1.3. Second, of great interest is the wide applicability
of stochastic gradient estimation and on-line optimization techniques that take advantage of
observed system data with little or no information concerning parameters or distributions involved
in an analytical model. Motivated by the results in [23], we believe that such techniques will indeed
be useful in this framework, in order to develop adaptive schemes for flow control and routing in
networks with real-time traffic.

Another challenging problem concerns the extension of our flow allocation problem for real-
time traffic to the case of dynamic policies, i.e. policies taking into account some system state
information (e.g. instantaneous queue lengths in making link assignments). Our preliminary results
suggest that this is indeed a fruittui area for further research.

In section 6.3, we considered the issue of scheduling real-time packets. Our key result is that
for G/G/1 queues where customers have deadlines drawn from a concave cumulative distribution
function, a LIFO service discipline is optimal over the set of work-conserving non-preemptive
policies that are independent of service demands and deadlines. We also show FIFO to be the
worst policy. In addition, we extend the basic result to policies that allow preemption and to more
general systems.

These results suggest several interesting questions pertaining to the desirable properties of the
LIFO service discipline. For example, we can ask how a LIFO policy compares to a FIFO policy
with state-dependent admission control. There is, in fact, evidence that LIFO can do better even in
this case. Another idea is to make the same comparisons in a system where customers are removed
from the queue as soon as they are detected to have exceeded their deadline. Further, we can
question whether LIFO is optimal for any deadline distributions that do not satify the concavity
constraints.

Regarding our work reported in section 6.4, we have presented a method of improving end-
to-end loss in networks with real-time constraints using a strictly local control policy. The policy
drops those packets at transit nodes that are perceived to have little chance of meeting their end-to-
end deadline, thereby alleviating congestion. The policy is very suitable for hardware
implementation, requires no central control and no exchange of control information.

While the policy investigated thus far seems promising, a number of issues remain to be
resolved, most of which depend on the type of network the policy is to be applied in. It remains to
be investigated how the policy performs under different traffic characteristics (interarrival and
service time distribution and means), as well as for a mix of traffic types and non-uniform virtual-
circuit loading.




The control algorithm for setting the local deadline also poses some interesting questions.
Should 7 be set loczally, without feedback from the receiving end and based on estimates of the
traffic and the knowledge of the VC length encoded in the packet or the VC lookup table? Cr

should the end node measure the magnitude of the loss components and send control messages
back to the transit nodes?

Other policies such as minimum-laxity or last-in, first-out scheduling, can also improve the
end-to-end loss. Does the policy described here do better by itself than other policies or can the
scheduling policies be impioved by selectively dropping packets? We would expect to do better
by incorporating packet-specific information such as time remaining until deadline in the decision

whether to accept it or not. The amount of improvement and possible implementations are still
open questions.
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APPENDIX I

PAPE'S VERSION OF MOORE'S
SHORTEST PATH ALGORITHM
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There are numerous shortest path algorithms available in the literature. Pape's version of the Moore
algorithm [], which is employed in the CODEX routing scheme, is one of the most efficient ones.
In this appendix we present an outline of Moore's algorithm followed by Pape's implementation
methodology. A coded version of the algorithm appears as the subroutine spath in our
implementation given in Appendix II.

Moore's Algorithm
Consider a network with set of nodes X and directed arcs (i,j) having distances d;;. We want to
find the shortest paths from a node to all other nodes. This is done by starting with a set of nodes
containing only the source node i and then applying the following algorithm at each step until this
set becomes a null set (depleted of all elements). Let Sy denote this set in the vth step and DV
the shortest distance from node i to node k obtained at step v.

The initial conditions are :

So={i};
DY =eo, ki
D?i'—'O;

The algorithm is applied for steps v = 1, 2, .... and terminates if Sy = (}.

Atstep v:
D} = min { DY, DY l+dy:1e Sy_g b ke Sy;

Sy={k:keS,, D\ =D%'};

Implementation
The above algorithm can be implemented in various ways. The data structures used for this
purpose to a great extent determines the efficiency. Tae following implementation in the form of a
label correction algorithm [] using a linked list has been found to be the most efficient for different
types of graph structures [].

We start with the linked list containing the source node only and initialize the shortest paths to
D(j) =0 ferj =1, and D(j) = a very large value for any other value of j. While the list is non-
empty, we remove the node at the head of the list and examine all its outgoing links. Let us call this
node h. If there exists a link (h,k) such that

106

]




D(k) > D(h) + length (h,k), then we make the assignment
D(k) = D(h) + length (h,k)

Now if k has been on the list before but is currently not there, it is put at the head of the list. On the
other hand, if it has never been on the list, it is put at the tail of the list.

We keep track of the existence of the node in the list by realizing the list in the form of an array
(one entry for every node). A node entry contains Q if it has never been on the list, -1 if it was on
the list but not currently there or a positive number indicating the next node in the list . For the last
node on the list, the entry is a very large number.

While the above algorithm is executed, we go on updating the table at every node which
contains the next node on the shortest path from itself to every other node in the network.

Example
To make the operation of the above implementation clear, we present an illustrative example.
Consider the network shown below with the link length indicated adjacent to the links.

8

N
H

3 ) 5

2

We want to find the shortest paths from node 1 to all other nodes. As far as routing is concerned,
we should just know the next node to which node 1 may forward a packet depending on the
destination node. So we present below, the node list, the routing assignments at node 1 as
mentioned above, and the distances to other nodes from node 1 as the result of each iteration of the
algorithm.

iteration # 0 iteration # 1
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list: 1

dest  dist
2 inf
3 inf
4 inf
5 inf

list: 3,4
dest  dist
2 1
3 2
4 9

5 inf

iteration # 4

list: 5
dest  dist
2 1
3 2
4 9
5 4

iteration # 6

list : NIL

dest  dist
2 1
3 2
4 8
5 4

Hence the algorithm terminates with the above results in iteration # 6, i.e. to go to any node from
node 1 a packet has to be forwarded to node 2.

next node

next node
2

2
2

next node

NN

next node

NN

list:2,3
dest dist nextnode
2 1 2
3 4
4 inf
5 inf
iteration # 3
list: 4,5
dest dist nextnode
2 1 2
3 2 2
4 9 2
5 4 2
iteration # 5
list: 4
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APPENDIX II

SIMULATION CODE FOR THE CODEX ALGORITHM
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APPENDIX II

The SIMAN files of the coded CODEX algorithm are presented here. Though
several different modifications were made to obtain the results under
different experimental conditions, the codea presented below bring out

the essential features of the algorithm.

MODEL FILE

BEGIN;

STATION,42-47;

FOR REROUT. SCHED

ISPLIT BRANCH, 2:
ALWAYS, INTR: GO FOR REROUTING
ALWAYS,CYCLE; WAIT FOR NEXT TURN
CYCLE DELAY:CO(9) :NEXT(ISPLIT); DELAY BY OBSERV INT.
INTR EVENT:2:DISPOSE; EXEC REROUT PROCEDURE
’
STATION,1-19; APPROP. SD PAIR
PROD EVENT:4; CREATE A PACKET FOR VC
éPLIT BRANCH, 2:
ALWAYS,SYSTEM:
ALWAYS, GEN; ONE TO SYS,ONE TO GEN
GEN DELAY:ED(M) :NEXT(PROD) ; EXP INTERARRIVAL TIME
SYSTEM ASSIGN:A(3)=TF(7,A(1)) :MARK(2),; ASSIGN THE SOURCE
ASSIGN:A(4)=TF(8,A(1)); ASSIGN THE DESTN
ASSIGN:A(5)=DP(8,1); TYPE (LONG/SHORT)
ASSIGN:X(3)=A(3)+19; STN TO ENTER NET
ASSIGN:A(7)=A(3); LAST NODE VISITED
’
ROUTE:0.0,X(3); ENTERS AT SOURCE
STATION,20-25; EACH NODE IS A STATION
BRANCH, 1:
IF, (A(4)+19).EQ.M, REACHED:
ELSE,PROCEED; REACHED DEST OR GO ON ?
’
REACHED EVENT:3;
TALLY:17,INT(2) :DISPOSE; ADD PACK DEL & DISPOSE
’
PROCEED EVENT:1; DET FORWARDING LINK

ROUTE:0.0,J+25;
STATION,26-41:MARK(6);
QUEUE,M-25;
SEIZE:LINK(M-25);
ASSIGN:X(4)=M-25;
ASSIGN:X(6)=TF(9,X(4));
DELAY:X(6)*TF(10,A(5));
RELEASE:LINK(M-25);
BRANCH, 1:

SEND TO CORRECT LINK
EACH LINK IS A STATION
WAIT FOR IDLE LINK
GRAB THE LINK

ASSIGN LINK NO

ASSIGN LINK CAPACITY
PRODUCE LINK DELAY
RELEASE THE LINK




IF, A(5) .EQ. 1, SHT:

ELSE, LNG; CHECK PACKET SIZE LNG
SHT COUNT :M-25:NEXT(CONT) ; INC SHORT COUNT
LNG COUNT :M-9:NEXT(CONT) ; INC LONG COUNT
CONT TALLY:M-25,INT(6); TALLY LINK DELAY
ASSIGN:J=A(7)+19; ASSIGN NEXT NODE
ROUTE:0.0,J; SEND TO THE NODE

END;
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EXPERIMENTAL FILE

BEGIN;

PROJECT,CODEX,B.P. MOHANTY,7/6/88;
DISCRETE,6000,8,16,47;
RESOURCES:1-16,LINK;

ARRIVALS:1,STATION(1),0.0, :2,STATION(2),0.0,1,2:

1,1:2,
3,STATION(3),0.0,1,3:4,STATION(4),0.0,1,4:
5,STATION(5),60000.0,1,5:6,STATION(6),60000.0,1,6:
7,STATION(7),60000.0,1,7:8,STATION(8),60000.0,1,8:
9,STATION(9),120000.0,1,9:10,STATION(10),120000.0,1,10:
11,STATION(11),120000.0,1,11:12,STATION(12),120000.0,1,12:
13,STATION(13),180000.0,1,13:14,STATION(14),180000.0,1,14:
15,STATION(15),180000.0,1,15:16,STATION(16),180000.0,1,16:
17,STATION(17),240000.0,1,17:18,STATION(18),240000.0,1,18:
19,STATION(19),240000.0,1,19:20,STATION(42),0.0,1,20:
21,STATION(43),9000.0,1,21:22,STATION(44),18000.0,1,22:
23,STATION(45),27000.0,1,23:24,STATION(46),36000.0,1,24:
25,STATION(47),456000.0,1,25;

DISTRIBUTIONS:1,EX(1,1):2,EX(2,2):3,EX(3,3):4,EX(3,3):5,UN(4,4):

6,UN(4,4):7,UN(5,5):8,EX(6,6):9,EX(3,3):10,EX(3,3):
11,EX(2,2):12,EX(3,3):13,EX(7,7):14,EX(7,7):15,EX(7,7):
16 ,BX(7,7):17,UN(5,5):18,UN(4,4):19,EX(6,6);

PARAMETERS:1,60.0:2,200.0:3,300.0:4,80,100:5,60,80:6,70.0:7,90.0:

8,0.2,1,1.0,2:9,56000:10,250000:11,2000:12,0.05,1,0.1,2,
0.15,3,0.20,4,0.25,5,0.3,6,0.35,7,0.4,8,0.45,9,0.5,10,
0.55,11,0.6,12,0.65,13,0.7,14,0.75,15,0.8,16,0.85,17,
0.9,18,0.95,19,1.0,20;

TABLES:1,1,1,0,1,2,0,0,3:
2,1,1,0,0,4,5,0,6:
3,1,1,7,0,0,8,0,0:
4,1,1,0,9,10,0,11,0:
5,1,1,0,0,0,12,0,13:
6,1,1,14,15,0,0,16,0:
7,1,1,1,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6:
8,1,1,3,4,5,6,1,5,6,1,2,5,1,3,6,1,2,3,1,2,4:
9,1,1,1,1,5.83,0.78,5.83,5.83,1,1,0.78,1,0.78,5.83,1,0.78,1,1:
10,1,1,2.29,18.29:
11,1,1,0,5,8,11,14,17
12,1,1,0,0,9,0,15,18:
13,1,1,1,0,0,12,16,0:
14,1,1,2,0,0,0,0,19:
15,1,1,3,6,10,0,0,0:
16,1,1,4,7,0,13,0,0:
17,1,1,60,200,300,300,90,90,70,70,300,300,200,300,90,90,90,90,
70,90,70;
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TALLIES:1,LNK 1 TO 2 DEL:2,LNK 1 TO 3 DEL:3,LNK 1 TO 6 DEL:
4,LNK 2 TO 3 DBL:5,LNK 2 TO 4 DEL:6,LNK 2 TO 6 DEL:
7,LNK 2 TO 1 DEL:S,LNK 3 TO 4 DEL:9,LNK 4 TO 2 DEL:
10,LNK 4 TO 3 DEL:11,LNK 4 TO 5 DEL:12,LNK 5§ TO 4 DEL:
13,LNK 5 TO 6 DEL:14,LNK 6 TO 1 DEL:15,LNK 6 TO 2 DEL:
16,LNK 6 TO 5 DEL:17,NETWORK DELAY;

COUNTERS:1,LNK 1 TO 2 STRAF:2,LNK 1 TO 3 STRAF:3,LNK 1 TO 6 STRAF:
4,LNK 2 TO 3 STRAF:5,LNK 2 TO 4 STRAF:6,LNK 2 TO 6 STRAF:
7,LNK 3 TO 1 STRAF:8,LNK 3 TO 4 STRAF:9,LNK 4 TO 2 STRAF:

10,LNK 4 TO 3 STRAF:11,LNK 4 TO § STRAF:12,LNK 5 TO 4 STRAF:
13,LNK § TO 6 STRAF:14,LNK 6 TO 1 STRAF:15,LNK 6 TO 2 STRAF:
16,LNK 6 TO 5 STRAF:17,LNK 1 TO 2 LTRAF:18,LNK 1 TO 3 LTRAF:
19,LNK 1 TO 6 LTRAF:20,LNK 2 TO 3 LTRAF:21,LNK 2 TO 4 LTRAF:
22,LNK 2 TO 6 LTRAF:23,LNK 3 TO 1 LTRAF:24,LNK 3 TO 4 LTRAF:
28,LNK 4 TO 2 LTRAF:26,LNK 4 TO 3 LTRAF:27 LNY” 4 TO 5 LTRAF:
28,LNK § TO 4 LTRAF:29,LNK 5§ TO 6 LTRAF:30,LNK 6 TO 1 LTRAF:
31,LNK 6 TO 2 LTRAF:32,LNK 6 TO 5 LTRAF;

REPLICATE,100,0,56000,N0;
END;
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DISCRETE EVENT MODEL FILE

C A must in any discrete event model file; initializes every run
SUBROUTINE PRIME

C Declaration of common variables, both SIMAN as well as user defined

COMMON/SIM/D(SO) DL(50),S8(50),SL(50),X(50),LtNOW, TNOW,
TFIN, J,NRUN

COMMON/NETVAR/nodes,ives,link(10,19),idfor(10,10),ivfor(400,10),
x dellnk(10,10),rsp(10,10),rlp(10,10),edel(10,10),
b 4 iveflg(400),vest(400),rscnt(400),rlent(400),npt
DIMENSION rlen(10,10),ifor(10,10),dsrt(10,10)

IF (NRUN .EQ. 1) THEN

C init last update time X(1), rerouting prob X(7), no. of VC components
npt

X(1) = 0.0
X(7) = 0.0
npt = 20

5

C open files to store results of interest

OPEN(UNIT=9,FILE="result.dat’,STATUS='UNKNOWN')
REWIND(9)

WRITE(9,%) ' NRUN AVG.DEL’ ,X(7)
CLOSE(9)

OPEN(UNIT=10,FILE='topo.dat’,STATUS='OLD’)
READ(10,%) nodes
READ(10,%) ives
DO 10, i = 1,nodes
REBAD(10,%) (link(i,k),k = 1,nodes)
10 CONTINUE
CLOSE(10)

C initialize datagram routing assignments

DO 20, i = 1,nodes
DO 20, k = 1,nodes
ifor(i,k) = 0
rlen(i,k) = link(i,k)
20 CONTINUE

CALL spath(rlen,ifor,dsrt)




DO 25, i = 1,nodes
DO 25, k = 1,nodes
idfor(i,k) = ifor(i,k)
25 CONTINUE

C initialize VC related parameters and routing assignments

DO 30, i = 1l,ivecs
DO 30, ln = 1,npt
iveflg((i-1)*npt+ln) = O

rscnt((i-1)*npt+ln) = O

rlent((i-1)*npt+ln) = O

vO 30, k = 1,nodes
ivfor((i-1)*npt+ln,k) = 0

id = TF(8,REAL(i))
ivfor((i-1)*npt+ln,k)
30 CONTINUE

idfor(k,id)

ENDIF
RETURN

END
C directs different events to their corresponding subroutines

SUBROUTINE EVENT(L,I)

IF (I .EQ. 1) THEN
CALL EV1(L)

ELSEIF (I .EQ. 2) THEN
CALL EV2(L)

ELSEIF (I .EQ. 3) THEN
CALL EV3(L)

ELSEIF (I .EQ. 4) THEN
CALL EV4(L)

ENDIF

RETURN
END
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C determines the outgoing link according to routing assignments

SUBROUTINE EV1(L)
COMMON/SIM/D(50) ,DL(50),S(50),SL(50),X(50),DTNOW, TNOW,

X TFIN,J,NRUN

COMMON/NETVAR/nodes,ivee,1link(10,10),idfor(10,10),ivfor(400,10),
p dellnk(10,10),rsp(10,10),rlp(10,10),edel(10,10),
X iveflg(400C;,vcst(400),rscnt(400),rlent(400),npt

C determine the last node
i = A(L,7)
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C find the next node and hence the link number from tables first for
C datagram packets and then for VC packets depending on their lengths

IF (A(L,5) .EQ. 1) THEN
A(L,4)
idfor(i,k)
REAL(n)

L SETA(L,7,r)
TF(i,r)

A

necuwan

ELS
(A(L,1)-1)snpt + A(L,8)
ivfor(k,i)

REAL(n)

L, SETA(L,7,r)

TF(i,r)

A

neuw

HLOQ B FRWOR B3 X

tx
z
-l

F

RETURN
END

(2 P P P P2 P P 2 P R R PP P S R R PR PR TSR P RS RN R R TR E
C execute the rerouting procedure according to CODEX algorithm

SUBROUTINE EV2(L)

COMMON/SIM/D(50),DL(50),S(50),SL(50),X(50),DTNOW, TNOW,

TFIN,J,NRUN

COMMON/NETVAR/nodes,ives,1link(10,10),idfor(10,10),ivfor(400,10),
X dellnk(10,10),rsp(10,10),rlp(10,10),edel(10,10),
p iveflg(400),vest(400),rscnt(400),rlent(400) ,npt

DIMENSION 1flag(10,10),vlen(10,10),iuvfor(10,10),uvsrt(10,10)
C for each source-destination pair determine the VC no.

In = A(L,1) - 19
IF (NRUN .GT. 1) THEN
DO 20, iv = 1,nodes
nsd = TF(1n+10,REAL(iv))
DO 20, lc = 1,npt
IF ({(nsd .NE. 0) .AND.
x ({RA(10) .LE. X(7))) THEN
k = (nsd-1)%npt + lc
IF ((iveflg(k) .EQ. 1) .AND.
3 { (TNOW - vecst(k)) .GE. 10000)) THEN
P = REAL(nsd)
is = TF(7,p)
id = TF(8,p)

C find the VC loads in terms of short and long packets respectively
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rscnt(k) / (TNOW - vecst(k))

rspve
rlent(k) / (TNOW - vest(k))

rlpve

C assign link lengths to the links used by the VC. links indicated by
C setting 1flag(link) to 1 from 0 as you go from source to dest.

DO 35, i i,nodes
DO 35, n 1,nodes
1flag(i,n) = O
35 CONTINUR

itmpl = is
itmp2 = ivfor(k,itmpl)
150 IF (edel(itmpl,itmp2) .LT. 0) THEN
vlien(itmpl,itmp2) = 100000
ELSE
im = TF(itmpl,REAL(itmp2))
rm = REAL(im)
costwi = edel(itmpl,itmp2)
flow = (rsp(itmpl,itmp2)-rspvc)s*TF(10,1.0) +
X (rlp(itmpl,itmp2)~-rlpvc)*TF(10,2.0)
costwo = flow / ((1/TF(9,rm))~-flow)
vlen(itmpl,itmp2) = costwi - costwo
IF (vlen(itmpl,itmp2) .GT. 100000) THEN
vlen{(itmpl,itmp2) = 100000
ENDIF
ENDIF
1flag(itmpl,itmp2) = 1
IF (itmp2 .NE. id) THEN
itmpl = itmp2
itmp2 = ivfor(k,itmp2)
GOTO 150
ENDIF
C assign link lengths to other links not used by the current VC
DO 40, i = l,nodes
DO 40, n = 1, nodes
IF ({link(i,n) .EQ. 1) .AND.
X (1flag(i,n) .EQ. 0)) THEN
im = TF(i,REAL(n))
rm = REAL(im)
IF (edel(i,n) .LT. O0) THEN
vien(i,n) = 100000
ELSE
flow = (rsp(i,n)+rspvc)xTF(10,1.0) +
x (rlp(i,n)+rlpvc)sTF(10,2.0)
costwi = flow /7 ((1/TF(9,rm))-flow)
iF (cuatwi .LT. 0) THEN
vien(i,n) = 100000

ELSE
costwo = edel(i,n)
vlen(i,n) = costwi-costwo

IF (vlen(i,n) .GT. 100000) THEN
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vlen(i,n) = 100000
ENDIF
ENDIF
ENDIF
ENDIF
40 CONTINUE
C execute the shortest path algorithm

CALL spath(vlen,iuvfor,uvsrt)

C find the current length of the VC

itmpl = is 1
itmp2 = ivfor(k,is)
curln = 0.0
350 curln = curln + vlien(itmpl,itmp2)
IF (itmp2 .NE. id) THEN
itmpl = itmp2
itmp2 = ivfor(k,itmp2)
GOTO 350
ENDIF

C if new length < current length, update VC routing assignments for the
Cc vC

IF (uvsrt(is,id) .LT. curln) THEN
' itemp = is
300 IF (itemp .NE. id) THEN

ivfor(k,itemp) = iuvfor(itemp,id)
itemp = iuvfor(itemp,id)
GOTO 300
ENDIF

ENDIF

ENDIF
ENDIF

20 CONTINUE
ENDIF

RETURN
(2232322338222 2 2232202222223 203

C do book keeping at the dest. when a packet reaches i.e. inc counter
SUBROUTINE EV3(L)

COMHON/SIM/D(SO) DL(50),8(50),8L(50),X(50),DTNOW,TNOW,
TFIN,J,NRUN

COHMON/NETVAR/nodes ives,link(10,10),idfor(10,10),ivfor(400,10),

z dellnk(lO,lO).rsp(10,10),rlp(lO,lO),edel(lO,lO),

z iveflg(400),vcat(400),rscnt(400),rlcnt(400),npt

C depending on the length of the packet increment appropriate counter
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k = (A(L,1)-1)*npt + A(L,8)
IF (A(L,5) .EQ. 1) THEN
rscnt(k) = rscnt(k) + 1
ELSE
rlent(k) = rlent(k) + 1
ENDIF

RETURN
END
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C does initializations when a VC is set up and also when a packet is C
created

SUBROUTINE EV4(L)

COMMON/SIM/D(SO) DL(50),S(50),SL(50),X(50),DTNOW, TNOW,
TFIN, J,NRUN
COMMON/NETVAR/nodes,lvcs link(10,10),idfor(10,10),ivfor(400,10),
dellnk(10,10),rsp(10,10),rlp(10,10),edel(10,10),
t iveflg(400), vcst(400) rscnt(400),rlcnt(400),npt

DIMENSION vlen(10,10),iuvfor(10,10),uvsrt(10,10)
C assign correct destination and VC no.

nsd = A(L,1)

p = DP(12,2)

CALL SETA(L,8,p)

k = (nsd-1)*npt + A(L,8)

C if a new VC, set the active flag, assign load estimates, start time

IF (iveflg(k) .EQ. 0) THEN
iveflg(k) = 1
vest(k) = TNOW

IF (NRUN .GT. 1) THEN
is = TF(7,RERAL(nsd))
id = TF(8,REAL(nsd))
rspvec = 0
rlpve (1/TF(17,REAL(ned))) % 0.8 / npt

C find the routing assignments for the new VC

DO 40, i = 1l,nodes
DO 40, n = 1, nodes
IF (link(i,n) .EQ. 1) THEN
im = TF(i,REAL(n))
rm = REAL(im)
IF (edel(i,n) .LT. O) THEN
vlen(i,n) = 100000
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ELSE
flow = (rap(i,n)+rspvc)sTF(10,1.0) +
x (rlp(i,n)+rlpvec)sTF(10,2.0)
costwi = flow / ((1/TF(9,rm))-flow)
IF (costwi .LT. 0) THEN
vlen(i,n) = 100000

ELSE
costwo = edel(i,n)
vlen(i,n) = costwi-costwo

IF (vlen(i,n) .GT. 100000) THEN
vlen(i,n) = 100000

ENDIF
ENDIF
ENDIF
ENDIF
40 CONTINUE
45 CONTINUE

CALL spath(vlen,iuvfor,uvsrt)

itemp = is
300 IF (itemp .NE. id) THEN
ivfor(k,itemp) = iuvfor(itemp,id)
itemp = iuvfor{itemp,id)
GOTO 300
ENDIF
ENDIF

ENDIF

RETURN
END
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C does the book keeping and parameter updating relevant to end of a run

SUBROUTINE WRAPUP

COMMON/SIM/D(50),DL(50),8(50),8L(50),X(50),DTNOW, TNOW,

£ TFIN,J,NRUN
COMMON/NETVAR/nodes,ives,1link(10,10),1idfor(10,10),ivfor(400,10),
J dellnk(10,10),rsp(10,10),rlp(10,10),edel(10,10),
| iveflg(400),vcst(400),rscnt(400),rlcnt(400),npt

DIMENSION cost(10,10),iuvfor(10,10),uvsrt(10,10)
C store results of interest in corresponding files

OPEN(UNIT=9,FILE='result.dat’,STATUS='OLD’)

80 READ(9, %,END=90)
GOTO 80

90 WRITE(9,%) NRUN,'’ ', TAVG(17)
CLOSE(9)
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C determine lnk flows and datagram routing assignments as per CODEX
C alg

DO 10, i = 1l,nodes
DO 10, 1ln = 1l,nodes
IF (link(i,ln) .EQ. 1) THEN
k = TF(i,REAL(1ln))
P = REAL(k)
dellnk(i,ln) = TAVG(k)
rsp(i,ln) = NC(k) / (TNOW-X(1))
rlp(i,1ln) = NC(k+16) / (TNOW-X(1))
flow = rsp(i,1ln)*TF(10,1.0) + rlp{(i,ln)*TF(10,2.0)
edel(i,1ln)= flow / ((1/TF(9,p))-flow)
IF (edel(i,ln) .LT. 0) THEN

cost(i,ln) = 100000
ELSE

.cost(i,ln) = edel(i,ln)
ENDIF
ENDIF

10 CONTINUE
17 CONTINUE

CALL spath(cost,iuvfor,uvsart)
15 CONTINUE

C update the last updating time

X(1) = TNOW
RETURN
END
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C computes shortset paths from every node to every other node given the
C link length assignments

SUBROUTINE spath(length,for,sroute)

COMMON/NETVAR/nodes,ivcs link(10,10),idfor(10,10),ivfor(400,10},
dellnk(10,10),rsp(10,10),rlp(10,10),edel (10,10},
t iveflg(400),vest(400),rsent(400),rlent(400),npt

REAL length(10,10),sroute(10,10)

C local vars
INTEGER for(10,10),temp,head,first,last,top,list(10)

C initialize
DO 10, i = 1,nodes
DO 10, j = 1,nodes
for(i,Jj) = 0
sroute(i,j) = 3000000.0
10 CONTINUER
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DO 15, i = 1,nodes
sroute(i,i) = 0.0
15 CONTINUE
C alg for each source
DO 20, 1 = 1l,nodes
DO 30, j = 1l,nodes
list(j) = 0
30 CONTINUE

500 DO 40, j = 1l,nodes
IF ((link(head,j) .EQ. 1) .AND. (head .NE. j)) THEN
IF (sroute(i,head)+length(head,j) .LT. sroute(i,j)) THEN
sroute(i,j) = sroute(i,head) + length(head,Jj)
C set forwarding nodes
for(i,j) = for(i,head)
IF (head .GE. i) THEN
for(head,j) = J
ENDIF
C j, new node to tail
IF ((j .NE. last) .AND. (list(Jj) .EQ. 0)) THEN
iist(last) =
. last = j
ELSE
IF (list(j) .EQ. -1) THEN
IF (list(head) .GT. 0) THEN
list(j) = list(head)
ENDIF
list(head) = J
ENDIF
ENDIF
ENDIF
ENDIF
DO §, k = 1,nodes
5 CONTINUE
40 CONTINUE
temp = head
head = list(head)
list(temp) = -1
first = head
DO 8, k = 1,nodes

8 CONTINUE

20 CONTINUE
RETURN
END




APPENDIX III

SIMULATION CODE FOR THE ARPANET ALGORITHM
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This appendix

Models. The

Model file,

APPENDIX III

contains the sgimulation codes for the standard ARPANET
algorithm.This was implemented in SIMAN with FORTRAN Discrete Event

file are presented below.

MODEL FILE

BEGIN;

SPLIT

GEN

SYSTEM

-

)
REACHED

?
PROCEED

SHT
LNG
CONT

STATION, 1-19;

BRANCH, 2:
ALWAYS,SYSTEM:
ALWAYS, GEN;

DELAY:ED(M) :NEXT(SPLIT);

ASSIGN:A(3)=TF(7,A(1)) :MARK(2);

ASSIGN:A(4)=TF(8,A(1));

ASSIGN:A(5)=DP(8,1);

ASSIGN:X(3)=A(3)+19;
LASSIGN:A(7)=A(3);

ROUTE:0.0,X(3);

STATION, 20-25;
BRANCH, 1:

IF, (A(4)+19).EQ.M, REACHED:

ELSE, PROCEED;

TALLY:17,INT(2) :DISPOSE;

EVENT:1;
ROUTE:0.0,J+25;
STATION,26-41:MARK(6) ;
QUEUE,M-25;
SEIZE:LINK(M-25);
ASSIGN:X(4)=M-25;
ASSIGN:X(6)=TF(9,X(4));
DELAY:X(6)%xTF(10,A(5));
RELEASE:LINK(M-25);
BRANCH, 1:

IF, A(5) .EQ. 1, SHT:

ELSE, LNG;
COUNT :M-25:NEXT(CONT) ;
COUNT :M-9 :NEXT(CONT) ;
TALLY:M-25,INT(6);
ASSIGN:J=A(7)+19;
ROUTE:0.0,J;
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the Experimental file and the Discrete Event

APPROP. SD PAIR

ONE TO SYS,ONE TO GEN
EXP INTERARRIVAL TIME

ASSIGN THE SOURCE
ASSIGN THE DESTN
ASSIGN TYPE(LNG/SHT)
ASSIGN STN TO ENTER

PACKET ENTERS AT SOURCE

EACH NODE IS A STATION

REACHED DEST OR GO ON ?

ADD PACK DEL & DISPOSE

DET FORWARDING LINK
SEND TO CORRECT LINK
EACH LINK IS A STATION
WAIT FOR IDLE LINK
GRAB THE LINK

ASSIGN LINK NO

ASSIGN LINK CAPACITY
PRODUCE LINK DELAY
RELEASE THE LINK

COUNT SHORT PACKETS
COUNT LONG PACKETS
TALLY LINK DELAY

SEND TO THE NODE




EXPERIMENTAL FILE

BEGIN;

PROJECT,CODEX,B.P. MOHANTY,5/4/89;
DISCRETE, 8000,7,16,41;
RESOURCES:1-16,LINK;

ARRIVALS:1,STATION(1),0.0,1,1:2,STATION(2),0.0,1,2:
3,STATION(3),0.0,1,3:4,STATION(4),0.0,1,4:
5,STATION(5),1000.0,1,5:6,STATION(6),1000.0,1,6:
”,STATION(7),1000.0,1,7:8,STATION(8),1000.0,1,8:
9,STATION(9),2000.0,1,9:10,STATION(10),2000.0,1,10:
11,STATION(11),2000.0,1,11:12,STATION(12),2000.0,1,12:
13,STATION(13),3000.0,1,13:14,STATION(14),3000.0,1,14:
15,STATION(15),3000.0,1,15:16,STATION(16),3000.0,1,16:
17,STATION(17),4000.0,1,17:18,STATION(18),4000.0,1,18:
19,STATION(19),4000.0,1,19; ARRIVALS ON 19 STREAMS

DISTRIBUTIONS:1,EX(1,1):2,EX(2,2):3,EX(3,3):4,EX(3,3):
5,UN(4,4):6,UN(4,4):7,UN(5,5):8,EX(6,6):
9,EX(3,3):10,EX(3,3):11,EX(2,2):12,EX(3,3):
13,EX(7,7):14,EX(7,7):15,EX(7,7):16,EX(7,7):
17,UN(5,5):18,UN(4,4):19,EX(6,6);

; ARRIVAL DISTRIBUTIONS

PARAMETERS:1,60.0:2,200.0:3,300.0:4,80.0,100.0:5,60.0,80.0:
6,70.0:7,90.0:8,0.2,1,1.0,2; DISTRIBUTION PARAMETERS

SEEDS:1,2342,NO0:2,56876,NO:3,35441,N0:4,7423,NO:5,95643,NO:
6,41876,N0O:7,58945,NO; RANDOM NO. GENERATOR SEEDS

TABLES:1,1,1,0,1,2,0,0,3:
2,1,1,0,0,4,5,0,6:
3,1,1,7,0,0,8,0,0:
4,1,1,0,9,10,0,11,0:
5,1,1,0,0,0,12,0,13:
6,1,1,14,15,0,0,16,0:
7,1,1,1,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6:
8,1,1,3,4,5,6,1,5,6,1,2,5,1,3,6,1,2,3,1,2,4:
9,1,1,1,1,5.83,0.78,5.83,5.83,1,1,0.78,1,0.78,
5.83,1,0.78,1,1:
10,1,1,2.29,18.29;

TALLIES:1,LNK 1 TO 2 DEL:2,LNK 1 TO 3 DEL:3,LNK 1 TO 6 DEL:
4,LNK 2 TO 3 DEL:5,LNK 2 TO 4 DEL:6,LNK 2 TO 6 DEL:
7,LNK 3 TO 1 DEL:8,LNK 3 TO 4 DEL:9,LNK 4 TO 2 DEL:
10,LNK 4 TO 3 DEL:11,LNK 4 TO 5 DEL:12,LNK § T™ 4 DEL:
13,LNK 5 TO 6 DEL:14,LNK 6 TO 1 DEL:15,LNK 6 TL 2 DEL:
16 ,LNK 6 TO 5 DEL:17,NETWORK DELAY;
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COUNTERS :1,LNK
3,LNK
5,LNK
7,LNK
9, LNK
11,LNK
13, LNK
15,LNK
17,LNK
19,LNK
21,LNK
23,LNK
25,LNK
27,LNK
29,LNK
31,LNK

W N e

AN AR WN- =00

TO 2
TO 6
TO 4
TO 1
TO 2
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO

OO~ ERANNDOON

STRAF:2,LNK 1 TO 3 STRAF:
STRAF:4,LNK 2 TO 3 STRAF:
STRAF:6,LNK 2 TO 6 STRAF:
STRAF:8,LNK 3 TO 4 STRAF:
STRAF:10,LNK 4 TO 3 STRAF:

STRAF:12,LNK
STRAF:14,LNK
STRAF:16,LNK
LTRAF:18,LNK
LTRAF:20,LNK
LTRAF:22,LNK
LTRAF:24,LNK
LTRAF:26,LNK
LTRAF:28,LNK
LTRAF:30,LNK
LTRAF:32,LNK

REPLICATE, 100,0,10000,NO;

END;
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TO
TO
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TO
TO
TO
TO
TO
TO
TO
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STRAF:
STRAF:
STRAF:
LTRAF:
LTRAF:
LTRAF:
LTRAF:
LTRAF:
LTRAF:
LTRAF:
LTRAF;




DISCRETE EVENTS FILE

SUBROUTINE PRIME

COMMON/SIM/D(50),DL(50),S(50),SL(50),X(50),DTNOW, TNOW,
TFIN,J,NRUN

COMMON/NETVAR/nodes,link(10,10),idfor(10,10),dellnk(10,10),
edel(10,10),thold(10,10)

DIMENSION rlen(10,10),ifor(10,10),dsrt(10,10)

IF (NRUN .EQ. 1) THEN

C Perform all initializations
C set run time = 0.0

X(1) = 0.0

C Open result file and read network data from the topology file

10

OPEN(UNIT=9,FILE="result.dat’,STATUS='UNKNOWN’)
REWIND(9) .

WRITE(9,x) ' NRUN AVG.DEL’ ,X(T7)
CLOSE(9)

OPEN(UNIT=10,FILE='topo.dat’,STATUS='OLD’)
READ(10,%) nodes
READ(10,%) ivecs
DO 10, i = 1,nodes

READ(10,%) (link(i,k),k = 1,nodes)
CONTINUE
CLOSE(10)

C Initialize linl delays and thresholds

15

DO 15, i = 1,nodes
DO 15, k = 1l,nodes
edel(i,k) = 0.0
thold(i,k) = 0.0
CONTINUE

C "nitialize nodal routing tables

0

20

DO 20, i = 1,nodes
DO 20, k = 1,nodes
ifor(i,k) = 0
il = TF(i,REAL(k))
rl = REAL(il)

rlen(i,k) = TF(9,rl)
rlen(i,k) = link(i,k)
CONTINUE

127




CALL spath(rlen,ifor,dsrt)

DO 25, i = 1,nodes
DO 25, k = 1,nodes
idfor(i,k) = ifor(i,k)
25 CONTINUE

ENDIF
RETURN
END
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SUBROUTINE EVENT(L,I)
IF (I .EQ. 1) THEN
CALL -EV1(L)
ENDIF

RETURN
END
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C Determine the outgoing link on which the packet is to be sent
SUBROUTINE EV1(L)
CbMMON/SIM/D(SO),DL(50),S(50),SL(50),X(SO),DTNOW,TNOW,

TFIN, J,NRUN
COMMON/NETVAR/nodes,1ink(10,10),idfor(10,10),dellnk(10,10),

x edel(10,10),thold(10,10)
i = A(L,T7)
k = A(L,4)
n = idfor(i,k)
r = REAL(n)
CALL SETA(L,7,r)
J = TF(i,r)
RETURN
END
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SUBROUTINE WRAPUP

COMMON/SIM/D(50),DL(50),S8(50),SL(50),X(50),DTNOW, TNOW,
x TFIN,J,NRUN
COMMON/NETVAR/nodes,link(10,10),idfor(10,10),dellnk(10,10),
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X edel(10,10),thold(10,10)
DIMENSION cost(10,10),iuvfor(10,10),uvsrt(10,10)
C Write the mean delay result into the file

OPEN(UNIT=9,FILE="result.dat’,STATUS="OLD’)

80 READ(9, x,END=90)
GOTO 80

90 WRITE(9,%) NRUN,’ ', TAVG(17)
CLOSE(9)

DO 10, i = 1,nodes
DO 10, 1n = 1,nodes

C Update the link lengths i.e. link delays

IF (link(i,ln) .EQ. 1) THEN

k = TF{(i,REAL(1ln))

dellnk(i,1ln) = TAVG(k)

IF (dellnk(i,ln) .EQ. 0) THEN
dellnk(i,ln)=TF(9,REAL(k))*(0.2%2.29+0.8%18,29)

ENDIF

C Threshold mechanism to decide whether to update or not

IF (ABS(dellnk(i,ln)-edel(i,ln)) .GE.
x thold(i,1ln)) THEN
edel(i,ln) = dellnk(i,1ln)
thold(i,ln) = 64.0
ELSE
thold(i,1ln) = thold(i,ln) - 12.8
ENDIF

IF (edel(i,ln) .LT. 0) THEN
cost(i,ln) = 100000
ELSE
cost(i,ln) = edel(i,ln)
ENDIF
ENDIF
10 CONTINUE

C Comput shortest paths
CALL spath(cost,iuvfor,uvsrt)
C Update the routing tables
DO 15, i = 1,nodes
DO 15, 1n = 1, nodes
idfor(i,1ln) = iuvfor(i,ln)
15 CONTINUE
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C Set the run time to its new value
X(1) = TNOW

RETURN
END
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SUBROUTINE spath{(length, for,sroute)
COMMON/NETVAR/nodes,1ink(10,10),idfor(10,10),dellnk(10,10),

x edel(10,10),thold(10,10)

REAL length(10,10),sroute(10,10)

C local vars
INTEGER for(10,10),temp,head,first,last,top,list(10)
C initialize
DO 10, i = 1,nodes
DO 10, j = 1,nodes
for(i,j) = 0
sroute(i,j) = 3000000.0
10 CONTINUE
DO 15, i = 1,nodes
sroute(i,i) = 0.0
15 CONTINUE

C alg for each source

DO 20, i = 1,nodes
DO 30, jJ = 1,nodes
list(j) = 0
30 CONTINUE
last = i
head = i

500 DO 40, j = 1,nodes
IF ((link(head,j) .EQ. 1) .AND. (head .NE. j)) THEN
IF (sroute(i,head)+length(head,j) .LT. sroute(i,j))
THEN
sroute(i,j) = sroute(i,head) + length(head, j)
C set forwarding nodes
for(i,j) = for(i,head)
IF (head .GE. i) THEN
for(head,j) = J
ENDIF
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C

Js

new node to tail

IF ((j .NE. last) .AND. (list(j) .EQ. 0)) THEN

liat(last) = J
last = j
ELSE
IF (list(j) .EQ. -1) THEN
IF (list(head) .GT. 0) THEN
list(j) = list(head)
ENDIF
list(head) = J
ENDIF
ENDIF
ENDIF
ENDIF

DO 5, k = 1,nodes
CONTINUE
CONTINUE
temp = head
head = list(head)
list(temp) = -1
first = head

IF ((head .NE. -1) .AND. (head .NE. 0)) GOTO 500

DO 8, k = 1,nodes
CONTINUE

CONTINUE

RETURN

END
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ABSTRACT

We address the problem of flow control and routing of real-time
traffic in a network, where messages must arrive at their
destination within given deadlines; otherwise they are considered
lost. Performance in this case is measured in terms of the
probability of losing a message. For the case of n parallel links,
the problem is formulated as one of optimal flow ailocation and
solved under general conditions. It is shown that for a FCFS
service discipline an admission policy rejecting messages before
link assignment is optimal when the load exceeds a critical valye.
Thus, we take advantage of the fact that if some messages will
exceed their deadlines anyway, it is beneficial not to admit them
in the first place. An efficient algorithm for explicitly solving the
problem is presented and specific examples arc analyzed. We
also discuss the applicability of on-line algorithms for this
problem when modeling assumptons cannot be made.

1. INTRODUCTION

In this paper, we address issues of performance analysis and
control for systems with real-time traffic. Real-time traffic is
characterized by deadlines within which service must be
completed, and is encountered in at least two settings:
communication networks and multiprocessor computer systems
{11,{2]. We will present the problem with a communication
network application in mind, but all results can be applied to
analogous problems in a computer system environment. Thus,
when a message with a real-time constraint is transmitted, we
require that its destination be reached by some given deadline,
characteristic of the message itself or of the traffic class to whick
it belongs. If this condition is not satisfied, the message is
useless and is considered lost. In such problems, the objective
of interest is the minimization of the probability of loss,
measuring the fraction of messages that exceed their deadlines.

Given this framework, we shall consider the problem of
assigning messages to n links connecting a source node to a
destination node so as to minimize the fraction of messages that
do not reach the destination node by some deadline. There are
two variations of this problem: (a) all messages are required to

(1) This work is supported in part by the Office of Naval Research under
contract NO00O14-87-K-0304 and by the ROME Air Development Center
under contract F30602-88-D-0027.

CH2702-9/89/0000/0784501.00 © 1989 IEEE

Don Towsley

Dept. of Computer and Information Science
University of Massachusetts
Ambherst, MA 01003

be transmited, and (b) messages are allowed 10 be rejected
instead of being assigned to a link. We shall consider case (b)
only, and accomplish the flow control through an admission
policy. A typical workload consists of voice and/or video
packets with a time consuraint by which they must be received to
be useful. In current implementations, the scheduling policies at
the link level are very simple and do not allow for deliberate
packet rejection. It is, however, possible to include flow control
at the source in the form of an admission policy that does reject a
fraction of the packets whenever it is beneficial 1o do so.

A similar situation is encountered in static load balancing for
a multiprocessor system, where if we consider messages to be
jobs and links to be processors, the same results apply. In past
analysis of computer systems, most work has focussed on the
problem of balancing loads so as 1o minimize a metric such as
average delay [3],{4]. However, a better objective seems to be
minimizing the fraction of jobs whose response times fall above
some threshold. Thus, if E[x] is the average processing time,
good performance may be determined by a response time that
lies below some multiple of E(xj. [n this application, it would
be beneficial 1o impose a policy that prohibits admission to some
fraction of jobs so as to increase the fraction of jobs that
complete processing within their threshold response time.

To illustrate the potential advantage of an admission policy
allowing rejection, we present the following simple example.
Suppose the system consists of a single link. Upon amival into
the system, a message is either accepted with some probability p
and placed in the FCFS queue, or rejected with probability (1-
p). The objective is to adjust p so as to minimize the probability
of loss. A message can be lost either at the source by being
rejected, or at the destination by violating its deadline. The
crucial observation here is that a proper choice of p can result in
rejecting some messages that may not have made their deadlines
anyway. Note that as p is decreased, the link becomes less
congested, resulting in a larger fraction of messages making
their deadline. On the other hand, more messages are being
rejected. Moreover, if we dealt with limited buffering space,
then a third result of decreasing p would be a welcomed decrease
in the blocking probability. Thus, there is a tradeoff between
rejecting a message so that others may make their deadline and
serving the message in hopes that it might make its deadline. As
we shall show, it is generally beneficial to reject some fraction of
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the incoming messages. It is only for the case of lightly loaded
systems that the optimal admission policy isp = 1.

The paper is organized as follows. In section 2, we
formulate the model and the optimization problem. We then
characterize the optimal admission and link assignment policies
under fairly general conditions. In section 3, we present an
algorithm for explicitly solving this problem. We also discuss
the problem of on-line optimization when knowledge of the
system characteristics is limited. Section 4 includes some
specific examples. Finally, we summarize our results in section
3, and indicate directions for future work.

2. MODEL DESCRIPTION AND PROBLEM
FORMULATION

Consider - stream of messages arriving to n parallel links
according to an arbitrary arrival process with rate 4, as shown in
Fig. 1. The rate of .. nsmission at link i is i; > 0, and ali links
are independent. We will assume that there is the option of
rejecting messages before they are assigned to any link; let 1y
denote the corresponding flow. In addition, let A; be the flow to
link ¢, for i = 1,...,n. Finally, let D be a random variable that
denotes the deadline associated with a random message.

At

FLOW
CONTROL ROUTING

A(1-F,)

Rejected
Messages

Delinquent
Messages

Figure 1: Link Assignment Model with Admission Policy

2.1. Problem Formulation

We wish to determine a flow allocation (4g,...,4,) s0 as to
minimize the probability of loss, where a message is considered
lost if it is either rejected upon arrival or accepted but is
delinquent (i.e., misses its deadline). Let P7(4q) be the
probability that a random message is rejected, and let
Pd(A,,...,A,) be the probability that a message is delinquent
given that it is accepted. Then the total probability of loss is

P, =[P +(1-P)-Pd).

We shall assume in what follows that a message is delinquent if
its 1otal delay T exceeds the deadline D, i.e. P4 = P(T > D}].
However, the analysis also applies to other definitions of
delinquency, such as the event that the queueing time of a
message exceeds the deadline. For example, see section 4.2.

At this point, we translate the problem from one of
minimizing the probability of loss to one of minimizing the loss
rate, L, where

L=A-{P +(1-Pr)pd].

Clearly, for a fixed load A, the two problems are equivalent.
Note that

AP =2,  A(-P)P'= Z&--Pi‘(&-) .

i=1
where P4(1,) is the probability that a job is delinquent given that
it is routed over link i. Thus, the performance metric can be
written as

L(A,,....A) =25 + Z A-PA,).
&=l

1 irthermore, let
fA) =P, i=1,...n, (1)

folAg) = 4. ()

Then a general statement of the optimal flow allocation problem
is the following:

: (2
(AUTE,)Z;’I‘( J

subject 10
I
=0

A."ZO, i=0,...,n.

Note that the flows 4; are not constrained 10 be less than the
corresponding link capacity g,; this will nawrally cmerge as a
property of the optimal flow allocation. Also note that by
introducing the additional constraint 23 = 0 to the problem
above, we can obtain a formulation where no rejections arc
allowed, as in variation (a) presented in the introduction. The
analysis in this case would proceed along the same lines.

2.2. The Optimal Solution

We will make the following assumptions regarding the
functions I"{(~) and f,(), i=1,....n:

A1 PYx)is increasing for all x € [0,u,).

A2 Py =1

A3 f(x) is increasing and strictly convex for all x € [0,u,).
A4 If A; <, then f(d) < 4;.

Most of our subsequent results depend on A3 only. Al simply
requires that increasing the load to a link must increase the
probability that messages on that link exceed their deadlines; this
is natural, since increasing the load causcs longer average
delays. A2 requires that waiting times become infliite at
capacity. It is satisfied for the FCFS service discipline and
possibly by RSS, but it does not hold for a LCFS service
discipline. Finally, from (1), A4 is equivalent to the
requirement that if A; < u;, then PA;) < 1. This assumption is
not critical, since we can always determine some g’ < y; such
that P4(4) = 1, and treat 14’ as the effective capacity of the link.

Let
hi(A)) = of(A)IdA,,

where the derivative is defined for A; € {0,u,). Then, from A3,
h{x) is monotonically increasing for all x € (0.u,). i=0,... ,a.

i=0,....n,
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Moreover, k;(1;) has the following properties for i=0,...,n

Lemma:
(@) 0<h(0) <1,
(b) h,‘(l.l,-) > 1.
Proof: From the definiton (1):
of ;) BP"(X-,)
h(A) = 81 -P"(l) + A~ Ry

Hence, 1(0) = P40), where 0 < P4(0) < 1. Statement (a) then
follows from A4. Similarly, h(u;) = | + y;-(0P#/9u;) > 1, by
Al and A2. QED

The following result identifies conditions satisfied by the
optimal solution to the flow allocation problem {see also [3]).

Theorem I (a) The optimal solution (A3,...,4,) 1o the
above problem satisfies the following necessary and
sufficient conditons: :

KA =a it >0, (3)
RAD2a  if A =0, (@)
such that:
Y K'@w=1 a>o0. )
ist /1;>0

(b) All optimal flows satisfy A < y;, i = 1,...,n

Proof: Using a Lagrange multiplier & > 0, we adjoin the flow
conservation constraint to L{Ay,...,A,) to obtain

Lo Ay = X fIA) + a-[l -y ,1,.].
=0 i=0
Thus, the necessary (Kuhn-Tucker) conditions require that at 4;
=4
oL
9A;

provided 1} > 0, and (3) is obtained. On the other hand, if the
constraint A; 2 0 is active (i.e. A} = 0), then at the feasible
region boundary, defined by 4; = 0, optimality requires that

=h{A)-a=0, i=0,..n

oL
aA_Oat,l,o .

which yields (4). Finally, for an optimal allocation (43,...,A3)
the flow conservation constraint becomes

ia{: > a=a
i=0

i 3. 470
and since all A% such that A% > 0 must satisfy (3), we
immediately obtain (5). Note that h-}(-) is well-defined in
(0.hi(11,)), and, as we shov in part (b), h}(a) = A% < ;.

The sufficiency of these conditions follows directly from the

convexity assumption A3. This guarantees that a unique a is
determined through (5), and hence unique A > 0 are determined
from (3).

Part (b) of the Theorem is trivial if A} = 0. Thus, we
consider only the case A} > 0. First, note from (2) that iy(4g) =
1 for all A 2 0. Since (3) and (4) imply that ky(A3) 2 a, it
follows that @ < 1. Thus, from (3), we get

hRAD)=a<l.
From the Lemma above, A y;) > 1. Thus, h(27) < k;(u;).
Since /;(1;) is monotonically increasing for all 4; e [0,1;), it
follows that A7 < y;. QED

Remark. Since hy(4g) = 1, it follows from (3) thatif A§ >
0, i.e. rejections do occur, then we have @ = 1.

An illustation of the Theorem is shown in Fig. 2. For any
i=1,...,n, as long as A} > 0, the optimal flow A is determined
by the point where #,(4;) intersects the constant « line.
Otherwise, h(4)) lies above the constant a line and A7 =
Furthermore, as pointed out above, a = 1 whenever 43 > 0. In
the example shown in Fig. 2, & takes on a value less than | and
hy(A,) does not intersect the line defined by a. Thus, Ag= 4] =
0, corresponding 1o a lightly loaded case with link 1 unutilized.

hi (A,)
4

(T ) L e
By() f-meemee e -

M) f---------
I e

hy (0)e

a<1
Iy (0)

b (0)

B

AS0 %50 A0 A

Figure 2: Characterization of Optimal Flows

Some interesting properties of the optimal flows are
presented below as a Corollary of Theorem 1. First, we define
£:(») to be the bounded inverse of h;(x), defined for 0 < y <
hiut). More specifically,

8.‘()')={;

Thus, (5) zan be written as Z; g{a) = A. Observe that since
h{-) is increasing, g{-) is non-decreasing.

if y=hix), x>0,
if ys h,(O)




Corollary 1.1: Suppose links are indexed so as to
satisfy the following ordering:

ho(0) 2 hy(0) 2 ... 2 h,0).

Then the optimal flows, 13,...,45, have the following
properties:

>0 ifandonlyif 1> ) A (AO), i=0,..n,  (6)
Pi

>0 ifandonlyif 1> Y A7i(1), %))
=1

A=0 =n02a h0)>a =i =0, i=0,l1,..,. 8

Proof: Foranyi=0,1,....n, suppose A} > 0. Then (3) implies
a = hi(A%) 2 hi(0) since h(:), i=1,...,n is monotonically
increasing by A3 and hy(-) = 1. Thus, from (5)

A=20+ ) g{@> Y KAL),

Vil pi
which establishes the "if" part in (6). We prove the converse by
contradiction. Thus, assume that the inequality in (6) is satisfied
and that A{ = 0. From (4), this implies that h(A}) 2 «, i.e.
h{0) 2 a. Because of the ordering we have established, it
follows that

h0)2 a forallj<i.

Using this fact, gi(a) = 0 for all j <, and (5) now gives:

A= D gl + Y gla) s D KA,
~ — ~

Pi Pi

“which contradicts the inequality in (6). This completes the proof
of (6).

Since this proof holds for all i = 0,1,...,n, (7) is simply a
special case of (6) with i =0, noting that h4(0) = 1 from (2).

To establish (8), first assume that 17 = 0. Then, by (4),
hi(13) 2 a, ie. h(0) 2 a. On the other hand, if £{0) > o, then,
by the monotonicity of h{-) we have h{A}) > a, since A; 2 0.
Invoking (4), the result follows and the proof is complete. QED

An implication of this Corollary, specifically (7), is that there
exists a critical load value, A, given by

A= 2 K1)
i=t

The value A,; defines the load threshold, beyond which
rejection of messages will always improve performance. This is
illustrated in Fig. 3, where the effective throughput, A-(1-Pp), is
always higher with 25 > 0 than with 4y = 0 (no admission
policy) as long as A > A_,;,. That is, when the load exceeds the
critical value, the optimal flow policy will reject some positive
flow of messages.

' ©

Remark. Forany i =0,....n, the values of h}(1) in (9) are
independent of the flows A,,...,4,, and the parameter 4; they

A1-P,)
A K
'.’. & admission policy
',.' : N admission policy
. .3
Ilcn'l ulol

Figure 3: Load Threshold in Optimal Admission Policy

depend only on the structure of the system (the distribution of
interarrival times, service times, and deadlines), and on the
parameters Ug,....M, and E[D]. Hence, provided that an
analytical expression for A }(-) can be obtained, one can
determine A_,;, without explicitly solving the optimization
problem .

Some additional properties of the optimal flow allocation are
stated below without proof. In expressing these properties, it is
convenient to introduce the following definitions. Let
(Ag,...,A,) denote a feasible solution to our problem. With
respect to this solution, there are two classes of links, active and
idle. Link i is considered active if A; > 0; otherwise, it is
considered idle. Let A denote the set of links that are active and
I the set of links that are idle. We now present four properties of
the optimal solution.

Property 1 The optimal flow A% is a nondecreasing
function of A. Furthermore, if A3 > O for some &, then as 4
increases, A} remains constant forall i = 1,...,n.

Property 2 The set of active links A is a nondecreasing
function of A. In particular, if the nodes are ordered according
to the rule specified in Corollary 1.1, then as 4 increases, links
join A in the reverse order.

Property 3 LetA"=A - {j]. Then A’ is a nonincreasing
function of y;. Moreover, links transform from active to idle in
the same order of h;(0) as y; increases. Furthermore, j always
becomes active for sufficiently large yt;, and remains active
thereafter. Last, A" — @ as pt; = oo,

Property 4 If 2 > Zu;, then 45> 0.

3. OPTIMAL FLOW ALLOCATION ALGORITHMS

In this section, we address the issue of obtaining explicit
solutions for the optimization problem presented above.
Clearly, this depends on the availability of closed-form
expressions for the link loss rate functions fi(-), as well as the
inverse functions h',-‘(-). Such expressions are generally not
easy to obtain, even under reasonable stochastic modeling
assumptions [S].

In section 3.1, we present an efficient algorithm (of order
nlogn) for obtaining an explicit optimal flow solution under the
assumption that analytical expressions for /1,(:) are available.
Howevel, its inverse, A7}(-), need not be available in closed
form; numerical methods can be employed to evaluate it.




In section 3.2, we briefly address the issue of on-line
optimization, when limited knowledge of the overall system is
available. In this case, we invoke gradient-based stochastic
optimization algorithms, taking advantage of recent
developments in stochastic gradient estimation [6]-[8].

3.1. An Efficient Algorithm

The following algorithm can be used to obtain the solution to
the problem of minimizing the message loss rate for the system
of Fig. 1.

Algorithm.
1. Ordering of links:
« order links so that ig(0) 2 k;(0) > hx(0) 2 --- 2 h,(0).
2. Determination of the set of active links, A:
* define A(m) = I;,,, 8{hA(0)),
» use binary search to find m such that A(m) £ A <
A(m+1),
«I={1,..m}, A= {(m+l,...,n).
3. Determination of link flows:
« solve equations (3)-(5) to obtain (4g,....A}).

The algorithm is explained as follows. The first step orders the
links so that the properties (6)-(8) will hold. Step 2 applies
property (6) to determine which links have positive flow. For
links i € /, we can immediately determine A7 = 0. In step 3, we
notice that equation (3) holds for links i € A, so those (n-m)
equations along with (5) uniquely determine A} forie A.

The algorithm is most easily understood by referring back to
Fiz. 2. In the example shown, the ordering of step 1 has
already been applied. Step 2 determines the region of the
constant « line, that is, m is found such that 4,(0) 2 a >
hpe1(0). Then step 3 calculates the intersection point of h(4;)
with the constant « line for all active links; A; at the intersection
is optimal.

3.2. On-Line Optimization

Our analysis thus far relies on the availability of analytical
expressions for f(A)), i=1,...,n. This means that specific link
models can be developed; in section 4, for example, we assume
cach link to behave like an M/M/1 queueing system. Often,
however, accurate models are not available and operating
conditions change. In such cases, one is limited to observing
actual system data (e.g. message arrival times at a node) and
making admission and routing decisions based on that
information alone. There are several algorithms suitable for
such on-line control schemes, mostly dependent on estimating
gradients (sensitivities) of the performance metrics with respect
to the parameters of interest (see (9],(10]). Our purpose here is
only to make brief mention of the fact that stochastic gradient
estimation techniques can be developed and used in the context
of our problem, and to illustrate the use of this information for
the simple flow control problem corresponding to n=1.

If a single link is present, the critical load value in (9)
becomes 4., = h!(1). Recalling the definitions of f(-) and
hy-), this implies that when & = 4, the accepted flow, A7, is
determined from
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n}L‘in [(A-2) + A, PiAp 1,

yielding 3
;TIMIP‘{(A,)I =1,

which implies that
P \1
f=t-plap{3)

with the right hand side evaluated at & = &,;,. If this system is
directly observed, an estimate of P‘f(l,) can be obtained under
any admission policy yielding a flow A,. Suppose that, at the
sa:n» time, an estimate of the sensitivity of the delinquency
probauility with respect to the flow, (@P§/94,), can also be
obtained. Then, one would immediately be able to determine
whether the load threshold point shown in Fig. 3 has been
reached or not, and hence determine the optimal flow allocation.
Furthermore, in an adaptive sense, flows can be adjusted on-line
until the optimal allocation is found. In many cases, this
gradient estimation is accomplished without knowledge of the
acwual load A or the link capacity g, [10}. The problem of
determining stochastic gradient estimates along a single
observation interval is addressed through Perturbation Analysis
(7] and the Likelihood Ratio technique [8]. However, results
currently available apply primarily to performance measures
such as throughput and mean message delay. The case of
(3P4194,) is considered in [9) and is the subject of ongoing
rescarch.

4. EXAMPLES

In what follows, we present three examples for the case of
M/M/1 link models. That is, we assume that messages arrive
into the system according to a Poisson arrival process with
parameter A and are assigned to links through a probabilistic
rejection and routing mechanism. In addition, we model all
links as exponential servers with parameters 4, i=l,...,n and a
FCFS queueing discipline.

4.1 Constant Deadline on Total Delay
Let the deadline always take on the value D = 7. In this case
P¢ = P[T>1], and
fAA) = A, BT
hiA) = (1+A,7) e W

for all i=1,...,n, and fo(Ag) = Ag as before. Even though we are
unable to obtain an explicit expression for h71(+), and hence for
g{+). it is easy to show that k;1(q) is the root of the equation

(1440 e B _ =0
that lies in {0,u;). This root exists and is unique provided
et g a4y, (10)

In such a case, gi(a) = hA-}(x). Otherwise, if a < e, then
gi{a) = 0, and the case where a > 1 + ;T does not occur
because, as we have already shown, ax < 1.




It is easily shown that A1-A4 are satisfied. Furthermore,
the optimal solution results in rejections if and only if A >
L h'}(1), where h7}(a) is the root of the equation

Q+d0 e ™M1 =0

that lies in [0,4;), which we know to exist and be unique since
(10) holds for a = 1.

4.2 Constant Deadline On Queueing Time

We assume that deadlines are deterministic and equal t0 7,
and let P‘f = P{Q>1] where Q is the queueing time of a random
message. In this case,

12
£ == s

A
R, = I QA0 WAt

fori=1,....,n. Assumptions Al-A4 are easily shown 10 hold
for these functions. We are unable to obtain an explicit
expression for A}1(A;), and hence for gi(1;). However, we can
easily show that #7/() is the root of the equation
A
T‘- Q4an e B g=g

B}
that lies in [0,2;). This root exists and is unique provided 0 £ &
<2+ A7, in which case we have g,(a) = irl(a). But since 0 <
a <€ 1, we can conclude that « is in the range, hence the root
does exist uniquely for all choices of system parameters, and A}
>0,i=1,...,n.

4.3 Exponential Deadlines on Total Delay

We assume that D is an exponential random variable with
mean 1/y, and, once again, P4 = P[T>D]. Then

()= =Y

filkd= HUL—A,

h(A) = __7*._/'[_'2
(rp-1)

fori=1,..,n. Itiseasy to show that P? is such that A1-A4 are
satisfied. Furthermore, we can write the following expression

for g{a),
N £ R
gla) = @ ’*“"1
0. a<-r—;#—i.

If the optimal solution lias A = {m+1,...,n], and A3 = 0, then

,. ~112
A=v+ #i‘(Y"#i)m[ 2 _er‘_z')
i=m+/ (7“‘#.'"3-.')

fori =m+1,...,n, and O otherwise. If A§ > 0, then

A =yepi- (Y"ﬂ.’)m-

The optimal solution results in rejections if and only if
n
2> 2[7"’ Bi=of )‘*#i]-
é=l

For the special case of a single link with capacity g, the
optimal flow control policy, (A5 ,A1) is

2= { A-(G+u-Vpp), A2y+u-veu,

0 otherwise ,

l=

2 {7+u-‘/r+u. Azy+p-Vrp,
A otherwise .

If we do not apply an admission policy (i.e. never reject), then
the optimal loss rate is

iy
. Asyu,
L'=1 ru-a H
A otherwise .
but allowing rejection gives
Ay
—_—, ASy+pu-v ,
. =2 YHU - VYL
A —[ Creu—vrt )‘*‘Il')’)]' otherwise .
Vytu

In Figures 4a and 4b, we have plotted the marginal loss rates,
ho(Ag) = 1 and hy(4,), and the effective throughput, A-(1-Pp),
for the case where ¢ = 3, Y= 1. Note that Fig. 4b is similar to
Fig. 3, and clearly shows the existence of a critical load
threshold for this model.
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Figure d4a: Marginal Loss Rates




effective throughput

C T
(o] 1 2

-4
4

o

+

3 4
load (messages/sec)

Figure 4b: Effective Throughput

5. CONCLUSIONS AND FUTURE WORK

We have shown that when the performance metric of interest
is the probability of losing messages which exceed a given
deadline, it is advantageous to apply flow control that
deliberately rejects part of the incoming traffic. Thus, some
messages which might be lost anyway are prevented from
accessing the system, a fact which contributes to increasing the
fraction of the accepted messages making their deadlines. The
optimization problem we have studicd applies to networks
supporting real-lime traffic, a sitvation which is expected to be
commonly encountered. The solution to this optimization
problem and its structural properties were analyzed in section 2.
A specific criterion for determining load conditions under which
it is indeed optimal to apply flow control was also provided
(equation (9)). Approaches towards developing explicit
algorithms 10 implement flow control and routing for the case of
n parallel links were presented in section 3.

The analysis presented in this paper appears to be the point
of departure for 2 variety of interesting extensions. First, as
mentioned in the Introduction, we have considered the case
where flow control is applied in the form of probabilistic
message rejections at a source node. However, our analysis can
easily be applied to the case where all messages must be
assigned to a link. Second, we can introduce weights for the
components f;(4;) of the performance metric so as to penalize
rejection more than delinquency in some desirable fashion. This
setup would model systems where messages are of some use
when delinquent. Third, it is possible that our explicit results
for the M/M/1 link models may be extended to more general
situations, so as to obtain analytical solutions using the
algorithm in section 3.1.

As discussed in section 3.2, of great interest is the wide
applicability of stochastic gradient estimation and on-line
optimization techniques that take advantage of observed system
data with little or no information concerning parameters or
distributions involved in an analytical model. Motivated by the
results in [10],{11], we believe that such techniques will indeed
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be useful in this framework, in order to develop adaptive
schemes for flow control and routing in networks with real-tiroe
wraffic.

An obvious extension of great interest is the generalization of
our results to more complex networks. Consider, for instance, a
virtual circuit model, consisting of several links in tandem.
Since a link is often shared by many virtual circuits, flow control
at a source node presents the opportunity to improve
performance for all real-time traffic sharing that link. Moreover,
it is possible that rejection of messages can be implemented not
only at the source node of a virtual circuit, but also at
intermediate nodes. This appears to be a fruitful area for further
research. In addition, the presence of finite buffers provides yet
another opportunity to benefit from rejections by simulianeously
reducing blocking probabilities.

Another challenging problem concerns the extension of our
flow allocation problem for real-time traffic 1o the case of
dynamic policies, i.e. policies taking into account some system
state information (e.g. instantaneous queue lengths in making
link assignments). Some of the techniques used in [9] seem
promising for this situation.
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ABSTRACT

We address the problem of routing real-time traffic in a network, where jobs must arrive at
their destination within given deadlines, otherwise they are considered delinquent. The
overall objective is to route jobs such that the probability of delinquency is minimized, but
such an optimization is often impossible to perform. For the case of N parallel servers, we
present and compare two sub-optimal methods for assigning routing variables. The first
method is quite popular; routing variables are chosen so as to minimize the mean system
time. The second method and its comparison with the first constitute the major contribution
of the paper. We offer evidence that a sub-optimal approach of maximizing a function of
the mean and variance of the system time produce results that are better than those obtained
through a method of minimizing the mean system time.
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1. INTRODUCTION

In this paper, we address issues of performance analysis and control for systems with real-time
traffic. Real-time traffic is characterized by deadlines within which service must be completed. A
Jjob's deadline is defined to be tiue maximum amount of time the job can spend in the system; if a
job's system time exceeds the deadline, the job is considered delinquent. Real-time traffic is
encountered in at least two settings: in communication networks where messages are required to
reach their destination within a specified time interval, and in multiprocessor computer cystems
where tasks must be executed under real-time constraints [1]-[3]. We will limit ourselves to
systems that can be modeled by a netwuik of N parallel servers; our ideas can be applied to
communication networks consisting of N parallel links, computer systems comprising N shared
processors, or in general, any system that fits the model.

Traditionally, much work has been done on systems with non-real-time traffic where
emphasis is placed on serving jobs quickly and efficiently. A problem that has received
considerable attention is that of routing jobs to N servers where the objective is to minimize the
mean delay of a job. Several routing algorithms that minimize mean job delay have been developed
{4]-[6]. Mean job delay, which is both meaningful and easy to calculate, is a conventional choice
for an objective function. However, for systems with real-time constraints, a more natural
objective function is the fraction of jobs that miss their deadline. Therefore, we consider the
problem of routing jobs to N servers so as to minimize the fraction of jobs that do not complete
service within some specified deadline.

We will label jobs that do not complete service within their deadline as delinquent. That is,
a job is considered delinquent if its systzem time exceeds the deadline, where the system time is the
total time that a job is in the system, from the time it enters the network of N servers until the time
it completes service at one of the servers and leaves the network. Then the problem is to route jobs
so as to minimize the probability of delinquency. Unfortunately, such an optimization is often

impossible to perform due to a lack of information about the objective function (the probability of
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delinquency) and how it is affected by the routing variables. There are two approaches to
gathering this inforaton: (a) ucrive an analytical expression for the objective function in terms of
the control variables, and {(b) estimate the sensitivity of the performance measures with respect to
the control variables with on-line measurements. A time-domain closed-form expression for the
probability of delinquency as a function of the routing variables is attainable only in the case where
the N parallel queues are M/M/1 and the system parameters are known. There is always the
possibility of estimating the objective function (the tail of the system time distribution) in terms of
the system parameters but such an approach has the disadvantages that it requires knowledge of the
system parameters and yields an inexact expression. An on-line estimation for the affect of the
routing variables on the probability of delinquency requires approximating the sensitivity of the tail
size with respect to the routing parameters, which is difficult and requires a large number of
samples [7]. Clearly, for non-M/M/1 queues, one cannot use an cxact expression for the objective
function in the optimization problem. Either one can be satisfied optimizing the 2~»roximate
expression for the objective function, or one can consider sub-optimal policies. Both approaches
introduce error.

It has been suggested that employing a sub-optimal method for determining routing
variables would simplify the optimization process without fully compromising the overall objective
of minimizing the probability of delinquency [8]. A routing allocation may be determined using the
limited information that is available, and one hopes that the resulting policy gives near optimal
performance. Consider the case were the mean and variance of the system time can be either
calculated or estimated. Certainly for M/G/1 queues, the Laplace transform of the system time is
known, from which one can derive the mean and variance. Furthermore, there have been several
advances in on-line derivative estimation of statistics such as the mean and variance for the case of
general queues [9],[10]. These estimation techniques, which could be incorporated in an on-line
routing algorithm, do not require knowledge of system parameters and are simpler and quicker
than estimating the sensitivity of the tail of the distribution.

We present two alternative routing methods that result in sub-optimal routing variables.
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The first method, which consists of resorting to a policy that minimizes the mean system time, has
been suggested by others [8]. The second method is our contribution and relies on more
information about the system time distribution, namely the variance; the method consists of
maximizing a metric that is a natural function of the mean and variance. We require the sub-
optimal methods tc satisfy the following properties: (a) the associated performance measure must
be easy to compute or estimate, and (b) the resulting routing allocation must nearly minimize the
true objective function, the probability of delinquency. We offer evidence that the second method
often results in better routing variables than does the first. The objectives of this paper are to
develop the second sub-optimal method, to study when and why the two methods differ, and to
suggest which method to use in a given situation.

The paper is organized as follows. In section 2, the model and the objective function are
formalized. We then present the method for determining the optimal routing variables, develop
iwo sub-optimal methods for determining routing variables, and make a conjecture concerning the
sub-optimal methods. In section 3, we test the conjecture for the special case of Poisson arrivals.
Theoretical support for the sub-optimal m&hods is given in section 4. Finally, in section 5, we

sumrmarize our results and indicate directions for further work.

2. MODEL DESCRIPTION AND PROBLEM FORMULATION

Consider a stream of jobs arriving to N parallel servers according to an arbitrary arrival process
with rate A > 0, as shown in Fig. 1. Servers are independent with finite service rates ;> 0 fori =
1,...,¥, where the total system capacity, the sum of the individual service rates, is at least A.
Other than the restrictions stated above, service-time distributions are arbitrary. Let ¢; be the
fraction of incoming jobs sent to server i, for i = 1,...N. In addition, let T denote the finite

deadline associated with each job, which we assume to be fixed. Finally, assume infinite queues.
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Figure 1: Routing in N-Server Model

2.1. The Formal Objective

Ideally, our objective is to determine a routing vector @ = (¢y,...,¢y) so as to minimize the
probability of delinquency, where a job is considered delinquent if it misses its deadline. Let P, be
the probability a job is delinquent with respect to a deadline of 7, and let T be the system time of a
random job. Then we define
P,=P{T>1} = 1-FK{71

where F7{(-) is the cumulative distribution of T. We assume that the fixed deadline 7is greater than
the mean E[T] that results from our choice of routing variables. Note that for a problem to be
interesting, T must be large enough to be a realistic deadline, and the assumption would hold.
Clearly P, depends on the routing vector @ since the distribution of T is affected by the amount of
traffic routed to each server. We will refer to P (D) as the objective function. A formal statement

of the optimization problem is

i 1
rrgnP,(d)) (1)
subject to
N
Y oo=1, 2)
i=1
0<¢< é{—‘ i=1,..,N. (3)

Equation (2) is a conservation constraint, and (3) arises because the routing variables must be non-

negative and sufficiently small that the capacity of a server is not exceeded. Note that although job
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flow may not exceed the capacity of a server, it may saturate the server. Let @*(7) be the routing
vector that is optimal with respect to the overall performance objective P () for deadline .
Unfortunately, for most systems of interest, the distribution of T, F7{(-), is unknown and difficult
to estimate, hence the objective function cannot be evaluated, and a closed-form expression for

@*(7) cannot be found.

2.2. Two Sub-Optimal Methods

Since the optimal routing problem is often difficult to solve, we present two alternative routing
schemes that result in sub-optimal routing variables. Suppose that the first and second moments of
T can be found, either by calculation or by estimation. In addition, assume that T has a finite mean
and variance. Then define two performance measures that depend exclusively on the first two
moments of T and not on the distribution itself: (1) the mean system time, which we will denote

by
M = E[T], 4)

and (2) the normalized distance of the mean system time from the deadline,

7— E[T]
D, = ———,
T o S)

where é is the variance of T. Once again, M and D, depend on @, as does or. Note that the
performance measure M is independent of the value of the deadline, 7. In choosing (5), we sought
a measure that is a function of the mean and variance; (5) is a natural choice because of its
normalizing qualities: it is the distance of the mean system time from the deadline normalized by
the standard deviation [11]. Using the performance measures defined above, we present two sub-

optimal methods for routing jobs to the N servers:

rrgn M(D) subject to (2) and (3), (Method 1)

max D (D) subject to (2) and (3). (Method 2)

Method 1 is the existing method of minimizing the mean; method 2 is a new method of
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maximizing a distance functon of the mean and variance. We question which sub-optimal method
for choosing @ best satisfies the overall objective of minimizing P,. That is, if we define ¥ and
@P(7) to be the routing allocations that are optimal with respect to performance measures M and D
for deadline 7, then the issue we investigate is whether P (@) < P (PD(1)) or vice versa. To do
so, define the fractional error in method 1 as

PL™ - P (D (D)

M) = .
PA® (1)

and, similarly for method 2,

20 PLIP(D) - PLD'(D)
T) = .
PAD (D)
Clearly both AM(7) and AP(7) will be positive for all 7> 0 since P (®*(1)) is optimal. For a given
7, we desire to use the method producing the smallest error. We have evidence that there is a

critical Tabove which method 2 has a smaller error, and below which method 1 has less error. In

subsequent sections, we present examples and a theoretical argument as support.

3. EXAMPLES: N PARALLEL M/M/1 SERVERS

If we consider systems with Poisson arrivals and with known service-time distributions and
system parameters, we are able to find a closed-form expression for P (), and using numerical
methods, we can find the optimal routing allocation ¢*(7) = (¢:,. ..,¢;,). We use such systems as a
starting point for comparing how well the two methods, minimizing the mean M and maximizing
the distance D, approximate the optimal solution.

Given a Poisson arrival stream and probabilistic routing of jobs that enter the system,
arrivals to each server i form a Poisson process of rate ¢; A. Let T; denote the random variable
describing the system time of a job routed over link i, and let FT‘(') denote the cumulative
distribution function for 7;. Then, by the Law of Total Probability, and by the definitions of F T.-(')
and ¢,
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Fr(D =Pr{T<t} = z Pr{routed to server i} - Pr{T; < 7| routed to server i}
i=1

N
= D 4. ©)
=1
It follows that
N
PA®) = PH{T> 1} = 1-F(d) = Y ¢;[1-Fr(ol. Q)

i=1
The last equality follows from (6) and the fact that the routing variables must sum to one. Since
F T‘.(') can be calculated from knowledge of the arrival rate and the service-time distribution then,
for a system with Poisson arrivals, one can find P (D).

The subsequent analysis holds for 0 < @; S ui/A, i = 1,....N. If we further assume
exponential servers and a FCFS service discipline, then T is a hyperexponential random variable
and (7) becomes y

PAD) = Zqﬁi e WAt (8)
i=1

and the probability density function of T, fi(:), is

N
F0) = D 0 (um00) e s

=1

Then we can calculate the first and second moments of T:

-] N .
B = [ e = Y, =2 ©)
0 = i
ETY = | PHDdt = (10)
J. —21 (; ¢J~)

From (9) and (10) we can find analytic expressions for the performance measures in methods 1

and 2.
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N

¢

M(P) = E[T] = Z m, (11)
N
®;
T—EIT] ° Z‘“"""}“

DA@) = == = —. (12)
N N 7
Z 2¢; _[Z ¢ le
o (e T H i~PiA

3.1. Example 1: Two M/M/1 Servers.

Consider a system consisting of two servers in parallel, each exponential, with rates y; = 1.0 and
W, = 0.5. Let the overall arrival process be Poisson with rate A = 1.0. By (2), ¢, =1 - ¢;. Then

it is easily shown that for 0.5 < ¢; < 1.0,
P1(¢l) = ¢, e—(1-¢,)1+ (1_4,1) e_(¢1-0'5)7,

497 - 5¢, +2

M(¢1) == ) ’
2¢1 -3¢ + 1
Qr+4)} + (=37-5)¢, + (+2)

D‘t(¢l) = - .
f -166 + 408} - 2507 - 29, + 4

By setting ¢, = 1 - ¢;, we remove the constraint (2) from the optimization problems to get the

following single-variable unconstrained boundary-valued optimization problems:

min P,(¢;)  subjectto 0.5 < ¢, < 1.0,

xx;in M(¢,)  subjectto  0.5<¢,<1.0,
1

rrg:lfo(q)l) subjectto  0.5< ¢, < 1.0.

1
First consider the problem of minimizing P(¢,). Clearly P.(¢,) is convex. In addition, it
can be shown that the optimal routing variable ¢:(r) lies on neither boundary. Therefore the

necessary and sufficient condition for optimality given the unconstrained statement of the problem
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is
oP¢)
—aTl— = 0. (13)

That is, ¢;(7) is the root of (13) lying in (0.5,1.0). One cannot solve for ¢j(i) analytically, but,
given 7, one can find ¢I(r) numerically, and we do so for several values of 7.

Next consider the problem of minimizing M(¢;). Once again, M(¢,) is convex and the
optimal routing variable ¢'{l for the unconstrained problem lies in the open interval (0.5,1.0).

Therefore ¢};’ is the root of
oM(¢,)

0,

_ M
that lies in (0.5,1.0). Here we can analytically solve for ¢@; , and we find that ¢,{l =1/Y2.

Finally, consider the problem of maximizing D (¢;). One can show that D (¢,) is
unimodal in the interval {0.5,1.0] and that the optimum q)’,) (7) does not lie on the boundary.

Therefore, ¢?('r) is the root of the equation

oD (¢;)
09,

that lies in (0.5,1.0). The problem reduces to finding the root of the quartic equation
(87)¢1 + (—427-64)¢3 +(667+132)¢7 + (—447-87)¢, + (117+18)

that lies in the interval. We have done so for various values of .

Recalling that P (&) and D {P) depend on 7, we conclude that @* and &P also depend on
7; @M, however, does not. Fig. 2 illustrates the behavior of P (¢,), M(¢,), and D (¢,) for the
case of T= 15 sec. With the knowledge of the sub-optimal routing variables ¢'¥ and ¢'1)(r) and the
optimal routing variable ¢;(1:), we can calculate the error in the objective function resulting from
each method. In both methods, the absolute errors, [P (PM) - P (P*(1))] and [P DP(7)) -
P (®P*(7))] approach zero as T — . Of more interest are the scaled or fractional errors AM(7) and
A4P(7) (defined in section 2.2), which we have graphed in Fig. 3 as a function of 7. Clearly there is
a critical deadline, 7., above which AP(7) < AM(7) and below which AM(7) < AP(1). From the

graph, we observe that 7. = 10. This example supports our conjecture of section 2.2, that method
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2 results in better performance when the deadline is above some critical value.

Performance measure

Figure 2: Behavior of Performance Measures

fractional error

Figure 3: Error Resulting from Sub-Optimal Methods (Example 1)

3.2. Example 2: Three M/M/1 Servers.

Let the system consist of three parallel servers with capacity y; = 1.00, y, = 0.75, and 113 = 0.50,

and let the service times be exponential. Assume that the overall arrival process is Poisson with
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rate A = 1.00. Then, from (8), the objective function is
0<¢ <1,
PL¢1,00.83) = & e 1-9)7 4 & £ 0.75-¢, iy & e 0.5~¢, )1" 0<¢,<0.75,
0<¢;<05.

Once again, the problem of minimizing P (®) cannot be solved analytically, but P (&) is convex
and it can be shown that @*(t) does not lie on a boundary. Here we do not reduce the problem to
its unconstrained counterpart, but instead leave it as a multivariable constrained optimization
problem specified in (1)-(3) and apply Marquardt's method to minimize P (®). Marquardt's
method is an optimization algorithm that combines the universal convergence properties of
Cauchy's algorithm with the speed of Newton's algorithm [12]. Using Marquardt's method, we
solve for @*(7) for several values of 7.

In the problem of minimizing the mean, replace ¢; with 1-(¢,+@,) to get the unconstrained

multivariable boundary-value problem

min M(¢;,8,) subjectto o (0, 0.5-¢,) < ¢ < 1-¢y,

(9,.9,) 0<¢,<0.75
with
, 0<¢, <1,
M(by.0) = a($y,¢,) 1
b(¢1,6,) 0<4¢,<0.75,

where a(¢;,¢,) and b(¢,,¢,) are fourth-order polynomials in ¢; and ¢. Since M(¢,,¢,) is convex
and since it can be shown that (¢’1” ’¢524 ) does not lie on a boundary then (¢'{',¢Z’ ) is the root of the

simultaneous equations

aM(¢1,¢2) _ 0 3M(¢1,¢2) =0
o9, 9

that lies in the region max(0,0.5-¢,) < ¢; < 1-¢,, 0 < ¢, <0.75. The analytically obtained solution
for oM = (¢!, 0% .6%) is (0.5142, 0.3293, 0.1565).

For the problem of maxiniizing D (®), we set ¢5 to 1-(¢,+¢,) and apply Cauchy's best-
step steepest-descent algorithm to the unconstrained optimization problem with two independent

variables, ¢; and ¢,. So the problem is
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C‘A¢l7¢2)
max { D(¢,¢)) = ——
4.9 { RGN ewrs

where ¢(¢,,8,) is a third-order polynomial in ¢; and ¢, involving 7, and d(¢,,¢,) is a polynomial

max (0, 0.5-¢,) < ¢; < 1-¢,,

} subject to
0<¢,<0.75,

in ¢, and ¢, of the sixth order. Using Cauchy's algorithm, we solve for (¢ll)(r),¢12)(r)) for several
values of 7. Then ¢3(7) = 1-(¢~ (D+d3 (7).

In Fig. 4, the fractional errors, AM(7) and AP(7), are plotted as a function of 7. Note that
these curves have the same general nature as do the curves in Fig. 3. Once again, there exists a
critical deadline, 7. = 6, that divides the graph into regions according to which method results in

the least error.

fractional error
inP

v (sec)

Figure 4: Error Resulting from Sub-Optimal Methods (Example 2)

4. THEORETICAL JUSTIFICATION FOR THE CHOICE OF THE
SUB-OPTIMAL METHODS

The crossover results begin to make sense if one considers certain well-known results from
probability theory, Markov's Inequality and the One-Sided Inequality. Whereas the ultimate
objective is to minimize the probability of delinquency, the two sub-optimal methods presented in

section 2 effectively minimize certain upper bounds on the probability of delinquency, and the
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bounds themselves display a crossover behavior.

Markov's Inequality [13): Let T be a random variable with expected value E[T] and such that
Pr{T<0} = 0. Then, for eacht >0,

Pr{T21t} < E-[;Tl

If we consider ¢ = T where 7is the deadline, then

Elr] (14)
T

bounds Pr{T > 7}, the area of the tail above 7, which in our case is the probability of delinquency,
P, for a deadline of 7. By choosing the routing variables that minimize E[T], as is specified by
method 1, we are minimizing the limiting value of the Markov inequality that bounds the

probability of delinquency.

One-Sided Inequality [13]: Let T be a random variable with mean E[T] and variance 0'%
Then, for t > E[T), A

o

Pr{T>1} < )
T R mmy

Since we have assumecd that 7> E[T], we can consider the case where ¢ = 7. Then

of
o% + (+=E[T))*

(15)

bounds the probability of delinquency, P, for a deadline of 7, as does (14). By maximizing D, as

proposed in method 2, we are minimizing (15) because

o 1

&+ (r-E[T])? ) D+1

from the definition of D in (5), so we are choosing the routing variables that minimize the one-
sided bound.
Since the distribution of the system time is affected by the choice of routing variables, so

too are the mean, variance, tail, and bounds on the tail. By "minimizing a certain bound," we are
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choosing the routing variables that give the particular distribution with the smallest bound on the
tail.

When we question which is the tighter bound, we find that the bounds, like our results in
section 3, have a crossover point. For small ¢, the Markov inequality provides a tighter bound on
the size of the tail. Otherwise, the one-sided inequality is a stronger statement. Solving for the

values of r where
EBlT) __ o
t 0% + (-E[T])?’

we find that the curves cross at

ot

(E[T)?

r, = E[T] and 1, = E[T]+

The second crossing point is the one of interest. It can be shown that for ¢} < <1,, the Murkos
bound is tighter, and for ¢ > ¢,, tic une-sided bound is tighter. Fig. 5 illustrates the relauonship

between the two bounds for the case where E{T] = 3.8 and 67=3.9.

2.0 7
1.5
& Markov bound
S 1.0- M
(2]
©
=
3 0.5-
(o]
One-Sided Bound__
0.0 —
0 5 10 15 20
t

Figure 5: Markov and One-Sided Bounds on Pr[T>t] where E[T] = 3.8 and 6y = 3.9

Note that 7 is a parameter of the system, and E[T] and o’% are a result of the routing variables

chosen.




In the problem we address, T is the system time, and we let 1 = 7. Then E[T] and o
depend on the choice of routing variables, which in turn depends both on the method used for
choosing the routing variables and on the deadline. For the sake of illustratng this result, we will
assume the simple system of Example 1 where we can compute the probability of delinquency,
hence we can find the optimal routing variables and the corresponding mean and variance. This
allows us to draw a graph of the bounds, Fig. 6. In order to show how the inequalities bound the
probability of delinquency, we have graphed the optimal probability of delinquency, P (P™(7)),
along with the bounds on P, which were computed using the mean E[7] and vanance o% that

correspond to the optimal routing, &*(7).

1.5 7
W EEET CEEEEREEEEEEEEEEE
, Markov Bound on P,
One-Sided Bound on E,
0.5
0.0 —T
0 5 10 15 20

Figure 6: Bounds on P for the System of the First Example

Of most interest is the fact that the bounds, like the curves in section 3, have a crossover

point, which we know to occur at

of

(ELT))?*

1, = E[T] +

As evidenced by the subsequent figure, the critical deadline, 7, lies near 7,. Hence, by calculating
7,, we know approximately where the method of maximizing the distance starts to outperform the

method of minimizing the mean. Define the fractional error of the Markov bound and the one-
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sided bound:

oF .
E[T] * - PAD (7))
— -P[D (1) 2
AMB('[) _ T : and AOB(T) _ éi‘(f—E[T])*
P (1) P (D)

In Fig. 7, we have superimposed the plots of these error curves with those of AM and AD.
Although the crossover points do not exactly correspond, there is certainly a one-to-one
correspondence between the two pairs of curves. Note that the two pairs of curves have different

orders of magnitude, hence in superimposing them, we lose the quantitative quality of the

independent axis.

Relative Error
in P,

Figure 7: Comparison of Crossover Points for Two Sets of Error Curves

5. CONCLUSIONS AND FUTURE WORK

In systems where the ultimate goal is to route jobs to N servers so as to minimize the fraction of
jobs that do not complete service within some specified deadline, it is not always possible to find
the optimal routing allocation. One alternative approach to assigning routing variables, sub-optirual
method 1, is to route jobs so as to minimize the mean system time. We present a second alternative
approach, sub-optimal method 2, where the routing variauics aic choscii such diat ihc normalized

distance of the mean from the deadline is maximized. Through examples, we have shown support
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for our conjecture that if the deadline is above a critical value, 7, then method 2 outperforms
method 1.

To further test the conjecture, we plan to analyze systems with Poisson arrivals and non-
exponential servers. Analysis of such systems can be accomplished using a combination of
analytical and numerical methods. In general, relaxing the Poisson assumption leads to models
that are hard to analyze, and one must resort to simulation. Alternatively, however, one may use
recently developed on-line sensitivity estimation techniques to build gradient-based optimization
algorithms where closed-form expressions of the performance measures are not required. This
approach was successfully applied in [14] and could be employed to test our hypothesis for non-
Poisson systems.

Another avenue for further research involves the development of new performance
measures. For example, if there exists a bound on the tail of a distribution where the bound is
tighter than both the Markov bound and the one-sided bound, then the bound could be transformed
into a performance measure that may outperform those already in existence.

An obvious extension to our work is the generalization of our results to more complex
systems with non-constant deadlines. Further, the deadlines could apply to quantities other than

the system time. For example, deadlines could be imposed on queueing delay or on service time.
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ABSTRACT

We consider a G/G/1 queueing system where the objective is to maximize the probability that a
customer's system time does not exceed a given deadline. The deadline is defined to be the
maximum amount of time the customer can spend in the system. We show that for deadlines that
are i.i.d. random variables with concave cumulative distribution functions, LIFO gives the highest
probability of success, and FIFO the lowest, over the class of all work-conserving non-preemptive
service disciplines that are independent of service time and deadline. Extensions to policies that
allow preemption in G/M/1 systems, deadlines imposed on queueing (rather than system) time, and
multi-server queues are provided. Results are illustrated by the simple example of an M/M/1 queue

with exponential deadlines. In addition, the case of a G/G/1 queue with constant deadlines is
considered.
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1. INTRODUCTION

We consider a G/G/1 queueing system where every arriving customer is characterized by a
deadline D. A customer's deadline is defined to be the maximum amount of time the customer can
spend in the system. Deadlines are assumed to be i.i.d. random variables with a cumulative
distribution function G(-). If a customer's system (sojourn) time exceeds the assigned deadline,
then the customer is considered to be losz. (Note: a customer that exceeds his deadline is not
removed from the system.) This model is particularly useful in communication systems where
messages are requircd to reach their destination within a specified time interval, and in computer
systems where tasks must be executed under real-time constraints.

Let an denote the class of work-conserving, non-preemptive service disciplines that are
independent of the service times and deadlines. Thus, when the server adopts a policy e an, it
selects at every service completion instant a customer among those presently in the queue without
any information regarding service times or deadlines of the customers. Letting R denote the
ergodic system time of a customer under 7€ H;lp, the problem is to dztermine a policy 7* optimal
in an such that the probability Pr[R, < D] is maximized. Our main result in this paper is that the
Last-In-First-Out (LIFO) policy is optimal, as long as G () is concave in £. Moreover, the First-In-
First-Out (FIFO) policy provid=s the worst Pr[R_< D] in this case.

The result is particularly interesting in view of the fact that for the common case of constant
deadlines (D = 1), no such universal claim about the optimality of a certain policy can be made
without specific knowledge of the parameters of the system and deadline. For example, although
LIFO outperforms FIFO in the case of tight deadlines (small 7), FIFO provides a higher Pr[R =< D]
than LIFO for loose deadlines (large 7).

With our key result as a starting point, it is possible to provide extensions to the class of
policies allowing preemption, and to the problem of maximizing Pr[Q, < D], where Q, is the
queue waiting time. In addition, we extend the results to single-server queues with bulk arrivals,
and to multiple-server queues. Furthermore, the result raises a number of questions pertaining to

the properties of the LIFO policy in models where deadlines play a critical role in determining
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system performance. For instance, can the LIFO policy still be optimal if G () does not satisfy the
condition above? It is also possible that LIFO outperforms FIFO even when the latter policy is used
in conjunction with state-dependent admission control to the queueing system.

This paper is organized as follows. Section 2 defines a convex ordering and states some
existing results. The main result is derived in section 3; extensions to this result are provided in
section 4. In section 5, we present examples of queues with (a) exponential deadlines, and (b)

constant deadlines.

2. DEFINITIONS AND PRELIMINARY RESULTS

Our main result is based on the idea of establishing a certain type of partial ordering between two
random variables X and Y defined over all non-negative real numbers. In particular, we shall use

the following definition of a convex ordering [1]:

Definition: X is smaller than 'Y in the convex ordering, denoted by X <_Y, if and only if:

E[g(X)] <E[g(Y)]

for any convex function g: [0,=)—>R.

The following Theorem, due to Shanthikumar and Sumita [1], establishes a convex ordering
for the ergodic system time in a G/G/1 queueing system. Recall that an is the class of work-
conserving non-preemptive service disciplines that are independent of the service times and

deadlines. Clearly, the FIFO and LIFO policies belong to this class.

Theorem la: For any ne I'Inp, let R, be the ergodic system time in a G/G/1 queueing system

under . Then:
Rerpo < Rz < Ripo-

Shanthikumar and Sumita [1] derive a similar result for the G/M/1 queue and the more general
class IT of work-conserving service disciplines that are independent of the service times and
deadlines. In this case, preemption is allowed, and we use LIFO-P to represent the LIFO

preemptive/resume policy, which belongs to I'1.
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Theorem 1b: For any ne I1, let R, be the ergodic system time in a G/M/1 queueing system

under . Then:

RFIFO Sc Rn sc RLII-‘O-P'

The proofs of these Theorems in [1] are based on interchange arguments applied to sample
paths of the queueing system under consideration. It can be shown, for instance, that if some
policy ne an other than FIFO is used in a G/G/1 system, then interchanging the first customer not
served under FIFO with the customer satisfying the FIFO policy results in a lower value of the

ergodic system time in the convex ordering sense.

3. NON-PREEMPTIVE G/G/1 QUEUES

The following theorem establishes the optimality of the LIFO service discipline; furthermore, ir

shows FIFO to be the worst.

Theorem 2: Let deadlines be i.i.d. random variables with a cumulative distribution function
Gp(-). For a GIG/I queue and any service discipline we an, if Gp(?) is a concave function of t,
then

Pr[R o < D] 2 Pr{R,<D] 2 Pr[Ryp, < DI. (1)

Proof: Define the following function:
h(r) = Prt[D2r] = 1-Gp(n.
But A(r) is convex since Gp(r) is concave; therefore A(R,) is convex and it follows by Theorem 1a

that
E[h(Rro)] 2 E[ARD] 2 E[AReo)l.

Let F4(-) be the cumulative distribution function of R, under policy m. Observing that
EWR,)] = jo PriD 2 Ry|R, = r] dF () = PrD 2R,],

the result (1) follows. QED
Remark: Constraining the cumulative distribution function to be concave is equivalent to

requiring the probability density function to be non-increasing for ¢ > 0. For example, a deadline
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that is exponentially distributed would satisfy this condition, as would one that is distributed

uniformly on the interval [0,b}, b > 0.

4. EXTENSIONS

The following results are easily derived as extensions of Theorem 2. We omit the proofs.

G/M/1 Queues with Preemption Allowed. Consider the larger set of policies, I1, where
preemption is allowed. If we restrict ourselves to exponential servers, then with application of
Theorem 1b, the following ordering result can be obtained for concave Gp(-):

Pr{R rop < D] 2 Pr{R,<D] 2 Pr[Rppo < D). Q)

Queues with Deadlines on Queueing Time. We can extend the results of of the previous
sections to systems where the deadline applies to queueing time rather than system time. That is,
we can replace R, by Q. where Q, is the stationary queueing time, and the results will still hold.
The proof relies on certain properties of convex ordering that can be found in [2, p.272].

Queues with Bulk Arrivals. Here we show that the results presented in the previous
sections can be extended to bulk arrival queues. For single-server queues where the bulk size of
the nth arrival is random, Theorems 1a and 1b still hold [1]. Therefore, it can be shown that the
inequalities in equations (1) and (2) hold for queues with bulk arrivals assuming that the conditions
on the deadline distributions are met.

Multiple-Server Queues. We can show that the results of Theorem 2 can be extended to
G/G/c queues. The proof entails first extending the convex ordering result of Shanthikumar and

Sumita [1] to apply to multiple-server queues.

5. EXAMPLES

We will look at the two special cases of an M/M/1 queue with exponential deadlines, and a G/G/1
queue with constant deadlines. In the case of exponential deadlines, the required property is

satisfied for Theorem 2 to hold, and we give an example to show the magnitude of the difference
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between the FIFO, LIFO, and LIFO-P policies. In addition, we will show that in the case of a
constant deadline, whose cumulative distribution function does not satisfy the concavity property,
no policy is always optimum over all choices of the deadline. In fact, we can show that there
exists a critical deadline, 7;,, above which one policy outperforms the other, and below which the

converse is true.

5.1. M/M/1 Queue with Exponential Deadlines

Consider an M/M/1 queueing system with all deadlines drawn from an exponential distribution.
Let the arrival rate be 4; the service rate y; and the mean dcadline%. Using standard queueing

theoretic techniques, we can show that the analytical expressions for the probabilities of interest

are:
Pr{R 1r0p < D] =2L)L(9+/1+,u—\/(0+/1+u)—4/1,u ) 3)
1
= (0-A+3u-VO+ A+ ) -4Au), A<y,
PrlR o < D] = 2(6;“) @)
m(9+l+u-\l(6+l+,u)—4lu), A2y, and
U—A
TR A«<ﬂ,
Pr[RHFOSD]= O+p-4 5
0, A2

Through algebraic manipulation of equations (3)-(5), one can show that, indeed, the following

ordering is satisfied for any choice of A, y, and 6:
Pr{Rp0.p £ D] 2 Pr{Ryjpo S D] 2 Pr{Rgpo < D).
To illustrate the difference in performance under the different policies, we plot Pr[R,< D] for r =
LIFO-P, LIFO, and FIFO as a function of A for the case where y = 1 and 6 = 1/2 (see Fig. 1).
5.2. Constant Deadlines

Consider a G/G/1 queue where deadlines are constant and equal to 7. We can show that for two

policies x,,me IT,; such that R, < R, there exists a critical deadline, 7., such that
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Figure 1: Comparison of LIFO-P, LIFO, and FIFO Service Disciplines for an M/IM/1 Queue with
Exponential Deadlines

< PRy <1, 7> 71y,
PriRy <t {= PrlR, <17l, T=1g, (6)
> PrlR, <7, T<ty
The proof comes from the fact tha: Pr{R, < 7] is just the cumulative distribution function (cdf) of
R, and a result in [3, p.107] stating that if two random variables with the same mean have a
convex ordering, then their cdf's cross exactly once and in a direction consistent with (6).
Remark: The critical deadline, 7;,, depends on the parameters of the interarrival and service-time

distributions. Therefore, to compare two policies, one needs exact values for (a) the deadline, and

(b) the system parameters.

6. CONCLUSIONS

The LIFO service discipline in G/G/1 systems is often regarded as undesirable, since it results in a
system time distribution with the same mean but higher variance compared to FIFO. In the context
of the problem we have considered, however, this feature can be exploited. Our key result is that

for G/G/1 queues where customers have deadlines drawn from a concave cumulative distribution

168




function, a LIFO service discipline is optimal over the set of work-conserving non-preemptive
policies that are independent of service demands and deadlines. We also show FIFO to be the
worst policy. In addition, we extend the basic result to policies that allow preemption and to more
general systems.

Our results suggest several interesting questions pertaining to the desirable properties of the
LIFO service discipline. Fcr example, we can ask how a LIFO policy compares to a FIFO policy
with state-dependent admission control. There is, in fact, evidence that LIFO can do better even in
this case. Another idea is to make the same comparisons in a system where customers are removed
from the queue as soon as they are detected to have exceeded their deadline. Further, we can
question whether LIFO is optimal for any deadline distributions that do not satify the concavity

constraints.
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