
00
* REPORT SSD-TR-69-1

00

An Analysis of

O "The Definition of a Production Quality Ada Compiler"

Volume I

Prepared by

B. A. PETRICK
Software Development Department

S. J. YANKE

Systems Software Engineering Department

Engineering Group
The Aerospace Corporation

El Segundo, CA 90245

13 March 1989

Prepared for

SPACE SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

Los Angeles Air Force Base
P.O. Box 92960

Los Angeles, CA 90009-2960 ELECTE

MAR 0 81990

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

90 03 08 02U

This report was submitted by The Aerospace Corporation, El Segundo, CA 90245, under

Contract No. F04701-88-C-0089 with Space Systems Division, P.O. Box 92960, Los
Angeles, CA 90009-2960. It was reviewed and approved for The Aerospace Corporation by
R. D. Hefner, Director, Software Development Department, Engineering Group. Capt. John
Brill, SSD/ALR, was the project officer for the program.

This report has been reviewed by the Public Affairs Office (PAS) and is releasable to the
National Technical Information Service (NTIS). At NTIS, it will be available to the general

public.

This technical report has been reviewed and is approved for publication. Publication of this
report does not constitute Air Force approval of the report's findings or conclusions. It Is
published only for the exchange and stimulation of ideas.

A. E. Stevens, Lt. Col., USAF M. Lubofsky
SSD/ALR Senior Engineering Specialist

Computer Resources Management
and Standards Office

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la FREPORi SECURITY CLASSIFICATION ib RESTRICTIVE MARKINGS

Unclassified
2a SECURIT', CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILA9ILITY OF REPORT

Approved for public release;
2b DECLASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

TR-0089(4902-03)-l Vol I SSD-TR-89-81

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

The Aerospace Corporation (If app Icable) Air Force Systems Command
Engineering Group Space Systems Division

6c ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

2350 E. El Segundo Blvd. Los Angeles Air Force Base
El Segundo, CA 90245 Los Angeles, CA 90009-2960

8a NAME OF FUNDING/SPONSORING ORGANIZATION 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
(If applicable)

F04701-88-C-0089

8c ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WOPK UNIT
ELEMENT NO NO NO ACCESSION NC

I I TITLE (Include Security Classificatl 'n)

An Analysis of "The Definition of a Production Quality Ada Compiler" Volume I

12 PERSONAL AUTHORS(S)

B. A. Petrick, S. J. Yanke
I3a. TYPE OF REPORT I3b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 5 PAGE COUNT

FROM TO 1989 March 13 58
16 SUPPLEMENTARY NOTATION

I 7 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

F!IELD GROUP SUB-GROUP Ada compiler, ,selection;, Ada compiler, procuring;

Ada compile,.specifications; (cont.) -

19, STRACT (Continue on reverse if necessary and Ide itify by block number)

This report outlines a procedure for using "The Definition of a Production Quality Ada
Compiler", SD-TR-87-29, as the basis for determining if an Ada compiler is of production
quality. The report describes the development of a test suite from the requirements set

forth in SD-TR-87-29, as well as the results of applying this test suite to two
validated Ada compilers. An analysis of SD-TR-87-29 from creating and applying the test
suite has also been provided. /

20 DISTRIBUTION/AVAILABILITY OF ABSTOACT 21 ABSTRACT SECURITY CLASSIFICATION

Q UNCLASSIFIED/UNLIMITED N SAME AS REPORT [QDTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE include Area Code) 22c OFF ICE SYMBOL

Capt. John Brill (213) 643-2532 SSD/ALR
00 FORMI 1473. 84 MAR 83 APR edition may te used until e hausted SECURITY CLASSIFIC ATION OF THIS DA5E

All other editions are ossolete Unclassified

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

18. SUBJECT TERMS (Continued)

Ada compiler evaluating/-Ada Compiler, requirements;
Ada compiler, test suite; product:ion quality Ada compiler;

Project Ada compiler.

/2 .

)P.(. .A

SECUAITY C ASSIFICATION OF THIS PAGE

Unclas:lified

Acknowledgment

This study was sponsored by Space Systems Division Directorate for Computer Resources

(SSD/ALR). Funding for the effort was provided by the Air Force Computer Resource
Management Technology Program, Program Element (PE) 64740F, Project 2526, Software

Engineering Tools and Methods.

Program Element 64740F Is the Air Force engineering development program to develop and

transfer into active use the technology, tools, and techniques needed to cop,! with the
explosive growth in Air Force systems that use computer resources. The goals of the

program are to: (a) provide for the transition of computer system developments from

laboratories, Industry, and academia to Air Force systems; (b) develop and apply software

acquisition management techniques to reduce life-cycle costs; (c) provide Improved

software design tools; (d) address the various problems associated with computer security;

(e) develop advanced software engineering tools, techniques, and systems; (f) support the

implementation of high-order languages, e.g. Ada; (g) address human engineering for

computer systems; and (h) develop and apply computer simulation techniques for the

acquisition process.

Aecossion For
NTIS GRA&I

DTIC TAB
U,:inouncod 0Ju tification

Distribution/

.vailability (.odos

Dist S p[.eciral

Executive Summary

The Aerospace Corporation released The Definition of a Production Quality Ada Compiler
(SD-TR-87-29), herein referred to as the Definition, in March of 1987. The Intended purpose
of the Definition was to provide a quantifiable definition of the term "production quality".

The Definition specified minimal and desiraole requirements of an Ada compiler that are
beyond those required for validation. These include performance, capacity limits, user-
interface, reliability, documentation, and certain language features left to the discretion of

the compiler builder. It was intended that these requirements be used in validating a
vendor's claim of production quality for a compiler.

At the outset of a software project, it is extremely important to know that the propose ,

language compiler is of production quality. A compiler is not only a source of single point
failure in the extreme; it is also a potential major bottleneck to achieving progress during the
project's coding and testing phase.

Because it was recogrized that quantifying such a definition is very difficult, the following
study, funded by the Air Force Computer Resources Management Technology Program
Element, PE 64740F, has been conducted for Space Systems Division Directorate for
Computer Resources, SSD/ALR, to provide an analysis of the Definition. It describes how
the requirements in the Definition can be applied to an Ada compiler. In particular, this
report outlines a procedure for using the Definition as the basis for determining if an Ada
compiler is of production quality. Problems and suggestions uncovered while creating and
applying the procedura to two Ada compilers are also presented.

The Definition contains 144 separately discernible requirements in 45 sections. A test for
each of the identified requiremens has been developed in the Production Quality Ada
Compiler (PQAC) test suite. Two compilers were assessed as part of the mechanism used
to evalutate the Definition. The PQAC test suite was applied to the DEC VAX V1.4 and
Telesoft TeleGen2 V3.15 Ada compilers which ran on a VAX 8600 under VAX VMS 4.7.

Fourteen of the requirements in the Definition are designated as being fundamentally

essential for a production quality Ada compiler. Two of these requirements address
compilation speed issues. Seven of these requirements are concerned with external
manuals or documents. The remaining five requirements address object code size, object
code speed, compiler error rate, field testing, and compiler validation. At the time our
analysis was performed, the DEC VAX failed one of the essential requirements for
compilation speed. The Telesoft failed six essential requirements: object code size, object
code speed, compiler error rate, field testing, and both compilation speed requirements. It
must be emphasized that changes and improvements can be expected from both compilers,

1

and that the essential requirements should be reassessed by anyone considering either
compiler.

In general, different applications may Identify certain requirements as being more Important
than others. In an effort to handle these conflicts, the ability to Independently weight each of
the requirements was created. As an example, if it is determined that a compiler need only
satisfy the essential requirements, a weight of 1 could be given to these requirements and a

weight of 0 to the rest.

For the purposes of this report, however, the requirements were assigned weights from 1 to
10. It is felt that this range was adequate for reflecting the difference in magnitude between
a single language feature requirement and an essential requirement. In addition to the
essential requirements, those requirements concerned with run-time performance, program
development, or adherence to a standard were given a higher weight.

The results obtained showed a marked difference in the performance of these two
compilers. Using the weighting scheme devised for the test suite, the DEC VAX and
Telesoft cnmpilers achieved a success rate of 88% and 67%, respectively. These results
are dependent on the weights chosen and the validity of the requirements themselves. If it
is determined that the essential requirements should contribute more heavily to a compiler's
rating, the weights for those requirements could be increased.

Because of the small sample size of only two compilers, it is difficult to Interpret the level of
production quality these statistics represent. It may be that this single performance statistic
Is most useful when used to compare Ada compilers against each other, and shculd not be
used as a flat measure of a compiler. The value obtained should be viewed as an indicator
of a compiler's production quality. This rating may be used to direct attention to failed tests
that need to be examined further.

As the results illustrate, the Definition provides a useful vehicle for measuring the extent to
which the tested compilers are of production quality. Since the PQAC test suite was newly

developed during the course of this project, a number of problems with implementing such a
test suite from the Definition were identified. These problems with suggested solutions are
discussed in this report. In addition, periodic review by the Ada community is recommended

as a mechanism for keeping the Definition current as compiler technology advances.

2

Table of Contents

Executive Summary 1
1. Introduction 5
2. PQAC Test Suite Development 7

2.1 Requirement Analysis 7
2.2 Test Representation 7
2.3 Test Method 8
2.4 Support Software 9
2.5 Special Features 10
2.6 Test Execution and Evaluation 11

3. Result Interpretation Using Weights 12
3.1 Esspr-tia! Requirements 12
3.2 Weighting Scheme 13
3.3 Weights Chosen 13
3.4 Result Interpretation 15

4. DEC VAX and Telesoft Compiler 16
Evaluations
4.1 POAC Statistics 16
4.2 DEC VAX Results 17
4.3 Telesoft Results 18

5. The Definition Analysis 19
5.1 Requirement Review 19
5.2 Deficiencies 19
5.3 Summary 20

Acronyms 22
Appendices 23
A. Test and Requirement Cross Reference 24
B. PQAC Test Weights 38
C. DEC VAX Ada Result Summary 42
D. Telesoft VAX Ada Result Summary 46
E. Additional Comments 50
F. Test Examples 54

F.1 Code Expander Description 54
F.2 Test Description 56

G. PQAC Test Suite - Volume II 58

3

Tables

1a. Appendix B Weighting Scheme (500 Possible) 16

lb. No Weighting Scheme - Equally Weighted (144 Possible) 16

2. Failure Points Using Appendix B Weighting Scheme 17

1. Introduction

The Definition of a Production Quality Ada Compiler, herein referred to as the Definition,

specifies minimal and desirable requirements of a production quality Ada compiler. The
following study describes how the requirements In the Definition can be applied to an Ada
compiler.

The procedure outlined In this report has been applied to tho DEC VAX V1.4 and Telesoft
TeleGen2 V3.15 Ada compilers running on a VAX 8600 under VAX VMS 4.7. Problems and

suggestions uncovered while creating this report have been recorded.

In both the Definition and this report, the meaning of the term compiler has been expanded
to Include the Ada Programming Support Environment (APSE). It Is recommended that
anyone reading the following report have a copy of the Definition available for reference.

The development of the Production Qug/ity Ada Compiler (PQAC) test suite is described In
Chapter 2. A separate test for each of the requirements In the Definition has o'en
developed. Appendix A contains a cross reference between the POAC tests nd the
requirements. This Appendix may be consulted to resolve any reference to a test number In
this report.

The PQAC test suite is designed to be independent of the compiler and host/target
architecture under test. Tables In the test support software capture dependent features of
the Interfaces such as file name, system time, and compiler option syntax. This allows the
test suite to be easily rehosted for different compilers and host/target architectures. In
iddition, portions of a test may be designated as applicable to a specific compiler. As each
configuration of compiler and host/target architecture is Included In the support software, It

becomes a permanent part of the test suite domain.

Since not all of the tests are of equal Importance, a capability for Independently weighting
-ach of the individual requirements In the Definition has been developed. Using this
capability, those requirements designated by the Definition as essential may be assigned a
dgher weight. Requirements determined to be Important to specific applications may also
)e assigned a higher weight. Appendix B contains a tablo of the weighting scheme used In
;his report. Tho development of the weighting scheme used is described In Chapter 3.

fhe POAC test suite was applied to the DEC VAX and Telesoft Ada compilers. A summary
-f the results is given In Chapter 4 with a list of the tests passed for each compiler given I
Appendices C and D, respectively. A more detailed analysis of the failed requirements rr ly

be obtained by reviewing the test data and results. It should be noted that the evaluation f

these two compilers Is secondary to the analysis o, the Definition Itself. The validity of the

5

compiler evaluations are dependent on the analysis of the Definition and on the weighting
scheme chosen. A different weighting schemo could alter the outcome of the compiler
performance analysis.

An effort has been made to Identify any untestable, inconsistent, and missing requirements
in the Definition. Appendix E contains comments and suggestions not stated elsewhere in
the report arising from the development and application of the test suite.

A considerable body of test support software (1500 Ada source lines) was created to
facliltate the execution of the test suite. Appendix F contains test examples and Illustrations
of several test support software features. A fully detailed User's Guide will be completed as
the test suite matures.

6

2. PQAC Test Suite Development

The Production Quality Ada Compiler (PQAC) test suite has been developed to provide a
method of determining If a compile; adheres to the requirements In the Definition. The
PQAC test suite consists of the tests corresponding to each of the requirements In the
Definition as well as the support software used to execute the tests and gather results.

2.1 Requirement Analysis

The Definition Is composed of a non-homogeneous set of requirements. Some are

concrned with Ada language features and capacities while others are APSE requirements
for external manuals and documents. Some requirements are very precise while others are
prey to Interpretation. The method by which each of the requirements can be tested Is

affected by this non-homogeneity.

The requirements can be split Into three main categories depending on their Identified test

method:

1. (65% of PQAC) Requirements that can be tested using unmodified Ada code
regardless of the compiler or host/target architecture under test (e.g., verifying
that case statements can be nested to a depth of 64 levels).

2. (5% of POAC) Requirements that can be tested using Ada code requiring
changes depending on the compiler or host/target architecture being tested.
These requirements deal with constructs whose implementation Is left to the
compiler vendor or dependent on the host environment (e.g., verifying that the
compiler shall provide predefined types in the Ada package STANDARD for all
Inte,;er and floating-point types provided by the target computer).

3. (30', of PQAC) Requirements that cannot be tested using Ada code. These
generally require some form of manual action (e.g., checking for the existence
of a User's Manual).

A ur!form approach encompassing these categories has been adopted for executing and

gathering results from each of the tests.

2.2 Test Representation

Each separate requirement In the Definition has been assigned a unique test number. A
complete list of these numbers is given In the Test and Requirement Cross Reference of
Appendix A. A test number such as T061208 refers to the requirement In section 6,
subsection 12, requirement A4 of the Definition.

7

There exists a file for each test containing all of the Information needed by the support

software to correctly perform the test. This Information Includes:

" The test number.

" A reiteration of the requirement.

" A description of the proposed test method.

" A note of any implementation dependencies in the test.

" The test options.

" file name and compilation name information

• special action identifier

" compiler options

" The Ada code needed for the test, if any.

In this manner, all three categories of test method described In the previous section may be

uniformly represented. For those requirements that are testable using Ada code, the test

code is included in the test file. The test method description for these requirements states

how to Interpret the output generated from the test. The Ada code section is omitted for

those requirements with a manual test method. The test method description for these

requirements simply states the manual procedure to be performed.

Any compiler or architecture implementation dependencies are highlighted in each test.
This allows tests requiring changes to be quickly identified and modified for new

configurations. Where appropriate, guidelines for altering the test for a new configuration

are included within the test.

To allow for such dependencies, any part of a test may be designated as specific to a

particular compiler. For example, certain pragmas are allowed to have an Implementation

defined syntax. The support software allows several versions of such a pragma to be

embedded in the same test code identified with a descriptor for the appropriate compiler. In

this manner, test information about a single requirement is contained in a single place. If

new code specific to a compiler needs to be developed, it can simply be Inserted Into the

test while preserving the existing code segments.

2.3 Test Method

For many requirements, only the simplest or minimal condition sufficient to verify the

requirement is tested. This approach was adopted since the more complicated a test Is, the

greater chance it has of failing for some reason not related to the requirement being tested.

8

For example, in T030101, the requirement for allowing 2048 library units In a program library

is tested. The 2048 library units used in the test each consisted of a package containing a
single constant declaration. If 2048 very complicated packages had been used, the
possibility of the test aborting because of a storage capacity error not related to the given
requirement would become great. Likewise, in T030501, 64 parameters of type integer
were used to test the requirement for allowing 64 formal parameters in a subprogram. The
requirement was not tested using more complex parameter types such as records or arrays.

In addition, each test was constructed to be independent of the success or failure of any

other. Although some of the requirements are dependent on each other, the execution of
the tests themselves can proceed in any order, albeit being possibly redundant.

For those tests consisting solely of a manual test procedure, the instructions were made as

explicit as possible to ensure the same interpretation by independent testers. However,
most of these tests dortt lend themselves to a rigid or clearly defined test method. For
many of these tests, the method is simply "Check for Existence."

If a requirement is determined to be not applicable to a particular compiler or host/target
architecture, then the test for this requirement may be removed from the test suite results.
For example, T080800 need only be applied when a compiler is being newly developed for a

DOD contract.

2.4 Support Software

This section presents a brief discussion of the main features of the PQAC test suite supnort

software. An effort has been made to create a compiler and host environment Independent
test suite in order to minimize the effort of transition to a new configuration. Appendix F
contains a more detailed explanation of the support software and its functionality.

Tables have been constructed to capture compiler and host dependent information such as
file name formats, system time formats, and compiler option syntax. These tables may be
appended with additional entries as compilers and hosts are included in the test suite
domain. As each test configuration is incorporated into the test suite, the test bed is

expanded while retaining all of its previous functionality.

A standard set of compiler options has been defined. Thus, each test file does not have to
be modified for compilers with a different option syntax. Options to provide a compiled or
machine code listing, optimize for time, optimize for space, and perform syntax checking are

available. Each compiler has an entry in a table that provides a translation from the
standard option to the actual option required by that particular compiler. For example, the

9

defined standard option "OPTIMIZETIME" contains an entry for the VAX compiler
"/OPTIMIZE=TIME", and for the Telesoft compiler "/OPTIMIZE=ALL".

A minimal set of operating system primitives was also defined. They consist of simple
command names for all the discrete actions provided by the operating system that are
needed during the execution of a test. They include LIST, PRINT, DELETE, COMPILE,
LINK, EXECUTE, TIME, and SIZE. Other test options exist for invoking special actions such
as compilation and execution speed timing, and measuring object code size. Each of these
special actions can be achieved using only the defined operating system primitives.

To execute a test, its test representation file is first parsed and a script file is created. Any
designated section of the test not targeted for the compiler under test is simply Ignored. The
script file produced contains only the operating system primitives described in the previous
paragraph. A simple command interpreter for the appropriate operating system is then used
to perform the required steps in a sequential manner.

2.5 Special Features

Several utilities have been created for use by the test suite support software. A program for
counting the number of Ada source lines In a program has been developed. This has been
used for computing compilation speed In lines/minute. Additionally, programs for computing

elapsed time for both internal execution times and operating system level actions have been
created. It is also possible to compare FORTRAN and Ada programs for both code size and
code execution speed.

The most innovative feature of the support software is the capability for expanding

embedded Ada code segments. Testing several of the capacity requirements involves the
use of very large Ada programs. For example, in T030101, 2048 library units are required.
In T030103, a program containing 2,500,000 Ada source statements must be used. The
size of the test code needed for these examples would make the tests unmanageable and

prohibitive. A code expander tool has been created that takes Ada code templates and

expands them any number of iterations while producing correct Ada code.

Templates for expansion contain embedded special commands that the code expander
recognizes. The central feature used by the code expander is a simple loop construct that
may be nested. Each loop body may be replicated any number of times with each iteration

producing similar but semantically unique code fragments. Before corpilation, the code

expander is applied to a test. The resultant code is then compiled and subsequently
deleted. In this manner, large bodies of code are only present while they are being
compiled, and then only one at a time.

10

Using the code expander on test T030101 dropped the size of the code from 4096 source
lines (conservatively) to only 25 lines of test code Including the code expander syntax. The
code expander tool proved to be very useful on even moderately sized tests. Of the 92 tests
in the POAC using Ada code, 48 of them also use the code expander. A detailed
description, including examples, of the code expander tool is given In Appendix F.

2.6 Test Execution and Evaluation

After a test file is parsed, the script file produced will contain commands to carry out the
following actions:

" Set up the Ada program library environment If needed.

* Use the Code Expander if needed.

" Compile any Ada text using the appropriate compiler options.

* Link and execute any executable code.

" Perform any special action required by the test.

* Delete all temporary and library files created by the test.

" Output the results of the test.

As each script file is processed by the command interpreter, the output is saved in a
separate file. This output includes a reiteration of most of the Information present in the
original test file appended with status and error Information. If a compiler listing or machine
code listing is called for, it Is also Included In the output. Finally, If the test contains any
code to be executed, the output of the code is also retained here. In this manner, all of the

tests may be processed at one time with the results being saved for evaluation.

Included in the test method is a description of how to determine If a test passed. Some of

the test evaluation methods are:

* A success or failure message generated by the test.

" The success or failure of a compilation.

" Examination of the assembly code listing for specified Information.

The output from each test contains all the information needed to evaluate the success or

failure of the test with the exception of any manual procedures that must be completed.
Many tests automatically record their outcome in the test suite database. Users are notified
of tests that require manual intervention. The third evaluation method listed above Is a
combination of automatic and manual testing. The assembly listing Is automatically

generated for those tests that require it, but the listing must be manually examined.

11

3. Result Interpretation Using Weights

There are 149 requirements Identified in the Definition. For each of these requirements,

there Is a corresponding test In the PQAC test suite. Five of these requirements are
definitions, but are included in the test suite for completeness. The previous section
describes how the test suite can be applied to a compiler. A pass or fail determination for

each of the individual tests may then be made. This section describes how these individua!

results may be interpreted.

3.1 Essential Requirements

Fourteen of the requirements in the Definition are designated as being fundamentally

essential for a production quality Ada compiler. These 14 requirements address Issues
such as compilation speed, object code size, object code speed, compiler error rate, field

testing, compiler validation, and external manuals or documents quality. The implication of
a compiler failing to meet an essential requirement is not specified by the Definition. For

example, in T020401, if a compiler achieves only 190 lines/minute/MIP compilation speed
instead of the required 200, is this compiler to be excluded from being considered
production quality even if it satisfies the remaining requirements?

It may be misleading to designate certain requirements as essential. For many applications,
there are constructs being tested from Chapter 13 of MIL-STD-1815A that are as equally
important as the essential requirements. For example, representation clauses may be

indispensable for the correct execution of some embedded real time systems. In such a

system, compilation speed may not be a factor at all. In general, the Importance of each of

the requirements for different applications is not static.

These 14 requirements also represent some of the most difficult to verify. Demonstrating

that a compiler error rate is decreasing with time is virtually impossible to do In the
framework of a test suite. The requirements for manuals and external documents are also

difficult to test. If the compiler vendor uses a document title different from the one quoted in

the requirement, it may be difficult to determine if such a document exists. Even If the

document exists, verifying that it is adequate is a complicated and subjective process.

The essential requirement for a compiler validation summary report (see T080100) may not

be needed. There already exists an essential requirement for the validation of an Ada
compiler (see T070100). And once a compiler has been validated, the validation summary
report becomes public domain. In addition, it may be desirable to apply the POAC test suite

to an unvalidated Ada compiler for comparison with other validated compilers. Currently,

this would not be possible since an unvalidated compiler would fail these two tests.

12

It should be noted that the PQAC test suite is not aimed specifically at measuring compiler

performance. There already exist test suites to perform that function. This Is evidenced by

the fact that the requirements are stated as a pass or fall option. For example, In T020401,

simply knowing whether a compiler has passed the test may not be sufficient. Suppose

compiler X compiles at a rate of 199, compiler Y at a rate of 200, and compiler Z at a rate of

1000 lines/minute/MIP. The fact that X and Y are comparable but Z is superior is not

evident from the pass/fail test result as X would fail but Y and Z would pass. A further

analysis of the test results is needed.

Although the essential requirements are important, they alone do not define production

quality. It is also possible for a compiler to be of production quality for use on some

projects, but not on others. The weighting scheme described In the next section has been

developed for differentiating between the essential and less important requirements.

3.2 Weighting Scheme

As previously established, all requirements in the Definition are not of the same Importance

in determining production quality for an Ada compiler. In addition, the Importance of some

of the requirements may not be static for all applications. For these reasons, a capability for

weighting each of the requirements has been created.

After the test suite has been applied to a compiler, a pass/fail percentage for each Individual

test is available. A partial pass for a test Is possible, since some of the requirements contain

multiple parts. A user modifiable table is used to hold the weights for each of the tests along

with instructions for awarding points to partial passes. A user may specify whether or not he

wants a partial pass to receive partial points. Points for each test can then be awarded

depending on the pass percentage and total weight for the test.

The points awarded for each test are automatically accumulated, producing a test suite pass

total. Tests that are deemed not applicable to a compiler or host are given a weight of 0, as

are the five definitions. The test suite pass total is then divided by the total number of

available points to arrive at a test suite pass percentage between 0% and 100%.

3.3 Weights Chosen

No assignment of weights Is going to yield a totally accurate measure for determining
production quality in all cases. For the most part, however, if the weights are carefully

chosen, the result obtained will be a good Indication of the compiler's level of production

quality. This measure will be more accurate than one obtained without weights.

13

Two Independent sources were tasked to weight the tests. The citeria used with examples

of each type are:

" Run-time performance

" executable code size

* executable code speed

" Importance to program development

• presence of user's manual

" presence of a symbolic debugger

* ability to provide a dependency listing

• invokable from batch file or interactive

" compilation speed

• Promotes adherence to a standard

" MIL-STD-1815A Chapter 13 support

* predefined pragma support
* following I/O conventions

" High frequency of occurrence

• compilation speed

° invokable from batch file or Interactive

Since no two assignments of weights by independent sources are going to be identical,
these two schemes were combined to form a single, possibly less biased, scheme.
Appendix B contains a complete list of the weights chosen with additional instructions for
determining how to award points for partial passes.

Each test has been assigned a weight in the range from 1 to 10. A finer granularity would
probably not add any accuracy to the weighting scheme, since the assignment of weights Is

somewhat subjective. It Is felt that this range Is adequate for reflecting the difference In
magnitude between a single language feature requirement and the more Important essential
requirements. The combined possible weight total for the scheme developed is 500 points.

14

3.4 Result Interpretation

The weighting scheme method described in this section will produce a test suite pass
percentage for each compiler between 0% and 100%. This pass percentage should not be
used as an absolute measure of an Ada compiler. A quantity such as "production quality"
can never be represented exactly as a single value. Examining what tests failed for each
compiler is needed to provide a complete analysis.

The result obtained is also dependent on a number of factors, including the host/target
architecture and weighting scheme chosen. For example, if it is determined that the
essential requirements should contribute more heavily to a compiler's rating, the weights for
those requirements could be increased.

The test suite pass percentage is good, however, for providing an overall measure of a
compiler. It may best be used in comparing Ada compilers against each other. It may also
be used to quickly Identify compilers whose performance is suspect and in need of further
analysis. If a compiler has achieved a rating of 100%, then it certainly must be a very strong
candidate for being considered production quality. Ukewise, if a compiler is rated at a very
low percentage (perhaps less than 50%), it Is suspect. For those compilers whose pass
percentages are within a few percent of each other, a further analysis of what tests failed
would be needed to distinguish them.

15

4. DEC VAX and Telesoft Compiler Evaluations

Summaries of the results for the DEC VAX and Telesoft compilers are given in Appendices
C and D, respectively. All of the output generated from the POAC test suite is too
voluminous to reproduce here. Appendix B contains the weighting and point assignment

scheme used by the test suite.

4.1 POAC Statistics

Results from the DEC VAX and Telesoft Ada compilers are summarized in the following

tables.

Table la

Appendix B Weighting Scheme (500 Possible)

Compiler I Applicable I Passed I Failed
I I Total I Total I % I Total 1% I

IDECVAX I 464 1 403 I 88 I 56 I 12 I
ITelesoft I 472 1 317 1 67 1 155 1 33 I

Table lb

No Weighting Scheme - Equally Weighted (144 Possible)

Compiler I Applicable I Passed I Failed I
I Total I Total I % I Total I % I

IDEC VAX I 138 1 120 I 87 I 18 1 13 I
ITelesoft 1 139 1 94 I 68 I 45 1 32 I

Table 1 a lists the results obtained using the weighting scheme of Appendix B. Table 1 b lists

the results obtained without using a weighting scheme. The pass and fall percentages listed

in these tables are computed using the applicable totals. Since not every test in the test

suite was applied to these two compilers, the applicable total is smaller than the total
number of possible points.

16

Table 2

Failure Points Using Appendix B Weighting Scheme

...

Failure Category I DEC VAX I Telesoft I
I Points I Points I

...

Documentation 22 37
Compilation Speed 10 50
Exceeded Capacity 3 17
Code Size Performance 14 21
Code Speed Performance 4 6
Nonstandard (I/O, pragmas, chapter 13) 3 24

---------------- ------- I
Total 56 155

Table 2 contains a breakdown by general type of the tests failed by each of the compilers.
The points listed were obtained from the weighting scheme of Appendix B, summarized In
Table 1 a. The failure categories identified here are not an exhaustive representation of the

categories present in the PQAC test suite.

4.2 DEC VAX Results

The DEC VAX compiler achieved a test suite pass percentage of 88% using the weights
given In Appendix B. Of the 14 essential requirements, only cne test for compilation speed

failed.

Table 2 indicates that inferior or missing documentation accounts for more than one third of

the points taken off. The compilation speed failure and the non-optimal generation of object
code account for most of the remaining points. The results show that there Is not a specific
area of the compiler that is below the standard.

In this limited two compiler domain, the DEC VAX compiler performed significantly better

than did the Telesoft, achieving a rating more than 20% higher. A higher level of production
quality is Indicated.

17

4.3 Telesoft Results

The Telesoft compiler achieved a test suite pass percentage of 67% using the weights given
In Appendix B. It also failed six of the essential requirements: object code size, object code

speed, compiler error rate, field testing, and two for compilation speed. Several library and

statement capacity limits were exceeded. Several predefined pragmas and MIL-STD-1 81 5A
Chapter 13 constructs such as length clauses were not supported. Inferior or missing
documentation was also noted. As shown in Table 2, the DEC VAX compiler performed

better than the Telesoft in each of the identified categories.

The Telesoft compiler was more difficult to work with than the DEC VAX. The initial compile

of the test suite support software halted with a cryptic error message stating that an internal

compiler error had occurred. It was surprisinc to find that a symbolic debugger was not
included with the compiler and that one wasn't purchased separately by Aerospace. Also, a

compiler option problem made it impossible to generate a compiler listing. When contacted,
Telesoft was able to provide a work around for this problem. Telesoft was previously

unaware of two problems for which error reports were submitted.

The PUT procedure from the predefined package TEXT_10 operated differently than

expected, necessitating the modification of several tests. Various tests containing large Ada
code segments failed after exceeding a CPU time limit or library capacity, including one that

tailed after using six hours of CPU time.

Telesoft compiler options exist for increasing the working set size and virtual memory used
by the compiler. Using these options could potentially improve the compiler's performance

for some of the tests such as those for compilation speed. These options were not used,
however, since executing many of these tests more than once is cost prohibitive.
Additionally, the necessity for such fine tuning demonstrates a lack of ease of use, which is

a tacit requirement for production quality.

The difficulties with the Telesoft compiler are captured by the lower pass percentage rating

achieved. It is evident from these results that the Telesoft compiler is less mature than the

DEC VAX.

18

5. The Definition Analysis

The Definition contains an excellent set of requirements specifying desirable attributes that a
production quality Ada compiler should possess. Important aspects of an Ada compiler not
addressed by other test suites are addressed here. However, certain practical limits are
Imposed upon such requirements when they are to be translated Into tests for verification of
the requirement. Creating and applying the PQAC test suite to the DEC VAX and Telesoft
Ada compilers have illuminated several of these limitations. A list of specific comments for

selected requirements is contained in Appendix E.

5.1 Requirement Review

For a requirement to be of any use, there must be some way that it can actually be tested.
Any test method devised for a requirement should be repeatable and consistent with
independent testers. A major problem with the Definition Is that several requirements are
difficult, if not impossible, to formulate tests for in the framework of a test suite.

An example of such a requirement is 4.3.2, "The diagnostic message text shall be
sufficiently informative to enable the user to analyze the problem without consulting compiler
documentation." Although this requirement is certainly a valuable trait for a production
quality compiler, as stated it is not quantifiable. In general, phrases In a requirement such
as "sufficiently informative" or "adequate" render the requirement toothless. These
requirements could be restated in more definite terms.

A more severe problem is with 7.5, "The production quality compiler should exhibit an error
rate of no more than 1 verified new error for each 250,000 new lines of Ada compiled. This
rate shall decrease over time as the compiler matures." This is obviously a very important
requirement. However, verifying that a compiler satisfies this requirement is virtually
Impossible. It requires the tester to rely on the vendor for adequate compiler history
statistics. There is no guarantee that these statistics will be available or accurate. The
Definition should be tailored in some manner so that these untestable requirements do not
invalid-te the entire collection. The Intended scope of the requirements In the Definition
may be too broad.

5.2 Deficiencies

Many of the requirements in the Definition are also provided with a rationale. This rationale
Is meant to help explain and interpret the intent of the requirement. It is unclear whether the
rationales are to be taken as part of the requirement or whether they are just guidelines.

19

Information in some of the rationales is indispensable to the correct interpretation of the
requirement.

Requirements and rationales that are ambiguous, unclear, or incomplete are given In

Appendix E. Requirements such as these need to be more specific. For example, in 4.1.4,

what does *implement an option to recover' Imply? Several of the requirements In Section 3

that do not have a rationale should have one, since the requirements as stated are unclear.

Section 8.4 requires the existence of a Run-Time System Manual. Since a one page or

error filled manual is not acceptable, some reference to the quality and content of such a
document should be made.

It is desirable to keep the size and scope of the Definition compact to facilitate ease of use

and analysis. However, additional requirements may be identified that would add to the
completeness of the Definition. They could include:

" A requirement on the compilation speed of library units having WITH clauses.

* A limit on subprogram declarations in Section 3.2.

" More requirements for size and representation clauses. For example,
specifying a size of N bits for some type should cause an M element array of
this type to be of size M * N.

" A requirement that the recompilation of a package body should not necessitate
the recompilation of any unit dependent on the package.

" Requirements for predefined math libraries, database management systems,
and operating system services.

The format of the Definition could be modified to facilitate the testing of the requirements.

Those requirements that contain multiple requirements, as in 6.12, could be broken up with

each subrequirement being assigned its own section number. Requirements that are

Inseparable, such as 3.4.5 and 3.4.6, could be joined to form one requirement. The

requirements could be ordered so that no requirement is dependent on a requirement that
follows it. For ease of use, the requirements could contain references to MIL-ST D-1815A

for those constructs being tested that are described there.

5.3 Summary

The Ada Compiler Validation Certification (ACVC) and Ada Compiler Evaluation Certification

(ACEC) are mainly targeted at measuring adherence to MIL-STD-1 815A and run-time

performance. Production quality entails more than what either of these benchmark suites
provide, although meeting their requirements is an absolute minimum for any Ada

Implementation.

20

Ada puts more emphasis on the quality and structure of the programming environment in
which it operates than other programming languages. It is crucial that an Ada compiler have
available adequate documentation, debuggers, and library management tools. Adherence
to the essence of the Ada standard and the support of advanced Ada features for i/O,
pragmas, attributes, and MIL-STD-1815A Chapter 13 issues is also critical. The Definition

addresses issues such as these that are not addressed by other test suites.

The POAC test suite containing 144 tests has been developed from the requirements in the
Definition. Most of the requirements (70%) are testable using Ada code, while others rely on
performing some manual procedure such as checking for the existence o' a User's Manual.
For the latter group, the test consists of a description of the manual procedure and criteria to

use in evaluating the requirement. Some of the requirements may not be applicable to a
given compiler and host/target architecture. For example, the existence of a Software
Product Specification is only required when a compiler is being newly developed for a DOD

contract.

A capability for assigning different weights to each of the tests was created. The weights
assigned may be modified to fit the application. This weighting scheme is used to derive a
production quality performance rating between 0% and 100% for an Ada compiler. This
rating may then be used to compare Ada compilers, or to flag deficient compilers. A
detailed analysis of a deficient compiler can be obtained by reviewing the test data and
results. The test suite and weights must be allowed to achieve some level of maturity before
any firm conclusions may be drawn from obtained results.

The POAC test suite was applied to the DEC VAX and Telesoft Ada compilers. Using the
weighting scheme developed in this report, the DEC VAX and Telesoft compilers received a
production quality performance rating of 88% and 67%, respectively. Although the rating
should only be used as an indicator, difficulties encountered with the Telesoft compiler tend
to support the obtained results. As more compilers are evaluated using the Definition, a

standard interpretation of the production quality rating will evolve.

Practical limitations on several of the requirements have been identified. Several missing or
incomplete requirements have also been noted. Even with these problems, the Definition is,
for the most part, a complete and useful set of requirements for measuring a compiler. An
Ada community periodic review could be scheduled, allowing new information and
Improvements to be incorporated into the Definition.

21

Acronyms

ACEC Ada Compiler Evaluation Certification
ACVC Ada Compiler Validation Certification
AJPO Ada Joint Program Office
APSE Ada Programming Support Environment
CPU Central Processing Unit
DOD Department of Defense
ECSPO Embedded Computer Standardization Program Office
HOL High Order Language
MIP Million Instructions Per Second
PIWG Performance Issues Working Group
POAC Production Quality Ada Compiler
SSD Space Systems Division
VDD Version Description Document

22

Appendices

23

A. Test and Requirement Cross Reference

This appendix provides a correlation between the requirements in the Definition and the
numbers used by the PQAC test suite. Some of the requirements in the Definition have
been subdivided in order to keep the tests independent and to make the evaluation of
results easier.

The numbers used by the PQAC test suite are listed on the left in bold with their
corresponding requirement from the Definition stated on the right.

Those requirements that are considered to be fundamentally essential for a production
quality compiler and must be met exactly are denoted by "(M)", for "minimal."

SECTION 1
INTRODUCTION

T010100 1.1 Definition of an Ada Source Statement. An Ada source statement shall be
defined to mean: a basic declaration, a record component declaration, a
simple statement, a compound statement, an entry declaration, terminate
alternative, WITH clause, USE clause, generic parameter declaration,
proper body or body stub, representation clause, alignment clause, or
component clause.

24 (A)

SECTION 2
PERFORMANCE REQUIREMENTS

T020100 2.1 Benchmarks Used. All performance requirements of this section shall be
met using the programs of the test suite formulated by the Performance
Issues Working Group (PIWG) of the SIGAda Users' Committee.

T020200 2.2 Definition of Benchmark Test Units. The requirements in this section
assume a single compilation unit without any context clauses (WITH
clauses) or generic instantiations.

T020300 2.3 Definition of Time Used. All speed requirements of this section shall be
measured in terms of elapsed (wall-clock) time.

2.4 Host System Performance Requirements.

T020401 2.4.1 The compiler shall compile a syntactically and semantically correct
Ada program of at least 200 Ada source statements at a rate of at
least 200 statements per minute (elapsed time), for each 1 MIP of
rated processing speed of the specified host computer, while
meeting the object code requirements in 2.5.1 and 2.5.2. (M)

T020402 2.4.2 The compiler shall compile a syntactically and semantically correct
Ada program of at least 200 Ada source statements at a rate of at
least 500 statements per minute (elapsed time), for each 1 MIP of
rated processing speed of the specified host computer, in the
absence of requirements on object code efficiency. (M)

T020403 2.4.3 The compiler shall compile a syntactically and semantically correct
Ada program of at least 200 Ada source statements at a rate of at
least 1000 statements per minute (elapsed time), for each I MIP
of rated processing speed of the specified host computer, with no
requirement to generate object code.

2.5 Target System Performance Requirements.

T020501 2.5.1 The compiler shall produce an object code program that requires
no more than 30% additional target computer memory space over
an equivalent program written in assembly language. (M)

T020502 2.5.2 The compiler shall produce an object code program that requires
no more than 15% additional execution time over an equivalent
program written in assembly language. (M)

25 (A)

SECTION 3
COMPILER CAPACITY REQUIREMENTS

3.1 Program Limitations. The compiler shall provide the following minimum
capacities for each of the Ada program elements listed when provided with
sufficient virtual storage:

T030101 library units in a program library 2048
T030102 compilation units in a program 1024
T030103 Ada source statements in a program 2,500,000
T030104 maximum size (in words) of a program 2,500,000
T030105 ELABORATE pragmas 512
T030106 width of source line (and length of identifier) 120

3.2 Compilation Unit Limitations. The compiler shall provide the following
minimum capacities for each of the compilation unit elements listed when
provided with sufficient virtual storage:

T030201 library units in a single context clause 16
T030202 library units WITHed by a compilation unit 256
T030203 external names 4096
T030204 Ada source statements in a compilation unit 4096
T030205 identifiers (including those In WITHed units) 4096
T030206 declarations (total) in a compilation unit 4096
T030207 type declarations 1024
T030208 subtype declarations of a single type 1024
T030209 literals in a compilation unit 1024

3.3 Program Unit Limitations. The compiler shall provide the following
minimum capacities for each of the program unit (subprogram, package,
task, or generic unit body) elements listed when provided with sufficient
virtual storage:

T030301 depth of nesting of program units 64
T030302 depth of nesting of blocks 64
T030303 depth of nesting of case statements 64
T030304 depth of nesting of loop statements 64
T030305 depth of nesting of if statements 256
T030306 elsif alternatives 256
T030307 exception declarations in a frame 256
T030308 exception handlers in a frame 256
T030309 declarations in a declarative part 1024
T030310 Identifiers in a declarative part 1024
T030311 frames an exception can propagate through unlimited

26 (A)

3.4 Task Limitations. The compiler shall provide the following minimum
capacities for each of the task elements listed when provided with
sufficient virtual storage:

T030401 values in subtype SYSTEM.PRIORITY 16
T030402 simultaneously active tasks in a program 512
T030403 accept statements in a task 64
T030404 entry declarations in a task 64
T030405 formal parameters in an entry declaration 64
T030406 formal parameters in an accept statement 64
T030407 delay statements in a task 64
T030408 altematives in a select statement 64

3.5 Subprogram Limitations. The compiler shall provide the following
minimum capacities for each of the subprogram elements listed when
provided with sufficient virtual storage:

T030501 formal parameters 64
T030502 levels in a call chain unlimited

-6 Package Limitations. The compiler shall provide the following minimum
capacities for each of the package elements listed when provided with
sufficient virtual storage:

T030601 visible declarations 1024
T030602 private declarations 1024

3.7 Statement Limitations. The compiler shall provide the following minimum
capacities for each of the statement elements listed when provided with
sufficient virtual storage:

T030701 declarations in a block 1024
T030702 enumeration literals in a single type 512
T030703 dimensions In an array 32
T030704 total elements in an array 65535
T030705 components in a record type 256
T030706 discriminants in a record type 64
T030707 variant parts in a record type 64
T030708 size of any object in bits 65535
T030709 characters in a value of type STRING 65535

3.8 Expression Limitations. The compiler shall provide the following minimum
capacities for each of the expression elements listed when provided with
sufficient virtual storage:

T030801 operators in an expression 128
T030802 function calls in an expression 128
T030803 primaries in an expression 128
T030804 depth of parentheses nesting 64

27 (A)

SECTION 4

USER INTERFACE REQUIREMENTS

4.1 User Inputs.

T040101 4.1.1 The compiler shall be invokable from either a batch file command
or an Interactive command.

T040102 4.1.2 The compiler shall be sharable (re-entrant) by multiple users, If the
host operating system supports multiple users.

T040103 4.1.3 The compiler shall implement options to perform the same
function as pragmas SUPPRESS and OPTIMIZE.

T040104 4.1.4 The compiler shall implement an option to recover from non-fatal
errors as defined in 4.3.3. The recovery action taken shall be
Identified.

T040105 4.1.5 The compiler shall implement an option to disable the generation
of diagnostic messages of a specified severity level.

T040106 4.1.6 The compiler shall implement an option to select or suspend the
generation of object code and/or assembly code.

4.2 Compiler Listings.

T040201 4.2.1 The compiler shall be able to produce at the option of the user a
compilation listing showing the source code with line numbers.

T040202 4.2.2 The compiler shall be able to produce at the option of the user a
list of diagnostic messages either at the position in the source
code where the condition occurred, and/or at the end of the
compilation listing, even If the compilation terminates abnormally.

T040203 4.2.3 The compiler shall be able to produce at the option of the user an
assembly or pseudo-assembly output listing.

T040204 4.2.4 The compiler shall be able to produce at the option of the user an
assembly or pseudo-assembly output listing with embedded Ada
source statements adjacent to the assembly code they generated.

T040205 4.2.5 The compiler shall be able to produce at the option of the user a
cross reference (seVuse) listing.

T040206 4.2.6 The compiler shall be able to produce at the option of the user a
map of relative addresses of variables and constants.

28 (A)

T040207 4.2.7 For each compilation, the compiler shall be able to produce at the
option of the user a statistics summary listing with the following
Information:

a. Number of statements
b. Number of source lines
c. Compile time per program module (CPU time)
d. Total compile time (CPU and elapsed time)
e. Total number of instructions generated
f. Total number of data words generated

g. Total size of object module generated

T040208 4.2.8 All listings shall include the following header Information on every
page:

a. Date and time of compilation
b. Compilation unit name
c. Type of listing
d. Page number within total listing
e. User identification

T040209 4.2.9 All listings shall have the following additional Information within the
listing:

a. Compiler name, version number, release date
b. Host and target computer configurations
c. Specified and default control options
d. Source file name
e. Object file name

4.3 Diagnostic Messages.

T040301 4.3.1 Each diagnostic message shall contain the message text, a
reference number for additional information in the compiler
documentation, and a severity level.

T040302 4.3.2 The diagnostic message text shall be sufficiently informative to
enable the user to analyze the problem without consulting
compiler documentation.

29 (A)

T040303 4.3.3 The severity levels of diagnostic messages shall Include the
following error classes:

a. Note: Information to the user; the compilation process
continues and the object program is not affected.

b. Warning: Information about the validity of the program.
The source program is well-defined and semantically
correct; the object program may not behave as
intended.

c. Error: An illegal syntactic or semantic construct with a
well-defined recovery action. Compilation continues and
the object program contains code for the Illegal
construct; the object program may behave
meaninglessly at run-time.

d. Serious Error: Illegal construct with no well-defined
recovery action. Syntax analysis continues but no
object program Is generated.

e. Fatal Error: Illegal construct with no reasonable
syntactic recovery action. Compilation terminates and
no outputs other than the source listing and diagnostic
messages are produced.

T040304 4.3.4 The compiler shall issue a diagnostic message to Indicate any
capacity requirements that have been exceeded.

T040305 4.3.5 The compiler shall not abort regardless of the type or number of
errors encountered.

30 (A)

SECTION 5

EXTERNAL TOOLS INTERFACE REQUIREMENTS

5.1 Usting Tools.

T050101 5.1.1 The compiler and/or external tool shall be able to produce a
source listing with indentations to show control constructs.

T050102 5.1.2 The compiler, linker/loader, and/or external tool shall be able to
produce an absolute assembly code listing.

T050103 5.1.3 The compiler and/or library manager shall be able to produce at
the option of the user a dependency listing showing which library
units are WITHed by other units.

T050104 5.1.4 The compiler and/or library manager shall have the capability of
listing all out-of-date (obsolete) library units with the option of
selectively recompiling such units before linking.

5.2 Linker/Loader.

T050201 5.2.1 The compiler and/or linker/loader shall Include in the load moaule
only those subprograms that are actually referenced by the object
program.

T050202 5.2.2 The compiler and/or linker/loader shall include in the load module
only those run-time system modules that are referenced by the
object program.

T050203 5.2.3 The compiler and/or linker/loader shall support the partial linking
of object modules as specified by the user.

T050204 5.2.4 The compiler and/or linker/loader shall support the linking of
designated object modules without including them In the load
module.

T050300 5.3 Symbolic Debugger. The compiler shall be able to produce object code
files and other types of data necessary to debug those files with an
available source-level (symbolic) debugger.

31 (A)

SECTION 6
ADA LANGUAGE REQUIREMENTS

T060100 6.1 General. The compiler shall eliminate statements or subprograms that will
never be executed (dead code) because their execution depends on a
condition known to be false at compilation time.

6.2 Character Sets.

T060201 6.2.1 The compiler shall allow the Ada program text to contain any of
the 95 graphic characters and 5 form effectors of the ISO 7-bit
character set (ISO Standard 646) to the extent supported by the
host computer.

T060202 6.2.2 The predefined packages TEXT_10, DIRECT_IO, and
SEQUENTIAL_(0 shall support input and output of data
containing any of the 128 ASCII character Iterals of the
predefined type STAN DAR D.CHARACTER.

T060203 6.2.3 The compiler shall allow comments and values of the predefined
type STRING to contain any of the 128 ASCII characters
contained in the predefined type STANDARD.CHARACTER.

6.3 Data Representation.

T060301 6.3.1 The compiler shall provide predefined types in package
STANDARD for all the integer and floating-point types provided by
the target computer.

T060302 6.3.2 The compiler shall support universal integer calculations requiring
up to 64 bits of accuracy.

T060303 6.3.3 The components of array types with BOOLEAN components
named In a pragma PACK shall be stored in contiguous memory
bits, i.e., each component shall occupy only one bit of storage.

T060304 6.3.4 The compiler shall support address clauses.

T060305 6.3.5 The compiler shall support length clauses, enumeration
representation clauses, and record representation clauses.

T060306 6.3.6 The range of integer code values allowed in an enumeration
representation clause shall be MININT to MAXINT.

T060307 6.3.7 The compiler shall allow non-contiguous Integer code values In an
enumeration representation clause.

T060308 6.3.8 The compiler shall support the SIZE attribute designator for
enumeration types named in a length clause.

32 (A)

T060309 6.3.9 The compiler shall support the SMALL attribute designator for
fixed point types.

T060310 6.3.10 Memory space for the creation of objects designated by an access
type shall not be allocated until allocators (new statements) for
that type are executed.

6.4 Subprograms.

T060401 6.4.1 The compiler shall expand inline any subprogram or generic
subprogram instantiation that is named in a pragma INLINE and
that meets the criteria of 6.4.2.

T060402 6.4.2 A subprogram or generic subprogram instantiation Is a candidate
for inline expansion if it meets the following criteria:

a. Its body is declared in either the current unit or the
compilation library.

b. Its parameters or result type (for functions) are not task
types, composite types with task type components,
unconstrained array types, or unconstrained types with
discriminants.

c. It does not contain another subprogram body, package
body, body stub, generic declaration, generic
Instantiation, exception declaration, or access type
declaration.

d. It does not contain declarations that Imply the creation of
dependent tasks.

e. It does not contain any subprogram calls that result In
direct or indirect recursion.

T060403 6.4.3 The compiler shall expand Inline any subprogram that meets the
requirements in 6.4.2 and that is called only once.

T060404 6.4.4 The compiler shall provide the capability for main subprograms to
return a value to the target computer run-time system indicating
the completion status of the program.

6.5 Tasking.

T060501 6.5.1 The complier shall provide a capability for handling target
computer hardware or operating system interrupts as calls to Ada
task entles.

T060502 6.5.2 The execution-time overhead to perform a context switch or to
terminate or abort a task shall be no more than that required to
call or return from a subprogram.

33 (A)

T060503 6.5.3 The ordering of select alternatives In a selective wait statement
shall not impact the execution speed of the program.

T060504 6.5.4 The compiler shall dispatch the execution of ready tasks in a
manner that will give each task an equal share of the processing
resources consistent with any PRIORITY pragmas.

T060505 6.5.5 Tasks that are blocked, completed, terminated, or not activated
shall not impact the performance of the active tasks.

T060506 6.5.6 The value of DURATION'DELTA shall not be greater than 1
millisecond.

6.6 Exceptions.

T060601 6.6.1 An exception shall not impact execution speed until it Is raised.

T060602 6.6.2 The compiler shall provide the pragma SUPPRESS or an
equivalent capability to permit suppression of all predefined run-
time checks in a designated compilation unit.

T060603 6.6.3 The compiler shall issue a warning message to Indicate static
expressions that will always raise a constraint exception at run-
time.

6.7 Generics.

T060701 6.7.1 The compiler shall share code between multiple instantlations of
generic units that do not differ in their underlying machine
representation.

T060702 6.7.2 The compiler shall allow generic specifications and bodies to be
compiled in completely separate compilations.

T060703 6.7.3 The compiler shall allow subunits of a generic unit to be

separately compiled.

6.8 Interface with Other Languages.

T060801 6.8.1 The compiler shall provide the pragma INTERFACE to allow
Importing of assembly language programs already assembled into
the object code format of the target computer. The machine
language interface for procedure and function parameters and
function result types shall be documented.

T060802 6.8.2 The compiler shall provide the pragma INTERFACE, or an
equivalent mechanism, to allow incorporation of subprogram
bodies compiled from the standard system or application language
of the target computer.

'4 (A)

T060900 6.9 Unchecked Programming. The generic library subprograms
UNCHECKEDDEALLOCATION and UNCHECKEDCONVERSION shall
be Implemented with no restrictions except that both objects In an
unchecked conversion may be required to be of the same size.

6.10 Input/Output.

T061001 6.10.1 An implementation shall provide packages to allow Input and
output of FORTRAN-formatted text files for each target computer
that supports text input/output.

T061002 6.10.2 Package SEQUENTIAL_10 and package DIRECT_10 shall be
able to be instantiated with unconstrained array types or with
unconstrained record types which have discriminants without
default values.

T061003 6.10.3 The compiler shall allow more than one internal file to be
associated with each external file for DIRECT_10 and
SEQUENTIAL_10 for both reading and writing.

T061004 6.10.4 The compiler shall allow an external file associated with more than
one internal file to be deleted.

6.11 System Information.

T061101 6.11.1 The named numbers defined in package SYSTEM shall not limit
or restrict the inherent capabilities of the target computer
hardware or operating system.

T061102 6.11.2 The enumeration type NAME defined in PACKAGE SYSTEM shall
have values for all target computers for which the compiler
generates code.

6.12 Pragmas. An implementation shall provide the predefined pragmas

T061201 CONTROLLED,
T061202 ELABORATE,
T061203 LIST,
T061204 MEMORYSIZE,
T061205 OPTIMIZE,
T061206 PAGE,
T061207 STORAGE_UNIT,
T061208 and SYSTEMNAME.

35 (A)

SECTION 7
QUALITY ASSURANCE AND RELIABILITY REQUIREMENTS

T070100 7.1 Validation. The compiler shall be validated by an Ada Validation Facility
established and operated under the direction of the DOD Ada Joint
Program Office in all configurations necessary to meet the requirements of
this document. (M)

T070200 7.2 Field Testing. The compiler shall be subjected to a minimum of 20 site-
months of independent evaluation and usage In a realistic production work
environmec 't before release for production use. (M)

T070300 7.3 Maintenance. Provisions for on-going problem correction of the compiler
shall be provided.

T070400 7.4 Config. -,tion Management. The maintaining organization shall provide
configuration management for the compiler, including maintenance of an
up-to-date data base of compiler errors showing the nature and status of
each errmi.

T070500 7.5 Error Rate. The production quality compiler should exhibit an error rate of
no more than 1 verified new error for each 250,000 new lines of Ada
compiled. This rate shall decrease over time as the compiler
matures. (M)

36 (A)

SECTION 8
DOCUMENTATION REQUIREMENTS

T080 100 8.1 Validation Summary Report. The vendor shall provide a copy of the most
recent version of the official validation summary report prepared by the
Ada Validation Organization that validated the compiler. (M) This report
shall include both CPU and elapsed times required to run the ACVC tests.

T080200 8.2 Ada Language Reference Manual (ARM). The compiler vendor shall
supply a copy of the Ada Language Reference Manual (ARM) (ANSI/MIL-
STD 181 5A) that Includes implementation-specific details of the compiler
where applicable. (M)

T080300 8.3 User's Manual. The vendor shall provide a User's Manual that describes
how to use the compiler to develop Ada applications programs, including
information on how to run the compiler. It shall Include all system-
dependent forms implemented in the compiler (i.e., machine-specific
functions), methods of selecting debug aids, compiler options and
parameters, and a complete list of error and warning messages provided
by the compiler, with a description of each. Message descriptions shall
reference the relevant section of the ARM. The manual shall include
examples of the commands used to invoke the compiler and linker/loader
system with various combinations of compiler and linker options,
respectively. (M)

T080400 8.4 Run-Time System Manual. The vendor shall provide a Run-time System
Manual for each target computer. (M)

T080500 8.5 Version Description Document. The vendor shall provide a Version
Description Document for each compiler configuration. (M)

T080600 8.6 Installation Manual. The vendor shall provide a detailed Installation
Manual and all the necessary software materials for Installing each host
configuration of the Ada compiler, including several sample Ada programs
with correct output. (M)

T080700 8.7 Maintenance Manual. The vendor shall provide a Maintenance Manual
which presents the methods to be used in the general maintenance of all
parts of the compiler. All major data structures, such as the symbol table
and the intermediate language, shall be fully described. All debugging
aids that have been inserted into the compiler shall be described and their
use fully stated. If the compiler has a special "maintenance mode" of
operation to assist in pinpointing errors, this shall be fully described.

T080800 8.8 Software Product Specification. The vendor shall provide a Software
Product Specification for the compiler In accordance with DOD-
STD-2167A and Data Item Description DI-MCCR-80029A. (M)

37 (A)

B. PQAC Test Weights

This appendix contains the weights assigned for each individual requirement lden'!fied in

Appendix A. The method used for awarding points to a partial pass Is also given here.

Example: T020401 tests for a compilation speed of 200 lines/minute/MIP. The instruction
for this test is to grade from 1 - 10 for speeds from 100 - 200. If a compiler achieves a

speed of 190 lines/minute/MIP, then this instruction would award the test 9 out of 10 points.

Similarly, a speed of 150 would rate 5 out of 10 points. A speed of less then 100 would not
receive any points.

Partial credit is ilso allowed for some of the tests because multiple cases are being tested

at the same time. These tests are also identified in the table. The requirements that consist

solely of a definition and have no corresponding test are not assigned a weight.

Num Test Weight Special Grading Instructions

1. T010100 N/A Definition
2. T020100 N/A Definition
3. T020200 N/A Definition
4. T020300 N/A Definition
5. T020401 10 Grade from 1 - 10 for speeds from 100-200
6. T020402 10 Grade from 1 - 10 for speeds from 250 - 500
7. T020403 10 Grade from I - 10 for speeds from 500 - 1000
8. T020501 10 Grade from 10 downto 1 for percent from 30 - 60
9. T020502 10 Grade from 10 downto 1 for percent from 15 - 30
10. T030101 2 Give 1 point if 1024 allowed
11. T030102 2 Give 1 point if 512 allowed
12. T030103 2 Give 1 point if 1,000,000 allowed
13. T030104 2 Give 1 point if 1,000,000 allowed
14. T030105 1
15. T030106 1
16. T030201 1
17. T030202 2 Give 1 point if 128 allowed
18. T030203 2 Give 1 point if 2048 allowed
19. T030204 2 Give 1 point If 2048 allowed
20. T030205 2 Give 1 point if 2048 allowed

38 (B)

PQAC Test Weights

Num Test Weight Special Grading Instructions

21. T030206 2 Give 1 point if 2048 allowed
22. T030207 1
23. T030208 1
24. T030209 1
25. T030301 I1
26. T030302 1
27. T030303 1
28. T030304 I
29. T030305 1
30. T030306 1
31. T030307 1
32. T030308 I1
33. T030309 1
34. T030310 1
35. T030311 2
36. T030401 1
37. T030402 2 Give 1 point if 256 allowed
38. T030403 1
39. T030404 1
40. T030405 1
41. T030406 1
42. T030407 1
43. T030408 1
44. T030501 2
45. T030502 2
46. T030601 2 Give 1 point if 512 allowed
47. T030602 2 Give 1 point if 512 allowed
48. T030701 2 Give 1 point if 512 allowed
49. T030702 1
50. T030703 1
51. T030704 2
52. T030705 1
53. T030706 1
54. T030707 1
55. T030708 2
56. T030709 2
57. T030801 1
58. T030802 I1
59. T030803 1
60. T030804 2
61. T040101 10
62. T040102 10
63. T040103 4 Give 2 points for each option
64. T040104 4 Give 2 points for Identifying the recovery
65. T040105 2

39 (B)

POAC Test Weights

Num Test Weight Special Grading Instructions

66. T040106 2
67. T040201 10
68. T040202 10
69. T040203 5
70. T040204 5
71. T040205 5
72. T040206 5
73. T040207 4 Give 1 - 4 points for 4 - 7 statistics printed
74. T040208 1
75. T040209 1
76. T040301 2 Give 1 point if 2 of these Items are present
77. T040302 2
78. T040303 2 Give 1 point if 3 error classes Identified
79. T040304 2
80. T040305 2
81. T050101 2
82. T050102 2
83. T050103 6
84. T050104 6
85. T050201 5
86. T050202 5
87. T050203 4
88. T050204 4
39. T050300 10
90. T060100 4
91. T060201 4
92. T060202 3 Give 1 point for each package
93. T060203 4
94. T060301 4
95. T060302 4
96. T060303 4
97. T060304 4
98. T060305 6 Give 2 points for each clause type
99. T060306 2
100. T060307 4
101. T060308 4
102. T060309 4
103. T060310 4
104. T060401 8
105. T060402 N/A Definition
106. T060403 2
107. T060404 4
108. T060501 4
109. T060502 2

40 (B)

PQAC Test Weights

Num Test Weight Special Grading Instructions

110. T060503 1
111. T060504 4
112. T060505 2
113. T060506 2
114. T060601 2
115. T060602 2
116. T060603 2
117. T060701 2
118. T060702 2
119. T060703 2
120. T060801 2
121. T060802 2
122. T060900 4 Give 2 points for each
123. T061001 2
124. T061002 4 Give 1 point for each configuration
125. T061003 4 Give 1 point for each configuration
126. T061004 2
127. T061101 4
128. T061102 2
129. T061201 2
130. T061202 2
131. T061203 1
132. T061204 2
133. T061205 I1
134. T061206 1
135. T061207 I1
136. T061208 1
137. T070100 10
138. T070200 8
139. T070300 10
140. T070400 8
141. T070500 8
142. T080100 8
143. T080200 10
144. T080300 10
145. T080400 10
146. T080500 8
147. T080600 8
148. T080700 8
149. T080800 8

Total 1500

41 (B)

C. DEC VAX Ada Result Summary

This -ppc-dix centqins a ,ummar, of the results of applyin. the POAC test suite to th DEC
VAX V1.4 Ada Compiler. Appendix A contains a cross reference for the test numbers used

In the tables below. Appendix B lists the weights assigned to each test from the PQAC test

suite.

Points are distributed for each test between N/A, Pass, and Fail. The total weight for each

test may be obtained by adding these three values. It is possible for a test to receive partial

pass credit.

A comment describing exceptional conditions or explaining a failure is Included for some of

the tests. There are 149 identified tests.

Num Test N/A Pass Fail Comments:

1. T010100 1 0 Definition
2. T020100 1 0 Definition
3. T020200 0 Definition
4. T020300 1 0 Definition
5. T020401 10 I
6. T020402 10 Achieved only 200 lines/minute/MIP
7. T020403 10
8. T020501 10
9. T020502 10
10. T030101 2
11. T030102 1 1 Limit= 1000
12. T030103 2
13. T030104 2
14. T030105 1
15. T030106 I1
16. T030201 I
17. T030202 2
18. T030203 2
19. T030204 2
20. T030205 2

42 (C)

DEC VAX Ada Result Summary

Num Test N/A Pass Fail Comments:

21. T030206 2
22. T030207 1
23. T030208 1
24. T030209 1
25. T030301 1
26. T030302 1
27. T030303 I1
28. T030304 1
29. T030305 1
30. T030306 1
31. T030307 1
32. T030308 1
33. T030309 1
34. T030310 1
35. T030311 2 Limit =65535
36. T030401 1
37. T030402 2
38. T030403 1
39. T030404 1
40. T030405 1 Limit of 32 on unconstrained record types
41. T030406 1
42. T030407 1
43. T030408 1
44. T030501 2 Limit of 32 on unconstrained record types
45. T030502 2
46. T030601 2
47. T030602 2
48. T030701 2
49. T030702 1
50. T030703 1
51. T030704 2
52. T030705 1
53. T030706 1
54. "030707 I1
55. T030708 2
56. T030709 2
57. T030801 I
58. T030802 1
59. T030803 1
60. T030804 2
61. T040101 10
62. T040102 10
63. T040103 4
64. T040104 4
65. T040105 2

43 (C)

DEC VAX Ada Result Summary

Nurn Test N/A Pass Fall Comments:

66. T040106 2
67. T040201 10
68. T040202 10
69. T040203 5
70. T040204 5
71. T040205 5
72. T040206 5 External tool required
73. T040207 1 3 Information missing
74. T040208 1
75. T040209 I Information missing
76. T040301 2
77. T040302 2
78. T040303 1 1 One class is missing
79. T040304 2
80. T040305 2
81. T050101 2 None available
82. T050102 2
83. T050103 6
84. T050104 6
85. T050201 5 Extra code included
86. T050202 5 Extra code included
87. T050203 4 Application (target/host) specific
88. T050204 4 Application (target/host) specific
89. T050300 10
90. T060100 4
91. T060201 4
92. T060202 3
93. T060203 4
94. T060301 4
95. T060302 4
96. T060303 4
97. T060304 4
98. T060305 6
99. T060306 2
100. T060307 4
101. T060308 4
102. T060309 4
103. T060310 4
104. T060401 8
105. T060402 0 Definition
106. T060403 2 Code not expanded inline
107. T060404 4
108. T060501 4 Not applicable to VAX VMS
109. T060502 2 Order of magnitude time difference

44 (C)

DEC VAX Ada Result Summary

Num Test N/A Pass Fail Comments:

110. T060503 1
111. T060504 4
112. T060505 2
1 3_ T060-50 ?
114. T060601 2 20% time difference
115. T060602 2
116. T060603 2
117. T060701 2 Code not shared
118. T060702 2
119. T060703 2
120. T060801 2
121. T060802 2
122. T060900 4
123. T061001 2 None available
124. T061002 4
125. T061003 2 2 Failed for writing
126. T061004 2
127. T061101 4
128. T061102 2
129. T061201 2
130. T061202 2
131. T061203 1
132. T061204 2
133. T061205 1
134. T061206 1
135. T061207 1 Present, but accepts only 1 value
136. T061208 1
137. T070100 10 VAX Ada V1.3 Expires 12-17-87
138. T070200 8
139. T070300 10
140. T070400 8 Not provided
141. T070500 8 Statistics not available
142. T080100 8 Validation reports are public
143. T080200 10
144. T080300 10
145. T080400 10
146. T080500 8
147. T080600 8
148. T080700 8 No Internal maintenance
149. T080800 8 Not under contract

Totals 36 408 56

45 (C)

D. Telesoft VAX Ada Result Summary

This appendix contains a 3ummary of the results of applying the PQAC test suite to the
Telesoft TeleGen2 VAX Ada Compiler. Appendix A contains a cross reference for the test
numbers used in the tables below. Appendix B lists the weights assigned to each test from

the POAC test suite.

Points are distributed for each test between N/A, Pass, and Fail. The total weight for each
test may be obtained by adding these thiree values. It is possible for a test to receive partial

pass credit.

A comment describing exceptional conditions or explaining a failure is included for some of
the tests. There are 149 identified tests.

Num Test N/A Pass Fail Comments:

1. T010100 1 0 Definition
2. T020100 1 0 Definition
3. T020200 1 0 Definition
4. T020300 1 0 Definition
5. T020401 10 Requirement precondition not met
6. T020402 10 Achieved less than 100 lines/minute/MIP
7. T020403 10 Achieved less than 150 lines/mnute/MIP
8. T020501 10 Required more than 50% additional space
9. T020502 10 Required more than 100% additional time
10. T030101 2 Library limits exceeded
11. T030102 2 Library limits exceeded
12. T030103 2 Library limits exceeded
13. T030104 2 Failed due to previous errors
14. T030105 1
15. T030106 1
16. T030201 1
17. T030202 1 2
18. T030203 1 2
19. T030204 1 2
20. T030205 1 2

46 (D)

Telesoft VAX Ada Result Summary

Num Test N/A Pass Fail Comments:

21. T030206 2
22. T030207 1
23. T030208 1
24. T030209 1
25. T030301 1
26. T030302 1
27. T030303 1
28. T030304 1
29. T030305 1 Parse stack overflow
30. T030306 1
31. T030307 1 Exception limit exceeded
32. T030308 1
33. T030309 I1
34. T030310 1
35. T030311 2
36. T030401 1
37. T030402 2
38. T030403 1
39. T030404 1
40. T030405 1
41. T030406 1
42. T030407 1
43. T030408 1
44. T030501 2
45. T030502 2
46. T030601 2
47. T030602 2
48. T030701 2
49. T030702 1
50. T030703 1
51. T030704 2 Capacity exceeded
52. T030705 1
53. T030706 1
54. T030707 1 Capacity exceeded
55. T030708 2 Capacity exceeded
56. T030709 2 Capacity exceeded
57. T030801 1
58. T030802 1
59. T030803 I1
60. T030804 2
61. T040101 10
62. T040102 10
63. T040103 4
64. T040104 4
65. T040105 2 No option available

47 (D)

Telesoft VAX Ada Result Summary

Num Test N/A Pass Fail Comments:

66. T040106 2
67. T040201 10
6P T040202 10
69. T040203 5
70. T040204 5
71. T040205 5
72. T040206 I5 No option available
73. T040207 4 Information missing
74. T040208 1 Information missing
75. T040209 I1 Information missing
76. T040301 I 1 I Information missing
77. T040302 2 Information missing
78. T040303 1 1 These classes not identified
79. T040304 2 Message not given
80. T040305 2
81. T050101 2
82. T050102 2
83. T050103 6
84. T050104 6
85. T050201 5 Extra code included
86. T050202 5
87. T050203 4 Application (target/host) specific
88. T050204 4 Application (target/host) specific
89. T050300 10
90. 1060100 4 Dead code not eliminated
91. T060201 4
92. T060202 3
93. T060203 4
94. T060301 4 Not all types provided
95. T060302 4
96. T060303 4
97. 1060304 4
98. T060305 4 2 Length clauses not supported
99. T060306 2
100. T060307 4
101. T060308 4 Length clauses not supported
102. T060309 4
103. T060310 4
104. T060401 8 Codp not expanded inine

105. T060402 0 Definition
106. T060403 2 Code not expanded Inline

107. T060404 4
108. T060501 4 Not applicable to VAX VMS

109. T060502 2 Order of magnitude time difference

48 (D)

Telesoft VAX Ada Result Summary

Num Test N/A Pass Fall Comments:

110. T060503 I1
111. T060504 4
112. T060505 2 Time with tasks aborted excessive
113. T060506 2
114. r060601 2 15% time difference
115. T060602 2 No pragma available
116. T060603 2
117. T060701 2 Code not shared
118. T060702 2
119. T060703 2
120. T060801 2
121. T060802 2
122. r060900 4
123. T061001 2 None available
124. T061002 4 Not allowed
125. r061003 2 2 Failed for wrting
126. T061004 2 Deletion not allowed
127. T061101 4
128. r061102 2
129. T061201 2
130. T061202 2
131. T061203 1
132. r061204 2 Pragma has no effect
133. T061205 I
134. T061206 1 Pragma has no effect
135. T061207 1 Pragma has no effect
136. T061208 1 Only one value in SYSTEM.NAME
137. T070100 10
138. T070200 8 No evaluation of VAX release
139. T070300 10
140. T070400 8
141. T"070500 P Compiler errors exceed limit
142. "080100 8 Validation reports are public
143. T080200 10
144. T080300 10
145. T"080400 10
146. T"080500 8
147. T080600 8
148. T080700 8 No Internal maintenance
149. T"080800 8 Not under contract

Totals 28 317 155

49 (D)

E. Additional Comments

This appendix contains a list of comments for selected requirements in the Definition.

T020200 2.2 The PIWG subprogram modules (required by 2.1) without WITH clauses
(required by 2.2) have no executable parts. This leaves an absence of
code with which to test 2.5.1 and 2.5.2. For the purpose of this report
only, a representative algorithm was chosen and modified so that It
satisfied all of the requirements of this section except for 2.1.

An executable Ada object would most certainly need WITH clauses or It
would be trivial. If you do not test for compilation speed for compilation
units with WITH clauses here, then where do you test it?

T020401 2.4.1 Since the requirements in 2.5.1 and 2.5.2 cannot be tested concurrently,
this requirement must be satisfied for both cases requiring two tests. A
note to this effect should be included in the statement of the requirement.

Absolute compilation speed is not only affected by CPU speed but by disk
speed. This measure should not be made absolute but against other
compilers performing functionally equivalent compilations. Compilation
rate is obviously affected by the type of language features tested (e.g.
comment %, blankline %, keyword %, generics, tasking, WITH'ed
packages, etc.). The type of language features Involved should be
addressed by the requirement.

The minimum vilue Lated for this and several other requirements Is
suspect. What if a compiler achieves a speed of 500 lines/minute/MIP?
Or, In the case of the Amdal, 6666 lines/minute/MIP (80K lines total)? The
requirements should be stated to reward such performance. Such
requirement values should be allowed to change over time as Ada
compilers become more efficient.

50 (E)

T020501 2.5.1 Due to the difficulty of procuring assembly language code for every
machine to be tested, in addition to possibly being inappropriate, the
timing comparisons have been made In terms of equivalent optimized
FORTRAN code. It may be even more appropriate to make comparisons
to compilers for languages of comparable complexity (Jovial, PL I), since
much more is being accomplished by the Ada compiler In terms of type
checking and task scheduling than the assembly code would be.

It would be advantageous to use existing standards (such as the
Whetstone and Dhrystone benchmarks) for compilation/execution speed
comparisons of Ada compilers against production quality compilers of
other languages. These standards are accepted by the community and
performance characteristics using them may already be available.
However, the requirement of 2.2 (no WITH clauses) would make existing
standards difficult (requiring modification) if not impossible to use.

T020502 2.5.2 See previous comment.

T030103 3.1.3 This requirement needs to address what kind of statements to use in the
compilation. A program can be written containing 2,500,000 lines that will
be accepted by almost every compiler (2,499,999 null statements). A
program can also be written containing 2,500,000 lines that will be
rejected by every compiler (multiple advanced Ada features). In general, it
is difficult to construct a large program such that if the compiler rejects it, it
is guaranteed to be a compiler problem rather than a problem with disk
storage, memory size, computing time, etc.

The requirements in 3.1.2 (1024 compilation units in a program) and 3.2.4
(4096 Ada source statements in a compilation unit) already give a
combined implicit requirement for 4,194,304 Ada source statements in a
program.

In additior, this and several other requirements of this section are very
expensive to test. This requirement used over 5 hours of CPU time for the
DEC VAX compiler.

T030104 3.1.4 This requirement is dependent on the compiler application and
configuration. If the target computer is a 1750A with 8K of RAM, this
requirement would not be appropriate.

The word size is not defined for this requirement. Does this mean target
or host word size? This may make it difficult to compare the results of
compilers based on different word sizes if such a comparison need ever
be made. This requirement could be expressed in terms of bit size.

T030105 3.1.5 The requirement for the existence of the ELABORATE pragma is already
given in 6.12. Could these two requirements be joined? Since 1024
compilation units are allowed in a program, why the requirement for only
512 ELABORATE pragmas?

T030106 3.1.6 Ada is a free format language. There Is no reason to Impose a limit on the
length of a line. A limit on the length of an identifier is reasonable,
however.

51 (E)

T030209 3.2.9 Does this mean distinct literals? A limit of 1024 literals In a compilation
unit prohibits all 4096 potential declarations from using an Initial value.

T030309 3.3.9 3.3.9 and 3.3.10 cannot be tested separately. Any declaration Introduces
another identifier.

T030405 3.4.5 3.4.5 and 3.4.6 (as in 3.5.1; declaration vs use) are the same thing.

T030706 3.7.6 3.7.6 and 3.7.7 could be stated as one requirement since they are hard to
separate.

T030709 3.7.9 STRING is by definition an ARRAY of CHARACTER. The maximum size
of an array is already given in 3.7.4. Also, 3.7.8 already states that the
maximum size of an object In bits is 65535. A string with 65535 elements
would be at least 7 times as large as this.

T030801 3.8.1 In order to have 128 operators in an expression, you need at least that

many primaries (3.8.3), i.e., 3.8.3 is redundant.

T030802 3.8.2 A function call is also a primary (3.8.3).

T040103 4.1.3 To facilitate testing, this requirement could be separated into two parts.

T040104 4.1.4 What does "implement an option to recover" imply? The degree of
satisfaction of this requirement is subjective.

T040202 4.2.2 Is the position of the messages an option to the user or just the presence
or absence of the messages?

T040203 4.2.3 4.1.6, 4.2.3, 4.2.4, and 5.1.2 are all similar. They could be combined or
grouped together.

T040207 4.2.7 An Ada Source Statement has been defined in 1.1. So what are "a.
Number of statements" and "b. Number of source lines"?

T040302 4.3.2 This requirement is very subjective. What may be sufficiently informative
for the expert user may not be so for the novice.

T040303 4.3.3 A compiler may have a different set of error classes than given here. If so,
It may not be clear If they perform the same function. In particular, some
of the classes may overlap or split the ones listed here.

T050102 5.1.2 An absolute assembly code listing Is not important when the target
machine Is a virtual operating system.

T050203 5.2.3 "Partial linking" needs to be defined clearly. This requirement is
application and host/target specific.

T050204 5.2.4 This requirement Is application and host/target specific.

52 (E)

T060203 6.2.3 6.2.1 and 6.2.3 are conflicting. Comments (6.2.3) are also Ada program
text (6.2.1). If the reference to comments In 6.2.3 is omitted, this
requirement Is correct.

"060307 6.3.7 6.3.7 should be stated before 6.3.6, since 6.3.6 cannot be tested if 6.3.7
fails. You cannot specify the values of MININT and MAXINT in one
representation clause without using non-contiguous Integer code values,
unless you define an enumeration type with an element corresponding to
every integer from MININT to MAXINT.

T060502 6.5.2 It may be easier to test this requirement if it is restated to say "call and
return" instead of "call or return", since an implementation may place all of
the overhead for a subprogram Invocation on one or the other.

T060504 6.5.4 Is this requirement intended to test the PRIORITY pragma or to test the
fairness of dispatching tasks with equal priorities? These are separate
requirements and if both should be tested this requirement should be
separated into two requirements. The presence or absence of a pragma
to specify time slicing may also be a factor.

T060505 6.5.5 Define "performance". What is meant by a task that is "not activated"?
The declaration or dynamic creation of a task causes it to be activated.
Before this happens the task doesn't exist.

T060900 6.9 To facilitate testing, this requirement could be separated Into two parts.

T061101 6.11.1 Define "limit or restrict". Is this requirement the same as 6.3.1 ?

"070500 7.5 This requirement is fundamental to the production quality of a compiler.
Unfortunately, it may be impossible to verify for compilers with inadequate
internal development documentation.

T080100 8.1 A comment on the quality or content of the manuals and reports required
by Section 8 may be in order.

T080700 8.7 The request for a maintenance manual indicates that the customer intends
to perform their own maintenance. This is typically not the case for off-
the-shelf compilers. A method for deciding when tests are applicable to a
specific compiler should be formally outlined in the Definition.

53 (E)

F. Test Examples

This appendix contains examples of several features of the PQAC test suite and support
software. In particular, an example of the code expander tool and a test example are given.

Each requirement assigned a test number in Appendix A is given a test file. This test file
contains a statement of the requirement with a proposed method of testing that requirement.
Included in the test file Is any Ada test code required as well as special instructions for
executing the test. More than one body of Ada code may be compiled and executed from
each test file, allowing for comparison of compilation speed, execution speed, and code
size. Compiler options such as OPTIMIZETIME may be specified for each cum.pile.

Prior to execution, each test file is parsed to extract the test code and special commands. If
the parsing program encounters --* BEGIN compiler name_1, compilername_2, etc. then
any text between this anH the next --* FN') is simply flushed when the current compiler is
not one of compiler name 1, compiler name_2, etc.

F.1 Code Expander Description

Some of the tests require large Ada files (e.g., testing that the number of allowable Ada
source statements in a compilation unit be at least 4096). For this reason, a tool was
developed to automate the generation of Ada programs containing repeated and similar
constructs. The tool is written in Ada and recognizes a small set of symbols embedded in
Ada text that indicate how to expand the code.

The operation of the code -xpander tool may be best explained using a simple example.
Unes 1 - 14 of the given example show how the input to the tool appears. Unes 15 - 35
contain the output. The major functionality of the tool is Its ability to encase code fragments
within a nested loop structure allowing a very large test program to be stored compactly.

The symbol --I EQUATE is used to equate a name to a value. In this way the name can be
used in the loop syntax. Simple addition, subtraction, multiplication, and division may be
used. See lines 1 and 2.

Since Ada does not use '[' or I' in Its syntax, [X] is used to denote loop variable
placeholders. In the above example, [1] denotes the outer loop variable, while [2] denotes
the inner loop. See lines 6, 9, and 11. These counters may be offset by an Integral amount
inside the loops by using [X+1], [X+2], ..., [X-1], [X-2], etc. See line 9.

54 (F)

01: --I EQUATE iters IS 3
02: -- I EQUATE size IS iters * 2 -- i.e. size is 6
03: begin -- some Ada block
04:
05: -- I LOOP iters [1]
06: procedure proc_[1] is -- Note the name changing.
07: begin
08: -- I LOOP 2 START 10 STEP size-I [2]
09: i :- [1+2] + [2];
10: -- I ND (2]
11: end proc_[l];
12:
13: -- I END [1]
14: end; -- of block

.................... becom es

15: begin -- some Ada block
16:
17: procedure proc_1 is - Note the name changing.
18: begin
19: i : 3 + 10;
20: i : 3 + 15;
21: end proc_1;
22:
23: procedure proc_2 is -- Note the name changing.
24: begin
25: i : 4 + 10;
26: i : 4 + 15;
27: end proc_2;
28:
29: procedure proc_3 is -- Note the name changing.
30: begin
31: i : 5 + 10;
32: i : 5 + 15;
33: end proc_3;
34:
35: end; -- of block

On each iteration of a loop, these variable placeholders are replaced by the current numeric
value of an implicit loop counter. If an offset has been specified, then it Is added to the

Implicit loop value. The symbols --I LOOP and --I END are used by the Code Expander to
delineate the loops. A simple loop syntax Is used to control the number of iterations
(LOOP), the starting value of the loop counter (START), and the loop counter Increment

(STEP). See lines 5 and 8.

55 (F)

As we can see in the example, line 9 is nested Inside two loops. The outer loop repeats

three times and the Inner loop repeats twice so this line gets modified and repeated 6 times

in lines 19, 20, 25, 26, 31, and 32.

F.2 Test Description

This section contains an example test. If there is any Ada code contained after the
beginning comments in a test, then this code Is automatically compiled. It is not linked and
executed unless the compilation name is specified in the appropriate place in the test file.

Text for test T030305:

-- T030305

-- depth of nesting of if statements - 256

-- Method:

-- Compile a procedure containing 256 nested lF.
-- The compiler shall be determined to have passed this
-- requIa=msnt iZ the compilation and execution succeeds
-- without error.

-- * EXCVTE Test T030305
-- I EQUATE iter IS 256

WITH Result;
PROCEDURE Test T030305 IS

Choice : Integer :- 0;
DEGIN

-- I LOOP iter [1]
IF Choice < [] THEN
-- I EMD [1]

Choice :- 2;

-- ILOOP iter START iter STEP -1 [1]
END I;
-- I EWD [1]

Result.Passed("T030305", 100);
END TestT030305;

56 (F)

After parsing and executing this test, the output produced is:

Test Number T030305 (Compiler : DEC VAX, Root: VAX 8600)

depth of nesting of if statements - 256

Method:

Compile a procedure containing 256 nested 37s.
'"he compiler shall be determined to have passed this
requirement if the compilation and execution succeeds
without error.

------------- TS OZ---------------------------TETCD
-- I EQUATEC iter IS 256

WITH Result;
PROCEDURE TestT030305 IS

Choice : Integer :- 0;

-ILOOP iter [1]
IF Choiace < [1] THEN

--I ND (1]

Choice :- 2;

- LOOP iter START iter STEP -1 [1]
END IF;
-- I END [1]

Result.Passed("T03030511, 100)
END TestT030305;
----------------------- END OF TEST CODE--------------------------

Compiling ...

Linking ...

ExecutiLng ...

Test T030305 PASSED 100%

The success or failure of each test is automatically recorded. If a test requires manual
a intervention, such as examining a machine code listing, then a message to that effect Is

generated.

57 (F)

G. PQAC Test Suite - Volume II

A description of the PQAC test suite with a list of the tests developed Is contained

separately in Volume II. Procedures for rehosting and executing the test suite are also

provided in that document.

58 (G)

