
MEMORANDUM REPORT BRL-NIR-3807

00

SBRL DT FILE COpy

APPROXIMATE ANALYSIS FOR THE
FORMATION OF ADIABATIC SHEAR BANDS

THOMAS \V. WRIGHT

JANUARY 1990

APPROVED FOR PUBLIC IE.LEASE; DISTRIBUTION UNLIMITED.

U.S. ARMY LABORATORY COMMAND

BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND



DESTRUCTION NOTICE

Destroy this report wlhen it is no longer needed. DO NOT return it to the originator.

Additional copic,, of ihis repon may b- obtained from the National Teclmical Information Service.
U.S. Department of Commerce, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army po'ition.
unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of
any commercial product.



U NCI A\ 5 :1" 1[[

SECUR!'Y CLASS ,CA,©. , = S aiF

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-01b8

la REPORT SECjRIT'Y C-Ass$$ CATiN lr' RESTRICTIVE MARKINGS

C NC LAS SE lD
2a SECURiY CLASSiF-iCA'.C, At,, OR. T'f 3 D,STRIBUTION AVAILABiLifY OF REPORT

Approved for public release;
2b DECLASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited

4 PERFORMING ORGANiZAT'ON REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NuMBER(S)

BRL-MR- 3807

6a NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
(if applicable)

3.aI Li t> :E ,searci Laboratory SICBR-rB

6c ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Abcri. ' Proving Ground, MD 21005-5066

Sa NAME OF FUNDING; SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (if applicable)

8c. ADDRESS (City, State, and Z, CukJ'; 10 SOURCE OF FUNDING NUMBERS

PROGRAM I PROJECT TASK WORK UNIT
ELEMENT NO NO NO. ACCESSION NO.

11 TITLE (Include Security Classification)

A ,II1
R ),.,MAIE ANALYSIS FOR THE FORMATION OF ADIABATIC SHEAR BANDS

12 PERSONAL AUTHOR(S)

'I. GHl THOLA.S IN,
13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

FROM_____ TO____BRI. Homorandum. Reoor FROM TTO9
16 SUPPLEMENTARY NOTAT!ON

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP adiabatic sheai :'" '

19 aaSTPA Ci (Continue on reverse ,f necessary and identify by block number)

Pirametric solutions are given for the formation of adiabatic shear bands in the contex'

of the one-dimensional, nonlinear theory where inertia and elasticity are ignored. When hea

a-Ondint ,)n is also ignored, the exact solution reduces completely to a sequence of quad-

• aat u r. ['or a perfectly plastic material with heat conduction, an implicit parametic

4,I,t I is also constructed. This is similar to the previous one in many ways, but now it

i!:%,,,'.,e:, two quadratures; a single, nonautonomous, first-order ODE; and two functions that

..... ,v llt eqiatinns. This solution appears to be very accurate (compared to the full-finite

* .- m,.'r_ ,±It-ii) until th' rime of stress collapse. Results indicate that for weak rate

a irdi'I af the power-law type, intense localization depends strongly on the intial

c:har,,tests~i.s. Within the context of rigid/perfect plasticity, a scaling law for the

,I train is given, and a figure of merit is defined that ranks materials according to

t r .:idencv to form adiabatic shear bands,

20 D STRIBUTION !AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

j UNCLASSIFIED/UNLMITED El SAME AS RPT C DTIC USERS UNCLASSIFl ED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

I OMA ;. WR I (;HT 3(i/278-6046 SLCBR-'FB-W

DO Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

UNCLASS IFIEI)



INTENTIONALLY LEFT' BLANK.



TABLE OF CONTENTS

LIST OF FIG URES ........................................ v

1 INTRODUCTION AND EQUATIONS OF MOTION ...................... I

2 EXACT RESULTS: NON HEAT CONDUCTING CASE ................... 3

3 ASYMPTOTIC RESULTS: THE EFFECT OF HEAT CONDUCTION ........ 8

4 UNIVERSAL SOLUTION AND SCALING LAW ........................ 12

5 FURTHER APPROXIMATIONS FOR WEAK PERTURBATIONS ............. 18

6 CON CLUSION ........................................... 21

7 REFEREN CES ............................................ 24

DISTRIBUTION LIST ....................................... 25

NTIS %A

T-

7

iii



INTLNTIONALLY LEFT BLANK.

iv



LIST OF FIGURES

Ia. Sketch of typical softening function g, gu, H = fo gum dil for a perfectly plastic
m atelial ... ...... .. ......... .. ........ ... ....... ...... ...6

lb. Sketch of a typical composite-hardening/softening function G, G11r, H = Jo GM d0
for a work-hardening, thermal-softening material ......................... 7

Strain at severe localization for the initial temperature defect 1% = 0.1(-y2)9 e 5y2 as

computed by finite elements, Wright and Walter [1987], and by the approximate
method using Equations 25 and 17 ..... .............................. 9

3. Typical response as calculated by the approximate method using Equations 25 and 17
for a temperature defect ........................................... 13

4. Comparison ot responses for mechanical defects as calculated by the approximate
method using Equations 25 and 17 for various conditions ................... 14

5. The residual function for a typical case .................................. 15

6. Comparison of responses for mechanical defects using various levels of
approximation ................................................. 22

v



MNENTIONALLY LEFT BLAINK.

vi



A CKNOILEDGMENT

My deepest thanks to Professor E. Varley of Lehigh University, who, as mentor and friend,

reminded me of the effectiveness of parametric solutions and transformations of variables.

vii



INTENTI.ONALLY LEFT BLA.NK.

viii



1 IN1R()DU7I1ION AND IIQI. ATIONS OF \1()ii11)N

Recnt ~pcrsontl thk MC7cl tIns'inan aie i.lvi of tiv )rmalon of adiabatic shear
-VnaI nd Clifton l9N71 and T/avarais 119 ) haeenlaiL the Lltc-iime. high-

I eipcrt i ehM or ol the equa.tionis fr th mviC/l~j\ill orde r to judge whether or not a

!,and v. Ill form from a small i uhomotcene it . In fact, alt hou(_,h the mathematical argumrents

pentdInl thlose: pape rs arc undoubtedlyv corect, they are m isleading in that cornputational

c,('pcncncc lcrl shoi-ms that shear bands form at intrl~mediate times somc"'Ihlit after instability first

cc urs. but %Oihcn the temperature in the hind is still relatively low. It is the purpose of this paper

to develop methods Mi ereby the time of intense localization (not the time at onset of instability)

cnbe calcul~itcd or at least estimated and to examine the causes of' band formation and the effects

of, the domrinlant pa ram eters.

Considcr simple shearing of a slab of rigid/plastic material of thickness, z and width 2H. The

motion is assumed to be of the form

x = X + u(YNt), Y N. z =Z. (1.0)

\%hci-e x,v;,z denlote present position; XY,Z denote reference position; and t is time. This may

thourt! of as anl idcaiiiCd ver-sion of the Kolk bar experiment on a thin-aletuewreti

the wall thickness and 21f is the gage length. In nondimensional form, the governing equations to

be studied are

(ts). = 0(2.1)

(11)), (tS)Vv 4- k(1,,), (2.2)

s Kg(1bVv,) (2.3)

= M(.i3)v, ~(2.4)

where -1 _ y +1, 0 t < -, and the commas denote partial dilfferentiation with respect to the

indicated independent variable. The first equilon re piesents balance of miomentumn in the quasi-

static approximation where s is the shear stress. From Finite clement solutions, Wright and Walter

1987], it is known that this approximation is very accuraite up to moderate strain rates. The

second equation represents balance of energy where i} is temiperature. measured from some

convenilent reference temrcrature;- k is thermnal conducivity:. v = U., is the particle velocity; and v,

is the velocity gradient or plastic strain rate since clatiti, v , i erc~d~ The first term on the ri t



of Equation 2.2 iS 1112 hea source due to plistic work and the sec:ond accounts for heat conduction.

The third CCIejtt io u'I e S tile ti0W si ress In termis of a1 work harde.ning, paramecter, K-, a thermal
s o tIn - unction. 1. %% hiCh is a\\nme11d to he monotonica. vdce~n. it ~ ;adart

ha1rden a 2 faictor in hc rm tLhc rate harden cexponent. Thei last equation is an evolution law for

work lwrdeninl , and N~mp' tates that t erate of hardenineL is proportional to the rate of' plastic

%%ork where tliec;r oI p~-rOponion;) ,i[ tv dpend!s on the current values of' K and 1P. Thle inclusion

of -: n Eqo at ions 2 1 and 2 2 i adicates that the hal ance lawsr, have been i rite grated through the

t! Iic kneIss . It i L:iiv sue that thle field variables s. v, '), and K (10 not var\' thro-ugTh the

tickness and thait T ae on~ly slox~ v x6111y

The rel-a:; nrs!i iPs I~rween the nondimensional vaft*r !anie ad-, he p'ca! variables, indicated thy

OVCFrars, are as fol!ows;

y = /IlI t Y.It (3.1)

s= s/s,, P cP/ S') v /y,,h K K (32

10

In Equation 3 y, is the nominal, applied strain rate; s., is a characteristic stress given by

Equation 3.3; p is density; c is heat capacity; K, is a characteristic value for the work hardening

parameter, and b is a characteristic time for rate hardening. Note that the cdharacteristic stress,

which includes the rate factor (hy,)', has been chosen so that s =I when K = 1, 1)~ = 0, and

I . . It is necessary, to define one more parameter, namely

a - ()= asjp[-c, where a -g o), (4.0)

,~the suheript deniotes diff'crCntial.;o1 wVith respect .,) the argument indicated. The form in which

ih(, equations have been wntten is suiiLhl:- for examining the effect of various small defects, Such

:i, va.riationls in '.) ! 01nckness, v-ariations in streng-th, or variaitions in initial temperature.

fIn all prohlems to be considered below the velocity is takenr to he constant on the boundaries.

i cre a1SuMeWd 1V be1 insu lated so that thle terni pe.rat tire iradicnt vanishes there.
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2. EXACT RESULTS: NON-HEAT-CONDUCTING CASE

Molinari and Clifton [ 11871 have given the exact solution to the non-heat-conducting case

when strss is presribed on the boundary and an approximate solution for the case vhen velocity

is prescribed. I lere, the exaLt solution for the velocity boundary condition will be developed.

With k = 0 in Equation 2.2 the thickness -t factors out, and Equations 2.2 and 2.4 may be

combined to give a differential equation connecting K and 13;

, = M ( :,)O,,. (5.0)

This implies that K is only a function of 0 (and y in inhomogencous cases) K = '(k). In turn, this

allows Equation 2.3 to be written

s = G(i5)(v,Y)m ,  (6.0)

where G K) = (i)g0), and the explicit y-dcpendence has been suppressed. The problem has been

scaled so that G(0) 1. It will be assumed that G has at most one local maximum for 15 > 0.

'lypicafly G will increase initially, reach a maximum, and then decrease as shown in Figure lb.

Combining Equations 2.2 and 2.3 gives

1 ,t = ('ts)(1+m>/M G-1/M 1t +  (7.0)

Becausc of Equation 2.1, the term (TS)( +m)/m is a function only of time, so that a new time scale

T(t) can be defined by the ODE

dT/dt = ('ts)(+m'm T(0) = 0. (8.0)

Since the right hand side of Equation 8 is positive, T will increase monotonically. However, when

a shear band forms, the stress decreases rapidly, and since (l+m)/m is large when m is small, T

will increase extremely slowly once the band is well formed. Now the energy equation may be

written

Gum O,. = (1, m)hn (9.0)

3



This has the solution

H(t) = T t"l'm)n + H(i%(y)), (10.1)

where H(O) f Gf dG- . (10.2)

Since G is positive, 1I is monotonically increasing and, thus, invertible. Therefore, * is now

known implicitly as a function of T and y.

0 = (T,y). (11.0)

From the velocity boundary condition and the constitutive relation in Equation 2.3, the traction can

be found as a function of T

Po v,, dy =1= f1 (-ts)"/m(-tG)"/M dy, (12.0)

or since ts is independent of y,

(Ts I n = f0 (trCG) 1 dy, (13.0)

which gives rs as a function of T. Finally, Equation 13 may be used in Equation 8, and the

solution of a simple ODE by quadrature completes the problem.

In summary, then, once G(i) has been found from the solution of Equation 5 and the

definition G = g, the solution in parametric form is obtained by performing the following

quadratures in sequence:

H(O) = H(0o(y)) + T t(I)/r; (14.1)

(tcs)/ =o ('tG)Y dy; (14.2)

t = fr (zs) lim)/m dT. (14.3)

Note that Equation 14 does reduce to the homogeneous solution when i% = 0 and t = 1, since then

with the aid of Equations 14.1 and 14.2 and the definition of H, Equation 14.3 reduces to

= G1 dO, which can be obtained directly from Equation 2. Also v,y = l and s = G(O) in

this case.

4



That Equation 14 gives localized solutions may easily be seen by the following qualitative

argument for geometric or initial temperature imperfections. In Figure la for a non-work-hardening

material, an arbitrary softening function g and g raised to the power 1/m are sketched. Since m is

usually a small number (0.025 or smaller for many metals), the second curve drops rapidly toward

zero. As a consequence, the integral of g"m, also shown in Figure ]a, starts at zero, then rises

rapidly, and finally levels out into a plateau, which has been normalized to I in the Figure. The

situation for a work-hardening material, shown in Figure lb, is similar, except that in that case, the

integral of G "" rises slowly at first, then increases very rapidly near the maximum of 0, and

finally goes into a plateau. In the figure, all curves have been renormalized as required so that

each has I as an upper bound.

First, suppose that r = I and i% is some nonconstant function of y. Then the initial

distribution of temperature corresponds to some initial distribution of H, as shown by the dark lines

near the origin in Figure la. As time increases, T(t) increases also, but Equation 14.1 shows that

for each value of y, H simply translates by the amount T, so that at some later time, H has the

distribution shown by the dark lines near 0.5 and later still by the dark line near 1.0. In turn,

these correspond to new distributions of 5 as shown in the figure. Since the curve H(1) turns over

to the right, the -0 distribution expands, and when the maximum value of H encounters the plateau,

the distribution of 0 expands wildly with the maximum value of 0 occurring at the same location

as initially. In general, the more sharply H turns onto the plateau, the more sharply will the

maximum in 0 rise, and the more peaked will the distribution in 0 become.

The graphical interpretation for the work-hardening case, shown in Figure lb, is identical.

Now, however, because H(0) first turns up, the temperature distribution first becomes more

compressed than initially. This has been noted by Bums [1989] in a completely different analysis.

After G passes its maximum, and the H curve begins to turn to the right, the temperature

distribution can expand, and finally it will peak sharply, just as before, when the maximum

temperature moves onto the plateau.

The graphical interpretation is slightly different for mechanical imperfection with zero initial

temperature. In this case, with r nearly equal to I but varying slightly with y, the H distribution

begins at zero, as indicated by the dots at the origin in Figure lb, but according to Equation 14.1,

it expands linearly with T as the whole pattern moves up the H axis. Correspondingly, the 0

distribution starts at zero and spreads very slowly, as indicated in Figure lb. The process ccntinues

until the maximum value of tt reaches the plateau, which occurs at the location of the initial

minimum in 0. As with the case of an initial temperature imperfection, the temperature distribution

5
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is compressed where 11(15) turns up and expands and peaks up sharply when H(*) reaches the

plateau.

3. ASYMPTOTIC RESULTS: THE EFFECT OF HEAT CONDUCTION

The result outlined above, which is exact if the thermal conductivity is zero, gives only a

minimum value for the critical strain when there is finite conductivity. In fact, it is more accurate

to refer to a critical temperature than to a critical strain. Criticality is reached when the maximum

temperature is large enough to force the H function onto the plateau. Since the maximum

temperature generally occurs in a narrow region with large temperature gradients on either side, heat

conduction has the effect of delaying the critical condition by chopping off the peak and spreading

the thermal energy to the sides. This effect was clearly seen in the finite element calculations

reported by Wright and Walter [19871 and plotted in their Figure 8, replotted here in Figure 2.

The left-hand side of the figure rises above the minimum as the nominal strain rate decreases.

Since the nondimensional thermal conductivity varies inversely with the nominal strain rate

(see Equation 3), this corresponds to a relative increase in the effect of heat conduction. The fact

that the right-hand side of the figure rises above the minimum with increasing strain rate is thought

to be an inertial effect and is still not understood in detail. Since this paper deals only with the

quasi-static approximation, the right half of the curve will not be discussed further here, and all

results obtained below will apply only to the left-hand side.

Only the rigid, perfectly plastic case will be examined, but the defect that sets off the

localization may occur in the thickness, the initial strength, or the initial temperature distribution,

C= 1 + 5(y) , K¢= I + X(y) , 1% = 1%(y), (15.0)

where max (1<<,121,10 01) < 1. in the cases to be considered, there is no work hardening so ic does

not evolve. Consequently, only Equations 2.1, 2.2, and 2.3 apply.

The analysis in Section 2 introduced a second time scale, T(t), through the differential

transformation of Equation 8. Since it turned out that T was the dominant time scale in the

absence of heat conduction, which is regarded as only a small perturbing effect in the present case,

the same transformation will be used here. Equation 2 becomes

8
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(,ts),y = 0 (16.1)

s = icg(O)(v,Y)m  (16.2)

"+ k - ('t y)'Y' (16.3)

where as before

dT = (ts)(+m)m (17.1)
-dt-

(stsY' = f ° (ticg) 1" dy. (17.2)

Next transform the dependent variable using Equation 10.2 and rewrite the energy Equation 16.3 in

tern'.r of H.

r t1'-tH" 1
,tH ,T  = z ¢ 

1 a+ k d t [ ( xT l'y) y - 'T H h , 2

dT I -H'7 Y. (18.0)

Upon ignoring the last term, which is nonlinear in H, the equation may be written

t(H-T),T = k dt [t(H-fT),y + fyT],y, (19.1)
dT

or t(H-fr),, = k [,t(H-fT),y + "tfYT],Y, (19.2)

where f = C-(l+m)/mK-1/m. (19.3)

Equation 19.2 has the solution

H = fT + 1, (20.0)

where 13 satisfies an inhomogeneous heat equation with a source,

"t1, = k('t3,Y),Y + k(tf,y),T, (21.1)

[3(yO) = H( 0o), ,Y - fYT on the boundaries. (21.2)

Since X, 6, and O in Equation 15 have all been assumed to be small, the initial value of 3 is also

small, and as a good approximation, Equation 21 may be replaced by

P', = k(3,YY + Tfyy). (22.0)

10



It is convenient to split 3 into two unknown functions. To that end, let (3 = (¢ - f)T + r, where €

satisfies

t= t'. ,yy (23.1)

0(y,O) = f, , y = 0 on the boundaries, (23.2)

and f is defined as in Equation 19.3. Then the residual r must satisfy

dT~f )

r, = kr,yy + -d (f - 0)  (24.1)

r(yO) = H(t 0(y)) and r.y = 0 on the boundaries. (24.2)

Since f - 0 is zero initially and dT tends to zero as t increases, the source term in Equation 24 is-U-
very weak. The Fourier components of r have the representation

-= ff k(h) 2t dT (ck(n 2,,_ 1) dt' + rn ek(r ',

At early times, r = 0(kt2) for all n since dT is I initially. If dT is bounded by e-1 for some p.,

then r, -- 0 as t -- o. Thus, r is a small term. Finally, H has the representation

H(O) = OT + r , (25.0)

where 0 and r satisfy Equations 23 and 24. The problem is completed by first performing the

integration in Equation 17.2, which yields a function of T and t, and then solving the ODE in

Equation 17.1.

As a first example, consider the same problem considered by Wright and Walter [1987] with
2

results plotted in Figure 2. That is let K = I and .(y) = o.l(l-y2 )9e-S Y. Then ¢ = f = 1, and the

source term in Equation 24.1 vanishes. Figure 3 shows the calculated response for a nominal strain

rate of 50s-. This result is typical. Stress follows nearly parallel to the unperturbed response

initially, but then falls off as the temperature and strain rate in the shear band accelerate sharply.

the strain at intense localization is taken at the point of maximum rate of increase of strain rate in

the center of the band. This is the same criterion as used previously. The solution that follows

from Equation 25 turns onto a plateau at late times in the same manner as the full, finite element

solution, but the plateau occurs too soon so that maximum values of temperature and strain rate are

underestimated and stress does not drop far enough. The early plateau occurs because H" in

Equation 18 is always negative and hence, the final omitted term in Equation 18 is positive, which

would have the effect of requiring larger negative curvature in the next to last term to balance it in

11



the exact solution. Therefore, the error in the solution of Equation 25 becomes unacceptably large

sometime before the final plateau is reached. The criterion for critical strain stated above was used

to obtain the approximate points plotted in Figure 2. Clearly, the approximate solution gives a very

good estimate of the critical strain over several orders of magnitude of nominal strain rate. At the

lowest rates, the approximate solution loses accuracy because heat conduction is not sufficiently

accoun!ed for, and at the highest rates, it loses accuracy because inertia terms are ignored.

As a second example, consider a specimen with a thickness defect t = I - .(1-y 2) 9e-5 y.

Results for X = 0.01 and X = 0.001 are shown in Figure 4. The group of three solid curves on the

left a.1! ha,,'e "he sa=.e 2c an' show that increasing nominal strain rate decreases the critical

strain, which is qualitatively the same as for temperature defects. The right-hand curve shows that

a smaller defect increases the critical strain. Finally, the dashed curve shows th. effect of ignoring

the source term in Equation 24, which in this case makes the residual identically zero. Figure 5

shows the calculated residual for the case X = 0.01, = 50s". Note that the maximum is less than

3x10 -3. For the same defect, but with j. = 500s-, the residual has the same shape, but is ar order

of magnitude smaller everywhere.

4. UNIVERSAL SOLUTION AND SCALING LAW

Equations 10.2 and 18 provide the basis for obtaining considerable further insight into the

localization process when m is a small parameter, which is usually the case. Begin by defining a

new variable z

I/rn 1/rn

z =-m In g - (26.0)

where g_ is the limit of g as ,3 becomes large. Then use Laplace's method on Equation 10.2 in

the form

z

g C. dz'. (27.0)

Assume that d0/dz can be expressed as a power series in z, d1O/dz = ao + a1z + a 2Z + ... where the

cocf.ients a., a, ... are found from Equation 26 by expressing g as a function of z, differentiating

with respect t( z and evaluating at z = 0.

12
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I /in

ao dz g'() a (28.1)

d2j(O) 1 1-g" 1
+t . . .. I, -g- +

dgO) In m

+ 2 g ()] (28.2)

g"(0) etc. (28.3)

When evaluated term by term, the integral in Equation 27 gives

11 = &/m + (l-g ')[m(I-e m)(a3 + ma, + 2m2a2 + ... )

+ mzc"'(a, + 2ma 2 + ...) + mz 2e-m (a2 +...)

+ 0 (mzne+7m)]. (29.0)

Since m is small, the terms in mzne"e' will be ignored at all orders of n so that a good

approximation for If is

H = g"- -+ mC (1 - gum) (30.0)
a

where Equation 26 has been used, and C is a constant chosen so that H - gh" 0 takes on

appropriate values as 0 tends toward infinity (assuming that f [gum gI] dO converges). For
I/rn 12small m, gt may be extremely small. For example, if g_ = 0.5 and m = 0.025, then 10'

which for all practica! purposes may be set equal to zero. When that is done, H takes on the

simple form

S= mC (1-gl"). (31.0)
a

With g = cxp (-ai)), this is exact, and C = 1. Plots of Hl, according to Equation 31 or the exact

expression in Equation 10.2, are indistinguishable for reasonable choices for g such as g = I - aO

or g = 1/2 (1 + C2Jv).

Now, from the definition of H in Equation 10.2 together with Equation 31,

16



I1 V 0 ItgII I -1 ! (32.1)

and in (Ya

I!'" (i))= - 'l(; 1 (3 .2.11( m a (32.2)

so that, after a simple linear rescaling,

A If A T A t A MC
1 - T = -...., I - , k - k. (33.0)

mC/a mnC/a mC/a a

The basic Fquaition I S may be written as

tfi,= (n' + -S [ ty),y + (34.0)

dT 1-11

This is a universal approxiwate equation for A no matter what the softening function g(13) may be.

Since dIt/d'I is given by Equation 17.1, and from Equation 31, it is known that the expression

g = 1/(1 - is a good approximation; Equation 17.2 may now be rewritten as

dt = mC [f TK)- dy] . (35.0)

dT a 01- H

Equations 34 and 35 imply that all effects of the defect, whether in "t, K, or i%, are carried by the
A

universal function If.

Furthermore, since Equation 35 shows that, for a given defect in different materials, the critical

time and, hence, the critical strain, scales according to the ratio mC/a (with some additional minor

modification due to rescaled thermal conductivity), it is clear that the primary influence of the

thernial softening function is through its initial slope only (recall that a = -g'(0)). The only effect

of the exact shape of g(O) comes throtigh the coefficient C, which may be expected to have values

C = I + 0(m), according to EqI:uation 2Q.

Contrary to the emphasis inaccd on the behavior at large temperatures by Molinari and Clifton

119871 in proposing their I, criterion for severe localization, the present analysis makes clear that it

is the early behavior of the softenling function that determines when localization will occur. After
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all, large temperature changes occur during localization, not before. In fact, the temperature

required to carry H to .99mC/a (ic., 99% of the plateau value) is rather modest for reasonable

softening functions. From Equation 31, at this value of H, g has the value (.0 1)' , which decreases

from about .955 to .891 as m increases from .01 to .025. Then, for reasonable functions such as

1 - aO, e"' , or 1/2 (1 + e2"), all of which have the same initial slope, ai varies from about .045

to .047 for m = .01 and from about .109 to .123 for m = .025. Notice that since g is so close to

1, m and the initial slope of g have more influence on the corresponding temperature than the exact

form of the softening function. For high-strength steels (p = 7800 kg/m 3, c =- 500 J/kg/K,

_-- 0.5 GPa), reasonable values of a are about 0.1, which translates into temperature increasesA

when H reaches .99 of about 45 0C for m = .01 and about 115 0C for m = .025. These increases in

temperature, reachcd just before intense localization, are small compared to those actually reached in

typical, fully formed shear bands, Hartley, et al., [1987].

If g- # 0, the L_ criterion of Molinari and Clifton [1987] indicates that localization is not to

be expected because H has no limit as 1 tends toward infinity. However, Equation 30 shows that

this criterion is inadequate when m is small. In fact, full finite element solutions for the three

softening functions l-a-3, t"O, and 1/2 (1 + e ' ) all give approximately the same time for intense

localization, Walter [1989]. The actual times are slightly more separated than predicted by the

scaling mC/a, but the ordering is the same. Note that the L_ criterion predicts localization for the

first two functions, but not for the third.

5. FURTHER APPROXIMATIONS FOR WEAK PERTURBATIONS

Suppose that the wall thickness t, the strength K,, and the initial temperature t% all have a

weak cosine variation over the width of the sheared section.

"t = 1 - 6 cos~ty (36.1)

= 1- X cosKry (36.2)

0o = F cosnty, (36.3)

where 8/rn << 1, Vm << 1, af/m << 1. Then good approximations to the solutions of

Equations 23 and 24 are

:l+ ( J m 8 + -IF k) e-"' cosny (37.1)
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r= - C cosity, (37.2)

A A

where r has been rescaled in Equation 25 to match H and T, and the forcing function in

Equation 24 has been ignored since it only gives rise to a small correction. Now the integral in

Equation 35 may be written as

(tsyli _ 1 1 dy

A f (38.0)
1 - T (1-a cosity)(1-b cosiry)(1-c cosrt)

where a = 8/m, b = X/m, and c- r +T !_._ 8+X land a,b,c < 1 (c<l can

be justified a posteriori). After the change of variable z = cosity, Equation 38 is easily evaluated

by considering the related contour integral with poles at z = I/a, I/b, 1/c and a branch cut on -1 5

z < + 1. The result is

(Ts yl/ 1 a2  + b2

1'sl - (b--a)(c-a)NrT- (c -b)( a -b) 41--b-7-

+ C
2

(a-c)(b-c)',/ -  (39.0)

for a * b * c. To complete the solution Equation 39 (with the above values for a, b, and c

restored) replaces the integral in Equation 35 to yield a nonautonomous ordinary differential
A

equation in t and T.

Rather than considering all three types of defect at once, it is instructive first to consider them

one at a time.

i) Case 1: = 6 = 0, F 0. This is the simplest case. Equation 35 reduces to

A -
At [ A~) " e2)2] -(1+m)/2

dT (40.0)

A

In the limiting case of k --* 0 and m << 1, so that m may be ignored in the exponent, Equation 40

may be integrated exactly to yield an estimate for the critical time (nondimensional) or critical

strain
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{ l+ 1-(ea/m) mC 2
mC In _ In _- (41.0)

a ea/m a ea/m

ii) Case 2: = =0, X 0. Equation 35 reduces to

dt = 1 - t (- 2 )

d' 7_(X./m)T- (42.0)

(1 -)2 " ( "  e6 )2 + l - ( '/m) -ie 2t]

- - m

As with case 1, in the limit of -4 0 and m << 1, so that m may be ignored in the final

exponent, Equation 42 may be evaluated exactly to yield

,= t =Cm I In I +1-(/m) 2 .
a V - ./m)m X/m l-X/m (43.0)

_ Cm In 2
a v-

iii) Case 3: X = F = 0, 8 # 0. This is exactly the same as Case 2 with X/m replaced by

8(1+m)/m.

To treat all three types of defect simultaneously, consider the following approximation for the

integral in Equation 38.

dy [1 - (a+b+c)2j1 / .  (44.0)
o[I -(a+b+c)cosry ]

Proceeding as before leads to the estimate

m= tcr = M In 2
= t- ( a + +m 8+ (45.0)
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Equctiiolns 41, 43, and 45 may be regarded as approximate scaling laws. Note that the

dominant effe,:t comes from the material properties mC/a and that the defect strength ae/m, Vlm, or

6(l+m)/m has only a logarithmic effcct.

A
In evaluating Equation 40 with k = 0, it is clear that t,, occurs when the terms in brackets on

A A

the right-hand side vanish and T = - ca/m. When k # 0, Equation 40 must be evaluated
A A

numerically. It turns out t now has infinite range, and T is bounded by the curve
A 2^,
T - ea so it is not as easy as before to estimate the critical strain, which now must be

m
found by actually computing the stress history and judging where stress collapse occurs. The other

cases are analogous.

Figure 6 shows the stress response as calculated from Equations 42 and 44 with nonzero

thermal conductivity. The solid curves used Equation 42, and the dotted curves used Equation 44.

When the defect is small enough, Equation 44 seems to give a very good approximation. Also

shown by the dashed line in the figure is the curve calculated from

Equations 25, 17.2, and 17.1. The nominal strain rate for these curves is 50s-. Although the

solution for a mechanical defect has yet to be calculated by the full, finite element method, the

previous results for a temperature defect give confidence that the dashed curves are accurate until

the plateau is reached. The figure shows that Equation 42 overestimates the critical time at 50s" ,

and that the error is smaller for smaller defects. The overestimate occurs because of the

approximation (I-a)"" = 1-aim for a/m << 1, which is used in the integrand of Equation 35 in

obtaining Equation 38. Finally the critical time, as calculated from Equation 43, is shown by the

vertical interrupted lines. Clearly, the simple formula gives a very good estimate considering the

complexity of the full calculation.

Equations 41 or 43 or 45 appear to give lower bounds, but that is not quite the case.

Whereas ignoring hct conduction and m, in the final exponent l+m, makes an underestimate of the

critical strain, the approximation for (1-a)' /m, as noted above, tends toward overestimation of the

critical strain. Thus, the approximations tend to compensate each other to some extent, although for

very small defects, the last approximation can be very accurate.

6. CONCLUSION

The approximate methods used in this paper reduce a complex calculation on a main frame or

mini-computer to a relatively simple calculation on a micro-computer, since integration of the

system in Equations 17, 23, 24, and 25 is easily accomplished with commercially available software
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packages. The principal conclusion to be drawn is that localization depends strongly on the low-

temperature thermal softening and on the rate sensitivity. In fact, because of its dominant effect on

scaling, the ratio m/a should perhaps be regarded as a figure of merit that ranks perfectly/plastic

materials according to their tendency to form adiabatic shear bands. The shape characteristic C has

been omitted because its value is always near to one and would be difficult to determine

experimentally in any case. The reciprocal of the ratio may be called "shear band susceptibility."

XS, = a/m. (46.0)

The susceptibility controls not only the critical strain, as has been demonstrated above, but in

an earlier paper, Wright and Walter [1987], it was found to play a role in the criterion for absolute

stability and in the early growth rate of unstable perturbations. Susceptibility does not tell the

whole story, however, since the critical strain is also dependent on many other factors; among these

are defect size and shape and thermal conductivity, whose effects have been considered above, and

inertia, whose effect is yet to be explored.
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