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1. INTRODUCTION AND EQUATIONS OF MOTION

Recent papers on the mechanios and nurhematical analvsis of the formation of adiabatic shear
Punds Molinar and Chifton [19871 and Travaras FI9E7 ) have emphasized the Tate-time, high-
temperature behavior of the equations for thermo/visco/plasticity in order to judge whether or not a
band will form from a small inhomogeneity.  In fact, although the mathematical arguments
rresented in those papers are undoubtedly correct, they are misieading in that computational
cxperience clearly shows that shear bands form at intermediate times somewhat after instability first
oceurs, bul when the temperature in the band is still refatively low. It is the purpose of this paper
10 dovelop methods whereby the time of intensc localization (not the time at onsct of instabilitv)
can be caleulated or at least estimated and to examine the causes of band formation and the effects

of the dominant parameters.

Consider simple shearing of a slab ot rigid/plastic material of thickness T and width 2H. The

motion is assumed to be of the form

x=X+uYun v=Y. z=12, (1.0)

where x,v.z denote present position; X.Y,Z denote reference position; and t is time. This may
thought of as an deatized version of the Kolsky bar experiment on a thin-walled tube where 1 is
the wall thickness and 2H is the gage length.  In nondimensional form, the governing equations to

be studied arc

(18),, = 0 2.1)

(T, = (8)v,, + k(1) 2.2)
s = Kg(h(v,)" (2.3)

K, = M(X)sv,, (2.4)

where -1 €y € +1, 0 £t < o, and the commas denote partial difierentiation with respect 1o the
indicated independent variable.  The first cquation represents balance of momentum in the quasi-
static approximation where s is the shear stress. From finite element solutions, Wrnght and Walter
[1987], 1 is known that this approximation is very accurate up to moderate strain rates. The
sccond equation represents balance of energy where U is temperature. measured from some
convenient reference temnerature; k s thermal conductivity: v = u,, is the panicle velocity; and v,

is the velocity gradient or plastic strain rate since clastiany is sgnored. The first term on the night




of Equation 2.2 s the heat source due to plastic work and the sceond accounts for heat conduction.
The third cquation gives the (Tow stress in terms of a work hardening parameter, K a thermal
soltening function, g3y, which 15 assumed 10 be monotonically decrcasing with g(0) = 1; and a rate
hardening factor where m s the rate hardening exponent. The last cquation is an ¢volution law for
work hardening and simply states that the rate of hardening is proportional 1o the rate of plastic
work where the factor of proportiondity depends on the current vilues of x and ¥, The inclusion
of Tin Equations 2 0 and 2.2 indicates that the balance laws have been integrated through the
thickness. Teis taaitly assumed that the ficld variables s, v, @, und k do not vary through the

thickness and that T varies orny slow!y with 5

The relationships between the nondimensional vacables and the physica! variables, indicated by

overhars, are as follows:

Y=y U= 30
S = g/s‘, 0= ;—)c:;?/so v = ;/*{UH K = 1-(/)\"\, (3.2)
k = k/pcH®,  where s, = (b7)™ . (3.3)

0

In Equation 3 v, is the nominal, applied strain rate: s, is a characteristic stress given by
Equation 3.3; p is density: ¢ is heat capacity; K, is a characteristic value for the work hardening
parameter, and b is a characteristic time for rate hardening. Note that the characteristic stress,
)m

which includes the rate factor (by,)™, has been chosen so that s = 1 when x = 1, 8 = 0, and

v,, = 1. It is necessary to define one more parameter, namcly

a=- gﬂrj()) = as/pc, where a = -gl}(()), @0
atnd the subsenpt denotes differentiation with respect o the argument indicated.  The form in which
the cquations have been wntten is suitebl2 for examining the cffcct of various small defects, such

asovariatons inowall thickness, vanations in strength, or variations in initial temperature.

In all prohiems 1o be considered below the velocity s taken 1o be constant on the boundarics,

which are assumed o be insulated so that the temperature gradient vanishes there.

tJ




2. EXACT RESULTS: NON-HEAT-CONDUCTING CASE

Molinari and Clifion {1987} have given the exact solution to the non-hcat-conducting case
when stress is prescribed on the boundary and an approximate soluticn for the case when velocity

is prescribed. Here, the exact solution for the velocity boundary condition will be developed.

With k = (0 in Equation 2.2 the thickness 1 factors out, and Equations 2.2 and 2.4 may be

combined to give o diffcrential equation connecting ¥ and 3;
< = MK, . (5.0

This implics that x is vnly a function of ¥ (and y in inhomogencous cases) K = R(®). In wm, this

allows Equation 2.3 to be written
s = GOYv,)", (6.0)

where G(B) = R(D)g(d), and the cxplicit y-dependence has been suppressed.  The problem has been
scaled so that G(0) = 1. It will be assumed that G has at most onc local maximum for 8 2 0.
Typically G will increase initially, reach a maximum, and then decrease as shown in Figure 1b.

Combining Equations 2.2 and 2.3 gives

B, = (ts)mim GVm g-(smimm (7.0)

{l+m)/m

Because of Equation 2.1, the term (1)
T(t) can be defined by the ODE

is a function only of time, so that a ncw time scale

dT/dt = ()™ T(0) = 0. 8.0

Since the right hand side of Equation 8 is positive, T will incrcasc monotonically. However, when
a shear band forms, the stress decreases rapidly, and since (1+m)/m is large when m is small, T
will increase cextremely slowly once the band is well formed. Now the cnergy cquation may be

writlen

G 0,y = 7 (rmm (9.0)




This has the solution
H@®) = T 7M™ 4 H@O (y)). (10.1)

hore - ° ~lm
where H(®) = foc do. (10.2)

Since G is positive, H is monotonically increasing and, thus, invertible.  Therefore, ¢ is now

known implicitly as a function of T and vy.
8 =3 (Ty. (11.0)

From the velocity boundary condition and the constitutive rclation in Equation 2.3, the traction can

be found as a function of T
J‘o v, dy=1= f , (@)aGy"™ dy, (12.0)

or since 18 is independent of vy,

()™ = ﬂ (Gy"™ dy, (13.0)

which gives 1s as a function of T. Finally, Equation 13 may be used in Equation 8, and the
solution of a simple ODE by quadrature completes the problem.

In summary, then, once G(9) has been found from the solution of Equation 5 and the
definition G = R g, the solution in paramectric form is obtained by performing the following

quadratures in scquence:

H(®) = H(Oy)) + T v™m, (14.1)
(ts)'™ = ﬂ) Gy dy; (14.2)
t = f ; (Ts) MM gT. (14.3)

Note that Equation 14 docs reduce to the homogencous solution when 8, = 0 and T = 1, since then
with the aid of Equations 14.1 and 14.2 and thc dcfinition of H, Equation 14.3 reduces to
L= f; G d9, which can be obtained dircctly from Equation 2. Also v,, = 1 and s = G(9) in

this case.




That Equation 14 gives localized solutions may easily be scen by the following qualitative
argument for geometric or initial temperature imperfections. In Figure 1a for a non-work-hardening
material, an arbitrary softening function g and g raised 10 the power 1/m are sketched. Since m is
usually a small number (0.025 or smaller for many metals), the sccond curve drops rapidly toward
zero.  As a conscquence, the integral of g'™, also shown in Figure 1a, starts at zero, then rises
rapidly, and finally levels out into a platcau, which has been normalized to 1 in the Figure. The
situation for a work-hardening matcrial, shown in Figure 1b, is similar, cxcept that in that case, the
integral of G'™ riscs slowly at first, then increases very rapidly near the maximum of G, and
finally goes into a plateau. In the figure, all curves have been renormalized as required so that

cach has 1 as an uppcr bound.

First, suppose that T = 1 and 1§, is scme nonconstant function of y. Then the initial
distribution of tempcrature corresponds to some initial distribution of H, as shown by the dark lines
ncar the origin in Figure la. As time increases, T(t) increascs also, but Equation 14.1 shows that
for each valuc of y, H simply translates by the amount T, so that at some later time, H has the
distribution shown by the dark lines ncar 0.5 and later still by the dark line near 1.0. In tum,
these correspond to new distributions of 8 as shown in the figure. Since the curve H(8) tums over
to the right, the O distribution cxpands, and when the maximum value of H encounters the plateau,
the distribution of ¥ cxpands wildly with the maximum valuc of ¥ occurring at the same location
as initially. In general, the more sharply H tums onto the plateau, the more sharply will the

maximum in O rise, and the more pcaked will the distribution in 8 become.

The graphical interpretation for the work-hardening case, shown in Figure 1b, is identical.
Now, however, because H(3) first tums up, the temperature distribution first becomes more
compressed than initially. This has been noted by Bums [1989] in a completely different analysis.
After G passcs its maximum, and the H curve begins to turn to the right, the temperature
distribution can expand, and finally it will pcak sharply, just as before, when the maximum

temperature moves onto the plateau.

The graphical interpretation is slightly different for mechanical imperfection with zero initial
tcmperature.  In this case, with T ncarly cqual to 1 but varying slightly with y, the H distribution
begins at zcro, as indicated by the dots at the origin in Figure 1b, but according to Equation 14.1,
it expands lincarly with T as thc whole pattern moves up the H axis. Correspondingly, the ¥
distribution starts at zcro and sprcads very slowly, as indicated in Figurc 1b. The process ccontinues
until the maximum value of H recaches the platcau, which occurs at the location of the initial

minimum in 8. As with the casc of an initial temperature imperfcction, the temperature distribution
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is compressed where H(9®) tums up and cxpands and peaks up sharply when H(8) rcaches the

plateau.

3. ASYMPTCTIC RESULTS: THE EFFECT OF HEAT CONDUCTION

The result outlined above, which is exact if the thermal conductivity is zero, gives only a
minimum value for the critical strain when there is finite conductivity. In fact, it is more accurate
to refer to a critical temperature than to a critical strain.  Criticality is reached when the maximum
temperature is large cnough to force the H function onto the plateau. Since the maximum
temperature gencrally occurs in a narrow region with large temperature gradients on either side, heat
conduction has the effect of delaying the critical condition by chopping off the peak and spreading
the thermal encrgy to the sides. This effect was clcarly scen in the finite clement calculations
reported by Wright and Walter [1987] and plotted in their Figure 8, replotted here in Figure 2.

The left-hand side of the figure rises above the minimum as the nominal strain rate dccreases.
Since the nondimensional thermal conductivity varies inverscly with the nominal strain rate

(see Equation 3), this corresponds to a rclative increase in the effcct of heat conduction. The fact
that the right-hand side of the figure riscs above the minimum with increasing strain rate is thought
1o be an inertial effect and is still not understood in detail. Since this paper deals only with the
quasi-static approximation, the right half of the curve will not be discussed further here, and all
results obtaincd below will apply only to the left-hand side.

Only the rigid, perfectly plastic casc will be examined, but the defect that sets off the
localization may occur in the thickness, the initiul strength, or the initial tcmpcrature distribution,

T=1+8y) , x=1+Ay) ., B = ) (15.0)

where max (I8LIALIY,)) << 1. in the cascs to be considered, there is no work hardening so x does

not cvolve. Consequently, only Equations 2.1, 2.2, and 2.3 apply.

The analysis in Scction 2 introduced a second time scale, T(t), through the differential
transformation of Equation 8. Sincc it turned out that T was the dominant time scale in the
absence of hcat conduction, which is regarded as only a small perturbing cffect in the present case,

the same transformation will be used here.  Equation 2 becomes
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(1s),y = 0 (16.1)
s = kg(W)(v,)" (16.2)
0, = (™™ + k -Gk (@), (16.3)
where as before
dT = (gs)*™m (17.1)
dr
()™ = f ; (txg)y "™ dy. (17.2)

Next transform the dependent variable using Equation 10.2 and rewrite the energy Equation 16.3 in
terms of H.

- -1/m dt_ . H'
TH,y = ()™ + k T [(’[H,y),y 1 STR: h,y ] (18.0)
Upon ignoring the last term, which is nonlincar in H, the equation may be written
HAT),; = k 4 [x(HAT),, + 1f,,T],,, (19.1)
dT
or T(H-{T), = k [tW(H-{T),, + f,,T],,, (19.2)
where f = gtrmimm (19.3)
Equation 19.2 has the solution
H =T + §, (20.0)
where J satisfics an inhomogencous hcat cquation with a source,
TB'[ = k(Iva)vy + k(vay)vyTv (21_1)
B(y,0) = H(®,), B., = - f,,T on the boundarics. (21.2)

Since A, 8, and 9, in Equation 15 have all been assumed to be small, the initial value of P is also

small, and as a good approximation, Equation 21 may bc recplaced by

B = k(B,yy + Thyy). (22.0)

10




It is convenicnt o split B into two unknown functions. To that end, let B = (¢ - HT + r, where ¢
satisfics
G, = Fyy (23.1)
o(y.0) = f, ¢,, = 0 on the boundarics, (23.2)

and f is detined as in Equation 19.3. Then the residual r must satisfy

= ki, + S0 - 0) (24.1)
1(y.0) = H(B(y)) and r,, = 0 on the boundarics. (24.2)

Since f - ¢ is zero initially and %? tends to zero as t increases, the source term in Equation 24 is

very weak. The Fourier components of r have the representation

= ¢ okt AT

2. 2
k(nn)"t ) -k({nn)"t
(c DAt 4+, e s
! o dt %

At carly times, 1 = 0(kt*) for all n since %}: is 1 initially. If %’F is bounded by e™ for some J,

thenr, - 0 as t = . Thus, r, is a small term. Finally, H has the representation
H(®) = ¢T +r, (25.0)

where ¢ and r satis[y Equations 23 and 24. The problem is complcted by first performing the
integration in Equation 17.2, which yiclds a function of T and t, and then solving the ODE in
Equation 17.1.

As a first example, consider the same problem considercd by Wright and Walter [1987] with
results plotted in Figure 2. That is let x = 1 and B4(y) = 0.1(1-y})%>". Then ¢ = f = 1, and the
source term in Equation 24.1 vanishes. Figure 3 shows the calculated rcsponse for a nominal strain
rate of 50s™". This result is typical. Stress follows nearly parallcl to the unperturbed response
initially, but then falls off as the temperature and strain rate in the shear band accelerate sharply.
the strain at intensce localization is taken at the point of maximum rate of increasc of strain rate in
the center of the band. This is the same criterion as used previously. The solution that follows
from Equation 25 tums onto a platcau at latc times in the same manner as the full, finite element
solution, but the platcau occurs too soon so that maximum values of temperature and strain rate are
underestimated and stress does not drop far enough. The early platcau occurs because H in
Fquation 18 is always ncgative and hence, the final omitted term in Equation 18 is positive, which

would have the cffect of requiring larger ncgative curvature in the next to last term to balance it in

11




the exact solution.  Therefore, the crror in the solution of Equation 25 becomes unacceptably large
sometime before the final plateau is rcached. The criterion for critical strain stated above was used
to obtain the approximate points plotted in Figure 2. Clearly, the approximate solution gives a very
good estimate of the critical strain over scveral orders of magnitude of nominal strain rate. At the
lowest rates, the approximate solution loscs accuracy because heat conduction is not sufficiently

accounted for, and at the highest rates, it loses accuracy because inertia terms are ignored.

As a sccond example, consider a specimen with a thickness defect 1 =1 - X(l-yz)qc'syz.
Results for A = 0.01 and A = 0.001 arc shown in Figurc 4. The group of three solid curves on the
left all have the same do®~t and show that incrcusing nominal strain rate decreases the critical
strain, which is qualitatively the same as for temperature defects. The right-hand curve shows that
a smaller defect increases the critical strain. Finally, the dashed curve shows the effect of ignoring
the source term in Equation 24, which in this case makes the residual identically zero. Figure §
shows the calculated residual for the case A = 0.01, %, = 50s”'. Note that the maximum is less than
3x10°. For the same defect, but with ¥, = 500s™, the residual has the same shape, but is ar order

of magnitude smaller everywhere.
4. UNIVERSAL SOLUTION AND SCALING LAW

Equations 10.2 and 18 provide the basis for obtaining considcrable further insight into the
localization process when m is a small parameter, which is usually the case. Begin by defining a

new variable z

gl/‘m _ gl/m
1 . yllm_

z=-mln , (26.0)
where g, is the limit of g as & becomes large. Then use Laplace’s mcthod on Equation 10.2 in

the form

Z

H = ﬁ) [g”m.,, + (1 _ g”m_,) C-Z'/m]%'lls, dz’. (270)

Assurnc that d9/dz can be cxpressed as a power scrics in z, d9/dz = ay + a,z + a,z° + ... where the
cocffi icnts a,, a,, ... arc found from Equation 26 by expressing g as a functioii of z, differentiating

with respect to z and evaluating at z = 0.

12
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d8(0) (1-g"™ )

= = - = q B
QY i 20 (28.1)
_ dzl‘}(O) _ 1 [ 1-gi/m . lm (1 2>1/m +
[ — - EEEYYITY - .

d[z g ()
(_’r(OT g”(())] (28.2)
= ' (—1 + g_g(l)) ctc. (28.3)

a

When evaluated term by term, the intcgral in Equation 27 gives

H = g™ 9+ (1-g/™)[m(I-c")(a, + ma, + 2m%, + ...)
+ mze™™(a, + 2ma, + ...) + mz%¥™ (a, + ..)
+ 0 (mz"¢™™). (29.0)

Since m is small, the terms in mz"c™™ will be ignored at all orders of n so that a good

approximation for H is

H=g" &+0C 1-g™m, (30.0)

where Equation 26 has been used, and C is a constant choscn so that H - g™ takes on
appropriatc valucs as O tends toward infinity (assuming that f; [g”’" - gl’“’] d?® converges). For
small m, g™ may be cxtremely small. For cxample, if g. =05 and m = 0.025, then g™ ~ 10",
which for all practical purposes may be sct cqual to zcro. When that is done, H takes on the

simple form

H= LTla.C_ (1-g'™. (31.0)

With g = cxp (-ad), this is exact, and C = 1. Plots of H, according to Equation 31 or the exact
cxpression in Equation 10.2, arc indistinguishable for rcasonable choices for g suchas g =1 - ad
).

2as

org=12 +¢

Now, from the dcefinition of H in Equation 10.2 together with Equation 31,
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“ (ﬂ) - 2:]/m - 1 . l[}A_ (321)

and me7/a
.. a H
H ) = - . 1 -
() m(C ( m(,‘/u)' (32.2)
so that, after a simple lincar rescaling,
A
=M 2. T ot §_omC, (33.0)
mC/a mC/a mC/a a

The basic Equation 18 may be written as

2
L = () '™+ K _(_{E Etﬂ,,).y +1 @I ) ] (34.0)

A N
dT

t-H

This is a universal approximate cquation for f no mauter what the softcning function g(8) may be.
Since ({l\/d/I\ is given by Equation 17.1, and from Equation 31, it is known that the expression

g™ = - ﬁ) is a good approximation; Equation 17.2 may now bc rewriticn as

dt C [P @™ fom
a _mc [f (e dy] , (35.0)
dT a ® 1-H

Equations 34 and 35 imply that all effects of the defect, whether in T, X, or U, arc carried by the

A
universal function H,

Furthermore, since Equation 35 shows that, for a given defect in different materials, the critical
time and, hence, the critical strain, scales according to the ratio mC/a (with some additional minor
modiflication duc 1o rescaled thermal conductivity); it is clear that the primary influence of the
thermal softening function is through its initial slope only (recall that a = -g(0)). The only effect
of the exact shape of g() comes through the cocfficient C, which may be expected to have values

C =1+ 0(m), according to Equation 29,
Contrary to the emphasis piaced on the behavior at large temperatures by Molinari and Clifton
{1987] in proposing their L._ criterion for severe localization, the present analysis makes clear that it

is the carly behavior of the softening function that determines when localization will occur.  After
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all, large temperaturc changes occur during localization, not before. In fact, the temperature
required to carry H to .99mC/a (ic., 99% of the platcau valuce) is rather modest for rcasonable
softening functions. From Equation 31, at this valuc of H, g has the value (.01)™, which dccreases
from about .955 to .891 as m incrcascs from .01 to .025. Then, for rcasonable functions such as
1- a9, e, or 12 (I + ¢, all of which have the same initial slope, ad varies from about .045
to .047 for m = .01 and from about .109 to .123 for m = .025. Noticc that since g is so close to
1, m and the initial slope of g have morc influcnce on the corresponding temperature than the exact
form of the softening function. For high-strength stecls (;3 = 7800 kg/m?, ¢ = 500 JkgfK,

K, = 0.5 GPa), rcasonable valucs of a are about 0.1, which translates into temperature increases
when H reaches .99 of about 45°C for m = .01 and about 115°C for m = .025. These increases in
temperature, reached just before intense localization, arc small compared to those actually rcached in
typical, fully formed shear bands, Hartley, ct al., [1987].

If g, # 0, the L_ crterion of Molinari and Clifton [1987] indicates that localization is not to
be expected because H has no limit as § tends toward infinity. However, Equation 30 shows that
this criterion is inadequate when m is small. In fact, full finite clement solutions for the three
softening functions 1-a9, >*°, and 1/2 (1 + ¢*®) all give approximatcly the same time for intense
localization, Walter [1989]. The actual times arc slightly more scparated than predicted by the
scaling mC/a, but the ordering is the same. Note that the L_ criterion predicts localization for the

first two functions, but not for the third.
5. FURTHER APPROXIMATIONS FOR WEAK PERTURBATIONS

Suppose ihat the wall thickness 1, the strength x, and the initial temperature 9, all have a

weak cosine variation over the width of the sheared section.

T =1- 9 cosny 36.1)
K =1- X cosmy (36.2)
U, = € cosmy, (36.3)

where 8/m << 1, A/m << 1, ag/m << 1. Then good approximations 1o the solutions of

Equations 23 and 24 arc

o =1 +(lrir']m 5§ + 1 l) ¥ cosmy (37.1)
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=2 g ¥ cosny, (31.2)

A A
where r has been rescaled in Equation 25 to match Hand T, and the forcing function in
Equation 24 has been ignored since it only gives rise to a small correction. Now the integral in

Equation 35 may be written as

|

(=1 dy : (38.0)
1-T (1-a cosmy)(1-b cosmy)(1-c cosm)
£ A
where a = §/m, b=A/m,andc =& A e+ T (1_*‘1115 + A )] and a,b,c < 1 (c<1 can
1-4 m m m

be justified a posteriori). After the change of variable z = cosny, Equation 38 is easily evaluated
by considering the related contour integral with poles at z = 1/a, 1/b, 1/c and a branch cut on -1 £

z £+ 1. The rcsult is

(asy"s - ! { @ + b* +
1Y L) c-aNia (c-b)(a-b)V1-b°

c? }
+
(a-c)(b-c)V1-c? (39.0)
for a # b # ¢. To complete the solution Equation 39 (with the above values for a, b, and ¢
restored) replaces the integral in Equation 35 to yicld a nonautonomous ordinary differential

A
cquation in t and T.

Rather than considering all three types of defect at once, it is instructive first to consider them

one at a time.

iy Case 1: A =08=0, € # 0. This is the simplest case. Equation 35 reduces to

A
& [adr - (e a ety
dT . (40.0)

A
In the limiting casc of k — 0 and m << 1, so that m may be ignored in the exponent, Equation 40
may be integrated cxactly to yicld an e¢stimate for the critical time (nondimensional) or critical

strain
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— In (41.0)

a ca/m

X+\J1-(£a./m)2 }~ mC 2

Yo = e = 2C In {
a €a/m

ii) Case 2: 8 = ¢ =0, A # 0. Equation 35 reduces to

& - (1%
N e (42.0)
[\/(1"1')2 - %ﬁ c'ﬁ"y‘\)2 + \/1 - Wm)* TC-M’?]" }“i”
B @Ay

As with case 1, in the limit of K — 0 and m << 1, so that m may be ignored in the final

exponent, Equation 42 may be evaluated cxactly to yicld

Y, =t, = Cm 1 in L+ V- G/m’ . Vi+i/m
2 N1 (uvm)* Mm V1-A/m’ (43.0)
~ Cm 2
7 M

jii) Case 3: A =€ =0, 8 # 0. This is cxactly the same as Casc 2 with A/m replaced by
d(1+m)/m.

To treat all three types of defect simultancously, consider the following approximation for the

integral in Equation 38.

) dy = 212
fO [1'(a+b+C)COSTCyT - [1 - (a+b+C)] . (440)

Procceding as before Icads to the cstimate

mC 2
=t = In )
Yer cr a (g a + 1+m 8 + Z\',_ (450)

m m m

20




Equations 41, 43, and 45 may be regarded as approximate scaling laws. Note that the
dominant ctfect comes from the material propertics mC/a and that the defect strength ag/m, A/m, or

S(1+m)/m has only a logarithmic cffect.

- . . A . . 3
In cevaluating Equation 40 with k = 0, it is clear that t, occurs when the tcrms in brackets on
. A A
the right-hand side vanish and T = 1 - ea/m. When k # 0, Equation 40 must be evaluated
A A
numerically. 1t tums out t now has infinite range, and T is boundcd by the curve

A Pl
T=1-¢ rln e ', s0 it is not as easy as before to estimate the critical strain, which now must be
found by actually computing the stress history and judging where stress collapse occurs. The other

cases are analogous.

Figure 6 shows the stress response as calculated from Equations 42 and 44 with nonzero
thermal conductivity. The solid curves used Equation 42, and the dotted curves used Equation 44,
When the defect is small enough, Equation 44 scems to give a very good approximation.  Also
shown by the dashed line in the figure is the curve calculated from
Equations 25, 17.2, and 17.1. The nominal strain rate for these curves is 50s™.  Although the
solution for a mechanical defect has yet to be calculated by the full, finite element method, the
previous results for a temperature defect give confidence that the dashed curves are accurate until
the platcau is reached. The figure shows that Equation 42 overestimates the critical time at 50s™,
and that the crror is smaller for smaller defects. The overestimate occurs because of the
approximation (l-a)”“' = 1-a/m for a/m << 1, which is used in the integrand of Equation 35 in
obtaining Equation 38. Finally the critical time, as calculated from Equation 43, is shown by the
vertical interrupted lines.  Clearly, the simple formula gives a very good estimate considering the

complexity of the full calculation.

Equations 41 or 43 or 45 appear to give lower bounds, but that is not quite the case.
Whercas ignoring heat conduction and m, in the final exponent 1+m, makes an underestimate of the
critical strain, the approximation for (1-2)'™, as noted above, tends toward overestimation of the
critical strain. Thus, the approximations tend to compensate each other to some extent, although for

very small defects, the last approximation can be very accurate.
6. CONCLUSION

The approximate methods used in this paper reduce a complex calculation on a2 main frame or
mini-computer to a rclatively simple calculation on a micro-computer, since inicgration of the

system in Equations 17, 23, 24, and 25 is casily accomplished with commercially available software
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packages. The principal conclusion to be drawn is that localization dcpcnds strongly on the low-
temperature thermal softening and on the rate sensitivity. In fact, because of its dominant effect on
scaling, the ratio m/a should perhaps be regarded as a figure of merit that ranks perfectly/plastic
materials according to their tendency to form adiabatic shear bands. The shape characteristic C has
been omitted because its value is always ncar to one and would be difficult to determine

experimentally in any case. The reciprocal of the ratio may be called "shear band susceptibility.”
Xsp = @/m. (46.0)

The susceptibility controls not only the critical strain, as has been demonstrated above, but in
an earlier paper, Wright and Walter [1987], it was found to play a role in the criterion for absolute
stability and in the carly growth rate of unstable perturbations. Susceptibility does not tell the
whole story, howcver, since the critical strain is also dependent on many other factors; among these
are defect size and shape and thermal conductivity, whose effects have been considered above, and

incrtia, whese effect is yet to be explored.
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