$\stackrel{\Gamma}{N}$ AD-A218
 MEMORANDUM REPORT BRL-MR-3807

 APPROXIMATE ANALYSIS FOR THE FORMATION OF ADIABATIC SHEAR BANDS

THOMAS W. WRIGHT

JANUARY 1990

APPROVED FOK PLBLIC RLAEASL; DISTRIBLTION UXLIMIIED.

U.S. ARMY LABORATORY COMMAND

BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND, MARYLAND

destrlction Notice

Destroy this report when it is no longer needed. DO NOT retum it to the originator.

Additional copies of this repon may br obtained from the National Technical Information Service. L'.S. Deparment of Commerce, Springfield, V'A 22161.

The findinge of this report are not to be construed as an official Deparment of the Amy position. unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this repon does not constitute indorsement of any commercial product.

Intentionally left blank.
Page
LIST OF FIGURES v
1 INTRODUCTION AND EQUATIONS OF MOTION 1
2 EXACT RESULTS: NON HEAT CONDUCTING CASE 3
3 ASYMPTOTIC RESULTS: THE EFFFCT OF HEAT CONDUCTION 8
4 UNIVERSAL SOLUTION AND SCALING LAW 12
5 FURTHER APPROXIMATIONS FOR WEAK PERTURBATIONS 18
6 CONCLUSION 21
7 REFERENCES 24
DISTRIBUTION LIST 25

Intentionally left binak.
Figure Page
1a. Sketch of typical softening functica $g, g^{1 / m}, H=\int_{0}^{0} g^{1 / m} d \vartheta$ for a perfectly plastic material 6
1b. Sketch of a typical composite-hardening/softening function $\mathrm{G}, \mathrm{G}^{1 / m}, \mathrm{H}=\int_{0}^{0} \mathrm{G}^{1 / m} \mathrm{~d} \vartheta$ for a work-hardening, thermal-softening material 7
2. Strain at severe localization for the initial temperature defect $\vartheta_{0}=0.1\left(1-y^{2}\right)^{9} e^{-5 y^{2}}$ as computed by finite clements, Wright and Walter [1987], and by the approximate method using Equations 25 and 17 9
3. Typical response as calculated by the approximate method using Equations 25 and 17 for a temperature defect 13
4. Comparison of responses for mechanical defects as calculated by the approximate method using Equations 25 and 17 for various conditions 14
5. The residual function for a typical case 15
6. Comparison of responses for mechanical defects using various levels of approximation 22

Intemtionally left blank.

ACNNOWLEDGMENT

My decpest thanks to Professor E. Varley of Lehigh University, who, as mentor and friend, reminded me of the effectiveness of parametric solutions and transformations of variables.

Intemtonally left blank.

1. INTRODLCION AND EQLATIONS OF MOTION

Recent papers on the mechanies and mahemathat analvis of the Somation of adabatic shear
 lemperature behavior of the equations for themotiseophasticity in order of judge whether or not a fand will fom from a small inhomogencity. In fact, ahough the mathematical arguments presenct in those papers are undoubtedly corret. they are misieading in that computational experience clealy shows that shear bands form at intermediate times somewhat after instability first occurs, but when the lemperature in the hand is still idatively low. It is the purpose of this paper to develop methods whereby the time of intense localization (not the time at onset of instability) can be calcuhated or at least estimated and to examine the causes of band formation and the effects of the dominant parameters.

Consider simple shearing of a slab of rigid/plastic material of thichness t and width $2 H$. The motion is assumed to be of the form

$$
\begin{equation*}
x=X+u(Y, 1), \quad y=Y, \quad z=Z \tag{1.0}
\end{equation*}
$$

where x, y, z denote present position; X, Y, Z denote reference position; and t is time. This may thought of as an idealited version of the Kolsky bar experiment on a thin-walled tube where τ is the wail thickness and 2 H is the gage length. In nondimensional form, the goveming equations to be studied are

$$
\begin{align*}
& (\tau \varsigma)_{y}=0 \tag{2.1}\\
& (\tau v)_{y_{1}}=\left(\tau \sin v_{r_{y}}+k(\tau \tau)_{, y}\right)_{y_{y}} \tag{2.2}\\
& \mathrm{~s}=\operatorname{kg}(\mathrm{v})(\mathrm{v} \cdot .)^{\mathrm{m}} \tag{2.3}\\
& \kappa_{.,}=\mathbf{M}(\kappa, 0) S v_{r y}, \tag{2.4}
\end{align*}
$$

where $-1 \leq y \leq+1,0 \leq t<\infty$, and the commas denote partial differentiation with respect to the indicated independent variable. The first eypation repsesents bulance of mementum in the quasistatic approximation where s is the shear stress. From finite element solutions, Wright and Walter [1987], it is known that this approximation is very accurate up to moderate strain rates. The second equation represents balance of energy where v is temperature measured from some convenient reference temocrature; k is thermal conductivity: $v=u_{\text {, }}$ is the particle velocity; and $v_{\text {, }}$ is the velocity gradient or plastic strain rate silue elaticty is igned the first term on the right
of Equation 2.2 is the heat source due to plastic work and the second accounts for heat conduction. The third equation gives the flow stress in tems of a work hardening parameter, k; a thermal softening function, (i), wheh is asumed to be monotonically decreasing with $g(0)=1$, and a rate hardening factor where m is the rate hardeninge exponent. The last equation is an evolution law for work hardening and simply states that the rate of hardening is proportional to the rate of plastic work where the factar of preportione 'ity depends on the currem values of x and ϑ. The inclusion of In Equations 2 I and 22 indicates that the bance laws have been integrated through the thickness. It is thitly desumed that the field variables s, v, d, and κ do not vary through the hickness and that t varice orily slow!y with y.

The relatonshigs between the nondimensional vatahles and the physical variables, indicated by overbars, are as follows:

$$
\begin{align*}
& y=\bar{y} / H \quad t=\dot{\gamma}, \bar{t} \tag{3.1}\\
& s=\bar{s} / s_{0}, \quad \hat{\sigma}=\overline{\rho c} \bar{v} / s_{0} \quad v=\bar{v} / \gamma_{0} H \quad \kappa=\bar{\kappa} / \kappa_{0} \tag{3.2}\\
& \mathrm{k}=\overline{\mathrm{k}} / \mathrm{\rho ch}{ }^{2} \dot{\gamma}_{\mathrm{o}} \quad \text { where } s_{\mathrm{o}}=\left(\mathrm{b} \dot{\gamma}_{0}\right)^{\mathrm{m}} \kappa_{0} . \tag{3.3}
\end{align*}
$$

In Equation $3 \dot{\gamma}_{0}$ is the nominal, applied strain rate: s_{0} is a characteristic stress given by Equation 3.3: ρ is density; c is heat canacity; κ_{0} is a characteristic value for the work hardening parameter, and b is a characteristic time for rate hardening. Note that the characteristic stress, which includes the rate factor ($\left.\mathrm{b} \gamma_{0}\right)^{m}$, has been chosen so that $s=1$ when $\kappa=1, \vartheta=0$, and $v_{v}=1$. It is necessary to deline one more parameter, namely

$$
\begin{equation*}
a=-g_{1}(0)=\bar{a} s \bar{p}, \quad \text { where } \bar{a}=-g_{v}(0) \tag{4.0}
\end{equation*}
$$

a.t the subseript denotes differentiat on with respect w the argument indicated. The form in which the equations have been writen is suithhe for examining the effect of various small defects, such a variations in wall thickness, variations in strengh, or variations in intial temperature.

In all probiems in be considered below the velocity is taken to be constant on the boundaries. which are aspumed th be insulated so that the temperature eradient vanishes there.

2. EXACT RESULTS: NON-HEAT-CONDUCTING CASE

Molinari and Cliton $\{1987 \mid$ have given the exact solution to the non-heat-conducting case when stress is prestribed on the boundary and an approximate solution for the case when velocity is prescribed. Here, the exact solution for the velocity boundary condition will be developed.

With $k=0$ in Equation 2.2 the thickness τ factors out, and Equations 2.2 and 2.4 may be combined to give a differential equation connecting κ and ϑ;

$$
\begin{equation*}
\varsigma_{n}=M(\kappa, \vartheta) \vartheta_{n} . \tag{5.0}
\end{equation*}
$$

This implics that κ is unly a function of ϑ (and y in inhomogencous cases) $\kappa=\hat{\kappa}(\vartheta)$. In turn, this allows Equation 2.3 to be written

$$
\begin{equation*}
s=G(\vartheta)(v, y)^{m} \tag{6.0}
\end{equation*}
$$

where $G(\vartheta)=\hat{K}(\vartheta) g(\vartheta)$, and the explicit y-dependence has been suppressed. The problem has been scaled so that $\mathrm{G}(0)=1$. It will be assumed that G has at most one local maximum for $\vartheta \geq 0$. Typically G will increase initially, reach a maximum, and then decrease as shown in Figure 1 b . Combining Equations 2.2 and 2.3 gives

$$
\begin{equation*}
v_{1}=(\tau s)^{(1+m) / m} \mathrm{G}^{-1 / m} \tau^{(1+m) / m} \tag{7.0}
\end{equation*}
$$

Because of Equation 2.1, the term ($\tau s)^{(1+m) / m}$ is a function only of time, so that a new time scale $\mathrm{T}(\mathrm{t})$ can be defined by the ODE

$$
\begin{equation*}
d T / d t=(\tau S)^{(1+m) / m} \quad T(0)=0 . \tag{8.0}
\end{equation*}
$$

Since the right hand side of Equation 8 is positive, T will increase monotonically. However, when a shear band forms, the stress decreases rapidly, and since $(1+m) / \mathrm{m}$ is large when m is small, T will inerease extremely slowly once the band is well formed. Now the energy equation may be written

$$
\begin{equation*}
G^{1 / n)} v_{, \mathrm{T}}=\tau^{(1 \cdot m) / m} . \tag{9.0}
\end{equation*}
$$

This has the solution

$$
\begin{align*}
& \mathrm{H}(\vartheta)=\mathrm{T} \tau^{-(1+\mathrm{m}) / \mathrm{m}}+\mathrm{H}\left(\vartheta_{0}(\mathrm{y})\right) . \tag{10.1}\\
& \text { where } \mathrm{H}(\vartheta) \equiv \int_{0}^{\vartheta} \mathrm{G}^{1 / \mathrm{m}} \mathrm{~d} \vartheta . \tag{10.2}
\end{align*}
$$

Since G is positive, H is monotonically increasing and, thus, invertible. Therefore, ϑ is now known implicilly as a function of T and y .

$$
\begin{equation*}
\vartheta=\hat{\vartheta}(\mathrm{T}, \mathrm{y}) . \tag{11.0}
\end{equation*}
$$

From the velocity boundary condition and the constitutive relation in Equation 2.3, the traction can be found as a function of T

$$
\begin{equation*}
\int_{0}^{1} v_{r y} d y=1=\int_{0}^{1}(\tau s)^{1 / m}(\tau G)^{-1 / m} d y \tag{12.0}
\end{equation*}
$$

or since τ is independent of y,

$$
\begin{equation*}
(\tau \mathrm{S})^{-1 / m}=\int_{0}^{1}(\tau \mathrm{G})^{-1 / m} d y \tag{13.0}
\end{equation*}
$$

which gives ts as a function of T. Finally, Equation 13 may be used in Equation 8, and the solution of a simple ODE by quadrature completes the problem.

In summary, then, once $G(\vartheta)$ has been found from the solution of Equation 5 and the definition $G=\hat{\kappa} \mathrm{g}$, the solution in parametric form is obtained by performing the following quadratures in sequence:

$$
\begin{gather*}
\mathrm{H}(\vartheta)=\mathrm{H}\left(\vartheta_{0}(\mathrm{y})\right)+\mathrm{T} \tau^{-(1+\mathrm{m}) / \mathrm{m}} ; \tag{14.1}\\
(\tau \mathrm{s})^{-1 / m}=\int_{0}^{1}(\tau \mathrm{G})^{-1 / m} \mathrm{dy} ; \tag{14.2}\\
\mathrm{t}=\int_{0}^{\mathrm{T}}(\tau \mathrm{~S})^{-(1+\mathrm{m}) / \mathrm{m}} \mathrm{dT} . \tag{14.3}
\end{gather*}
$$

Note that Equation 14 does reduce to the homogencous solution when $\vartheta_{0}=0$ and $\tau=1$, since then with the aid of Equations 14.1 and 14.2 and the definition of H , Equation 14.3 reduces to $\mathrm{t}=\int_{0}^{\vartheta} \mathrm{G}^{-1} \mathrm{~d} \vartheta$, which can be obtained directly from Equation 2. Also $\mathrm{v}_{\mathrm{y}}=1$ and $\mathrm{s}=\mathrm{G}(\vartheta)$ in this case.

That Equation 14 gives localized solutions may easily be seen by the following qualitative argument for geometric or initial temperature imperfections. In Figure 1a for a non-work-hardening material, an arbitrary softening function g and g raised to the power $1 / \mathrm{m}$ are sketched. Since m is usually a small number (0.025 or smaller for many metals), the second curve drops rapidly toward zero. As a consequence, the integral of $g^{1 / m}$, also shown in Figure 1a, starts at zero, then rises rapidly, and finally levels out into a plateau, which has been normalized to 1 in the Figure. The situation for a work-hardening material, shown in Figure 1 b , is similar, except that in that case, the integral of $\mathrm{G}^{1 / m}$ rises slowly at first, then increases very rapidly near the maximum of G, and finally goes into a plateau. In the figure, all curves have been renormalized as required so that each has 1 as an upper bound.

First, suppose that $\tau=1$ and ϑ_{0} is some nonconstant function of y. Then the initial distribution of temperature corresponds to some initial distribution of H , as shown by the dark lines near the origin in Figure 1a. As time increases. $T(t)$ increases also, but Equation 14.1 shows that for each value of y, H simply translates by the amount T , so that at some later time, H has the distribution shown by the dark lines near 0.5 and later still by the dark line near 1.0. In turn, these correspond to new distributions of ϑ as shown in the figure. Since the curve $\mathrm{H}(\vartheta)$ turns over to the right, the ϑ distribution expands, and when the maximum value of H encounters the plateau, the distribution of ϑ expands wildly with the maximum valuc of ϑ occurring at the same location as initially. In gencral, the more sharply H tums onto the plateau, the more sharply will the maximum in ϑ rise, and the more peaked will the distribution in ϑ become.

The graphical interpretation for the work-hardening case, shown in Figure 1b, is identical. Now, however, because $H(\vartheta)$ first tums up, the temperature distribution first becomes more compressed than initially. This has been noted by Bums [1989] in a completely different analysis. After G passes its maximum, and the H curve begins to turn to the right, the temperature distribution can expand, and finally it will peak sharply, just as before, when the maximum temperature moves onto the plateau.

The graphical interpretation is slightly different for mechanical imperfection with zero initial temperature. In this case, with τ nearly equal to 1 but varying slightly with y, the H distribution begins at zero, as indicated by the dots at the origin in Figure 1b, but according to Equation 14.1, it expands linearly with T as the whole pattem moves up the H axis. Correspondingly, the ϑ distribution starts at zero and spreads very slowly, as indicated in Figure 1b. The process centinues until the maximum value of H reaches the plateau, which occurs at the location of the initial minimum in ϑ. As with the case of an initial temperature imperfection, the temperature distribution
01

Figure la. Sketch of typical softening function $\mathrm{g}, \mathrm{g}^{1 / m}, \mathrm{H}=\int_{0}^{0} \mathrm{~g}^{1 / \mathrm{m}} \mathrm{d} \vartheta$ for a perfectly plastic material.

Figure lb. $\frac{\text { Sketch of a typical composite-hardening/softening function } G, G^{1 / m}, H=\int_{0}^{\infty} G^{1 / m} d \vartheta \text { for a }}{\text { work-hardening, thermal-softening material. }}$
is compressed where $\mathrm{H}(\vartheta)$ turns up and expands and peaks up sharply when $\mathrm{H}(\vartheta)$ reaches the plateau.

3. ASYMPTCTIC RESULTS: THE EFFECT OF HEAT CONDUCTION

The result outlined above, which is exact if the thermal conductivity is zero, gives only a minimum value for the critical strain when there is finite conductivity. In fact, it is more accurate to refer to a critical temperature than to a critical strain. Criticality is reached when the maximum temperature is large enough to force the H function onto the plateau. Since the maximum temperature generally occurs in a narrow region with large temperature gradients on either side, heat conduction has the effect of delaying the critical condition by chopping off the peak and spreading the thermal energy to the sides. This effect was clearly seen in the finite element calculations reported by Wright and Walter [1987] and plotted in their Figure 8, replotted here in Figure 2. The left-hand side of the figure rises above the minimurn as the nominal strain rate decreases. Since the nondimensional thermal conductivity varies inversely with the nominal strain rate (see Equation 3), this corresponds to a relative increase in the effect of heat conduction. The fact that the right-hand side of the figure rises above the minimum with increasing strain rate is thought to be an inertial effect and is still not understood in detail. Since this paper deals only with the quasi-static approximation, the right half of the curve will not be discussed further here, and all results obtained below will apply only to the left-hand side.

Only the rigid, perfectly plastic case will be examined, but the defect that sets off the localization may occur in the thickness, the initial strength, or the initial temperature distribution,

$$
\begin{equation*}
\tau=1+\delta(y) \quad, \quad \kappa=1+\lambda(y), \quad \vartheta_{0}=\vartheta_{0}(y), \tag{15.0}
\end{equation*}
$$

where $\max \left(\left|\delta 1,|\lambda|,\left|\vartheta_{j}\right|\right) \ll 1\right.$. In the cases to be considered, there is no work hardening so x does not evolve. Consequently, only Equations 2.1, 2.2, and 2.3 apply.

The analysis in Scction 2 introduced a second time scale, $T(t)$, through the differential transformation of Equation 8. Since it turned out that T was the dominant time scale in the absence of heat conduction, which is regarded as only a small perturbing effect in the present case, the same tiansformation will be used here. Equation 2 becomes

$$
\begin{gather*}
(\tau s)_{, y}=0 \tag{16.1}\\
s=\kappa g(\vartheta)\left(v_{, y}\right)^{m} \tag{16.2}\\
\tau \vartheta_{T}=(\tau \mathrm{xg})^{-1 / \mathrm{n}}+\mathrm{k} \frac{\mathrm{dt}}{\mathrm{dt}}(\tau \vartheta, y), \mathrm{y} \tag{16.3}
\end{gather*}
$$

where as before

$$
\begin{gather*}
\frac{\mathrm{dT}}{\mathrm{dt}}=(\tau \mathrm{s})^{(1+\mathrm{m}) / \mathrm{m}} \tag{17.1}\\
(\tau \mathrm{~s})^{-1 / \mathrm{m}}=\int_{0}^{1}(\tau \mathrm{~kg})^{-1 / m} \mathrm{dy} \tag{17.2}
\end{gather*}
$$

Next transform the dependent variable using Equation 10.2 and rewrite the energy Equation 16.3 in terres of H .

$$
\begin{equation*}
\tau \mathrm{H}_{, \mathrm{T}}=(\tau \kappa)^{-1 / \mathrm{m}}+\mathrm{k} \frac{\mathrm{dt}}{\mathrm{dT}}\left[\left(\tau \mathrm{H}_{, y}\right)_{, y}-\tau \frac{\mathrm{H}^{\prime \prime}}{\mathrm{H}^{\prime 2}} \mathrm{~h}_{, y}^{2}\right] . \tag{18.0}
\end{equation*}
$$

Upon ignoring the last term, which is nonlinear in H , the equation may be written
or

$$
\begin{align*}
& \tau(\mathrm{H}-\mathrm{fT})_{\mathrm{r}}=\mathrm{k} \frac{\mathrm{dt}}{\mathrm{dT}}\left[\tau(\mathrm{H}-\mathrm{fT})_{\mathrm{y}}+\tau \mathrm{f}_{, \mathrm{y}} \mathrm{~T}\right]_{\mathrm{y}}, \tag{19.1}\\
& \tau(\mathrm{H}-\mathrm{fT})_{\mathrm{y}}=\mathrm{k}\left[\tau(\mathrm{H}-\mathrm{fT})_{\mathrm{y}}+\tau \mathrm{f}, \mathrm{y}\right]_{\mathrm{y}}, \tag{19.2}
\end{align*}
$$

where

$$
\begin{equation*}
\mathrm{f} \equiv \tau^{-(1+\mathrm{m}) / \mathrm{m}} \mathrm{~K}^{-1 / \mathrm{m}} \tag{19.3}
\end{equation*}
$$

Equation 19.2 has the solution

$$
\begin{equation*}
\mathrm{H}=\mathrm{fT}+\beta, \tag{20.0}
\end{equation*}
$$

where β satisfics an inhomogeneous heat cquation with a source,

$$
\begin{gather*}
\tau \beta_{\mathrm{t}}=\mathrm{k}\left(\tau \beta_{y, y}\right)_{\mathrm{y}}+\mathrm{k}\left(\tau f_{, y}\right), \mathrm{y}, \tag{21.1}\\
\beta(\mathrm{y}, 0)=\mathrm{H}\left(\vartheta_{0}\right), \quad \beta{ }_{y y}=-\mathrm{f}, \mathrm{~T} \text { on the boundarics. } \tag{21.2}
\end{gather*}
$$

Since λ, δ, and ϑ_{0} in Equation 15 have all been assumed to be small, the initial value of β is also small, and as a good approximation, Equation 21 may be replaced by

$$
\begin{equation*}
\beta_{, t}=k\left(\beta_{y y}+\operatorname{Tf}_{f_{y y}}\right) . \tag{22.0}
\end{equation*}
$$

It is convenient to split β into two unknown functions. To that end, let $\beta=(\phi-f) T+r$, where ϕ satisfics

$$
\begin{gather*}
\phi_{y_{t}}=\mathrm{K}_{r} \phi_{\mathrm{yy}} \tag{23.1}\\
\phi(\mathrm{y}, 0)=\mathrm{f}, \phi_{\cdot \mathrm{y}}=0 \text { on the boundarics, }
\end{gather*}
$$

and f is defined as in Equation 19.3. Then the residual r must satisfy

$$
\begin{align*}
\mathrm{r}_{\mathrm{r}} & =\mathrm{kr} \mathrm{r}_{\mathrm{yy}}+\frac{\mathrm{dT}}{\mathrm{dt}}(\mathrm{f}-\phi) \tag{24.1}\\
\mathrm{r}(\mathrm{y}, 0) & =\mathrm{H}\left(\vartheta_{0}(\mathrm{y})\right) \text { and } \mathrm{r}_{\mathrm{y}}=0 \text { on the boundarics. } \tag{24.2}
\end{align*}
$$

Since $\mathrm{f}-\phi$ is zero initially and $\frac{\mathrm{dT}}{\mathrm{dt}}$ tends to zero as t increases, the source term in Equation 24 is very weak. The Fouricr components of r have the representation

$$
r_{n}=f_{n} e^{-k(n \pi)^{2} t} \int_{0} \frac{d T}{d t}\left(e^{k(n \pi)^{2} t^{i}}-1\right) d t^{\prime}+r_{n_{0}} e^{-k(n \pi)^{2} t},
$$

At carly times, $r=0\left(\mathrm{kt}^{2}\right)$ for all n since $\frac{\mathrm{dT}}{\mathrm{dt}}$ is 1 initially. If $\frac{d T}{d t}$ is bounded by $\mathrm{e}^{-\mu \mathrm{m}}$ for some μ, then $r_{n} \rightarrow 0$ as $t \rightarrow \infty$. Thus, r_{n} is a small term. Finally, H has the representation

$$
\begin{equation*}
\mathrm{H}(\vartheta)=\phi \mathrm{T}+\mathrm{r}, \tag{25.0}
\end{equation*}
$$

where ϕ and r satisfy Equations 23 and 24 . The problem is completed by first performing the integration in Equation 17.2, which yiclds a function of T and t, and then solving the ODE in Equation 17.1.

As a first example, consider the same problem considered by Wright and Walter [1987] with results ploted in Figure 2. That is let $k=1$ and $\vartheta_{2}(y)=0.1\left(1-y^{2}\right)^{9} \mathrm{e}^{-5 y^{2}}$. Then $\phi=\mathrm{f}=1$, and the source term in Equation 24.1 vanishes. Figure 3 shows the calculated response for a nominal strain rate of $50 \mathrm{~s}^{-1}$. This result is typical. Stress follows nearly parallel to the unperturbed response initially, but then falls off as the temperature and strain rate in the shear band accelerate sharply. the strain at intense localization is taken at the point of maximum rate of increase of strain rate in the center of the band. This is the same criterion as used previously. The solution that follows from Equation 25 tums onto a plateau at late times in the same manner as the full, finite element solution, but the plateau occurs too soon so that maximum valucs of temperature and strain rate are underestimated and stress does not drop far enough. The early plateau occurs because $\mathrm{H}^{\prime \prime}$ in Fquation 18 is always negative and hence, the final omitted term in Equation 18 is positive, which would have the effect of requiring larger negative curvature in the next to last term to balance it in
the exact solution. Therefore, the crror in the solution of Equation 25 becomes unacceptably large sometime before the final plateau is reached. The criterion for critical strain stated above was used to obtain the appreximate points plotted in Figure 2. Clearly, the approximate solution gives a very good estimate of the critical strain over several orders of magnitude of nominal strain rate. At the lowest rates, the approximate solution loses accuracy because heat conduction is not sufficiently accounted for, and at the highest rates, it loses accuracy because ineria terms are ignored.

As a second example, consider a specimen with a thickness defect $\tau=1-\lambda\left(1-y^{2}\right)^{9} \mathrm{e}^{-5 y^{2}}$. Results for $\lambda=0.01$ and $\lambda=0.001$ are shown in Figure 4. The group of three solid curves on the left all hate the same defntans show that increasing nominal strain rate decreases the critical strain, which is qualitatively the same as for temperature defects. The right-hand curve shows that a smaller defect increases the critical strain. Finally, the dashed curve shows the effect of ignoring the source term in Equation 24, which in this case makes the residual identically zero. Figure 5 shows the calculated residual for the case $\lambda=0.01, \dot{\gamma}_{0}=50 \mathrm{~s}^{-1}$. Note that the maximum is less than 3×10^{-3}. For the same defect, but with $\dot{\gamma}_{0}=500 \mathrm{~s}^{-1}$, the residual has the same shape, but is ar order of magnitude smaller everywhere.

4. UNIVERSAL SOLUTION AND SCALING LAW

Equations 10.2 and 18 provide the basis for obtaining considerable further insight into the localization process when m is a small parameter, which is usually the case. Begin by defining a new variable z

$$
\begin{equation*}
z=-m \ln \frac{\mathrm{~g}^{1 / m}-\mathrm{g}_{\infty}^{1 / m}}{1-\mathrm{g}_{\infty}^{1 / m}} . \tag{26.0}
\end{equation*}
$$

where g_{n} is the limit of g as ϑ becomes large. Then use Laplace's method on Equation 10.2 in the form

$$
\begin{equation*}
\mathrm{H}=\int_{0}^{2}\left[\mathrm{~g}^{1 / m}{ }_{\infty}+\left(1-\mathrm{g}^{1 / m}{ }_{\infty}\right) \mathrm{c}^{-z^{\prime} / m}\right] \frac{\mathrm{d} \vartheta}{\mathrm{~d} z^{\prime}} \mathrm{d} z^{\prime} . \tag{27.0}
\end{equation*}
$$

Assurne that $d \vartheta / d z$ can be expressed as a power serics in $z, d \vartheta / d z=a_{0}+a_{1} z+a_{2} z^{2}+\ldots$ where the cocfr.ients a_{0}, a_{1}, \ldots are found from Equation 26 by expressing g as a function of z, differentiating with respect in z and evaluating at $z=0$.

Figure 3. Typical response as calculated by the approximate method using Equations 25 and 17 for a temperature defect.

$$
\begin{gather*}
a_{0}=\frac{d \vartheta(0)}{d z}=-\frac{\left(1-g^{1 / n}\right)}{g^{\prime}(0)}=a^{-1} \tag{28.1}\\
\begin{aligned}
a_{1}=\frac{d^{2} \vartheta(0)}{d \ell^{2}}=- & \frac{1}{g^{\prime}(0)}\left[-\frac{1-g_{\infty}^{1 / n}}{m}+\frac{1-m}{m}\left(1-g_{\infty}^{1 / n}\right)^{2}+\right. \\
& \left.+\left(\frac{1-g_{\infty}^{1 / m}}{g^{\prime}(0)}\right)^{2} g^{\prime \prime}(0)\right] \\
\approx & a^{-i}\left(-1+\frac{g^{\prime \prime}(0)}{a^{2}}\right), \text { ctc. }
\end{aligned}
\end{gather*}
$$

When evaluated term by term, the integral in Equation 27 gives

$$
\begin{gather*}
H=g_{\infty}^{1 / m} \vartheta+\left(1-g_{\infty}^{1 / m}\right)\left[m\left(1-c^{-z / m}\right)\left(a_{0}+m a_{1}+2 m^{2} a_{2}+\ldots\right)\right. \\
+m z e^{-z / m}\left(a_{1}+2 m a_{2}+\ldots\right)+m z^{2} c^{-2 / m}\left(a_{2}+\ldots\right) \\
\left.+0\left(m z^{n} c^{-z / m}\right)\right] \tag{29.0}
\end{gather*}
$$

Since m is small, the ierms in $m z^{n} e^{-z / m}$ will be ignored at all orders of n so that a good approximation for $I f$ is

$$
\begin{equation*}
H \approx g^{1 / m}-\vartheta+\frac{m C}{i}\left(1-g^{1 / m}\right) \tag{30.0}
\end{equation*}
$$

where Equation 26 has been used, and C is a constant chosen so that $\mathrm{H}-\mathrm{g}_{\infty}^{1 / \mathrm{m}} \boldsymbol{v}$ takes on appropriate values as ϑ tends toward infinity (assuming that $\int_{0}^{\infty}\left[g^{1 / m}-g^{1 / m}\right] d \vartheta$ converges). For small $m, g_{\infty}^{1 / m}$ may be extremely small. For example, if $g_{\infty}=0.5$ and $m=0.025$, then $g_{\infty}^{1 / m}=10^{-12}$, which for all practica! purposes may be set equal to zero. When that is done, H takes on the simple form

$$
\begin{equation*}
H=\frac{m C}{a}\left(1-g^{1 / m}\right) \tag{31.0}
\end{equation*}
$$

With $g=\operatorname{cxp}(-a y)$, this is exact, and $C=1$. Plots of H , according to Equation 31 or the exact expression in Equation 10.2, are indistinguishable for reasonable choices for g such as $g=1-$ av or $g=1 / 2\left(1+c^{2 d t}\right)$.

Now, from the definition of H in Equation 10.2 together with Equation 31,
and

$$
\begin{equation*}
H^{\circ}(0)=t^{1 / m}=1 \cdot \ldots 11 / a \tag{32.1}
\end{equation*}
$$

$$
\begin{equation*}
H^{\prime \prime}(0)=-\frac{a}{n c} \quad\left(1-\frac{H}{m(a)}\right) \tag{32.2}
\end{equation*}
$$

so that, after a simple linear rescaling.

$$
\begin{equation*}
\hat{n}=\frac{H}{m C / a}, \hat{T}=\frac{T}{m C / a}, \hat{\imath}=\frac{t}{m C / a}, \hat{k}=\frac{m C}{a} k \tag{33.0}
\end{equation*}
$$

The basic Equation 18 may be written as

$$
\begin{equation*}
\tau \hat{\Pi}_{\hat{\mathrm{T}}}=(\tau \kappa)^{-/ / \pi}+\hat{\mathrm{k}} \frac{\hat{d}}{d \hat{\mathrm{~T}}}\left[\left(\tau \hat{H}_{y}\right)_{y}+\tau \frac{\left(\hat{H}_{. y}\right)^{2}}{1 \cdot \hat{\mathrm{H}}}\right] . \tag{34.0}
\end{equation*}
$$

This is a universal approximate equation for \hat{A} no mater what the softening function $g(\vartheta)$ may be. Since $\hat{d} / 4 \hat{1}$ is given by Equation 17.1, and from Equation 31, it is known that the expression $g^{1 / n}=1 /(1-T)$ is a good approximation; Equation 17.2 may now be rewritten as

$$
\begin{equation*}
\frac{d t}{d \hat{\Gamma}}=\frac{m C}{a}\left[\int_{0}^{1} \frac{(\tau \kappa)^{-1 / m}}{1-\hat{H}} d y\right]^{1+m} \tag{35.0}
\end{equation*}
$$

Equations 34 and 35 imply that all effects of the defect, whether in τ, κ, or ϑ_{0}, are carried by the universal function $\hat{\mathrm{A}}$.

Furthermore, since Equation 35 shows that, for a given defect in different materials, the critical time and, hence, the critical strain, scales according to the ratio mC / a (with some additional minor modification due to rescaled thermal conductivity); it is clear that the primary influence of the thermal softening function is through its initia! slope only (recall that $a=-g^{\prime}(0)$). The only effect of the exact shape of $g(3)$ comes through the coefficient C. which may be expected to have values $C=1+0(\mathrm{~m})$, according to Equation 29.

Contrary to the emphasis pated on the behavior at large temperatures by Molinari and Clifton 119871 in proposing their $L_{\text {_ }}$ criterion for severe localization, the present analysis makes clear that it is the early behavior of the softening function that determines when localization will occur. After
all, large temperature changes occur during localization, not before. In fact, the temperature required to carry H to $.99 \mathrm{mC} / \mathrm{a}$ (ic., 99% of the plateau value) is rather modest for reasonable softening functions. From Equation 31, at this value of H, g has the valuc $(.01)^{\mathrm{m}}$, which decreases from about .955 to .891 as m increases from .01 to .025 . Then, for reasonable functions such as $1-\mathrm{a} \vartheta, \mathrm{e}^{-\mathrm{ad}}$, or $1 / 2\left(1+\mathrm{e}^{-2 \mathrm{ad}}\right)$, all of which have the same initial slope, $\mathfrak{a v}$ varies from about .045 to .047 for $\mathrm{m}=.01$ and from about .109 to .123 for $\mathrm{m}=.025$. Notice that since g is so close to $1, \mathrm{~m}$ and the initial slope of g have more influence on the corresponding temperature than the exact form of the softening function. For high-strength stecls $\left(\bar{\rho} \cong 7800 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{c} \cong 500 \mathrm{~J} / \mathrm{kg} / \rho \mathrm{K}\right.$, $\kappa_{0} \equiv 0.5 \mathrm{GPa}$), reasonable values of a are about 0.1 , which translates into temperature increases when $\hat{\mathrm{H}}$ reaches .99 of about $45^{\circ} \mathrm{C}$ for $\mathrm{m}=.01$ and about $115^{\circ} \mathrm{C}$ for $\mathrm{m}=.025$. These increases in temperature, reached just before intense localization, are small compared to those actually reached in typical, fully formed shear bands, Harley, et al., [1987].

If $\mathrm{g}_{\infty} \neq 0$, the L_{∞} criterion of Molinari and Clifton [1987] indicates that localization is not to be expected because H has no limit as ϑ tends toward infinity. However, Equation 30 shows that this criterion is inadequate when m is small. In fact, full finite element solutions for the three softening functions $1-\mathrm{a} \vartheta,=^{-\mathrm{ad}}$, and $1 / 2\left(1+\mathrm{e}^{-2 \mathrm{at}}\right)$ all give approximately the same time for intense localization, Walter [1989]. The actual times are slightly more separated than predicted by the scaling mC / a, but the ordering is the same. Note that the L_{∞} criterion predicts localization for the first two functions, but not for the third.

5. FURTHER APPROXIMATIONS FOR WEAK PERTURBATIONS

Suppose that the wall thickness τ, the strength κ, and the initial temperature ϑ_{0} all have a weak cosine variation over the width of the sheared section.

$$
\begin{gather*}
\tau=1-\delta \cos \pi y \tag{36.1}\\
\kappa=1-\lambda \cos \pi y \tag{36.2}\\
\vartheta_{0}=\varepsilon \cos \pi y \tag{36.3}
\end{gather*}
$$

where $\delta / \mathrm{m} \ll 1, \lambda / \mathrm{m} \ll 1, \mathrm{a} \mathrm{\varepsilon} / \mathrm{m} \ll 1$. Then good approximations to the solutions of Equations 23 and 24 are

$$
\begin{equation*}
\phi=1+\left(\frac{1+m}{m} \delta+\frac{1}{m} \lambda\right) e^{\hat{k} n^{2} \hat{1}} \cos \pi y \tag{37.1}
\end{equation*}
$$

$$
\begin{equation*}
\hat{r}=\frac{a}{m} \varepsilon e^{-\ln ^{2} \hat{\imath}} \cos \pi y, \tag{37.2}
\end{equation*}
$$

where r has been rescaled in Equation 25 to match $\hat{\mathrm{H}}$ and $\hat{\mathrm{T}}$, and the forcing function in Equation 24 has been ignored since it only gives rise to a small correction. Now the integral in Equation 35 may be written as

$$
\begin{equation*}
(\tau s)^{-1 / \mathrm{m}}=\frac{1}{1-\hat{T}} \int_{0}^{1} \frac{d y}{(1-a \cos \pi y)(1-b \cos \pi y)(1-c \cos \pi)}, \tag{38.0}
\end{equation*}
$$

where $\mathrm{a}=\delta / \mathrm{m}, \mathrm{b}=\lambda / \mathrm{m}$, and $\mathrm{c}=\frac{\mathrm{e}^{-\mathrm{kn}_{\pi}^{2} \hat{\mathrm{i}}}}{1-\hat{\mathrm{T}}}\left[\frac{\mathrm{a}}{\mathrm{m}} \varepsilon+\hat{\mathrm{T}}\left(\frac{1+\mathrm{m}}{\mathrm{m}} \delta+\frac{\lambda}{\mathrm{m}}\right)\right]$, and $\mathrm{a}, \mathrm{b}, \mathrm{c}<1$ (c<1 can be justified a posteriori). After the change of variable $z=\cos \pi y$, Equation 38 is easily evaluated by considering the related contour integral with poles at $z=1 / \mathrm{a}, 1 / \mathrm{b}, 1 / \mathrm{c}$ and a branch cut on $-1 \leq$ $z \leq+1$. The result is

$$
\begin{gather*}
(\tau s)^{-1 / m}=\frac{1}{1-T}\left\{\frac{a^{2}}{(b-a)(c-a) \sqrt{1-a^{2}}}+\frac{b^{2}}{(c-b)(a-b) \sqrt{1-b^{2}}}+\right. \\
\left.+\frac{c^{2}}{(a-c)(b-c) \sqrt{1-c^{2}}}\right\} \tag{39.0}
\end{gather*}
$$

for $\mathrm{a} \neq \mathrm{b} \neq \mathrm{c}$. To complete the solution Equation 39 (with the above values for a, b, and c restored) replaces the integral in Equation 35 to yicld a nonautonomous ordinary differential cquation in t and \hat{T}.

Rather than considering all three types of defect at once, it is instructive first to consider them one at a time.
i) Case 1: $\lambda=\delta=0, \varepsilon \neq 0$. This is the simplest case. Equation 35 reduces to

$$
\begin{equation*}
\frac{\hat{d t}}{d \hat{T}}=\left[(1-\hat{T})^{2}-\left(\varepsilon \frac{a}{m} e^{-\hat{T} k_{r}^{2} \hat{\imath}}\right)^{2}\right]^{\cdot(1+m) / 2} \tag{40.0}
\end{equation*}
$$

In the limiting case of $\hat{k} \rightarrow 0$ and $m \ll 1$, so that m may be ignored in the exponent, Equation 40 may be integrated exactly to yield an estimate for the critical time (nondimensional) or critical strain

$$
\begin{equation*}
\gamma_{c r}=t_{\mathrm{cr}}=\frac{\mathrm{mC}}{\mathrm{a}} \ln \left\{\frac{1+\sqrt{1-(\varepsilon a / m)^{2}}}{\varepsilon a / m}\right\} \approx \frac{m C}{\mathrm{a}} \ln \frac{2}{\varepsilon a / m} . \tag{41.0}
\end{equation*}
$$

ii) Case 2: $\delta=\varepsilon=0, \lambda \neq 0$. Equation 35 reduces to

$$
\begin{align*}
& \frac{d \hat{\mathrm{t}}}{d \hat{\mathrm{~T}}}=\left\{\frac{1-\hat{\mathrm{T}}\left(1-\mathrm{c}^{-\hat{k}^{2} \hat{i}}\right)}{\sqrt{1-(\lambda / \mathrm{m})^{2}}} .\right. \tag{42.0}\\
& \left.\frac{\left[\sqrt{(1-\hat{\mathrm{T}})^{2}-\left(\hat{\mathrm{T}} \frac{\lambda}{\mathrm{~m}} \mathrm{e}^{-\hat{k}_{\pi}^{2} \hat{\hat{i}}}\right)^{2}}+\sqrt{1-(\lambda / \mathrm{m})^{2}} \hat{\mathrm{~T}} \mathrm{e}^{-\hat{k}_{\pi}^{2} \hat{\mathrm{i}}}\right]^{-1}}{\sqrt{(1-\hat{\mathrm{T}})^{2}-\left(\hat{\mathrm{T}} \frac{\lambda}{\mathrm{~m}} \mathrm{e}^{-\hat{k}_{\pi}^{2} \hat{\mathrm{i}}}\right)^{2}}}\right\}^{1+\mathrm{m}} .
\end{align*}
$$

As with case 1 , in the limit of $\hat{k} \rightarrow 0$ and $m \ll 1$, so that m may be ignored in the final exponent, Equation 42 may be evaluated exacly to yield

$$
\begin{gather*}
\gamma_{\mathrm{CT}}=\mathrm{t}_{\mathrm{cr}}=\frac{\mathrm{Cm}}{\mathrm{a}} \frac{1}{\sqrt{1-(\lambda / \mathrm{m})^{2}}} \ln \frac{1+\sqrt{1-(\lambda / \mathrm{m})^{2}}}{\lambda / \mathrm{m}} \cdot \frac{\sqrt{1+\lambda / \mathrm{m}}}{\sqrt{1-\lambda / \mathrm{m}}} . \tag{43.0}\\
\quad \approx \frac{C \mathrm{~m}}{\mathrm{a}} \ln \frac{2}{\lambda / \mathrm{m}}
\end{gather*}
$$

iii) Case 3: $\lambda=\varepsilon=0, \delta \neq 0$. This is exactly the same as Case 2 with λ / m replaced by $\delta(1+\mathrm{m}) / \mathrm{m}$.

To treat all three types of defect simultancously, consider the following approximation for the integral in Equation 38.

$$
\begin{equation*}
\int_{0}^{1} \frac{d y}{\Pi-(a+b+c) \cos \pi y T}=\left[1-(a+b+c)^{2}\right]^{-1 / 2} . \tag{44.0}
\end{equation*}
$$

Proceeding as before leads to the estimate

$$
\begin{equation*}
\gamma_{c r}=t_{c r} \approx \frac{m C}{a} \ln \frac{2}{\left(\varepsilon \frac{a}{m}+\frac{1+m}{m} \delta+\frac{\lambda}{m}\right)} \tag{45.0}
\end{equation*}
$$

Equations 41,43 , and 45 may be regarded as approximate scaling laws. Note that the dominant effect comes from the material properties mC / a and that the defect strength $\mathrm{a} / \mathrm{m}, \lambda / \mathrm{m}$, or $\delta(1+m) / \mathrm{m}$ has only a logarithmic effect.

In evaluating Equation 40 with $\hat{\mathrm{k}}=0$, it is clear that t_{cr} occurs when the terms in brackets on the right-hand side vanish and $\hat{T}=1-\varepsilon a / \mathrm{m}$. When $\hat{k} \neq 0$, Equation 40 must be evaluated numerically. It turns out $\hat{\mathrm{t}}$ now has infinite range, and $\hat{\mathrm{T}}$ is bounded by the curve $\widehat{T}=1-\varepsilon \frac{a}{m} e^{\cdot \hat{R}_{\pi}^{2} \hat{i}}$, so it is not as easy as before to estimate the critical strain, which now must be found by actually computing the stress history and judging where stress collapse occurs. The other cases are analogous.

Figure 6 shows the stress response as calculated from Equations 42 and 44 with nonzero thermal conductivity. The solid curves used Equation 42, and the dotted curves used Equation 44. When the defect is small enough, Equation 44 seems to give a very good approximation. Also shown by the dashed line in the figure is the curve calculated from Equations $25,17.2$, and 17.1 . The nominal strain rate for these curves is $50 s^{-1}$. Although the solution for a mechanical defect has yet to be calculated by the full, finite element method, the previous results for a temperature defect give confidence that the dashed curves are accurate until the plateau is reached. The figure shows that Equation 42 overestimates the critical time at $50 \mathrm{~s}^{-1}$, and that the crror is smaller for smaller defects. The overestimate occurs because of the approximation $(1-a)^{1 / m} \approx 1-a / m$ for $a / m \ll 1$, which is used in the integrand of Equation 35 in obtaining Equation 38. Finally the critical time, as calculated from Equation 43, is shown by the vertical interrupted lines. Clearly, the simple formula gives a very good estimate considering the complexity of the full calculation.

Equations 41 or 43 or 45 appear to give lower bounds, but that is not quite the case. Whereas ignoring heat conduction and m , in the final exponent $1+\mathrm{m}$, makes an underestimate of the critical strain, the approximation for $(1-a)^{1 / m}$, as noted above, tends toward overestimation of the critical strain. Thus, the approximations tend to compensate each other to some extent, although for very small defects, the last approximation can be very accurate.

6. CONCLUSION

The approximate methods used in this paper reduce a complex calculation on a main frame or mini-computer to a relatively simple calculation on a micro-computer, since integration of the system in Equations 17, 23, 24, and 25 is casily accomplished with commercially available software
Figure 6. Comparison of responses for mechanical defects using various levels of approximation.
packages. The principal conclusion to be drawn is that localization depends strongly on the lowtemperature thermal softening and on the rate sensitivity. In fact, because of its dominant effect on scaling, the ratio m / a should perhaps be regarded as a figure of merit that ranks perfectly/plastic materials according to their tendency to form adiabatic shear bands. The shape characteristic C has been omitted because its value is always near to one and would be difficult to determine experimentally in any case. The reciprocal of the ratio may be called "shear band susceptibility."

$$
\begin{equation*}
\chi_{\mathrm{sB}}=\mathrm{a} / \mathrm{m} . \tag{46.0}
\end{equation*}
$$

The susceptibility controls not only the critical strain, as has been demonstrated above, but in an earlier paper, Wright and Walter [1987], it was found to play a role in the criterion for absolute stability and in the carly growth rate of unstable perturbations. Susceptibility does not tell the whole story, however, since the critical strain is also dependent on many other factors; among these are defect size and shape and thermal conductivity, whose effects have been considered above, and ineria, whose effect is yet to be explored.

7. REFERENCES

Burns, T.J. "Similarity and Bifurcation in Unstable Viscoplastic Shear," to appear SIAM Joumal of Applied Math, 1989.

Hartley, K.A., Duffy, J., and Hawley, R.H. "Measurement of the Temperature Profile During Shear Band Formation in Steels Deforming at High Strain Rates," Journal of the Mechanics and Physics of Solids, 35, 283-301, 1987.

Molinari, A., and Clifton, R.J. "Analytical Characterization of Shear Localization in Thermoviscoplastic Materials," Journal of Applicd Mechanics, 54, 806-812, 1987.

Tzavaras, A.E. "Effect of Thermal Softening in Shearing of Strain-Rate Dependent Materials," Archive for Rational Mechanics and Analysis, 99, 349-374, 1987.

Walter, J.W. Numerical Experiments on Adiabatic Shear Bands (in preparation, personal communication), 1989.

Wright, T.W., and Walter, J.W. "On Stress Collapse in Adiabatic Shear Bands," Journal of the Mechanics and Physics of Solids, 35, 701-720, 1987.

	No of Copics	Organization
.... . unlimited limited)	ed) 12	Administrator
	2	Defense Technical Info Center
-...4.d)	2	ATTN: DTIC-DDA
		Cameron Station
		Alexandria, VA 22304-6145
	1	HQDA (SARD-TR)
		WASH DC 20310-0001
1		Commander
		US Army Materiel Command
		ATTN: AMCDRA-ST
		5001 Eisenhower Avenue
		Alexandria, VA 22333-0001
1		Commander
		US Army Laboratory Command
		ATTN: AMSLC-DL
		Adelphi, MD 20783-1145
2		Commander
		Armament RD\&E Center
		US Army AMCCOM
		ATTN: SMCAR-MSI
		Picatinny Arsenal, NJ 07806-5000
2		Commander
		Armament RD\&E Center
		US Army AMCCOM
		ATTN: SMCAR-TDC
		Picatinny Arsenal, NJ 07806-5000
1		Director
		Benet Weapons Laboratory
		Armament RD\&E Center
		US Army AMCCOM
		ATTN: SMCAR-CCB-TL
		Watervliet, NY 12189-4050
1		Commander
		US Army Armament, Munitions and Chemical Command
		ATTN: SMCAR-ESP-L
		Rock Island, IL 61299-5000
1		Commander
		US Army Aviation Systems Command
		ATTN: AMSAV-DACL
		4300 Goodfellow Blvd.
		St. Louis, MO 63120-1798
1		Director
		US Army Aviation Research and Technology Activity
		Ames Research Center
		Moftett Field, CA 94035-1099

No of Copies Organization

1 Commander
US Army Missile Command ATTN: AMSMI-RD-CS-R (DOC)
Redstone Arsenal, AL 35898-5010
1 Commander
US Army Tank-Automotive Command ATTN: AN:STA-TSL (Technical Library)
Warren, MI 48397-5000
1 Director
US Army TRADOC Analysis Command
ATIN: ATAA-SL
White Sands Missile Range, NM 88002-5502
(Cluss, only) 1 Commandant
US Army Infantry School ATTN: ATSH-CD (Sccurity Mgr.)
Fort Benning, GA 31905-5660
(Unclae. only) 1 Commandant
US Army Infantry School ATTN: ATSH-CD-CSO-OR
Fort Benning, GA 31905-5650
(Clese oniy) 1 The Rand Corporation
P.O. Box 2138

Santa Monica, CA 90401-2138
1 Air Force Armament Laboratory
ATTN: AFATL/DLODL Eglin AFB, FL 32542-5000

Aberdeen Proving Ground
Dir, USAMSAA
ATTN: AMXSY-D
AMXSY-MP, H. Cohen
Cdr, USATECOM
ATTN: AMSTE-TO-F
Cdr, CRDEC, AMCCOM
ATTN: SMCCR-RSP-A
SMCCR-MU
SMCCR-MSI
Dir, VLAMO
ATTN: AMSLC-VL-D

No of Copies	Organization
3	Director
	US Army Research Office
	ATTN: J. Chandra
	I. Ahmad
	J. Wu
	P.O. Box 12211
	Rescarch Trianglc Park, NC
	27709-2211
3	Director
	US Army BMD Advanced Technology Center
	ATTN: ATC-T/M. Capps
	ATC-RN/P. Boyd
	ATC-M/S. Brockway
	CRDABH-5/W. Loomis
	P.O. Box 1500, West Station
	Huntsville, AL 35807
1	Commander
	US Army Natick Research and Development Center
	ATTN: DRXRE/D. Sicling
	Natick, MA 01762
3	Director
	US Army Materials Technology Laboratory
	ATTN: SLCMT-MRD/J. Mescall
	S. Chou
	J. Dandekar
	Watertown, MA 021720-0001
2	Commander
	Armament RD\&E Center
	US Army AMCCOM
	ATTN: SMCARCC/J. Corrie
	J. Beetle
	Picatinny Arsenal, NJ 07806-5000
1	Commander
	US Army Harry Diamond Laboratories
	ATTN: SLCHD-TA-L
	2800 Powder Mill Road
	Adelphi, MD 20783
2	Office of Naval Research
	Dept. of the Navy
	ATTN: Y. Rajapakse
	A. Tucker
	Washington, DC 20360
1	Commander
	US Naval Air Systems Command
	ATTN: AIR-604
	Washington, DC 20360
1	Commander
	Naval Sea Systems Command
	ATTN: Code SEA-62D
	Dept. of the Navy
	Washington, DC 20362-5101

No
Organization

US Army Research Office
I. Ahmad
J. Wu
P.O. Box 12211

Research Triang!c Park, NC
27709-2211

US Army BMD Advanced Technology Centc ATC-RN/P. Boyd ATC-M/S. Brockway CRDABH-5/W. Loomis
P.O. Box 1500, West Station Huntsville, AL 35807

US Army Natick Research and Dcvelopment Center
ATTN: DRXRE/D. Sicling
Natick, MA 01762

Director
US Army Materials Technology Laboratory
ATTN: SLCMT-MRD/J. Mescall S. Chou J. Dandekar

Watertown, MA 021720-0001

Armament RD\&E Center
US Army AMCCOM
J Becll
Picatinny Arsenal, NJ 07806-5000

US Army Harry Diamond Laboratories
ATTN: SLCHD-TA-L
2800 Powder Mill Road
Adphi, MD 20783

Dept. of the Navy
ATTN: Y. Rajapakse
A. Tucker

Washington, DC 20360

US Naval Air Systems Command
ATTN: AIR-604
Washington, DC 20360

Naval Sea Systems Command
ATTN: Code SEA-62D
Dept. of the Navy
Washington, DC 20362-5101

No of
Copics

Organization

3 Commander
Naval Surface Warfare Center
ATTN: W. Holt W. Mock Tech Library
Dahlgren, VA 22448-5000
3 Commander
Naval Surface Warfare Center
ATTN: R. Crowe
Code R32/S. Fishman
Code X211/Library
Silver Spring, MD 20902-5000
1 US Naval Academy
Dept. of Mathematics
ATTN: R. Malek-Madani
Annapolis, MD 21402
4 Air Force Armament Laboratory
ATTN: J. Foster
J. Collins
J. Smith
G. Spitale

Eglin AFB, FL 32542-5438
2 Air Force Wright Aeronautical Laboratorics
Air Force Systems Command Materials Laboratory
ATTN: T. Nicholas
J. Henderson

Wright-Patterson AFB, OH 45433
2 Director
Defense Advanced Research Projects Agency
ATTN: Tech Info B. Wilcox

1400 Wilson Blvd.
Arlington, VA 22209
7 Sandia National Laboratories
ATTN: L. Davison P. Chen W. Herrman J. Nunziato
S. Passman
E. Dunn M. Forrestal
P.O. Box 5800

Albuquerque, NM 87185-5800
1 Sandia National Laboratories
ATTN: D. Bammann
Livermore, CA 94550

1 Direciv:
National Aeronautics and Space Administration
Lyndon B. Johnson Space Center
ATTN: Library
Houston, TX 77058

No of Copies	Organization
1	Director
	Jet Propulsion Laboratory
	ATTN: Library (TDS)
	4800 Oak Grove Drive
	Pasadena, CA 91103
1	National Institute of Science and Technology
	ATTN: T. Burns
	Technology Building, Rm A151
	Gaithersburg, MD 20899
1	Forestal Research Center
	Aeronautical Engineering Laboratory
	Princeton Unviersity
	ATTN: A. Eringen
	Princeton, NJ 08540
1	University of Missouri-Rolla
	Dept. of Mechanical and Aerospace Engincering
	ATTN: R. Batra
	Rolla, MO 65401-0249
1	California Institute of Technology
	Division of Engineering and Applied Science
	ATTN: J. Knowles
	Pasadena, CA 91102
1	Denver Research Institute University of Denver
	ATTN: R. Recht
	P.O. Box 10127
	Denver, CO 80210
1	Massachusetts Institute of Technology
	Dept. of Mechanical Engineering
	ATTN: L. Anand
	Cambridge, MA 02139
2	Rennselaer Polytechnic Institute
	Dept. of Mechanical Engincering
	ATTN: E. Lee
	Troy, NY 12181
1	Rennselaer Polytechnic Institute
	Dept. of Computer Science
	ATTN: J. Flaherty
	Troy, NY 12181
5	Brown University
	Division of Enginecring
	ATTN: R. Clifton
	J. Duffy
	B. Freund
	A. Needleman
	R. Asaro
	Providence, RI 02912

No of Copies

Organization

1 Brown University
Division of Applied Mathematics
ATTN: C. Dafermos
Providence, RI 02912
2 Carnegie-Mellon University
Dept. of Mathematics
ATIN: D. Owen
M. Gurtin

Pittsburg, PA 15213
6 Comell University
Dept. of Theoretical and Applied Mechanics
ATTN: Y. Pao
J. Jenkins
P. Rosakis
W. Sachse

T Healey
A. Zehnder

Ithaca, NY 14850
2 Harvard University
Division of Engineering and Applied Physics
ATTN: J. Rice
J. Hutchinson

Cambridge, MA 02138
2 Iowa State University
Engineering Rescarch Laboratory
ATTN: A. Sedov
G. Nariboli

Ames, IA 5001C
2 Lehigh University
Centei for the Application of Mathematics
ATTN: E. Varley
R. Rivlin

Bethlehem, PA 18015
1 North Carolina State University
Dept. of Civil Engineering
ATTN: Y. Horie
Raleigh, NC 27607
1 Rice University
Dept. of Mathematical Sciences
ATTN: C.-C. Wang
P.O. Box 1892

Houston, TX 77001
3 The Johns Hopkins University
Dept. of Mechanical Engineering
Latrobe Hall
ATTN: W. Sharp
R. Green
A. Douglas

34th and Charles Streets
Baltimore, MD 21218
1 Tulane University
Dept. of Mechanical Engineering
ATTN: S. Cowin
New Orleans, LA 70112

No of Copies	Organization
1	University of California at Santa Barbara
	Dept. of Materials Science
	ATTN: A. Evans
	Santa Barbara, CA 93106
5	University of Califomia at San Diego
	Dept. of Applied Mechanics and Enginecring Sciences
	ATTN: S. Nemat-Nasser
	M. Meyers
	G. Ravichandran
	X. Markenscoff
	A. Hoger
	La Jolla, CA 92093
1	Northwestern University
	Dept. of Applied Mathematics
	ATTN: W. Olmstead
	Evanston, IL 60201
4	University of Florida
	Dept. of Engineering Science and Mechaniss
	ATTN: L. Malvern
	D. Drucker
	E. Walsh
	M. Eisenberg
	Gainesville, FL 32601
2	University of Houston
	Dept. of Mechanical Engineering
	R. Nachlinger
	Houston, TX 77004
2	University of Illinois
	Dept. of Theoretical and Applied Mechanics
	ATTN: D. Carlson
	D. Stewart
	Urbana, IL 61801
2	University of Illinois at Chicago Circle
	Dept. of Engineering, Mechanics, and Metallurgy
	ATTN: T. Ting
	D. Krajcinovic
	P.O. Box 4348
	Chicago, IL 60680
2	University of Kentucky
	Dept. of Engineering Mechanics
	ATTN: M. Beatty
	O. Dillon, Jr. Lexington, KY 40506
1	University of Kentucky
	School of Engineering
	ATTN: R. Bowen
	Lexington, KY 40506

No of Copies Organization

2 University of Maryland
Dept. of Mathematics
ATTN: S. Antman
T. Liu

Collcge Park, MD 20742
3 University of Minnesota
Dept. of Aerospace Engineering and Mechanics
ATTN: J. Erickson
R. Fosdick
R. James

110 Union Street SE
Minneapolis, MN 55455
2 University of Oklahoma
School of Aerospace, Mechanical and Nuclear Engineering
ATTN: A. Khan
C. Bert

Norman, OK 73019
4 University of Texas
Dept. of Engineering Mechanics
ATTN: M. Stem
M. Bedford
J. Oden

Austin, TX 78712
1 University of Washington
Dept. of Aeronautics and Astronautics
ATT: : Eifn
206 Guggenheim Hall
Seatue, WA 98195
2 University of Maryland
Dept. of Mechanical Engineering
ATTN: R. Armstrong
J. Dally

College Park, MD 20742
1 University of Wyoming
Dept. of Mathematics
ATTN: R. Ewing
P.O. Box 3036

University Station
Laramie, WY 82070
3 Washington State University
Dept. of Physics
ATTN: R. Fowles
G. Duvall
Y. Gupta

Pullman, WA 99163
1 Yale University
Dept. of Mechanical Engincering
ATTN: E. Onat
400 Temple Street
New Haven, CT 96520
No of
Coptes Orgamyation
1 Institute for Defense Analysis
ATTN: G. Mayer
1801 N. Beauregard Street
Alcxandria, VA 22311
1 Honcywell, Inc.
Defense Systems Division
ATTN: G. Johnson
600 Second Strect NE
Hopkins, MN 55343
7 SRI International
ATTN: D. Curran
R. Shockey
L. Seaman
D. Erlich
A. Florence
R. Caliguri
H. Giovanola
333 Ravenswood Avenue
Menlo Park, CA 94025
1 Southwest Research Institute
Department of Mechanical Sciences
ATTN: U. Lindholm
8500 Culebra Road
San Antonio, TX 02912
1 Commander
US Army Research and
Standardization Group (Europe)
ATTN: F. Oertel
P.O. Box 65
FPO, NY 09510

Intentonally left binnk.

This Laboratory undertakes a continuing effort to improve the quality of the r reports it publishes. Your comments/answers to the items/questions below will åd us in our efforts.

1. BRL Report Number \qquad Date of Report JANUARY 1990
2. Date Report Received \qquad
\qquad
3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.) \qquad
\qquad
4. How specifically, is the report being used? (Information source, design data, procedure, source of ideas. etc.) \qquad
\qquad
S. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided or efficiencies achieved, etc? If so, please elaborate. \qquad
\qquad
5. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.)
\qquad
\qquad
\qquad

	$\overline{\text { Name }}$
CURRENT	$\overline{\text { Organization }}$
ADDRESS	Address
	$\overline{\text { City, State, Zip }}$

7. If indicating a Change of Address or Address Correction, please provide the New or Correct Address in Block 6 above and the Old or Incorrect address below.

OLD	Name
ADDRESS	Organization
	$\overline{\text { Address }}$

(Remove this sheet, fold as indicated, staple or tape closed, and mail.)

Director
U.S. Army Ballistic Research Laboratory ATTN: SLCBR-DD-T
Aberdeen Proving Ground, MD 21005-5066
NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
official business

BUSINESS REPLY MAIL FIRST CLASS PERMIT NO I2O62 WASHINGTON,OC

Director
U.S. Army Ballistic Research Laboratory ATTN: SLCBR-DD-T
Aberdeen Proving Ground, MD 21005-9989

FOLD HERE

