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4.1 Executive Summary

Fhis volumie deseribes work done during 1988 at Ciarkson University on the task. Dis-
tributed Artificial Tntelligence For Comnmmications Network Management, of the NAIC
rescarch contract with the Rome ANir Development Center. The objective of this effort
i~ to investigate potential applications of distributed Al to svstem control and network
managenieut problems tor large-scale. world-wide communications networks. This report
mchudes a brief simmary of the tvpical context i which these problems arise. and ontlines
the architecture we have developed for application of Al techinology to these problems. We
have identitied specific issues which raise fundamental rescarch questions 1o be resolved
inorder to bring the application of Al technology to full fruition in this area. The central
foens of our work has beeu to study these questions, proposing answers. and testing the
mertts of these answers in a realistic simulated environment. We have results, based on
nnplementations whicli have been tested 1 our testbed environment, in three important
arcas.  These arear arer multiagent distributed plan generation. constraint-based rea-
<somuoe in mniltiagent planning. and multiagent trath maintenance for shared knowledee

}’El\('\.

The problem domain which forms the context for our work is the management and
control vf a large seale. world-wide communication syvstem such as the U.S. Defense Com-
mnnication Svstem {DCS). We have concentrated on network management aud control at
the subregion level. The subregion level represents a group of ten to twenty individual sites
or nodes in the communications svstem architecture which are monitored and controlled
from a single control center. System-wide management and control is distributed over a
network of subregion control centers, typically eight to twelve in number. Our view of
the role of distributed Al in this environment is to provide cooperating. intelligent. semi-
antonomous agents to serve as problem solving assistants to the human controllers. This
set of agents must be distributed both spatially and functionally. The spatial distribution
1= a natural consequence of the underlying communications network and control system
architecture which is distributed over a large geographical area. The functional distribu-
tion arises from the requirement for multiple, distinct, but related. problem solving tasks
in performing network management. These tasks are: performance assessment (PA). fault
diagnosis or isolation (F1). and service restoral (SR). Our design for this system incorpo-
rates new ideas in distributed problem solving: specifically, a diversely distributed problem
solving architecture which supports coordination and cooperation among functionally and
spatially distinct agents. During this past year we have devoted most of our efforts to the
service restoral task, and to developing a basis for local multiagent cooperation using a
shared knowledge base.

The service restoral task requires distributed planning subject to constraints imposed
by network topology and resource availability. We have developed a distributed planner




which extends tie cnrreni work e pranag by designating cortain objocts as rescurces
so that they may be etticiently allocated for effective use in multiple goals. The planner
consists of two stages. plan generation and multistage negotiation. During plan gener-
ation. agents are required to generate plans which utilize limited system resources in a
domain where both the knowledge about resources and the control over these resources
are distributed among the agents. After a set of plans has been establishod, agents must
coaperatively select specific plans to execute as many geals as possible, subject to resource
constraints. Multistage negotiation has been developed as a means by which an agent
care acguire enoweh knowledge to reason abont the impact of Jocal decisions on nonlocal

svstenm state and modify its behavior accordingiy,

As a result of the meomplete knowledge and distributed control agents have, plan
decompesition s dyvnamic and diffuse i natore. To effectively plan using such decompo-
sitions. cach agent st be capable of determiining its role in multiple plar decompaositions
with only a partial view of the associated global plans. We have introduced the concept
of sapport names as a means to allow cach agent 1o recognize which sets of local actions
wre reqpired by vartons plan decompositions for the same goal. The use of sunport names
has been impfomented inoa system which generates plans for the restoral of sercice i

Acotnmmicatons networks Fxperimental results are presented which show that plan

coneration i ths class of problems can be accomplished by sending a limited amonnt of

ilcrination hetween agentss It s wnnecessary for any single agent to acquire complete

clobal informarion abour the svstem.

Becinse no single agent is in control and no singie agent has coniplete knowledge of the
cntire systen states au inporteat aspect of multistage negotiation is the mechanism for
providing agents with nonlocar nformation. We have deve Joped a formalism for abstract-
g and propagating information about the nonlocal imnact of decisions made locally, Oy
work provides mechanisnis for determiming impact at three levels: locally on the level of
plan fragments locally on the level of poalssand nonlocatlv, This approach mav be viewed
as promoting cooperation among agents by using constraint-hased reasoning to develop
vood. local hearistie deaision making. This phase of our work 1s currently in the theory

development stages and will be amajor thrast for implementation in the next vear.

A common method by which problem solving agents cooperate involves sharing knowl-
edee. We present a method by which knowledee can he shared in a local knowledge base in
the form of inferences and defanlt assnmiptions. Specificallv,a truth maintenance svstem,
MATMS (Multiagent Assumption-hased Truth Manenance System). has been developed
to manace a knowledge base shared by mnldtiple problem <olvers. The most important fea-
ture of the MEATMS is that it provides the foundation for resolving inconsistency between
acentso while supporting the notion that two problem solvers can have different views con-
cerning the state of a partiendar piece of knowledge, The NEATMS handles differing views
by oatlowing mdependent helief sets for cach ol the agent<. It supports reselving inconsis-

teney hetween azents he providing o mechanism for comparing two agents” belief sets. An




agent’s belief set is characterized as the default knowledge base (which is common to all
agents) with an overlay placed upon it. The MATMS is efficient fargely because it focuses
its efforts on managing these overlavs. not the entire behief set of an agent. By concerning
itself only with the overlayvs. the MATMS can switeh from addressing one problem solver’s
belief set to addressing another’s expeditiouslv. 1t can also change an individnal problem
solver's belief set quicklv. becanse the default knowledge is not explicitly carried over from
ote belief set to another. We have implemented and tested MATMS in the context of a

distributed knowledge base svstem lor managing a communications network.

4.2 Introduction

[ our investication of distribated Al for communications network management. we have
foensed on the Enropean Theater of thie Defense Communication Svstem (DCS). The DOS
< a large. complex connununications svstem consisting of many component subsystems.
I+ provides the jong-haul. point-to-point. and switched network commnunications for the
Department of Defense. We have chosen the Enropean Theater becanse the DCS neiwork
striciure in Furope is particularly interesting for the study of aistributed problem solving
paradigms. It consists of a large number of sites (about 200) which are mterconnectea .n an
irreenlar <tenetnre, Tt is currently controlled by close cooperation and coordination among
a group of hizhily <killed human controllers distributed throughout the system. The control
task is one which requires extensive. specialized knowledge and the ability to reason using
this knowledge in solving problemis. In the past. system centrol has been a diffienlt area
to antomate becanse the number of situations which may arise and alternative solutions
availabl> are very large, and thus traditional. purely algorithmic approaches have been
found lacking. There is a clear requirement for sophisticated problem solving tools to

ss=i=t these himan operators in providing the best possible control of the system.

The reason for studyving distribrted probler: solving lies in the observation that hu-
mans often rely on teams of people to solve complex problems. Within a team thcie is
nsually a division of labor so that each member of the team is a specialist on some part
of the nrobleni. Bach of these specialists has only a limited perspective about *he overall
swroblem. and each finds that he can only deal with those aspects of the problem for which

I
e is responsible through cooperation with othe s on the team.

Distributed artificial intelligence is concerned with problems that arise when a group
of loosely coupled problem solving agents works together to solve a problem. These agents
have characteristics that closely parallel those mentioned above: functional specialization.
local perspective, and incomplet - knowledge. Each agent uses its own local perspective
in performing its tasks. though it may have a need for some knowledge about another
agert's local perspective.

We have developed an architecture for a diversely distributed. multi-agent system in
which each component is a specialized and localized knowledge-based system designed to

-1




provide assistance to the human operator. Each agent must be able to coouperate with
similar agents performing other functions at the same local site as well as coopcrating
with identical agents located in physically separate facilities. This view of the role of a
knowledge-based system as a collection of autonomous, cooperating independent special-
ists is an important characteristic of our appreach to network management and system
control for the DCS in the future.

We have found three fundamental kinds of problen solving activities required: (1)
data interpretation and situation assessment: (2) diagnosis and fault isolation: and (3)
planning to find and allocate scarce resources for restoral of service in the event of an
outage. In addition to this functional distribution of problem solving activities. our model
requires a spatial distribution of control as well. We present an architecture designed to
meet these requirements which consists of a distributed knowledge-based system built on a
community of problem solving agents. Each agent is a functionally specialized knowledge-
based problem solver at a specific site. These agents coordinate and cooperate to solve
clobal problems among themselves, crossing functional or spatial boundaries as required.

At a local levell the systemis seen as a number of functionally specialized agents that
cooperate in a loosely coupled fashion. These agents comprise a local participant in a
network-wide team of problem solvers. At the global level, the system may be viewed as a
sroup of relativelv independent spatially distributed problem solving systems cooperating

To solve a collection of problems.

An important feature of the svstem is the cooperation of the agents. Cooperation
at the local level 1s by two methods. First, problem solvers cooperate by coordinating
their actions. An agent may request another to perform some task to further the overall
problem solving. This is achieved throngh an exchange of messages. The other mech-
atism for cooperation is through sharing knowledge concerning the current state of the
cormmnications network. Inferences of one agent are shared with the others. in a central
knowledee base. The shared knowledge base is managed by the Knowledge Base Manager

NN,

At the present time a testbed has been implemented which supports simulation of
multiple agents on one or more physically distinet Lisp processors. Detailed design and
inplementation of specific agents has been our major activity for this year. We have
developed agents which cooperate across the spatial dimension, and we have developed
the tools for managing local cooperation using the shared knowledge base concept. In
the remaining sections of this volnme, we describe the three areas in which we have made
substantial progress this vear. First. we have developed a cooperation mechanism which
allows an agent to recognize its specific, localized role in generating global plans. Second.
we have formalisms which allow a group of agents to understand how local decisions
impact the ability of the group to achieve global goals when selecting alternative plans
subject to constraints, Third, we have implemented an efficient local manager of a shared

knowledee base.
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4.3 Role Recognition in Multiagent Distributed Planning

In this <ection we deseribe a destrdbetod planner which extends the current work in plan-
ning by designating certain objects as resources so that they may be efficiently allocated
for effective use e nmliiple goals. The planning strategy consists of two stages. plan
generation and multistage negotiation.  The plan generation phase is the focus of the
work presented in this section. During plan generation, agents are required to generate
plans which ntilize limited system resources in domains where both the knowledge abont
resotrees and the control over these resonrees are distributed among the agents. As a
result. plan decomposition is dynamic and ditfuse in nature. To effectively plan nsing
sich decompositions, cacl agent st be capabie of determining its role in multiple plan
decompositions with only a partial view of the associated global plans. Support narmes
are introduced as a means to allow each agent 1o recognize which sets of local actions are
recitived by various plan decompositions for the same goal. The use of support names
has been implemented in a system which generates plans for the restoral of service in a
connunications network. Results from experimentation are presented which show that
plan generation in this class of problems can be accomplished by sending a limited amoum
of tnformation between agents. It is unnecessary for any single avent 10 acquiire complete

elobal mformation about the systen.

4.3.1 Problem Description

When working with large syvstems, it is desirable to distribute svstem information among
several problem solving agents. Planning in these distribnted domains 21] is distingnished
fromy conventional planning in that plans are composed of sub-plans or plan fragments.
caclhiof which represents a soliution to a subproblem that is executed by some agent in a
mndtiple agent svstem. Most of the systems that address planuing for distributed domains
nove aszumed that there is a single active planner. This planner knows the capabilities
of each agent present in the system and is charged with the responsibility of generating a

niltiagent plan.

We are concerned with planning for the efficient allocation of distribnted resources
in miltiagent systems where multiple goals coexist. The domains involved are quite
large, making it diffiendt if not imipossible to maintain complete, detailed and accurate
information abont system resources at each agent. Therefore, planning is a process that
must be carried out by a group of semi-antonomous agents, each of which has a limited
view of the global system state, has control over only a subset of the resources required to
satisfv a goal. and has only partial knowledge about the complete set of resources needed
and who controls them. We have developed a planner which operates in two phases, plan
generation and multistage negotiation [3]. The plan generation phase determines multiple
global plans for satisfaction of each system goal. Multistage negotiation then attempts to
determmine a set of alternative plans that satisfies the maximum number of global goals,

9




subject to resource constraints. The focus of this presentation is the plan generation phase

of the pranner,

Our planner 1s a distributed planner as opposed to a centralized planner for a
multiagent svstem. Due to the distribution of both the knowledge about system resources
and their controll plan genieration is dynamic and diffuse in nature. Consequently, a single
agent may be asked multiple times to aid in the construction of a global plan. As a result,
cach agent nst be able to determine how multiple requests for partial satisfaction of a
single goal fit into that ageni's distinet alternatives o satisfy the goal. Is every request
part ot the same plan?  Which requests are actually part of the same alternative and
which are the resnlts of distinet plan decompositions? Agenis s be able (o ddtermine
thetr role i mnitiple plan decompositions for a single goal with only a himited view of

these plans.

Support names ave introduced as a means by which cach acent can recognize how
(U participates novarions plan decompositions for the same coal withont forming globai
rews of these plans. Support names are part of an incremental tageing procedure which
dilows each agent 1o recognize its actions in varions plan decompositions for the same goal.
Azent<ze siupport names to coustruct a hmited. abstract view of global information. but
no agent s ever provided with complete detailed global information. This s partly due to
the matntenance problem desceribed earlier. but more importantly it is wroecessary when

usite cnr planne,

Plan generation using support names has been implemiented in the domain of commu-
nications network manazement. In this system, plan generation determines plans for the
restoral of cornmnuication sarvice hetween two users. Throngh experimentation. we show
that plan generation can be accomplishied by passing merely a limited amonnt of indor-
mation among system agents, Al that 1s required arve descriptions of the goal state and
the present siate of the plan. and information which allows agents to recognize their past
actions in the construction of the plan. This Tast piece of mformation is provided through
the ise of cupport names. Fxperimental results show that this distributed mechanism
is rnch faster thai a ceitialized mcthod which provides a single agent with complete
details of the entire svstem. In addition. it does not require the construction of such a

slobal view by any agent.

4.3.2 Related Work

4.3.2.1 Comparison with Research in Planning  Our planner differs from existing
planners in that certaim objects are designated as resonrces <o that thev mav be efficiently
allocated for satisfaction of niltiple svstem goals. Thus, our work represents an extension
of the cnrrent nse of resources in planning. SIPE [38] is a planner which was explicitly
designed 1o handle the notion of resonrees, However, SIPE uszes objects designated as

resonrces for carly detection of snbgoal interactions among subeoals for the same goal.

10




There is no provision made for efficient allocation of resources to satisfy multiple goals.
In addition. SIPE is designed for centralized planning. therefore the planner has complete
knowledge about the available system resources. It should also be noted that SIPE does
allow for the temporary allocation of a resource in the execution of a plan. This is an

extension planned for the model presented m this report.

The notion of dividing a large problem. and thus a large search space. into smaller
problems resulting in regional search spaces is very similar to the planning strategy of
GEMPLAN 221 GEMPLAN is a general constraint satisfaction system which exploits
anyv inherent structure in a given problem domain. The structure of the user’s chosen
domain is used to identify entities which can be defined as regions where localized con-
straints can direct a localized search. This structure can take on a hicrarchical form
whereby one region has access to the subplans of all its subregions. Thus, local search
can be used to satisfyv local constraints and in fact 1t may be possible for several subre-
cions to perform their local searches in parallel. Then, moving back up to the regional
scarch space. a regional scarch can be performed to satisty regional constraints. Our use
of multiple agents with detailed local information is similar to identifying regions by local
constraints. However. our planner does not relv upon a higher level or global search space
which can use the results of the local searches to satisfy global constraints.

Svstems which perform distributed task decomposition in multiple agents systems do
exist. The C'ontract Net protocol [35] and the distributed NOAH system {3] are perhaps
the most well known. The Contract Net protocol performs well in domains where the
task can be divided into nearly independent subtasks. Such a decomposition does not
require that global information be passed among the agents since interactions among the
subtasks are assumed to be nonexistent or unimportant. Thus, no provision is made that
allows an .gent to reason about multiple participations in the construction of a single
plan. Furthermore, for domains such as those described in this report, there is no means
by which an agent can reason about its participation in multiple plan decompositions.
The distributed NOAH system does provide mechanisms for an agent to reason about
nimltiple participation in the construction of a single plan. However these mechanisms
require compiete and accurate information concerning the global plan to be resident at

each agent in the systen.

Other notable work in Distributed Artificial Intelligence include the research efforts of
Durfee and Lesser [11], Rosenschein and Genesereth [34], Georgeff [17], and Cammarata,
McArthur and Stesb [2]. The work of these researchers is related to the mmltistage
negotiation phase of our planner.

4.3.2.2 Comparison with Routing Algorithms In our domain implementation
we refer to the function of planning new routes for disrupted circuits as Service Restoral.
At first glance. it may appear that Service Restoral performs standard routing of dis-
rmipted cirenits. The problem of routing circuits is well understood and indeed, many

11




algorithms exist which route circuits in distributed networks. However, the assumptions
concerning node connections as well as the overall objective of Service Restoral differs
from those of the conventional algorithms. It is these differences which make existing
algorithms inappropriate for Service Restoral. In the following paragraphs, several con-
ventional algorithms are described briefly along with their assumptions and objectives.
This description is then contrasted with the assumptions and purpose of Service Restoral.

Many distributed routing algorithms have been developed as a result of computer
network construction. Most can be grouped into classes by their basic approach to the
problem {16].

One class depends upon global knowledge residing at each processor node in the system
[29] and the use of some graph algorithm [9]. Anothier class of existing routing algorithms
requires only condensed information at each node and uses “preferred next neighbor”
tables to designate the next node in the shortest path to every possible destination in
the network [14, 23, 20. 37. 36]. An improvement to this class lead to the formation of
another set of algorithms {15, 19, 30] which also require only partial topology information
and rely on “preferred next neighbor™ tables but these algorithms establish and maintain
the shortest path between two nodes through strict control of how the routing tables are
updated. Another algorithm which has gained recognition is one that uses a saturation
technique [23] whereby each node only needs to know its nearest neighbors and the trunk

aroups associated with each search message.

Fach of these algorithms makes the same assumption about node connectivity, namely
that every trunk into a node connects to the same main switching device. Given this
assumption, it is scenseless for a proposed route to pass through a node more than once.
IZach of these algorithms prevents | or attempts to prevent, the existence of such a route.
[t 1s also important to emphasize that each of the algorithms routes one circuit at a time
with the goal of finding the route with minimal cost. The purpose of these algorithms is
to dynamically route temporary circuits. Cost factors in these algorithins usually include
at lecast the lengih of the route and sometimes the current demands upon the trunks
traversed. This overall philosophy is applied to each circuit in isolation. That is, if more
than one circuit needs to be routed, these circuits are routed without regard for their
muitual existence.

In contrast. Service Restoral does not make the same assumption about the existence
of a central switching device at each processor node. Service Restoral acts with a coarse
grained level of processor distribntion. Instead of a processor residing at each individual
site. a processor is responsible for several sites. where each of these sites belongs to the
same subregion. As a consequence, a processing node corresponds to a subregion and thus
intrasubregion connectivity becomes an important issne. Service Restoral must work in
an environment where multiple paths exist through the subregion which visit disjoint sets
of sites. Thus it is possible that a plausible restoral route for a circuit may pass through a
node more than once. [n fact, a plansible restoral route may pass through multiple nodes
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more than oiice depending upon mter- and intranode {subregion) connectivity.

Another reason the conventional distributed routing algorithins are inappropriate for
Service Restoral is that the overall phitlosophies differ. Whereas the existing algorithms
are intended for temporary ronting of previously nonexistent cirenits, Service Restoral
rerontes existing dedicated circutts which have been disrunted. Service Restoral attempts
to make the most effective use of the network resources so as to restore as many circuits
as possible. This is accomplished by collectively restoring circuits. making use of their
previonsly reserved trunks as well as spare trunks and trunks that mav be preempted.
[ order to determine the best utilization of the network resources, multiple alternatives
fur restoring each disrupted circuit must be generated. From these alternatives. Service
Restoral selects those plans which collectivelyv restore the greatest number of cirenits.
Thus. merely determining the shortest or minimal cost path for a circuit is not the aim
of Service Restoral. In fact, such a route mayv actuallv prevent the restoral of other
cirenits in the svstem.  Instead. 1t is the mtention of Service Restoral to move away
from the dogmatic procedure of routing circuits in isolation 1o an approach which utilizes
perceptions of what’s happening i the system as a whole. By being aware of a group of
circuits that have been disrupted. Service Restoral will be able to accurately reallocaie

network resources in the most effective manner.

The following section describes the characteristics of distributed planning in more de-
tail and defines the requirements of the plan generation phase. Section 4.3.4 presents
techmques by which the requirements of plai. generation are met. This is followed in
Section £.3.5 by an example taken from the domain of communications network manage-
ment. In Section 1.3.6 | experimental results comparing distributed plan generation to
other plan generation strategies are presented. Then in Section 4.3.7 we describe exten-
stons to distributed planning that should be addressed as research continues.

4.3.3 Planning as a Distributed Resource Allocation Problem

4.3.3.1 Problem Class Description In many multiagent domains, planning can
be viewed as a form of distributed resource allocation problem in which actions require
resonrces inoorder to satisfy system goals. In such domains, goals require allocation
of distributed system resources. but criteria for goal satisfaction are not specified by
enumerating the resources required. In fact. the resources required are not known at the
fime of the instantiation of a goal but are determined as a plan for satisfaction of that
goal is constructed. In addition, it is usually the case that there are several combinations
of system resources which could be used to satisfy a single goal depending upon the local
actions taken by system agents.

‘The resonrces which are involved in this class of problems are assumed to be indivisible
fnot consisting of component resources). Their supply is limited and they cannot be time
shared for conenrrent satisfaction of multiple goals.
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Allocation of a resource in this context has several ramifications. Once a resource is
allocated for partial satisfaction of a goal, it is in use as long as this goal is being satisfied.
Furthermore, a goal is satisfied only if each and every one of the required resources is
currently allocated for this goal. As a result, if even one of these resources is allocated
for some other purpcse, the original goal is no longer satisfied. Thus, execution of a plan
to satisfv a goal implies the concurrent allocation of distributed resources. Moreover,
allocation of a resoirce does not imply consumption of that resource. In fact, it is more
than likely that tl e same resource will be allocated for different purposes at different
times as the needs of the system change.

Problems of the type addressed in this report are also characterized by their large
size. That is, these problems involve vast amounts of detailed information. In addition,
this information is constantly being modified. Maintaining a complete, accurate, and
detailed view -.f such a large, dynamic system at each agent is obviously difficult if not
impossible. For these reasons it is desirable to limit each agent’s view of the entire systen.
Therefore, control over resources and knowledge about these resources are distributed
among problem solving agents. Some of the resources are under the direct control of a
singlc agent, while control over others is shared by two agents. Allocation of a shared
resource requires coordination between the agents that share its control. In addition,
agents have a limited view of the resources that are not under their direct control. Thus,
no single agent has complete knowledge about what resources exist in the system or
who controls them. As planning progresses, agents do construct abstract views of global
imformation but they never form detailed pictures of global state. This is partly due to
the maintenance problem, but more importantly it is unnecessary when using the planner
described in this report.

4.3.3.2 Requirements of Plan Generation As stated previously, the overall ob-
jective of the planner presented is to efficiently allocate system resources so that as many
global goals as possible are concurrently satisfied in a multiagent domain.

Distributed plan generation is difficult because each agent must have the ability to
recognize its role in global plan decompositions with only a partial view of the global plans
in which it participates. As in multiagent systems using a centralized planner, generating
an acceptable plan 1equires problem decomposition and assignment of subtasks to different
agents in the system. The major difference lies in the character of the decomposition.
In distributed planning the decomposition is dynamic. with each agent determining the
extent to wiich 1t can contribute to satisfaction of a subgoal. Given that contribution,
the agent must then determine which other agents may be able to aid in the completion of
the plan. The decomposition is also diffused in that no agent has knowledge of the entire
system state, the entire goal-subgoal structure, or a complete view of any of the multiple
plan decompositions enrrently under construction.  This is due to the fact that both
knowledge and control of system resources is distributed among the agents. Using the
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goal description. agents must dvnamically determine what combinations of their resources

will sati=fv this goal. However. this must be accomplished without any single agent having

complete knowledge of what resources exist or who controls them.

A complication arises ax a consequence of the dynamic and diffuse nature of plan de-
composition. Specifically. a particular agent may be asked to contribute at different times
and in different wavs to the satisfaction of many subgoals relative to the satisfaction of a
single global goal. In order for an agent to correctly determine which of its alternatives
can satisfv a particular subgoai. it nwst be able to assess which subgoals are part of the
<ame global plan decomposition and whicl are part of distinet decompositions. Those
alternatives that are part of the same global plan must be combined into a single aiter-
native.  This 15 necessary for the success of mnltistage negotiation. During multistage
necotiation. agents must be able to reason about the impact of selecting an alternative,
In particnlar. an agent must be able to determine how clivosing one plan fragment to
satisfv one local subgoal will effect its ability to select plan fragments to satisfy other
focal subgoals. Execution of a particular plan fragment necessarily limits the resources
available for use in satisfaction of other subgoals. Therefore. selection of any specific al-
ternative has potential side effects on the agent’s ability to participate in satisfaction of
additional global goals. Reasoning about such subgoal interactions can only occur if each
available alternative is part of a distinet global plan.

To clartfy tius point consider Figure 1 which depicts a four agent svstem in which two
global plans have been constructed for satisfaction of a single goal. The plans are presented
pictorially as sequences of plan fragments distributed among the planning agents. Each
plan {ragment can be assumed to be a set of locai actions which achieve part of the global
goal. [n particular. notice Agent B's participation in the plan generation phase. Agent
B has received two requests to participate in plan construction for this goal. Using the
clobal view presented by Figure 1, it 1s obvious to discern that Agent B should use pf2 as
one of its distinet alternatives and pf2 and pfi should be combined into a second distinct
alternative for satisfaction of this goal. However, it is important to realize that Agent B
docs not have this global picture. What Agent B “sees™ is shown in Figure 2. Yet, Agent
BB must be able to determine how these two requests fit into its distinct alternatives for
this goal. Therefore, plan generation must provide some additional information so that
agents may formulate distinet alternatives with only a limited view of the multiple plan

decompositions created.

It should be noted that when an alternative available to an agent appears to be part
of a distinct global plan, this is a local perspective. In fact, this alternative may be part
of several global plans for the same goal. However, if the agent’s participation in cach
slobal plan is the same. they locally appear to be a single plan. To clarify this point.
con=ider Figure 3 which shows two global plans for a single goal. As before. the plans
are presented pictorially as sequences of plan fragments distributed among four planning
agents. Onee again, notice Agent 3’s participation in each of the global plans. At the
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Agent A

Plan 1 : pfl-pf2-pf3-pf4-pfh
Plan 2 : pfl-pf2-pf3-pfi-pf6

Figure 3: Multiple Plans That Locally Appear to be One

end of plan generation. Agent B should combine plan fragments pf2 and pf4 into a single
plan fragment because they represent a single alternative available to Agent B to partially
satisfy this goal. From Agent B’s limited view, this new plan fragment appears to be part
of a single global plan when in reality 1t is part of two global plans. Whether this new
plan fragment is part of a single global plan or multiple global plans is unimportant for
the planning performance of Agent B. What is important, is the requirement that Agent
3 recognize that pf2 and pf4 should be combined into a single plan fragment, because
they represent a single alternative for Agent B's participation in partial satisfaction of
this goal.

4.3.4 Distributed Plan Generation

As is clear from the previous discussion, the objective of distributed plan generation
is to determine sets of local actions that can be performed in a coordinated fashion
by distributed agents to satisfy global goals. Thus, the collection of local actions (in
multiple agents) that satisfies a global goal constitutes a global plan that exists as plan
fragments distributed among the agents. A plan fragment, then, is a sequence of operator
applications to objects under the control of an agent that would transform the global
system, possibly through intermediate states, to a new state. When planning is viewed as
a resource allocation problem, these operations include allocation of resources local to an
agent. An agent can extend a plan fragment if the agent can formulate a plan fragment
which would transform the system from the proposed new state to a state that is closer to
the goal state. As previously indicated, agents have a limited view of resources which are
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not under their direct control. Thus, each agent has limited knowledge concerning what
state transformations other agents can make. Therefore it is impossible, in most cases,
for a single agent to devise a global plan.

Plan generation begins when an agent is notified of the instantiation of a global goal.
The agent creates a subgoal corresponding to this global goal and determines all sequences
of actions it could take to bring the system to a state that locally appears closer to the
goal state. Each alternative local sequence becomes a plan fragment. If any of these
plan fragments would bring the svstem state to a new state that is not the goal state,
the agent must issue requests for extension of the partial plan to agents that may be
able to transform the system from the new state to the goal state or a state that may
be nearer to the goal state. The search strategy is a modified version of the means end
analysis strategy that has been used in several other planners [12, 13]. The approach
in this context is somewhat different in that there is no global information available for
an agent to determine whether, in fact. it can bring the system to a state that is closer
to the goal state. Using local knowledge. the best cach agent can do is determine state
transformations that locally appear closer to the goal state.

[t 15 clear that every request to extend a plan must carry certain information which
will permit an agent to achieve a state that locally appears closer to the goal state.
Spectfically. a request must contain a description of a global goal, a description of the
appropriate intermediate state, and a set of tag lists which are known as support names.
Support names embody the information which enables each agent to recognize its own
role in multiple plan decompositions without requiring complete knowledge of the global
plan.

During plan generation a given agent may be asked to add an additional set of actions
to the same global plan several times. Thus it is necessary that an agent be able to detect
when it is being asked to build another piece of a global plan it has already partially
constructed. If the agent has already built one or more parts of a plan, it must know
which of its plan fragments were previonsly used i that plan. This information is needed

for two reasons.

First, the agent must determine if it can extend the partial plan in a coherent manner
based upon its previous participation in the construction of the plan. Specifically, the
agent shonld not inadvertently build a plan which would bring the system to the same
state twice. Permitting the system to cycle through the same state multiple times has
two drawbacks: unnecessary work is performed and non-termination is a possibility. In
addition. the agent must not allocate morve “copies™ of any given resource than it has
available to a single global plan. Clearly such a plan would involve demands upon resources

which could not be met.

Toillustrate these concepts, consider Figure 1 which depicts plan generation as a series
of operator applications that transform a possible plan from state to state. The resources
involved in the application of each operator are displaved in parentheses. For the purposes
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Figure 4: Multiple Participation of a Single Agent
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of this example, assume that there is only one copy of each resource mentioned. Agent
A has determined that it has one set of actions that would transform the system from
state SO to a new state, S2, that locally appears to be closer to the goal state. This
transition involves one intermediate state. state S1. However, in order to reach this new
state. Agent A needs to use resource R1 which it shares with Agent B. Therefore. Agent
A must coordinate the use of this resource with Agent B. Agent B determines that if R1
is used to reach state S2, it can extend the plan and bring the system to state S8 which
locally appears closer to the goal state. Reaching this new state involves coordinating
the use of resource R3 with Agent A. The critical issue illustrated here is that if Agent
A attempts to fulfill Agent B’s request to extend the plan starting from state S8, it must
not do so by bringing the system through states S0, S1 or S2 because the decomposition
of this plan has already been through those states. In addition, Agent A cannot propose
an alternative that would use resources R6 or R1, since this plan is already utilizing those
resources, and thus they can not be allocated again. Therefore, Agent A must be able
to recognize that it has alr-ady participated in this plan decomposition and identify the
local plan fragments that are also used in this plan decomposition so that planning for
the new request can take place in the proper context.

Furthermore, as discussed in Section 4.3.3.2, it is the responsibility of plan generation
in a single agent to determine when groups of actions that have been formed as part
of the same global plan decomposition eventually become components of feasible plans.
When this occurs, the agent must gather the actions resulting from the various requests
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into a single plan fragment. This is required for proper identification of potential subgoal
interactions (such as contention for the same resource), where the interactions of concern
are those between subgoals for different global goals. As stated before, reasoning about
such subgoal interactions can only occur if each plan fragment available to an agent
represents a distinct alternative for partial satisfaction of a particular goal.

Our mechanism for providing an agent with the means to recognize distinct roles
in multiple plan decompositions involves attaching a list of support names to each plan
fragment. Support names represent abstractions of the global plans associated with a
plan fragment. They are incrementally constructed. with each agent appending a “tag” to
identify its own plan fragiments. These tags allow an agent to determine how a particular
plan fragment 1s used in a global plan. They do not embody information which allows
an agent to reason about the specific actions of other agents in a particular global plan.
Support names do indicate which agents have participated in the construction of a plan but
do not reveal the form of that participation. Since these abstracted plans are constructed
merementally as planning progresses. the support names do not even convev a skeletal
structure of the complete plan. Instead. when an agent is requested to extend a plan.
it can use each support name that is passed with the request as an abstract history of
the construction of a single global plan thus far. This history contains information which
allows each agent to recognize if and how it previously participated in the construction of
the plan and what other agents aided in the construction of the plan.

Support names follow a plan as it is developed (in a semi-autonomous manner) by
the agents. Once a plan has been completed, the requisite plan fragments can be marked
by tracing continuation requests using the suoport name. Thus, an agent can determine
whicli requests are part of the same global plan and which belong to distinet global plans.
If 1t 1z determined that a plan cannot be completed. the appropriate support names are
delered.

14.3.5 Example: Generation of Service Restoral Plans

Follnstrate the use of support names. an example taken from the domain of communi-
cations network management is presented. Consider the communications network shown
m Figure 5.0 There are five problem solving agents. cach controtling part of a network
of eeographically distributed communication facilities. The network partitions are called
subregions, the cireles represent communication sites and the lines joining sites represent
communication links. In this domain. the problem of restoring disrupted service can be
viewed as a planning problem in which one operator. Allocate, is utilized to allocate
commumnication resources.  In this sitmple exampie. the only resources are links and a
clobal plan 1< a collection of local connections each of which allocate a link to restore
cormmunication between two sites. A partial plan or plan fragment involves an allocation
of resonrces that transforms the svstem from a state in which it has a path eading at
one site to one nowhich it has a new path ending at another site. The availability of
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a resource depends upon its use by currently existing circuits or circuits whose service
has been disrupted. Links which span subregion borders are controlled by the resident
~ubregions of their endpoints. Links such as these are modeled as shared resources. In
addition. no global topological information exists. Agents only know about the links they
control directly and those they share. Thus. if oue agent needs the aid of other agents to
construct a plan in this domain, it asks those agents with whom iu shares the control of

o TesOUree.

Table T summarizes the knowledge about resources available to each agent and the

associated control relationships.
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Figure 5: E:ample Network

| Agent Resources
A R5 Ro R11
B R6 R7 R10 R21 R28 R30
¢ R11 R12 R14 R19 R30
D R19 R20 R21 R22
E R20 R28

Table 1: Local Resource Control

For the purpose of this example, assume that originally communication between sites
F22 and Al followed a path over links R28-R10-R7-R6-R5, but link R10 has failed and
communication between sites 2 and Al mnust be 1estored over a differcnt route. Fur-
thermore, suppose that Agent IS is notified that a global goal to restore the path between
sites .2 and Al has been instantiated.




[t is perhaps easiest to explain how pian generation proceeds by viewing the activities
of agents at global time slices (see Tables 2 and 3). The actions presented in each time
shice are described in two parts. The first part identifies a planning agent and what action
is being taken by that agent. The second part is either a description of the action or a
result returned by the action. The latter is denoted by a preceding arrow. The following
legend describes the forms used in Tables 2 and 3.

local subgoal description

local search { plan-fragment, resources-to-allocate, support-name-added )
request age il extend(goal, shared-resource-to-use, support-name-to-add )
notify age nt remove( goal, resource-used, support-name-to-remove )

acceptable({ goal, resourec-used. acceptable-support-name )

add support(goal. resource-used, support-name-to-add )
remove support remove-support({ matching-plan-fragment, support-name-to-remove )
acceptable support  mark-acceptable(matching-plan-fragment, acceptable-support-name )

add support add-support(plan-fragment, support-name-to-add ).

The example begins with Agent E instantiating a subgoal to restore a communications
path from site F2 to site Al. Agent I then conducts a local search and determines that
it has one alternative that locally satisfies this subgoal. p{EEl, which uses resource R28.
Sinee Agent 12 has initiated the plan generation process, there is no previous support to
associate with this plan fragment. Thus, a is used to denote this situation. Control
over resonree R28 s shared with Agent B, therefore, a request is sent asking Agent B to
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extend the plan for this goal using this shared resource, R28, with support name (E1).
Plan generation continues from this point.

Observe time shce T4, Here Agent E has determined that it has no alternatives which
extend Agent D's request. Therefore. Agent E notifies Agent D that the support name
that followed this plan decomposition should be removed. In time slice T5. Agent D uses
the destination and resource in Agent IZ's notification to identify plan fragment pfD1 and
Agent D removes the appropriate support name from this plan fragment.

In time slice T6., when Agent A completes a global plan using a request from Agent
B. it sends back a notification to Agent B that the request has resulted in an acceptable
plan. Agent B receives this notification in time slice TT and determines that it owns two
of the tags in the support name associated with the request. Agent B identifies pfB2 and
piBL with these tags and thus realizes that they are part of a single plan decomposition
that has resulted i an acceptable plan. Therefore, Agent B creates a new plan fragment.
pEB3 which uses the resonrces of both pfB2 and pfB1l and Agent B gives this new plan
fragment support. Since no acceptable global plan uses pfB2 alone, its support names are

removed,

Note that 1o time slice TSSO Agent " removes a support name from pf('2 due to the
propagation of snpport name removal started in Agent B. However. this propagation ends

1




: remove support

: notify C

: notify C

: acceptable support

remove-support (pfB2, (C2, D2, B1, E1))
remove (A1, R30, (C1, D2, B1, E1))

add support (A1, R30. (C1, D2, B3, E1))
mark-acceptable (pfD2, (B1, E1))

T1 | E: subgoal to restore path from E2 to Al
E: local search — (pfEL, (R23), *)
E: request B extend (Al, R28, (E1))
T2 | B: local subgoal to Al using R28
B: local search — (pfBL, (R28, R21}), (E1))
B: request D extend (A1, R21, (B1, El))
T3 | D: local subgoal to Al using R21
D: local search — (pfD1, (R21, R20), (B1, E1))
— (pfD2, (R21, R19), (B1, E1))
D: request E extend (Al, R20, (D1, B, E1))
D: request C extend (A1, R19, (D2, B1, E1))
T4 | C: local subgoal to Al using R19
C: local search — (pfC1, (R19, R14, R11), (D2. B1, E1))
— (pfC2, (R19, R30), (D2, BL, El}))
C: request A extend (A1, R11, (C1, D2, B1, E1))
C: request B extend (A1, R30, (C2, D2, B1, El))
E: local subgoal to Al using R20
E: local search — no alternatives
E: notify D remove (Al, R20, (D1, B1, E1))
T5 | A: local subgoal to Al using R11
A: local search — {pfAl, (R11, R5), (C1, D2, B1, E1))
A: notify C acceptable (A1, R11, (C1, D2, Bl, E1))
B: local subgoal to Al using R30
B: local search — (pfB2, (R30, R7, R6), (C2, D2, B1, El1))
B: request A extend (A1, R6, (B2, C2, D2, Bi, El))
D: remove support remove-support (pfD1, (B1, E1))
T6 | A: local subgoal to Al using R6
A: local search — (pfA2, (R6, R5), (B2, C2, D2, B1, E1))
A: notify B acceptable (A1, R6, (B2, C2, D2, B1, E1))
C: acceptable support mark-acceptable (pfC1, (D2, B1, E1))
C: notify D acceptable (A1, R19, (D2, B1, El1))
T7 | B: new plan fragment combine (pfB3, (pfB1, pfB2), (C2, D2, B3, E1))
B
B
B
D
D

: notify B

acceptable (A1, R21, (B1, E1))

Table 2: Time Slice View of Example, T1-T7




here because there is another plan fragment, pfCl, which uses the same support name
(see T4). This represents a place where the search for a global plan split into two parallel
search paths. In this example, the second plan fragment that uses the same support name
has been marked as part of an acceptable global plan in time slice T6. The propagation of
this acceptable support name has reached Agent B in this time slice. Agent B is notified
that pfB1 is part of an acceptable plan. Using the support name, Agent B determines
that pfB1 is part of an acceptable global plan that does not use other plan fragments in

T8 | B: acceptable support mark-acceptable (pfBl, (E1))
B: notify E acceptable (A1, R28, *)
C: add support add-support (pfC2, (D2, B3, E1))
C: remove support remove-support (pfC2, (D2, Bt, E1))
C: notify D add support (Al, R19, (D2, B3, E1))
T9 | D: add support add-support (pfD2, (B3, E1))
D: notify B add support (Al, R21, (B3, E1))
E: acceptable support mark-acceptable (pfE1, *)
T10 | B: add support add-support (pfB3, (E1))

Table 3: Time Slice View of Example, T8-T10

Agent B. As a result, the support names for pfBl are marked acceptable.

Agent | Plan Fragments Resources Support Names
A pfAl R11-R5 (C1 D2 B1 El)
pfA2 R6-R5 (B2 C2 D2 Bl El)
3 piB1 R28-R21 (E1)
pfB2 R30-R7-R6 none
pfB3 R28-R21 R30-R7-R6 | (C2 D2 B3 E1)(El)
C pfC1 R19-R14-R11 (D2 B1 EI)
plC2 R1J9-R30 (D2 B3 E1)
D pfD1 R21-R20 none
pfD2 R21-R19 (B1 E1)(B3 E1)
K pflsl R2% *

Table 4 shows the plan fragments created by each agent. the resources used by these
plan fragments, and the support names associated with each plan fragment at the end of
nlan vencration. Note that pfD 1 has no support names because this plan fragment is not

Table 4: Results of Plan Generation Example

part of any acceptable global plan,




To summarize the important points of this example. Agent B created two plan frag-
ments, pfB1 and pfB2, as a result of requests to add to partially constructed plans for the
same global goal. Through the use of support names, Agent B has determined that pfB1
and pfB2 are used in one set of acceptable global plans (in this case one plan) and pfB1
is also part of a different set of acceptable global plans (alse one plan in this example).
When pfBl and pfB2 are used as parts of the same global plan, they represent a single
alternative in Agent B for this global plan. This has been reflected by the creation of
pfB3. The determination of how these plan fragments, created out of separate requests,
fit into global plans has been accomplished without any single agent ha.ing complete
knowledge about any of the acceptable global plans generated.

4.3.6 Experimental Results

4.3.6.1 Description of Experiments Research in distributed planning is currently
being conducted in the countext of the communications domain described in the previous
example. The implenentation model' | however, contains much more of the detail asso-
ciated with 2 real world communications network [4]. Local searches for plan fragments
are not simple searches for paths of links in and out of a subregion as might be assumed
given the example above. On the contrary, local searches involve tracing through com-
plex interconnections of various types of communications equipment at the sites within a
subregion.

ixisting planners use several different architectures and moreover, the level of ab-
straction at which planning occurs varies from system to system. Experiments have been
conducted so that distributed plan generation as presented in this report may be compared
to plan generation schemes with various architectures using different levels of abstraction.
[n each of the tested schemes, an agent which has control over part of a network has
detailed information about that part of the network and only that part of the network.
[f any other information is used for plan generation, it is either abstract knowledge in
the form of plan fragments, or limited abstract knowledge in the form of support names.
The following 1s a description of the plan generation paradigms used in these experiments.
The first is a single agent system and the rest are multiple agent systems.

Single Agent/Detailed Global View (SA/DGV) A single agent is responsible for
the entire system rather than distributing system knowledge among multiple agents.
In this approach. a local search for plan fragments is equivalent to a global search
for global plans that will satis{y system goals.

Multiple Agent/Limited Abstract Global View (MA/LAGYV) This is  the

approach described in this report. Plans are constructed by multiple agents which

I'The methods described in this report have been implemented on a TI Explorer in Common Lisp.
Simulation of the multiagent processing has been accomplished through the use of SIMULACT [24].
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have an incomplete, limited view of the global plans. This incomplete, limited view
is determined by the incremental construction of support names and therefore, is
different at each agent in the system.

Multiple Agent/Central Ahstract Glabal View (MA/CAGYV) Agents use the de-
scriptions of the circuits which are to be restored to determine all the possible ways
they might be able to participate in a global plan. The results of these local searches
are sent to a single agent who pieces the plan fragments together into acceptable
global plans. Once this is completed, each agent is notified of its participation in
global plans. The view of this single planning agent is not lirnited in the sense that
it does know about the complete set of plan fragments in the system. However, its
view is abstract since this agent knows nothing about the detail of communications
cquipment and its interconnection at each site.

Multiple Agent/Replicated Abstract Global View (MA/RAGYV) As in the
MA/CAGV approach, local searches are conducted by each agent using high level
circuit descriptions. The resuits of these searches, however, are sent to every other
agent in the system. Then, with complete knowledge of every plan fragment in the
system. each agent forms the global plans and determines its own role in each.

The key parameters monitored in these experiments are the simulated time required to
generate plans, the average cpu time required by each processing node to generate plans.
and the amount of message traflic sent during the simulation.

[n addition, three network configurations were chosen to observe the effect of various
topological extremes. In this domain, the network topology actually defines the complex-
itv of the roles of agents in the multiple plan decompositions. Therefore, by varying these
topological extremes it is also possible to observe the performance of these strategies when
agent participation takes on roles of different complexity. Each network contains twelve
sites divided into five subregions with various inter- and intrasubregion connectivity. I'ig-
ure 6 shows the configuration where the subregions are connected in a straight line and
Figure 7 shows the subregion connections which form a ring. The third topology chosen
is shown in Figure 8. Here each subregion is connected to every other subregion creating
a tightly coupled network.

4.3.6.2 Experimental Results The results of these experiments are shown in Fig-
nres 9. 10, 11, 12, 13, 14, 15, 16, and 17. As expected. the SA/DGV strategy performs
the worst in terms of the time taken to devise global plans. This observation holds true
over each of the tested topologies. This points to the desirability of distributed multiagent
systems over centralized single agent systems when the systems are large.

The MA/CAGV. MA/RAGV. and MA/LAGV strategies all take about the same

amount of time to determine global plans for the line topology. As well. the ¢pu time
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Figure 6: Line Topology

per agent is approximately the same. However, the amount of message traffic required by
the MA/RAGYV strategy exceeds that of both the MA/CAGV and MA/LAGYV strategies
with the MA/CAGYV strategy performing better as the number of goals grows.

For the ring topology, the cpu time per agent for the multiagent strategies begins to
separate with the MA/CAGYV strategy clearly performing better as the number of goals
increases. The MA/RAGV and MA/LAGYV strategies appear to be following approxi-
mately the same line. Regarding the time to construct global plans, the MA/RAGV 2ad
MA/CAGV strategies outperform the MA/LAGV when the numbe. o goals is small.
However, as the number of goals increases, the lines appear to be converging. The results
for the message traffic required shows that the MA/RAGV and MA/LAGV strategies
have approximately the same requirements while the MA/CAGV strategy requires less
message traflic. -

When the topology is tightly coupled, the strategies perform with significant differ-
ences. The MA/LAGV strategy clearly requires less time than both the MA/CAGV
and MA/RAGYV to devise plans as the number of goals increases. However, the cpu
time per agent required is clearly less for the MA/CAGV strategy with the MA/LAGV
strategy coming in second and the MA/RAGYV performing worse. In addition, there is
a marked difference in the amount of message traffic required by the different strategics.
The MA/LAGYV strategy requires the most message traffic, the MA/RAGYV less, and the
MA/CAGYV still less.

For the network topologies tested, there is a clear question of trade offs. For the
ring and line topologies, the MA/CAGYV strategy performs better overall. The price paid
however is vulnerability. In domains where survivability is an important concern, such
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Figure 7: Ring Topology
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as a military communications network, the MA/CAGYV strategy obviously is undesirable
because of the dependence upon a single agent. For the tightly coupled topology, the
MA/LAGYV strategy will take less time to construct plans but the price paid is in the
amount o1 message rafilc required.

4.3.6.3 Performance Analysis The performance of distributed plan generation can
be analyzed by considering the tiine required to generate plans and the amount of message
traffic sent.

The time required to generate plans is influenced by factors on two levels. At one level,
this parameter is dependent upon the amount of time required to pass the plan among
each of the agents involved in its construction. Therefore, from a global viewpoint, the
time required to generate plans is directly relited to the length of the longest chain of
agents involved in building a plan. At another level, the amount of time required to
generate plans is determined by the processing time of each individual agent. As the
relations between requests to extend a plan and multiple plan decompositions become
more complex, so does the processing involved to determine distinct alternatives. Thus,
from a global perspective, the time required to generate plans is also directly related to
the complexity of the roles of agents in multiple plan decompositions.

The message traffic necessary for plan generation is also directly related to the partici-
pation of agents in multiple plan decompositions. When an agent is notified that a plan it
has helped to build has been deemed acceptable, that agent is responsible for the propa-
gation of this information. If the agent participated only once in the plan construction, a
single message is required to continue the propagation. However, if the agent participated
multiple times in the construction, then two messages are sent, one to propagate the new
support name and one to remove the old support name. Thus, the message traffic re-
quired to generate plans increases as the complexity of the roles of agents in multiple plan
decompositions increases. However, it should be noted that the amount of message traffic
required does not approach that which would be needed to transmit complete, detailed
global information to each agent in the system.

These experiments illustrate that distributed plan generation can be accomplished
by passing merely a limited amount of information among system agents. The only
information required includes descriptions of the goal state and the present state of the
plan, and information which allows agents to determine their previous actions in the
construction of the plan. This last piece of information is provided by the implementation
of support names. Experimentation shows that building a complete, detailed globa

4.3.7 Future Directions

As a result of the preliminary experiments reported in this section, new directions for
experimentation have become clear. Perhaps the most immediate is to design a network
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that models the scale of a real world communications network. It will be interesting to
observe the effects upon the relative performance of the algorithms in a network which
contains a greater volume of information.

Some modifications should be made to the plan generation phase to permit its use in a
larger class of domains. One such alteration involves relaxing the definition of allocation
in the model. Rather than requiring that resouices be allocated for the duration of the
satisfaction of a goal. the model should be modified to allow for the use of a resource for
a period of time and then allow it to be relinquished for allocation for another purpose.
Thus, the model will then be able to allow the dvnamic scheduling of resources. In
addition, the model as it exists makes an implicit assumption about the capabilities of
the agents in the system. Namely. no two agents can bring a single plan to the same
state. One solution to allow this situation would be to increase the information included
in the support name. This might possibly be accomplished through a globally recognized
encoding scheme for abstract state descriptions of plans.

4.4 Cooperation Using Constraint-Based Reasoning

In this section we present formalisms that form the basis for multistage negotiation. We
demonstrate that these formalisms permit an agent in a distributed planning system to
gain knowledge about the interaction between consequences of its local actions and con-
straints cxisting elsewhere in the system. Qur work provides mechanisms for determining
impact at three levels: locally on the level of plan fragments, locally on the level of goals,
and nonlocally. Abstractions that reflect these interactions are formulated and proper-
ties of the abstraction mechanisms are discussed. In addition, algorithms are given for
computing local structures and their complexity is analyzed as an indicator of the worst
case performance that can be expected. Finally, bounds on the number of transactiuns
required to propagate local impact to distant sites are derived. We also show how this
formalism provides a natural mechanism by which agents incrementally expand knowl-
edge about the nonlocal impact of their local decisions without constructing a complete
global view.

4.4.1 Abstraction of Constraints and Conflicts

For the purposes of illustrating our definitions, we consider a scenario involving four agents
in a distributed system cooperatively attempting concurrent satisfaction of four goals. A
number of global plans have been constructed during plan generation, as indicated in
Table 5. In Table 5, each goal is identified by gi (i = 1, 2, 3, 4). The set of alternative
plans for each specific goal gk are identified by gk-pl ({ = 1, 2, ... ). Thus we sce that
goal gl has five distinct alternative plans, glpl, glp2, etc.
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Iilanl plan fragments |r1 r2 3 r4 5 r6 7 8 r9 rl0 rllJ

glpl | A-aB-aC-aD-a| 1l 1 1 1 1

glp2 A-a C-aD-b 1 1 1 1 1

glp3 A-a C-c 1 1

glp4 A-b B-b C-b 1 1 1 1
glpd D-c 1 1

g2pl A-d C-d 1 1 1 1

g2p2 A-e B-c D-d 1 1 1 1
g2p3 C-e D-e 1 1 1 1 1

e3pl| AfCgDI |1 1 1 1 1

g3p2 A-fC-gD-g 1 1 1 1 1

g3p3 C-h D-f 1 1

g3p4 C-h D-g 1 1

gdpl A-g B-d 1 1
gdp2 A-g B-e C-j 1 1 1 1 1
g4p3 A-h C-i D-h 1 1 L

gdpd A-h C-i D-1 1 1 1

gip5 C-k D-h 1 1 1

g4pb C-k D-i 1 1 1

Table 5: Global Plans Generated

It should be noted that Table 5 shows the global plans from a global perspective. No
single agent in a distributed problem solving system has complete knowledge concerning
any of these plans. Indeed, except in unusual circumstances, no single agent is even aware
of the total number of alternative plans that have been generated. ‘

From Table 5, it is evident that global plans are composed of collections of local plan
fragments. For instance, global plan g3p3 is composed of plan fragments C-g and D-
f. Plan fragment C-g denotes a set of local actions that agent C could take in partial
satisfaction of goal g3. Satisfaction of g3 using g3p3 would require the actions D-f by
agent D as well as the set of actions C-g in agent C.

Local knowledge about plan fragments is shown in Table 6. Notice that if the entry on
the resource count line for resource rin agent 7 is k, then agent ¢ has k copies of resource
r to utilize in problem solving. The shared resources are evident, as they are known to
more than one agent. Observe that r/0 is a shared resource. There is only one copy of
ri0 in the system, and its allocation must be jointly controlled by agents B and C.

It is important to note that each agent has only the Jocal knowledge about plan
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Agent A Agent C
goal plan trag [ rl 12 rll goal planfrag |r2 3 r4 rd rl0
resource count | 3 2 2 resource count | 2 3 2 2 1
gl A-a 1 1 gl C-a 1 1
A-b 1 1 C-b 1 1
C-c 1 1
g2 A-d 1 1
A-e 1 1 g2 Cd 1 1 1
C-e 1 1 1
g3 A-f 1 1
g3 C-g 1 1 1
gd A-g 1 1 C-h 1 1
A-h 1
gt Cai 1 1
C-j 1 1 1
C-k i1
Agent B Agent D
goal plan frag [ 19 rl0 rll goal planfrag |tHh 16 7 8 9
resource count | 1 1 2 resourcecount | 2 2 1 3 1
gl B-a 1 gl D-a 11 1
B-b 1 1 D-b 1 1 1
D-c 1 1
g2 B-c 1 1
g2 D 1 1
g4 B-d 1 D-e 11 1
B-e 1 1
g3 Df 1 1
D-g 1 1
g4 D-h 1
D-1 1 1

Table 6: Local Knowledge About Plan Fragments
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fragments shown in Table 6. This means, for example, that agent A is aware that plan
fragment A-b for goal gl coordinates with some plan fragment known to agent B as a
component in some global plan or plans in satisfaction of gl. Agent A knows this because
resource rl1l is shared between agents A and B. Agent A does not know anything about
plan fragments that are local to agent B.

To enable an agent to efliciently exchange knowledge concerning the nonlocal impact
of local decisions, we determine a conflict set for each plan fragment. We then use the
conflict set to construct an ezclusion set for each plan fragment that reflects the potential
impact on an agent’s ability to participate in satisfying other goals, assuming that plan
fragment z1s executed. At the highest level of abstraction, we use exclusion sets to form
infeasibility sets. Knowledge summarized in its infeasibility sets allows an agent to reason
about the way in which its decision to satisfy one goal may affect its ability to satisfy other
goals. Finally, we propagate these local concepts to other agents with the construction of
induced erclusion sets.

Before formalizing these concepts, we need to define the notational conventions used
in the discussion which follows.

I. We define maximal and minimal subsets of sets whose elements are sets in the
standard way. Given a set of sets S = {S|,...,5,} with a partial order < defined
on subsets of S in the standard way (that is, S; < §; & S; C S;), we say that S is
maximal if A5, 3: 5; < S;. Furthermore, S; is minimal if 45; 3: S; < S..

2. Py = { all plan fraginents known to agent A }.
3. It pfe € Py, then pf, is associated with satisfaction of some goal ¢(pf;).

4. The set of goals known to agent A is
Ga={g]|g=9g(pf:) for some plan fragment pf, € P4}.

5. For each goal ¢ in (74, there is an associated set of plan fragments
pfs, ={x |z € Pyand g = g(x)}.

6. copies(r,) denotes the number of copies of resource r, available for use by agent A.
7. resources(pf,) denotes the resources required to execute plan fragment pf,.
S. r(pf,) denotes the number of copies of resource r; needed by plan fragment pf,.

9. A set of plan fragments in Agent A, P = {pfi,....pf,} is said to be compatible
if Yroripfi) <copies(ry) for all 1 and g(pf;) # g(pfi) for j # k.

10. A maximal compatible set of plan fragments in A relative to pfy is a
maximal subset of S, = {7 | P is a compatible set of plan fragments and pf, € I’}.




The conflict set for plan fragment pf, indicates the minimal impact (locally) of a
choice to execute pf,. The conflict set ior pf, can be constructed by considering each
maximal set M of mutually feasible plan fragments (including pf,) known to an agent.
For each such set, M, the complement of M is an element of the conflict set for pf..

More formally, the Conflict Set for plan fragment pf, is constructed as follows:
Let X = (Py—pfsy)U{pf.}. where g = g(pf;). For each maximal compatible subset M
of plan fragments in A relative to pf,. the set X — Af is a member of the conflict set for
pfe. Thus, CS,p, = {c¢| ¢ = X — M, where M is a maximal compatible subset of plan
fragments in A relative to pf, }.

To illustrate this formalism, we compute the conflict set for D-b in our example sce-
nario. The maximal compatible subsets of plan fragments in D relative to I)-b are:

{D-b. D-e}, {D-b, D-g}. and {D-b, D-i}. Thus the conflict set for D-b is:
{{D-d. D-f. D-g, D-h. D-i}, {D-d, D-e. D-f. D-h, D-i}, {D-d. D-e, D-f. D-g. D-h}}

Thus. if agent D selects plan fragment b in partial satisfaction of goal g1, then the only
other choices locally compatible with this selection are D-e or D-g or D-i. This is also
expressed in the conflict set by the three elements each of which is a set of plan fragments
which are collectively in conflict with the choice of plan fragment b.

We are concerned with the conflict set because the conflict set for a plan fragment
gives information as to the negative impact of executing that plan fragment. The maximal
compatible subsets. on the other hand, indicate maximal sets of feasible choices that are
available. There is no reason to believe that an agent should choose some one of these
maximal subsets for execution. Indeed, a given agent might never participate in system
satisfaction of some of the global goals. (This can be seen in the example scenario by
observing that all four global goals can be satisfied through choice of glp3, g2p3, g3pl,
and gdpl. Agent D is only involved through partial satisfaction of g2 and g3.)

Though the view of the conflict set as being formed using the complements of maximal
feasible sets is intuitively appealing, when the problem is underconstrained it is compu-
tationally more attractive to view conflict relative to pf, in a dual form: as the collection
of minimal mutually infeasible sets of plan fragments, given that plan fragment pf, is to
he executed.

Three significant observations can be made concerning the conflict set of plan fragment
pf.. First, the complement of each element of the conflict set is indeed a maximal feasible
set. Secondly, the agent will be compelled to forego execution of all plan fragments in
some element of the conflict set if it chooses to execute plan fragment pf,. The local
impact of a decision can thus be related to the size of elements in the conflict set. Finally,
representation of impact in the form of a conflict set seems to provide a substantially
more compact form of representation that can be more efficiently used in reasoning than
many others.
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The conflict set for a plan fragment reflects the impact of executing that plan fragment
at the level of mutually infeasible sets of plan fragments. It is often necessary to reason
about the impact that executing a particular plan fragment would have on the potential
satisfaction of other goals.

The Exclusion Set for a plan fragment, pf;, is a collection of sets of goals, one of
which must be abandoned if pf, is selected for execution. Thus, if the agent selects plan
fragment pf, then one of the elements of the exclusion set is a set of goals that cannot be
satisfied through action on the part of this agent. The exclusion set is defined as follows:

For each s € CS,,, we define g, = {g | pfs(g) C s}. Thus g,, for an element s of the
conflict set, is the set of goals that that cannot be satisfied locally if plan fragments in s
are eliminated from consideration. We let G = {g¢; | s € CS,;, } and define the exclusion
set for plan fragment pfy, £S,;, as the collection of the minimal subsets of G.

Returning to our example, we compute the exclusion set for D-b. The conflict set for
D-b has three elements. Using the definition of g, we see that

® 9D dD—fD-gD-hD-i = {93,994}
® gp_dD-eD—fD_hD-i = {92»94}

® gD_4D-eD-fD-g.D-h = {92,93}

Thus, G = ESp_y = {{93,94}, {92, 94}{92,93}}.

A choice by agent D to execute plan fragment D-a compels agent B to forego local
action in partial satisfaction of two of the other three global goals about which it has local
knowledge. Which two of the three should be abandoned is dependent on decisions made
clsewhere.

The exclusion set exposes relationships between plan fragments and goals. It is often
desirable to detect and reason about mutually infeasible goals. The relationship of in-
feasibility s a very strong one. Goal gl is (locally) infeasible with goal g2 if each of the
(local) plan fragments for gl has g2 in every element of its exclusion set (and conversely).
When two goals are (locally) mutually infeasible, an agent knows that it cannot act to
satisfy both goals, due to local constraints. Once exclusion sets have been determined,
infeasibility 1s not difficult to detect.

The three types of relationships we have discussed are all rooted in local constraints.
Conflict, exclusion, and infeasibility are essentially concepts which would not be particu-
larly significant were it not for the constraints on joint cxecution of plan fragments that
exist locally. Althongh the concept of conflict does not appear to propagate in a meaning-
ful manner. exclusion does. The key element in this propagation lies in the observation
(which we have made hefore) that a choice on the part of one agent to satisfy a goal
through execution of a specific plan fragment constrains the set of remaining choices that
aic available to other agents for satisfaction of that goal.
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As we have seen. the construction of exclusion sets allows us to assess the impact of
executing of a plan fragment that is due to local conflict. In addition, we would like
to know how the conflict associated (locally) with execution of a plan fragment affects
the ability of other agents to satisfy their goals. The Induced Exclusion Set is our
mechanism that provides a vehicle for propagating this information by capturing the
essence of the impact that local decisions have nonlocally.

In the discussion which follows, we assume that in a distributed environment one
agent does not have knowledge concerning another agent’s internal state. It specifically
does not have any knowledge about resources over which it has no control. The agent
must therefore gain knowledge about the impact its choice has on other agents from those
agents, directly or indirectly.

The Induced Exclusion Set for a plan fragment, pf,, in Agent A, is a collection of
sets of goals, one of which must be abandoned by one or more non-local agents if Agent
A executes pf,. The induced exclusion set for pf,. [[,;,. is defined in the paragraphs
which follow.

Let Xpsr = {pfi | pfr € Pa, pfi & Py, resources(pfr) N resources(pft) # ¢, and
glpfr) = g(pfi) }. Thus. each individual plan {ragment in X,;, is a non-local plan
fragment which may connect directly with pfz (via a shared resource) in some global

plan.

For each agent. K. with plan fragments in X, 7, we must determine the contribution
to the induced exclusion set for pfe due to constraints known by agent K. For each plan
fragment p € X, 5, N Py we therefore let

e, ={e|e=csUicfores e ES, and ie € [ F,}
-, 1s a set of sets, each of whose members reflects potential conflict
due that could arise if plan fragment p is selected by agent K. In this construction, each
fs represents a contribution to e, that reflects constraints local to agent K, while each
re denotes a contribution that agent K has received from other agents relative to plan
fragment p. For this reason. it is necessary to combine these contributions into a single
element. fx r.. that may be propagated to Agent A. Eg s, is defined as the collection

Notice that ecach e

of minimal snbsets of Ue, for p € X5 N Pr.

Continuing the definition, the induced exclusion set for plan fragment pfx, I E,;,
i+ ‘he collection of the maximal subscts of FF = |J Ex ps-. This definition of I E s, permits
incremental construction of induced exclusion sets under the assumption that initially
[FE,¢r = o for all plan fragments.

Once again. returning to our example, we compute the induced exclusion set for C-a.
Observe that plan fragment C-a matches (in D) with either D-a or D-b and in A with
A-a. so that X, = {A-a,D-a,D-b}. As we have seen, the exclusion set for D-b is {{g3.
gt}. {g2. g1}. {g2, g3}}. Coincidentally, the exclusion set for D-a is thie same as that for

45




D-b, while for A-a the exclusion set is {{g2}, {g3} ,{gd4}}. The set E used in computing
the induced exclusion set for C-a is the union of the exclusion sets just mentioned, so
E = {{92},{93}, {91}.{93.94}, {92,94}.{92,93}}. The induced exclusion set for C-a is
the set of maximal subsets of E, so I Ec_, = {{g3,94}, {92, 94}, {92,93}}.

Intuitively, this 1s telling agent C that agent A is forced to forego one other goal if C-a
is chosen and agent D is forced to forego two of the other three goals if C-a is selected.
Each nonlocal agent transmits a minimal set of exclusions it knows about. Clearly, agent
D reports more extensive nonlocal impact, and the construction of the induced exclusion
set via maximal subsets reflects this impact.

The induced exclusion set is incrementally built during negotiation. When one agent
(agent A) requests information about the impact of executing plan fragment pf, on an-
other agent (agent B), agent B attempts to summarize all the knowledge it has about
that impact. This knowledge is initially found in the exclusion sets of each of its plan
fragments which coordinate with plan fragment pf,. As has been mentioned, the induced
exclusion set in agent A for plan fragment pf, is empty initially. As nonlocal knowledge
becomes available, this set is augmented in the obvious way. Given sufficient time, an
agent can acquire knowledge about the system wide impact of executing each of its plan
fragments. It does so, however, without the exchange of detailed information concerning
resource availability in the system. It is not difficult to show that incremental construc-
tion of the induced exclusion set for a plan fragment can be managed so that it converges
after no more than 2n exchanges of information, where n is the number of agents in the

systemn.

4.4.2 Computation of Conflict

Most of the work involved in providing an agent with a reasonable level of understanding
regarding the impact of local decisions lies in computation of conflict within each agent. In
this section, we give two procedures for carrying out this computation. The first takes the
view that the conflict set relative to a plan fragment is the collection of sets determined
by finding complements of maximal feasible sets. The second constructs a representation
of conflict directly as the collection of minimal infeasible sets. Both computations yield
sets that provide the same information relative to exclusion and infeasibility.

Strategy I
For every plan fragment pf, in pfsy

. compute-maximum-compatibles(reservation-list goalsy - g(pfi) pfi)

2. take complement of cach maximum compatible with respect to pfsq — pfs, where

g =g(pf).

The function compnte-maximum-compatibles is defined as follows:
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compute-maximum-compatibles (reservation-list goals compatible-set)
if (null goals)
add compatible-set to maximum compatible sets and delete subsets
otherwise
for every plan fragment pf, for g,. the first goal in goals,
if pf. does not exceed resource availability based on reservation-list,
then for everv resource r, required by pf,.,
add 1 to reservation-list entry for r,
add pf, to compatible-set
compute-maximum-compatibles (reservation-list (goals - ¢,) compatible-set)

This algorithm computes the conflict set by finding maximal compatible sets and their
complements. Its complexity is bounded by

| Pa| «[maz(] pfsy |) * 4 of resources | 194l

In fact, our experiments indicate that this expression does not represent a tight bound
when the scenario represents an overconstrained situation. Since there are many fewer
feasible sets when the problem 1s overconstrained, this is not surprising. The second
procedure, given below, computes minimal infeasible sets (under the assumption that
plan fragment pf, is selected). It is not hard to see that the second strategy is more
efficient when the problem is underconstrained, as major portions of the algorithm are
not exercised when there is no hard resource constraint to test. In the worst case, Strategy
2 is exponential in (number-of-plan-fragments * number-of-resources-known).

<

Strategy 2

1. For each resource, r. required by plan fragment pf,:

(a) for each goal, let S,(g) = {plan fragments for goal g that require resource r}
(b) let S, ={Sr(gi) lgi € Gy —gpfz}
(c) if copres(r) <| S, | then
i. define CONF(r) as
{s]s=S5,US,U---US,,, where n =| S, | —coptes(r) + 1 and S;, € S,.

2. Construct CONF = {¢|c= ¢ UcU---Uec, where ¢; € CONF(r;) and r; is known
to agent A}

3. Conflict is represented by the collection of minimal subsets of CONF.
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4.4.3 Status and Future Directions

We have discussed formalisms that permit an agent in a distributed planning system
to gain knowledge about the interaction between consequences of its local actions and
constraiuts existing elsewhere in the system. These formalisms define an abstraction
hierarchy representing impact at the level of plan fragments, at the level of plan fragments
relative to goals, and at the level of goal interactions. This theory provides a basis for
agents to begin negotiation by exchanging enough information to make good heuristic local
decisions. Future work will involve the implementation of these ideas as well as the further
development of multistage negotiation. Extensions of these formalisms that are useful in
dynamic domains requiring incremental plan generation are also being formulated.

4.5 Maintaining Consistent Beliefs in a Shared Knowledge Base

In the previous sections we have examined cooperation among agents involving message
passing. At the local level cooperation may also be achieved by sharing knowledge con-
cerning the current state of the communications network. Inferences of one agent are
shared with the others, in a central knowledge base. The shared knowledge base is man-
aged by the Knowledge Base Manager (IKBM).

The KBM has the responsibility for managing the knowledge base. Within the KBM.
some type of truth maintenance system must be active. Its tasks involve regulating each
problem solver’s beliefs in a consistent manner, as well as providing a means by which one
agent can easily share its inferences with the others. While the truth maintenance system
will not directly address resolution of inconsistencies across agents, it must provide an
efficient mechanism by which the KBM can recognize inconsistencies among agents.

The MATMS (Multi-agent Assumption-based Truth Maintenance System) has been
developed to manage a knowledge base shared by multiple problem solvers. Each problem
solver has its beliefs “independently™ managed in a manner similar to that provided by
a conventional truth maintenance svstem. That is, every problem solver in the system
can add and retract behiefs from its beliel set and the MATMS will ensure that the belief
<et remains sound and complete every inference and only those inferences derivable
from the set of assimptions in the belief set are included in the belief set. A fundamental
difference in this svstem as opposed to conventional truth maintenance systems is that an
inference provided to the MATNMS is also maae available to other problem solvers -— any
agent which believes the assumptions npon which an inference is based has the inference

placed mits helief set.




4.5.1 The Role of Truth NMaintenance

During the course of normal problem solving activity, an agent. or problem solver. may
formalize or make use of assumptions. Assumptions can be divided into three types:
Jelanlt assumpoions (unless there is evidence to the contrary, assume that the emplovee
1~ cetting paid™ ). snppositions [ “suppose that the emplovee is not getting paid™). and new
observations of the current state of the world (“the emplovee is not getting paid™). The
cotnmon bond among the three is a belicvability which is not dependent upon any other

21(](f

Everyv inference drawn by a problem solver can ultimately be traced back to a set
for sets) of assumptions. Asx opposed to essumptions. the believability of an inference is
dependent upon the believability of the assumptions. If an assumption set upon which
an mference is based is currently believed by a problem solver. then that inference should
aisu be believed, regardless of the type of the assumptions involved.

The assumptions and the inferences based upon these assumptions with which a prob-
e ~olver 1s operating are referred to as the current belief set of the problem solver. Every
time a problem solver draws an inference. makes an assumption. retracts an inference. or
retracts an assumption. it changes its belief set. When a problem solver changes its belief
<ot many difficulties arise. How much of what was believed before the change can stiil be
believed after the change? This is commonly called the frame problem. In more general
rerms. the frame problemiis = the inability to model side effects of actions taken in the
world by making corresponding modifications in the database representing the state of
the world. " [1) For example, which beliefs must be removed. and which beliefs can remain.

when a particnlar assumption is removed?

Another problem anses when the agent introduces a belief to the knowledge base which
contlicts with one which is already present. Tlow can the intentions of the problem solver
be correctly recogmzed? Suppose an agent wished to override a default assumption. For
example, imagine that the default /is-a attribute of each object in the knowledge base is
square. W objeer RE33 15 in the knowledge base, its default is-a attribute 1s square. If
the agent realizes that RE33 s actually a circle, then object RE33 is a circle should be
allowed to antomatically override the default assumption. A belief which the problem
solver has explicithy made shonld be allowed to override a default assumption. But this is
the case if the problem solver introdnees a bhelief that is inconsistent with another which
i> not a defanlt assumption. If after asserting that object RE33 is a circle, the agent
asserts objeet RESD (s a triangle, then the agent has explicitly made two assertions which
are inconsistent. In general. when a problem solver adds a belief which contradicts an
existing belief, does the helief set become inconsistent, or should the most recent belief
<simply override the belief with which it 1s inconsistent?

If a4 belief set of an agent does become inconsistent, classical first order logic suggests
evervthing can be proven. and everything can be disproven, so the knowledge base is
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essentialiv worthless. It seems evident that only the attributes of those objects which are
logically affected by the inconsisteney shonld be questioned. Consider a knowledge bhase
which contains object BESS is a triangle and object RE33 is a coele. If there exists no
logical connection between object RESS and object hy77. then the shape of object hy77

should not be suspect.,

To address problems associated with changing beliefs, truth maintenance systems [10.

6. 27, 25] have been developed for nse with single problem solvers. Whenever the problem
solver adds or retracts a beliefl the truth maintenance svstem is invoked to manage the
behetfs. For instance, when an assumption is removed. the svstem can determine tafter
an indeterminate amount of thme) which mferences have to be removed becanse they
depended. cither divectiv or indirectly, on the acceptance of the assumption. In addition. i
two beliefs are mmeonsistent, the entire knowledge base 1s not rendered useless. Rather, the
tmith marmtenance svstem can determine which subset of heliefs in the knowledge base are
weonsistent the rest of the knowledge Lase remains consistent. Default assumptions are
also handled appropriatelyv. That is defanlt assuniptions arve overridden when necessary,
atd meome back” f 4 probler solver shouid retract the belief which overrides 1t As an
vartooies consider the case when there exists a default assumption Car X fas four whecls
arvda nroblem solver asserts Cor X fias sorowhiecls, 1 the problem solver retracts Car X

i

G~ s cloeddecthen e tinth maintenance svstem wontd restore the belief that Car X

[ aadson 1o sGiving these problemis. the truth maintenance svstem records every
wierence nades Probles solving becomes more efficient hecause every inference qveed
ool he ol otees Suppo-e ooproblem solver s mvoived e a series of long. expensive
compitatons. I decides o srop the computations to perform another task. wpon
retnraing o the orcina taske withont a teoith maintenance svstem. the problon: <civer
pneht be foreed tostart the task frem the beginning again. thus having to recompuie many
resitltss Wik the trath mamtenance system. the problem solver can continue essentially
where it had halted. When the problen: solver re-asserts the assumptions which were
ot belief ser whiie 11 was performing the orteinal taske the trath maintenance svstem
restores any inference the agent had moats belief set while performing the task.

Our work is concerned with a distributed problom solving environment i whieh there
are amnnber of agents cooperating by passing messages to cach other requesting action
and by sharing mferences ina central knowledee base. Fach agent’s belief set s kept
within the central knowledee bhase. When an agent adds an inference 1o its belief ser.
that inference 1s shared with the other agents hecanse the validity of an inference n
the central knowledee hase depends only upon the validity of its preconditions. As an

cxample. suppose the following rule exists i one of the agents:
VAl =07
Fhe pile can be interpreted as I Uand I8 are bhelieved, then ¢ helieved ™ Onee the
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problem solver enters this knowledge into the shared knowledge base. any problem solver

which believes -1 and 3 will believe (.

There are many dithiculties in managing a shared knowledge hase using the techniques
that a conventional truth maintenance system employs to manage a knowledge base ac-
cessed by only one problem solver. Every problem present in the <ingle agent environment
15 also present in the multi-agent environment. and many additional difficulties are en-
countered that are due to the distributed aspects of the problem solving system. First, a
singlc agent truth maintenance system organizes its knowledge base so that the problem
solver “sees” onlv those beliefs which are in its current belief set. A truth maintenance
system in a multi-agent environment must perform this task for each of the agents. In
doing so. the system must handle the possibility that one agent may believe a value for
a picce of knowledge. while another may believe the opposite. To illustrate this phe-
nomenon. consider the fact that the use of supposition by one agent should not modify
the beliefs of another agent. For example. imagine that one agent believes that Resource
N 1= available. If another agent. while engaging in hyvpothetical reasoning, adds the sup-
position that Resource X is unavailable. the first agent should still believe that Resource
X 1= available. The truth maintenance svstem must also handle situations in which one
piece of knowledge may be currently believed by any number of agents and at the same
time disbelieved by any number of other agents.

Another difficulty arises when one realizes that the assessment of the current state of
the world 1s achieved through the combined cfforts of all agents. That is, part of each
agent’s task 1s to “fill in” the incomplete portions of an overall assessment in order to
aid one another. For the most part problem solvers will agree with each other, but there
will be tirnes when two problem solvers disagree on a piece of knowledge in the knowledge
base. For example. PS) (Problem Solver 1) might believe Resource X is available, and P.S;
mitzht believe Resonrce X is unavailable. A diserepancy of this type could cause prohlem
wiving to diverge bevond the point of recovery. It is important that inconsistencies
hetween problen solvers® assessments of the current state of the world be recognized. and
ap attempt made to resolve them. Often there will be times when the “differences of
opinmion” cannot be resolved. At these times. the discrepancies must be permitted to
stand. hopefnllv to be resolved in the future.

Finallv. argnments concerning the importance of efficiency in a truth maintenance
-vatem are significantly magnified when comparing a multi-agent environment to a single
agent environment. The truth maintenance system managing a knowledge base shared by
mnlitiple problem solvers must be prepared to shift its focus of attention from one problem
solver to another quickly, even if just to answer queries. This problem is not encountered
it a single agent environment - the trnth maintenance system is always concerned with
the single agent. Therefore, even if the other problems in managing a knowledge base
<hared by multiple agents are addressed adequately. the system might be too slow to be
nseful in any practical problem solving system.




4.5.2 Comparisons with Existing Truth Maintenance Systems

Existing truth maintenance systems have failed to address the need for a system in which
multiple problem solvers’ inferences are controlled by a single truth maintenance system.
However, because we have adopted much of the terminology of conventional truth main-
tenance systems, and the MATMS borrows heavily from concepts developed in existing
truth maintenance systemns, the two dominant classes of truth maintenance systems are
presented.

Doyle’s Truth Maintenance System (TMS) [10] was the first domain independent truth
maintenance svstem. Doyle proposed that reasons for believing or using each belief,
inference rule or procedure be recorded. This allows new information to displace previous
conclusions and a consistent knowledge base to be kept. In the TMS. each belief in the
knowledge base 1s explicitly marked as either IN or OUT. where IN means that the belief
lias at least one currently acceptable reason, and OUT means that it has no currently
acceptable reason for belief. Given a beiiet or a justification for an existing belict. the job
of the TMS 1s to determine the belief status of each of the beliefs in the knowledge base.
thus retaining one consistent knowledge base.

Dovle’s TMS defined the class of justification based truth maintenance systems. That
s, the status of each belief is determined by searching through cach justification until
reaching a set of assumptions. If the set of assumptions are valid (or believed). then
the belief is valid. Considering that these justifications are examined for each belief in
the knowledge base, and any particular chain of inferences which eventually leads to a
particular inference in question may be long, updating the knowledge base may require a
long period of time.

The TMS was deemed inappropriate for a multi-problem solver environment because
it maintains only one belief set at a time. Given any point in time, the TMS has one et
of beliefs which are IN and one set which are OU'T. Switching belief spaces is cumbersome
because the status of each belief has to be directly recomputed. As we have observed.
in a multiple problem solver environment, the truth maintenance system must be able to
switch belief spaces quickly.

De Kleer, in his Assumption based Truth Maintenance System (ATMS)[6. 7], rec-
ognized this problem also. though not for the same reasons. De Kleer was interested
in hypothetical reasoning. in which assumptions are made often. and results compared
against the assumptions. Therefore. the ATMS was designed explicitly to switch belief
sets efficiently. The ATMS is the foundation for the MATMS, and as such will be discussed
im mnch greater detail.

[n order to create a system which could switeh beliefs sets quickly. de Kleer recognized
that an inference is nltimately dependent on a set (or sets) of assumptions. That is. an
inference may be derived from other inferences, and these inferences may have been derived
frovn other inferences. but eventually this trace will find assumptions only. Therefore.




when a problem solver changes its belief set, the justifications of the inferences in the
previous belief set do not have to be traced to determine if they still have valid support.
Rather, each inference could be tested to see if the assumptions upon which it is based
are still present in belief set.

In the ATMS the entire set of beliefs is divided into sets called conterts; each context
represents a belief set. Essentially a context is defined by its assumption set, which is
called an environment. and includes all inferences whicl can be derived, either directly or

indirectly, from the environment.

As a context is associated with a particular set of beliefs, each belief is associated
with a list of contexts to which it belongs. Much of the ATMS’s work involves ensuring
that each belief’s label — the set of environments from which the node is derivable — is
consistent, sound, complete, and minimal with respect to the justifications. (A label is
consistent if each environment in the label is consistent, sound if every environment can
derive the belief. complete if every way to derive the belief is included in the label, and
minimal if no environment in the label is a superset of another in the label.) Labels must
be kept this way primarily for efficiency.

There are three features which make the ATMS more appropriate than the TMS for
the multi-agent system described. First, the ATMS maintains more than one belief set
at a time by maintaining multiple contexts. Each agent in a multi-agent system could
conceivably be operating with a different set of beliefs, so it is essential that a truth
maintenance system handling their beliefs have the ability to maintain multiple belief
sets. Second. a problem solver using the ATMS can change its belief set much more
swiftly than if it were using the TMS, because the TMS is often forced to perform costly
tracing in orcder to reassign belief status to cach of the beliefs in the knowledge base.
Switching belief sets is also quicker in the ATMS because the new belief set could already
be defined. For example, suppose 2 problem solver utilizing the ATMS adds assumption
X to its belief set. After the ATMS calculates the problem solver’s new context, the
problem solver retracts assumption X. When this happens, the ATMS simply returns the
problem solver to its previous context. The TMS in this situation would have to reassign
belief status to each belief in the knowledge base, only to return the problem solver to its
original belief set. The third reason is that the ATMS handles multiple derivations for
an inference better than the TMS. (Although it still does not handle it very elegantly, it
is still far more capable than the TMS.) In a multi-problem solver environment, where
inferencing schemes are numerous, a belief is likely to be inferred from more than one set
of beliefs. A truth maintenance system in a multi-agent system must be able to determine
that, if support for an inference is removed, there may be other support which keeps the
belief in the current context.

The major drawback to the assumption based systems is the computation of support
for each inference in the knowleage base. When an inference is added to the justification
based svstem, only the immediate preconditions of the inference are recorded (this is what
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makes the system justification based). Therefore, adding inferences is not difficult. In an
assumption based system, the immediate preconditions must be traced until assumption
sets are found. In situations involving inferences already in the knowledge base that
are themselves immediate preconditions to other beliefs, this causes inefficiency. Each
belief which is either directly or indirectly influenced by a “new” inference must have the
assumption set upon which it is based recomputed. Therefore, adding inferences might
require a significant amount of computation.

An interesting observation is how each truth maintenance system handles default
assumptions. The focus of each is how to make default assumptions “come back” when a
belief which previously overrode the default is retracted. Both the TMS and the ATMS
have chosen to include default assumptions explicitly in the belief set of the problem
solver. If the number of default assumptions is large, then each system is hampered.

Martins and Shapiro in [25] present a similar comparison of assumption based and
justification based truth maintenance systems. They also present a useful example of how
an assumption based system manages beliefs as opposed to a justification based system.

4.5.84 Functional Design of The MATMS

The MATMS has been designed for use in a system involving any number of agents
sharing a central knowledge base. In such a system, each problem solver registers its
beliefs with the MATMS. An inference is registered along with the beliefs upon which it
directly depends, and the job of the MATMS is to maintain multiple belief sets. Thus
the MATMS is responsible for placing an inference in any belief set which contains the
assumptions upon which it is based, informing an agent when its belief set becomes
inconsistent, changing the belief set of an agent efliciently, and switching its focus of
attention from one agent to another quickly.

4.5.3.1 Detinitions As a matter of convention, the operators of propositional logic
are utilized from this point on. Specifically, the logical connectives of interest are A (and),
V (or), = (implication), = (not), and L (false). Some examples are A = B (A implies
B). C A D = 1 (the quantity C' and D implies false), and £V F = -G (E or F imply
not (7). Shorthand notation will be used for A: C' A D = 1 will usually be written as
CD = 1,and ((A)(P)) means (A)V (B).

A proposition is the MATMS datum that represents a piece of knowledge which a
problem solver has told the MATMS. Each proposition is unique. Example propositions
are “Jim is a golfer.” “Radio R1 has failed,” and “The Celica is being repaired.”

[Lach proposition is attached to a belicf, the basic datum on which the MATMS oper-
ates. DBeliefs are explicitly divided into two categories: assumptions a» d inferences. An
inference is a belief whose validity depeuds upon other beliefs. For instance. if an agent

54




Lias the rule (AAB)V(CA(EV F)) = G and tells the MATMS that it believes G because
of it believes (" and FE, then G is an inference because it is only beiieved in this case if
C' and E are believed. An assumption is a belief whose validity does not depend upon
the acceptance of any other belief. Assumptions are divided into three types: default
assumptions, suppositions, and new observations concerning the state of the world. The
last two types will be referred to as non-default assumptions.

For discussion purposes, we represent inferencing mechanisms as rules, but they do
not necessarily have to be interpreted in a strict sense. For instance, A = B is merely
meant to reprecent that inference operations can be activated in the presense of A to draw
the logical conclusion B. The exact meaning of an inference rule can be interpreted as
“In the presense of certain beliefs, another belief is implied, no matter which other beliefs
are present.” In other words, if A = B, B is included in any set which contains A, such

as (AB)and (AFF).

A Justification for a belief is the set of beliefs which must be present for its validity.
An assumption has no justification {the justification is nil), whereas an inference must
have at least one justification, and may have many. The justification for an inference
1s comprised of two components: its immediate preconditions (the beliefs from which it
can directly be inferred), and the assumptions upon which it is based (the assumptions
that it ultimately depends upon). For example, considering A = B, the assumptions
that B is based upon are the same as its immediate preconditions — ((A)). f B = C.
the assumptions that ' is based upon are again ((A)), but the immediate preconditions
necessary for its derivation are ((B)). If C = D and E = D, the assumptions that D is
based upon are ((A)(E)) and the immediate are ((C)(E)). (Recall that ((C)(FE)) should
be interpreted as (C') V (F).)

At any point in time. each problem solver has a belief set — a set of assumptions
and inferences which have been derived from those assumptions. Some of the beliefs are
default assumptions, some are non-default assumptions, and some are inferences. An
environment is a unique set of non-default assumptions under which a problem solver has
operated. Environments are created incrementally — whenever a problem solver retracts
or adds a non-default assumption, an environment is created if one does not exist that
matches the new set of assumptions.

A contert is an environment and all inferences which have been derived from the
environment: hence it 1s a group of beliefs. For every environment, there is exactly one
context, and a context is created each time an environment is created. If a problem solver
has never worked with a particular grouping of assumptions, the MATMS does not have
this set of assumptions listed an an environment, so there is no context for this group.

A premise 1s a rule which states that a set of propositions are inconsistent. Beliefs
with these propositions are therefore inconsistent. Examples of premises are:

~(“Fred is dead” “Fred is alive”)
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or
—(“a man is working

7«

a man is resting”)

As is evident from these examples, premises can be specific or general. It is important to
observe that a premise has no meaning until a belief is supplied to the knowledge base
which has as a proposition one of the propositions named in the premise. A set of beliefs
is said to be contradictory if the propositions of the beliefs violate any premise. The set
will be referred to as an incompatible belief set, or incompatible.

A context is inconsistent if it contains contradictory beliefs. In other words, the
context 1s inconsistent if any subset of its beliefs is an incompatible belief set.

The MATMS monitors the belief set of a problem solver by recording the context in
which the problem solver is currently working. A problem solver is working in a particular
context if it has explicitly told the MATMS that it holds all of the assumptions defining
the context.

A problem solver retracts an assumption when it asks the MATMS to remove the as-
sumption from its current belief set. Note that neither the assumption is actually removed
from the knowledge base, nor the inferences which have been registered as depending upon
it. The problem solver is just placed in a new context. Thus, the problem solver switches
conterts whenever it adds or deletes an non-default assumption.

4.5.3.2 Data Structures The MATMS is a frame-based system in which there are
five basic types of objects: beliefs, inferences, assumptions, contexts, and incompatibles.
Our discussion of the data structures of the MATMS begins with belief. Each belief has
slots proposition, contexts in, and influences. Contezts in is a list of contexts in which the
belief holds. Influences is a list of beliefs which this belief directly influences. The frame
for belief, as well as the other frames, is depicted in Figure 18.

The beliefs, as previously mentioned, are explicitly divided into two classes at any point
in time — assumptions and inferences. Each class inherits from the belief frame. The
inference class, however, also includes the slots assumptions based upon and immediate
preconditions. Immediate preconditions is a list of sets of beliefs from which inference
riles were applied to produce the resultant inference. Each belief in each of these sets
hhas this resultant inference as a member of its influence slot. If the length of immediate
preconditions is greater than one, multipie derivations for the inference have been provided
to the MATMS. Assumptic~s based upon are the minimal® sets of assumptions from which
the inference has been derived.? If the environment of a context is a superset of any set in

“Minimal in terms of set inclusion. For instance, the-minimal scts of ((ABYABC)(DE)) are

HABNDEYY. {ABCY is not included hecause it is a proper superset of (AB).
YThe tmmediate precondifions slot is not minimal because it is necessary to maintain records of every

o the inferenee has been derived i case a derivation is retracted by the problem solver. This is
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Figure 18: Net Connecting MATMS Frames

assumptions based upon, then the inference is included in the context. Assumptions based
upon is constructed by tracing the chain of immediate preconditions until assumptions are

found.

The frame for a context has environment, inferences, and incompatible belief sets slots.
Environment is the unique set of non-default assumptions which defines the context.
Inferences is the list of all inferences which have been derived from the environment. An
inference is included in inferences if it is based upon at least one set of assumptions of
which at least one is non-default, and all of the non-defaults are included in environment.
The incompatible belief sets slot contains a list of sets of beliefs in the context which have
been previously defined in a premise as being incompatible. Each belief in incompatible
belief sets is a member of =", o ! [ dnferenmree T l.Snition, if incompatihle belief
sets is not empty, the context is inconsistent.

At this point. it is appropriate to present an example to illustrate the data structures.
Imagine a simple two-agent system consisting of Agent, and Agent,, and suppose that
part of each agent’s task is to plan the schedule and activities of students. The following
scenario occurs:

1. Initially, each agent is working with only the default assumptions. This “null”
context will be referred to as C0. (Alternative symbolic representations are given
so that a interpretable table can be presented at the end.)

2. Agent, adds the assumption “Economics 337 will be held in room 445 of Hamilton

discussed in “Write Operations.”
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Figure 19: Inference Tree for Example Illustrating Data Structures

Hall 6/5/88” (A1) to its belief set. (There is a default assumption which states that
Economics 337 is usually held in Morley Hall.) This causes the MATMS to create
a new context, C'l. Agent, is then placed in C1.

3. Agent, adds the assumption “Hamilton Hall is further from the dorms than Morley
Hall” (A2) to its belief set. This causes the MATMS to create a new context, C2.
Logically, Agent, is then placed in C2.

4. Agent, adds the inference “It will take longer than normal to go to class tomorrow”
(I11) to its belief set. The inference is based upon “Economics 337 will be held in
room 445 of Hamilton Hall tomorrow” (A7) and “Hamilton Hall is further from the
dorms than Morley Hall” (A2). The MATMS adds the inference to every context
which contains A and 42 — only C2.

5. Agent; adds the inference “A person in Economics 337 should leave early for class
tomorrow” (I2) to its belief set. The inference is based upon only “It will take
longer than normal to go to class tomorrow” (71). The MATMS adds the inference
to every context which contains /1 — again only C2.

6. Agent, adds the assumption “Economics 337 will be cancelled tomorrow” (A43) to
its belief set. This causes the MATMS to create a new context, C3. Agent, is then
placed in C3.

7. Agent, adds the inference “A person in Economics 337 should play golf tomorrow™
(13) to its belief set. The inference is based upon only “Economics 337 will be
cancelled tomorrow” (4.3). The MATMS adds the inference to every context which
contains I/ -~ only C3.

Figire 19 shows the inference tree for this knowledge base, and Table 7 represents
the data structures of the MATNMS at this point in problem solving. In the table. “as-
sumptions” 1s shorthand for “assumptions based upon,” and “preconditions™ is short for

“immediate preconditions.”
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environment () | (AD | (AT A2) | (A3)

mferences () () (I 12) | (I3)

incompatibles || () () () ()

Al A2 | A3 11 12 I3

contexts in (C1 C2) | (C2) | (C3) (C2) (C2) (C'3)
influences (I1) (Ity 1 (I13) (12) () ()
assumptions * x * ((A1T A2)) | ((A1 A2)) | ((A3))
preconditions = * * ((A1 A2)) ((11)) ((A3))

Table 7: Example Data Structures

Continuing with the discussion of the data structures, as noted in the previous section.
premises may or may not be used by MATMS. Tor example, consider a premise “a man
cannot be working and resting at the same.” If a problem solver never supplies a propo-
sition pertaining to a particular man and his work status, then this premise will never
be used. But suppose a problem solver supplies “Jim is working™ after supplying “Jim
is a man.” The MATMS must recognize that “half” of the premise has been supplied.
If the other half is supplied —— “Jim is resting” — then the instantiation of the premise
will be complete: the beliefs representing “Jim is working” and “Jim is resting” form an
incompatible. Note that this premise can be instantiated manyv times.

The data structure for incompatible is used to capture this notion of how incompatible
belief sets are created. The slots are completion status, incompatible belief set. uninstan-
tiated problem solver data, and premise. Completion status can have either of two values:
complete or incomplete. A status of INCOMPLETE means that only a subset of the
propositions involved in a premise have been proposed by problem solvers. This would
be the case in the above scenario right after a problem solver supplies “Jim is working.”
I'ninstantiated problem solver data refers to the data mentioned in the premise which
have not vet been supplied by a problem solver. An incompatible which has completion
status of COMPLETE details a complete set of beliefs which cannot exist in the same
context. This set is the incompatible belief set. As an example, the following incompatible
will become complete when (and if) a problem solver provides the MATMS with an belief
whose proposition is “Fred is asleep”. In this case it is important to differentiate between
a problem solver datum and the MATMS belief which represents it, so we use the notation
B(x) to mean “the belief representing the problem solver datum x”.

completion status: INCOMPLETE
incompatible belief set: (B(“Fred is awake”))
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uninstantiated problem sciver data: (“Fred is asleep”)
premise: —~(“Fred is awake” “Fred is asleep”)

When and if the incompatible becomes completed, all contexts will be searched to deter-
mine if any one of them includes the incompatible set. The completed frame would look
like:

completion status: COMPLETE

incompatible belief set: (B(“Fred is awake”) B(“Fred is asleep”))
uninstantiated problem solver data: ()

premise: ~(“Fred is awake” “Fred is asleep”)

4.5.3.3 Write Operations Operations of the MATMS will be discussed from the
perspective of the MATMS. The next two sections detail how the MATMS manipulates
its data structures in response to problem solver requests.

There are four basic write operations: a problem solver proposes adding an assumption
to its belief set, a problem solver proposes removing an assumption from its belief set, a
problem solver proposes an inference, and a problem solver proposes removing a particular
justification for an inference. Each is discussed in detail.

4.5.3.3.1 Problem Solver Proposes Adding Assumption The MATMS fol-
lows the operations described below and in Figure 20 when a agent proposes adding an
assumption to its belief set. Note that implicitly an agent may only request to add a
non-default assumption to its belief set. This will be discussed in Chapter 4.

When a problem solver proposes adding an assumption to its belief set, the MATMS
first determines if a proposition is already present which matches the proposed assumption.
If the proposition already exists, then there must exist either a default assumption, a non-
default assumption, or an inference which has the proposition in its proposition slot. If
it is a default assumption, the agent is not operating properly, because a problem solver
cannot “re-accept” a default assumption by explicitly attempting to add it to its belief
set. (This is discussed in Chapter 4.) If it is a non-default assumption, the MATMS must
check to see if it is already present in the problem solver’s current context. If it does,
then the problem solver clearly made a mistake and is so notified. If an inference has
the proposition in proposition, then the problem solver is notified that it is attempting to
assume something which has already been derived.

If a proposition did not already exist, one is instantiated at this time. Whenever a
new proposition is made. the incomplete incompatibles are examined to determine if the
new problem solver datum will complete any of them. Then the premises are searched to
determine if anv new incompatibles should be started. After this search. the assumption
i~ instantiated with the new proposition as its proposition.
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1$ proposition

an assumption? instantiate assumption
create/complete incompatibles
add assumption to belicf set
does it exist in the current notify agent

context of the agent?

<,

add assumption
notify agent to belief set

Figure 20: Decision Tree for Problem Solver Proposes Adding Assumption

At this point, if there is an assumption with the proposition as its proposition, and
that assumption is not already in the problem solver’s belief set, the MATMS must find
or create a context which has an environment containing only the environment of the old
problem solver context and the new assumption. Note that this has no effect on the belief
sets of the other problem solvers —- they remain in their current contexts.

The creation of a context occurs in four phases:

I. The context is first instantiated with most of the slots unfilled — only the environ-
ment slot is set. with a list including the new assumption and the assumptions of
the previous context.

2. Fach inference which has been derived from the set of assumptions is now placed in
the inferences slot of the context.

3. All incompatibles are now examined to sece if the new context is inconsistent. If it
1s. the incompatibles slot is set appropriately.

4. The context is appended to the conterts in slot of each inference and assumption
included.

Whether or not a context had to be created for this different environment, the problem
solver now switches contexts. If the context is inconsistent, the problem solver making the
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notify agent
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Figure 21: Decision Tree for Proolem Solver Proposes Remouving Assumption

assumption must be notitied. A list of incompatible beliefs and how to remove each belief
(this can ouly be done by retracting assumptions) are returned to the problem solver,

4.5.3.3.2 Problem Soiver Proposes Removing Assumption Figure 21 illus-
trates the procedure the MATMS foillows when a problem solver asks the MATMS to
remove an a<sumption from its current belief set. Again. recall that a problem solver may
only ask to remove a non-default assumption from its belief set,

When a problen: solver asks to remove a particular assumption from its belief set it s
asking to be placed in a context which meludes all assumiptions of its current environment
except for the assumption in question. Clearly the assumption must already must be
present in the NIATMS knowledge base. and spectiically it mnst be in the present context
of the problem solver. The problem solver is notified aceordingly if this 1+ not the case.

To actually remove an assnmption from a problem solver helief set a contexi is sough
whose environment matches the new et of assamptions. If it 1s not fonnd. then it is

created by the procedure deseribed i the previons section.
The problem solver ix then placed i the new context. If the context is inconsistent.

the aeent s notificd!
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Figure 22: Decision Tree for Problem Solver Proposes Inference

4.5.3.3.3 Problem Solver Proposes Inference As with other operations dis-
cussed. the proposition which corresponds to the inference supplied by the problem solver
1s the key for how the MATMS decides on an action to take. If the proposition is not
present, clearly the inference must simply be instantiated. If the proposition exists and
i~ attached only to an assumption, the inference must be instantiated. If an inference is
present which has the proposition as its preposition, the problem solver is proposing what
it believes is a valid justification for that inference, wh~*her or not it realizes that th~
inference already exists. The decision tree implied here is depicted in Figure 22.

To clarify the discussion, registering an inference with the MATMS will be divided
into three types of operations: instantiating a new inference, replacing an assumption
with an inference. and supplying an existing inference with another assumption.

Common to all three types of inference operations is a trace of the justification sup-
plied. When an agent proposes an inference, it also provides the justification for the
inference. The first action the MATMS takes is to trace each belief in the justi® -ation
nutil the assumptions upon which the belief is based are found. The minimal combina-
tions of these assumption sets are the assumptions upon which the inference is based. For
example, suppose we have the following knowledge base for a two-agent system: “Route
[01 1s fast™ because “there aren’t many policc men on Route 101”; “Route 101 is fast”
hecanse “Route 101 is a four lane highway”; and “Route 56 is slow” because “there are
many potholes on Route 56”. An agent then proposes the inference “Route 101 is pre-
ferred over Route 56” with justification (“Route 101 is fast” “Route 56 is slow”). The
minimal subsets upon which the inference would be based are: ({“there aren’t many po-
licemen on Route 101" “there are many potholes on Route 56”) ( “there are many potholes
on Route 56” “Route 101 is a four lane highway™)).

Adding a new inference to the MATMS knowledge base is the most straightforward of
the three types of operations. The procedure for adding an inference is to instantiate the
inference with the proposition as its proposition, the minimal assumption sets determined
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above as 1ts assumptions based upon, and the justification itself as its sole irnmediate
preconditions. After the inference is instantiated. the inference is used in an attempt to
complete the existing incompatibles. Also, new incompatibles are created from relevant
premises.

The more complicated steps in adding a new inference pertain to contexts. The as-
sumptions based upon slot determines to which contexts the inference should be added.
For eacli assumption set in assumptions based upon, the intersection of each assumption’s
conterts in slot is taken. This list represents the list of contexts to which all assumptions
i the set belong. The inference is added to the inferences slot of each context in this list,
and rhe context is added to the inference’s conterts in slot.

Note that when a problenn solver adds an assumption to its behef set. no more than one
centext can be found inconsistent as a dircet result of adding the assumption. Only the
problem solver which added the assumption might be placed into an inconsistent context.
However. when a problem solver registers an inference with the MATMS, many contexts
mieht be found inconsistent. This implies that other problem solvers might suddenly
be working with inconsistent belief sets as a result of one problem solver registering an
miference. Fach problem solver whose belief set becomies inconsistent must be notified

coal corrective alternatives must be supplied.

A inference can replace an assumption when a problem solver has derived something
sheither it or another problem solver had previously assumed.  (This assumption
o be erther defanlt or non-default.) This is a likely occurrence as a result of “normal”
prosicn solving activity - - as a problem solver proceeds. it may reach a point at whici.
does net know the present (or any reasonable) value for a particular piece of knowledge
nevessaty to contintue working, so 1t "guesses” a value. Later either it or another problem
Shoer eay produce or recognize confirming evidence, which in effect replaces the assump-
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slot of the assumption. Lach inference which the assumption influenced must have its
cnmedate preconddions and asswmptions hased upon recaleulated. In general this could
carse a fair amounnt of updating if the assumption intHuenced many inferences.

[T the assumption was non-default. the contexts which contained the assumption must
be killed. because they will never be referenced again. Killing a context means removing
the context from eontrets in of cach beliel in the context and deleting the instantiation
of the context, It a problem solver is currently working in a context which is about to
be killed. then it should be notified properly - the problem solver will be told that one
of its assnnyp tions has been replaced by an inference. Generally. the problem solver will
simply choose to accept the assumptions on which the inference is based. This way, the
probleny solver’s beliel set will continue to contain at least the same beliefs as its original
:

i

ehief zet,

When an inference replaces an assumption. the MATMS records the details of the
fransaction so that it knows what to restore in case the inference is retracted.

An example illustrates how the MATMS operates to replace an assumption with an
inference. Consider a simple two-agent system consisting of Agent;, and Agent,. The
foliowing transaction occurs:

1. Initially, each agent is working only with the default assumptions. This “null”
context will be referred to as (0.

2. Agent; adds the assumption “there are many potholes on Route 56 (AI) to its
belief set. This causes the MATMS to create a new context, CI. Agent, is then
placed in (1.

3. Agent, adds the inference "Route 56 is slow™ ([1) to its belief set. The inference is
bascd upon only “there are many potholes on Route 50”7 {A1). The MATMS adds
the inference to every context which contains A1 — only C1.

1. Agent| adds the assumption “Route 101 is ast” (42) to its belief set. This causes
the MATMS to create a new context, (2. Agent, is then placed in C2.

5. Agent, adds the inference “Route 101 is preferred over Route 567 (/2) to its belief
set. Theanferenceis based upon “Route 101 isfast” (A2) and “Route 56 is slow™([1).
The MATMS adds the inference to every context which contains A7 and 42— only
(2

fr. Azent, adds the assumption “Ronte 101 is a four lane highwayv” (A3) to its belief
set. This canses the MATMS to create a new context, (3. Agent, is then placed in
('3

Agent, adds the inference “Ronte 101 1s fast™ (19) to its belief set. The inference is
hased upon only “Route 101 1s a four lane highwayv” (A 7). The inference is added to
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Figure 23: Inference Tree for Inference Replaces Assumption Example

[ [l i ]

environment () | (A3) | (A1l A3)
inferences () | (I3) | (11 12 13)
incompatibles || () O ()

Al A3 11 12 I3
contexts in (C4) | (C3C4) | (C4) (C4) (C3 C4)
influences (11) (13) (12) () (12)
assumptions * * ((A1)) | ((A1 A3)) | ((A3))
preconditions x * ((A1)) | ((11 I3)) ((A3))

Table 8: Data Stru~ties for Inference Replaces Assumption Example

each context which contains 4.3 — only 3. Because the inference I3 replaces the
assumption A/, all contexts which include 4/ must be killed - - C7 and C2. Agent,
is told that an assumption in its belief set, "Route 101 is fast™. is being replaced by
an inference. In order to continite with its activity, it should accept the assumption
“Route 101 1s a four lane highwav™.

S0 Agenty adds the assumption “Ronte 101 15 a fonr lane highway™ (.17} to its belief
set. This canses the MATMS to create a new context, (. Agent, is then placed
'/

4’.

Fignre 23 shiows the inference tree for this knowledge base. Table N represents the
data structires of the NEATNMS at this peint in the problem solving.

The aleorithm for adding a justiheation is not very different than the ane for replacing
s assumption with aninference. To add a justification to an existine inference. the

a~sumplions bascd upon of heliefs ~above™ the imference in the tree must he recalenlated.
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Figure 24: Inference Tree for Example Illustrating Multiple Derivations

In addition, beliefs below the inference could require updating in certain cases. Consider
an additional step in the two agent system scenario presented a few paragraphs above.

9. Agent, adds the assumptton “There aren’t many policemen on Route 1017 (A4) to
its belief set. This causes the MATMS to create a new context. ("5, Agent, 1s then
placed in (5.

10. Agent, adds another justification for the inference “Route 101 is fast™ (73). The jus-
tification is only “There aren’t many policemen on Route 101" (A4). The inference
is not added to any contexts because the only context which includes A4 already
includes the inference.

Figure 24 shows the inference tree for this knowledge base. The relevant portion of
the data structures of the MATMS at this point in the problem solving are presented in
Table 9.

In general, adding a justification to an existing inference could be far more expensive
than simply replacing an assumption with an inference because search must occur in both
directions, instead of just up the tree.

4.5.3.3.4 Problem Solver Proposes Retracting Justification of Inference
When an agent proposes retracting a justification for an inference, it is asking to remove
a certain list of beliefs from the inference’s immediate preconditions. 1f the justification
exists, the MATMS must perform a potentially long series of operations. The easiest
steps are the earliest. First, the justification is removed from the inference’s immediate
preconditions. Next, the influences slot of each belief mentioned in the justification the
problem solver wishes to remove is readjusted. More precisely, the inference is removed
from influences of each belief in the justification which is no longer mentioned in any
member of immediate preconditions of the inference. From there, the steps become more
costlv. The decision tree for this case is shown in Figure 25.
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doesypropmition exist?
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an infere
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recalculate "immediate preconditions” and move inference from "inferences” 1o "contexts in"
“contexts in” of the inference. recalculate of every context the inference was in. notify
"contexts in” of every inference up the tree.  each agent working in a context altered by

the previous step that the inference is now

an assumption,

recalculate "assumptions based upon” for inference.
recalculate "assumptions based upon” for ¢very inference
up the tree.

Figure 25: Decision Tree for Problem Solver Proposes Retracting Justification

If there is still at least one sct of belicfs in the inference’s imincdiate picconditions,

B [G] o [ & ]

environment || (A3) | (A1 A3) | (A3 A4)
inferences (13) | (11 12 13) (13)
incompatibles () () ()

A3 Ad [l [2 I3
contexts in (C3 CHC3) { (Ch) | (C4) (C1) (C3 C4 C5)
influences (13) (13) (12) () (12)
assumplions * * (A1) | ((AT A3 (AT AD) | ((A3)(A4))
preconditions * - ((A1)) (11 13)) ((A3)(AD))

Table 90 Data Structures for Example Hlustrating Multiple Derivations
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then the contexts in of every inference up the tree (including the inference itself) must be
recalculated. because it may no longer belong to a context currently in conterts in. An
imference is removed from a context by removing the context from the inference’s conlexts
in aud removing the inference from the context’s inferences.

If there 1s not a set of beliefs in the inference’s immediate preconditions, then. concep-
tually. the procedure detailed earlier concerning replacing an assumption with an inference
must be reversed. The only deviation from simple inversion of that algorithm is that for
every context to which the inference previously belonged, the inference is replaced by the
assumption. Also. if a problem solver is currently working in one of these contexts, it
must be notified that an inference it was working with is now an assumption.

Next. every inference “up™ the tree (including the inference from which the justification
has been removed) must have its assumptlions based upon recalculated. as well as a possible

adjustiment to contexts (n.

4.5.3.4 Read Operations The discussion of the MATMS would not be complete
unless its knowledge access functions were discussed. The read operations, from the
perspective of the MATMS. are simple. The problem solver has the much more difficult
task of deciding what to ask, and how to ask it.

The most important (and usually the most difficult) feature of accessing MATMS data
is the domain dependent mapping from the problem solver data implied in the query to
the relevant set of beliefs. This mapping results in both knowledge which has been explic-
itly stated by a problem solver in the course of normal problem solving and the default
knowledge. In Chapter 53,where an example implementation is outlined, a domain-specific
mapping function which relates to a frame based knowledge base implementation will be
discussed. Once the set of relevant beliefs has been determined, the rest is straightforward.

Read operations can be viewed as falling into on of three categories: is a particular
problem solver datum rontained in a particular problem solver’s belief set? (problem
solver dependent query): what problem solvers currently believe a particular problem
solver datum? (all problem solver query); and describe all beliefs relevant to a particular
problem solver datum (context independent query).

For a problem solver dependent query, after determining which beliefs are relevant
to the problem solver data in question, the context of the problem solver to which the
query refers is consulted. First, the non-default beliefs are considered. If any of these are
contained in the context, the MATMS replies appropriately. The MATMS could respond
with more than one belief, and the beliefs could be contradictory. If none of these beliefs
are contained in the context, then the problem solver is considered “opinionless™, and
only the defanlt knowledge is returned if it exists. If default knowledge is returned, it is

identified as <uch in the response.

For the all problem solver query, a problem solver dependent query is performed for
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all problem solvers.

An all contect query is used when an agent requires all relevant beliefs concerning a
particular problem solver datum. All beliefs, including default beliefs which are relevant,
are returned. If the belief is an inference, then its derivation is returned. Assumptions
are simply returned, identified as assumptions.

The problem with the responses to an all context query is that a problem solver may
not understand many of the intermediate steps used to derive the inference. It may
not even understand the assumptions the inference is based upon. Perhaps a more useful
query is a variation of this — the problem solver simply gives the MATMS a set of beliefs,
and then asks what a particular problem solver datum would be if the beliefs were “true”.
In other words, the problem solver might ask something of the form “Suppose A4 and B
were true. What would be the value of C'?” If C can be derived from A and B either
directly or indirectly, the NATMS responds accordingly. If C is an assumption in the
knowledge base, then the MATMS would respond that it is an assumption and its validity
is thus not connected to A or B. If no logical connection between A, B, and C has been
registered with the MATMS, then it would reply onlv the default value for (' if it exists.

4.5.4 The MATMS Interface

The MATMS was designed to be used by agents that “understand™ a specific set of
operating constraints. For this reason, unless it is used properly, some features of the
MATMS might be lost. This section discusses the MATMS interface and shows how the
MATMS should be used by agents without constraining the design of problem solvers.
Problem solving cau take place in a variety of forms, so a presentation of how exactly it
should be done is impossible. Rather, this section details some basic aspects of problem
solving and in particular what a problem solver should expect the MATMS to do and reply
when the problem solver interacts with it. Whereas the previous section was written from
the viewpoint of the MATMS. this section is from the viewpoint of a problem solver.

4.5.4.1 Designing an Appropriate Problem Solver A problem solver which would
work well in the MATMS setting must be rational. In terms of read and write operations,
it also must be aware of what to expect from the NEXTMS. and how to use the MATNMS.

4.5.4.1.1 Rationality ['he problem solver can only expeet rational results from
the MATMS if its inference mechanisms are rational. That is. supplving the MATNMS with
inferences which contradict each other logically on the basis of the inference’s immediate
preconditions will can=e the MATMS to act iirationally. This should be expected. since
the MATMS 15 only reflecting what it is supplied with.

The general rule i< that a problem solver cannot prodnce inconsistent inferences from
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the same set of assumptions. The concept of rationality can be illustrated by a number

of examples.

1. AB=C
AB =D
D= 1
A problem solver possessing these rules would be clearly irrational. Two rules acting
on the same set of preconditions cannot result in contradictory expressions.

2. AB = £
D= I
Ll = L
At the other end of the spectrum, a problem solver with these rules is rational. Two
rules can act on completely different sets of beliefs and result in differing expressions.
Comparisons of most problem solving rules fall into this category.

3. AB=C
AD = F
(F = L
This example falls in between the extremes characterized by the first two examples.
These inference rules are rational when compared to each other.

1. A= C
ABE = D
D= 1
While these rules also fall in between the extremes given by the first two examples,
this set is irrational according to the manner in which the MATMS operates. The
first rule states that in the presence of A and B, the MATMS should include C'. The
second rule states that in the presence of A, BB, and F, include D. With these rules.
the context of the environmert ABD will include C and D, which is irrational.

Rationality as discussed here is conceptually not difficult to encode in a problem solver,
for it requires only that the inference rules of a problem solver be rational as compared
to each other. This property will be referred to as self-rationality.

4.5.4.1.2 Assumptions During normal problem solving activities, an agent can
be expected to make or use assumptions. A problem solver makes assumptions when 1t is
unsure of a particular picce of knowledge. There are three points which need to be made

concerning assumptions.

First. consider the example situation. An agent has a particular rule:
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ABCD = F

If the agent currently believes A, B, and C, then it could assume that F' is valid, also.
Even though an inference rule indirectly has produced E, F should not be registered as
an inference. An inference is meant to represent that all preconditions of a rule have been
met, which is not the case in this example.

This leads to the first point regarding assumptions. Problem solvers should internally
record why a particular assumption was made. It is important to realize that the MATMS
should be used to record the assumption itself, not the reasons why the assumption
was made. A problem solver should simply record £ with the MATMS, and internally
maintain the knowledge that E was assumed because it has a rule (ABC'D = E) which
had most of the preconditions necessary for its firing believed.

Second, an agent should never attempt to add a default assumption to its belief set.
because it is most likely already present. If it is not, because the agent has overridden
the default, then the appropriate way of reasserting the default is by retracting the belief
which overrides it.

Third, if the problem solver is present with contradictory default assumptions, the
manner in which it should register with the MATMS that it believes one default in par-
ticular is by accepting beliefs which directly override the defaults which the agent does not
accept. This is a little awkward, but overall the best procedure. In general, inconsistent
default assuniptions should be avoided.

4.5.4.1.3 Interacting with the MATMS When a problem solver changes its as-
sumption set, it should always register the change with the MATMS so that the MATMS
can either remove or add inferences as necessary and determine if the new belief set is
consistent. The MATMS will always confirm the transaction with the problem solver
in one way or another. This confirmation might include a message indicating that the
problen solver may have made a mistake, such as when the agent attempts to add an
assnmption to its belief set which is already present. If the resulting belief set is incon-
sistent. the MATMS will inform the problem solver that certain subsets of the belief set
arce inconsistent. Fach belief in each suliset will be described. Each description includes
the assumptions from which the belief has been derived. Tt is up to the prohlem solver to
determine which assumptions it wishes to remove in order to make its belief set consistent.

When an agent registers an inference with the MATMS, the inference rule used to
cenerate the inference should not be included (this was proposed in 8] as a method
to record the control sequences used to generate knowledge.) This would be counter-
procdhiictive to the overall svstem. hecause an inference of one agent should not be inherited
he another nnless it explicitly ineluded the other’s inference rules in its belief set.

Dotermining which read operation to perform in a given situation is difficulr. When

ciaeent queries its own beliefs of itself as well as other problem solvers, the problem
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solver dependent query should be used. If a problem solver must assess the overall belief
state of a particular piece of knowledge. the all problem solver query should be considered.
To determine what any problem solver has ever believed concerning a particular piece of

knowledge. the all contert query should be used.

4.5.4.2 Designing a System around One MATMS Designing a problem solving
svstemn around one MATMS should be mfluenced by three topics: mutual rationality.
iconsistency across problem solvers, and the utilization of svstem-wide default knowledge.

4.5.4.2.1 Mutual Rationality It has already been discussed that a problem
solver st be self-rational. Tn addition. a problem solver must be rational as compared
io the others for essentially the same reasons as were mentioned in the case of a single
problem solver. This is true because inferences are not problem solver dependent. We
say that two problem solvers are mutually rational if the inference rules of each problem
solver conld be used to create a self-rational problem solver.

When considering a single problem solver, requiring rationality is not unreasonable.
[f any problem solver in any system were not rational, it would probably not be very
productive. However, the criteria that problem solvers be rational when compared to
one another is a somewhat more restrictive and difficull to achieve. Two problem solvers
could for instance be self-rational, but be irrational when compared to each other. To
ensure mutual rationality, problem solvers must be designed in accordance with overall
svstem goals: coordination of design is essential.

4.5.4.2.2 Resolving Inconsistency among Problem Solvers Mutual ratio-
nality suggests only that the inference rules of one problem solver be consistent with all
other problem solving rules. For instance, given the same preconditions, two inference
rules should not produce two pieces of knowledge which are contradictory. Mutual ra-
tionality includes nothing about what assumptions each problem solver can choose with
which to work. This allows each problem solver to perform in a variety of problem solving
activities, fairly independent of the activity of the others.

Two problem solvers which are mutnally rational could seemingly present contradic-
tory heliefs to the MATMS. T'or instance, suppose one problem solver had presented “it’s
907 out™ as an assumption in its current belief set. and had then inferred “it’s a good day
to go swimming because it's 90”7 out™. Suppose that another problemn colver had told the
MATMS that its current context belief set includes “it’s 40° out”, and had then inferred
“it’s a bad day to go swimming out because it’s 40° out”. Clearly each problem solver is
self rational, as well as mutually rational when compared to the other. In addition, the
MATMS wonld “support™ the context of each problem solver, because the belief set of

cach problem solver 1s self-consistent.
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Figure 26: Proposed Interagent Communications Paths

However, there is clearly a problem with the overall problem solving. The individual
problem solving is diverging if indeed the first problem solver believes that it is truly 90°
outside, and the second believes that it is 40° (neither agent is involved in hypothetical
reasoning). Certainly the MATMS recognizes that there are two assumptions in the
knowledge base — 90° out and 40° out — which can not exist in the same context
because they are directly contradictory. The conflicting beliefs are not present in the
same context, so there is no problem from the viewpoint of the MATMS.

Any time the MATMS is used, a single problem solver should monitor the true world
assessments of the others and recognize when inconsistencies between problem solvers
arise. This problem solver is essentially part of the domain independent MATMS, ex-
cept when considering that the rules necessary to resolve the conflicts must be domain
dependent.

Two architectures could be investigated, depending upon the domain. These archi-
tectures are shown in Figure 26, with the agent respounsible for resolving inconsistency
labeled as PSC. The architectures differ primarily in the interagent communication paths
utilized. In the first, cach agent interacis divectly with the MATMS to get its beliefs,
This would be faster for the individual problem solvers, but would also make the job of
the agent resolving the inconsistencies difficult. In the second. each problem solver inter-
acts through the agent resolving the inconsistencies to communicate with the NMATMS.
Monitoring beliefs i< thus much easier.

The agent responsible for maintaining consistency across local problem solvers can
certainly recognize inconsistencies between problem solvers. To resolve them, cither of
two nethods conld he used. The PSC could itself choose one value over the other without
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Figure 27: Sample Communications Network

consulting the two problems solvers from which the beliefs originated. Alternatively. the
PSC could tell the problem solvers that they conflict with one another, leaving resolution
up to the inconsistent problem solvers. Both methods require further research.

4.5.5 Implementation for Communications Network Management

4.5.5.1 The Domain The domain for which the MATMS has been implemented is a
distribnted knowledge based system for managing a large-scale communications network.
The commmnnications network provides telecommunications service for people as well as
machines. The communications system can be described on three levels.

On one level. the communications network can be viewed as a sparsely interconnected
arrav of transmission facilities called sites. LFach site is generally only connected to one
or two other sites. The interconnections between sites (links) provide a transmission
medinm over which to send communications signals between sites. For control purposes,
sites are grouped into non-overlapping sets called subregions. Each subregion contains
one SnbRegion Control Facility (SRCF) to which each site in the subregion reports the
uperational status of its equipment, availability of resources, etc. A portion of a “typical”
communications network 1s presented in Figure 27,

Another level is the equipment configuration at each site. This level includes the
cquipment and connections necessary to originate and switch communications signals.
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An example equipment configuration is given in Figure 28 (adapted from [1]). Equipment

and their interconnections are constrained by a variety of rules.

The thivd level
it can be considered the findamental view of the network. The two primary objects

the communications path level

-~ 1s probably the most important




radiol radio2

Link
Between
Sites

m992
T trunkZ endpoints

trunkY endpoints

m982

userl user?

Figure 29: Sample Trunk and Circuit Configuration

present at the communications path level are trunks and circuits. A circuit is the complete
elementary path between two pieces of terminal equipment by which two-way telecom-
munications service is provided. A trunk is a group of equipment and connections which
establishes telecoinmunications connectivity by providing a resource for circuits to ride.
Cirenits ride on channels of a trunk; there is typically a capacity for several channels per
trunk. A useful analogy for channels on a trunk is to imagine cne big pipe (the trunkj},
which contains a number of small pipes (channels) running the entire length of the big
pipe. With this analogy, it is easy to see that a trunk can ride channels of other trunks.
The trank exists with or without the circuit, but this is not symmetric; a circuit cannot
exist unless it rides a trunk, or a list of trunks connected in series. The trunk refers
to “physical™ connectivity., whereas the circuit refers to “logical” connectivity. For more

details, see [31].

In order to understand how the MATMS operates in this domain. one should under-
stand the general concepts of the communications path level. Thus, an example of two
sites partially configured is presented in Figure 29 with careful attention to trunks and
circnits. The description of Figure 29:

o cktl (connecting user! and user?2) rides trkz which rides trky which rides frk:.
o frkr starts at m98/ and ends at m982. It has 24 channels.

o (rky starts al. m991 and ends at m992. It has 8 channels.
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Figure 30 Communications Network Knowledge-Based System Architecture
o (rkx starts at radl and ends at rad2. 1t has 2 channels.

[f any piece of cquipment should fail or degrade 10 the point of causing any of f1hr. (k.
or trkz to fail. then the two end users of ¢/ would be disconnected. The cirenit would

be satd to be disrupted.

Maimtaining communications service is the primary objective of the system. If any
ciremt fails. then the cirenit must be restored often at the same time as the problem
is bhemyg diagnosed. Restoration could proceed by reconfiguring equipmeat. or selecting

cxsting alternative trunks, or a combination of hoth.

4.5.5.2 Knowledge-Based System Architecture The knowledge base <ystem ar-
chitecture was briefly disenssed in the trodnction. The purpose of this section is to
cxpand on that description. In particnl o the vole of the WBN will be discussed farther.

The architecrinre i the knowledge-Lised <ostem s shown in Fignre 300 The interagent
cotmnine ienes e e beersmchided i thie fignce 1o convey the eeneral operation
b the svstenn Athoneh acents con conmnicate with other agents of the same tvpe
at ditferent <abhrecionss most comninication i-owith the local Knowledee Bao Manaeer

BN




The KBM has many responsibilities. It grants access to the knowledge in the local
knowledge base, must process the transactions from the SR PA and FLagents in a logical
order. must know where knowledge requested by the agents resides (if it not present within
the local knowledee base). and mosi impertantly it has to niaintain a consistent local view
of the state of the world by monitoring the beliefs of the individual agents in the node in
combanation with other KBMs in the network.

Fo aid in maintaining a consistent local view. the KBM includes the MATNS. The
MATNS is used to keep the belief sets of each of the agents consistent. as well as to
recognize inconsisteney when comparing belief sets. it is the KBM. however. which mmst
attempt to recognize and resolve the inconsistency. The role of the KBM after recognizing
dicerepancies i= to advise the problem solvers as to how to resolve the inconsistencies. often
by consulting other KBMs where appropriate. For exampie. if PA believes a certain trunk
i+ ot operables and FI believes it iso the KBM might ask another WBM what 1t believes
rhe state of the trunk to be. his of course would only work if the trunk crossed subregion
houndaries 1so that another KBM would have knowledge of it), and the KIBBN knew which
other KBM 1o ask.

4.5.5.3 Architecture Implementation The global knowledge base is created using
the Gravhical User Interface for Structural Knowledge (GUS[18]) on a Symbolics 3670.
An option in GUS divides the knowledge base along subregion boundaries in order to
create the knowledge bases for each problem solving svstem discussed in the previous
sections. Division of knowledge can be modified to test different distributed knowledge
representation schemes. The knowledge representation scheme in GUS is frame-based.
aned this representation is also ntilized in the distributed knowledge bases.

A distributed simnlation environment (SIMULACT([24]) is nsed to test the knowledge
hased svstem. It provides a parallel simulation environment for any number of agent..
Interagent communications support is provided in a highly flexible format.

The Knowledge Base Manager (KBM) comprises a single agent in SINULACT. At this
e, it contains query processing functions, the knowledge base itself, and the MATME.
Knowledge provided to the KBM from GUS is treated partially as constants and partially
a- defanlt assumptions to the MATMS. For example. a particular radio’s name is constant.
a< is its operational definition. while its initial status is treated as a default assumption.
i 1he absence of information to the contrary, the statns of a radio is assumed to be the
valie provided by GUS,

The MATMS explaits the knowledge representation scheme (frames) and to some
cotent the domain itself. In particular. the task of finding all the beliefs which are relevant
to a particalar problem solver gqnery is handled by realizing that most queries will access
o particiular slot in a frame. Therefore, heliefs which are relevant to a given slot are kept

wirhin the <lov along with the default. This will be illustrated i the section which follows,
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4.5.5.4 Examples of MATMS Usefulness

4.5.5.4.1 Example 1 The purpose of this example is to illustrate the way data
structures are accessed.

Suppose that there is a frame for a particular instance of a trunk:

id: trk9

is-a: trunk

type: digroup

status: > MATMS default frame<

The default frame is:

default: UP
beliefs: 0

The default frame can be interpreted as “Trk9 is up by default. There are no beliefs
presented by problem solvers to override the default.”

Now suppose that PA asks the KBM for its (PA’s) belief concerning the status of trk9.
The KBM would invoke the MATMS by attempting to access a slot of a frame which 1s
controlled by the MATMS. In other words, the KBM would attempt to access the slot,
which automatically invokes the MATMS. Because there are no beliefs in the context
which PA is currently working in (this must be the case because the beliefs slot of the
default frame is empty), the response would be “UP, by default.”

If PA subsequently proposed the assumption “the status of trk9 is down”, the MATMS
would change the status frame to be:

default: UP
heliefs: (A1)

where 4/ corresponds to “the status of trk9 is down.”

If PA asked azain what the status of trk9 is, the KBM would reply “down” (the KBM
would invoke the NIATMS to determine the status of trk9, which would find .47 present
in the environment of the current context of PA). However, if FI asked. it would still get
“UP. by defanlt.” Note that if for some reason Il proposed that the trunk is down. the
statns <lot of 1rk9 wonld remain the same. FI would just have A7 added to its enrrent
helief <ot Ineidentallv.if these were the only transactions wineh the MATMS had made.
“hon the endd resnlt is that FTLwonld be placed in the same context as PA.
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Figure 31: Cormmunications Network for Example 2

4.5.5.4.2 Example 2 Example 2 shows more of the potential of the system and
is tied more closelv to the domain.

Suppose that the following configuration exists for a subregion (Figure 31). A general
description is that cktl rides trkz, trkw, and trke. Ckt2 rides trky, trkw, and trkz.
('kt3 rides trkx, and then trkv to another subregion.

Initiallv, FI, SR, and PA have not made any assumptions — suppositions — about
the communications network. Each problem solver is working in C1 (co~text 1). (Each
time a new context is created by the MATMS, the context counter is increased by one.
For instance. the next context created will be named C2, and so on.) The knowledge basc
consists of the defaults (though only the defaults relevant to the discussion are mentioned

here):

trkw is up (Al]




trkv is up (A2]

trkz is up (A3]
trky is up [A4]
trkz is up [A5]
cktl is up [A6]
ckt2 is up [AT]
cktd is up [A8]

In addition, the following premises have been entered into the MATMS: a trunk cannot
be up and down (P1), a circuit cannot be up and down (P2).

Now, at time ¢y, suppose PA 1s notified of a user alarm concerning cktl, at the same
time that it 1s notified of a user alarm concerning ckt2. (A user alarm is when the user
of a circuit notifies a technical control facility to complain that he has lost service in a
particular circuit.) PA views user alarms as assumiptions in the form of new observations
of the world, and immediately registers the assumptions with the MATMS.

user «larm cktl at t=0 LAY
user alarm ckt2 at t=0 TA10]

Addine she two < sumptions [A9] and [A10] results in contexts (2 and ('3, respectively.

As PA continues to work, it eventually registers the following inferences with the
MATMS. through the KBM. Even though there was not a user alarm. PA concluded that
cht3 was Jown through ihe apoiication of the rule “If multiple circuits on a trunk fail at
the same thime. assue the trik has failled.” Therefore, PA asserts that frkw and (rkr
are down. Asserting that trhz 1s down leads PA to infer that cht3 is also down.

ckt] is down because user alarm cktl at t=0 (1]

ckt2 s down becanse user alarm ckt2 at t=0 (12]

chtl, cht2 fail at same time because user alarm cktl at t=0 (13;
user alarm ck{2 at t=0

frir s down [AT11]

cht3 is down becinse frkr s down 1]

frkae 1s down AT2]

Notethat ekt s down does not represent a contradiction of hehiefs for PAin the NIATNS,

becanse ebtl s up was a defanlt assumption.

[he end resalt of this is that PA s placed in a context which is defined by
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A9 A0 All Al2
contexts in || (C2 C3 C4 CH) [ (C3C1CH) [ (C1CH) ()
influences (I I3) (12 13) (1) ()

I I2 I3 14
contexts in (C2C3CHCH) | (C3CHCH) | (C3C4CH) ) (C4Ch)
influences () () () ()
assumptions ((A9)) ((A10)) | ((A9ALO)) | ((AL11)) |
preconditions ({(A9)) ((A10)) ({A9 A10)) | ((Al1))

Table 10: Data Structures for Example 2

inferences: (I I2 13 Y

incompatible belief sets: ()

The knowledge base is briefly described in Table 10.

Becanse it has no reason to disbelieve PA at this time, the KB M accepts the assessment
of the current state of the world by PA as correct. In other words, it adopts the belief set
of PA by asking the MATMS to place it in the same context as PA.

When PA is finished assessing the user alarms on the circuit operation, it tells FI to
begin work. FI begins by asking the KBM for its current assessment, which happens to
be solely PA's assessment. Therefore, FI is placed in context C5. Thus. it inherits the
beliefs which assert that ck/1 is down, ckt2 is down, trunkzr is down, etc.

FI performs measurements on each of the circuits or trunks in question and determines
that ckt3 is actnally up, not down. Flenters the following beliefs into the knowledge base:

tests of cktl at f, [A12]
tests of cki2 at [A13]
tests of trkx at t, [A14]
cktl is down because tests of cktl at £y (16]
ckt2 is down because tests of chf2 at ty [17]
trkz is np because tests of irkz at t, (18]

A more careful, step by step analysis of the steps involved when FI changes its behef
et is necessary to understand the operations of the MATMS.




1. FI adds A12 to its belief set, which causes C6 to be created. The KBM accepts A12
into its belief set.

2. FI adds A13 to its belief set, which causes C7 to be created. The KBM accepts A13
into its belief set.

3. Fl adds A14 to its belief set, which causes C8 to be created. The KBM accepts Al4
into its belief set.

1. 16 adds another justification for “cktl is down”. It serves as confirming evidence,
as does adding I7. Because the KBM has accepted the beliefs upon which both 16
and 17 are based upon, it automatically inherits I6 and I7.

5. When FT attempts to add I8, the MATMS responds that its belief set is inconsistent,
because it currently believes that (rkx is up, and trkr is down. The MATMS marks
the current context of FI (C8) inconsistent. The MATMS informs FI that it can
remove “trkz is down” directly, because it 1s an assumption, and it can remove
“trk.o s up” by retracting “tests of trka at ¢,”. For FI, there is no great difliculty
in deciding that “ckt3 is down” should be removed from its bhelie: set, because “ckt3
is up” is an inference which it just made.

However. the KBM is faced with maintaining consistency. At this point. FI believes
that “trkr is down”, and PA believes that “{rkz is down”. In this situation, the
KBM clearly believes I'l, because PA is prone to errors due to time constraints.
That 1s. PA is forced to make a fast, rough estimate, while FI must be certain
of its work before it enters beliefs into the knowledge base. For that reason, the
KBM follows FI and retracts “ckt3 is down”. Note that FI still believes that “ckt3
is down™ until it is told by the KBM that its beliefs are outdated, or it consults
the KBM for a new set of bheliefs. Further work by FI would suggest that trkv is
operating properly.

At this point. FI tells SR that it is finished. SR begins work to restore circuits ckfl
and ckit2.

4.5.6 Areas for Future Research

4.5.6.1 Current Limitations There are limitations to the current design of the
AMATMS whiceh should be investigated further. Specifically. premises need to be extended.
and overall svstem efficiency should be investigated finther,

The enrvent pro “se structure allows for two pieces (or classes) of problem solver data
‘o be considered inec sistent. For instance. “a trunk cannot be up (operational) and
down Ginoperabley at the same time.” This causes difficultios when one attempts to model

tiore comples pretase strnetnre which involves more than two objects. A one-of-three
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situation {choosing one route from three choices) or perhaps a two-of-three situation
thaving enough money to buy any two of a fishing pole. a softball glove, and a tennis
racquet, but not all three) cannot be handled currently. This has not been attempted
vet beeause there is no immediate need for it: the premises necessary for our application
deri d a stmiple binary situation.

Although the design clearly addresses the importance of an efficient system. the degree
of etficiency is still questionable. Tt 1s not obvious whether the inefficiencies present are
a result of the implementation or the design. It is clear that the svstem is often forced
to recompute justifications for inferences. This could involve a large amount of time in

order to keep the inference trees as compact as possible.

There was always some debate about including default assumptions explicitly in the
cnvironment of contexts. If they were included, creating contexts could be performed mmore
grickly than in the present design, but there would be more pointers between objects in
the knowledge base. On the other hand. not including default assumptions explicitly in
contexts increases the case of comparing behief sets and in general makes the operations
of the MATMS more efficient. If. upon testing the system more, it is determined that
the MATMS spends most of its time creating contexts, an argument could be made for
a redesign which would put default assumiptions explicitly in conteats. This modification
would not be difficult to make.

Many of the questions involving the efficiency of MATMS have not been addressed
because the problem solvers (FI1, PA, SR) are still being developed. Interactions involving
the MATMS have only been tested with the SR problem solver, so such concerns as
multiple derivations. context switching, and to some extent multiple context maintenance
hiave only been tested using “typical” cases which have been fabricated. As the knowledge
based system matures, the MATMS will surely be refined, although the design appears
to be sufficiently flexible to handle most changes and was designed to be adaptable.

4.5.6.2 Future Pursuits The four primary issues for future investigations involving
the MATMS are: creating a third type of belief, grading assumptions with certainty
factors, performing distributed truth maintenance, and studying techniques for resolving
inconsistency across problem solvers.

Example 2 of the previous section illustrates the possible need for a third type of belief.
In that example. PA had reasoned that a trunk (¢rkz) was down because the majority
of circuits on the trunk were also down. In particular, the actual rule PA was basing its
reasoning upon was:

If cktl 1s down
ckt2 is down
and cki3 is down then trkxr is down




Upon closer analysis of PA’s reasoning, it is clear that “trkz is down” does not fall cleanly
into either belief category.

This belief is not strictly an inference because not all of the left-hand-side of the rule
used to produce the belief was believed at the time the rule was utilized. That is, PA did
not believe that cht3 was down at the time it used that rule to assert that trkz was down.
In analyvzing the example, if “trkx is down” were called an inference and the scenario
continued, in order to remove the inconsistency which would arise concerning the status
of trkzr by retracting an assumption, FI would eventually be forced to retract either “tests
of trkxr at t,” or one of “tests of cktl at {;” or “tests of cktl at ¢;.” It could not easily
remove the inconsistency by retracting an assumption because it believes each of the three
assumptions equally. FI could remove the inconsistency by retracting the justification to
an inference, but again it would have a difficult decision in selecting the inference for
which it would retract a justification.

The belief *trkx 1s down” is not strictly an assumption because its validity is depen-
dent upon other beliefs. For example, if “cktl is down”™ were retacted, then “trkr is
ddown” should also probably be retracted. The problem in treating “trkr is down™ as an
assuiption is that the MATMS will not automatically retract it when an agent removes
“ekt]l is down™ from its belief set. The current design insists that the problem solver
expheitly retract each belief in this case. Therefore. clearly part of the the MATMS's
prurpose is defeated when “ektl 1s down”™ 1s treated as an assumption.

Overall. the problem is that there will be beliefs which are difficult to categorize. A
thivd category of beliefs -— perhaps called reasoned assumptions — should be pursued.
{easoned assumptions should be handled like assumptions in some ways, and like infer-

cnces in other ways.

Another future pursnit involves the general notion of making assumptions. and is
perhaps more relevant in the absence of the proposed third type of belief. When a problem
solver's belief set becomes inconsistent, 1t must usually remove one or more non-default
assumptions in order to correct the problem. The decision as to which assumption(s)
stiontd be removed is very difficult to make. For example. if the MATMS provides a
problemn solver with the knowledge that two assumptions in its belief set -~ A; and A

are nconsistent. how does the problem solver decide which assumption to remove?

At this time, assunptions provide a purely black-and-white world - either they are
present within a problem solver’s belief set . or thev are not. The reasons why a particular
non-detault assumption 1s made 15 kept solely within each problem solver making the
assumption. For example. in the last example of the previous section. PA used the rule
“If rmltiple cirenits on a trook fail at the same time, assume that the trunk has failed”
to conclude that =tk i< down.” (As discussed earlier in this section. the best mauner in
which totreat the helief ~frke s down™ s to consider it an assumption.) Clearlv PA knows
Wl ot made the assinnption: however this knowledee is not kept within the NIATNS. The

MATMS s decigned onlye 1o keep track of which infere ces depend npon the assimption,
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not why the assumplion was originally made by the problem solver. There is no real
means by which the problem solver can compare assumnptions. except by chronological
backtracking to determine why it made the assumption. Even then. the choice may not

bhe evident.

An alternative design would suggest keeping the reason why an assumption was made
with the assumption itzelf i the MATMS knowledge base. (This is not the approach taken
Ly conventional truth maintenance systems.) That wayv, the MATNS could automatically
resolve inconsistencies the assumption with the “lower degree of certainty™ gets thrown
out. Of course this creates another problem. precisely how to assign certainty factors to
assumptions. It is exceedingly difficult to place a single measure upon an assumption n
order to allow comparisons between assumptions. It is much easier to simply compare a
et of assumptions as the inconsistencies arise to determine which to discard. If certainty
actors could be reasonably assigned to assumptions. then choosing between two viable

i
defanlt assumptions - an action which is almost impossible now - could be resolved.

Distributed trath maintenance has always been of long-term concern. Although not
particularly evident (and not presented in this thesis because distributed truth mainte-
nance is not the immediate purpose of the MATMS), the MATMS incorporates the basic
framework for distributed truth maintenance.

Distributed truth maintenance is necessary for any distributed knowledge base in which
at least some of the knowledge is replicated. In our domain, trunk and circuit information
is replicated in certain knowledge bases. When an agent in one subregion determines that
a particular trnnk is down and enters this knowledge into its MATMS. then the KBAM of
the subregion should inform all other KBMs with knowledge of the trunk that it believes
that the trnk is down. Mason and Johnson describe the fundamentals of distributed
triuth maintenance in [26].

In much the same way that the KBM resolves inconsistency among the problem solvers
in its local system, the KBM must resolve inconsistency between itself and other KBMs.
Distributed truth maintenance is especially interesting because it necessitates distributed
control. A single KBM resolving conflict within a single knowledge base implies central
control. When KBM agents and the knowledge are distributed, many interesting strategies

conld be investigated.

Strategies for incoasistency resolution must be further investigated. both in a single
agent aad across agents. Deciding which assumptions are correct, and which to discard,
is the single most important issue facing a problem solving system using the MATMS. As
stated earlier, the MATMS efficiently recognizes inconsistencies, but cannot be expected
to resolve them in the most gencral cases.
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