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4.1 Executive Summary

I j o\iilliw wiwlIQ x k dotiei diirlnii, ;t i t ( 'iarksoi I'niversitY on (Ihe task. IiS-
I1-1)1ted AI I ti' lal lilt 'li1"oice 101- ( oliiliiliicat 'oils Net wVork Mlll2(1iti. of, t lie H\\

I ~I'? I 'II I 1i I \\i Ih I ho R l A ir I) veloi w l '(-II creli(. Ilie kulij'It i oft I his effort

iI I ilvest I",a Ie 1))tAlI I al I* -piatI ill I Sof (listI rihIIt ed Al to s vsteI i QI t wi aoli a netdI lwor k
!iI tIliW eiIt p1 b 'ii i- lar2oe-scal'. world-widle ciJ iiilat lols tiet works. ~This report

nililes a brief ofli~~l I lie tvjiial colitexi III wich t liese prolielils arise. anld 0111 lilieCs
ll(li lt ect IIre we Ilarve (ileveloped fut apiplicai lull of Al teclillolog ,v to t Itese Jtolcllll5. W\e

have iilelit ila'd specific issues whtich raise I'iliidaiilient Al re~cal-li (lestI loll" to he resolved
inl Order to br-ing the apphicat loll of A.\I tchntology to lill frijitiout Ill tils area. The cenlt ral
li i of OIi work has beeit to st udv these luest 10115s. pV)rooilg' altsweIrs. aii'l test iin., thet

Ilierits of, these answers Ini a recalis'tic slimuilated elivir-otillent. We have resullts. based on~
iplemietationts which have bwei tested ill ourl test bed eitviri-olinelit, in three ililportiit

!lt~. l~~-'iil'i MaV: 1itllt iageilit (list, 1-,])11ed plaitl gelteral Jolt. couitl raint-baseil rca-
'li i l 11111liiw'lt Ilaili ll i. and iiiiilltiageitt tiriuthI laiu laic !'I htared km iwId i_,(

'I het PiOldlllolldillaill which ftit.11s the coiitext f'or our work is, t i inia(aeiielt aiol

cot 'lofa Ia rge scale. world-wide comnlltinicat ion svte i ch as, Ile I*. Defense Coln-
liwinicat lollSsii ( l)(S I. \\e have colcicetrated o1l 11(1 work iiialiagentiit aliil conitrol at

t(e Su bregi oli level. The suibreaion level relprese its a gfroup of Itell to twenly )In(~didal slies
)Tr no' les inl I he coril- 11i la t lonls S-VSt(eni a1rChil itct ore whl i ch arc 111011 toredl anl'! culit. rolled

fromt a '__ i h control center. System-wide mi-anagemient and] (out rol is distribu ted over a
T' 1 wor-k ' S.,l ~lffol (011 roltM Cent ers. typically eight to twelve in numb~er. Our viewv of

lie role (if dI l ri bitted AI Iin t his environment is to providle cooperating, intelligenlt ,semi-
a'itortoinous atents) to serve as prob~lem solving assist ants to tHie human controllers. This
,0t of a4(Ttent s must be (list riI it ed bot h spatial ly and ftinct ion al l. 'Fhe spatial distriltioit
is- a natuitral ocepIiettce of thle underlvi hg coin rnuttCic.Iioii net work and control systemn
a rchit ect ire whtich Is (list ri blited over a large geographical area. The fuittional (listrihui-
lohl a rises from tile requti remett for multiple, (list inct , but relatedl. problem solvinrg tasks

Ii p( tfornling net work managemient. These tasks are: performance assessment (PA), fault
(liagriosis, or- isolat ion (LI). arid service restoral (SRt). Our dAsign foi- this system 'ncrpo

'ab(s Tif 11 ideas in distrihitul problem. solving: specifically, a di'versely distributed problem
.S01ring arrtcrhi u whtichi stppoct~s coordinaion and cooperation among function ally an~d
.spatially (listlflet agent~i. During this past year wve have devoted most, of our efforts to the
s ervice restioral task, ati( to (developing a basis for local multiagent cooperation using a
,hared knowledge base.

The servicc restoral task reqires distributed planning stubject to constraitnts imposed
by rtetwork topology attd resource availability. We have developed a distributed planner



wicht ev:iends the in "11ii0 "u'lt\ Ki jAttiIlli"i] wy*-~i4'

so that they may he effi('ient lv allowed'( for efh'tive use in mtil e goals. Thie planner
tOilsist 5 of t wo sI aiys. plan g('it'ral iOn flhid imiltstage niegotijationi. During plant gener-
at In. agmeiIs are requiredl to gcnIiea1C pdlns- ',VIjlCi utiliZe limliteld sv.Sem resources ill at

tittliaini where't htuth tihe kniowliu,'(' athott nes"olrces anti Ihe cintrmol over thlese resoirtce
alt' dVt riltld ailium thle agmli 5 Al t('i a st of pilns has been estahlishnM1. agents muist

C()PTtptiCIielc I )O't i I pt(ii plAitIS to t'Nxctctit as may't W. alIs as possible, subject to resource
Coii~traiiits. M il ,Ie tt'tit liou has beenI d( vel!opetl as a meianls 1),v which ant agtent

Cai act inir Fe t l' 4i hi awiet e to reastji ila 1 tl thet imiipact of local tlec i.Siolls Oton ot1H40
Pt-date andI lii v i tv s 1 wlavior. act' rd li-j.

Al a t 'st ill 4 I lie j itHii~omtit It knot t l and tI tii hijI e cton l agent h lave pltl

it ii 'S t ouis I viallc nut il t diffuse iii :ititv. It) INI p'i vi'lani usin ii tli (Woii

each.t'ttl 111tlit heiis tc tapoile oif t(ctcmnijit its role iii mltiplte plan tletoiiiJ(tsi- lulls

with Itilly ; ati al view of the associaleif glubal Idtns. Me have intr m" roi ice lit' tvont
ti Ippol- lililies as at iuii;I us to) allow mam[ ag~ent to i'e('gtii/e AMith mels of It mal atmti'

P 1 (Pliveit Iv \'alio its plait decomipositions for Ilie salit tgoal. 'Ilt' li~st of' sin torl tt

,I t~l~ ill I i, 5 ) ItAt ui ii! i~pe il be at ~iit isl it v tn liii e liwh ih ii t h'] at lanI

i " I:1,I i i ,I I I ' 'At I I I u T tI I > I t i~ ii II IIt'tt'CC i ' F fui' ii\ I i I Lt'I agcIt t c t I I dire con i ce

1, ' i i Ifi' i i, l ;11 l it Ilt' sv\stemu.

He iitt Single aiLt'lt i, in ('ontrt and ino singie agentI has coiiiplet kno\\'ldge of the
'It I' s'~' tal. itt ll up i aspt'ct of nulItistagt'' iiegot iattil is rthe uiet'l1iamiis fotr

te:itlii tnI ilt l, t'W')'ihtiu e lhat' dev' Ii pcd a fortmtalijsun for ah bsl 'iI -

ii ~Ii i'jta'' I i i liril ilt it tli altotit thle ll,)cal ilip art oflt' cisionts iliadlt Iotal vl. ( ) i

WI' 0 i t II it It Itlt I I'l ! I 1 ft a (let el II ii ii i I g i 111 pactI at l t 1- ltevels: local] v" to I I he ltevetl of'

;v-itli jl IiL co)4 ipt 'i'iti' 'Iti otg igcll- age iI v aiiig coia-,t 'ajilit -bhast't ieasoliutg to dlt''')p

tit ' Iti t iiitt a l lit will 1 ' ii majori thrltst for ju i 'l te it latiolt in ilI l i(xt year.

A ttmilul 'nlfIt, li ,v \vlic 'I pi'olte tiini aptilts cottH'i invlvts shllaiinH' know]-

NIA\I NI S lltI eit t As"'uItIi11l itt) -lo) ,'Is Tri I I NIliiiia' I) It I ttcI'Iit I (' ,,vt '1 endvelopedf



aaeit*s belief set is chiaracte(rizedl i, the dela hit kniowledge base ( which (is colilo (0to101 all

agents) withI anl overlay placed upjoni it. [lhe N:A i2\IS is (icicli largely because it. foctuses

its effort s on nmanagi ng thlese overlayv> not thle viltitro lM1 ef set of ai agenlt. By coticerlini

wtslf onX V Will t ie ox'erlav".s. tIhe MATlS call f Xvrtcli froiii one problem solver's
belief, seIto1 addlressinig allot her's expeditioulyl,,. It c.an al") chltn.e anl individlual jptlleiii

\,ler's belief set quickly. biecauise t lie dlefault klio\vldgc 5 iot w xIlicity I v ani&l wy(' filti

4,1:f blief set to aiiot her. We have-( iii)leniieite and test d :\IATNMS ini the contex of a

oW -rjlbutcd kiiovvlcdfe base sXsttiii for iiaigit CoulniuriiC;ations net work.

4.2 Introduction

Ill lir ill~O ioqit h("i of dlistriuted Al for cornun icat ion-, net a~oil inaliageeitl weQ haX 1

t" !]>,( ol Ilie 1-:ropeanl Theater oft hle Defense C'ommunicationt S vstctn ('5). Tlhe l)(S
1,aOt conpt nmiiiuiiuicat ions s~sienli coiisiIstingd ot P al npli en tf slilh5X'st e'is.

1, J)loXi(le the tiig-iiauu) . pljlt-t olml)it. and.i swit chieod X~ui)k (011Hlilit lionlS for thle

l)part iiieiit of Dcfenlse. We have-( ('lo-[eil the Luiiopeai ITheater because tIlwe )(S i work
iein I rpeis, part icu larlyintecrest ing fo the stuid of oistr11it d tproblemi sol vinrg

paradl;('htV It consis~ of a larIe nuimber of sites (about 200) wli:ch are iiitercotinecteoi ri ati

irie_l i t in ruct vie It is currently cont rolle b (los coprton an ci oorinat ion anmn011,

aP11 orJJI~f iihl 'LX knh ed hiuman convtollers distrihuted throughout the system . The control

tas dis oi whc rrijis extensive. specializel knowliedge and~ thle ability to reason uingi
Il his ki 1, v cI g ii sol iiig problenms. Ini lie past, systecm ccit wl ha been a oificu lt area

o at wilitc l ticc ( thle nunber uf sit at is wiclh mayv arise a nd alterna Ii X sol ilions

acai aW nu ver ( larg I~ie. and thus tradit iornal- Ipurey algorit hmic ap~proaches hav e beef)

foi rd I Oklin I a.Thr isV a clear requt retnent for sophisticaed problem solving tools to
lw i iin [dl operators in prcoviig thle Lest possible cont rol of lie iystem.

I he ieasonl foi st 1 dying (list ihted probiemi solving lies in the observation that hui-

Ii uns often rely on toa ins of people to solve complex problems. Witwhin d teamn thereC is

ivial lv a (Iiviskio of la bor so) that each inlemler of t he team is a specialist on some lIart

()f I lie prolcien. E~ach of t hese specialists has only a liited. perspective about hle overall

proAcnu arid each f ids that he can only vdeal Xwith those asp~ect,,, of the problem for whI ichi

iis respIorisild~e Ii hrough coop~erat ion wVithl othl -s on) the team.

Ui st ri but ed , rt i ficia I intelligence is concerned withI prolcyn I hat arise Xwhen a grou p

Id oolI vConupled prolhlerii solving agents Xvorks together to solve a problem. These agents

I ave, chiaract eristics that closely parallel those mentioned above: functional specialization.

local1 persp)ectilye, andl iiiconrdel- knowvledge. Each agent uses its own local perspective

n performing its tasks. thlough it may have a needl for some knowledge about another

ag~ff .1s localI perspect ive.

We have-( doevloperl an a-chitect nrc for a diversely distributed, mui vagent, systemi Fn

v i'I ach cotonent.i~ is a speci alized and localized knowledge- based syst em designedl to

7



p~rovidie assistance to thle human operator. Each agent must be able to cooperate with
similar agents performing other functions at the samne local site as well as coopcrating
with Identical agents lo-ated in physically separate facilities. This view of thre role of a
knowledge-based svstein as a collection of autonomous, cooperating independent special-
ists Is an import ant characteristic of our a1 )prcach to net work mianagement and system
control for the I)CS In the future.

We have found thIiree fundamental kinds of probh( lii solving activities required: (1)
data interpret at ion and~ situnation assessment: (2) diagnosis anid fault isolation: anid (3)
planning, to find and allocate scarce resources for restoral of service in the event of aii
out age. [in add it ion to this functional (list ribu t ion of problem solving activities, our mnodel
requires a spatial (list ribut ion of (control as well. \'V(. p~resent an architecture designed to
meet these recquirent s which consists of a dlist ributed knowledge-based system built on a
colii num tv of problemi solving agents. Each agent is a functionally specialized knowliedge-
b ased I lrol~hin solver at a specific sIte,. These agents coordinte andc cooperate to solve
-!"ka I proh.Iem u amt ong themnselvyes, crossi iig functional or- spatial hou idaries as reqircdi

At at Io)ta 1 level. Ihe svsteiii is scen as a number of' functionally s pecializedl agents that
4)uper~ te Ii aoselly cou pled fashion. These ageiits com prise at local participant Ill a

i1(. work-wi le Iclean Of problemn solvers. At the glolbal level, thle systemT may' be viewed as a
LIWIP () 1 ela tivtlv ii i( epeiidcent. Spatially tlistribn te~ problem solving syst ems coolperati ug

Xe t colilctot o)f problemIls.

Allm 11 anltl feat ure of the system is the coop~eration of the agents. Cooperation
I the local level Is by. tw~o met hods. First, problemn solvers cooperate by coordinating

It'it11)I, Al ar~l ll ,y eqiicst another to perform sonmc task to further the overall

iol~~~letw Pi,) i g i si achieved t Iirotigh anl exchange of mnessages. The other mcli-
;iui 'm for et '( pw Ira t on Is through shia ring knowledg~e concerning thle cur11rent state Of thle

Wi~tl iiicatuti lid ICwor'k. Inferences, of one( agent are sharedl with the othiers. in a central
k ii' wchge base. Flie shtared knowledge base is managed by tlie Kn'Towledge B~ase Manager

At tihe prsmt inei a test bed has been Implemented which su[pports simnulat ion of
11ul tj ple agients toi il( 1o(r more1 phy',.sically (list in ct Lisp processors. [Det ailed design andl
ttiij)le'IIietlt iou0I of speCCIfic agents Itas been our miajcor activity for this year. W\e have
de(vvlotpcd( aget its wli icl co tie across hie spatial dIimtension . an d wve have developed
Owtt tools for inattagmit g, local coopcra 1101 utsinrg thre shared knowledge base con cept. lII
lie remnain~f ii e 5(1 oius of thIiis volunie, we describe the thlree areas in which we have iiade

Sn blst anit ila progress till s year. Fi rst . we have developed a cooJperat loll nIechalisi 11 whtich

a]lows art agent to recognize its specific, localized role iigenierating glolbal planis. Second.
we have form-alisms xh ich allow a grou p of agents to u nderstanrd how local (lecisiolis
ntpact lie abilityv of' thle group to achieve aLobal goalIs whenl selectling alt erniative pl ani
-"ilhjec(t to otsriTts.htird. we have Illiiplemnerited anm efficienit, local manager of' a shared
1knoowkedge !asc.



4.3 Role Recognition iT, IM Llt iagent Distr,.buted Planning

h IIII w I r(\ I~ Ie (l~ Ii k i I j cI "/ ('I plile ehc jx I emlsIIIII I(I' t Ie I llreI 11t work Iii plhtii-
li~~~~ili2~jcl a-\ (lsrit 11e:rt.n 0  (( wulltvso S( flial helY mlav be (fficlint ]Y allocat ed

1- 4 10(I Yet Is In i Ip ols [I p 1 alanning strat (-gv consist,, of t wo st ages. planl
i ,lwra t 100I anllIIulIt ist a I i otiat loll. 'le p1ln genlerationl phase is the foculs of thle

work I~rsellekllit111, cllol. dal i-w ler t llla'erits are r-e(uirecl to clile
pa Is I\l IcI I t Ili. Ilii I e II l svst elI I reilT'es ill d(llidIIIS NViereO I ot 1Ii I tie 1 WnOIC(lg I a1'V out

le5~)llicesand thlc cont 101 o)ver Hic h -erources are (list ribuited auingw the agelits. A\s a
ii -ii1t . ihiii (lccoimi1 ositlo'll Is ulila iiil( and (liffis"e inl niat ire. ITO effect ivelY planl 1uSITii

1iul 1 leCOMi1 )~t ),cul 1ii' ~iilI l ull 1s! 1We C id )!' 1' Ie OfM 1I10 11tiiiiii St r'ole Ill 11)111 lul( jlaii
*IllIlmJ)itioib-. 'Nit oiilv it jual jl viewN of the~ as. ociat e( d2,ohal planis- SlipPot orl , if;(

leilit imdl icedo as- a Illealis to allow eacli a(Teiit to reu'olli /e wh ichi sets- of local act ioi is aret

rcyllied h ariolis [)lall (lccoml~wIt*ions for- the' sanie goal. Ihie use of support nailics

hla< beeii Iiliplelliltel Ini a sy'steml which genlerates; pta us for- thle rest (rad of service Ili a
corl IUMlillt 10115 li(4 xork.Nsi riiON)lllta loll al,(, j)r'eilud which show that

i1)Ill !ueIlcrat ioii In t his- class, of prob~lemfls call he a('couiiplislle(l by sel'ivi a limlit (d anlioill
of Ii Il oriit loll hot xyeeli ag'entS. It IS IlIiICCO Ssary for aiiv '1"ic a ;,iTI o a!' ( Iii0 (01]

11 ioi~l I 1011 ui lll boiu yt thl

4.3.1 Problemn Description

When worki 1 1 i ilre vtii.i is desi rablie to (IPVtrii t s' c illformat ion amnong
severa~lrlm solviniagLlts Planning Ill tl.ese ulist ribiled doiains. 91] is dlist ingisiled

I Fl 1 (11 opelionial pta 111 li~ll that1 lla-lis ar I( o)i11lj)0/l' I of subl- planst- or ph] a! fragn1ini s..
aiof, wh~ichIi rei~li - a so, lultion1 to at SlIibbIP ln thfat is ex'ciiteOl by sonice agent ill a

muilt ipledcagent svsterii. Most otesstistaIaddreszs planinrg for- dist ribulted 'lomaains
!_-vc s::rz that 1here Is a acti ve plannewr. This platner knows the ('apaIbilities

,daewh agetl jreIll I h1C system all(]Is iS 'lar12cl %it Ii thei responisibilityv of venerating a

WVe are (owicrried withI plan ninrg for the efficint allocation of distributed resources
inil111t jagen'it svsteils where malt iple g-oals coexist. The domains involvedl are quit

areii a k irii it (lithe ult if niot Imipossible to mnainlt ain com plet e, detailed and accurate
in form latilou al )Oiit s vst enl resources at each agent. Therefore, p1lanninrg is a process that

b1151le carrieul ouit by. a gfroulp of' senii-aut olotis agents, each of which has a limited
view of' Ihe globalI systemn state. has conitrol over onily a subset of thle resource-s required to
>ait Ily a goal, arid] has only partial kiiowledluo about, the comnplete set of resources needed
uiid w -ho cont rots ihemn. We have developed a p)lan ner wh i ch operates Ii two phases. plan
gei (rat ioni and( mu 1 t ist age negotiation [3]. 'Ilie, plan generation phase dheterintes multi pie
global 1)1a ri s for sat isfa ct ion of each systei ii goal. Mltist age negotiation then attempts to
(let er i lie a set of alt erniatiye planis thiat, satisfies the mlaXi mu rnY numtber of globl~a goals,
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suibject to t'eswlir(e (()iisti'aiwi [li Fe f'ocis 4 t his pri'ceiitat ion is I lie p~lani generation liase

rti plan ner is a distributed plannier as 01pposedl to a cenitralized plannier for- a
illilt agenlt stslei. IDiie to tue (ist riilt ion of bot1h tie kiiOvldge aiuriit. systeinresources

anid heir t(A1m. plan gerierat 1011 is (l~iaiil('aii iifise in nat fir. C'onsequentlyain 1gb'
ag~ent may be asked iniilt ipic timies to aid in the coostiictioii of a global plan. As a result,

(a('Wll agent 1ou1st be able to (leriiili( how 11imft iple r('(fiests for- par-t al sat isfacltionl of' a
singlIe goal fit. into t hat agen is dist it alternatives to sat isfy thle goal. Is ever-y rtequest

par-t of t , he sail pla l'? \khich i'equest> are act u;a I par-t o)f thle saii alter hat ive and
which ar'e thle r-esilts of di'stI: ct plaiidconeliin .'\gii. ;~ abb- it ( llr iii

t lii 'ile Ii i)l t jl l 1111)jl-Jjl )5olioiti10115 for- a sinlgle u oal with only1 a liit ed view of'

11 01 '1 m d i' jIll 1l (Illi'((l I5 " i i(IdI lSI,;1xvfili ('w11 i.iii c II(- tg III ai re 1(cogi' i w

U 'vs, of I I 's) pf a ws. S11piil f 111 1 incs a re I )ait -1of ai 11 1(1vi11(1 Inia I aggi il plroccd l iv \% 1 ii

'i i 1, ' i(I s 1)each 1 t Ii cog 11ize i ts "ct ioi.-' ini V1i ls pIlani ih '( il 1posit ions5 fol. t il >-a Ill( 'g( )Cii

I 21' t' 15 - i t t I I it1!)1 tK T) C'o IIstI- IIic t a l i Ited, a bs"t l-a c v i e'w o f g Io ol i i II foI'IIi II i oi., 1) 111

''l) agen is eve lil)MA with ci(oiiiQtv e et aill gb1 muii r in a I iou I his PrtIv dU Ni)t
lhe !muI i rc'nc pr-ofk!I 011 0 be,.c d oar]ier. h~ut miore nuiport a nt l\ it is ni f~un Ie

P~lani goliel-al 011 u-Iing slpifiit ilanis has bwei iivpleimld in I h domiain S' couxin-

mrl111>nt x',ak ni1l2(Tll'nt. Ini this symetm. lIlal genera ionm leiiies plaiis fAn A li
;eSt 01111 I ('i cll nmlni lad i'i vic l bt weeii two liseis . 'Iii ingii ex pen mci it at ton, wec skxv

hilt plan i rt oll a be w11 ,iiiplishied bVy passing ruen],c' a limited aliolit of Lifor-

riatio1)1 alnllo syste~ lri olt All that is i'equjliied arl-(dsclipft ions, of lie goal st ill(, oiid

lie prcT'enit >1 init of theu plin am!dul infonilato 101wlch allows apiots to rerlliii their los1' at
act ions iii Ilie rouist 'lirt iii of thle plain. Th'lis fast piece of iiiforiat liolu is plrovidied tlioiigli

Ow 1use of slifplflIt nllies,. .xpel-iiiieiital reslts!- >bow thfat t his dist r1ibutel inechliisilu

dot ails of t lie weti s *' sx'st 'Ini liA Mdtin it does, not i-c(Jlii'(' tOw conisti run ion of siuch a
globa AiM- by' anY agenit

4.3.2 Related W~ork

4.3.2.1 Coiiparisoni with Research i Plann11ing 011r Ipjaiiiiel difflis fr-oiiexist iliv
p~linl-' iii t hat ('(It dili objlects, ilv designated ats resomrces. ~o that th1ey may be eficieiitlv
;ulolod foi' sat isfac ioni of' muiltipfl( systeiii goals. [lois (mi "wk rej~i''eis an extension

oif th i llei use of i5( Ii 50.10 In pl; nim I rg. SI., Tj sap net'i- wicli was exp~licit ly
d('i)2Ted to hllil( the nll t in of' i'('sotii'((s. lox-v('li'. SINll' 1> objeOcts ('sigiiatell as

[('O~ 1(5fol' eat'] 'l dctc(('cji (of sni O±( a I nl('aIlions" ai 1111)11 sufllhgOils f'l the s igoalI.



There is no provisiton made for efhicien t all ocation of resorices to satisf mliple goals.
In addition, SIPE I is designred for cent!ral ized planitn rg, thlerefore the p~lan ner hias coniplet e
kniow~ledge a bout the ava iaic dl) l( Sy I (li i1o0I I rco.. It should1( alIso be rioted that S]PEC (1005

allow for, thno tem[porary' allo It~ jOlof a B1es01irc0 in th ieoxecrition of a plan. Thas is a-,
extenision plannied for the miodel priesenited ini t his report.

Thie not ion of dividnag a larg'e problerii. and thlus a large searcht space. into0 smualler
jproldlemis resulting in regiora seach spaces is very sim ilar to the planning strategy of

( LFM 11)IA L: O [2. G~~ F lN1) U ) i s atp getralI coliNst ra ii sa t.i sfa ct l oll sys t em wh1)i ch expl 1oi is

allv inherent structure in at given prolblern loilaii. TI tr ct durme Of lie user's chOsenl
doma in is used to i deirtiflv o int ities wh ich can hQ defined as regions where local izedl onn -

st rainit s canl direct a localizod search. T[his st ructutre caii take onl a hierarchical form
wh11r( ' v one regioil hia ac(cess to thle sri Bplaits of all its sublregion,-. Thlus, local search
cana be usiedl to sat isfyv local con strait ts a nd in fact. it itlay lie p)ossile for several submel-,

q4011 to performi I heir local se-arches ini parallel. Then . muoving 1hack ipl to thle regionral
seca mcl space. a regionial sc arcih can he beorforniie to satsf roginal constrainlts. Orur ise

of iple agns wit 1 dtai led local informatins si mila to identiifying re(-ioTSb Oa

corist rai nts. Ilowevem. our plfalnner dloes not rely uplonl a higher level or golhal search space
which can use the results of thle local searches to satisfy global coiisi raint s.

Systems w hich perform (list ribut od t ask decomposition in multiple agents systems do0
exist. The C'ontract Net protocol [35] arid the (list ributed NOAH I sys tern [5] are p~erhlaps
the( most welknown. Thel( (ontract, Net p~rotocol performs well in domains where thle

task can be divided into nearly indlependIent subt asks. Such a decomposition does not
requirme that global iformat ion be pass(,(] amirong thle agents since interact ions among thre
sribt asks are assrmo( to he nionexistemit or rtniimportant. Thus, rio prislion is m~ade that

allows an gent to reason aborut mrilt iple participations in the ronst ruct ion of a sinigle
plan. Fuirt hermore, for (dormains such as those described in this re port, there is no means
by which an agent call reason about its lpart iipat ji in mu/tip/c plan (IoCOllpOS-ition1S.

Th le (listi'rite( NO.A II system dloes p)rovide irrecharrisms for an agent to reason ab~out

miult iple part icipation in t he construction of a sinlgle p~lan. However those miechanisuns
reqruire cornliete and( acurate information concerning the glolbal plan to he resident at
each agent. in the systemn.

Other no0tab~le work in IDistributed Artificial Intelligence include the research efforts of

Drirfee and Lesser [1 1], Rtosenschein and Genesereth [34], Cicorgeff [17], and~ (7amm-amata,

Mc~krthrir andl Ste-,h [2]. T'he work of these researchers is related to tHie niilt~istage
negotiation pha-se of our planner.

4.3.2.2 Comparison with Routing Algorithms In our domain implementation
we refer to tire function of planning new routes for disrupted circuits as Service Restoral.

At first glance. it may appear that Service Restoral performs standard routing of (his-

rupIt ed circriitis. The problem of routing circuiits is well runderstoo a0( ni indeed, manTl



algorithms exist which route circuits in distributed networks. However, the assumptions
concerning node connections as well as the overall objective of Service Restoral differs
from those of tlie conventional algorithms. It is these differences which make existing
algorithms inappropriate for Service Restoral. In the following paragraphs, several con-
ventional algorit huts are described brieflv along with their assumptions and objectives.
This description is then contrasted with the assumptions and purpose of Service Restoral.

Many distributed routing algorithms have been developed as a result of comiputer
network construction. Most can be grouped into classes by their basic approach to the
prob~lem [16].

One class depends upon global knowledge residing at each processor node in the systein
[29] and the use of some graph algoritIii [9]. Another class of existing routing algorithins
requires only condensed inforination at each node and uses "preferred next neighbor"
tables to designate tie next nutde in tlie shortest pathi to every possible (lestinatio in
the network [14, 28. 20. 37. 36]. An improvenent to this class lead to the formation of
a iotlier set of algoribithns [1.5, 19, 301 wvhicli also require only partial topology informatioll
and rely on "preferred next neighbor" tables but these algorithnis establish and maintai i
the shortest path between two nodes through strict control of how the routing tables are
tupdated. Another algorithii which has gained recognition is one that uses a sat uration
e (cl i(ique [23] whereby each node only needs to know its nearest neighbors andl the trunk

)UIps associated with each search niessage.

Each of these algorit huts makes the same assumption about node connectivity, naniely
that every trunk into a node connects to the same main switching device. Given this
asslliption, it is senseless for a proposed route to pass through a node more than once.
Each of these algorithms prevents , or attempts to prevent, the existence of such a route.
It is also important to einjphasize that each of the algoritlinis routes one circuit at, a tuie
wi.li the goal of finding the route with iniimal cost. The purpose of these algorithms is
to dynamically route temporary circuits. Cost factors in these algori thins usually include
t ]cast tile ]engt i of tIhe routo and soniet ies ilie curreit deinands upon tile Irunks

t raversed. This overall philosophy is applied to each circuit in isolation. That is, if more
hian one circuit needs to be routed, these circuits are routed without regard for their

niutlial existence.

Iln contrast. Service Restoral does not make the same assumption about the existelice
of a central switching device a.t each processor node. Service Restoral acts with a coarse
grai ned level of processor distribution. Instead of a, processor residing at each individual
site, a pro<(essor is responsible for several sites. where each of these sites belongs to the
'arine subregion. As a consequence, a. processing node corresponds to a subregion and thus
iulrasil )regioui con iect iv ity becomes an ilyrporiant issue. Service lRestoral must work ill
ain .rvi roninent where mu l tiple paths exist t hrough tlie subregion which visit disjoint sets
ofJ itl. [us it is possiblo that a plausible restora.l route for'a circuit miay pass througli a
rul," lore than once. Ili fact, a plausible restoral route nay pass thirouigh multiple nodes
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.\"IIoIcr leOaSOil tI lie 1C1ilv1ilioiaI dii ijiliitedl routiiii2"' algorit Iiiii are iillprOlpriate for'
Servic INeStoiaI i Illat t li overall lliiloso1)lii s difthi. \\Iiereas IIlI(- existinig algorithmis
aIre iriteided 1lu' teiiipoiarv rYou trig of' previoiislv 1ioliexisteit circiit s, Service IPestoral
reroutes exist ln" dedlicated circits whilch hiave L(eiil disrirried. Service Ht'storal attellpts
I0 oia tldk Ihe iiiost eicivc 11sf? of I lie iietwork resources so as to r'Sore as iildflv circulits

a lOs~ilf?.lhH's accoiiiplisliei bv collect ively iestoiio, circiits. mnakinig Ilse of' their
previou'lY icesfv( I riiiiks as 'xc1l as, spare t runrks aiil t riiiiks that riiav be pri'Cfillte(.

hIi oirder to d et eriiii ii thle best ilizat iont of' thle nietwork resouirces. rnirih plv alterna i xeS
1".)r restoring" c~a4 ISI irpte(I circulit iutist Ic g(-iieratedl. 1'roii these aiterniatives. .~~c
lNestoral selec'ts those 1laiis which coflect ivelv restore Ihe greates't riuni1ber of' circui1ts.

Ilii1wirelv (leriliiig the short est or, iniiiiriial cost pathI f'or a circuilt is riot the alim
of Service Hestoral. III fact. suIch at rouite mlax, actually p revei it t ie rest oral of otIi ci
circits 1) ile system.) Inistead. 11 is thle iiiteution of, Service ]Restoral to m1ove away
fi-oni thli dogi hat ic procedlii' of' rout Iiig .Ircults InI isolat io ho an) approach which iiti ilZes

ioiis' of, what 's liappeiiiiiiiii Ilie svstenli as a whole. By beig aware of a groulp of'
cIrcu1!it s Hihat ha;\-e b~eeni disrutpted. Service lHestoral Nvili be able to accurately reallocaic
ict work resolii rces I in, eiost effective riaiier.

[lie followin g sect ion describes the characteristics of (list ribit ed plannling in mnore de-
al anid defines the requirements of tHie plan generation phlase. S-ect ion 4 .3.4i presen-t,
ecluiilq(jlies Lv whiicli thle requilremnents of plan: generalioi i are, nuct. This is fol lowed 1Tii

S -1ot .3.. ) V aii exNa nple taken fromn the (loirai n of coiimi iiicat ions net work naliage-
1i1(ill . Ili Sect ioni -1.3.6 , x pen miint ai resii ts comiparing (list ribhtted plan generation to
otlier pla ii (_eniat1 on st rat egvies are presentedl. Thou in Sectlin -1.3.7 wve describe exten-
sions ho (list rihlited plaIIIIIIIg that shouild b~e add~ressedl as research continuies.

4.3.3 Planning as a Distributed Resource Allocation Problem

4,3.3.1 Problem Class Description In miany intiltiagent domnains, planning Canl
b~e x iexxd as a forin of distrib~utedl resource allocation problem in which act ions require
r(irc1 cs in order to satisfy systemn goals. In such domiains, goals reqire allocation

1h dsriudsystemi resources. but criteria for goal satisfactio arnt.seiedb

eriiirne1rat rug the resoiirces requiired. In fact. the resouirces required are not known at the
mwni of thle instanitiation of a goal l)iit are dietermined as a plan for satisfkaction of that

goal is corist riicted. lIi addition. it. is uisually the case that there are several comibinations
of systemn resources which couild he used to satisfy a single goal (depending uipon the local
actionis taken by systeri agents.

[Tie resorirces whlich are involved in this class of prolblernis are assumred to be indivisible
(io conisisti rig of comnporiert resouirces). TIhei r stllplly Is limited andl they cannot be timeI

shii ared for concuirrenit satisfaction of multiple goals.
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Allocation of a resource in this context has several ramifications. Once a resource is
allocated for partial satisfaction of a goal, it is in use as long as this goal is being satisfied.
Furthermore, a goal is satisfied only if each and every one of the required resources is
currently allocated for this goal. As a result, if even one of these resources is allocated
for some other purpse. the original goal is no longer satisfied. Thus, execution of a plan
to satisf'y a goal in-lies the concurrent allocation of distributed resources Moreover,
allocation of a resoi:rce does not imply consumption of that resource. In fact, it is more
than likely that ti e same resource will be allocated for different purposes at different
times as the needs of the system change.

Problems of the type addressed in this report are also characterized by their large
size. That is, these problems involve vast amounts of detailed information. In addition,
this informatioi, is constantly being modified. Maintaining a complete, accurate, and
detailed view ,f such a large, dynamic system at each agent is obviously difficult if not
impossible. For these reasons it is desirable to limit each agent's view of the entire system.
Therefore, control over resources and knowledge about these resources are distributed
among problem solving agents. Some of the resources are under the direct control of a
single agent, while control over others is shared by two agents. Allocation of a shared
resource requires coordination between the agents that share its control. In addition,
agents have a limited view of the resources that are not under their direct control. Thus,
no single agent has complete knowledge about what resources exist in the system or
who controls them. As planning progresses, agents do construct abstract views of global
information but they never form detailed pictures of global state. This is partly due to
the maintenance problem, but more importantly it is unnecessary when using the planner
described in this report.

4.3.3.2 Requirements of Plan Generation As stated previously, the overall ob-
jective of the planner presented is to efficiently allocate system resources so that as many
global goals as possible are concurrently satisfied in a multiagent domain.

Distributed plan generation is difficult because each agent must have the ability to
recognize its role in global plan decompositions with only a partial view of the global plans
in which it participates. As in multiagent systems using a centralized planner, generating
an acceptable plan requires problem decomposition and assignment of subtasks to different
agents in the system. The major difference lies in the character of the decomposition.
In distributed planning the decomposition is dynamic. with each agent determining the
extent t) which it can contribute to satisfaction of a subgoal. Given that contribution.
the agent must then determine which other agents may be able to aid in the completion of
thc plan. The deconiposition is also diffused in that no agent, has knowledge of the entire
s ysten state, the etire goal-subgoal structure, or a complete view of any of the multiple
plan decoinmpositions clurreItly under construction. This is due to the fact that, both

:now ledge and control of svst em resoirces is distributed aniong the agents. Using the



go-alI descriut iton . a tenIs 1111IstI dvuiaat I(itI Ic v (leterinI ite wh t coiI)Iit Iatl, t..s oft thirF resourI ce

--;a t If t I' is goal. 11 owe ver. t his I I Ii 1ie h a(Wotul I shied wit Ibot Ia I)v s)I Iihe a "on1it ha v1!)
CWiItJIltte kiiowle Ige of what tes'oiices exist 01 whlo Conit rol" thlil.

Acorn 1)1('8 t1011 ai'seIs alsa it usequcilce of' the dyci vianlie atd d( (iffuse liat u re o-f' piani de-
(oni1posit ion. Specificallx-. a particular a eiit iia\' be askelt oi rIb I at ereiit vnles-
anII(IIId I tlf eeI wayvs to Ie s c at isfet I1lol of n Iiai Iv s ulgoals relat Ive to t Ie( sat isfact loll of it

n1112e i"johl~ g-oal. In ordler for an aL eti to correctly (letcetinhtie wich of its alternIatiVeS

an1 sat isfy a, partilctlar suhgoai. I 1it itit1,e aible to assess which sulbgoalis are( part, (if thle

same gobal Pit leoi)Ot ionl a11(1 wlilch are part o' (list jijt deconiposit ions. 'I'hose
alt ertiat v(s- that arc part of lie satte ic ohabil plan nii1st lbe (oiiiluied into at single alter-

Th e.Iis IsN nCce 1saryV for thle success (if niujit istag~e l(Sitiat loll. Duriin", iiinlt istagec

71I'-utlat onl. ai itsjnst be abile to reasoti abl)Oit the iiiilpact of' selct iii all alt (ilative.

h!1)iarticular. an agenit musi t b~e 81)1( to (le riitli ow (iluostug onte plal fagiti to

sat isfv one, local subgoal will effect Its abililtv to Select pln fragtlien ts to s at isfy (ither

loCal sti I ZoakI. EX ecut loll of' a partiila r plant fragtniit ii(cessarilvy Ii IitIs t he resour-ces

ava itbal~e for. use InI sat isfact ion of ot her siubgoals, Therefore. select ion of an\, specific a]-

t('rllat ive ha~s plotetia l side effects onl t le c ti al)illi V tol particiit 'in satisfactlion of'
ad1d1it iotial globlI goals. Reasoning about such subgfoal Interactitons canl only occur if each

aita Iealt m a1IItN1i ye is1 part of a (listi nct global plan.

To clrify this point consider Figure 1 which depicts a four agent system in which two

,global platis have been constructed for satisfaction of a single goal. The plans are presented
pict oriallyv as sequences of plan fragments distributed among the planning agents. Each

plan framnieuit ('an be assumied to lie a set of local actions which achieve part of tile glohal
t( OAl. fin partlCi ci . tiot ice Agent, B's part ici pat ion in the plan generation phiase. Agent
H 118 rceived twoi requests to participate in plan construction for this, goal. Using the

)1Vba Vi W pmresen t H b\- j ito ire 1.It is obviouts to d iscern that Agent B shouildc use pf2 as
i)l(' of ii- s distinlct alt erniatiyes and pf2 arid pf I shoul ib(1le combined i nt() a secondc distinct

alt eriat ive for sat isfact ion of this goal. JHowever, it is importat to realize that Agent 13
dors not have t his global picture. XVhat Agent B '-sees" is shown in Figure 2. Yret, Agent
13 mustO be alble to (let-riuie hcow these two requests fit into its distinct alternatives for
t his goal. Therefore, plan generation must provide some additional information so that
a gert-s rmay formiulate (listinct alternatives witlh only a limited1 view of the mult iple plan
d cot iposit ionls (Teatedcl

It should lie noted,( thlit whenl an alternative available to an agent appears to be part
o)f at distinct globa.1 plan, this is a local perspective. InI fact., this alternative may be part
ot several global plans for the sam-e goal. However, if the agent's participation in each
glol d plan is the samne. they locally appiear to be a single plan. Tlo clarify this poinlt.
Cron;!(der Figure 3 which shows two global pilans for a single goal. A.s before, the plans
an'( prPsented pictorially as seqjuences of plan fragmients distributed among four jilanrnng
agen]ts. Onice agai1n, n1otice Aent, 1B's part icipiation in each of lie global plans. At the
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Agent B
pf2 pf4

f : pf5 0p,

pf7,

Agent A Agent D Agent C

Plan 1: pfl-pf2-pf3-pfl-pf6

Plan 2 pfl-pf2-pf7-pf5

Figure 1: Global Perspective of a Comnplication

r - ---- - - - - - - - - - - - - - - - - - - - - - - - - - - -

pf2 Agent B pf4......... ------. F----14',

Agent A Agent D Agent C

Figure 2: Limited View of Multiple Requests
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Agent B
pf2 pf4

p f I f3 pf f

Agent A Agent D Agent C

---- : - -p -p- pf-

Plan 1: pfl-pf2-pf3-pf4-pf5

Plan 2 pfl-pf2-pf3-pf-i-pf6

Figure 3: Multiple Plans That Locally Appear to be One

end of plan generation. Agent B should combine plan fragments pf2 and pf4 into a single
plan fragment because they represent a single alternative available to Agent B to partially
satisfy this goal. From Agent B's limited view, this new plan fragment appears to be part
of a single global plan when in reality it is part of two global plans. Whether this new
plan fragment is part of a single global plan or multiple global plans is unimportant for
the planning performance of Agent B. What is important, is the requirement that Agent
13 recognize that pf2 and pf4 should be combined into a single plan fragment, because
they represent a single alternative for Agent B's participation in partial satisfaction of
this goal.

4.3.4 Distributed Plan Generation

As is clear from the previous discussion, the objective of distributed plan generation
is to determine sets of local actions that can be performed in a coordinated fashion
by distributed agents to satisfy global goals. Thus, the collection of local actions (in
multiple agents) that satisfies a global goal constitutes a global plan that exists as plan
fragments distributed among the agents. A plan fragment, then, is a sequence of operator
applications to objects under the control of an agent that would transform the global
system, possibly through intermediate states, to a new state. When planning is viewed as
a resource allocation problem, these operations include allocation of resources local to an
agent. An agent can extend a plan fragment if the agent can formulate a plan fragment
which would transform the system from the proposed new state to a state that is closer to
the goal state. As previously indicated, agents have a limited view of resources which are
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not under their direct control. Thus, each agent has limited knowledge concerning what
state transformations other agents can make. Therefore it, is impossible. in most cases,
for a single agent to devise a global plan.

Plan generation begins when an agent, is notified of the instantiation of a global goal.
The agent creates a subgoal corresponding to this global goal and determines all sequences
of actions it could take to bring the system to a state that locally appears closer to the
goal state. Each alternative local sequence becomes a plan fragment. If any of these
plan fragments would bring the system state to a new state that is not the goal state.
the agent must issue requests for extension of the partial plan to agents that may be
able to transform the system from the new state to the goal state or a state that may
be nearer to the goal state. The search strategy is a modified version of the means end
analysis strategy that has been used in several other planners [12, 13]. The approach
in this context is somnewhat different in that there is no global information available for
ant awent to determine whether, in fact, it can bring tlhe systen to a state that is closer
to the goal state. I sing local knowledge, the best each agent can do is determine state
t ansfornations tlhat locally appear closer to the goal state.

It is clear that every request to extend a plan must carry certain information which
will permit an agent to achieve a state that locally appears closer to the goal state.
Speci ically. a request niust contain a description of a global goal, a description of the
appropriate interme(liate state, and a set of tag lists which are known as support names.
Support names embody the information which enables each agent to recognize its own
role In multiple plan decoml)ositions without requiring complete knowledge of the global
plan.

During plan generat ion a given agent may be asked to add an additional set of actions
to the same global plan several times. Thus it is necessary that an agent be able to detect
when it is being asked to build another piece of a global plan it has already partially
cotstrricted. If the agent has already built one or more parts of a plan, it must know
ic/iic/i of its plan fragnents were previously used iII that plan. This information is needed
for two reasons.

First, tle agent nusi determine if it, can extend the partial plan in a coherent manner
b ased uiport its preyioris participation in tlie construction of the plan. Specifically, the
agent should not inadvertentlv build a plan wliicli woutld Ibring tHie system to the same
stale twice. Pernitting the system to cycle thi roullI the same state multiple times has
two drawbacks: unnecessary work is performed an( nion-ter nination is a possibility. II
addition. thie agent mr st not allocate more "copies" of anv given resource than it has
available to a single glob1 al plan. Clear'Iv such a plan wouild involve demands upon resources
which could not be I lot.

To illustrate t lose concepts, consider Figur, 1 w)ic1 depicts plan generation as a series

,f porator applications tbat transforl a possible pall f'rotm state to state. Ibe resources
irivoldV,l i) Oli a pp lcat ion nf eaclh op rator ar, displayed in parent heses. For the )rirpose.
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A
0p4(R3)

Opl(R6) Op2(R1)

B
Figure 4: Multiple Participation of a Single Agent

of this example, assume that there is only one copy of each resource mentioned. Age nt
A has determined that it has one set of actions that would transform the system from
state SO to a new state, S2, that locally appears to be closer to the goal state. This
transition involves one intermediate state, state S1. However, in order to reach this new
state. Agent A needs to use resource RI which it shares with Agent B. Therefore. Agent
A must coordinate the use of this resource with Agent B. Agent B determines that if RI
is used to reach state S2, it can extend the plan and bring the system to state SS' which
locally appears closer to the goal state. Reaching this new state involves coordinating
the use of resource R3 with Agent A. The critical issue illustrated here is that if Agent
A attempts to fulfill Agent B's request to extend the plan starting from state S8, it must
not do so by bringing the system through states SO, S1 or S2 because the decomposition
of this plan has already been through those states. In addition, Agent A cannot propose
an alternative that would use resources R6 or R1, since this plan is already utilizing those
resources, and thus they can not be allocated again. Therefore, Agent A must be able
to recognize that it has alrcady participated in this plan decomposition and identify the
local plan fragments that are also used in this plan decomposition so that planning for
the new request can take place in the proper context.

Furthermore, as discussed in Section 4.3.3.2, it is the responsibility of plan generation
in a single agent to determine when groups of actions that have been formed as part
of the same global plan decomposition eventually become components of feasible plans.
When this occurs, the agent must gather the actions resulting from the various requests
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into a single plan. fragment. This is required for proper identification of potential subgoal
interactions (such as contention for the same resource), where the interactions of concern
are those between subgoals for d Ifferent global goals. As stated b~efore, reasoning about
such subgoal interactions can only occur if each plan fragment available to an agent
represents a distinct alternative for partial satisfaction of a particular goal.

Our mnechanismn for prov.iding an ag-rnt with the neans to recognize distinct roles
Ii multiple plan decomposit ions involves attaching a list of support names t~o each plan
f ragment. Supp~ort, names rep~resent abstractionTs of the global plans associated with a
plait fragment. They are incrementally constructed, with each aget appending a "tag" to
identify It~s own plain fragmients. These tags allow an agent to determine how a particular

ptlant fragiment is used lin a glokal plani. They do riot embody information which allows
anl agenlt to reason about the specific actions of other agents Ii a particular global p~lan.
'>11 pport iaries (Indicate which auexts have partilcipatecd Ii the construction of a plan blit
do inot revNeal tlhe form of I hat part icipat ion. Since these albst ract ed plan,, are constructed
jj it 1,II(te ly as planiting progresses. t lie support nan tes (10 not e-vit con veY a skeletal

-I rutture of thle complete plait. Instead. when an agent is reqluestedl to ext endI a plant.
it c-anl se eacli support namie t hat is passedl witl ithe request as art abstract history of
he ((Indt ruct lonl ot a single global plan thus far. This history contains information which

v w aclt agTent to) ref-ouni ie if and how it pre-viously part iciplated(l i thle contst ruct ion of'
ie wpart artd 4 vIat ot her agetts aid]ed Inr thle conistruct ion) of thle plant.

Suipport itatties follow a plan as it is dleveloped (in a semni-autonomious manner) by
the agenit ,. Once-( a plan has been completed, the requtsite plan fragments canl be marked
iv% Iractit o conit intat ion requests using the si: )port name. Thus, an agent cart deterine(
wlicil reqli tests are part of t li sanie global plan and whichi belong to (listinct global plan,,.

If' it is deteriinii ed I lItat a plan can not be corniplet ed. thle applropri ate sitpport itait es are
(ilet edI

.1.3.5 Examiple: Generation of Service Restoral Planis

l') il ipII rate Ilie utse of support itantes. an example taken front thle dlomaint of coriliititi-
CalII I f o t~ WIetxvok rttaaiteitt is preseitted. Cons Ide r t he commninIcatilons ntwork slItoxvr-ti
111 -5.ir .'1 lire aIre fiveo lroblillt solv-itg a gents. each controlling part of a rietwvork

LI t(eqtCiphtil1lv isi ii blitted cotuinIII1cat iou facilities. Th'le nietwork part itionts are called
I utreatonis. thIe cir1cles representl .omittitnll(,ict i)tt sites arnd thle lifnes .Joining sites relir(-eln

cotitrilitit icat ion liiks. Ini tills (loittaii. thle pioblemt of rest orinig dlisriulte 4N etvIce c-art be
6cexvd als aI plariti1iftg problen Ili wvhilclt one olperator. Allocate, is uItlized to allocate

cujnrIIjIIIIIcatI(j ion resurces. Ili thils slimple exaritde. Hie only resources are links arid( a

al iali is aI collectotlocal (- oittljolts eachi of whichi allocate a hlk to restore

ii rtti ill uca h et weeli Aw i e.~ part ial lplan or lplanl fragilteuit irivol%.es art allocat ion
riwirces at r arisforruis the( systeit fron a state Ii xvhich It hias a pl~ai ('t(illing atl

)It" Ill in i(il It ha;s a riexv patiil erliilii at. itot er site. [Ilieavia ili of
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aI r(>(lllrcI dlependIs up1on its uise byV currentl e xi sting ci rc ifits or circuits whose service
Ii as beenl (Isin ,pted(. Liniks which span subregion b)orders are cont rolledI by the resident

l11re~lonis of their cOndpll)it s. Links such as these are modeled as shared resources. In
&Ildit ion. 11o glob~al topological informal ion exist-i. Agents onlY know about the links they
contoml (Iirect Iv andl those t hey share. Thius, if one agent needs the aid of other agents to
(01 St riic a p~lani ill this dloman it asks those agents with whomn it~ shares the control of
it resouirice.

Tiahlc I stiriiiii ,rizcs thec knowledge about resources available to each agent and the
;1-d)cj it (14 (Out 101 rela iorishilps.

1? 7 HIO 1?Z28

----------------1( 3-01 ----

iP Rl119 112 0
0Iii U12 R2

A Q C :D

171iure 7: L. .ample Network

Agrent Resources

A R5 Ro RI
13 R6 R7 RIO R21 R28 R30

C (11 R112 R 14 R-19 R30

1) R 19 R20 R,21 R,22
1F R,20 R28

Tlable 1: Local Resouirce Control

[-or thei purpose of t is example. assurne that originally communication between sites
112 arid Al followed a pat h over links R128-RIO-R7-R6-R5, but link RIO has failed and

ir iuiict onbet ween st E9 and] Al must be iestored over a ifferenit route. Fur-
thorinore. silpose thiat Agent F is notified t hat, a, global goal to restore the path between

1i e I2 aind A I has been Iinstanti ated.
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It is p~erhlaps easiest to explain how pian generation proceeds by viewing the activities
of agents at global time slices (see Tab~les 2 all(l 3). The actions presented in each time
slice are (described Ii two parts. [Fhe first part identifies a planning agent and what action
is being taken lby t hat agent. J he second part is either a description of the action or a
result ret urned by thle action. 'Fhe latter is denoted by a preceding arrow. The following
legend (describles, the form,, usedl i Tables 2 and :3.

local Sri lgoal d scriptioit

local search ( play)-/ru grritni, r~sourccs-!o-allocate, s upport- narme- added
requrest (U! Tit ex t cid (goal, sltarcd-rfsourcr-to-usc, s upprt- na?ne- to-add

riot IfY aq( fit reiriove( goal, r(.0ui'ct- used, support-nainc-to-rernove

acceptable( goal, TT..ota,(C-t1scd, accieptabl(c-support-nanie

adld support( goal. r SOUrTC-USed, support-naine-to-add)
rerriovo suipp~ort reriov'e--support( niatchinqg-plani-fragmnict. siipport-nctntc-to-rciiorc

a cceptale sutJport Iiiark- accep t ale( in atch 1ng-pla n-fragine tit, Icceptablc-.support- ri rite

add suipport adl l-supi1)port ( pla n-f rot orw tit, support-non-to-add )

Ilie example begins wit1 Ai-gent E instantiating a suibgoal to restore a commu nicatilonls

padthI fromn site 1.2 to site A l. Agenit E' then conducts a local search and dletermfines that
it has one alt ernati\ e that locallv satisfies this sulbgoal, pfEl, which uses resource R28.
Since Agent F has initiat ed thre p~lan generat ion process, there is no previous support to
associate0 WithI this p~lan fragment. Thus, a ""is used to denote this situation. Control
oVer' resort rce R28 is shared wit Ii Agent B, therefore, a request is sent asking Agent 13 to
cxt enio the plan for t his goal rising this shared resource, R.28, with support narne (El)
lan g()enerationl continues fromn this p)oint,.

()lserve t I mne sice- T4. Here Agent E has determined t.bat it has no alternatives winch
ext enl Agent D's request. Therefore. Agent E notifies Agent [) that the support name
hat. followed t his plan dlecomposition Should lbe removedl. Ini time slice T-7. Agent D uises
lie (lestinat ion arid resource Ii Agent E's notification to identify p~lan fragment pfD 1 and

Ag~ent D remnoves the appropriate tsupport name from this p~lan fragm-rent.

Iii tinme slice T6. when Agent A comrpletes a giobal plan using a request from Agent
13. it sends hack a not ificat ion to Agent 1B that the( requtest. has resulted in anl accep~table
plan. Agenit 13 receives this notification in timie slice '17 and (determines that, it ownis two
of' t lie t ags i ri the support name ass-oc-Iate(l wvit It hle r'equest,. Agent B identifies pfB2 and

I fB I with th ese tags aiid thius realizes that, t hey' are p~art of a single plan dlecompositioni
Iihat hias resu l ted iii anl accep~tab le p~lani. Therefore. Agent 13 creates a new plan fragmuent.

14f113. %%1w c l cli II,, resot ces of bot141pf32 a nd pfB1 and Agent 13 gives th is new plain
fral.,r11rIlt suipplort '.-Since nO accept able global p~lan rises pf'B2 alone, its Support, nilres arc'

Notef th1at if) 11111e slice TS. Agent C remroves a supp~lort nairie from ;)f( 2 duei( to lie
p)ropaga~t loll of s'ippuirt naiie rmciloval Stan ed In Agen 13. 1 however, this propagaion endls



TI E: subgoal to restore path from E2 to AI

E: local search - (pfEl, (128), *)

E: request B extend (Al, R28, (El))

T2 B: local subgoal to Al using R28

B: local search - (pfB1, (R28, R21), (El))

B: request D extend (Al, R21, (BI, El))

T3 D: local subgoal to Al using R21

D: local search - (pfD1, (R21, R20), (B1, El))
- (pfD2, (R21, R19). (BI, El))

D: request E extend (Al, R20, (Dl, BI, El))

D: request C extend (Al, R19, (D2, BI, El))

T4 C: local subgoal to Al using R19

C: local search - (pfCl, (R19, R14, R11), (D2. BI, El))

- (pfC2, (119, R30), (D2, B1, El))

C: request A extend (Al, R11, (C1, D2, B1, El))

C: request B extend (Al, R30, (C2, D2, BI, El))

E: local subgoal to Al using R20

E: local search no alternatives

E: notify D remove (Al, R20, (D1, B1, El))

T5 A: local subgoal to AI using R11

A: local search -- (pfAl, (Rll, RS), (Cl, D2, Bi El))

A: notify C acceptable (Al, Rl, (C1, D2, Bi, El))

B: local subgoal to Al using R30

B: local search - (pfB2, (R30, R7, R6), (C2, D2, B, El))

B: request A extend (Al, R6, (B2, C2, D2, BI, EI))

D: remove support remove-support (pfD1, (BI, El))

T6 A: local subgoal to Al using R6

A: local search - (pfA2, (R6, R5), (B2, C2, D2, Bi, El))

A: notify B acceptable (Al, R6, (B2, C2, D2, BI, El))

C: acceptable support mark-acceptable (pfC1, (D2, BI, El))

C: notifv D acceptable (Al, R19, (D2, BI, El))

T7 B: new plan fragment combine (pfB3, (pfBI, pfB2), (C2, D2, B3, El))

B: remove support remove-support (pfB2, (C2, D2, BI, El))

B: notify C remove (Al, R30, (C1, D2, BI El))

B: notify C add support (Al, R30 (Cl, D2, B3, El))

D: acceptable support mark-acceptable (pfD2, (BI, El))

D: notify B acceptable (Al, R21, (Bi, El))

Table 2: Time Slice View of Example, T1-T7
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T8 B: acceptable support mark-acceptable (pfBl, (El))

B: notify E acceptable (Al, R28, *)
C: add support add-support (pfC2, (D2, B3, El))
C: remove support remove-support (pfC2, (D2, BI, El))
C: notify D add support (Al, R19, (D2, B3, El))

T9 D: add support add-support (pfD2, (B3, El))

D: notify B add support (Al, R21, (B3, El))
E: acceptable support mark-acceptable (pfEl, *)

T1 B: add support add-support (pfB3, (El))

Table 3: Time Slice View of Example, T8-TIO

here because there is another plan fragment, pfCl, which uses the same support name
(see T4). This represents a place where the search for a global plan split into two parallel
search paths. In this example, the second plan fragment that uses the same support name
has been marked as part of an acceptable global plan in time slice T6. The propagation of
this acceptable support name has reached Agent B in this time slice. Agent B is notified
that pfBl is part of an acceptable plan. Using the support name, Agent B determines
that pfJil is part of an acceptable global plan that does not use other plan fragments in
Agent B. As a result, the support names for pfBl are marked acceptable.

Agent Plan Fragments Resources Support Names

A pfAl R1l-R5 (Cl D2 BI El)
pfA2 R6-R5 (B2 C2 D2 BI El)

13 pfllI R2S-R21 (El)

pfB2 R30- R7- R6 none

pff33 R.28-R21 R30--R7-R6 (C2 D2 B3 El)(EI)
C pfClI R19-R14--RI! (D2 B1 El)

pfC2 R1D-R30 (D2 B3 El)
D pfD1 R21-R20 none

)fD2 R21-R19 (B1 El)(B3 El)
I" t)fl:l P28 *

Table 4: Hesults of Plan Generation Example

Table 'I shows the plan fra gment s created by each agent., the resources used by these
Iplan fr')ameit s, and th je spV)port names associated with each plan fragment at the end of

T,! I,,'neration. Note that p )FI)l has no sir pport names because this plan fragrnent is not

part of any aCceptablo 'global plan.
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To summarize the imnlortant points of this example. \gent 13 created two plan frag-

ments, pfBI aid pfB2, as a result of requests to add to partially constructed plans for the
same global goal. Tlhrough the use of support names, Agent 13 has determined that pfB1
and pfB2 are used in one set of acceptable global plans (in this case one plan) and pfB1
is also part of a different set of acceptable global plans (also one plan in this example).
When pfBI anl l)fB2 are used as parts of' the same global plan, they represent a single
alternative in Agent B for this global plan. This has been reflected by the creation of
pft33. The determination of how these plan fragments, created out of separate requc-ts.
lit into global plans has been accomplished without any single agent hz.:i~g complete
knowledge about any of the acceptable global plans generated.

4.3.6 Experimental Results

4.3.6.1 Description of Experiments 1Research in distributed planning is currently
being conducted in the context of the communications dornain described in the previous
example. The iminlnHientation model' , however, contains much more of the detail asso-
ciated with ? teal world communications network [4]. Local searches for plan fragments
are not simple searches for paths of links in and out of a subregion as might be assumed
given the example above. On the contrary. local searches involve tracing through com-
plex interconnect ions of various types of communications equipment at the sites within a
sulbregon.

Lxisting planners use several different architectures and moreover, the level of ab-
straction at which planning occurs varies from system to system. Experiments have been
Conducted so that distributed plan generation as presented in this report may be compared
to plan generation schemes with various architectures using different levels of abstraction.
In each of Ilie tested schemes, an agent which has control over part of a network has
detailed information about that part of the network and only that part of the network.
If any other information is used for plan generation, it is either abstract knowledge in
t he form of plan fragments, or limited abstract knowledge in the form of support names.
The following is a description of the plan generation paradigms used in these experiments.
The first is a sing!c agent system and the rest are multiple agent systems.

Single Agent/Detailed Global View (SA/DGV) A single agent is responsible for

the entire system rather than distributing system knowledge among multiple agents.
In this approach, a local search for plan fragments is equivalent to a global search
for global plans that will satisfy system goals.

Multiple Agent/Limited Abstract Global View (MA/LAGV) This is the
approach described in this report. Plans are constructed by multiple agents which

'The methods described in this report have been implemented on a TI Explorer in Common Lisp.

Simulation of the multiagent processing has been accomplished through the use of SIMULACT [24.1.
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have an incomplete, limited view of the global plans. This incomplete, limited view
is determined by the incremental construction of support names and therefore, is
different at each agent in the system.

Multiple Agent/Central Ahitract Glhal View (MA/CAGV) Agents use the de-
scriptions of the circuits which are to be restored to determine all the possible ways
they might be able to participate in a global plan. The results of these local searches

are sent to a single agent who pieces the plan fragments together into acceptable
global plans. Once this is completed, each agent is notified of its participation in
global plans. The view of this single planning agent is not limited in the sense that

it does know about the complete set of plan fragments in the system. However, its

view is abstract since this agent knows nothing about the detail of communications
equipment and its interconnection at each site.

Multiple Agent/Replicated Abstract Global View (MA/RAGV) As in the
IA/CAGV approach, local searches are conducted by each agent using high level

circuit descriptions. The results of these searches, however, are sent to every other

agent in the system. Then, with complete knowledge of every plan fragment in the

system, each agent forms the global plans and determines its own role in each.

The key parameters monitored in these experiments are the simulated time required to
generate plans, the average cpu time required by each processing node to generate plans.

arld the amount of message traffic sent during the simulation.

In addition, three network configurations were chosen to observe the effect of various
topological extremes. In this domain, the network topology actually defines the complex-
itv of the roles of agents in the multiple plan decompositions. Therefore, by varying these

topological extremes it is also possible to observe the performance of these strategies when

agent participation takes on roles of different complexity. Each network contains twelve

sites divided into five subregions with various inter- and intrasubregion connectivity. Fig-

wre 6 shows the configuration where the subregions are connected in a straight line and
Figure 7 shows the subregion connections which form a ring. The third topology chosen

is shown in Figure 8. Ilere each subregion is connected to every other subregion creating
a tightly coupled network.

4.3.6.2 Experimental Results The results of these experiments are shown in Fig-

ires 9). 10, 11. 12, 13, 14., 15, 16, and 17. As expected. tlh SA/DGV strategy performs

tie worst in terms of the time taken to devise global plans. This observation holds true

over each of the tested topologies. This points to the desirability of distributed mult iaoenl

svst ems over centralized sinigle agent systoms when tHie systems are large.

l'le NlA/(AG\ . MA/f A.(, aii( A/ILAG\V strategies all take about the same

aollollnt of tine to deter-lniine global plans for Ihe line topology. As well, the cpi time
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Figure 6: Line Topology

per agent is approximately the same. However, the amount of message traffic required by
the NIA/RAG\V strategy exceeds that of both the MA/CAGV and MA/LAGV strategies
with the MA/CAGV strategy performing better as the number of goals grows.

For the ring topology, the cpu time per agent for the multiagent strategies begins to
separate with the MA/CAGV strategy clearly performing better as the number of goals
increases. The MA/RAGV and MA/LAGV strategies appear to be following approxi-
matelv the same line. Regarding the time to construct global plans, the MA/RAIV i:,d
NIA/CAGV strategies outperform the MA/LAGV when t.he numbe. U.' goals is small.
ttowever, as the number of goals increases, the lines appear to be converging. The results
for the message traffic required shows that, the MA/RAGV and MA/LAGV strategies
have approximately the same requirements while the MA/CAGV strategy requires less
message traffic. ""

When the topology is tightly coupled, the strategies perform with significant differ-
ences. The MA/LAGV strategy clearly requires less time than both the MA/CAGV
and MA/RAGV to devise plans as the number of goals increases. However, the cpu
time per agent required is clearly less for the MA/CAGV strategy with the MA/LAGV
sirategy coming in second and the MA/RAGV performing worse. In addition, there is
a marked difference in the amount of message traffic required by the different strategies.
The MA/LAGV strategy requires the mcst message traffic, the MA/RAGV less, and the
NIA/CAGV still less.

For the network topologies tested, there is a clear question of trade offs. For th
ring and line topologies, the MA/CAGV strategy performs better overall. The price paid
however is vulnerability. In domains where survivability is an important concern, such
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as a military communications network, the MA/CAGV strategy obviously is undesirable
because of the dependence upon a single agent. For the tightly coupled topology, the
MA/LAGV strategy will take less time to construct plans but the price paid is in the
amount oi message trainc requihed.

4.3.6.3 Performance Analysis The performance of distributed plan generation can
be analyzed by considering the time required to generate plans and the amount of message
traffic sent.

The time required to generate plans is influenced by factors on two levels. At one level,
this parameter is dependent upon the amount of time required to pass the plan among
each of the agents involved in its construction. Therefore, from a global viewpoint, the
time required to generate plans is directly rel tted to the length of the longest chain of
agents involved in building a plan. At another level, the amount of time required to
generate plans is determined by the processing time of each individual agent. As the
relations between requests to extend a plan and multiple plan decompositions become
more complex, so does the processing involved to determine distinct alternatives. Thus,
from a global perspective, the time required to generate plans is also directly related to
the complexity of the roles of agents in multiple plan decompositions.

The message traffic necessary for plan generation is also directly related to the partici-
pation of agents in multiple plan decompositions. When an agent is notified that a plan it
has helped to build has been deemed acceptable, that agent is responsible for the propa-
gation of this information. If the agent participated only once in the plan construction, a
single message is required to continue the propagation. However, if the agent participated
multiple times in the construction, then two messages are sent, one to propagate the new
support name and one to remove the old support name. Thus, the message traffic re-
quired to generate plans increases as the complexity of the roles of agents in multiple plan
decompositions increases. However, it should be noted that the amount of message traffic
required does not approach that which would be needed to transmit complete, detailed
global information to each agent in the system.

These experiments illustrate that distributed plan generation can be accomplished
by passing merely a limited amount of information among system agents. The only
information required includes descriptions of the goal state and the present state of thf
plan, and information which allows agents to determine their previous actions in the
construction of the plan. This last piece of inforniation is provided by the implementation
of support names. Experimentation shows that building a complete, detailed globa

4.3.7 Future Directions

As a res;t of the prelHiminary experineiit's reported in this section, new directions for

'Xl)riientation have beconie clear. lerhaps the mosti inmediate is to design a network
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that models the scale of a real world communications network. It will be interesting to
observe the effects upon the relative performance of the algorithms in a network which
contains a greater volume of information.

Some modifications should be made to the plan generation phase to permit its use in a
larger class of domains. One such alteration involves relaxing the definition of allocation
in the model. Rather than requiring that resouices be allocated for the duration of the
satisfaction of a goal. the model should be modified to allow for the use of a resource for
a period of time and then allow it to be relinquished for allocation for another purpose.
Thus, the model will then be able to allow the dynamic scheduling of resources. In
addition, the model as it exists makes an implicit assumption about the capabilities of
the agents in the system. Namely. no two agents can bring a single plan to the same
state. One solution to allow this situation would be to increase the information included
in the support name. This might possibly be accomplished through a globally recognized
encoding scheme for abstract state descriptions of plans.

4.4 Cooperation Using Constraint-Based Reasoning

In this section we present formalisms that form the basis for multistage negotiation. We
demonstrate that these formalisms permit an agent in a distributed planning system to
gain knowledge about the interaction between consequences of its local actions and con-
straints existing elsewhere in the system. Our work provides mechanisms for determining
impact at three levels: locally on the level of plan fragments, locally on the level of goals.
and nonlocally. Abstractions that reflect these interactions are formulated and proper-
ties of the abstraction mechanisms are discussed. In addition, algorithms are given for
computing local structures and their complexity is analyzed as an indicator of the worst
case performance that can be expected. Finally, bounds on the number of transactions
required to propagate local impact to distant sites are derived. We also show how this
formalism provides a natural mechanism by which agents incrementally expand knowl-
edge about the nonlocal impact of their local decisions without constructing a complete
global view.

4.4.1 Abstraction of Constraints and Conflicts

For the purposes of illustrating our definitions, we consider a scenario involving four agents
in a distributed system cooperatively attempting concurrent satisfaction of four goals. A
number of global plans have been constructed during plan generation, as indicated in
Table 5. In Table .5, each goal is identified by gi (i = 1, 2, 3, 4). The set of alternative
plans for each specific goal gk are identified by gk-pl (I = 1, 2, ... ). Thus we see that
goal gl has five distinct alternative plans, glpl, glp2, etc.
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[plan [ plan fragments rl r2 r3 r4 r5 r6 r7 r8 r9 r10 rll

gipl A-a B-a C-a D-a 1 1 1 1 1
glp2 A-a C-a D-b 1 1 1 1 1
glp3 A-a C-c 1 1 1

glp4 A-b B-b C-b 1 1 1 1
glp5 D-c

g2pl A-d C-d 1 1 1 1

g2p2 A-e B-c D-d 1 1 1 1

g2p3 C-e D-e 1 1 1 1 1

g3pl A-f C-g D-f 1 1 1 1 1

g3p2 A-f C-g D-g 1 1 1 1 1

g3p3 C-h D-f 1 1 1
g3p4 C-h D-g 1 1 1

g4pl A-g B-d 1 1
g4p2 A-g B-e C-j 1 1 1 1
g4p3 A-h C-i D-h 1 1 I

g4p4 A-h C-i D-i 1 1 1

g4p5 C-k D-h 1 1 1

g4p6 C-k D-i 1 1 1

fable 5: Global Plans Generated

It should be noted that Table 5 shows the global plans from a global perspective. No
single agent in a distributed problem solving system has complete knowledge concerning
any of these plans. Indeed, except in unusual circumstances, no single agent is even aware
of the total number of alternative plans that have been generated.

From Table 5, it is evident that global plans are composed of collections of local plan
fragments. For instance, global plan g3p3 is composed of plan fragments C-g and D-
r. Plan fragment C-g denotes a set of local actions that agent C could take in partial
satisfaction of goal g3. Satisfaction of g3 using g3p3 would require the actions D-f by
agent D as well as the set of actions C-g in agent C.

Local knowledge about plan fragments is shown in Table 6. Notice that if the entry on
the resource count line for resource r in agent i is k, then agent i has k copies of resource
r to utilize in problem solving. The shared resources are evident, as they are known to
more than one agent. Observe that riO is a shared resource. There is only one copy of
r1O in the system, and its allocation must be jointly controlled by agents B and C.

It is important to note that each agent has only the local knowledge about plan
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Agent A Agent C
goal plan frag rl r2 rll goal plan frag r2 r3 r4 rb rIO

resource count 3 2 2 resource count 2 3 2 2 1
gi A-a 1 1 gi C-a I 1

A-b 1 1 C-b 1 1

C-c 1 1
g2 A-d 1 1

A-e 1 1 g2 C-d 1 1 1
C-e 1 1 1

g3 A-f 1 1
g3 C-g 1 1 1

g4 A-g 1 1 C-h 1 1
A-h 1

g4 C-i 1 1
C-j 1 1

C-k 1 1

Agent B Agent D
goal plan frag r9 rO ri goal plan f:ag r5 r6 r7 rS r9
resource count 1 1 2 resource count 2 2 1 3 1

gi B-a 1 gi D-a 1 1 1

B-b 1 D-b 1 1 1
D-c 1 I

g2 B-c I 1
g2 D-d 1

g4 B-d I D-e 1 1 1
B-e 1 1

g3 D-f 1 1
D-g 1 1

g4 D-h 1 1
D-i 1 1

Table 6: Local Knowledge About Plan Fragments
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fragments shown in Table 6. This means, for example, that agent A is aware that plan
fragment A-b for goal gl coordinates with some plan fragment known to agent B as a
component in some global plan or plans in satisfaction of gI. Agent A knows this because
resource rll is shared between agents A and B. Agent A does not know anything about
plan fragments that are local to agent B.

To enable an agent to efficiently exchange knowledge concerning the nonlocal impact
of local decisions, we determine a conflict set for each plan fragment. We then use the
conflict set to construct an exclusion set for each plan fragment that reflects the potential
impact on an agent's ability to participate in satisfying other goals, assuming that plan
fragment x is executed. At the highest level of abstraction, we use exclusion sets to form
in feasibility sets. Knowledge summarized in its infeasibility sets allows an agent to reason
about the way in which its decision to satisfy one goal may affect its ability to satisfy other
goals. Finally, we propagate these local concepts to other agents with the construction of
i nduccd cxclusion sets.

Before formalizing these concepts, we need to define the notational conventions used
in the discussion which follows.

1. We defhne maximal and minimal subsets of sets whose elements are sets in the
standard way. Given a set of sets S = {S,. .. , S,} with a partial order < defined
on subsets of S in the standard way (that is, Si < Sj Si C Sj), we say that Si is
maximal if S, E): Si < S,. Furthermore, Si is minimal if Sj D: Sj < Si.

2. P,= {= all plan fragments known to agent A }.

:1. If pf C PA. then pf, is associated with satisfaction of some goal g(pf,).

4. The set of goals known to agent A is
(U = f9g I = g(pf.) for some plan fragment pf,. e P. }.

5. For each goal y in A,. there is an associated set of plan fragments
pfs= {x I x c P. and = g(x)}.

6. copic.s(r,) denotes the number of copies of resource r, available for iise bv agent A.

7. rc.sourc s(pf ) denotes the resources reqiii red to execute plan fragment P.f.

8. r,(PIT) denotes the number of copies of resource ri needed 1)y plan fragment p.f.

9. A set of plan fragments in Agent A, P = {p.f,....rpfr} is said to )e compatible
if r,(.fz) < cop?."( Oi) for all i and (Pf ) i .(pfk) for j : k.

10. \ maximal compatible set of plan fragments in A relative to pf, is a
in axi mal I slet of .. = { I P is a co pati lie set of plan fragments aini p..- C / }.

42



The conflict set for plan fragment pJ, indicates the minimal impact (locally) of a
choice to execute pf. The conflict set for pf, can be constructed by considering each
maximal set M of mutually feasible plan fragments (including pf,) known to an agent.
For each such set, NI, the complement of N is anII eleInent of the conflict set for Pf,.

More formally, the Conflict Set for plan fragment pfJ is constructed as follows:
Let X = (P4 - pfs,) U {fj., where g = g(pf1 ). For each maximal compatible subset NI
of plan fragments in A relative to pf1 ., the set X - i I a member of the conflict set for
I)f Thus, ('Sp-h {c I c = X - .l, where ,I is a maximal compatible subset of plan
fragments in A relative to pf, }.

To illustrate this formalism, we compute the conflict set for D-b in our example sce-
nario. The maximal compatible subsets of plan fragments in D relative to D-b are:
{lD-b. D-e}, {D-b, D-g}. and {D-b, D-i}. Thus the conflict set for D-b is:

{{D-d, D-f, D-g, Dl-h, D-i} {D-d, D-e, D-f. D-h, D-i}, {D-d, D-e, f-f, D-g. D-h}}

Thus. if agent D selects plan fragment b in partial satisfaction of goal gI, then the only
other choices locally compatible with this selection are D-e or D-g or D-i. This is also
expressed in the conflict set by the three elements each of which is a set of plan fragments
which are collectively in conflict with the choice of plan fragment b.

We are concerned with the conflict set because the conflict set for a plan fragment
gives information as to the negative impact of executing that plan fragment. The maximal
compatible subsets. on the other hand, indicate maximal sets of feasible choices that are
available. There is no reason to believe that an agent should choose some one of these
maximal subsets for execution. Indeed, a given agent, might never participate in system
satisfaction of some of the global goals. (This can be seen in the example scenario by
observing that all four global goals can be satisfied through choice of glp3, g2p3, g3pl,
and g4pl. Agent D is only involved through partial satisfaction of g2 and g3.)

Though the view of the conflict set as being formed using the complements of maximal
feasible sets is intuitively appealing, when the problem is underconstrained it is compu-
tationally more attractive to view conflict relative to pf1 in a dual form: as the collection
of minimal mutually infeasible sets of plan fragments, given that plan fragment pf, is to
be executed.

Three significant observations can be made concerning the conflict set of plan fragment
pf1 . First, the complement of each element of the conflict set is indeed a maximal feasible
set. Secondly, the agent will be compelled to forego execution of all plan fragments in
s, rn element of the conflict set, if it chooses to execute plan fragment pf1 . The local
impact of a decision can thus be related to the size of elements in the conflict, set. Finally,
reFresentation of impact in the form of a conflict set seems to provide a substantially
more compact form of representation that can be more efficiently used in reasoning than
many others.
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The conflict set for a plan fragment reflects the impact of executing that plan fragment
at the level of mutually infeasible sets of plan fragments. It is often necessary to reason
about the impact that executing a particular plan fragment would have on the potential
satisfaction of other goals.

The Exclusion Set for a plan fragment, pf, is a collection of sets of goals, one of
which must be abandoned if pf. is selected for execution. Thus, if the agent selects plan
fragment pf., then one of the elements of the exclusion set is a set of goals that cannot be
satisfied through action on the part of this agent. The exclusion set is defined as follows:

For each s E CSpf., we define g, {g Ipfs(g) C s}. Thus g,, for an element s of the
conflict set, is the set of goals that that cannot be satisfied locally if plan fragments in s
are eliminated from consideration. We let G = {gs I s C CSfI} and define the exclusion
set for plan fragment pfx, ESp~f, as the collection of the minimal subsets of G.

Returning to our example, we compute the exclusion set for D-b. The conflict set for
D-b has three elements. Using the definition of g,, we see that

* gD-d,D-f,D-g,D-h,D-i - {g3,g4}

* 9D-d,D-e.D-f.D-h,D-i - {g2,g4}

* gD-dD-e.D-f,D-g,D-h - {g2,g3}

Thus, G = ESD-b = {{g3, g4}, {g2, g4}{g2,g3}}.

A choice by agent D to execute plan fragment D-a compels agent B to forego local
action in partial satisfaction of two of the other three global goals about which it has local
knowledge. Which two of the three should be abandoned is dependent on decisions made
elsewhere.

The exclusion set exposes relationships between plan fragments and goals. It is often
desirable to detect and reason about mutually infeasible goals. The relationship of in-
feasibility is, i very strong one. Goal gl is (locally) infeasible with goal g2 if each of the
(local) plan fragments for gl has g2 in every element of its exclusion set (and conversely).
When two goals are (locally) mutually infeasible, an agent, knows that it cannot act to

satisfy both goals. due to local constraints. Once exclusion sets have been determined,
infeasibilitv is not difficult to detect.

The three types of relationships we have discussed are all rooted in local constraints.
(Conflict. exclusion, and infeasibility are essentially concepts which would not be particu-
larly significant were it not for the constraints on joint -'xecution of plan fragments that
exist locally. Alt, hoiig the concept of conflict (foes not appear to propagate in a meaning-
fill mianner. exclision does. The key element in this propagation lies in the observation
whiclh w, l ave made lefore) ihat a cloi ce on the part of one agent to satisfy a, goal
Ii r,,igh exfeclition of a specific plan fragment constrains the set. of remaining choices that

vail a hl1e to other agents for sat isfact ion of that goal.
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As we have seen, the construction of exclusion sets allows us to assess the impact of
executing of a plan fragment that is due to local conflict. In addition, we would like
to know how the conflict associated (locally) with execution of a plan fragment affects
the ability of other agents to satisfy their goals. The Induced Exclusion Set is our
mechanisn that provides a vehicle for propagating this information by capturing the
essence of the impact that local decisions have nonlocally.

In the discussion which follows, we assume that in a distributed environment one
agent does not have knowledge concerning another agent's internal state. It specifically
does not have any knowledge about resources over which it has no control. The agent
must therefore gain knowledge about the impact its choice has on other agents from those

09 U t.s. directly or indirectly.

The Induced Exclusion Set for a plan fragment, pf,, in Agent A, is a collection of
sets of goals, one of which must be abandoned by one or more non-local agents if Agent
A executes pf.. The induced exclusion set for p.f,. JEpf,. is defined in the paragraphs
which follow.

Let X.pf' = {tpfi I pfa E PA, pfi V -14, rcsourccs(pfx) n resourccs(pfi) $ O, and
g(pf-) = q(pfi) }. Thus. each individual plan fragment in XV;-x is a non-local plan
fragnent which may connect directly with p~fx (via a shared resource) in some global

plan.

tFor each agent. K. with plan fragments in XPfX we must determine the contribution
to the induced exclusion set for pfx due to constraints known by agent K. For each plan
fragment ip C 0pj, - . we Iherefore let

= -- I r. for es ESP and ie C IF}

Notice that each rp is a set of sets, each of whose members reflects potential conflict
due that could arise if plan fragment 1 is selected by agent K. In this construction, each
rs represents a contribution to e that reflects constraints local to agent 1K, while each
/ denotes a contribu11tion that agent K has received from other agents relative to plan
fragment p. For this reason, it is necessary to combine these contributions into a single
elernent. E, -f,. that may be propagated to Agent A. EI-pf, is defined as the collection
of minimal subsets of U cP for p E Apf, fn

(:ontinuing the definition, the induced exclusion set for plan fragment pfx, IEpf,
i 'he ollection of the maximal subsets of E = U El,:,pfx. This definition of IEpI permits
incremental construction of induced exclusion sets under the assumption that initially

IEpf, = o for all plan fragments.

Once again, returning to our example, we compute the induced exclusion set for C-a.
Ohserve that plan fragment C-a matches (in D) with either D-a or D-b and in A with
A-a. so that X(_-, {A-a,J)-a,l)-b}. As we have seen, the exclusion set for D-b is {{g3.
gl}. {g2. g4}. {g2, g3}}. Coincidentally, the exclusion set for D-a is the same as that for
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D-b, while for A-a the exclusion set is {{g2}, {g3y ,{g4}}. The set E used in computing
the induced exclusion set for C-a is the union of the exclusion sets just mentioned, so
E = {{g2}, {g3y, {g4}, {g3, g4}, {g2,g4}, {g2,.q3}}. The induced exclusion set for C-a is
the set of maximal subsets of E, so IEc-, -= {{g3, g4}, {g2, g4}, {g2, g3} }.

Intuitively, this is telling agent C that agent A is forced to forego one other goal if C-a
is chosen and agent D is forced to forego two of the other three goals if C-a is selected.
Each nonlocal agent transmits a minimal set of exclusions it knows about. Clearly, agent
1) renorts more extensive nonlocal impact, and the construction of the induced exclusion
set via maximal subsets reflects this impact.

The induced exclusion set is incrementally built during negotiation. When one agent
(agent A) requests information about the impact of executing plan fragment pf, on an-
other agent (agent B), agent B attempts to summarize all the knowledge it has about
that impact. This knowledge is initially found in the exclusion sets of each of its plan
fragments which coordinate with plan fragment pf. As has been mentioned, the induced
exclusion set in agent A for plan fragment pf2 is empty initially. As nonlocal knowledge
becomes available, this set is augmented in the obvious way. Given sufficient time, an
agent, can acquire knowledge about the system wide impact of executing each of its plan
fragments. It does so, however, without the exchange of detailed information concerning
resource availability in the system. It is not difficult to show that incremental construc-
tion of the induced exclusion set for a plan fragment can be managed so that it converges
after no more than 2u exchanges of information, where n. is the number of agents in the
svstem.

4.4.2 Computation of Conflict

Most of the work involved in providing an agent with a reasonable level of understanding
regardling the impact of local decisions lies in computation of conflict, within each agent. In
this section, we give two procedures for carrying out this computation. The first takes the
view t hat the conflict set relative to a. plan fragment is the collection of sets determined
bY finding complements of maximal feasible sets. The second constructs a representation
of conflict, directly as tile collection of ninima! infeasible sets. Both computations yield
sets that provide the same informal ion relative to exclusion and infeasibility.

Strategy I
For every plan fragment pf, in ...

L cor 1plite-rnax u in -coml)a t ibles( r'.r r,'ion-isl qoals .. - ,(pf ) p'f

2. take corplerrient of each maxiimi in coni patible with respect to pf.s..i - pfs, wvhere
fl, = O0'L).

hlte flinctl ion compiIe-ilaxi ininI-coMiupa tibles is defined as follows:

I ( I I



compute-miaximum-comnpatibles (reservation-list goals compatible-set)
if (null goals)

add compatible-set to maximum compatible sets and delete subsets
otherwise

for every plan fragment pf, for g,. tile first goal in goals,
if p.f- does not exceed resource availability based on reservation-list,

then for everv resource r, required by pf.,
add I to reservation-list entry for r,
add pf, to compatible-set

col)ute-maxlinm-compatibles (reservation-list (goals - g,) compatible-set)

This algorithm computes the conflict set by finding maximal compatible sets and their
complements. Its cornplexity is bounded by

I P 4 I * [max(I pfs, I) * of resources ] GCA

In fact, our experiments indicate that this expression does not represent a tight bound
when the scenario represents an overconstrained. situation. Since there are many fewer
feasible sets when the problem is overconstrained, this is not surprising. The second
procedure, given below, computes minimal infeasible sets (under the assumption that
plan fragment pf, is selected). It is not hard to see that the second strategy is more
efficient when the problem is underconstrained, as major portions of the algorithm are
not exercised when there is no hard resource constraint to test. In the worst case, Strategy
2 is exponential in (number-of-plan-fragments * number-of-resources-known).

Strategy 2

1. For each resource, r, required by plan fragment pf,:

(a) for each goal, let 5'(g) = {plan fragments for goal g that require resource r}

(b) let S, ={S, (gi) I gi E GA - gpIX}

(c) if copies(r) <1 .S Ithen

i. define CONF(r) as

{s I Si U '5' ... U Si,,, where n =5 ,5 -copies(r) + I and Si, E S,..

2. Construct CONF = {C I c = C U C2 U... U Cm where ci E CONF(r,) and ri is known
to agent A}

3. Conflict, is represented by the collection of minimal subsets of CONF.
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4.4.3 Status and Future Directions

\Ve have discussed formalisms that permit an agent in a distributed planning system
to gain knowledge about the interaction between consequences of its local actions and
constraints existing elsewhere in the system. These formalisms define an abstraction
hierarchy representing impact at the level of plan fragments, at the level of plan fragments
relative to goals, and at the level of goal interactions. This theory provides a basis for
agents to begin negotiation by exchanging enough information to make good heuristic local
decisions. Future work will involve the implementation of these ideas as well as the further
development of multistage negotiation. Extensions of these formalisms that are useful in
tvnarnic (olains requirng incremental plan generation are also being formulated.

4.5 Maintaining Consistent Beliefs in a Shared Knowledge Base

In lhe previous sections we have examined cooperation among agents involving message
passing. At, the local level cooperation may also be achieved by sharing knowledge con-
cernirng the current state of the comnmnications network. Inferences of one agent are
shared with the others, in a central knowledge base. The shared knowledge base is man-
it ,d by the Knowledge Base Manager (t1IM).

The JKBM has the responsibility for managing the knowledge base. Within the IKBM.
sonie type of truth maintenance system must be active. Its tasks involve regulating each
problem solver's beliefs in a consistent manner, as well as providing a means by which one
agent can easily share its inferences with the others. While the truth maintenance system
will not directlv address resolution of inconsistencies across agents, it must provide an
efficient inechanism by which the 1K 1M can recognize inconsistencies among agents.

Fhe NIANIS (NI ulti-agen t Assuniption-based Truth Maintenance System ) has been
developed to manage a knowledge base shared by multiple problem solvers. Each problem
solver has its beliefs uindependentlv" managed in a manner similar to that provided bI
a conlventioiial t ri ut maintenance system. That is, every problem solver in the system
can W6 aind retract bhwliefs from its belief set and the MATNIS will ensure that the belief
s(t rclmiills soil i ;an(I complete eerv inference and only those inferences derivable
!'rorui t le set of assiinij)tions in the belief set are included in the belief set. A fundamental
difference in this sYsteli as opposed to conventional truth maintenance svstems is that an
iif erence provided to tlie NIATNIS is also made available to other probleni solvers anv
afrcit w!,ichl believes t!eions iipfoii which an inference is based has the inference

al;em t III its belief s et .
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4.5.1 The Role of Truth Maintenance

lDuriigii~ttlie coiir-e of' rioriiiai prolieri solving~ act ivity\. an agenit. or iproleni solver, m-ay

lforiiialiize or liiake use, of, asslirliptiois . A.ssumiptions (-ii be dlivide~d into three types:
'it'fault asslllip. iolis (--unliess5 tiRe' is evidlence to thle cointrary, assuriie that the elflfloyee

£,t' paii id-) I.>ipit iris *'siiipose tihat thle enrfl)oye is riot getting paid"), and niew

bstnxt insof tue turrenit state of, the wvorld (.*the( eijlOyee is not getting paid"). The

Cki10iToi id aliiiuiig thle thrlee is a h6tc abi/tfy which is not dependent up)on any other

L ver ,v iinferencet dlrawnr by a lprobleiii solver can ultimiately be tracedl back to a set
or sets) of dSi ip1015As opposedl to iassrn ipt ions, the bel ievabi lityv of an i nferen ce is

'pen t 'utii pu rhe helijevabhilityv of the assumnpt ions. If an assuipi ion set upon wh i cl
;1!1 in fecrenlce is I asetj is cuirrent l v I el ievedl by a lprohlemn solver. then that inference should
a Ik b )I t'lit V 't I regard less of' Ihle type of' lhe assumlpt ions i rivolved.

lile assiin ijt ions anid thle inferences b~asedI upon t hese assumiptions with which a jproh-
it 'in A )ver is opera iiig are referred to as the current belicf set of ilie lprolblern solver. Every
I1 iie a proI cnI solver d rawvs an inference, mnakes ani assnnipt ion. ret racts an inference. or'

ret ract, ani a sq in i 1ir. it clhainges its belief set. WVhen a prolein solvxer changes its belief
lt t u nv dif lii i 1ns a ri s'. f low n in1ch of wvhat was believed before thle change can still he

W&A 'IeeIA er Ii W ciiann et This is ('OinionilV called the frani 1 (0 oh/c in. In mnore general
'cruis. thIi proti in i,, fe.i.i. thle i nalbit ii v to mnodel side effects of act ions taken in t he

xx~nlt hv iiaking correspondin rig odification in the dat abase representing the state of
it' world.* I F or exa nip ti, wich beliefs mnust, be removed. andii which beliefs can remnain.

xxiicii a part icilari assnrlnptoni is renioved?

A i I, )her pr tilerni arises when t he agen inutrod uces a '.tel ef o the knowledge baw~ which
(oil ! ilh oi iO('vlifwi ch is alIreadly pr'esent. I1m roxan the intent ions of thle problem solver

be correct lv recognizeid? Suppose an agent. wishedl to override a default assumption. Flor
(Naruple iniaginte Tat lie defailt is-a attiribut of each object, in the knowledge base is

If objectl~ HIM is iii the knowledge base, its default is-a attribute issuae If
tie agentl rt'ali/es t hat P123 is actunallv a circle, t hen object RE3 is a circle shoulid be

ailttxvet to aunt oiat icall ,v override the default assumiption. A belief which the problem
-ol ive has ex pl ici t ly In a(lt' should be, alloxwed to override a default assuinption. But this is
i lle casf' if 1h problem) solver mt rodircs a belief that is inconsistent with another which
is riot a default assuimpt ion. If after asserting that object RE33 is a circle, tire agent
asserts o/Jj((' REA? A a tciangh, then the agent has explicitly mnade twvo asserltions which
are inconsistent Iii general . when a prolern solver adds a belief which contradicts an
ex\isting belief, does thle btelief set becomne inconsistent, or should the mnost recent belief
,i ii flv ove'rrid thle beli('f wvit h xviihl it is inconsistent'?

1' a1 bel itf set of an agent does bxecomne inconsistent., classical first order logic suggests
oxervf iirg c-an be proven, arid (everyt hing can he disproven, so the knowledge base is
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esse lt IIi l v worthless. It svems exi Iitt thIat onlY thle att ribu)Ites of t hose ob~jects whiiich are
logica lly a ffect ed byV tie Inc (onlsist ency should 1e (ticst joied. C onshier a kniowledigc I)asc
wich elcon tait is objfci 1 1K. a ! rut iiyl6 ;ird obicct ILJJ a circh If there exists lio
logicl coill M01111 il het wer )jell . A)ec UPii) ad oh ~ect 1,117. tI1( licthe sh ape of ob~ject hy!177

shiould 1"t lhe sls pcl.

10 addlress prohdlri ass oclated wvithi chi'irgiig beliefs. trurth miairiteriaxree sx'stemls [10.
6. '27. 27)[ have heeli dleveloped foi. 1151' w~t p islgeJroblemi rsolvers. Whiienever thle prol em
solver ;lddS onre rclacls it lelief. tIref triot h ilraI irterrairce s teir is Inrvokedh to nrirage t kr
kelie!L. [o0r tsaie.When airl sxriptoIrs rirroveII0Vd. lte vsteir call deternicr (after
ifle emi aI ir torli i of 1111ire) which eliiferletree hr xeI refin vedl heca ise tf c

itei)(ildfe(I T her, (1I11 i-V or indirly.~ ,i tmIhe iwcI1 alrci of Irhe assrirptiorr. III additiort. It
tv(o klilffe_ ill' i tcei thre etrtiri ktrowled~le 1ase is Irot renideed iels.Rat her, tire

nt it01811 lac alletr 111lteritrte whic If ilkset of lelills 'itir I iiwl Ias(ar
tarI sr I t the res iitie noldg ae fnansorstt I Iltad 8>llir it". are

aI 11,!A;td -111;11v uitis default a'srrtniptioirs cit1 M-0'ii7lI(Irlrl ic l'e-aI

k- *f ri j)!ohlcP' 'zilvclt sh1(ild rit raIct the belief' xvhich 0vetr-(We it . A\s alr

I the' t sh whtil thrcxis t defalirh ha.,frptot ?/I it -ht, fa( bh/

Ix T i-'r ()\- 'T ;I' /o- -ir/ is. If T he problemn solver :et c'acts ( 'ii r X
1I1* 11Iii il II I 11 i( -. t I I S W 1 1 ')i' f 1i( I1 at 1 % r at

I i, c I, s-(; i lw' -t > rolleir. I lie T.ruth i n rtiaies~se v, iotd exl'i

1' I)~ Vn siIjII l b( 'cI 11 ces Ior'elnit b~itIr ISO ' riferr I''' I

v ol)i'IiirleNIi solkvr is Iivo)x'ed IIif aci 5i()fli loing. ('Xpl)(i''. C

ci it '. I ;o fI 10o t ire coipril tat rolls, to ' irr(ioriri alrot llr tas. ii 11 I

it llt 'I2 h(ii lt' 1 i :tk. \Vit hr it a tIirut 1!miliiitetll1(I sv e t It( Ire O lit -I \ .v t-

* f~ d 't L si t 1 P I I lo' t ask. Floin 1 11 Ic I it , Itr'I1  a 'a, II . hors 1 t lrx ii t o I-i l p II'cI( I' iiaiiv

xx'iete I!hl 181 l Ited. \\heir ire( pioldlru so] vcr r'e-ass('its th li'si ITTstr ions. which were

Hi 1t. I,rjit'l I \lie It wa)s perihi inr. thei ofilitral taisk. Ir ti rujt Ir tiiir0eiialrr S\tIcitr

p-1 ts',(s anV x' er enee t Ia x If, rtc Ilia( I ii its 1)1 lief s;et Ni Ile per-forn rinig tire task.

()ur' work is, rotiertied xxi 1 if iit rIllrtOcl pr l iol% Ioix,,r, erivirorrirreirt inl whiich t hr

ill' ;I t1iitiet of8U i t I i a c(Y( 'tat ill" Iv I' pCsti~ irr ( :e to, (aclr ot hier reiqur(st iirg act fotl

8 lll sir a i i 4cifen';ils M ir a 'eil rillI ktroxhilide !)"se larr 'fetts nwee sct is kept
ixnht lit I Ire cerl l ' kno h ,( I! x I i 1 its(,. W hen1 i i 2'i adhi air i tlie irce I(. is" h el I'l set

Iial inlferenlce is shared wvIt hr the other ato('it.- hcbcailse the xal1iiY of air infereiee Ii
I ire (S 'itt va I imw1,,d,' f ' tc Ilirse lc t('jr t Iliii ~ plot t r var Ii itv or its pr('('olrldit ilts . a, Ii

exat i si p 11e 1W f~dol lxxi tI-Ig in xrits IIr onec of th lat-'eits5

I w Iilk, 18 t I 1w itt etif t --a]'1f~ I art H it, I a'i exelI. t Itr r( i 1 wl exhr '" i..' ( )ir t ire



problem solver enters thIis know ledge intoith shI C~ a red( kniowxledge b~ase, aniy prob~lemi solvxer
whiich believes A4 and 13 wvill believe C.

[here are mianiv diffculties iniirna iaginig a shia red kinowledge base using the tech niques
lhat a convention 1l tru thI manitenianice s v steiii emplo)1ys to ma nage a knowledge base ac-

(es,,S(l 1 *v only ivOne p~rolem( solver. Everv pro1blemi presenit iii thle vinigke agent ciivi i'oiriint
is also presentfl iii the miuiti-ageiit eniviroinienit. and iaiman additional difficulties are en-
coutI tered thiat a IC ( Inv to tilie (list rib1)uted aspects of the p~roblemi sol vinig s vstein. First, a
sinugle agent I ruth ii minileiance 'sysi em orgniiizes its knrowledge base so tho lilte p~roblem
solver --sees" onilyv those lbeliefs whiiichi are in its currenit b~elief set. .Atr uthI maintenance
svsteni inl a inul 1ti-agent clii iron ii t must perform t his task for each of tile agents. In
(loing~ so. the system mutst handlc thle possibilit t Ihat one agent may lbelieve a value for
a piece of kmiowviedge. xvhilec anot her mayV l)Clive the ojppoit e. To illustrate t hs phe-
nornenomi. considler the fact that the u-se of suppIosition by one agent should not modify
the beliefs of anot hr agent. or example. imayine that one agent believes that Resource
X is; availinble If anrother agenti "T wile engaging in hypothetical reasoning, adds thle sup-
posit on thI at Reisou rce X is uniavail able. thle first agenit should1( still hbel ieve that Resource
X is available. 'Ilh t ruth maintenance s vsteiii niust also handle situations in whlich one
piece of knowledge may' be currently believed by any% numiiber of' agents aiid at the sanme
tiie dIi sbelievedl by a lix' numiber of otheiri agents.

Another Micultv arises when one realizes that the assessment of the current state of'
beic Nvorld is ac:hievedl through the combined efforts of all agents. That is, part of each

aget- ts >t "fill in" the inlcompillete port ioiis of anl overall assessment in order to
aid onev anot her. Wri thne most p~art fIroilemi solvers wviii agree withl ea~ h other, but there
xviii be tii ies whleni twxo problem solvers disagree on a Iji(ce of kniowledge in the knowledge
base. For example1(. P."i (Problem Solver 1) might believe Resource X is available, and P$'2
trw ,f1t believe ]?,som ine X is unavailable. A discrep~ancy of this typ)e could cause problem

<ir to diverge beyonrd the poiut of recovery. It is important that inconsisIcnecs
bt /u rj( n pr'ohlc n so/ut r'. (1ssr .SsrutOUs of the~(' ruc ni state of lhec rorld be recoynkiz(l anrd
(11 (Ith MIn J)/ ad( to 0.socc01 , chm. Oft en there wxill be tirmes wvhien the "differences of
(qiiiioii cannot be resclvedl. At these timne:. the (liscrepancies must be permitted to

~?a.hiopefuillv to be resolvedi iii the future.

I iii a li. a rgn n rt~s concerin rg thle inmIport an(ce of efficiencxy in a truth mainuteniance
.vteui are significanty lvragni Ted xx'hn compalring a nuillti-agent enivi Ronent to a sinle

ar'nren i roln iieit . Thle t ruth miintenaniice system managing a knowledge base shared by
muinltiple p~rob~leml solvers iust b~e preparedh to shift its focus of attention from one problemn
solven to anrother quiickly, even if just to answver queries. This problemi is not encountered

i igle age'nit eniiron me(nt - the truth inain nace system is alwxays concerned withi
hle si ingle agent. Therefl'ro. even if the other prolshens Ini managing a knoxwledge base

,hmar-ed by,, ninltip agent s are add ressed adequately, the system might be too slow to be
msliii any practical problem solving systern.



4.5.2 Comparisons with Existing Truth Maintenance Systems

Existing truth maintenance systems have failed to address the need for a system in which
multiple problem solvers' inferences are controlled by a single truth maintenance system.
However, because we have adopted much of the terminology of conventional truth main-
tenance systems, and the MATMS borrows heavily from concepts developed in existing
truth maintenance systems, the two dominant classes of truth maintenance systems are
presented.

Dovle's Truth Maintenance System (TMS) [10] was the first domain independent truth
maintenance systenm. Doyle proposed that reasons for believing or using each belief.
inference rule or procedure be recorded. This allows new information to displace previous
conclusions and a consistent knowledge base to be kept. In Lhe TMS. each belief in the
knowledge base is explicitly marked as either IN or O1'. where IN means that the belief
has at least one currently acceptable reason, and OUT means that it, has no currently
accelptable reason for belief. Given a beijefor a jiustification for an existing belief, the Job
of the TNIS is to determine the belief status of each of the beliefs in the knowledge base.
tins retaining one consistent knowledge base.

loyle's TIS defined the class of jislification bascd truth inainteiiance svst ems. That
Ist lie stat us of each belief is determined by search i :g through each justification until

naching a set of assuinptions. If the set of assumptions are valid (or believed), then
the belief is valid. (onsidering that these justifications are examined for each belief in
the knowledge base, and any particular chain of inferences which eventually leads to a
part icutar inference in question may be long, updating the knowledge base may require a
]ong, period of' time.

The TMS was deemed inappropriate for a multi-problemn solver environment because
it maintains only one belief set at a time. Given any point in time, the TMS has one set
1f bchifs which are IN and one set which are OUT. Switching belief spaces is cumbersome
because the status of each belief has to be directly recomputed. As we have observed.
in a innit l)l(l probleii solver environmiett, the trilth maieinenance system must be able to
switch belief spaces (fiickly.

De 1K leer, in his Assuni ption based Truth Maintenance Systenm (ATNIS)[6. 7], rec-
ogtlized thlis prolelm also. though not foi- the same reasons. De IXleer was interested
in Iypol etical reasolillig. in which assu mptions are made often, and results compared
a faiiist tihe assiuiplT~tions. Therefore. the ATNIS was (]esigned explicitly to switch belief
sets efficientlv. The ATMS is tle foindation for the MlATMS, ani as such will be discussed
ill Tilich greater letail.

I1, ,r(Ir to create a svsten wh ich co,1ld switcl beliefs sets qIiickly. de Kleer recognized
t ail ain illfre l ice Is 11timatel 'v dependent, on a set (or sets ) of assilitnptions. That is. aii
infererice, mav be derived from other inferences, and these inferences mav hve been derived
!r,,': ,,lChe inferences. bult ev<.itllallv this trace will find assum ipt lions only. Therefore.
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when a problem solver changes its belief set, the justifications of the inferences in the
previous belief set do not have to be traced to determine if they still have valid support.
Rather, each inference could be tested to see if the assumptions upon which it is based
are still present in belief set.

In the ATNMS the entire set of beliefs is divided into sets called contexts; each context
represents a belief set. Essentially a context is defined by its assumption set, which is
called an cn cironment. and includes all inferences which can be derived, either directly or
in(1irect ly, from the environment.

As a context is associated with a particular set of beliefs, each belief is associated
with a list of contexts to which it belongs. Much of the ATMS's work involves ensuring
that each belief's label - the set of environments from which the node is derivable - is
consistent, sound, complete, and minimal with respect, to the justifications. (A label is
consistent if each environment in the label is consistent, sound if every environment can
derive the belief, complete if every way to derive the belief is included in the label, and
inimal if no environment in the label is a superset of another in the label.) Labels must

be kept this way priimarily for efficiency.

There are three features which make the ATMS more appropriate than the TMS for
the multi-agent system described. First, the ATMS maintains more than one belief set
at a time bv maintaining multiple contexts. Each agent in a multi-agent systeil could
conceivably be operating with a different set of beliefs, so it is essential that a. truth
maintenance systern handling their beliefs have the ability to maintain multiple belief
sets. Second. a problem solver using the ATMS can change its belief set much more
swiftly than if it were using the TMS, because the TMS is often forced to perform costly
tracing in order to reassign belief status to each of the beliefs in the knowledge base.
Switching belief sets is also quicker in the ATMS because the new belief set could already
be defined. For example, suppose a problem solver utilizing the ATMS adds assumption
X to its belief set. After the ATMS calculates the problem solver's new context, the
problem solver retracts assumption X. When this happens, the ATMS simply returns the
problem solver to its previous context. The TMS in this situation would have to reassign
belief status to each belief in the knowledge base, only to return the problem solver to its
original belief set. The third reason is that the ATMS handles multiple derivations for
an inference better than the TMS. (Although it still does not handle it very elegantly, it
is still far more capable than the TNIS.) In a multi-problem solver environment, where
inferencing schemes are numerous, a belief is likely to be inferred from more than one set
of beliefs. A truth maintenance system in a multi-agent system must be able to determine
that, if support for an inference is removed, there may be other support which keeps the
belief in the current context.

The major drawback to the assumption based systems is the computation of support
for each inference in the knowleage base. When an inference is added to the justification
based system, only the immediate preconditions of the inference are recorded (this is what
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makes the system justification based). Therefore, adding inferences is not difficult. In an
assumption based system, the immediate preconditions must be traced until assumption
sets are found. In situations involving inferences already in the knowledge base that
are themselves immediate preconditions to other beliefs, this causes inefficiency. Each
belief which is either directly or indirectly influenced by a "new" inference must have the
assumption set upon which it is based recomputed. Therefore, adding inferences might
require a significant amount of computation.

An interesting observation is how each truth maintenance system handles default
assumptions. The focus of each is how to make default assumptions "come back" when a
belief which previously overrode the default is retracted. Both the TMS and the ATMS
have chosen to include default assumptions explicitly in the belief set of the problem
solver. If the number of default assumptions is large, then each system is hampered.

Martins and Shapiro in [25] present a similar comparison of assumption based and
justification based truth maintenance systems. They also present a useful example of how
an assumption based system manages beliefs as opposed to a justification based system.

4.6.. Functional Design of The MATMS

The MATMS has been designed for use in a system involving any number of agents
sharing a central knowledge base. In such a system, each problem solver registers its
beliefs with the MATMS. An inference is registered along with the beliefs upon which it
directly depends, and the job of the MATMS is to maintain multiple belief sets. Thus
the MATMS is responsible for placing an inference in any belief set which contains the
assumptions upon which it is based, informing an agent when its belief set becomes
inconsistent, changing the belief set of an agent efficiently, and switching its focus of
attention from one agent to another quickly.

4.5.3.1 Definitions As a matter of convention, the operators of propositional logic
are utilized from this point on. Specifically, the logical connectives of interest are A (and),
V (or), =* (implication), -, (not), and -L (false). Some examplezs are A = B (A implies
B), C A D => - (the quantity C and D implies false), and E V F => -,G (E or F imply
not G). Shorthand notation will be used for A: C A D =# I will usually be written as
CD = I, and ((A)(B)) means (A) V (3).

A proposition is the MATMS datum that represents a piece of knowledge which a
problem solver has told the NIATMS. Each proposition is unique. Example propositions
are ".Jim is a golfer." "Radio RI has failed," and "The Celica is being repaired."

Lach proposition is attached to a bWicf, the basic datum on which the MATMS oper-
ates. Beliefs are explicitly divided into two catelgories: assumptions a, d infr ncrr.s. An
mt(n c is a beleif whose validity di(lepends upon other beliefs. For instance. if an agent
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has the rule (AA B)V(CA(EV P')) =* G and tells the MATMS that it believes G because
of it believes C and E, then G is an infernce because it is only believed in this case if
C and E are believed. An assumption is a belief whose validity does not depend upon
tile acceptance of any other belief. Assumptions are divided into three types: default
assumptions, suppositions, and new observations concerning the state of the world. The
last two types will be referred to as non-default assumptions.

For discussion purposes, we represent inferencing mechanisms as rules, but they do
not necessarily have to be interpreted in a strict sense. For instance, A =:= B is merely
meant to represent that inference operations can be activated in the presense of .4 to draw
the logical conclusion B. The exact meaning of an inference rule can be interpreted as
6in the presense of certain beliefs, another belief is implied, no matter which other beliefs
are present." In other words, if A --€, B, B is included in any set which contains A, such
as (AB) and (APF).

A justification for a belief is the set of beliefs which must be present for its validity.
An assumption has no justification (the justification is nil), whereas an infercnce must
have at least one justification, and may have many. The justification for an inference
is comprised of two components: its immediate preconditions (the beliefs from which it
can directly be inferred), and the assumptions upon which it is based (the assumptions
that it ultimately depends upon). For example, considering A => B, the assumptions
that B is based upon are the same as its immediate preconditions - ((A)). If B > C,
the assumptions that C is based upon are again ((A)), but the immediate preconditions
necessary for its derivation are ((B)). If C => D and E => D, the assumptions that D is
based upon are ((A)(E)) and the immediate are ((C)(E)). (Recall that ((C)(E)) should
be interpreted as (C) V (E).)

At any point in time. each problem solver has a belief set -- a set of assumptions
afld inferences which have been derived from those assumptions. Some of the beliefs are
defalt assumptions, some are non-default assumptions, and some are inferences. An
environmcnt is a unique set of non-default assumptions under which a problem solver has
operated. Environments are created incrementally - whenever a problem solver retracts
or adds a non-default assumption, an environment is created if one does not exist that
matches the new set of assumptions.

A context is an environment and all inferences which have been derived from the
environment: hence it is a group of beliefs. For every environment, there is exactly one
context, and a context is created each time an environment is created. If a problem solver
has never worked with a particular grouping of assumptions, the MATMS does not have
this set, of assumptions listed an an environment, so there is no context for this group.

A premrse is a rule which states that a set of propositions are inconsistent. Beliefs
with these propositions are therefore inconsistent. Examples of premises are:

-("Fred is dead" "Fred is alive")
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or
-,("a man is working" "a man is resting")

As is evident from these examples, premises can be specific or general. It is important to
observe that a premise has no meaning until a belief is supplied to the knowledge base
which has as a proposition one of the propositions named in the premise. A set of beliefs
is said to be contradictory if the propositions of the beliefs violate any premise. The set
will be referred to as an incompatible belief set, or incompatible.

A context is inconsistent if it contains contradictory beliefs. In other words, the
context is inconsistent if any subset of its beliefs is an incompatible belief set.

The MATMS monitors the belief set of a problem solver by recording the context in
which the problem solver is currently working. A problem solver is working in a particular
context if it has explicitly told the MATMS that it holds all of the assumptions defining
the context.

A problem solver retracts an assumption when it asks the MATMS to remove the as-
sumption from its current belief set. Note that neither the assumption is actually removed
from the knowledge base, nor the inferences which have been registered as depending upon
it. The problem solver is just placed in a new context. Thus, the problem solver switches
contexts whenever it adds or deletes an non-default assumption.

4.5.3.2 Data Structures The MATMS is a frame-based system in which there are
five basic types of objects: beliefs, inferences, assumptions, contexts, and incompatibles.
Our discussion of the data structures of the MATMS begins with belief. Each belief has
slots proposition, contexts in, and influences. Contexts in is a list of contexts in which the
belief holds. Influences is a list of beliefs which this belief directly influences. The frame
for belief, as well as the other frames, is depicted in Figure 18.

The beliefs, as previously mentioned, are explicitly divided into two classes at any point
in time -- assumptions and inferences. Each class inherits from the belief frame. The
inference class, however, also includes the slots assumptions based upon and immediate
preconditions. Immediate preconditions is a list of sets of beliefs from which inference
rles were applied to produce the resultant inference. Each belief in each of these sets
has this resultant inference as a member of its influence slot. If the length of immediatr
p)rccondition.s is greater than one, multipie derivations for the inference have been provided
to the NIATMS. Assurnptio"s based upon are the minimal2 sets of assumptions from which
the inference has been derived.3 If the environment of a context is a superset of any set in

-Minimal in terms of set inclusion. For instance, the-iminimal sets of ((AB)(ABC)(DE)) are

(A I)( 1)1E)) (AtiC) is not included because it is a proper superset of (AB).
: , inro m ir half prrcondthons slot. is not nmiminimal because it is necessary to maintain records of every

.. t, inf.er'nc, has hee.i derived i caso a derivation is retracted by the 1 roblhm solver. This is
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Figure 18: Net Connecting MATMS Frames

assumptions based upon, then the inference is included in the context. Assumptions based
upon is constructed by tracing the chain of immediate preconditions until assumptions are
found.

The frame for a context has environment, inferences, and incompatible belief sets slots.
Environmeint is the unique set of non-default assumptions which defines the context.
Inferences is the list of all inferences which have been derived friom the environment. An
infercrce is included in inferences if it is based upon at least one set of assumptions of
which at least one is non-default, and all of the non-defaults are included in environment.

hic incompatible belief scts slot contains a list of sets of beliefs in the context which have
been previously defined in a premise as being incompatible. Each belief in incompatible
b l ie f s e t s is a m e r n h p r 4 !. . . r -:, . i t io n , if i n c o m p a t e b e li e f

sets is not empty, the context is inconsistent.

At this point, it is appropriate to present an example to illustrate the data structures.
Imagine a simple two-agent system consisting of Agent1 and Agent 2, and suppose that

part of each agent's task is to plan the schedule and activities of students. The following
scenario occurs:

1. Initially, each agent is working with only the default assumptions. This "null"
context will be referred to as CO. (Alternative symbolic representations are given
so that a interpretable table can be presented at the end.)

2. Agent adds the assumption "Economics 337 will be held in room 445 of Hamilton

discussed in "Write Operations."
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Figure 19: Inference Tree for Example Illustrating Data Structures

Hall 6/5/88" (A1) to its belief set. (There is a default assumption which states that
Economics 337 is usually held in Morley Hall.) This causes the MATMS to create
a new context, C1. Agent1 is then placed in C1.

3. Agent1 adds the assumption "Hamilton Hall is further from the dorms than Morley
Hall" (A2) to its belief set. This causes the MATMS to create a new context, C2.
Logically, Agent 1 is then placed in C2.

4. Agent1 adds the inference "It will take longer than normal to go to class tomorrow"
(11) to its belief set. The inference is based upon "Economics 337 will be held in
room 445 of Hamilton Hall tomorrow" (A1) and "Hamilton Hall is further from the
dorms than Morley Hall" (A2). The MATMS adds the inference to every context
which contains A I and A 2- only C2.

5. Agent 1 adds the inference "A person in Economics 337 should leave early for class
tomorrow" (12) to its belief set. The inference is based upon only "It will take
longer than normal to go to class tomorrow" (I1). The MATMS adds the inference
to every context which contains Ii - again only C2.

6. Agent 2 adds the assumption "Economics 337 will be cancelled tomorrow" (A3) to
its belief set. This causes the MATMS to create a new context, C3. Agent 2 is then
placed in CJ,3.

7. Agent 2 adds the inference "A person in Economics 337 should play golf tomorrow"
(13) to its belief set. The inference is based upon only "Economics 337 will be
cancelled tomorrow" (,43). The MATMS adds the inference to every context, which
contains I 1 only C3.

F~iguire 1) shows Ilie inference tree for this knowledge base, and Table 7 represenls
lic data strict wires of the NIATMS at this point in problem solving. In lie table. "as-

siin)ptlions" is shortlian( for "assin iptions based ulpon," and "preconditions' is short for
•iiiiediate precondit ions."
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('o J 02 [ C3

eIvironIIIeII () ( (AI A 2) (A3)

inferences (() (1 (112) (13)

Incompatibles () ()
A1 A2 A 3 11 12 13

contexts in (C1 C2) (C2) (C3) (C2) (C2) (C3)

influences (I1) (I1) (1:3) (12) ()
assumptions ______((Al A2)) ((Al A2)) ((A3))
preconditions ((Al A2)) ((11)) ((A3))

Table 7: Example Data Structures

Continuing with the discussion of the data structures, as noted in the previous section.
premises may or may not be used by MATMS. For example, consider a premise "a man
cannot be working and resting at the same." If a problem solver never supplies a propo-
sition pertailing to a particular man and his work status, then this premise will never
be used. lBut suppose a problem solver supplies "Jim is working" after supplying "-Jim
is a man." The NIATNIS must recognize that "half" of the premise has been supplied.
If the uther half is supplied -- "Jim is resting" - then the instantiation of the premise
will be complete: the beliefs representing "Jim is working" and "Jim is resting" form an
incompatil)le. Note that. this premise can be instantiated many times.

The data structure for incompatible is used to capture this notion of how incompatible
belief sels are created. The slots are compltion status, incompatiblh belicf set. uninstan-
tiateil probl(uii soh.r data. and premise. Cornplc/ion status can have either of two values:
complete or incompleie. A status of INC'O11IPLETE means that, only a subset of the
propositions involved in a premise have been proposed by problem solvers. This would
be the case in the above scenario right after a problem solver supplies ",Jim is working."
I ninstantialtd p)rotlem solr data refers to the data mentioned in the premise which

hiavp not vet been supplied by a problem solver. An incompatible which has completion
status of (O.IPLETE details a complete set of beliefs which cannot, exist. in the same
context. This set is the incompatible belief set. As an example, the following incompatible
will become complete when (and if) a problem solver provides the MATMS with an belief
whose proposition is "Fred is asleep". In this case it is important to differentiate betwcen
a probl(rn solver datum and the MATMS belief which represents it, so we use the notat ion
l( x) to mean "the belief representing the problem solver datum x".

,,llpletion status: INCOMPLETE

in (orri pat il)le belief set: (B( "Fred is awake"))
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uninstantiated problem sciver data: ("Fred is asleep")
premise: -,("Fred is awake" "Fred is asleep")

When and if the incompatible becomes completed, all contexts will be searched to deter-
mine if any one of them includes the incompatible set. The completed frame would look
like:

completion status: COMPLETE
incompatible belief set: (B("Fred is awake") B("Fred is asleep"))
uninstantiated problem solver data: ()
premise: -,("Fred is awake" "Fred is asleep")

4.5.3.3 Write Operations Operations of the MATMS will be discussed from the
perspective of the MATMS. The next two sections detail how the MATMS manipulates
its data structures in response to problem solver requests.

There are four basic write operations: a problem solver proposes adding an assumption
to its belief set, a problem solver proposes removing an assumption from its belief set, a
problem solver proposes an inference, and a problem solver proposes removing a particular
justification for an inference. Each is discussed in detail.

4.5.3.3.1 Problem Solver Proposes Adding Assumption The MATMS fol-
lows the operations described below and in Figure 20 when a agent proposes adding an
assumption to its belief set. Note that implicitly an agent may only request to add a
non-default assumption to its belief set. This will be discussed in Chapter 4.

When a problem solver proposes adding an assumption to its belief set, the MATMS
first determines if a proposition is already present which matches the proposed assumption.
If the proposition already exists, then there must exist either a default assumption, a non-
default assumption, or an inference which has the proposition in its proposition slot. If

it is a default assumption, the agent is not operating properly, because a problem solver
cannot "re-accept" a default assumption by explicitly attempting to add it to its belief
set. (This is discussed in Chapter 4.) If it is a non-default assumption, the MATMS must
check to see if it is already present, in the problem solver's current context. If it does,
then the prol)lem solver clearly made a mistake and is so notified. If an inference has

the proposition in proposition, then the problem solver is notified that it is attempting to
assmine something which has already been derived.

If a proposition did not already exist, one is instantiated at this time. Vhenever a
.,w proposition is rnade. the incomplete incompatibles are examined to determine if the
new proble1m solver dat n ir will complete any of them. Then tle premises are searched to

(l,'t,'111in if a nY new incorntpatibles shoiid be st arted. After this search. the assnimption
I- i a nfl i iat(,d wi it lie flew proposition as its pro/)o.,?iOtio .
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does proposition exist?

is proposition
an assumption? instantiate assumption

create/complete incompatibles

yes add assumption to belief set

does it exist in the current notify agent
context of the a ent?

add assumption
notify agent to belief set

Figure 20: )ecision Tree for Problem Solver Proposes Adding Assumption

At this point, if there is an assumption with the proposition as its proposition, and
that assumption is not already in the problem solver's belief set, the MATMS must find

or create a context which has an environment containing only the environment of the old

probleiii solver context and the new assumption. Note that this has no effect, on the belief

set s of the other problem solvers -- they remain in their current contexts.

The creation of a context occurs in four phases:

1. The context is first instantiated with most of the slots unfilled - only the environ-

ment slot is set, with a list including the new assumption and the assumptions of

the previous context.

2. Each inference which has been derived from the set of assumptions is now placed in

the inferences slot of the context.

3. All incompatibles are now examined to see if the new context is inconsistent. If it
is, the incornpatibles slot is set. appropriately.

4. The context is appended to the contexts in slot of each inference and assumption
included.

Whether or not a context had to be created for this different environment, the problem
solver now switches contexts. If the context is inconsistent, the problem solver making the
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does proposition exist?

is proposition
an assumption? notify agent

yes G

does it exist in the current notify agent
context of the a ent?

notify agent
remove assumption
from belief set

Figure 21: Decision Tree for Proobk ni Solrcr Proposts I(,moi1nqj .l .umption

assutulpt ion ii inst be not ilied. A list of incomipatible beliefs arid how to reiriove each belief
(this cii oiilv he dw ne byrtractinug assumlptions) are ret urned to thle problem solver.

4.5.3.3.2 Problemi Sol ,'er Proposes Remioving Assumiiptiolt FliVIure 21 ilkirs-

I rates t be procedure thle MIAFMS1 follows when a problemi solver asks the MATNi~S to

remiove anl as ,u 1111)1 froi 0its curr-ient belief set. Again. recall that a prolblein solver miay

'Miv ask lo remove a non-default assiilnipt ion f-oni its belief set.

\\leii a lp(Iil solver asks to reinove a part icilar assiili ion froiii its beliel set. it is

askiritg, to be placd~ III a -oiit ex\t wich inlcldes all asijf osof is" (lir'reit eiivir-oiiieit

,'xcept for thle assnlilpi ionl ill q1uest ion. (ervthle assliiilt ionl mulst already mu1lst be

lpr(seiit in thle NIA I NIS knowledge base. and speciticailvN it mu11st be III Ilie pt('seiit conitext

Of t IeC prlemI~I OVF sle'I lieC problcm so1vet Is not if>'d accord nejv % f thits i.- not T Ilie case,

T o act lial II \ l reove al iia ssu rn pt lonl froill a )Vo 11( e! ve belief ,et , a cto tex! is Sough
'whose eiivi ,il Miie]iit ilil atelie t he new (et,I Jis ip onls. If It is not !H ilid'. thl it is:

c roa t e by thle proccedire described inl ie prcv ions sct iou1

ilie Piobleu11 MI ver 1I lien plac edlii Ili ne hoiex If t ie( context1 is Iiicoiisistet
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does proposition exist?

is proposition instantiate inference
an assumption'?

replace assumption add justification
with inference to existing inference

Figure 22: Decision Tree for Problcm Solrcr Proposcs Inftr nce

4.5.3.3.3 Problem Solver Proposes Inference As with other operations dis-
cussed. lie proposition which corresponds to the inference supplied bv the problem solver
is the key for how the MATMS decides on an action to take. If the proposition is not
present, clearly the inference must simply be instantiated. If the proposition exists and
i, attached only to an assumption, the inference must be instantiated. If an inference is
present which has the proposition as its proposition, the problem solver is proposing what
it believes is a valid justification for that inference, wh"'her or not it realizes that tb9
inference already exists. The decision tree implied here is depicted in Figure 22.

To carify the discussion, registering an inference with the MATMS will be divided
into three types of operations: instantiating a new inference, replacing an assumption
with an inference, and supplying an existing inference with another assumption.

(ommon to all three types of inference operations is a trace of the justification sup-
plied. \Vhen an agent proposes an inference, it also provides the justification for the
inference. The first action the MATMS takes is to trace each belief in the justir -ation
until the assumptions upon which the belief is based are found. The minimal combina-
tions of these assumption sets are the assumptions upon which the inference is based. For
example, suppose we have the following knowledge base for a two-agent system: "Route
101 is fast- because "there aren't many polic, men on Route 101"; "Route 101 is fast"
becauise 'Route 101 is a four lane highway"; and "Route 56 is slow" because "there are
many potholes on Route 56". An agent then proposes the inference "Route 101 is pre-
ferred over Route 56" with justification ("Route 101 is fast" "Route 56 is slow"). The
minimal subsets upon which the inference would be based are: (("there aren't many po-
licemen on Route 101" "there are many potholes on Route 56") ("there are many potholes
on Route 56" "Route 101 is a four lane highway")).

Adding a new inference to the MATMS knowledge base is the most straightforward of
the three types of operations. The procedure for adding an inference is to instantiate the
inference with the proposition as its proposition, the minimal assumpt ion sets determined
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above as its lz.sunptions based upon, arid the justification itself as its sole bammediate
pif(tcoditioni- . After the inference is iinstantiated, the inference is used in an attempt to

coplt thle existing incomnpat ibles. Also, newv incompatibles are created from relevant
prerllises.

The miore comiplicatedl steps in add~ing a new inference pertain to contexts. The as-
ii mpt ion.s Imstl upon slot determines to which contexts the inference should be added.

FkAr eaCh assu Iipt ion set iii ass u mpt ion u bas. d upon, the intersection of each assurnpt ion's
(O1ff xl.- in slot is t akenu. lhii,, list represents the list of contexts to which all assumptions

ill thle set b~elong. The inference is added to the i7?fCr- riC(s slot, of each context in this list,
and ihe con ext is added to the iniference's con h xts in slot.

Note that whenl a problelli solver adds an anwsinptian to its belief set. no inore than one
lit xtJ can be fouindl ilcolsist eiit a.,; a dir(It rts~ulI of aI(ding ISi asswun piow AdyOI the

prolIc I solver whiich added thle assm 1 t ionl might be placed into an inconsistent conitext.

Mwveer wv bn a prolblii solver registers ain in ferncwe witb ti1he NI ATM S. ma ny cont ext s
1xi"uh be foundi~ ii(:onslsi cnt. This implies that other- problemi solvers imight suddenly

1w 'ewwrVkmn wi ;t h inrconisist en t. belief sets as a iresult of one probleui solver registerinig aim
i[rt rice. lxh pl lrob~lem solver whlose belief set becomes im-nisisterit in hit e motlifed

c urltative alt enmativs risot be suppliel.

An iii feieiice a n relace an assmniiif1) ol when a pxoblerx sa vr has (len ved soret ling
it i I or anothner I moldem .,olver had plrevi ouslyv azsu n et. [isassuimpt ion

:i1) ,t her ile!faii or nonl-delault I) This is a likely occurrence as a result of --iiornial
!I -ving, acivit y a a. problem solver proceeds. it may rea-,ch a point at whici-

niolx k;o ii, hie presenut (or)i any reasonxable) value for a p)art icular piece of knowledge
-1a o If Ii iii le orkn so it gue-sss a value. Later ei ther it or anot hr proleml

* I: fi)!tllto rccotgiii/t CONfirning evidence. which in effect replaces tlv' assniurp-
. I; It ,eiiIw. ('OniI(Ii al . r(-)iacilg ail aisii111liti)I xviti I l u inlorelice involves

a)ct ilf- ii of n i ' * i th i& 1551111111 on ii I lie knIov~c('g base will 11he illterei ce.

j h k'I iaI I)I 21 a linilpihli in tlie NIAINIS kniowledge' ba .' xvii I all
It' i-iIIIOiO Ilt' ~itillnt aghe pro( eI'lie describl- carh-inl li nssecnin)n.

iiii~i~i" i~I'(l~ () f th In acl that Illt iiiiecroiiti will he used to n-epla..o" an

v '. iI , 7!ii .i c1c I II Ii)o'r II I ,( ke I t1'llot I I "i WI I aI I iI I t( iiifiei xxht'i aI ift icc

- ~ t a I I.- ii I l pl if ~ i I 1 1ii h iii pr p c -ani lol i Iv a 1a 1, V1e1i1~ ii
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s iot of, the assnl I)t loll. Flacli ierence xvltrch the assninpt jun iinfluienced must have its
in Hi U/ l if ltou II ,i a ~d (1lw( l //)I>h., d itpoi ricalcuilat ed. In general this couIld

K i t> fll. atlollil olt U! I ldat il, it tli asslihlull iitliei'm n inferences.llil

P, ile asnir111ipt lll Wil", ni-enIt I lie contexts which) conltained1 the assuimption mulst
I", killedl. lhecal>(- hey ill n ever he retCereic((l a'art. hillingy a context means remnoina

!1new floili cu)rI/II(s In of' eachi kelef lint lie- conitext and deletingy tile Iistantiat ion
li' II( it ext . It' i piohleit solver i ciurretitlY workinrg in a ('01it ext which is aboit. to
illed. t henl it shli i d he iot ifed properly -tilie lprolleni solver xwiil he t.01( that. one

11" s a>slin I ions lias in en replaced b)y anl in terei ce. Cenleral liv. tilie problem solver wviii

, vl~ c h io o se to c) 1 (ce p t dii i' 355 11 lp t o ns o it w viiic ir tile in f'e re irce is ib ased . T In i xv th
l~t)eisolvers, belief sewt wvill con! inlle to contain at. leas-t the samne belief's as its orioinai

\lenl al iiiifeec eplaces all assu in [)t ion. tilie NI N iS ecoids thle (let ails of t he
rant Sd (1 BnII so Ii tat it kniows xvhla t to rest ore lin case, I lie Inference is retracit ed.

An ex; uple lllinst rates hiow thle NIAINI S oper1ateCs to repl)ace aIII asstfl-pt mon- Wi th alt

i frence. Consider a simple two- agent system consisting of Agent, andl Agent. Thie
folloi 2tranlsact ion Occurs:

1. Initially, each agent is working only with the default assumptions. This "-null"
contex xwill be referred to as CO.

2. Agent1 adds the assumption "there are many, potholes on Route 56" (Al) to its
beiief set. Thils causes the NIATNIS to create a new context, C1. Agent1 is then
T)lacedi In (C1.

:i. Agent, adds the inference --Route 56 is slow"' (11) to 'its belief set. The inference is
base-d upon only --there are many potholes on Route )0" (Al). The MATMIS adds
thle inference to every context which contains A I -- only Cl.

I. Agent, adds the assumption '*Route 101 is last" (A42) to its belief set. This causes
te NIATNIS t o crtat e a new context. C2. Agent,1 is thlen placed in 02.

., .\entad s the inference- -Rout 10 sprfred over Route 56" (2) to isbelief
et . 'I'll- inference is based upon "Rouite 101 is fast" ( A2) and "Route 56 is slow" ( 11).

-1I( li NATNIS adds Ithe inference to every' context xwhiclh contains AlI and .4 2 -- on ly

(. .\nt; a (lrs thec assri1rnpt ion "Route 101 is a fouir iane highxway" (A43) to its belief
liit Til, causes, t ie NIATIiS to create a nexv context.,7 Agelnt 2 is then placed In

:. \gvril 2 a (( tfi e in ferernce -N011t e if) Iis fast," (13) to its belief set. TI'he Inference is
h ef A i on iv" tnt le I () is a fouir Ia ie 1i ighxvav" (A-)3). T1lie In ference is added to
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Figure 23: Inference Tree for Inference Replaces Assumption Example

_____ C 3l C4
environment ( M A) (Al A3)

inferences (13) (11 12 13)
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inluLenlces (11) (1:3) (12) ()(12)
aSUM*In ((Al)) ((Al A3)) (A3))

preconditions __________((Al1)) ((11 I'M) ((A3))

1 alle 8: Data Strlv-!..es for Jnfczrenc( Rcplaces Asswilption Lxample

elach context which contains .43 -- only (73Y. IBecatise the inference 13 replaces the
assiimpt Ion A 1. all contexts which includle A I must be killedI - C and (7. Agenit,
is, told. that anl assumiption In Its belief set, *Poute 101 Is fast*', is being replaced by

ninference. Inl ordier to cont iue wi~th tsact ivitv. it shold accept. the assumllptionl
'Toute 101 Is a fourl lanle ighwaY-

-(,figet adds the assuimptionl "1Touute l0 is ;I foilr laiie liighwvy (A.)) to isbehl
sect. Tliihces ilie, MATIS to create a new 'onitext . CJAgent, 1,i t hell placed InI

Lig n23 dIiow the iidf'reiCl icee furl t Ii> kin wh lde base. Ta ble S ersttsthe

dla S1 sic ? ires of, I .\ MTMS) at I Is point Inl I he pi'olletll soklng

Thle lgo lofint1 I1, ! ;t'no' a just I e1at oil is 110 -ery% dlIlretitl1 hanf t he on for101 replciull
a.- I Ftpon w 1 ii ifererne. h) aidi I j -11fi (al iii 10 at t existlii!l IttIf'renfe. 11lie
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Figure 24: Inference Tree for Example Illustrating Multiple Derivations

In iddition, beliefs below the inference could require updating in certain cases. Consider
an additional step in the two agent system scenario presented a few paragraphs above.

9. Agent, adds the assumption "There aren't many policemen on Route 101" (A to) Io
its belief set. This causes the MATMS to create a new context. C5. Agent 2 is then
placed in C5.

10. Agent 2 adds another justification for the inference "Route 101 is fast" (13). The jus-
tification is only "There aren't many policemen on Route 101" (A4I). The inference
is not added to any contexts because the only context which includes A4 already
includes the inference.

Figure 24 shows the inference tree for this knowledge base. The relevant portion of
the data structures of the MATMS at this point in the problem solving are presented in
Table 9.

In general, adding a justification to an existing inference could be far more expensive
than simply replacing an assumption with an inference because search must occur in both
directions, instead of just up the tree.

4.5.3.3.4 Problem Solver Proposes Retracting Justification of Inference
When an agent proposes retracting a justification for an inference, it is asking to remove
a, certain list of beliefs from the inference's immediate preconditions. If the justification
exists, the MATMS must perform a potentially long series of operations. The easiest
steps are the earliest. First, the justification is removed from the inference's immediate
prr.coiditions. Next, the influences slot of each belief mentioned in the justification the

problem solver wishes to remove is readjusted. More precisely, the inference is removed
fron influrnccs of each belief in the justification which is no longer mentioned in any
m(rmber of irmmediate preconditions of the inference. From there, the steps become more
rojlv. The d(lcision tree for this case is shown in Figure 25.
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does proposition exist?

is proposition ntf gnan inference?(I)ntfagt

yes
notify agent

remove justification.
does inference stil
have immediate justification?

()
recalculate "immediate preconditions" and move inference from "inferences" to "contexts in"
"contexts in" of the inference. recalculate of every context the inference was in. notify
",contexts in" of every inference up the tree. each agent working in a context altered by

the previous step that the inference is now
an assumption.

reclclat"ssuptonsbaed 'po" frifrne
recalculate "assumptions based upon" for eyinference

up the tree.

Figure 25: D~ecision TFree for Problem Solver Proposes Retracting Just ification

If there is s'il1 at least one set of beliefs in the inference's imzmcdiatc piconditiOnS.
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then the contI.rI.S in of ever. infereice up the tree (including the inference itself) must be

recalculated. because it may no longer belong to a context currently in contexts in. An
inference is removed frorn a context by removing the context from the inference's conicxtL
in aii(i removing tHie inference from the context's inft r nces.

If there is not a set of beliefs in tie inference's im mediate preconditions, then. concep-
tuallv, the procedure det ailed earlier concerning replacing an assumption with an inference
iuusl be reversed. The only deviation from simple inversion of that algorithm is that for

every context to which the inference l)reviously belonged, the inference is replaced by the
assumption. Also. if a problei solver is currently working in one of these contexts, it
must be notitied that an inference it was working with is now an assumption.

Next. every inference "up the tree (including the inference from which the justification
ias ' )eei reuiioved) mustl have its eis.,orpt ion.s bascd pon recalculated, as well as a possible

adjustiruenut to coni .rts in.

4.5.3.4 Read Operations The discussion of the MATMS would not be complete
unless its knwledve acce, f.nction, w e discussed. The read operations. from the
perspectiv, of the M.AI'MS. are simple. The problem solver has the much more difficult
lask of deciding what to ask, and how to ask it.

The most important (and usually the most difficult) feature of accessing MATMS data
is the domain dependent mapping from the problem solver data implied in the query to
the relevant set of beliefs. This mapping results in both knowledge which has been explic-
itly stated by a problem solver in the course of normal problem solving and the default
knowledge. In Chapter .5,where an example implementation is outlined, a domain-specific
mapping function which relates to a frame based knowledge base implementation will be
discussed. Once the set of relevant beliefs has been determined, the rest is straightforward.

Read operations can be viewed as falling into on of three categories: is a particular
problem solver datuim -ontained in a particular problem solver's belief set? (problem
solver dependent quiery ): what problem solvers currently believe a particular problem
solver datuni? (all problem solver query); and describe all beliefs relevant to a particular
problem solver datum (context independent query).

F~or a prohlro solrcr dependent query, after determining which beliefs are relevant
to the problem solver data in question, the context. of the problem solver to which the
query refers is consulted. First, the non-default beliefs are considered. If any of these are
contained in the context, the MATMS replies appropriately. The MATMS could respond
with more than one belief, and the beliefs could be contradictorv. If none of these beliefs
are contained in the context, then the problem solver is considered "opinionless", and
only the defailt knowledge is returned if it exists. If default knowledge is returned, it is
idei fiod as suich in the response.

F" r the ,I problrm solrcr query, a problem solver dependent query is performed for
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all problem solvers.

An all context query is used when an agent requires all relevant beliefs concerning a
particular problem solver datum. All beliefs, including default beliefs which are relevant,
are returned. If the belief is an inference, then its derivation is returned. Assumptions
are simply returned, identified as assumptions.

The problem with the responses to an all context query is that a problem solver may
not understand many of the intermediate steps used to derive the inference. It may
not even understand the assumptions the inference is based upon. Perhaps a more useful
query is a variation of this - the problem solver simply gives the MATMS a set of beliefs.
and then asks what a particular problem solver datum would be if the beliefs were "true".
In other words, the problem solver might ask something of the form "Suppose .4 and B
were true. What would be the value of C?" If C can be derived from A and B either

directly or indirectly, the NIATMS responds accordingly. If C is an assumption in the
knowledge base, then the MATMS would respond that it is an assumption and its validity
is thus not connected to A or B. If no logical connection between A, B, and C has been
registered with the MATXMS, then it would reply only the default value for C if it exists.

4.5.4 The MATMS Interface

The MATMS was designed to be used by agents that "understand" a specific set of
operating constraints. For this reason, unless it is used properly, some features of the
MATMS might be lost. This section discusses the MATMS interface and shows how the
MAIMS should be used by agents without constraining the design of problem solvers.
Problem solving cat, take place in a variety of forms, so a presentation of how exactly it
should be done is impossible. Rather, this section details some basic aspects of problern

solving and in particular what a problem solver should expect the MATMS to do and reply
when the problem solver interacts with it. Whereas the previous section was written from

the viewpoint of the MATMS. this section is from the viewpoint, of a problem solver.

4.5.4.1 Designing an Appropriate Problem Solver A problem solver which would
work well in tle MATIMS setting mst be rational. In terms of read and write operations.

it also in tist ke aware of what to expect from Ilie NI..VI Y IS. and how to ,se the MIATIS.

4.5.4.1.1 Rationality Ilhe prolklem solver can only expect rational results fron
(ie NIXTMS if its iibr'erurfcc nicc i; isisms are rationral. That is. suipplving the .I.T.S with
iiferenrices wh1ich ccltiad ict eacl ot her logicallv on the basis of the inferences im in diot/

p0o,,1i/io1us will (',-' tHie NIVNIS to acl ii rat ionallv. This >liold1 be expected. since
t Nl IVtNIS is , -f t'I In(-, i wha% t it iS S 1 )j)lifl(l witIl.

I K ' al nile i; that pr , l, 't solv r ;ItiIIIt l~rocc iii',iis 'iste t iifren'o .s frolii
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the same set of assumptions. The concept of rationality can be illustrated by a number
of examples.

1. AB =C
A/i' B 1)
CD= I

A problen solver possessing these rules would be clearly irrational. Two rules acting
oil the Same set of preconditions cannot result in contradictory expressions.

2. AB K

CD F

At the other end of the spectrum, a problem solver with these rules is rational. Two
rules can act oni completely different sets of beliefs and result in differing expressions.
Comparisons of most problemn solving rules fall into this category.

3. AB C

AD E

This example falls in between the extrenies characterized by the first two examples.
These inference rules are rational when compared to each other.

-1. A P! -C

ABE => D
CD = I

While these rules also fall in between the extremes given by the first two examples,
this set is irrational according to the manner in which the MATMS operates. The
first rule states that in the presence of A and B. the MATMS should include C. The
second rule states that in the presence of A, B, and E, include D. With these rules.
the context of the environment ABD will include C and D, which is irrational.

Hationality as discussed here is conceptually not difficult to encode in a problem solver,
for it. requires only that, the inference rules of a problem solver be rational as compared
!o oach other. This property will be referred to as self-rationality.

4.5.4.1.2 Assumptions During normal problem solving activities, an agent can
I)e expected to make or use assumptions. A problem solver makes assumptions when it is

,irwre of a particular piece of knowledge. There are three points which need to be made
concerning assumptions.

First. consider the example situation. An agent, has a particular rule:
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ABCD =!. E

If the agent currently believes A, B, and C, then it could assume that E is valid, also.

Even though an inference rule indirectly has produced E, E should not be registered as

an inference. An inference is meant to represent that all preconditions of a rule have been

met, which is not the case in this example.

This leads to the first point regarding assumptions. Problem solvers should internally

record why a particular assumption was made. It is important to realize that the MATMS

should be used to record the assumption itself, not the reasons why the assumption

was made. A problem solver should simply record E with the MATMS, and internally

maintain the knowledge that E was assumed because it has a rule (ABCD ' E) which

had most of the preconditions necessary for its firing believed.

Second, an agent should never attempt to add a default assumption to its belief set.,
because it is most likely already present. If it is not, because the agent has overridden

the default. then the appropriate way of reasserting the default is by retracting the belief
which overrides it.

Third, if the problem solver is present with contradictory default assumptions, the

manner in which it should register with the MATMS that it believes one default in par-

ticular is by accepting beliefs which directly override the defaults which the agent does not

accept. This is a little awkward, but overall the best procedure. In general, inconsistent

dcfatilt assilniptions should be avoided.

4.5.4.1.3 Interacting with the MATMS When a problem solver changes its as-

suniption set, it should always register the change with the MATMS so that the MATMS
can either remove or add inferences as necessary and determine if the new belief set is
consistent. The MATMS will always confirm the transaction with the problem solver

iII one way or another. This confirmation might include a message indicating that the

problem solver may have made a mistake, such as when the agent attempts to add an
assliirption to its belief set which is already present. If the resulting belief set is incon-
sistent. the ,IATNIS will inform the problem solver that certain subsets of the belief set

a1,' 1111sistent.. Each belief in each sm l,se. Will be described. Each description includes
111 a ssrnipt ions roT wihi cl0 t hlie belief has been derived. It, is uip to the prol~en solver to

dtowl'r11i1ne wh ich assilmptions it wishes to remove in order to make its belief set consistent.

\\ lien all agerit regfist, ers al inference with the NIAT.MS, thie inference rule uised to

ien('ra t tile inferce slionld not be iichuded (tis was proposed 'i [8] as a method
1 recordh tlw control seqnnces tised to generate knowledge.) This would be counter-
,r,,,lt ixe' to i( overall syst em .beca ise an inference of one agent shonlId no be inleribed
I, , 'tI , li 111 l'.s expli itv rird l ed tlV It hIC rs inferencle rules in its belief set.

! t(,It 11iti ,'1ii , wlt i read olp"r;tion to perfonrii in a givei sitilation is (liffiillt \ 1he1

a, a:o'ni'lt 1ij Sl its own telil's of it (sf as w,]l as ot ler probhmi solvers, tle prolmrh
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Soh'tr dcpicnd ut qucrij should be used. If a problem solver must assess the overall belief
state of a particular piece of knowledge, tle all probl(in solic r qu(r yshould be considered.
'lo deteriniie what anv problem solver has ever believed concerning a particular piece of
hiiowledge. the all con!xl! quicry should ,be ised.

4.5.4.2 Designing a System around One MATMIS Designing a problem solving
sYvA em aroundI one NIATNIS sliould be inflienced by three topics: mutual rationalitv.
iiconsistei v across problem solvers, and be ut ilization of system-wide default knowledge.

4.5.4.2.1 Mutual Rationality It has already been discuss(d that a problem
solver 1i ixl tbe self-rational. In addition, a problem solver must be rational as coiipared

i the others for essentially the same reasons as were mentioned in the case of a single
p robb 'o1 5t l ver. This is true beca use inferences are not l)roblem solver dependent. We

Ia vhat two problem solvers are rrutila/!y rational if the inference rules of each probleni
solver coiil Ibe used to create a self-rational problem solver.

\W'hein considering a single problem solver, requiring rationality is not unreasonable.
I anv problem solver in any system were not rational, it would probably not he very
productive. However, the criteria that problem solvers be rational when compared to
one ailot her is a somewhat more restrictive and difficult to achieve. Two problem solvers
could f)r instance be self-rational, but be irrational when compared to each other. To
ensure mutual rationality, problem solvers must be designed in accordance with overall
system goals- coordination of design is essential.

4.5.4.2.2 Resolving Inconsistency among Problem Solvers Mutual ratio-
nialiiv suggests only that the inference rules of one problem solver be consistent, with all
other problem solving rules. For instance, given the same preconditions, two inference
rules should not produce two pieces of knowledge which are contradictory. Mutual ra-
itoiialitv includes nothing about what assumptions each problem solver can choose with

which to work. This allows each problem solver to perform in a variety of problem solving0
activities, fairly independent of the activity of the others.

I'wo pro)lemn solvers which are mutually rational could seemingly present contradic-
tory ,cli(.fs to the MATIMS. For instance, suppose one problem solver had presented "it's
90" oit" as al assumption in its current belief set, and had then inferred "it's a good day
t, o swi m1ini g because it's 90" out". Suppose that another problem :olver had told the
MATNIS that its current context helief set includes "it's 40' out", and had then inferred
'it' sa bad day to go swimming out because it's 40° out". Clearly each problem solver is
,clf rational, as well as mutually rational when compared to the other. Ii addition. the
MATNIS woumld "sisupport tlie context, of each problem solver, because the belief set of
oaa-h problem solver is self-consistent.
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Figure 26: Proposed Interagent Communications Paths

However, there is clearly a problem with the overall problem solving. The individual
problem solving is diverging if indeed the first problem solver believes that it is truly 90'
outside, and the second believes that it is 400 (neither agent is involved in hypothetical
reasoning). Certainly the MATMTS recognizes that there are two assumptions in the
knowledge base -90' out and 400 out -- which can not exist in the same context
because they are directly contradictory. The conflicting beliefs are not present in the
sanie context, so there is no problem from the viewpoint of the MATIMS.

Any time the MATNIS is used, a single problem solver should monitor the true world
assessments of the others and recognize when inconsistencies between problem solvers
arise. This problem solver is essentially part of the. domain independent MATMNS, ex-
cept when considering that the rules necessary to resolve the conflicts must be domain
dependent.

Two architectures could bie investigated, depending upon the domain. These archi-
eeitures are shown in Figure 26. with the agent responisible for resolving inconsistency

labeled as PSC. The archi1tectutres differ prina nIY in the iut eragent communication pat us
iit iiized. InI the first. each agent Int erac 5 directl Ivwit Ii the NIATNIS to ocet its beliefs,.
Thiis wouild be faster for the i nividIial Iprolenim sol vers, but woii1(1 also miake the job of
lie( agfent resolv1ingT I lie inlconsistencies (Ii ficIdt. In I lie second, eachi prob~lem solver i titer-

acts t hrough lie agent resolving tie M coiisistenicies to coinriiiiicat e with the NI ATNIS.
Ion itori ug eIi's I hi imch easir.

How agent respo ile for muaithaiiig t sivseicl across local volei S solvers cal

rr'svge is diegn ifineSteidcfes pbetween i l solvers. To resolve thti is ly. 90

1o iod a olild t!w isec . liees tht (i itslf eitchioose one value over lipother witoult

reasoing)•Certinly he NATMS ecogiestathraetwasupininie
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Figure 27: Sample Communications Network

consulting the two problems solvers from which the beliefs originated. Alternatively, the
[S(C could tell the problem solvers that they conflict with one another, leaving resolution
up to tlie inconsistent problem solvers. Both methods require further research.

4.5.5 hiplemeritation for Communications Network Management

4.5.5.1 The Domain The domain for which the MATMS has been implemented is a
,list ribjted knowledge based system for managing a large-scale communications network.
Ihe coilinmicat ions network provides telecommunications service for people as well as
machines. The communications system can be described on three levels.

On one level, the communications network can be viewed as a sparsely interconnected
;,rrV of transmission facilities called sites. Each site is generally only connected to one
or two other sites. The interconnections between sites (links) provide a transmission
niodium over which to send communications signals between sites. For control purposes.
'.ites are grouped into non-overlapping sets called subregions. Each subregion contains
one SiibRegion Control Facility (SHOE) to which each site in the subregion reports the
Uperational status of its equipment, availability of resources. etc. A port ion of a "typical"
,,nruuMnications network is presented in Figure 27.

Another level is the equipment configuration at each site. This level includes the
,u i pn lent and connections necessary to originate andI switch communications signals.
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Another radio radio -- Another

Site DPSSite

USER .. ..
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To SUPERGROUP... To
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DIGRO UP-;;::::,'i

VF/DATA CHANNEL*

FigUre 28: Sample Equipment Configuration

Ai e1(Xamle equ'('111ipmet configliral ion is given in Figure 28 (adapted front [4]). FEquipmnlt
an I(I thei r initercon nectioris are conist rained by a variet v of rules.

1,11ch n lvel tie( commiunnicat ions path level is probably thte most iniJort anT~
ca n I I con s ( lered t he fir ida meit al view of th le net work. The two pri iia rv ~ Oh,
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.................... trunkY endpoints.

. trunkX endpoints .........2 2

user1 user2

Figure 29: Sample Trunk and Circuit Configuration

present at the communications path level are trunks and circuits. A circuit is the complete
eleintary path between two pieces of terminal equipment by which two-way telecom-

intinicat ions service is provided. A trunk is a group of equipment and connections which

establishes telecolmmnunications connectivity by providing a resource for circuits to ride.

('irr uils ride on channels of a trunk; there is typically a capacity for several channels per
Trunk. A useful analogy for channels on a trunk is to imagine cne big pipe (the trunk).,
which contains a number of small pipes (channels) running the entire length of the big

pipe. With this analogy, it is easy to see that a trunk can ride channels of other trunks.

-The trunk exists with or without the circuit, but this is not symmetric; a circuit cannot
exist unless it rides a trunk, or a list of trunks connected in series. The trunk refers

to "physical" connectivity, whereas the circuit refers to "logical" connectivity. For more
de'tails, see [31].

In order to understand how the MATMS operates in this domain, one should under-

stand the general concepts of the communications path level. Thus, an example of two
ites part iallv configured is presented in Figure 29 with careful attention to trunks and

circiiits. The description of Figure 29:

" ck I (connecting u-scrI and user2) rides trkx which rides trky which rides trkz.

" ir-kx starts at m.981 and ends at m982. It has 24 channels.

* trky starts ai rP991 and ends at in992. It has 8 channels.
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Thle lxB NI has illanv responiiilit ies. It graints acces.s to th le knowledge in thle local

KlloWledge baste, must proxcess t lhe t rat isact loll', fronti thle S 1(. PA. an~d FI agent s III a logical
order, imist know where knowledgec rcqutl'ted by\ lihe agenits resid"S (if :t not present wit hill

Ieo Io(% I LkiI-')ledl e base) alit(, 1110 t 11l1)et't Wit IV It has t o rllilit i it contisistelit local 6(1W\

I fiec >tat c of' t lie world bv Iliolli toririg tihe Iees of, thle indivi*dual agetits InI the nlode III

i o11l;iina' ioll wit It othe Kwl N i nthe iwt work.

I") aid III llntili a (OtII-istenlt local vIew. tIt( IKBiNIincludes the NIATNIS. Thie

NIATNIS) is used to kee~p thte belief sets, of ea ch of thli ag"ents cotisidenit . as well as to

eVCk)glll/e In1coitsist eIlCV When (oinpar-itig belief sets, it is" the IKBM. however. which 111115

at temlpt to re ogn Tz (1d resolve tlie in coilsi st en cv. Thel( role of tle 1KBMN after rccu)gniIzI iW

(Iiriea ien istoad Ijs the p 1)li 1 s ol vets as to how t o re~ol ve t 11i- 1 ne on s ist en cies. off tell
)v 01n sn n 1wolr 1BN where appropriate. For exampille. if PA hc]I ieue aneta Itit k

aopeliabWit ad Fl elieves it is. t ie IK11I mi110ht ask anlother 111,13 what it blee

Ti!( s tate of' the( imk to he. Iis of course would only work if thle truink crus'sCe subregionl
(s o thal anl' ier l\ 13 11 n11/d have knlowledlg of it I. anld the IKisI knew wich

tar 1K, IIM3- to ask.

4.5.5.3 Archiitecture i ipleitiwitat ioil The global knowledge base is created uising(
thbe C rap'ii cal User Interface for Structural INtowledgc (C US[1 8]) oii a Synmbolics 3670.
Anl opt ion 1n C I S (livdes the knowledge base along subregion bonaisinodrt

create thle krlowledhge bases for each problem solving systemn discus.sed in the previousl

sections. ])ivision of kno-wledge can be modified to test different distributed knowledge
re 1 resntat onsclwenes. The knowledge represent at ion schemie in GUS is frame-based.

an id ti reI p Ic resenI t t fion Is alIso ut Ilized I It thle (lIst ib )i ited knowlIed(Ige b ases.

\ Ii ri bit d slimi l at lon envi,01roment (S IM ITLA CT) [21]) is 1 tsed to test t he know ledge
!,;it'd system. It p)rovid(es a parallel simula tion envi ronmuent for alli\- nun iler of algent

Ir~TIcr-al- 'erlt con imI ricat ions support is provided ]in a high I;, flexible format

"Ie Knowledge Base lariager ( IKJi3N) comnprises a single agent iii SI NIT ACT. At this
1W.it con t at ilur rcsirgfntos ie knowledgev base it self, and thle M1ATNI S.

11,T.1K owLed , providled to thle 1K 3N1 from CI'S is treated part ial ly as constats and p~artial ly

aI,- tifau i. t, i rl;iptions to the NIATNIS. For example, a p~art icular radio's namne is constanit.
a-, v its operatilonal definit'ion, whlile Its Initial statuis is treated as a default assulltiOn.
It, ti abcen ce of In formra tion to thle contra rv. the st iatius of a ra din is assumed to be t he

lie1 provided b)y C'S.

Jhi It MAl NIS epith de k :inwledge represent ation scheme (frame0s ) andl to sonie
fI tiit thle domain itself. fIn part iciular. the task Of finlding all thle beliefs which are( relevant

.1 htt cudrproblemr solver (piirv is hanledl(( b)Y realizing that iot(piitii('5 will access
,par' rula 11wI-4(t InI a frame. 'Ihierefore., beliefs which are r-levanit to a given slot are kepi

11 w li I( )I I wit hi t lie defa In It. [ i I I be il0m ra iti i t Ie se ion' ] I 1 whii f'(- I lows.
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4.5.5.4 Examples of MATMS Usefulness

4.5.5.4.1 Example 1 The purpose of this example is to illustrate the way data
structures are accessed.

Suppose that there is a frame for a particular instance of a trunk:

id: trk9
is-a: trunk
type: digroup

status: >~ MATMS default frame<

The default frame is:

default: UP
beliefs: 0)

The default frame can be interpreted as "Trk9 is up by default. There are no beliefs
presented by problem solvers to override the default."

Now suppose that PA asks the KBM for its (PA's) belief concerning the status of trk9.
The IKBMN would invoke the MATMS by attempting to access a slot of a frame which is
conitrolled by the MATMIS. In other words, the IKB.\M would attempt to access the slot,

whlich automatically invokes the MATMS. Because there are no beliefs in the context,
w%-inch PA is currently working in (this must be thu case because the beliefs slot of the

dlefauilt frairie is empty), the response would lbe "UTP, by default."

If PA sulbsequently p)roposed the assumption "t lie status of tr-k9 is down", the MIATMNS
,,voild chanige the Status frame to Ibe:

default: VUP
b elIeI(fs: (Al1)

IieeA / corres ponds to "t ie stat us of trk!) is-- dou

IF P A asked aq2~in w %Oi at t he staitus of t rkf) is' the 1KHM N ou ld reply ' -owii (the 1K13MN
"VOiI~j itivoke t heo MIAlNI to det eruinue t li status of t rk!9, whilch would finld A/ I reseit

I t or wiC "liomeit of t Ilie curi- lit context of PA ). H owever, if F I asked, it wvould still get
P. 1),v defauil 7 Note thiat if for souie reaiIson FI prop~osed l i at H ie t rirrk Is don, tHie

-1 tat idsot (of ti-0 would r-emainr thel( samer. 1 wouldh Just have A I aIdded to its current

hi(f P lrI~itll. 1if t lwIS. were t lie oiilv tltarp-ict loris wh-ich t lie NIATMNIS 11;1( ide.

* he (Jjl 1 e- i that H I w- niH he pllced Il iiIlie saIi m it eout as PA.
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Figure 31: Communications Network for Example 2

4.5.5.4.2 Example 2 Example 2 shows more of the potential of the system and
is tied more closely to the domain.

Suppose that the following configuration exists for a subregion (Figure 31). A general
description is that cktl rides trk, irkw, and trkx. Ckt2 rides trky, trkw, and trkx.

Ct3 rides Irkx, and then trkt, to another subregion.

Initially, Fl, SR, and PA have not made any assumptions -- suppositions - about
the comniinications network. Each problem solver is working in CI (co-text 1). (Each

time a new context is created by the MATMS, the context counter is increased by one.
For instance, the next context created will be named C2, and so on.) The knowledge base
consists of the defaults (though only the defaults relevant to the discussion are mentioned

here):

rkwv is up [Al]
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trkv is up [A2]
trkz is up [A3]
trky is up [A4]
trkx is up [AS]
cktl is up [A6]

ckt2 is up [A7]
ckt3 is up [AS]

In addition, the following premises have been entered into the MATMS: a trunk cannot
be up and down (P1), a circuit cannot be up and down (P2).

Now, at time t0 , suppose PA is notified of a user alarm concerning cktl. at the samle
time that it is notified of a user alarm concerning ckt2. (A us (r alarm is when the user
of a circuit notifies a technical control facility to complain that he has lost service in a
particular circuit.) PA views user alarms as assumptions in the form of new observat ii1n
of the world, and ilnmediately registers the assimtptioTs with the NIAFNIS.

user T, Ialri cktl at t=0 '\9]
user ,tlarn ck1!2 at t =0 [A 10]

\OdPi: l he two . -. tions [A9] and [A10] results in contexts (2 and (3. respectively.

.AS P.A continues to work, it, eventually registers the following inferences with the
NIATMS. through lite KBYM lEven though there was not a user alar. PA. concluded that
(O/3 was duw i through i 6 apl ication of the rule "If multiple circNits on a truuk fai at
I li, sarllie 1Jilf . aSSli:., the to;, A, has failed." Therefore. PA asserts that fr7u- and lU -r
are down. .-\s,,rting that lrA':r is down leads PA to infer that R13 is also down.

cit I is down because user alarm c11I at 1-0 [1H]
Mkl 2 is lown beca ise user alarm :k12 at. t =0 [12]
ctl 4+12 fail at sanie tinm be(a use user alarn cL11 at t0 13j'

user alarim c0/2 at t=0
Irk. is down [A 1]
(.03 is down becma,,, 'efk.r is down 1.1]
/, ?, is down r\ 2]

N,)t, liat (l i., dowuu docs not 'icpres' ult a colt radicl ion of ,eliefis for P.\ in the NI.TNIS.
I ,e a ( k/S ,If i., (/ 1/) was a dai lt a>1-i iiif)1 iloln.

II hv' r, t. 11 ,,i t hli is thlat lP.\ is placed in a context wlich is defined )y:

TW l ; " (

,''C. ~ ,, T , : i.\,1 \i \l 121
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Ak9 .\10 All A 12

contexts InI (C72 C73 (74 (3) (C3 (CI ('5) (C74 (73) 1( 3)
infuenes 1:3) (113 ) (1-1)

11 12 13 14

contexts inl (('2 C73 C4 (73) ('73 C74 (75) ( ('3 (74 ('5) ((74 (75)

influenices (o 1
assunipt jolts; ((A9) ) ((A. 10)) ((A9 A 10-)) ((Al 1))

preconditions ( A))((A10)) ( (A9 A10)) ((Al 1))

Table 10: Data Structures for Example 2

iniferences: (121:3 141)
incompatible belief sets:

The knowledge base is b~riefly described in Table 10.

Becauise it has no reason to disbelieve PA\ at this time, the IKI3M accepts the assessment
of the current state of the world by PA as correct. InI other words, it adopts the belief set

of P~A basig the MATMIS to place it in the same context as PA.
Whlen PA is finished assessing the user alarms on the c:ircuit operation, it tells Fl to

b(-gin- Work. F1 begins by asking the IKBNM for its current assessment, which happens to
h e s(,lel, P1A 's assessment. Therefore. Fl is placed in context, C5. Thurs. it, inherits the
hehlefs whticht assert t hat ckl 1is down. ckt2 is down, Irin kr is down, etc.

F I performs measurements on each of the circuits or trunks 'in quest Ion and determines
that ckt3 Is actually up.) riot down. FI enters the following beliefs into the know.ledge b~ase:

tests of cO I at I I [A 12]
t ests of cAkf2 at ti [A 1:3
tests of birkx at, tj [A 14]
cki 1 is down because tests cf ckti Iat, ti [16]
(-k12 is down because tests of ck'f2 a~t ti [17]
trA-x Is ilp because tests of t.rkx at tj [181

mTore( CareOful, Step by Step anallysis of the steps Involved when Fl changes Its belief
etis necessary to uinderstarnd the operations of t he MATNIS.



1. FI adds A12 to its belief set, which causes C6 to be created. The KBM accepts A12
into its belief set.

2. FI adds A13 to its belief set, which causes C7 to be created. The KBM accepts A13
into its belief set.

3. F1 adds A14 to its belief set, which causes C8 to be created. The KBM accepts A14
into its belief set.

-1. 16 adds another justification for "cktl is down". It serves as confirming evidence,
as does adding 17. Because the KBM has accepted the beliefs upon which both 16
and 17 are based upon., it automatically inherits 16 and 17.

5. When Fl attempts to add I8. the MATMS responds that its belief set is inconsistent,
because it currently believes that Irkx is up, and trkr is down. The MATMS marks
the current context of FI (CS) inconsistent. The MATMS informs FI that it can
remove "trkx is down" directly, because it is an assumption, and it can remove
"trk," is up" by retracting "tests of trkx at t". For Fl, there is no great difficulty
in deciding that "ct3 is down" should be removed from its belie, set, because "ckl,3
is up" is an inference which it just made.

lowever. the KBM is faced with maintaining consistency. At this point. FI believes
that "rk.r is down", and PA believes that "trkx is down". In this situation, the
KBI clearly believes Fl, because PA is prone to errors due to time constiaints.
That is. PA is forced to make a fast, rough estimate, while FI must be certain
of its work before it enters beliefs into the knowledge base. For that reason, the
I\'B% follows FI and retracts "ckt3 is down". Note that FI still believes that "c13
is down" until it is told by the IKBM that its beliefs are outdated, or it consults
Ihe IKBM for a new set of beliefs. Further work bv Il would suggest that Irk,' is
operating properly.

.At tlis point. FL tells SR that it is finished. SP begins work to restore circuits c,1
aidI c'R'' i s n

4.5.6 Areas for Ihituire Research

1.5.6.1 Current Limitations There are limitat.ois to the current design of the
IXAl %IS wliicli shol d be investigated furtlher. Specifically. premises need to be extended.

d (,\-cr;Iall Sste,, (fficienc'v should be investigated firlther.

FlI C(1i'r,.lt pr se sti'icture allows for two pieces (or classes) of problen solver data
e C(,Isid('l'(r l i C( list(O'iT. lor instance. 'a trulnk cannot he .f) (opera-.tional) and
, ;, , ,, I ) ,) tll, a e ie. '.'" T iis causes ([iout 's when ie at telipts Io II idct1l

. i ,'At > p i ( ii > i')ll ili'' wliclio nvolves nor t liii tWt O1 h.)jetIs. .\ one'-,f- l ree
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-luatil (chioosinii g o1 route froinl three choices) or perhaps a two-of-three situation

dhaviut g elougli l money to h iiv a n\ two of a fishing pole. a softball glove, and a tennis

racqull(t ) lt riot all t IIree) cannot he iandled currentlv. This has not been attempted

vet ,ec,.:se t here Is 1o iulnedliate need for it: tle premises necessary for our applicatiOn

(leit, oid a sinple Iniiarv .,t uatiou.

Alt houglh ille design clearlv addresses the inl)ortarice of an efficient SNstem, the degree
ol e*liciencv is s-till (juestioiiable. It is not obvious whether the inelliciencies present are

a resul t of tle iii plenentation or the design. It is clear that the syst em is often forced

To recoin pte justifications for inferences. lhis could involve a large amount, of time iII
orIher to keep tHie inferenice trees as compact as possible.

There was always, some debate about including default assumptions explicitly in the
eivmironiilnIt of context s. If lhey were included, creat ing contexts could be performed mnore

qu iicklv t than in the present design, but there would be more pointers between objects in
tlie knowledge base. On the other hand. not including default assumptions explicitly in
contexts increases the ease of comparing belief sets and in general makes the operations
of the MATMS more efficient. If. upon testing the system more, it is determined that
tle MATNIS spends most of its time creating contexts, an argument could be made for
a redesign which would put default assumptions explicitly in conte.,ts. This modification
would not be difficult to make.

Manv of tihe questions involving the efficiency of MATMS have not been addressed
because the problem solvers (FI, PA, SR) are still being developed. Interactions involving
the MATNIS have only been tested with the SR problem solver, so such concerns as
multiple derivations, context switching, and to some extent multiple context maintenance
have only been tested using "typical" cases which have been fabricated. As the knowledge
based system matures, the MATMS will surely be refined, although the design appears
to be sufficiently flexible to handle most changes and was designed to be adaptable.

4.5.6.2 Future Pursuits The four primary issues for future investigations involving
the *IATMS are: creating a third type of belief, grading assumptions with certainty
factors, performing distributed truth maintenance, and studying techniques for resolving
inconsisten cv across problem solvers.

Example 2 of the previous section illustrates the possible need for a third type of belief.
In that example. PA had reasoned that a trunk (trkx) was down because the majority
of circuits on the trunk were also down. In particular, the actual rule PA was basing its
reasoning upon was:

If ckt1 is down
cki2 is down

an d ckt3 is down then trkx is down

85



U'pon closer analysis of PA's reasoning, it is clear that "trkx is down" does not fall cleanly
into either belief category.

This belief is not strictly anl inference because riot all of the left-hand-side of the rule
used to produce the belief was bclieved a~t the time thre rule was utilized. That is, PA did
riot bfelievc that ckt3 was down at the time it used that rule to assert that trkx was down.
Ini aiialvzin g the example, if "kx is downl" were called anr inference and the scenario
cont inuedl, Ii ordIer to remove the inconsistency which would arise concerning the status
of trkx by retracting an assumption, Fl would eventually be forced to retract either "tests
of trksr at ti" or one of "tests of cktl at 11" or "tests of ckil at, ti." It could not easily
remove the Inconsistency by retracting an assumption because it believes each of the three
assumptions eulyF1cldremov e 1CTIstnybreacing the justification to

anl inference, but again it would have a difficult decision Ii selecting the Inference for

which it would retract a justification.

The belief *-I rk-.x is downi" is niot strict ly anr assumption because its validity is depeni-
lnt 11pon1 other beliefs. For example. if "cAl 1 is (down" were retactedl, then irks

lowi should also probably be retracted. The problem Ii treat Ing -trkt- is down" as art
assui rupt ion Is that thle M ATNIS will not automiat icallv, retract. it when anr agent removes

ck! I is (1owii" from its belief set. The currenit dlesigni isists that the problem solver-
e'xplicit ly rc ract each belief Ii this case. Therefore. clearl v p~art of thle tI e MIATNIS'S
plirpo- is defeat( (I wii *'ckt 1 is dlown" is treated as anl assumptlin.

Ovecrall I. le problem is that there will be beliefs which are difficult, t~o categorize. A
third catelgor-Y of beiefs -- perhaps called rcasomdu ass itmiohos- should be purstred.

cla soned as on sshun il be hand Iled like assumipt iois in son ie wayvs. anid like linfer-

('11(5 fin otlher wav' .

Ariot her fiitutre pu rsi, im-l voyes the genieral not ion of maki rig assil ruptionis. ar d 'Is

perlia j)5 more relevanlt Ii the absence of the proposed third type of belief. X"Iher a problen
s )l1er' s efset bVCOrneS inIconsIitnt, it imust umsu ally remove otie or miore noi-(efauni

sin,;~lI~OI i J LtininoneT CI to corrct thle prbem hed ci sin as to TIIe Ihich assu mpt ion (5
si iou]l (I e rcilovedl is vcr 'r\' i hctilt to makhe. For exanpijc. if thle MIAT NIS provides a

prol ileiii solver wvith Ii t(e 1 iowledge t hat, two assur nptloos iii its belief set,- Ali and --i2

a I ICo; is t (lit. how (does the prohl iln solver (decide Nvl ich assim pt ioni to remove.

At thlis tinrte. assirr11it(iis provide a pur-ely black-andI-whit e wvorld either they are(

Ipr('se"nt %%it lilt) a piohileri solver's belief set, or t- *ey are not.. Thel( reas ons why a part icuilar
1i0ii-dletdidt lstnttoft is. made is kept solelyv withIin each prolhleri solver makinig IhIn

asilm IIII pt ioll. For exampnlle. III tllre last exarliple oh' the( previouls section., PA used the -rIce
if h111111 ple ci rcn it onl a r11i ri1k fall ait the sanme time, assirmec t hat, the t-mrrk has failed''

to coICu(cl 1ide1 t.0" len '' 1ownl.' (As discu issed cai'lier, III tiw ~ssctlioll. the best ma'irer rIrI
~~~y~~~iirl ~ ~ ~ P totet(eblf'i~'i ownl is, to coili(lcr- it an as iiiuton.)ClalyPAknw

[ Iic I a' 'a ret il l i n:, in eett o sr(t \ i ) Innrl tPA \lVI iS. Th
A 11. tt1 I I, 1 ljpi Io 1oov r isw kI~'I~ 2( o LHo kept w l 11 hFl

\l \l \l~i l('siti''u] j il ) keep irack of wv iticli liifen' cf's lepeiid upo1)1 t he rssl i 11) uiT.



t ot hy h ,i b s's i ll / U) L Icas Oliyinalll inndt bj the p cobh ini soli'(r. Thiere is rno real

mevans by wicih thle problemn solvr can~ ('0111 pa ass ii ltiou . except byV chronological
hack tracking to (Iet erili i e lIlly it 1 (Inf the (l."-o ii timlI)I. L'ver thlen. t lie ch oice may riot

An alternative dlesign would suggest keepinig the reason why an ass umpt ion was mnade

vii the a.-surnlion itself iin the M.-\TMS knowledge base. (lliis is not the approach t akein
1, "tolIVeltlolial tInth 11 iaiIltIi'aiiee sySt'n1,S. ) Thiat way, the NI;\INIS could autoimatically

!iIeiiicwoiistclncies thle assunii1tioii withI thle --lower (legree of cert aiiiiv, ge-(ts thirowni

olu t . Of' toi r h lis creates an othI er problem11. prec isely how to assigin ce t a i niv fact ors to

as~iliptios.It is excee"lilgly diEiWl to la('e a single, iiiasiire upon an assumiptioni in
in'nto alIl,-\%- coliipa ri'50!is lhet weeii assni i Vions. It is niucih easier to si nily (01 npareI a

,(, of a,>u ii ipt ions as t lIe( ilconsistencie arise to (let rmine wviicii to Ii scard . If cert a intyv

:;c u. (1( h~e reasonably assignedI to assunLqIptioii5. tieui clioosi ng 1 etweeli two' vi ablle

.etawlt assumlpt ions5 - an action which is almost Impossible now - could( be resolve-l.

l)Vuribtite truthI maintenance has always b~een of long- term concern. AIt houghl not

p~art icularly evid ent (and not present ed in this t hiesis because (list ributed t ruth T a inte-

lIia LICC is not the iin meli ate purpose of the NIFiN IS), the NI AT NIS incorporates t he basi c

fra rn ewxoik for di stri buteCd t ruth1 mainteniaiice.

D~istribu)Ited1 truith iiaintenance is necessary fOr any distributed knowl~edgebiase iT which
at leais! some of the knowledge is replicated. In our doinaitI, trunk and ccit inbfonat ion
is replicat ed in certain k-nowledge bases. When an agent in on e sulbregioni determ-ines that

a~ particuilar trnirk is down~ and enters this knowledge into its MATMIS, then the \BM1 of
he subregion should in forni all other 1K BNs with knowledge of the t runk t hat it believes
hat t lie trnik is down. Mason and Johnson dlescrib~e the fundamentals of distributed
IruI t IIIit min ten ance ii n 261.

In much the -same way that the JKBM resolves inconsistency amnong the problem solvers
in its local systemn, the 1001 must resolve inconsistency between itself and other KBMs.
l ist nibutedi triuith maintenance is especially interesting lbecause it necessit ates distributed
conitrol. .A single 1001M resolving conflict within a single knowledge base implies central
'ornt rol. Whien IKBI3 agets and the knowledge are dlistrib~ute(], many interesting strategies

iold be investigated].

't rategies for incoisistenicy resolution must lbe further inivestigated,. both in a single
agent and across agents. Deciding which assumptions are correct. and which to discard.
is the single most important issue facing a, irolbler solving system using the MATMIS. As
stated earlier, the MATNIS efficietntly recognizes inconsistencies, but, cannot be expected
to resolve tiieiui in tile most general cases.
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