AD- A218 690

—_7—

ADA* EVALUATION PRCJECT

DTiC FiL° COPY
THE DEVELOPMENT OF ADA* SOFTWARE

FOR SECURE ENVIRONMENTS

Prepared for

HEADQUARTERS UNITED STATES AIR FORCE
Assistant Chief of Staff of Systems for Command, Control,

Communications, and Computers
Technology & Security Division

-

{ DISTRIBUTION STATEMENT K -

Appicved for public releaset
Disuibuuse Unlimited

"Prepared by
Standard Automated Remote to AUTODIN Host (SARAH) Branch
COMMAND AND CONTROI. SYSTEMS OFFICE (CCSO)
Tinker Air Force Base
Oklahoma City, OK 73145
AUTOVON 881-2457/5152

* Ada is a registered trademark of the U.S. Government
{Ada Joint Program Office)
23 May 19%6
\

90 02 28 003

Vs /‘A—\

THIS REPORT IS THE THIRD OF A SHERIES WHICH

DOCUMENT THE LESSONS LEARNED IN THE USE OF ADA INA
COMMIUNICATIONS ENVIRONMENT.

ABSTRACT

This paper discusses 500rware «seouriby, g seeks to
demonstrate how the Ada programming larjuage can be
utilized as a tool to implement sottware design
methodologies which support sobftware security.

The major soecurity risk 1in the military-
telecommunications environment is the chmpromise ot
Secure oOr sensitive Inrormation and/or pot

delivering a message O paroe of 1 massSage,
sottware security 1s8sues 1ntended o cllmicate
these and other security risks are oumoerocs, This
paper addresses a limited number ot {:sues to
illustrate how Ada ig being used ia acsoamolich o
TorL sevure sottware product, Securlty issues
related to interlacing message Jdata, prevention ot
lost data, ssaye and command validation, messagoe

distribution 1ntegr1ty, and irformation protectian
are addressed.

The paper goes into a description of now Lhe SARAH
desiygners are approaching the problem nf designing
tor a secure environment, Goad sortware
englneerling practices necd to bhe applied 1t
effective software 13 to be developed tor secure

systems, Some of the areas which neea to npDe
addressed during the aralysils/design phase include
localization, understandapility, reliability,

abstraction, conrtirmability, and modularity,

Ada provides a rich set ot larnjua e teatuares which
can be used to develop reliable, survivable and
secure software systems, The Ada larguage was
desigred to support the developmoent of large
systems which would be developed ising modern
software engineering princilpies. The fealtures that
directly support the development of software tor
secure systems are strony data typinjg, packagying,
yenerics, and exception handling,

Gther aspects of the Ada onvironment Lhat must he
consldered in the security of the tinal product are
the newness ob the technologyy, dittercences in
implementation technigues by the varlety ot vendors
in the market, and new programming support tools
that have little or no track record to verity the
stability ot the product.

Ada Evaluation Report Series by CCSO

Ada Training
Design Issues
Security

Module Reuse
Micro Compilers
Ada Environments
Transportability
Modifiability
Runtime Execution
Testing

Project Management

Summary

March 13, 1986

May 21,
May 23,
Summer
Fall

Fall

winter
Winter
Winter
Spring
Spring

Sprinag

1986

1986

86

86

86

86-87

86-87

86-87

87

87

87

TABLE OF CONTENTS

1. INTRODUCTION. . ceceececoenceccascnnsonssoacnsasacassnssssnss
l1.l. BACKGROUND e oeevessocooesosososonssasnnnnns
1.2, PURPOSE . ceisoeeosoosanvsancesancnsacess
l1.3. SCOPE AND CONSTRAINTS .. veavessocsoncnsan

SECURITY ISSUES..c.iceeecsecccstscssasncnsncranae

2.1, PREVENTION OF INTERLACING MESSAGE DATA. ..t .ietecaaascs
2.2

2.3

PREVENTION OF LOST DATA.,....veiestaneecsserccnnanens
e VALIDATION.:cetteeeotssueeseasnoanssosnessnsassonscsnss
2.3.1. COMMAND VALIDATION .2 eeveeoesssssecsssocnsonsssss
2.3.2. MESSAGE VALIDATION. . eseeooeuoscesccsosnccacss
2.4. DISTRIBUTION INTEGRITY ... ueiseonncc-onnnnsonsaanssas
2.5. INFORMATION PROTECTION..eeeesoeasoonossusanoaasanens

. . .
. s e e
[aig < S .~ BV VR Y]

ESIGN FOR SECURITY . cceieernceescecsoososncanocsoasnonsnncosdb
1. ABSTRACTION . e .eeeeeeresionnosoconsasasssensnasssssacansesh
2. MODULARITY coeeeeoeososnnnnsnssssacsescnassssnsassssssnsad
3. LOCALIZATION ..t eoccnccsnncrncsnsnnoannncss ceceanean T
4, UNDERSTANDABILITY AND CONFIRMABILITY.ioeeseeesaosnsaead
S. RELIABILITY .euevervoeeennsoscnosancnnosassss

4, USE OF ADA LANGUAGE FEATURES c.vceccecoacccacancannseal2
4,1, STRONG DATA TYPING.:eteveteseossosnssavsensssnsaneasasassasl?
4.1.1, Private TyYPeSee.eieeesstsoscsosossesasssssessssseal’
4.1.2, ACCESS TYPCSeertesosensncsssnosssasssssasssrssassll

o PACKAGING. o eseoesoscenacnciuacaasosasssasosrsasssssesald

2
O3l GE:qERlCS......'I....."l..'l.."'.l..'ll.‘l.I..(.’l..‘l-4
4., EXCEPTION HANDLING. ettt iteeeeerteesenvenasecenossansoesld

B

5. FURTHER CONSIDERATIONS . e e et eeeecetecsonsoscaconceoscnnnesaalbd

6. SUMMARY AND RECOMMENDATIONS,ccteccascccnns B
6.1. SUMMARY..."..‘...‘.....00....0...-.‘..0..0..-......Q17
6.2. RECOMMENDATIONS . e o eteevesoessnsscsansossossssococccsas

.
.

—
~1

Appendices

A, REFERENCES cccreeececccccossscnconcenncsnas

P

LIST O F FIGURES

ARAH TOP LEVEL ABSTRACTION VIEW.......cc.oeeecovensocsnesl
ARAH TOP LEVEL HIERARCHICAL VIEW...cercciieesoconncnasaall

u;.au
N -
nwn

STATEMENT "A" pe Capt. Addison o
Tinker AFB, OK MCSC/XPTA

THLECOL 2/928/0n e

1. INTRODUCTION

l.1. BACKGROUND

Today's world political and wmilitary sitaatiron is such that
compromise or interceptiorn ot Jlassitied or sersitive military
intormation could have grave conseqguences tor our national
security. Sstringent methods of data protection are reulrod,
There are a number of ways of protecting classified and sensitive
information 1n the Automatia Data Processing
(ADP)/Telecommunications environment!;
o Physical Security: The prevenrntiorn of uanclearerd
personrnel from gyalning phiysical access ot
controlled space around ADP Telecommunicitior.as

equipment which process classitiet data,

o Hardware Security: Usually 1nvolves rne ase of TEMPHEST
approved eqgulpment to prevent h2 occurr—=nce 0t
compromising emanations, In addition to emanations,
certaln hardware features may work in conjunction ~ith
the system software to ensure process integrity,

O Cryptographic Security: The process of 2ncryptinyg toxt
before transmission on uncleared circuits to render the
information unintelligible to potential interceptors.

O Software Security: The use of the system software to
implement and enforce an array ot security measures
used to prevent the compromise of classified or
sensitive data from ADP/Telecommunicatiors environment,

This paper discusses software securlty and seeks to demonstrate
how the Ada programming language can be utllizec as a tocl to
implement software desigr methodologies which support sottware
security methods.

This paper 1s one in a serles which sceks to help potentlal Ada
developers gain practical insight 1nto what 1s reguired to
successtully develop Ada sotfttware, With this goal 1n mind, Alr
Statft tasked the Command and Control Systems Office (CCSO) with
evaluating the Ada language while developing real-time digital
communications software, CCSO chose the Standard Automated Remote
to AUTODIN (Automatic Digital Network) Host (SARAH)2 project as a
basis for this evaluation., SARAH ts a small to mediumn size
project (approx. 40,000 lines of source «ode) whicn will function
as a standard-intelligent terminal for AUTODIN users and will be
used to help eliminate punched cards as a transmit/receilve
medium, The development environment for SARAH consists ot the
sotTech Ada lLanguaye System (ALS) hosted on a Digital Egquipment
Corpo-atinn VAX 11,780, a Burroughs XES550 Mcegaframe and several
IBM compatibie PC-XT and PC-AT microcomputers, The AT 7 +he
tocal poink AF Do s wnfegrated “Aovelcpgment envirormert, The
source code developed on the XE550 and microcomputer workstations

is maintained by the ALS contiguration control system, 1In
addition, reusable modules are baselined by the ALS and
malintained on the VAX in a software repository.

1.2. PURPOSE
The purpose ot this paper 1s to:

o Outline Automatic Data Processing (ADP) security
risks which may be managed through the software
lmplementations,

o} Identify sottware application and design methods whicn
can te utilized to support software oriented risk
management.,

o} Identify Ada language features and characteristics
which support these design methodologies,

o Caution the implementor about unknowns of the language
and other considerations as they pertain to security.

1.3. SCOPE AND CONSTRAINTS

The scope ot this paper is limited to those security requirements
applicable to the SARAH system, SARAH, as a General Service
(GENSER) system, 1is not subject to as many security requirements
as the Defense Special Security Communications System (DSSCsS) 3.
Since SARAH will be a telecommunications system, security risks
discussed are those of concern to developers and implementors of
telecommunications systems and may not be applicable to ADP
systems. The security risks discussed are not intended to be
comprehensive, even for a telecommunications system, but were
selected as issues of nhigh concern to telecommunications systems
and as good examples for demonstrating the potential of the Ada
languaye to support software security design methods,

Since the authors of this paper are currently involved in the
desiyn phase of the SARAH Ada development project, they are not
in a position to advise about Ada security applications from
personal experience, They have followed the development of the
language, have studied the language extensively, and have a good
deal of sottware development experience with military-
telecommunications systems using a variety of languages and
development methodologlies.,

2, SECURITY 1SSUES

In the military telecummunications environms=nt, the overlying
security risk 1s the compromise of sensitive or classified
information and/or not delivering a messade or part of a messaqge,
With this in mind, we will discuss the following security issues:
prevention of interlacing of message data, prevention of lost
data, message and command validation, message distribut 1on
integrity, and information protection., The SARAH workstation
will provide a secure communicatiorns environment for the
creation, transmission, reception, and delivery of messajes
within the Detense Communications Agency (DCA) AUTODIN system,
Issues addressed are in the context of the ap_lication tor the
SARAH workstation,

In this section we will look at some general securiny issues. n
later sections we will look at hoth design issucs and tne Ada
languagye to see their relation Lo security.

2.1. PREVENTION OF INTERLACING MESSAGE DATA

Messaye 1nterlacing occurs when part or all nt onre messaye
becomes mixed with another message, When this occurs, the
interlaced message content may be of greater classification than
the classification specified in the messaye headcr, Thic
message may Or may not also be delivered rormally, depending on
what caused 1t to become interlaced with the other message.
Messayes are split into blocks at various points during
transmission to facilitate efficient nandling. The system
handles any number of messayges at one time and must maintain each
as an entity,. Fach message entering the network contains a
message header which consists ot a number of intormation fields,
The classification field is used to prevert a seccurity
compromise, Other fields within the header and trailer are used
to check for proper length and ending block information.

2.72. PREVENTION OF LOST DATA

Lost data results in messaye data nont beling delivevred as
intended. To prevent this, the SARAH sottwire nmast maintain
system inteygrity (integrity, as used In this paper, means that
independent components or entities remain independert and
complete) and data flow integrity at all times,

orie way to prevent lost data 1s to ensure all 1ntormation entered
into the SARAH terminal, both control intormation and messaye
information muct be validated, usable, and appropriately handled,
Any introduction of information that is subsejuently never used
or inaccessible 1s unwarranted and should be prevented,

Another thing that must be done i3 to ensure ti: message trattic
ls properly queued. Improper gueulinj of messages tor delivery
through the system can result 1n eltn=r lost messayes

FII-I-----I------------—--—-

(undelivered) or misrouted (delivery to the wrong customer),
Either case must be prevented.

To prevent data from beiny lost, the distribution process must
cover all contingencies, Initialization of the cutput routing
matrix must result in specitic instructions for handling a
messayge whose address does not match any of the entries in the
matrix. Since any work station can serve as a backup for another

while receiving its own tratfic load, this default queue logic
must be available,

The final ingredient 1n preventing lost data is to maintain
appropriate and sufficient information about messages being
processed, This will allow recovery of all undelivered traffic
after a failure of the system. The SARAH system will satisfy
this requirement with a printed journal and various techniques
ftor recovery tirom floppy disks and the host computer system,

These steps will ensure no messages are lost during the recovery
process.

2.3, VALIDATION

Z2.3.1. COMMAND VALIDATION

The system menu function takes commands from the keyboard and
directs the command selections to the other system functional
units (or modules) ot the system. Each incoming command is
validated by the menu function to ensure the command is a member

ot a limited set »t commands allowed for each of the other system
functional units,

2.3.2, MESSAGE VALIDATION

Betore entry into the AUTODIN network, the message will be
validated by the message preparation module of the SARAH system.
This validation will check the contents of the messaye, keying on
the message header, to ensure that it meets all the criteria for
proper routing 1in the AUTODIN network, Checking is done on
precedence classification, content indicator code, date-time-
Jroup, origlnating station routing indicator, station serial
number, and routing indicator codes. If an error is detected,
the messaye will not be allowed to be stored on the message
transmission disk, The operator will be notified so the message
can be changed to the proper tormat for transmission,

2.4, DISTRIBUTION INTEGRITY

SARAH workstations will ensure that messages are delivered to the
proper addressee by validating message header information
against an output routing matrix. The SARAH system will] provide
a facillity to create the customer output routing matrix,
The matrix willl be created on site at installation time and may

be moditied as reguired. [t will provide all necessary
information to validate each messaye betore delivery to the
customer. Validation criteria will include classitication
identification, routing indicator code, distribution media
(printed anu/cr floppy disk), etc.

2.5. INFORMATION PROTECTION

Information protection, in this context, is tg
system data bases (both the informationrn in and
logic of the data bases) from urnexpectoed crtects of messajges
being processed or other dynamic data. Cne arca of concern is the
messaye queulny systems which control the order of delivery of
messayges being transmitted, received, or beir; prepared tor
distribution. These queues may have to Interact with a systea
data base (i.e, customer distribution wmatrix) but not bhe allowed
to attect the data base, The system must D2 oguipped with
appropriate safeguards to ensure information protection. AS wWe

will see later, the Ada languayge has some fecatures that will help
us .,

v isolation of
the processing

3. DESIGN FOR SECURITY

As the size and complexity of sottware systems increases, so does
the probablility ot error, For secure systems, errors in coding
or design could have disastrous etfects on nationrnal security.
Good sottware oengineering practilices need to be applied 1f
etfective software 1s t9 be developed for secure systems. Some
ot the areas wnich need to be addrescea during the
analysis/design phase include abstraction, modularity,
localization, understandability, confirmability, and reliability,

We will now take a look at several design issues that can impact
security. We w1i1ll not specitically look at the Ada language
untill the next section of the report,

3.1. ABSTRACTION

Abstraction should bz used when designing secure systems so that
security 1ssues are not clouded by less relevant details,
Abstraction 1is onre of the fundamental tools for controlliny
complexity4~ We use abstraction in our lives every day to
control complexity; the principles of abstraction for software
engineeriny are rno ditferent, For example, when we look at a
computer system, we s2ee¢ the visual display, keyboard, processor
and storayge devices, In etfect, we have abstacted our view oOf
the computer, We know that the processor is made up of integrated
circuits, decoupling capacitors etc.; however, thote aspects are
not relevant to cur top level view and it introduced would creat-~
an unnecessary amount of complexity. Perhaps so much so that we
would forget about the furctiorality ot the major components.

The principle of abstraction 1s being extensively used for the
SARAH software system. Figure 3.1 shows the top level
abstraction view of the SARAH software. At this level, the
SARAH designers knew that several regulirements needed to be
incorporated 1nto the system, For example, connection to the
Detense Communications System was a reguirement, and so a
subsystem that handled communications (Comm) was needed, At this
level ot abstracrion, the designers knew that other elements ot
the system wer2 also needed such as a message edit/preparation
tacility and an icpu‘ /output (1/0) system.

At this level ot abstraction, high level system interfaces and
overall system furnctionality can be detined. Working at such a
high level of abstraction, the designers have been able tao
address hign level security issues, For example, the Comm system
will operate 1nndependently of the Edit system and not rely on

sther systems to maintain queues or manage the incoming or
outgoing maessages,

s34 IXI|
1 abessapg

samnn

/N

S NI
; abessayy

UONPULIOJUL Nuayy ey

14%g) (edyydeuaBodo]

w3shs 0/

jonuod) wiew

teae~ dol Hygvs

AL
.- Bsm/axay

oju) dnuers
/101u0) 1p3

‘1-¢ eamSyg

Une or tne meaé jor seCsairity regiirements for the SARAH system is
that the tran.mit ot rocetee data must not be interlaced. As
such, when the aoxt oo o0 abstraction ~as detined {or the Comm
system, two separate oot i dependent modules were identifled,
Js51rgy successioe fevo b o oabsnraction, the SARAH Jeslgners have
Deen able o contrsl e coamplexity of the syste:m and focus on
Lhe SeCaril,; =,esct 3 o lative to o the level being defilred.

Lo consltder all aspects o) securlty at one level can creatce a
Sitdaclon where sono aspects of securlty may be overlocked., The
control »t complexiry s =xtremely tmportant for the dzvelopment
OFf sottware tor Solore o sutena, As shown, the agplication of
anstractiorn vo asrrw e Lesign o can helpy control this complexity

and nelp irncaroorat o o ety regulrements into the resuloling
SOottware,

Apother SOoLbwWare org oe2ritg pricciple that goes "hand-in-hand”
with abstrocrion

inodorormation hiding, Whereas abstraction is
used to extracn o or intosusation at » oparticular level in oa
desigrn, intohroai it Mialrg wmakes certain furctiong and data
1rmaccesEsinie v Lo dUotne cdesign which do nou need them,

ne Hierarchicar Jovw ofF 5ARAA'S top anstractlion level (Filuure

3.2 provides 2 o000 example ot this sottware engineering
teature, For sxample, the start up module of the Comm System 1s

vislole to bhe Main controlicr; however, the Transmit ance Receive
Fasks are not, A5 such, the Main controller canncoct use any of
tne fdncrions o dati wiohln tre trarsmit or receive tasks.
Similarly, althougic Prist Mgr 1s visible to Comm, the converse 1is
not true and so frino Myr canpol use or maniovulate any of the
Comm lata or ftunotions, Irformation hiding 1s therefore a very
powertul mechartisn Do srotocting data wlthiln secure systems,

o

3.2. MODULARITY

A major rejulrzuent tor sortware system design is modularity.
Modularity deals wirh the decompm<1t1on nf a system into a number
ot constltuent parts whicn o are intertaced together, Mcdularity
13 a fundamental tool tor helping us marage the complexity of
s3Oltware systems, A oot arndular design will purposaely retlect
the real worlda probiom space. The modules that come out of this
type ot design are Lasoally o 2n separately and later joined to
fForm the projra

—

ITdeally, the modilz2s shiould 2xhibit loose coupling, This can pe
achieved by keepirng the module interfaces to a mionimum and
collecting or 1qulzzihj like data and furnctions, Software
daevelopod tor secirs 5750 ems shonild be modular and the modules
should have loose coupling so programmer induced errors can he

Llocalized, and complexity can bhe controlled,

A sottware system that has well detined Intertaces between
modules will reduce the possibility of programmer induced errors
QY malrntesanc., It couplir, is high, a change to one module

could iradvertently change the function ot another module. FEven
worse, the system data may be unknowingly modified and so causc a
securlty compromlse, The Ada languaye provides fteacures whnich
aid 1n making sottware transportable, As such, software systems
developed with Ada could be in service tor quite 1 long period of
time (perhaps in excess of 20 years). Havinyg modules that are
tong lived means that the modules are well tried and proven,
well defined modules which exhibit low coupliny can <ffectively
reduce maintenance problems and so help maintain system integrity
throughout the life of the software,

3.3. LOCALIZATION

Localization deals with tne proximity ot Like entities, A module
that has strong cohesion will be very localized because it will
encapsulate like functions and data. For exauple, the Display
Tools Package 1in Flgure 3.2 exhibits a anigh degree of
localization. The packayge contains a numbaer of tools tor
outputting Display Data to the screen, The only operations that

can be pertormed on display data are those provided by the
packayge,

For a secure sottware system, localization i1s extremely
important, In the SARAH system, distribution 1nteygrity and
message interlacing are major security concerns. Localization
can provide the basis for eliminating these security risks., By
localizing data and tunctions to specitic modules or packages
(we'll see how Ada can help us do this, latevr), we can prevent
iradvertent data moditication or manipulation., For example,
Recelved Messagjge Data and Transmit Message Data cannot be
intermixed because they are of ditterent data types encapsulated

in separate modules which have their own controls for data
manipulation. :

3.4. UNDERSTANDABILITY AND CONFIRMABILITY

If a software system is not understandable, the possibility of a
security compromise could be high., Understandability relates not
only to the resulting code, but also to the overall design, For
example, 1t the software solution does not retlect the real world
problem, the design could appear excessively complex to
malintenance personnel, The maintainer may therefore make a

change to the system without fully knowing the overall effects ot
the change.

At the code level, a defined coding style should be used so that
the snftware 1s readable and therefore understandable, The low
ievel design/implementation standard should be well detined prior
to development, For the SARAH project, this standard is based on
a style guide pubblished by Intellimac Inc.? and is included 1in
the SARAH Software Standards and Procedures Manual (SSPM) as

required by the DOD-STD-2167, the documentation standard for the
project,

Display Tools

Open W.ndcw

C'ose Wonaow

Cursdr XY

Pyt Putine

C.ear Screen

Srow ¥Y
voT
Cd
Fi \
!
7
/
]
isplay Mgr
Pull Down -
(\ Print Driver
Singie Nindow LI N
~
~
Heip ~ -
— \|
Notes [
!
!
[}
Main
= —
1
Re -Start l
Shut Down
—_—

~

.
}
|

,f\"""'""f""',?:

A
|
!
i
|
!
!
|
{
!
I

A

e il

Disk Driver

N

-~
f
|
i
|
)
|
|
|
1
{

r———-———_'—__..——————-.————_——-P‘

.

s IS

\s

! Edit

Control

Keyboard

Trangmit

Recove

Edit Tasx

/

[
[/
/
/A

Meny

nit Task

Start /
Contirue J

Help

/

Figure 3-2

T

N T

Utilities Init Sys

SARAH Top Level Hierarchical Chart

10

A detri1ned stylc has a number of positive eftects on the abllity
Of sottware to reliably process sensitive intornation, First, if
the sottware is understandable, then tunctionality is more easlily
validated and contirmed during walkthroughs and reviews, Second,
a detined structure and style promoles completeness. For
exampyte, it the SSPM reygulres that all types, exceptions, and
objects are to be commented, the projgrammer 15 torced to consider
the declarations more carefully. 1I[in adadition, the maintenance
programmer will have the benctit of these comments when the
software 1s in its maintenance phase,

3.5. RELIABILITY

Reliabllity of sottware tor securc systoens 15 OofF utmost
lmportance, An unreliable system Jhilein processes secure
lntormation could have drastic ettects on rational security. For
example, 1f under certain conditions, a messaje system allowed
classitied messages to go to an unclassitied local delivery
point, a serious compromise would occur. One of the major design
yoals ot the SARAH development has been reliability,

Reliability cannot be added on atter the system has been
developed; rather, it must be deslyned into the system. Risk
aralysis should be completed at each design abstraction so that
pnssible problems are not overlooked. 1Intortunately, the most
popular software lifecycle models (e,j, Watertali Model) are not
risk driven and so do not provide a formalized basis for risk
analysis., To overcome this deticliency, the SARAH designers
decided to borrow heavily from the Spiral Model® and introduce
risk analysis at the completior ot each design cycle.

11l

4. USE OF ADA LANGUAGE FEATURES

Ada provides a rich set or janguage teatures which can be used to
develop reliabl.e, «sorvivable and secure software systems, These
features Jdirectly suppnrt the modern software engilneering
principles discussed 1 tnhe previous section, This is not
surprising since Alda was lesigned to support the development of
larye systems which would be developed usinyg these engineering
principles. Some ot tne Ada features that directly support the
Jdevelopment ot =sottwar: or saCcdre systeas are strony data
typing, packaging, gererti s, acd exception handling,

4.1. STRONG DATA TYPING

Ada 15 2 very strongly typed larguage, Strong data typing
provides the basis for protecting data objects within the system.
Some ot the types that <canr pe used to produce ettective secure
software include private types, enumeration types, and access
types. In addition, Ada orovides the programmers with the
ability to define their own types. These user defined types can
be extremely ettective tor the Jdevelopment or secure systems.

One of the security issues being addressed in SARAH 1s message

validation, Ada provides powertul typling features which help
accomplish message wvalidation, For example, by using user
detined types tojether #ith =2numeration types, the programmer can
strictly define the scope of a particular object, When the

messaygye header 15 validated, only certain security
classifications will be allowed. In the header, only the first
letter of the classitication is provided, For example, Top Secret
is identified as "T". A typical Ada type declaration for
security classitications 1i3:

type CLASSIFICATIONS is (T, S, C, R, E, U);
Suppose we want to validate the message headers for correct
security, then we need (o create an object of this type to which
we can then make assignments, This can be done as follows:

Header Security : CLASSIFICATIONS;

If, during execution, a character is assigned to HeaderQSecurity
from the incoming message, and 1t 1s not in the range specified
by the user defined type (CLASSIFICATIONS), then Ada will tlag
this as an exception condition and the software can take the
appropriate measurcs to handle this problem,

The use of enumeration and user detined types are also very
eftective for validating user input commands., A type can be
defined so that only a limited range of input will be accepted.
Security is improved because the resulting software is more
understandable and reliable.

]

4.1.1, Private Types

Anotner Ada typlng teature whirch can help tn producing secure
software systems 1s private types. Pr*vate types are very
powerful for protecting data. It a private type is declared in
an Ada package, then the only operations that can be performed on
objects of that type outside 1its packayge are ojuality/inequality
tests, assignment, and any operations declared in the package
specification, [t even more protection is reguired, a limited
private type can be used which restricts the package user to only
those operations shown in the package specitication. For limited

private, even tests for equality/inequality and assignment are
not permitted.

In the SARAH system, Transmit bata and Received bata are limited
private types encapsulated 1n separate packages, It another
package needs to access this data, tor example a validation
package, then the only opcrations that can be pertformed are those
listed in the packaye specificatlions. The validation package can
look at certain aspects of the incoming messagye; however, 1t
cannot manipulate or make a copy of the data. Visibility
between packages 1s controlled and this turther reduces the
possibility ot unlawful access of secure data. For example, the
receive and transmit packages are completely independent and are
not visible to one another, As such, there 1s no possibility of
mixing (or interlacing) Received Data with Transmit Data. AsS
shown, private types are a very powerful mechanism ftor protecting
and restricting access to secure data within a software system,

4.1.2. Access Types

Access types provide a powertul mechanism for creating secure
dynamic lists and gueues. Queuing 1in communications systems 1is
an lmportant function, Queue implementation using older
languages and assembly languages 1s a complex problem,
particularly when there are a larye number of transmit and
receive lines. As such the possibility of misrouting information
is increased. Access types provide a well detined mechanism for
implementing queues, and so the resuiting implementation is more
readable and understandable., The software can therefore be more

easily verified, and so reduce the risk of a possible compromise
situation,

Since access types can be made private or limited private, the
benefits of data protection are also available to the designer, A
standard queue type can be defined and several independent
objects of this type can be created, For example, 1n a Receive
package, a queue may be required for each local delivery point.
Each of these delivery points could be objects of the queue type,
If the queue type is made private, the actual data structure is
hidden from the user, In addition, if limited private is used,
the only operations that can be performed on the queue objects
are those specified in the visible part of the encapsulating

13

package. In summary, access types provide a mechanism for easily
defining yaeues ard lists,

4.2. PACKAGING

Ore of the unigue features ot Ada 1s the packayge. An Ada package
1s made up of a visible parct ard a body,. The visible part
contains the package spuecitications and shows which entities can
be exported, For example, a package specification for a package
ot display tools may tell the user that the operations which can

be performed on Display Data are Open Window, Close Window etc.;
but the details of how this is dore is hidden in the package
body. As such, packages provide a powerful method ot
implementing abstraction anrd intormatior hiding. As discussed

earlier, these are extrerely i1mportant concepts for the design ot
secure software,

Packaglng concepts are beiny used extensively 1n the SARAH
project for controlling complexity, protecting data, promoting
understandability and enhanrcing reliability., Figure 3.2 shows
how the SARAH software has been packaged. Each of the major
functional modules are i1mplemented as packayges. These packages
have defined interfaces to other packages. In addition, the
packayge dependencies are clearly shown. By packaging for low
coupling and hignh module c<cohesion, packaye dependencies are
minor. For a secure system, this 1is important because 1if a

problem arises in ore module, the effect on other modules will be
negligible,

4.3. GENERICS

Generics provide a number ot desirable benefits for secure
software implementations., Generics are templates of Ada program
elements. For example, several instances of a generic package
can be made by simply instantiating (or filling-in) with
difterent data types. In SARAH, a Variable List package is being
created to provide a mechanism for queuing and list processing.
The package will be writtern just one time and then be
instantiated tor the varionus other data types. For example, a
queue will be created tor Received Headers and Transmit Headers,
In addition, the same package will provide variable list
tacilities for the text processing section of the system, The
productivity benefits of generics are substantial; however,
jenerics also nhave a positive ettect on system reliability,
modularity, and understandability,

As mentioned earlier, queuinyg sottware for older communications
software is complex, and not very understandable to the
inexperienced. Hy usinyg generics, we will reduce the complexity
considerably because there will be only one major functional
module and this one piece ot code will be instantiated to provide
functionality for several i1ndependent objects. In essence, a
package will be created tor each data object, The resulting

14

software will theretore be more modular to help enhance
understandability, The verification process for SARAH will bhe
considerably easier and more complete because of generics,

Ssoftware reuse has a direct etfect onreliability and can aid in
reducing the risk of compromise in secure systems., Generics
provide an excellent method for software reuse, Rellability is
enhanced throuygh the use ot gyenerics because a previously
verified module is less likely to contain programming errors.
Indeed, even with older languages such as FORTRAN, where
mathematics libraries were extensively reused, few errors
resulted from tae reused code,

4.4. EXCEPTION HANDLING

Ada provides a feature called exception handling to catch errors
during program execution. This feature 1s easy to use and makes
the resulting software very readable, reliable, and survivable,
As such, exception handling 1s an important concept for the
design and implementation of secure software., Extensive use
should be made of exceptior handling to reduce the possibility of
a security compromise caused by unreliable software or hardware,

As previously indicated, reliability must be built into the
system trom the outset, When analyzing and designing each level
of abstraction, the designers should identify and record
exception conditions which could possibly crecate security
problems, In particular, these conditions should be identified
when risk analysis is performed following the completion of a
design abstraction level. These exception conditions can then be
accounted for by Ada exception handlers,

15

5. FURTHER CONSIDERATIONS

Ada 1s opening a whole realm ot possibilities for improved
sottware systems deveiopmnent, Caution must be exercised,
however, when entering this new domain., There are negative
aspects of software development using Ada that any new developer
should be aware ot ard be oropared to address. The "catch-22" is
basically the newnress of tne language and the proliferation ot
compilers and Ada accessories available on the commercial market,
Unknown problems may lie withii the tens of thousands of lines of
code comprising the compilers from each vendor. These problems,
uandetected through the validation procedure, are there and will
have to be addressed ~n 10 "as nceccurs" basis, Due to the
diversity of the compil:r dosigners in the Ada world, solutions
to the same problems in larjuagye implementation take on different
desiyns. This ditference in anderstanding and solution processes
makes for unknown numpers ot fature problems. Effects of this on
the concepts ot duata ty;ing, modale isolation, limited access,
etc. are risks that nave £ e taken and faced when and if
problems do surtacc.

Another area ot risk tha=i shoula be nighlighted is that of the
support environment that is available with the Ada compilers
belng acygulred today. The Ada Programming Support Environment
(APSE) 1s a set ot development tools that can assist and provide
added control over the sottware being developed., Some vendors
are murketing support envirorments that come from existing
product lines anrd are proven, Tools such as Ada syntax checkers,
debuggyers, stub generators, c¢onde generators, etc, are available
and being billed as wondortul. Care must be taken to ensure the
proper function ot such tools, The assumption that the resultant
code 1s pure and sccure should rot be made. vVigilance 1is
nec=ssary in this emerging Ada world of technology and we must be
the tront line ir preverting the accurrence ot problems.

16

6. SUMMARY AND RECOMMENDATIONS

6.1. SUMMARY

Modern software englneering technigques and specitic features of
the Ada language provide very useful tools tor use 1n developing
secure ADP and telecommunications systems. The most dangerous
risk to these systems is the compromise ot classified or
sensitive intormation and the loss of important information.

The SARAH workstation project, as a telecommunications terminal,
must address a number of security issues; among them are the
prevention of interlacing of message data, the prevention of lost
message data, system command and message validation, distribution
integrity, and information protection,

The major software design methodologies useful for handling these
issues are abstraction, modularity, and localization,
Abstraction allows the designer to concentrate his/her efforts
on a particular problem. Modularity and localization allow the
system functions to be logically grouped and provides for more
easily controlled interfaces,

These methodologies also seek to achieve the goal ot
understandability, verifiability, and reliability, Reliability
is greatly increased by designing a veriiiable system which can
be completely and easily tecsted. Systems must be understandable,
both at the design level and at the code level. Understandability
builds reliability into the system; it also helps to ensure that
the system will continue to be reliable after maintenance,
Maintenance programmers need an understandable system to help
them locate problems, correct problems, and predict the effect of
modifications to the system.

Ada provides features that support modern design methodologies
and thus software security. Strong data typing and exception
handling helps to ensure the system will function reliably and
predictably when subjected to many different input conditions.
Packayiny is one of Ada's most useful features; it provides an
etficient mechanism for modularization, localization,
abstraction, modifiability, and understandability,

Caution should be exercised because of compiler and support
environment unknowns. Ada is a large language and various
commercial compilers implement the language features in many
ditferent ways. Ada has arrived with many support environment
tools whose efficiency and predictability may vary.

6.2. RECOMMENDATIONS

o] Become aware of modern software engineering principles
and prepare to enforce their application to all aspects
of software development.

17

Use the principles ot abstraction extensively in the
area ot localization and data typlng to ensure a more
secure and naintainable software product,

Make extensive use of exception handling and apply it
throughout the sottware system to ensure a stable and
controlled software environment,

Be aware of which Ada compiler you are using, and make

sure you keep current as improved and validated
versions become avallanle,

18

A. REFERENCES
[1] Automatic Data Processing (ADP) Security Policy, Procedurcs,
and Responsibilities, Alr Force Reygulation 205-16, US Alr Force.

[2] "SARAH Operational Concept Document", US Air Force, 12 May,
1986,

(3] AUTODIN I System Functional Specitication, Defense
Communications Agency, Code 250, Washington, D.C., 1981,

[4] Booch G., Software Engineering with Ada, Menlo Park,
CA:Benjamin/Cummings Publishing, 1983.

{5} M. Gardner, N. Brubaker, et. al., Ada Style Manual,
Intellimac, Inc,

[6] Boehm B. W., "A Spiral Model of Software Development and
Enhancement”, TRW Defense Systems Group.

19

