
ADA* EVALU~ATIONAPROJECT

DTIC FiL'- COPY
THE DEVELOPMENT OF ADA* SOFTWARE

FOR SECURE ENVIRONMENTS

05 (ID Prepared for

HEA)QUARTERS UNITE[) STATES AIR FORCE
Assistant Chief of Staff of Systems for Command, Control,

Communications, and Computers
Technology & Security Division

Io

Alpprv to pu S: rc r:-
rSr

L DLSROMMTONSTATE.Mr-M A
Apprcvod for Wu~i eael
_-isunibuU~r. Unlimited~a,

repared by
Standard Automated Remote to AUTO!)IN Host (SARAH) Branch

COMMAND AND CONTROL SYSTEMS OFFICE (CCSO)
Tinker Air Force Base

Oklahoma City, OK 73145
AUTOVON 884-2457/5152

Ada is a registered trademark of the U.S. Government
(Ada Joint Program Office)

23 May 1986

90 02 28 003

THIS REPORT IS THE THIRD OF A SERIES WHICH
DOCUMENT THE LESSONS LEARNED IN THE USE OF ADA IN A

COMMUNICATIONS ENVIRONMENT.

ABSTRACT

This)ap dscu-s - sopt wa , , ,,
demonstrat*-t how the Ada ' 0 ro -am nin j Iar uaje carl ,-
utilized as a tool to implemk:rc sottware design
methodologies which support software. secuirty.

The major s,. cur i ty r isk i t r h a in I i ta ry/-
telecommunications environment is the ,zfl.)i, ise :r
secure or sernsitive i ntr tm L liar /r -' r relt
Cie I ivr r in a iAsag t t ; Tn-, A ,
Sottware security issuev, tr. ., I. iinm ate
these and other security r. ,- i.r . Thi s
paper addresses a I im ttd ri ts'1- r t t1o
illustrate how Ada (s eir. used i- .. i

1-.e o fk-;ure sottware prod uct. : i : is 5S U (
related to interlacing messagje dat-a, prevention at
lost data, message and command VaLidation:, lnessaga
distribution integrity, and information protectl,)r
are addressed.

The paper goes into a (se c iptl on. ,)t i, tuie SARAH
designers are approach in j t-he lorn. iem at lsi gn nj
tfo)r a se c ure e n v ir-)r in 2rt i) fo tw are
engineering practices necd .- 00 api) e 1d it
effective software is to h devciopeu(tor secure
systems. Some -L the d Ees wiricri neeo to D2
addressed durinj the analysis/ 'gt.si.i2 - , inciud2
localization, understandai)il-ity, reliability,
abstraction, contirnability, and mv,,Jlarity.

Ada provides a rich set ot larjuap jte t-rs which
can be used to develop rliabl survi.vable an,!
secure software systems. The Ada nair.guage was
designed to support the d-v-I)p.nt at large
systems which would be dveli)p P! ii g modernr

sottware engineering princip.es. The fe,,t-ures that
directly suppo-rt the development of s)'t war-e tor
secure systems are strongj data ty, ir. j, packaging,
jenerics, and exception handlinj.

Other aspects of the Ada anv t,)n-nant LIat must be
considered in the security ot the final product are,
the newness oL tne technolojyl, d. t ,r ncs
implementation techniques by the variety ot vendors
in the market, and new prog rainin ing support tools
that have Little -or no track record to verity th,
stability o the prodact.

Ada Evaluation Report Series by CCSO

Ada Training March 13, 1986

Desiqn Issues May 21, 1986

Security May 23, 1986

Module Reuse Summer 86

Micro Compilers Fall 86

Ada Environments Fall 86

Transportability Winter 86-87

Modifiability Winter 86-87

Ruritimt Execution Winter 86-87

Testing Spring 87

Project Management Spring 87

Summary Spring 87

TABLE OF CONTENTS

I. INTRODUCTION ... 1
1.1. BACKGROUND .. 1
1.2. PURPOSE ... 42
1.3. SCOPE AND CONSTRAINTS 2

2. SECURITY ISSUES 3

2.1. PREVENTION OF INTERLACING MESSAGE IATA
2.2. PREVENTION OF LOST DATA
2.3. VALIDATION 4

2.3.1. COMMAND VALIDA'IION.4
2.3.2. MESSAGE VALIDATION 4

2.4. DISTRIBUTION INTEGRITY 4
2.5. INFORMATION PROTECTION 5

3. DESIGN FOR SECURITY 6

3.1. ABSTRACTION ... 6
3.2. MODULARITY 8
3.3. LOCALIZATION
3.4. UNDERSTANDABILITY AND CONFIRMABILITY 9

3.5. RELIABILITY i1

4. USE OF ADA LANGUAGE FEATURES 12

4.1. STRONG DATA TYPING 12
4.1.1. Private Types 13

4.1.2. Access Types 13
4.2. PACKAGING 14

4.3. GENERICS ... 14
4.4. EXCEPTION HANDLING 15

5. FURTHER CONSIDERATIONS 16

6. SUMMARY AND RECOMMENDATIONS 17

6.1. SUMMARY 17
6.2. RECOMMENDATIONS 17

Appendices

A. REFERENCES .. 19

LIST OF FIGURES

3-1: SARAH TOP LEVEL ABSTRACTION VIEW 7
3-2: SARAH TOP LEVEL HIERARCHICAL VIEW 10

STATENJENT "A" pe Capt. Addison
Tinker AFB, OK MCSC/XPTA .

TFTEC-'Q',u' ? /?,Q Inn

1. INTRODUCTION

1.1. BACKGROUND

Today's world poliLical atid mii-t-y 1 1 V ,, s ucr thci,
compromise or interception ot cLassitied)L mi !riLive miitary
intormation could have grave cornseie,- V r .ur i1. ro

security. Stringent methous of data p t r -ar L (eqJ -r
There are a number of ways ot protecting claii. ,id and .sesitr,,i ,
information in the Automatic Da t Processing
(ADP)iTelecommunications environmenti:

o Physical Security: The preve nti ,) n vt: r! c a r
personnel from gaining p:>'s:c I c, ,a,sces r
controlled space around ADP Te tcommunic C' i1 1..;
equipment which process clas3si t i,. ta

o Hardware Security: UsuaLy i n.volos v --3se o t M1
approved equipment to prev-int ti]e n)c-irr I f
compromising emanations. Jr, adliti to ema ton
certain hardware features may work ir conjunctiori with
the system software to ensure process intLegrity.

o Cryptographic Security: ?he process ,tt e-_ncryptir] text
beufre transmission on uncleared circuits to render the
information unintelligible to potential interceptors.

o Software Security: The use of the syst-im software to
implement and enforce an array ot security measures
used to prevent the compromise of classifieA)r
sensitive data from ADP/Telecommunications environment,

This paper discusses software socurity and seeks to demostrate
how the Ada programming language can be utilizec as a tool to
implement software design methodologies which support software
security methods.

This paper is one in a series which seks to heLp potential %,da
developers gain practical insight into what is required to
successtully develop Ada software. With tlhis goal in maind, Air
Statf tasked the Command and Control Systems (Otrice (CCSO) witti
evaluating the Ada language while developing refi-t~me digital
communications software. CCSO chose the Standard Automated Remote
to AUTODIN (Automatic Digital Network) Host (SARAH)2 project as a
Dasis for this evaluation. SARAH is A small to medium sise
project (approx. 40,000 lines o[source ,odo-) whicn will function
as a standard-intelligent terminal for AUTODIN use rs and will 1b)
used to help eliminate punched cards as a trca.smit/receive
medium. The development environment for SARAd consists ()o the2
S)tiech Ada languaje System kALS) hosted on a Digi tal , uiLpent
Cnrpr,,-; t ion VAX 11/780, a Burroughs XE55(J Mogf rome and several

IBM compatibie PC-XT and PC-AT microcom[p:ters. The jr - hp
t . mn+ i,, ,te~rate] dC':,cp,,,enr oervironment. The
source code deieloped on the XE550 and ni c rocomp;,t, i workstat iorns-

is maintained by the ALS configuration control system. In
addition, reusable modules are baselined by the ALS and
maintained on the VAX in a software repository.

1.2. PURPOSE

The purpose of this paper is to:

o Outline Automatic Data Processing (ADP) security
risks which may be managed through the software
implementations.

o Identify software application and design methods whicit
can --e utilized to support software oriented risk

management.

o Identify Ada language features and characteristics
which support these design methodologies.

o Caution the implementor about unknowns of the language
and other considerations as they pertain to security.

1.3. SCOPE AND CONSTRAINTS

The scope of this paper is limited to those security requirements
applicable to the SARAH system. SARAH, as a General Service

(GENSER) system, is not subject to as many security requirements
as the Defense Special Security Communications System (DSSCS)3.

Since SARAH will be a telecommunications system, security risks
discussed are those of concern to developers and implementors of
telecommunications systems and may not be applicable to ADP
systems. The security risks discussed are not intended to be
comprehensive, even for a teiecomiunictions system, but were
selected as issues of high concern to telecommunications systems
and as good examples for demonstrating the potential of the Ada
language to support software security design methods.

Since the authors of this paper are currently involved in the
design phase of the SARAH Ada development project, they are not
in a position to advise about Ada security applications from
personal experience. They have followed the development of the
language, have studied the language extensively, and have a good
deal of software development experience with military-
telecommunications systems using a variety of languages and
development methodologies.

2

2. SECURITY ISSUES

In the military telecummunications ,rnvironmert, t he overlying
security risk is the compLomise)f In , ti , ()r classified
information and/or not delivetcing a messaje or nart ()t a message.
With this in mind, we will discuss the foLlowiing security issues:
prevention of interlacing of message data, prevention of l(sjt
data, message and command validation, m-2s sa:l d 1tL io!t i)n
integrity, and information protection. rhe SARAH workstation,
will provide a secure communications environment for the
creation, transmission, reception, and delivery of messages
within the Detlmnse Communications Agency (DCA) AUTODIN system.
Issues addressed are in the context of the ap/lication for the
SARAH workstation.

In this section we will look at some generai s:2,nln,' issues.
later sections we will look at both desi is:6us and tje Ai-
language to see their relation to security.

2.1. PREVENTION OF INTERLACING MESSAGE DATA

Message interlacing occurs when part or ali -)L one Tlessij.
becomes mixed with another message. Wh en this occurs, the
interlaced message content may be of greater classification than
the classification specified in the mussage headr. This
message may or may not also be delivered normally, depending on
what caused it to become interlaced with the other message.
Messages are split into blocks at various points during
transmission to facilitate efficient nandling. The system
handles any number of messages at one time and must maintain each
as an entity. Each message entering the network contains a
message header which consists ot a number ot in.ormation fields.
The classification field is used to prevert a security
compromise. Other fields within the header and trailer are use-d
to check for proper length and ending block information.

2.2. PREVENTION OF LOST DATA

Lost data results in message dcita :!, irg Jiiiveuel :
intended. To prevent this, the SARAH soLtw ar v-st maintainr
system integrity (integrity, as used in this pu)er, mears that
independent components or entities remain independert and
complete) and data flow integrity at all1 tim,,:.

Onre way to prevent lost data is to ensure a- - i)rmation en:t ed
into the SARAH terminal, both control intorm' iior and messaje
information muct be validated, usanle, and appr pri-otely handled.
Any introduction ot information that is su 1s 1 (unI fK never- used
or inaccessible is unwarranted and should be preven ted.

Another thing that must be done is to en sure the 1 Im.;ssaj e traffic
is properly queued. Improper queuinj of n,.s -il-s for delivery
through the system can result in e I t rir Lst messages

3

(undelivered) or misrouted (delivery to the wrong customer).
Either case must be prevented.

To prevent data from being lost, the distribution process must
cover all contingencies. Initialization of the output routing
matrix must result in specitic instructions for handling a
message whose address does not match any of the entries in the
matrix. Since any work station can serve as a backup for another
while receiving its own traffic load, this default queue logic
must be available.

The final ingredient in preventing lost data is to maintain
appropriate and sufficient information about messages being
processed. This will allow recovery of all undelivered traffic
after a failure of the system. The SARAH system will satisfy
this requirement with a printed journal and various techniques
for recovery tfom floppy disks and the host computer system.
These steps will ensure no messages are lost during the recovery
process.

2.3. VALIDATION

2.3.1. COMMAND VALIDATION

The system menu function takes commands from the keyboard and
directs the command selections to the other system functional
units (or modules) ot the system. Each incoming command is
validated by the menu function to ensure the command is a member
ot a limited sut ot commands allowed for each of the other system
functional units.

2.3.2. MESSAGE VALIDATION

Betore entry into the AUTODIN network, the message will be
validated by the message preparation module of the SARAH system.
This validation will check the contents of the message, keying on
the message header, to ensure that it meets all the criteria for
proper routing in the AUTODIN network. Checking is done on
precedence classification, content indicator code, date-time-
group, originating station routing indicator, station serial
number, and routing indicator codes. If an error is detected,
the message will not be allowed to be stored on the message
transmission disk. The operator will be notified so the message
can be changed to the proper format for transmission.

2.4. DISTRIBUTION INTEGRITY

SARAH workstations will ensure that messages are delivered to the
proper addressee by validating message header information
against an output routing matrix. The SARAH system will provide
a facility to create the customer output routing matrix.
The matrix wilL be created on site at installation time and may

4

be modit ied as req4uired. It will pr,-v)de l l k necessary
information to validate each messaje before delivery to the
customer. Validation criteria will inc lude classitication
identification, routing indicator code, distribution media
(printed anu/cr floppy disk), etc.

2.5. INFORMATION PROTECTION

Information protection, in tnis context, 's tr- isolation of
system data bases (both the informati- ir d the processing
logic of the data bases) from unexpect> t tt- tS of messajes
being processed or other dynamic data. One aro.a)t concern is the
message queuing systems which control the order ot delivery o
messages being transmi tted, received, or beirI,j prepared ior
distribution. These queues may have to Lrteract jith a syste
data base (i.e. customer distribution nstix b) t not be allowei
to aitect the data base. The system f ,ust D ,-uipped with
appropriate safeguards to ensure informti, protection. A s wt
will see later, the Ada language has some features that will help
us.

5

3. DESIGN FOR SECURI1Y

As the size and complexity of software systems increases, so does
the probability ort etLr)r. For secure s~stems, errors in coding
or design could Lave disastrous effects on national security.
Good software engineerinj practices need to be applied it
effective sofL4,are is t,) be developed for secure systems. Some
ot the areas wn ict need to be addresnea during the
analysis/design phase include abstraction, modularity,
locaL;-zation, urduJ rstanrdabi Lity, conf irmability, and reliability.

We will now take a look at several design issues that can impact
security. We wiL [nt specifically look at the Ada language
until the next s-':t ior: o the report.

3.1. ABSTRACTION

Abstraction should be used when designing secure systems so that.
security issues are not clouded by less relevant details.
Abstraction is one of the fundamental tools for controlling
complexity 4 . We use abstraction in our lives every day to
control complexity; the principles of abstraction for software
engineering are ro different. For example, when we look at a
computer system, we see the visual display, keyboard, processor
and storage devices. In effect, we have abstacted our view of
the computer. We know that the processor is made up of integrated
circuits, decoupling capacitors etc.; however, those aspects are
not relevant to our top Level view and if introduced would creat-
an unnecessary amount of complexity. Perhaps so much so that we
would forget about the furctionality of the major components.

The principle of ahstrac2tion is being extensively used for the
SARAH software system. Figure 3.1 shows the top level
abstraction view of the SARAH software. At this level, the
SARAH designers knew that several requirements needed to be
incorporated into the system. For example, connection to the
Defense Communications System was a requirement, and so a
subsystem that handled communications (Comm) was needed. At this
level of abstract ion, the designers knew that other elements of
the system were also needed such as a message edit/preparation
tacility and an iiK.u'-/output (1/O) system.

At this level of abstraction, high level system interfaces and
overall system functionality can be defined. Working at such a
high level of abstraction, the designers have been able to
address highi level security issues. For example, the Comm system
will operate it'doIpendently of the Edit system and not rely on
other systems t,) naL;ntin queues or manage the incoming or
outgoing mssago,.

6

+11*
o

S
o

1.
U
a
U

U
0

a
0.
U
L
V
C
a.
0

I-

U

S
.1

0.
- 0

I-

=
4
m
4
U,

-~

7

one ot tnt m, j, o "imurts ft'r the SARAH system is
that tile tua:.',m' 0 >2ti ., " ata nust riot h)o interlaced. As

-:uch, whei t h. n i , ttra t- ion ias det ined [or the Comm
system, t 0 W <n*n ,, nod iles were identified,
Jsinj uc, 5 L , -)00 .3a t reOn, t-uie SARAh lesigners have
D)een ahle tn c , t r " x t y)f the ysh -m and focus on
tLIe Se-curit I t :, level i,>in,j defired.

) cor-s i 1 2 i i.'t s,,'urity at- one level can creaLe a
Si tta i.:)[Wflcre- ' :t. 0t sicurity may b overlooked. 'fhe

cot to ,t com xi r ;- >2 , L"Uportan.t o()r the development
'L so twar-, r C 1 . Ai; sho.n, the application of
a ast :actL 3,i *:jr f V', c)-nr-ol this complexity
dre .p .2 L r . L--f -,ft1 into tnLe resul ing

t t~~ w i i

Ont2 pet sot t -,_r rI.t i that joes "hand-in-hand"

with anstir,,'ct In or i"r iin O UIr.J. Wlherteas abstraction is
. to eX t r T -iatiron at- . particular level in a

LOS , Int t2:; c2L''7
5

: l se, cer a in F u r t ons and data
.K u . ijn ohi ch , n", need them.

[no: iH erarcvle. .' 2 ,t XP',A :'n t,) a:)tractir) level (F'igure
3.2 r vid,-, 'x nj, r this sot twa-e engineerirn

t-'ture. or Xi aT , 3 r- ' t r) mCodu I ot the Comm System is
, i,3s:le M >2 2 r l nt!,) owever, the Transmit ant Receive
ft - rs are rnot. .\ 1-n, h, Matr. cotrol Ier cannot use any of
ne fr t - ot r ,i t1 r. transmit or receive tasks.

Smilrly/, aith)u, Pr-t irs visioLe to Comm, the converse is
rt tue an r, Tt.- I r ot use or man Luu late any of the
C£omm ata or tu I)t r torm~tion hiding is therefore a very
)ower-ta muchan I"n [>r ,>tc t~g *d(ta witnin secure systems.

3.2. MODULARITY

A major reduir-,lrt i 501 tr-ar system design is modularity.
Mojularity dcoals wirt I, ,;ompisvtion of a system into a number
,, c n-t ituent Ir2 1 Y : i- inrterraced together. Modularity
is; a tnr'.ame:t., I t I i, llpinj us manage the complexity of
>2o1 twar,2 sister:. A 'mI, ir 4isrn sill purposaly retlect
the rca I w tr] l p, .n , -. ,.. Ihe Modu I cs that come out of hi."

type ot d,2siojn arr - i writ -,n separately and later joined to
form the)r,'jr or.

Ideally, the monli >2s :>h O)il, 1 exhibit loose coupling. This can ne
achieved by kte?)inj the o:! -dult, interfaces to a minimum and
cl,)l,2cting o r)t K rznJ I;ke data and function-. Software
IIvelop)d tr-) r> 2 : -i t e-ms h.u Id be modu Iar and the modules
rm)aI Id h iv,_. Ioo o' - l, i n -sr) pr-ogrammer in uced errors can he
0031-iZ Ir, xri K:t , '<;t/ (>2 -.) con trol led.

\ 5Ottwat, Systell that has LL detined intertaces between

Inojules Will r ilJ/. h [, 55 ihi I ity of programmer induced errors
Ir-ij i'nai rt (!an,.. Ir -p in is high, a change to one module

, i I I I I

could inadvertently change the function or another module. Evenr
worse, the system data may be unknow in(j ly mod i fied and so cause a
security compromise. The Ada language providu :, ures which
aid in making software transportable. As sich, software systems
developed with Ada could be in service for quit-- i long period of
time (perhaps in excess of 20 years). Having modules that are
long lived means that the modules are well tried and proven.
Well defined modules which exhibit low couplii:_ can eftectively
reduce maintenance problems and so help maintain, system integrity
throughout the life of the software.

3.3. LOCALIZATION

Localization deals -itli tne proximity ot A k - enl ties. module
titat has strong cohesion will be very local iiud hocause it will
encapsulate like functions and dlata. F)r example, the Display
Tools Package in Figure 3.2 exhibtm a nijh degree of
local izat ion. The package conta ins a num!)ber of tools tor
outputting Display Data to the screen. The only operations that
can be pertormed on display data are those provided by the
package.

For a secure sotttware system, localization is extremely
important. In the SARAH system, distribution in tegrity and
message interlacing are major security concerns. Localization
can provide the basis for eliminating these security risks. By
Localizing data and tunctions to specific nodules or packages
(we'l -see how Ada can help us do this, later), we can prevent
inaovertent data modification or manipulation. For example,
Rece ived Message Data and Transmit Message fata cannot be
intermixed because they are of different data types encapsulated
in separate modules which have their own controls for data
manipulation.

3.4. UNDERSTANDABILITY AND CONFIRMABILITY

If a software system is not understandable, the possibility of a
security compromise could be high. Understandahility relates not
only to the resulting code, but also to the overall design. For
example, it the software solution does not reflect the real world
problem, the design could appear excessively complex to
maintenance personnel. The maintainer may therefore make a
change to the system without fully knowing the overall effects of
the change.

At the code level, a defined coding style should be used so that
the software is readable and therefore understandable. The low
ievel design/implementation standard should be well defined prior
to development. For the SARAH project, this standard is based on
a style guide published by Intellimac Inc. 5 and is included in
the SARAH Software Standards and Procedures Manual (SSPM) as
required by the DOD-STD-2167, the documentation standard for the
project.

Ha 7

TOOo, X,

Pu~t P0t1 nC

C ea, Scree,

Print M r Disk M r
isplay Mgr

Pull Down
P rD e ~ kp~eSrrgie Nndow

R S.

Ctole Eit o mUiiisIi y

A.yA.#1d

mill

Main I1

_______ TI I

Figu.re 3-2

SARAH Top Level Hierarchical Chart
10

A derine style has a number ot positive ettect.-3 or: the ability
of software to rel iably prOCeSS serisi t i ,Jc nLf,)rfiAt, i Ofn. First, if

the sottware is understandable, then functionality is more easily
validated and confirmed during waLkthrough; and reviews. Second,

a det ied structure and style promotes c-)nplteness. F,)r
exa-i , it the SSPM requ i res that all typs, . xcept ions, and
objects are to be commented, the pr'ogramner is I)rctd to consider
the declarations more carefully. In ado itir, the maintenarnce
programmer will have the benet it t thes;e cwTnments when the
software is in its maintenance phase.

3.5. RELIABILITY

Rtl iability ot so ttware tor secr- s,:t i s ot utmst
importance. An unreLiable sy:3tem ih i-;, '-' secur
intormaton could have drastic ettects or rnational security. For
examp Le, if under certa in conditions, a ines3saje ;ystem allowed
classitied messages to go to an unclassitied local delivery
point, a serious compromise would occur. One ot the major design
goals ot the SARAH development has been reliabi lity.

Reliabi lity cannot be added on afte r tLhe system has been
developed; rather, it must be designed itr.to th, system. Risk
analysis should be completed at each design abstraction so that
possible problems are not overlooked. inlrtun.ately, the m-st
popular software Lifecycle models (e.j. Waterfa]i Model) are not
risk driven and so do not provide a formailized basis for risk
analysis. To overcome this deficiency, the SARAH designers
decided to borrow heavily from the Spiral Modenl6 and introduce
risk analysis at the completion ot each design cycle.

4. USE OF ADA LANGUAGE FEATURES

Ada provides a rich -et)1 iIijj teatures which can be used to
develop reliab lo, 1-ir i t and secure sot tware systems. These
features directly sup,))-t t.ie m odernp software engineering
principles d1 s I , , 1 t, thne previous section. This is not
surprising since Ali was ik igred to support the development of
large systems whicri 'Y'1l,1 be developed usinj these engineering
principles. Somte- tue Ad foatures that directly support the
development of 1(t t wi t secure systeos are strong data

typ i ng, packag o, jee '. r an. except i() n hand Ii ng.

4. 1. STRONG DATA TYPING

Ada is a veryv sL-r:- (; trped lanuage. Strung data typing
provides the basis for tecting data onjects within the system.
Some ot the t ypes tinat can De used to - roduce et tective secure
software include pri,;att2 types, enuneration types, and access
types. In addM, t ion Ada nr:.vides - tit- programmers with the
ability to define their)wr types. These user defined types can
be extremely tortact iv' or t-he ,evclopmepnt or secure systems.

One of the security is;sues being addressed in SARAH is message
validation. Ad~L pr)Vides powerful typing features which help
accomplish messaje Flation. For example, by using user
detined types toj et hr i ih ,numtration types, the programmer can
strictly def ine tine ;(s)Lpe of a particular object. When the
message hea der i va i dated, only certain security
classifications w i 5e allowed. In the header, only the first
letter of the classiticat iro is provided. For example, Top Secret
is identified as "'". A tp ica V A(da type declaration for
security classiticat oions is:

type CLASSIFICAT[ONS is (T, S, C, R, E, U);

Suppose we want to va 1idate the message headers for correct
security, then we need to,, create an object of this type to which
,we can then make . si.rnnnts. This can be done as follows:

Header Security : CLASS[ICATIONS;

If, during execution, a criaracter is assigned to Header Security
from the incoming messaje, and it is not in the range specified
by the user define(. t1 'pe (CLASSIFLCATIONS), then Ada will flag
this as an exception condition and the software can take the
appropriate ,n5,sur ('o - . han. i la this problem.

The use of enumeration and user defined types are also very
eftective for validatin, use-r input commands. A type can be
defined so that only a I imited range of input will be accepted.

Security is improved because the resulting software is more
understandable and reliable.

12

4.1.1. Private Types

Anotner Ada typing teature wnch c,n heip t2 producing secure
software systems is private types. Pr: rate types are very
powerful for protecting data. It a private type is declared in
an Ada package, then the only operations that car be performed on
objects of that type outside its package are equality/inequality
tests, assignment, and any operations declared in the package
specification. It even more protection is required, a limited
private type can be used which restricts the package user to only
those operations shown in the package specitication. For limited
private, even tests for equality/inequality and assignment are
not permitted.

In the SARAH system, Transmit Data ard Received Data are limited
private types encapsulated in separate packages. It another
package needs to access this data, tor example a validation
package, then the only operations that can be performed are those
listed in the package specifications. The validation package can
look at certain aspects of the incoming message; however, it
cannot manipulate or make a copy of the data. visibility
between packages is controlled and this further reduces the

possibility ot unlawful access of secure data. For example, the

receive and transmit packages are completely independent and are

not visible to one another. As such, there is no possibility of
mixing (or interlacing) Received Data with Transmit Data. As

shown, private types are a very powerful mechanism tor protecting
and restricting access to secure data within a software system.

4.1.2. Access Types

Access types provide a powerful mechanism for creating secure
dynamic lists and queues. Queuing in communications systems is
an important function. Queue implementation using older
languages and assembly languages is a complex problem,
particularly when there are a large number of transmit and
receive lines. As such th- possibility of misrouting information
is increased. Access types provide a well defined mechanism for
implementing queues, and so the resulting implementation is more
readable and understandable. The software can therefore be more
easily verified, and so reduce the risk of a possible compromise
situation.

Since access types can be made private or limited private, the
benefits of data protection are also available to the designer. A
standard queue type can be defined and several independent
objects of this type can be created. For example, in a Receive
package, a queue may be required for each local delivery point.
Each of these delivery points could be objects of the queue type.
It the queue type is made private, the actual data structure is
hidden from the user. In addition, if limited private is used,

the only operations that can be performed on the queue objects

are those specified in the visible part of the encapsulating

13

package. In surim ry, acc , , /p. provide a mechanism for easily
defining Jaeu,,- n ist s.

4.2. PACKAGING

One ot the unique teature, sot Ad is the package. An Ada package
is made up of a visible part ird a body. The visible part
contains the package sp itiat ions and shows which entities can
be exported. For example, a package specification for a package
ot display tools may tell : uier that the operations which can
be performed on Display ata atrl O'enWindow, CloseWindow etc.;
but the details ot how this i-done is hidden in the package
body. As such, packages psr vide a powerful method of
implementing abstractior and intormation hiding. As discussed
earlier, these are extre[ce 1; impo rtant concepts for the design of
secure software.

Packaging concepts are bieing used extensively in the SARAH
project for controlling complexity, protecting data, promoting
understandability and rreiacirg reliability. Figure 3.2 shows
how the SARAH sottware has been packaged. Each of the major
functional modules are implemnted as packages. These pacKdges
have defined interfaces to otoher packages. In addition, the
package dependencies are cl[early shown. By packaging for low
coupling and hi jn module ohesion, package dependencies are
minor. For a secure system, this is important because if a
problem arises in one modiale, the effect on other modules will be
negligible.

4.3. GENERICS

Generics provide a number of desirable benefits for secure
software implementations. Generics are templates of Ada program
elements. For example, several insLances of a generic package
can be made by simply irstantiating (or filling-in) with
different data types. In SARAH, a Variable List package is being
created to provide a mechanism for queuing and list processing.
The package will h e written just one time and then be
instantiated for the variious other data types. For example, a
queue will be created for Received Headers and Transmit Headers.
In addition, the same package will provide variable list
facilities for the_ text processing section oft the system. The
productivity benefits of ge(nerics are substantial; however,
jenerics also nave a positive ettect on system reliability,
modularity, and understandability.

As mentioned earlier, queuing software for older communications
software is complex, and not very understandable to the
inexperienced. By using generics, we will reduce the complexity
considerably because there will be only one major functional
module and this one piece of code will be instantiated to provide
functionality for severil independent objects. In essence, a
package will b5, createl for each data object. The resulting

14

software will thieretore be more modular to help enhance
understandability. The verification process for SARAH will be
considerably easier and more complete because of generics.

Software reuse has a direct effect on reliability and can aid in
reducing the risk of compromise in secure systems. Generics
provide an excellent method for software reuse. Reliability is
enhanced through the use of generics because a previously
verified module is less likely to contain programming errors.
Indeed, even with older languages such as FORTRAN, where
mathematics libraries were extensively reused, few errors
resulted from t:ie reused code.

4.4. EXCEPTION HANDLING

Ada provides a feature called exception handlinj to catch errors
during program execution. This feature is easy to use and makes
the resulting software very readable, reliable, and survivable.
As such, exception handling is an important concept for the
design and implementation of secure software. Extensive use
should be made of exception handling to reduce the possibility of
a security compromise caused by unreliable software or hardware.

As previously indicated, reliability must be built into the
system from the outset. When analyzing and designing each level
of abstraction, the designers should identify and record
exception conditions which could possibly create security
problems. In particular, these conditions should be identified
when risk analysis is performed following the completion of a
design abstraction level. These exception conditions can then be
accounted for by Ada exception handlers.

15

5. FURTHER CONSIDERATIONS

Ada is opering a whole reahnot- possibilities for improved
software syst ,L J s (1 1 ', ,t. Caution must be exercised,
however, when erti,-rin' t I ,q domain. There are negative
aspects of softwar, Uv1'' ,. t ainj Ada that any new developer
should be aware o- a to address. The "catch-22" is
basically the rneown'e.s o!t t ie 1irnjuage and the proliferation ot
compilers and Ada access -)ri -s available on the commercial market.
Unknown problems may lk, witlhln the tens of thousands of lines of
code comprising the ctrom es i vrn each vendor. These problems,
undetected through the v-I1 procedure, are there and will
have to be a ddrcosed" occurs" basis. Due to the
diversity of the J<fluj)i' , s in the Ada world, solutions
to the same problems ij]12 implementation take on different
designs. This ditftcr,' ncw ' '1, ;tanding and solution processes
makes for unknown num rs ' o problems. Effects of this on
the concepts ot dita . , ;, , i- fe isolation, limited access,
etc. are risks that ,a. I -ken and ftaced when and if
problems do surtac,.

Another area or risk tl be nighlighted is that of the
support environment t-,t- a il able with the Ada compilers
being acq4uired today. I m I Aia Programming Support Environment
(APSE) is a set or development tools that can assist and provide
added control ove-r the sottwarno bei. ng developed. Some vendors
are mnrketing support erv i r-or.oents that come from existing
product lines and art: pov . Tools such as Ada syntax checkers,
debuggers, stu jeneratrs, code generators, etc. are available
and being billed as wanI1ntoL. Care must be taken to ensure the
proper function ot such to)ols. The assumption that the resultant
code is pure and stecur = should not be made. Vigilance is
necessary in this emerjin 'j Ad. w.)rld of technology and we must be
the front line in pr ven -ho (occurrence ot problems.

16

6. SUMMARY AND RECOMMENDATIONS

6.1. SUMMARY

Modern software engineering techniques and specitic features of
the Ada language provide very useful tools for use in developing
secure ADP and telecommunications systems. The most dangerous
risk to these systems is the compromise ot classified or
sensitive inrormation and the loss of important information.

The SARAH workstation project, as a telecommunications terminal,
must address a number ot security issues; among them are the
prevention of interlacing of message data, the prevention of lost
message data, system command and message validation, distribution
integrity, and information protection.

The major software design methodologies useful for handling these
issues are abstraction, modularity, and localization.
Abstraction allows the designer to concentrate his/her efforts
on a particular problem. Modularity and localization allow the
system functions to be logically grouped and provides for more
easily controlled interfaces.

These methodologies also seek to achieve the qoal tr

understandability, verifiability, and reliability. Reliability
is greatly increased by designing a veritiable system which can
be completely and easily te-ted. Systems must be understandable,
both at the design level and at the code level. Understandability
builds Leliability into the system; it also helps to ensure that
the system will continue to be reliable after maintenance.
Maintenance programmers need an understandable system to help
them locate problems, correct problems, and predict the effect of
modifications to the system.

Ada provides features that support modern design methodologies
and thus software security. Strong data typing and exception
handling helps to ensure the system will function reliably and
predictably when subjected to many different input conditions.
Packaging is one of Ada's most useful features; it provides an
efficient mechanism for modularization, localization,
abstraction, modifiability, and understandability.

Caution should be exercised because of compiler and support
environment unknowns. Ada is a large language and various
commercial compilers implement the language features in many
ditterent ways. Ada has arrived with many support environment
tools whose efficiency and predictability may vary.

6.2. RECOMMENDATIONS

o Become aware ot modern software engineering principles
and prepare to enforce their application to all aspects
of software development.

17

0 use the)ri ncip)es t ihstraction extensively in the
area ot localizationf ,:I.(d data typing to ensure a more
secure an..t : ij tii ma le sottware product.

o Make exten:sive use oi- exception handling and apply it
throughout the sotwtare system to ensure a stable and
contro lied sf >tware environment.

o Be aware o)t wnic Ada compiler you are using, and make

sure you keep curret is improved and validated

versi)or. n, co a ii 1

"3

A. REFERENCES

[11 Automatic Data Processing (ADP) Security Policy, Procedures,
and Responsibilities, Air Force Regulation 205-16, US Air Force.

[21 "SARAH Operational Concept Document", US Air Force, 12 May,
1986.

[31 AUTODIN I System Functional Specification, Defense
Communications Agency, Code 250, Washington, D.C., 1981.

[41 Booch G., Software Engineering with zda, Menlo Park,
CA:Benjamin/Cummings Publishing, 1983.

[5] M. Gardner, N. Brubaker, et. al., Ada Style Manual,
Intellimac, Inc.

[6) Boehm B. W., "A Spiral Model ot Software Development and
Enhancement", TRW Defense Systems Group.

19

