
- ,OTIC FILE COPY K'
/)

ADA* EVALUATION PROJECT

ADA* TRAINING FOR DEVELOPMENT TEAMS

DTIGS EL-ECTE r~MAR O 1 1990b2U

D L
00 Prepared for

HEADQUARTERS UNITED STATES AIR FORCE

Assistant Chief of Staff for Information System
00 Technology & Security Division

o45

Prepared by
Standard Automated Remote to AUTODIN Host (SARAH) Branch

COMMAND AND CONTROL SYSTEMS OFFICE
Tinker Air Force Base

Oklahoma City, OK 73145

Ada is a registered trademark of the U.S. Government

(Ada -Joint Program Office)
I

13 March 1986

90 02 28 001

THIS REPORT IS THE FIRST OF A SERIES WHICH WILL
DOCUMENT THE LESSONS LEARNED IN THE USE OF Ada

IN A COMMUNICATIONS ENVIRONMENT.

ABSTRACT

This paper addrss rain re e<ws
Ada developnent teas an:! reoo)ts on ,,-iou
training methods. The first section cover's
introductory material. Some background
information is provided on the scope of the
paper a,-. the basis fo-r evaluating training
requirements. In addition, this section covers
the purpose of the paper and outlines some
assumptions and constraints. The second section
describes Ada training needs. This section
argues that to obtain the full benefits of Ada
related technology, the training program should
include training in software engineering,
development methodologies, support environments
and Ada language syntax. The necessity to train
managers is also discussed. The third section
describes training methods.. The use of
contractor, government and in-house training is
covered. This section is based largely on the
Standard Automated Remote to AUTODIN Host
(SARAH) project training program. As such, it
should provide practical information to
organizations who are contemplating developing
Ada based software systems. The last section
summarizes the major points and ma's
recommendations on a possible approach to Nd.a
training. ,,

STATDUT\ "A" per Capt. Addison
Tinker iVB, OK MCSC/XPTA
TELECON 2/28/90 C

IJ
/3 j _

TABLE OF CONTENTS

1. INTRODUCTION ... 1
1.1. BACKGROUND 1
1.2. PURPOSE- ... 2
1.3. ASSUMPTIONS AND CONSTRAINTS 2

2. ADA TRAINING NEEDS ... 3
2.1. SOFTWARE ENGINEERING TRAINING.......................... 3
2.2. DEVELOPMENT METHODOLOGY TRAINING 4

2.3. SUPPORT ENVIRONMENT TRAINING 5
2.4. LANGUAGE TRAINING 6
2.5. MANAGEMENT TRAINING 7

3. IRAINING METHODS 9
3.1. CONTRACTOR TRAINING 9

3.1.1. Problems 9
3.1.2. Selection 10
3.1.3. Benefits..........B)

3.2. GOVERNMENT TRAINiNG 11
3.3. IN-HOUSE TRAINING12

3.3.1. Informal In-house Lectures 12
3.3.2. Computer Aided Instruction 12
3.3.3. Video Tapes .. 13

3.3.4. Self-Study 13
3.3.5. Attendance at Confcrences 14

4. SUMMARY AND LESSONS LEARNED 14

4.1. SUMMARY .. 14
4.2. LESSONS LEARNED 15

5. CONCLUSIONS AND RECOMMENDATIONS 16
5.1. CONCLUSION 16
5.2. RECOMMENDATIONS 16

Appendices

A. BIBLIOGRAPHY ...18

ADA TRAINING FOR DEVELOPMENT TEAMS

1. INTRODUCTION

1.1. BACKGROUND

Software development using the Ada language and associated
software engineering technology requires a higher degree of
training than was required tor older languages. There have been
many articles outlining the benefits of using the Ada language
[1,3,4]. Through Ada and associated software engineering
technology we can aain significant cost be.f.tz A_.o .. ccdz

reuse, transportability, lower maintenance costs and increased
productivity. Managers are quick to point out these benefits,
yet many do not understand that without the correct -ngineering
approacn, extensive use of tools and a iiijn leeL)t a:9,ri
SdppOrL, these gains 4i!L ri'Dc be acEe J. L l ±'4, . . & -e ;:

are to successfully develop Ada software in this jery compL..3<
environment, they must receive training in a number of areas. in
addition to training in 1.da syntax, team members require training
in software engineer-ing, development methodologies, an"
programming support environments.

So that potential Ada developers could gain a practical
insight into what was required to successfully develop Ada
software, the Air Staff tasked the Command and Control Systems
Office (CCSO) with evaluating the Ada language while developing
real-time digital communications software. The evaluation was to
consist of a number of evaluation papers, one of which was to
deal with training requirements. CCSO chose the Standard
Automated Remote to Automatic Digital Network (AUTODIN) Host
(SARAHj project as t-'e basis for this evaluation. SARAH is a
small to medium size : r:,ject (approx. 40,000 lines of source
code) which will funct, as a standard intelligent terminal For
AUTODIN users and will be used to help eliminate puncnea cards as
a transmit/receive medium [8]. The development environment for
SARAH consists of the SOFTECH Ada Language System (ALS) hosted on
a Digital Equipment Corporation VAX 11/780, ALSYS Ada compiler
for the IBM PC/AT, a Burroughs XE550 Megaframe and several IBM
compatible PC-XT and PC-AT microcomputers. The zLS environment is
the focal point of this integrated development environment. The
source code developed on the XE550 and microcomputer workstations
is maintained by the %LS configuration control system and will be
transterred to the PC-ATs for final compilation and targeting.
The SARAH software targets are the IBM compatible PC-AT and PC-
XT microcomputers.

The SARAH team required training in several areas. These
included training on the Ada language, on the latest design
methodologies, on the ALS Ada Programming Support Environment
(APSE), and staff management and analyst training. Since The
chief designers were well versed in modern software engineering
practices prior to project initiation, no uttwa-e engineering

1

training was provided.

Several methods were used to provide the required training.
Formal training was obtained from both commercial and government
sources. In-house training was conducted using a Computer Aided
Instruction (CAI) package, instructional video tapes and
lectures. The SARAH team also gained a great deal of practical
knowledge through their involvement in the local and national Ada
communities.

1.2. PURPOSE

The aims of this paper are to:

* Outline training needs for software development teams.

Provide practical reedback on Ada training t-o prospectiv7e
Ada developers.

* Make recommendations on a possible approach to Ada
training.

1.3. ASSUMPTIONS AND CONSTRAINTS

The assumptions and constraints are as follows:

A major constraint is the size of the SARAH project.
Since the SARAH project team is small (10 persons), some
of the experiences reported in this paper may not be
appropriate for training larger development teams.

The evaluation is based on a training budget of $50,000.
This paper assumes that sufficient funds will be made
available for team training.

The SARAH team members had a variety of previous
experience. Some members had very little software
experience, others were well versed in assembly language
programming and some were experienced Pascal
programmers.

Since the SARAH project is at the analysis/design stage
of development, the effectiveness of the training
received cannot be fully evaluated at this time. At the
completion of the SARAH project, a summary paper will
reflect on how well the training met our needs.

2

2. ADA TRAINING NEEDS

2.1. SOTWARE ENGINEERING TRAINING

.,oftware engineering must be stressed if software
development using the Ada language is to be successful. The Ada
language was designed by software engineers who based their
design on modern software engineering principles [11 . Ada
supports many of the features of modern sottware engineering. For
example, Ada provides facilities for structured programming,
strong data typing, separate compilation, information hiding,
data abstraction, -and procedural abstraction. These facilities,
when properly applied by designers and programme-s, can reduce
maintenance costs, promote transportability, an'l improvP
reliability and survivability. These benetits are realizeu o ly
when those facilities are used in the manner intended by its

designers, otherwise tne major benefits of the lanjuage will ne
lost.

Since many of Ada's features relate directly to nodern
software engireering, the language is easier tn learn if it is
presented in a manner that facilitates the implementation of
these engineering principles aad goals. The size of the Ada
language has often been criticized; some authors have indicated
that it would be beyond most programmers to ever gain a working
knowledge of the language. Many of these comments were made in a
comparison of Ada to traditional languages such as FORTRAN and
COBOL. The comments are well founded if the same approach to
teaching these second generation languages is used to teach Ada.
Unlike traditional high order languages, Ad'a provides the
engineer with language capabilities built in to facilitate the
solution of a complex array of problems not available in other
languages. Educators need to introduce each of these capabilities
and explain their purpose. For example, an apprentice builder
must be told that a saw is used for cutting wood and then shown
the correct way to use the saw. Similarly, an Ada software
engineer must be introduced to the concept of the package and
then shown how this can be used for data abstraction. Students
should understand that the Ada language itself does not solve
prol)lems. They should learn the purpose of each Ada engineering
tool and how each can be used to siccc:sfu;Lly A3,Velop software
systems. It Ada is taught in this way, stidents will more easily
remember the syntax of the language because of its relationship
to software system engineering.

In addition to introducing students to the facilities of
software engineering, software engineering training must cover
many other aspe-cts of software development. For example,
instruction should be given on software maintenance,
contiguration management, documentation, testing, software reuse
and the use of programming support tools. As discussed, through
software engineering we can effectively teach Ada syntax;
however, the success of a project is determined not by the code
alone. The scope of software training shou.ld cover the full

3

software lifecycle. The student must be made aware of the impact
that a bad design will have on software maintenance. Similarly,
it the configuration of a software product is not carefully
controlled, the student should realize that the software could be
made useless. If students are taught fundamental software
engineering principles and techniques, organizations can gain
significant long and short term cost savings. These gains will be
realized because productivity is enhanced by software reuse and
reduced maintenance efforts, software systems will be more
easily transportable to different hardware, and software
engineering-Ada trained personnel will quickly become productive
when transferred to new Ada projects due to standardization of
the sottware development process.

2.2. DEVELOPMENT METHODOLOGY TRAINING

Development methodology training should cover the di-Ltrent
analysis/design netiiodologies as well as the use ot pcojai
design languages (PDLs) [9]. There are many metro1ologies
available for software development. Those most applicable for th?
develope-.ant of nda software are cov2red ir, the ethodman I [101
document. Since no one methodology currently covers the full
software lifecycle or all design paradigms, students should be
introduced to a number of the methodologies so that they can
select the features of each which would best suit their needs.
For example, Object Oriented Design (OOD) [121 provides a
powerful method for design but does not effectively address the
analysis phase. Also, OOD is largely ineffective for the design
of real-time process driven systems. In these cases a methodology
which supports process abstraction is required and so the
designer may chose a methodology such as Jackson System
Development (JSD) [131 or the Process Abstraction Method for
Embedded Large Applications (PAMELA) [14]. Some cases may call
for a multi-paradigm design [151 which requires the inclusion of
the concepts of two or more methodologies. Clearly, courses
teaching a single methodology do not prepare students for the
variety of design and development problems that exist.

Softw,.re engineers must be able to stay current with
advances in software development technology. The next few years
will bring many new methodologies, many of which will be superior
t- those used today. Students should be introduced to the
different design methods such as procedural, type and process
abstraction so that they have the background for understanding
the scope of these new methodologies. In addition, new
methodologies will be developed which will more effectively cover
the testing, integration and maintenance phases of software
development. The limitations of existing methodologies should be
highlighted so that future software engineers can more readily
identity methodologies which will support full lifecycle needs.

Educators should cover the arguments governing the use of
PDLs [9] and provide an introduction Lo the types ot PUL
currently in use. Students should be able to determine whether a

4

PDL is required and if so what type of PDL would best suit their
needs. The whole area of PDL is being hotly debated. There are
some who believe that a PDL is not required for Ada development.
They suggest that the language itself can be used as a PDL. Those
arguing for PDLs are in disagreement over what form it should
take. If an organization elects to use a PDL, or a contract
specifies that a PDL will be used, the training requirement
should be assessed and the training budget should be adjusted
appropriately [7].

2.3. SUPPORT ENVIRONMENT TRAINING

Training in the use of Ada Programming Support Environment
(APSE) tools is required if an organization is to achieve
productivity benefits. Software engineers cannot be expected to
fully utilize these environments unless they are trained in their
use. For example, the Ada Language System from SOFTECH is an APSE
consisting .t more than 70 tools L16] . The tools provide
functions such as configuration management, symbolic debugging,
frequency and timing analysis and code formatting. The
environment is very complex and users require a high level of
training if they are to use the tools effectively.

Students should first be given an overview of the
eiivironment. The overview should provide an introduction to the
command language, database organization and file administration.
In addition, the overview should cover basic operations such as
invoking tools, compiling programs, exporting, and linking. After
the students are familiar with these basic operations they should
be given a more advanced user course which covers the tools in
detail. Educators should introduce each tool, demonstrate its use
and show how the tool could be used to improve quality and
productivity. There is little doubt that significant
productivity gains can be made through the use of automated
tools; however, managers must understand that training is
required if these tools are to be used effectively.

APSE administrator training will be required for effective
use of the overall APSE system. The APSE administrator position
on a development team is enormousLy important. The administrator
is responsible for controlling access, transmission/reception of
reusable library modules, providing incremental updates and
database administration/maintenance. It these tasks are not done
properly, the whole development effort could be placed in
jeopardy. APSE administrator training is therefore an important
part of an ovrall training program for Ada development teams.

Organizations should monitor the progress of the efforts
aimed at standardizing support environments so that in the event
that standardization becomes a reality, the training investment
will support a number of APSE implementations. In particular, the
Common APSE Interface Set (CAIS) standard [17] has received a
high degree of attention. The introduction of a validation
facility for support environments may mean that the CAIS standard

will gain a high level of acceptdnce. Although vendors will be
permitted to provide additional advanced tools, the minimum
toolset will be the same on each machine and the Kernel Ada
Programming Support Environment will allow Zor the migration of
tools between ditferent hardware environments. If this occurs,
the training received on an APSE which complies with the CAIS
standard will allow software personnel to operate and use the
tools of an APSE which may be hosted on a different system.

2.4. LANGUAGE TRAINING

Language features should be taught in conjunction with
software engineering principles and goals [9]. As discussed
earlier, Ada is the product of software engineering and supports
many modern software engineering features. If the Ada language is
broken up into the logical partitions which correspond to
engineering nuilding blocks, students will find it ea-3ie t
understand and use the entire language. Moreover, tne lan,,uage
was designed to be used in conjunction with de' eimopn-
methodologies and programming environments [2]. Students suould
be introduced to these areas prior to being submitted to !anauage

training so that they can understand how different language
features apply to the overall development process. If the full
benefits of Ada are to be achieved then language training cannot
be conducted in isolation.

The curriculum for Ada language training can quite
effectively be divided into two separate areas: basic and
advanced topics. After completing a basic course, the student

Snoulu utJ dicUj tLo;

* Declare and use Ada objects and types,

• Understand and formulate Ada statements,
• Code and call Ada subprograms,

Deci.gn and use Ada packages,

. Raise and handle excepLions,
* Perform input/output.

The basic course should give the student a working knowledge of
sequential Ada.

An advanced Ada course should cover the concurrent aspects
of Ada and low level features. The course should stress important
design features such as the use of generics for software reuse.

Upon completion, students should be able to design, code, and
test: Ada programs that use generics, low level features, and
tasks. Moreover, the course should allow students to apply sound

software engineering principles to produce well-designed Ada

systems.

The length of time required for formal Ada language training
is dependent on the students' previous experience, the amount of
pre-course preparation, did1 the requirematw for practical
training. Several organizations (e.g. Softech Inc. and the US Air

6

Force Air Training Command (ATC)) suggest that at least six weeks
are required it this type of training is to be successful. These
courses include a high degree of practical training and assume no
previous experience in structured programming.

There are other training organizations that believe that
the Ada language can successfully be covered with two 40 hour
courses; however, several considerations need to be made if this
training is to be effective. First, students should have at least
some knowledge of the Ada language prior to commencing formal
training. This could be achieved through the use of a CAl
package, video tapes and self-study. Second, since a large amount
of material needs to be covered in a relatively short tioe,
practical training should be limited and structured towards
reinforcing the major concepts. Third, consolidation time of at
least one week should follow each course so that stui.?nts :
have the oort init/ to cons ;lidate thai r knn. ' 4.1 , , :, -

ex er C is es .
S -_u c- a ssess nn- soLo :D prd o. C' 0

or aizat'on. These assesscients are bene I ic ()-
reasons. First, students are generally more noti;3ted tOwO'
retininj int-ormation if the, know that the { wil n .

the end or a training period. They tend to co!pete n
their fellow students and do not like to see unfavoran>ie re:);r-
sent to supervisors. Second, through student assessments,
managers are given an insight into the effectiveness ot t'-1
training program by monitoring student progress. Managers shoulJ
be provided with a copy of the assessment scheme and results so
that they can use the information to more effectively mana>,t
their software projects.

In summary, formal Ada language training could be covere in
as little as 80 hours; however, the training must be intense,
practical training must be well organized, time must be aliocateo
for consolidation, and the students must be very motivated.

2.5. MANAGEMENT TRAINING

Sottware development using the Ada language and associate
software engineering technology will only be successful if fu!i
S uPP(oC rt is provi ed ny manag(, t__nt. T- do this, manaoeri : -

airm uncerstanoing of the technolojy being used a : n -

re introduced to some of the Iroberns that lay bye encountere.
djring development. Managers at all levels within an organization
should retceive Aua technology training. The initial invest:ment
for Ada development is high and there are a number of potential
pitfalls. Managers must be educated in this new technology so
that they will have the ability to support development teans .inen
problems arise. As with any new technology, there are many
problems yet to be overcome and the organization will benefit
only if management works together with development teams to solve
these problems.

Managers should be introduced to the Ada community and
provided with information on where they can find additional

7

information and help. There are many sources of Ada related
1 1fULL I La a l e to maiIaI LY . CQL CACI t= , tIL C

Program Office (AJPO) operates the Ada Information Clearinghouse
which distributes Ada related information. Moreover, various
organizations have been formed to act as forums for Ada
discussion (e.g. SIGAda ard AdaJUG). Management training should
cover this type of information so that managers can keep current
with new advances in Ada technology.

The major benefits of Ada based technology should be covered
so that the manager understands what can and should be
achievable. Managers should be shown how the Ada language and
associated software technology can lower maintenance costs,
improve software transportability, and improve reliability.
Software reuse should be covered. Managers should he shown that
b%, designing software with reusability in mind, significant coct
S71;n ls can he made. in addition, manajers shoull he aware thii
lioraries o. reusable sottware such as SIHf£L-2U i no, exact.

a na.., ajare of hoi Ai'a Dase 1 c r" 1

usec to develop quality and cost et tect ive soft.%are products,
they will be in a better position to help introduce tLns ne
tecnnolcvjy into their organization.

Managers should be informed that with Ada there is a high
initial investment and that some of the benefits will only be
realized in the long term. The capital investment is
significantly different from what was required for older
languages. For example, to obtain many of the productivity
benefits associated with Ada, automated tools are required.
Software maintenance cost will only be reduced if a proper
development methodology is applied and so this translates into
higher training costs. In addition, the length and cost of
language training will be higher than for older languages.
Software personnel will be more highly trained and so ke'
personnel will most probably be more expensive to hire. The
manager must De shown that the cost savings through le s
retraining, higher productivity and less maintenance sill far
odtwe~j the high initial investment.

8

3. TRAINING METHODS

3.1. CONTRACTOR TRAINING

3.1.1. Problems

High Training Costs. Contractor training can be expensive.
The SARAH development team has received development methodology,
language, and environment training through commercial sources.
Acceptable quotes for 80 hours of Ada language training for 20
personnel ranged from $20,000 to $77,000. For this amount the
vendor was required to provide equipment in-house for the
practical sessions. To obtain training in current design
n-rhodologies, CCSO sent persornel to the ,]endor' s site . T

n 1in i c COSt 45 S3 , 12D per week LDr eacoi t .-.
U)d~ J co)sts inCreases t)Ls amount] cons ,]L-~ aoly. ,-J s;) .1 -,,, .i -

ias tar more economical to have the vendor train in-n-)us'i
more than six personnel required training. However, i f th
training is conducted in-house, it must be segregated trom mhe
Work environment, otherwise the training program cou)o ne
severely jeopardized.

Specify Training Needs Precisely. Since there is a large
range of Ada training currently available, organizations need to
correctly specify their training requirements or the training
received may not cover training needs. For example, when
outlining the requirement for practical training, the
specification should indicate that the training must be conducted
with a validated Ada compiler. Several training organizations ar?
currently using JANUS Ada compiler hosted on IBM-PCs for
practicai training. The cost of this training is generally lower
than comparable training using validated compilers. However,
since JANUS does not provide the advanced features of the A u
language, the practical exercises are limited to basic features.
-\n orjanizatiori considering vendor training should research ti'e
market well and provide a precise specification of their needs.

Evaluation. The lack ot student and instructor evaluation
is a i- a pcOblem. 74,)st traininj organizations 4ill not lunee.
ta administer student tests and provide results. As previous>y
duscri~ed, there are definite benefits to providing some Form D'
assessment. It student assessment is required, then this must be
stated in the training requirements.

Procurement Problems. For government agencies there is a
long lead time for procurement. This must be taken into account
in the project schedule. CCSO found that it took seven months to
procure training. No doubt this time could be shortened if the
requirement received higher priority; however, there are fixed
lead times associated with competitive acquisition. Managers must
take this into account, otherwise the lack of training could
severely affect the development schedule.

9

3.1.2. Selection

Training Sources. One of the best sources for providing
details of currently available Ada training is the Catalog of
Resources for Education in Ada and Software Engineering
(CREASE). This publication is available for distribution through
the Defense Technical Information Center (DTIC) and the National
Technical Information Service (NTIS). The accession number for
this document is AD A156 687. Further information on CREASE can
be obtained by contacting the Ada Information Clearinghouse
(AdaIC). In addition to CREASE, the AdaIC provides training
information in their periodic newsletters.

Research. CREASE can provide information on trainina
courses; however, managers should do additional r(sea-cc r'
aetermine wnetner a particular course will oe a oie :or
their project. One of the best ways of achieving this is t, -ai)
to others who have recently undergone training. The National
SIGAda conferences are a good place to do this type of research.
Apart from being able to discuss training needs with the many
experienced people who attend, many of the training organizations
are available to discuss their training curriculums.

3.1.3. Benefits

Instructor Experience. Members undergoing vendor training
can greatly benefit from the experience of the instructors. In
addition to training, many organizations are also involved in the
development of Ada systems. As such, the instructors giin
practical design and development experience which can be relayed
to the students. If the students are motivated towards applying
the language rather than simply learning the syntax, experienced
instructors can provide a wealth of information which will help
speed the development process.

Wide Range of Courses. The Ada training community can now
provide a wide range of courses. This allows organizations to
more easily tailor a training program for their specific needs.

For example, some organizations require more emphasis on
concurrent real-time operations. Others need training in low-
level features for embedded applications. Many training course3
are emerging which support development with a particular
methodology. Managers can select courses from a number of vendors
so that the training reflects the needs of the development team.

Cost Effective. Vendor training can be cost effective if
the number of people requiring training is small. In these
situations, it would not be cost effective for an organization to
attempt to establish a training program using in-house resources.

10

3.2. GOVERNMENT TRAINING

The use of government coarses for Ada training is very cost
effective but other factors also need consideration. CCSO
received Ada management training from the Air Training Command
(ATC). An Ada instructor was sent from Keesler AFB to conduct the
training on-site at CCSO. As such, the only costs incurred were
those for the instructor. For government organizations,
government furnished training will provide the most cost
effective method of training Ada personnel. However, cost is not
the only consideration. The effectiveness of the training courses
must also be addressed. Some of the factors affecting the overall
impact of a training program are instructor experience, the range
of courses that can be provided and the type of equipment used
for practical training.

Currently, ATC does not provide a wide range of Ada courses.
Manager training courses are available and courses on Ai3
progcamming will commence in the near tuture. ATC rias experi'moed
difficulties with their Ada Applications Programmer training
course because of the lack of suitable equipment. Ada compilers
place a high requirement on computer resources and so znost
machines wiil only support a small number of simultaneous
compilations. In a training environment, students are required to
complete many small programs to reinforce theoretical concepts
and so several students will typically want to compile at cne
time. The use of microcomputers for Ada training will alleviate
this problem to a large degree since each student will have tle
resources of one machine. The first microcomputer compiler is
currently undergoing validation and when released should solve
some underlying training problems. In the future, ATC will have a
good range of Ada training courses covering aspects of software
engineering, design methodologies, management, and language
training. However, no commitment has been made to provide
training on support environments and automated tools. This is an
important aspect of Ada development and so these training needs
need to be addressed.

CCSO experience with ATC training showed that the
instructors lacked practical software development experience. The
material was presented in a satisfactory manner but many of the
underlying questions could not be answered because the instructor
had never been employed in software development. If the Ada
courses are to be effective, then the instructors must have som-e
sottware development experience. CCSO found that many vendors
furnished far more experienced instructors. If the instructor
does not have practical experience and cannot answer questions on
how the technology can be applied, then the ,naterial can just as
easily be presented through video tapes, CAI packages, and
technical publications.

11

3.3. IN-HOUSE TRAINING

3.3.1. Informal In-house Lectures

Informal in-house lectures can be effective if Ada
experience already exists in the development team. CCSO attempted
to establish an in-house informal lecture program for the SARAH
project team but found that it was not cost effective. The main
reasons for establi-shing this type of program were to:

provide team members with a good insight into the Ada
language prior to formal training.

provide a means of Ada technology transfer between the
SARAH project and other branches at CCSO.

The inain reason for failure was thar CCS9 d' d nat ha,
personnel available with sufficient Ada experience to conduct
this type of lecture program. Since the amount of time used foc
preparation adversely affected team productivity, the SARAH
managers canceled the in-house lectures and placed more emphasis
on self-study, use of the CAI package, and the viewing of video
tapes.

Organizations should be careful in establishing an in-house
lecture program if there is insufficient Ada and software
engineering experience available. During an early experience with
Ada, CCSO developed this type of program to train a team involved
in evaluating the Ada language for use in digital communications
applications. The personnel involved in developing the course had
never received formal Ada training and based their instruction on
traditional language technology. As such, the Ada software
produced by the team resembled FORTRAN code. Since the team did
not use any of the advanced features such as packages, generics,
or tasks, the software was unstructured and difficult to
understand. Moreover, the benefits of using the Ada language were
not recognized since the team did not apply modern software
engineering practices.

3.3.2. Computer Aided Instruction

A CAI package is very beneficial for teaching Ada syntax and
for consolidation during and after formal Ada language training.
The SARAH team used the ALSYS "Lessons on Ada" CAI package. This
package provided a high level of training in Ada syntax. The
extensive use of examples and problems make this package very
effective. The interactive nature of the package also allows
users to review specific areas and so it serves as a good
reference source. IBM-PC compatible microcomputers were used to
host the package. The package was used extensively prior to
formal Ada language training so that the students could gain
maximum benefit from the instructor's experience. Since they were

12

already familiar with much of the Ada syntax, they were able to

concentrate on how the language could be used to develop the

SARAH system. The ALSYS CAI package will be used throughout the
SARAH project to allow software personnel to revise certain areas
of the language.

The CAI package allows for training flexibility; however,

usage must be controlled so that all personnel benefit from the
package. Members of the SARAH team were able to organize training
to suit their other work commitments. Enthusiasm for the package
remains high; personnel spend a great deal of their own time
training with the package. During work hours, a schedule was set
up for CAI training. This was necessary so that team members
could schedule their training times and so ensure that the entire
team received training. An invitation was open for other members
of CCSO to train with the package and so allow for technology
transfer across the organization.

3.3.3. Video Tapes

Video tapes were found to be effective but were tiie
consuming and did not allow for training flexioility. -i1
SARAH team viewed several different series of tapes. The tapes
varied in both quality and effectiveness. Time was allocated for
viewing the tapes and attendance varied depending on the workload
of the individual team members. The University of Houston video-
taped a complete semester course on software engineering and the
Ada language. Elements of this course were very beneficial;
however quality was poor and it took some time to cover the major
language features. A series of tapes named "The World of Ada"
provided good background on the Ada language and were useful for
manager education. The SARAH team also previewed "Ichbiah, Barnes
and Firth on Ada". These tapes provide an in-depth introduction
into Ada language syntax and could be used very effectively in an
overall training program.

Tapes should be previewed and only the most appropriate
tapes should be used for overall team training. To make e[fectiv,7
use of video tapes, they should be used in conjunction 4ith
other training. Only those tapes which provide good support for
particular topic areas should be viewed. A greal deal of valuabil.
time can be wasted by subjecting the entire development team to
videos that do not neceosarily support the overall trainin
approach.

3.3.4. Self-Study

A library of Ada books and materials should be provided for
self-study and research. In addition, the development area should
have a "quiet area" where people can study without being
disturbed. A project library was established soon after the
commencement of the SARAH project. Team members set up a data
base to control library inputs. The library consists of a

13

collection of Ada articles, catalogs, regulations and books.
Today, the library is a very valuable asset to both the SARAH
team and CCSO. Team members use the library to remain current
with Ada technology advances and to familiarize themselves with
various Ada features.

Access to an Ada compiler is necessary if self-study is to
be of value. The SARAH team used the self-study method to learn
the basic features of the Ada language. There is little point in
learning features of the language if they cannot be reinforced by
practical exercise problems. A TELESOFT compiler on a Burroughs
XE-550 computer has been used extensively for this purpose. The
self-study method has proven very effective as a prelude to
formal training.

3.3.5. Attendance at Conferences

Attendance at conferences and seminars provided t n bbc.
with training in tL3 practical application of Ada tecnnology. Th2
SARAH team has been very active in national and local Ada
organizations. These organizations provided a ood forIa f
discussion and allowed members to gain a good insight into some
of the problems and pitfalls encountered during software
development. The benefits of first-hand experience are not always
achievable through formal training alone.

in addition to benefits gained through active participation,
conferences often provide free tutorials. The SARAH team has
benefited significantly from the tutorials. Topics covered are
generally applicable to practical Ada design and implementation.
The knowledge gained can help speed software development and
enhance software quality.

4. SUMMARY AND LESSONS LEARNED

4.1. SUMMARY

Software development using the Ada language development
environment requires a high degree of training in order to
achieve the full benetits designed into tha system. Potential
Ada developers must gain a practical insight into what is
required to successfully develop Ada software. This includes the
need to understand and apply the facilities of the Ada language,
the various new design methodologies, the Ada programming support
environment tools, and the high'startup cost.

Those desiring to become Ada developers should be prepared
to take full advantage of the language facilities. These
facilities enhance the software engineering concepts for
structured programming such as strong data typing, data
abstraction, and procedural abstraction. Educators can
prudently and reasonably include them in their course structure
by properly partitioning the language facilities into coherent

14

training blocks. As other aspects of the software lifecycle
environments become available such as configuration management,
improved documentation techniques, testing, software reuse, and
the Ada programming support environment, they should be included
in a structured training program.

The development methodology selection is based on an
analysis of individual needs. Software engineers must be
cognizant of related methods and maintain an awareness of current
and new efforts in order to take full advantage of improvements
in lifecycle application techniques.

The Ada programming support environment provides
productivity benefits and will become increasingly significant as
the CAIS standards are implemented in industry. The
understanding of this environment and its applicability are
important for ensuring lifecycle integrity of software. Nd,
oriented conferences and seminars provide excetlent fcums to
share information on carrent events in t.e Ada world anG co
out what others are accomplishing.

Ada language training can be acquired from many difterent
places. Training in the Ada language and its associated
environment is available through commercial contractors,
government, and through self-taught in-house programs. Risks
associated with each must be carefully considered. High training
costs, the possibility of inadequate or improper training, and
procurement problems have been addressed. Care must be taken to
ensure the training acquired is worth while and cost effective.
The government provides some training opportunities but on a
limited basis at this time. In-house training must be undertaken
with the greatest of care. The Ada language environment is
designed to support the most current and best software
programming techniques in use today. These advanced techniques
are beyond the capability of previous languages such as FORTRAN
and COBOL. For example, in-house training may only teach the
Ada syntax and semantics. Programmers will likely recreate
FORTRAN or COBOL code in Ada which may not be as efficient as the
original code. In-house training can be effective when using a
combination of computer aided instruction, video tapes and self-
study to supplement formal qualified training programs.

Software development using the Ada language and associated
software engineering technologies will only be successful if full
support is provided by management. Only then will the long term
benefits be realized.

4.2. LESSONS LEARNED

CCSO has arrived at its present level of awareness about the
Ada language environment through many hours of effort. The
information contained in this paper represents what we considered
important in gearing up for the SARAH project. Efforts prior to

15

the SARAH project within CCSO fell short of expectations -because
of a lack of understanding of the philosophy of modern software
engineering and the software engineering facilities inherent in
the Ada language. Self-training without that understanding
proved to be useless. Subsequent formal training both commercial
and government fell short of expectations. As a result of these
experiences our training plan for SARAH is comprised of several
methods, including the use of a CAI package, video tapes,
selfstudy and active participation in local and national Ada
communities. Through in-house training, team members were in a
better position to take advantage of formal instruction. The
formal training consisted of two 40 hour courses with a week
separating them for time to exercise newly acquired knowledge.

5. CONCLUSIONS AND RECOMMENDATIONS

5.1. CONCLUSION

The Ada language and associated software technology can
provide significant benefits in terms of maintainability,
software reuse, and programmer productivity. iowever, mnanages
must be aware that language syntax alone will not provide these
benefits. If the Ada language is used without an emphasis on
software engineering and without productivity tools, the software
produced may be less maintainable and of poorer quality than that
developed using older programming languages. Managers must be
educated in this new technology if their project teams are to
successfully develop Ada software. They must understand that the
initial capital investment will be high. Development teams
require education in the areas language training, software
engineering, development methodologies, and support environments.

5.2. RECOMMENDATIONS

Recommendations are:

Base Ada training on sound Software Engineering
principles.

Provide up front training for management.

Research the proposed training organization for

instructor experience and approach.

Ensure that the training investment is suffLicient to
cover all training needs eg. design, environment,
language, management, and software engineering training.

Provide the development team with CAI packages to help
consolidate language training.

Provide quiet self-study areas . Time

16

should be allocated to allow team members to
consolidate their training and to keep current with Ada
technology.

Support the Ada development team. Members will be
required to make a significant personal effort if they
are to become fully educated in the Ada environment.

17

A. BIBLIOGRAPHY

[1] LJRUFFEL L.E., "The Potential Effect of Ada on Software

Engineering in the 1980s", North Holland Publishing Company,
1983.

[21 CARLSON W.E., DRUFFh;L L.E., FISHER D.A., WHITTAKER W.A.,
"Introducing Ada", Proceedings of ACM 80, pp 263-271, 28-30
October 1980.

[31 "Packages Spawn Ada's Growth", Software and Systems, April

1985, pp 93-100.

[4 STANLEY R.A., "Whither Ada?", DS&t;, March 1985, pp 60-64

[51 BOOCH G., Software Engineering wiith 2dta, 9enjamin/Cinmings
Publishing, Menlo Park CA, 1983.

[61 JUDGE J.F., "Ada Progress Satisfies DOD", Defenc:
Electronics, June 1985, pp 77-87

[7] "Ada as a Design Language", Ada as a PDL Working Group,
IEEE Computer Society, 18 September 1985.

[81 "SARAH Operational Concept Document", US Air Force, 20
December 1985.

[91 WAGNER P., "Ada Education and Technology Transfer
Activities", ACM Ada Letters, Vol II No 2.

[10] "Methodman", Ada Joint Program Office, National Technical
Information Service (NTIS), accession number AD A123 710.

[121 BOOCH G., "Object Oriented Development", IEEE Transactions
on Software Engineering, Vol. SE-12 No. 2, February 1986.

[13] CAMERON J.R., "An overview of JSD", IEEE Transactions on
Software Engineering, Vol. SE-12 No. 2, February 1986.

[141 CHERRY G.W., "The PAMELA Designer's Handbook", Thought
Tools, Reston Virginia.

[151 HAILPERN B., "Multiparadigm Languages and Environments",
IEEE Software, Vol.3 No.1, January 1986.

[161 "Ada Language System Textbook", 1102-9, Softech Inc,
Waltham MA, February 1984.

[171 "MIL-STD Common Ada Interface Set (CAIS)", National
Technical Information Service (NTIS), accession number AD A157-
589.

[181 CONN R., "Overview Of the DoD Ada Software Repository", Dr
Dobbs Journal, February 1986.

18

