AD-A218 689

- v DTIC FILE COPY 72
| o,

ADA* EVALUATION PROJECT ‘

ADA* TRAINING FOR DEVELOPMENT TEAMS

DTIC
ELECTE 5
MARC 11390

D

Prepared for

HEADQUARTERS UNITED STATES AIR FORCE
Assistant Chief of Staff for Information System
Technology & Security Division

e e e e ——

ezt D STRTIVINT K

: CoTEC rere e)
e Tairaiied)

Prepared by
Standard Automated Remote to AUTODIN Host (SARAH) Branch
COMMAND AND CONTROL SYSTEMS OFFICE

Tinker Air Force Base
Oklahoma City, OK 73145

* Ada is a registered trademark of the U.S. Government
(Arda Joint Program Office)

13 March 1986

90 02 28 001

'\—.. T

THIS REPORT IS THE FIRST OF A SERIES WHICH WILL

DOCUMENT TBE LESSONS LEARNED IN THE USE OF Ada
IN A COMMUNICATIONS ENVIRONMENT.

ABSTRACT

This paper address2s tralaing reaivaaentss €or
Ada davelopm=n1t f23ms and rennrts on vitious
training methods., Th= first section covers
introductory material, Some background
information is provided on the scope of the
paper and the basis for evaluating training
requirements, In addition, this section covers

the purpose of the paper and outlines some:

assumptions and constraints. The second section
describes Ada training needs. This section
argues that to obtain the full benefits of ada
related technology, the training program should
include training in software engineering,
development methodologies, support environments
and Ada language syntax. The necessity to train
managers is also discussed., The third section
describes training methods.. The use of
contractor, government and in-house training is
covered. This section is based largely on the
Standard Automated Remote to AUTODIN Host
(SARAH) prnject training program. As such, it
should provide practical information t»
organizations who are contemplating developing
Ada based software systems, The last section
summarizes the major points and makas
recommendations on a possible approach to 3Ada
training. = . ,

¢

STATEMENT "A" per Capt. Addison K
Tinker AFB, OK MCSC/XPTA

TELECON 2/28/90 cG . V
v I‘TL"L Cﬁl{

PSR RN SR

1. INTRODUCTION. . ceceecceounscccsascsascscssccncscsccncncascsensccesn
l1.1l. BACKGROUND ... ceesecoeenseccncscncscccsansscosnnsossessscnscs
1.2. PURPOSEcccscceccescnacecccccovescocsansoscccscscscssncnsns
1.3. ASSUMPTIONS AND CONSTRAINTS . ..cececcccccrscscsssssnecnse

NN b

2. ADA TRAINING NEEDS .. ccevetcecccncconscancoccssncncsascsosnaceca

2.1, SOFTWARE ENGINEERING TRAINING..:..0s.cc0cc0cccccncsccs
. DEVELOPMENT METHODOLOGY TRAINING..:cccccecccccocscccns
« SUPPORT ENVIRONMENT TRAINING..e.cecesccecconcsscsnccccs
LANGUAGE TRAINING. ... cececccccccecssccsccnacsscssascnass
» MANAGEMENT TRAINING....ccccesccconccnsococsssososcsnccsscs

N W W

NN
o o
[C 00V 8
.

3. TRAINING METHODS .. cceecevacacoacscsnnascscsscssscscasscssnsascsos)
3.1. CONTRACTOR TRAINING. i eceeessoccscsosasccscscscscsss ceesesd
3.1.1. ProblemS.eeeeeecnces e eess e s s e ss s ees s et eneans 9
3.1.2. Selection..... ceceec s s s esssesessteensancsnnaes s 10
3.1.3. Benefits...... cecsessesetseascscssenn cescanae ee.il

3.2. GOVERNMENT TRAINING.:s:ieeoncsccoscsccacsscscsosasaasnasasall
3.3. IN-HOUSE TRAINING .o e.cceeecasscasasaascssonceaccssansesl
3.3.1. Informal In-house Lectures.......... cectseecen 12
3.3.2. Computer Aided InstructioN....cecceceescacecs eeosl2
3.3.3. Video TapeS.ccecsecencsscscccsccces ceevesssscsceell
3.3.4. Self-Studyeeceivececccaccoavscsscsncsssncnnsesssll
3.3.5. Attendance at CONfCrOMNCEeS.eeececsscccscscscaseeasld

4., SUMMARY AND LESSONS LEARNED..v::ccsesecsccssccscasascssssseesld
4.1. SUMMARY-...I.‘...............I.I.."....I............14
4.2, LESSONS LEARNED..¢ctcececccccsacscaccccasssnsasssasassld

5. CONCLUSIONS AND RECOMMENDATIONS .ceececscssessassasssassccsessalb

5.1. CONCLUSION-.......O......-..oooo.o.oo...ono-oo-c.0-0016
5.2- RECOMHENDATIONSclool-oco...----.oooo'n--..c-.-o-..o..16

Appendices

A. BIBLIOGRAPHY....... T I

ADA TRAINING FOR DEVELOPMENT TEAMS

1. INTRODUCTION

1.1. BACKGROUND

Software development using the Ada language and associated
software engineering technology requires a higher degree of
training than was required tfor ¢clder languages. There have been
many articles outlining the benefits of using the Ada language
{1,3,4]. Through Ada and associated software engineering
technology we can gain significant ¢ost ben2€liz “hreough ccd:
reuse, transportability, lower maintenance costs and increased
productivity., Managers are quick to point out these benefits,
yet many do not understand that with»oukb tha correct enginsering
approacn, extensive use of tools and a nign level »% aanaijerial
Sdpporet, these gains Wwill a0t De aciitesad., 1L Jevelisgdacac o2aiad
are to successfully develop Ada software in this very complax
environment, they must recelve training in a number of areas., In
addition to training in Ada syntax, team members require training
In sottware engineering, development methodologies, ana
programming support environments.,

So that potential Ada developers could gain a practical
insight into what was required to successfully develop Ada
software, the Air Staff tasked the Command and Control Systems
Office (CCSO) with evaluating the Ada language while developing
real-time digital communications software. The evaluation was to
consist of a number of evaluation papers, one of which was to
deal with training requirements. CCSO chose the Standard
Automated Remote to Automatic Digital Network (AUTODIN) Host
(SARAH) project as tre hasis for this evaluation. SARAH is a
small to medium size Hr.-ject (approx. 40,000 lines of source
code) which will funct, as a standard intelligent terminal €or
AUTODIN users and will be used to help eliminate punchea cards as
a transmit/receive medium [8]. The development environment for
SARAH consists of the SOFTECH Ada Language System (ALS) hosted on
a Digital Equipment Corporation VAX 11/780, ALSYS Ada compiler
tor the IBM PC/AT, a Burroughs XES550 Megaframe and several IBYM
compatinlas PC-XT and PC-AT microcomputers, The ALS environment is
the focal point of this integqrated development =nvircnment, The
source code developed on the XE550 and microcomputer workstations
is maintained by *“he ALS configuration control system and will be
transterred to the PC-ATs for final compilation and targeting.
The SARAH software targets are the IBM compatible PC-AT and PC-
XT microcomputers,

The SARAH team required training in several areas. These
included training on the Ada language, on the latest design
methodologies, on the ALS Ada Programming Support Environment
(APSE), and staff management and analyst training. Since “he
chief designers were well versed in modern software engineering
practices prior to project initiation, no suftware engineering

training was provided.

Several methods were used to provide the required training.
Formal training was obtained from both commercial and government
sources. In-house training was conducted using a Computer Aided
Instruction (CAI) package, instructional video tapes and
lectures. The SARAH team also gained a great deal of practical
knowledge through their involvement in the local and national Ada
communities,

1.2. PURPOSE
The aims of this paper are to:

. Outline training needs for software development teams,

. Provide practical tfeadback on Ada training to prospgective
Ada developers.

. Make recommendations on a possible approach to Ada
training.

1.3. ASSUMPTIONS AND CONSTRAINTS
The assumptions and constraints are as follows:

. A major constraint is the size of the SARAH project.
Since the SARAH project team is small (10 persons), some
of the experiences reported in this paper may not be
appropriate for training larger development teams,

v The evaluation is based on a training budget of $50,000.
This paper assumes that sufficient funds will be made
available for team training.

. The SARAH team members had a variety of previous
experience, Some members had very 1little software
experience, others were well versed in assembly language
progjramming and some were experienced Pascal
programmers.,

. Since the SARAH project is at the analysis/design stage
of development, the effectiveness of the training
received cannot be fully evaluated at this time. At the
completion of the SARAH project, a summary paper will
reflect on how well the training met our needs,

2. ADA TRAINING NEEDS

2.1. SOfTWARE ENGINEERING TRAINING

Software engineering must be stressed if software
development using the Ada language is to be successful, The Ada
language was designed by software engineers who based their
design on modern software engineering principles [1]. Ada
supports many of the features of modern sottware engineering. For
example, Ada provides facilities for structured prcgramming,
strong data typing, separate compilation, information hiding,
data abstraction, -and procedural abstraction. These facilities,
when properly applied by designers and programmers, can reduce
maintenance costs, promote transportability, and improve
reliability and survivability. These benetits are realizea ».1lv
wnen those facilities are used 1in the mann2r intended bhy its
designers, otherwise the major benefits of the laajuage will bve
lost,

Since many of Ada's features relate directly to modern
software engireering, the language is easier to learn i€ it i3
presented in a manner that facilitates the implementation of
these engineering principles aand goals. The size of the Ada
language has often been criticized; some authors have indicated
that it would be beyond most programmers to ever gain a working
knowledge of the language. Many of these comments were made in a
comparison of Ada to traditional languages such as FORTRAN and
COBOL. The comments are well founded if the same approach to
teaching these second generation languages is used to teach Ada.
Unlike traditional high order languages, Ada provides the
engineer with language capabilities built in to facilitate the
solution of a complex array of problems not available in other
languages, Educators need to introduce each of these capabilities
and explain their purpose. For example, an apprentice builder
must be told that a saw is used for cutting wood and then shown
the correct way to use the saw. Similarly, an Ada software
engineer must be introduced to the concept of the package and
then shown how tnis can be used for data abstraction. Students
should understand that the Ada lanjuage itself dnes not solve
problems, They snould learn the purpose of each Ada enjinecering
tool and how each can he used to successfully develop software
systems. Tf Ada is taught in this way, stuadents will more easily
remember the syntax of the language because of its relationship
Lo sottsare system engineering.,

In addition to introducing students to the facilities of
software engineering, software engineering training must cover
many other aspects of software development. For example,
instruction should be given on software maintenance,
contiguration management, documentation, testing, software reuse
and the use of programming support tools. As discussed, through
software engineering we can effectively teach Ada syntax;
however, the success of a projéect is determined not by the code
alone. The scope of software training should cover the full

software lifecycle, The student must be made aware of the impact
that a bad design will have on software maintenance. Similarly,
if the configuration of a software product is not carefully
controlled, the student should realize that the software could be
made useless. 1f students are taught fundamental software
engineering principles and techniques, organizations can gain
significant long and short term cost savings. These gains will be
realized because productivity is enhanced by coftware reuse and
reduced maintenance efforts, software systems will be more
easily transportable to different hardware, and software
engineering-Ada trained personnel will quickly become produzctive
when transferred to new Ada projects due to standardization of
the sottware development process.

2.2. DEVELOPMENT METHODOLOGY TRAINING

Development methodology training should cover the diffarent
analysis/deslign metnodoloygles as well as the use OrL prograan
design languayges (PDLs) [9]. There are many methodologies
available for software development. Those most applicable for the:
devalsgrmant of ada software are covzred in th2 HMethodman T [10]
document, Since no one methodology currently covers the full
software lifecycle or all design paradigms, students should be
introduced to a number of the methodologies so that they can
select the features of each which would best suit their needs.
For example, Object Oriented Design (Q0OD) [12] provides a
powerful method for design but does not effectively address the
analysis phase, Also, 00D is largely ineffective for the design
of real-time process driven systems. In these cases a methodology
which supports process abstraction is required and so the
designer may chose a methodology such as Jackson System
Development (JSD) [13] or the Process Abstraction Method for
Embedded Large Applications (PAMELA) [14]. Some cases may call
for a multi-paradigm design [15] which requires the inclusion of
the concepts of two or more methodologies. Clearly, courses
teaching a single methodology do not prepare students for the
variety of design and development problems that exist.

Softwure engineers must be able to stay current with
advances in software development technology. The next f2w years
will bring many new methodologies, many of which will be superior
k2 those used today. Students should be intronduced to the
different design methods such as procedural, type and process
abstraction so that they have the backyround tor understanding
the scope of these new methodologies. In addition, new
methodologies will be developed which will more effectively cover
the testing, integration and maintenance phases of software
development. The limitations of existing methodologies should be
highlighted so that future software engineers can more readily
identify methodologies which will support full lifecycle needs,

Educators should cover the arguments governing the use of

PDLs [9] and provide an introduction Lo the types ot rvL
currently in use, Students should be able to determine whether a

PDL is required and if so what type of PDL would best suit their
needs., The whole area of PDL is being hotly debated. There are
some who believe that a PDL is not required for Ada development,
They suggest that the language itself can be used as a PDL. Those
arguing for PDLs are in disagreement over what form it should
take. If an organization elects to use a PDL, or a contract
specifies that a PDL will be used, the training requirement
should be assessed and the training budget should be adjusted
appropriately [7].

2.3. SUPPORT ENVIRONMENT TRAINING

Training in the use of Ada Programming Support Environment
(APSE) tools is required if an organization is to achicve
productivity benefits. Software engineers cannot be expected to
fully utilize these environments unless they are trained in their
use., For example, the Ada Languadge System from SOFTECH 1s an APSE
consisting Dt more than 70 tools {16)]. The tools provide
functions such as configuration management, symbolic debugging,
fregquency and timing analysis and code formatting. The
environment is very complex and users reguire a high level of
training if they are to use the tools effectively.

Students should first be given an overview of the
euvironment, The overview should provide an introduction to the
command language, database organization and file administration.
In addition, the overview should cover basic operations such as
invoking tools, compiling programs, exporting, and linking. After
the students are familiar with these basic operations they should
be given a more advanced user course which covers the tools in
detail., Educators should introduce each tool, demonstrate its use
and show how the tool could be used to improve quality and
productivity, There is 1little doubt that significant
productivity gains can be made through the use of automated
tools; however, managers must understand that training 1is
required if these tools are to be used effectively.

APSE administrator training will be required for effective
use ot the overall APSE system. The APSE administrator position
cn a development team is enormously important, The administrator
1s responsible for controlling access, transmission/reception of
reusable library modules, providing incremental updates and
database administration/maintenance. It these tasks are not done
properly, the whole development effort could be placed in
jeopardy. APSE administrator training is therefore an important
part of an overall training program for Ada development teams.

Organizations should monitor the progress of the efforts
aimed at standardizing support environments so that in the event
that standardization becomes a reality, the training investment
will support a number of APSE implementations. In particular, the
Common APSE Interface Set (CAIS) standard [17] has received a
high degree of attention. The introduction of a validation
facility for support environments may mean that the CAIS standard

will gain a high level of acceptance. Although vendors will be
permitted to provide additional advanced tools, the minimum
toolset will be the same on each machine and the Kernel Ada
Programming Support Environmant will allow [or the migration of
tools between ditferent hardware environments, If this occurs,
the training received on an APSE which complies with the CAIS
standard will allow software personnel to operate and use the
tools of an APSE which may be hosted on a different system.

2.4, LANGUAGE TRAINING

Language features should be taught in conjunction with
software engineering principles and goals [9). As discussed
earlier, Ada is the product of software engineering and supports
many mcdern software engineering features., If the Ada language is
broken up into the 1lojgical partitions which correspond t»
enginearing building blocks, students will find it easi=r to
understand and use tne entire language. Moreover, tne lLanguaj=
was designed to be used in conjunction with developm=2nc
methodologies and programming environments ([2]. Students should
be introduced to these areas prior to being submitted to lanjuage
training so that they can understand how different language
features apply to the overall development process, If the full
benefits of Ada are to be achieved then language training cannot
be conducted in isolation,

The curriculum for Ada language training can quitse
effectively be divided into two separate areas: Dbasic and
advanced topics. After completing a basic course, the student
sN0uld we awvle to;

. Declare and use Ada objects and types,

. Understand and formulate Ada statements,
. Code and call Ada subprograms,

. Dercian and use Ada packages,

. Raise and handle exceptiions,

. Perform input/output.

The basic course should give the student a working knowledge of
sequential Ada.

An advanced Ada course should cover the concurrent aspects
of Ada and .low level features. The course should stress important
design features such as the use of generics for software reuse,
Upon completion, students should be able to design, code, and
test; Ada programs that use generics, low level features, and
tasks, Moreover, the course should allow students to apply sound
software engineering principles to produce well-designed Ada
systems,

The length of time required for formal Ada language training
is dependent on the students' previous experience, the amount of
pre-course preparation, and the reguirement for practical
training. Several organizations (e.g. Softech Inc. and the US Air

Force Alr Training Command (ATC)) sugg est that at least six weeks
are required t1f this type of training is to be successful, These
courses include a high degree of practical training and assume no
previous experience in structured programming.

There are other training organizations that believe that
the Ada language can successfully be covered with two 40 hour
courses; however, several considerations need to be made if thi
training is to be effective, First, students should have at leas
some knowledge of the Ada language prior to commencing forma
training. This could be achieved through the use of a CA
package, video tapes and self-study. Second, since a large amoun
of material needs to be covered in a relatively short tinme
practical training should be limited and structured towari
reinforcing the major concepts. Third, consolidation *ime of a
least one we2ek should tollow each course so that students o
have the opodoartunity t£o consnlidarte their xnowledlie oHn ral)

22T 1323,

cr

o b

~

(Y]]

o

N

Stud=2nt ass$s2ss3MenT ShDUuld Se proviass D) Toie Loa i
or.janlzacion, These assessments are beneiicial fzr SUER TR SO
reasons., Flrst, students are generally more motivated towar:s

rataining tnfnrmation 1f they know that they wili D2 toean2d o
the end ot a traininyg period. They tend to compet= mores ~1%3

thelir fellow students and do not like to see unfavorable reporos
sent to supervisors. Second, through student assessments,
managjers are given an 1nsight into the effectiveness of the
training program by monitoring student progress, Managers shoulid
be provided with a copy of the assessment scheme and results s»o
that they can use the information to more effectively manage
their software projects.

In summary, formal Ada language training could be covere: 1n
as little as 80 hours; however, the training must be intense

a

praccical training must be well organized, time must be allinc
for ccnsolidation, and the students must be very motivated,

2.5. MANAGEMENT TRAINING

-1

sottware development using the Ada langjguage and assnciate
snftware engineering technology will only be successful 1€ f£al°
support 13 provided by manajenent, To do this, managsrs must hav
3 Iirm und2rstandling of the technolojyy »e2ing used ani o2y muss
De introducad to some of the problems that may he encount2rad
during development, Managers at all levels within an organizazion
snould rec2i72 Ada technoloyy training. The initial investnen
for Ada development is high and there are a number of potentia
pitfalls. Managers must be educated in this new technology
that they will have the ability to support development teans wih
problems arise., As with any new technolcgy, there are many
problems yet to be overcome and the organization will benefit
only if management works together with development teams to solve
these problems,

RO

b
4

w wn
G T

Managers should be introduced to the Ada community and
provided with information on where they can find additional

information and help. There are many sources of Ada related
tunformwation available to managers., FoOr €xampie, the Ada Joint
Program Office (AJPO) operates the Ada Information Clearinghouse
which distributes Ada relcted information. Moreover, various
crganizations have been Zormed to act as forums for Ada
discussion (e.g. SIGAda ard aAdaJUG). Management training should
cover this type of information so that managers can keep current

with new advances in Ada technology.

The major benefits of Ada based technology should be covered
so that the manager understands what can and should be
achievable. Managers should be shown how the Ada language and
associated software technology can lower maintenance costs,
lmprove sottware transportability, and improve relicbility.
Software reuse should be covered., Managers should be shown that
oy designing software with reusability in mind, significant cost
savinis can he made, In addition, managjers shnulil he aware thax
lidraries ot re2usable software such as SIMIEL-20 (i3] now exitt.
II manag=rs3 31r=2 .aale adare of how Ada 0asel Zelandidy,y Can o
used to develop guality and cost etfttfective sottware producnts,
thney will be in a better position to help introduce tnis n2w

r2chnolnjy 1nto thelr organtization,

Manajers should be informed that with Ada there is a high
lnitial investment and that some of the benefits will only be
realized in the long term. The capital investment 13
significantly different from what was reguired for older
languayes. For example, to obtain many of the productivity
benefits assocliated with Ada, automated tools are reguired,
Software mailintenance cost will only be reduced i1f a proper
development methodology is applied and so this translates into
higher training costs., In addition, the length and cost of
languaye training will be higher than for older languages.
Snttware personnel will be more highly trained and so kevy
personnel will most probably be more exgensive to hire. The
manaj2r midst bDe shown that the cost savings through less
retraining, higher productivity and less maintenance ~ill far
outw=21;h the high itnitial investment,

3. TRAINING METHODS
3.1. CONTRACTOR TRAINING

3.1.1. Problems

High Training Costs. Contractor training can be expensive.
The SARAH development team has received development methodology,
language, and environment training through commercial sources,
Acceptable quotes for 80 hours of Ada language training for 20
personnel ranged from $20,000 to $77,000. For this amount the
vendor was required to provide equipment in-house for the
pracrical sessions., To obtain training in current design
m=rhodolngies, CC30 sent personnel to the vendor's sita, Th:
traltaln cost ~as S1,125 per we=ek £or 2ach student, Trawe. and

SN Cosos lncreases titls amount considerabliy. S50 Downl Touan
12 ~4as far more economical td have the vendor train in-nouse L°
more than six personnel required training. However, it the
training is conducted in-house, it must be segregated from the
#OrK environment, otherwise the training program could oe
severely Jeopardized,

Specify Training Needs Precisely. Since there is a large
range of Ada training currently available, organizations need to
correctly specify their training requirements or the training
received may not cover training needs. For example, when
outlining the requirement for practical training, the
specification should indicate that the training must be conducted
with a validated Ada compiler. Several training organizations ar:
currentlv using JANUS Ada compiler hosted on IBM-PCs for
practicai training. The cost of this training is generally lower
than comparable training using validated compilers. However,
since JANUS does not provide the advanced features of the Ada
language, the practical exercises are limited to basic features.
An orjanization considaring vendor training should rescarch tine
market well and provide a precise specification of their needs.

Evaluation. The lack of student and instructor evaluation
13 2alsn a problem. Most training organizations will not volunceer
> adminilst2r student tests and provide results, As previously
descrined, there are definite benefits to providing some form o
assessment., [t student assessment is reqguirad, then this must b
stated in the training reguirements,

£
-

Procurement Problems. For government agencies there is a
long lead time for procurement, This must be taken into account
in the project schedule. CCSO found that it took seven months to
procure training, No doubt this time could be shortened if the
requirement received higher priority; however, there are fixed
lead times associated with competitive acgquisition. Managers must
take this into account, otherwise the lack of training could
severely affect the develonpment schedule.

3.1.2. Selection

Training Sources. One of the best sources for providing
details of currently available Ada training is the Catalog of
Resources for Education in Ada and Software Engineering
(CREASE). This publication is available for distribution through
the Defense Technical Information Center (DTIC) and the National
Technical Information Service (NTIS). The accession number for
this document is AD Al56 687. Further information on CREASE can
be ob*tained by contacting the Ada Information Clearinghouse
(AdaIC). In addition to CREASE, the AdaIC provides training
information in their periodic newsletters, ‘

Research. CREASE can provide information on training
courses; however, managers should do additiosnal researchy ©o
determine whetner a particular course will oe apptiicanlez Lor
their project, One of the pest ways of achieving this 13 tno taik
to others who have recently undergone training. The National
SIGAda conferences are a good place to do this tyne of research.
Apart from being able to discuss training needs with the many
experienced people who attend, many of the training organizations
are available to discuss their training curriculums.

3.1.3. Benefits

Instructor Experience. Members undergoing vendor training
can greatly benefit from the experience of the instructors., In
addition to training, many organizations are also involved in the
development of Ada systems. As such, the 1instructors gain
practical design and development experience which can be relayed
to the students., If the students are motivated towards applying
the language rather than simply learning the syntax, experienced
instructors can provide a wealth of information which will help
speed the development process.

Wide Range of Courses. The Ada training community can now
provide a wide range of courses, This allows organizations t»2
mcre easily tallor a training program for their specific needs.
For example, some organizations reguire more emphasis on
concurrant real-time operations, Others need training in low-
level features for embedded applications. Many training courses
are emerging wunich support development with a particular
methodology. Managers can select courses from a number of vendors
so that the training reflects the needs of the development team,

Cost Effective. Vendor training can be cost effective if
the number of people requiring training is small. In these
situations, it would not be cost effective for an organization to
attempt to establish a training program using in-house resources,

10

3.2. GOVERNMENT TRAINING

The use of government courses for Ada training is very cost
effective but other factors also need consideration, CCSO
received Ada management training from the Air Training Command
(ATC). An Ada instructor was sent from Keesler AFB to conduct the
traininyg on-site at CCSO. As such, the only costs incurred were
those for the instructor. For government organizations,
government furnished training will provide the most cost
effective method of training Ada personnel. However, cost is not
the only consideration, The effectiveness of the training courses
must also be addressed. Some of the factors affecting the overall
impact of a training program are instructor experience, the range
of courses that can be provided and the type of equipment used
for practical training.

Currently, ATC does not provide a wide range of Ada cnurses,
Manager training courses are available and courses on Alda
programming will commence in the near tuture, ATC nas experlenced
difficulties with their Ada Applications Programmer training
course because of the lack of suitable equipment. Ada compilers
place a high reguirement on computer resources and so most
machines wiil only support a small number of simultaneous
compilations. In a training environment, students are required to
complete many small programs to reinforce theoretical concepts
and so several students will typically want to compile at cne
time. The use of microcomputers for Ada training will alleviate
this problem to a large degree since each student will have tte
resources of one machine. The first microcomputer compiler is
currently undergoing validation and when released should solve
some underlying training problems, In the future, ATC will have a
good range of Ada training courses covering aspects of software
engineering, design methodologies, management, and language
training. However, no commitment has been made to provide
training on support environments and automated tools. This is an
important aspect of Ada development and so these training needs
need to be addressed,.

CCSO experlence with ATC training showed that the
instructors lacked practical software development experience. The
material was presented in a satisfactory manner but many of the
underlying questions could not be answered because the instructor
had never been employed in software development., Tf the Ada
courses are to be effective, then the instructors must have some
software development experience., CCSO found that many vendors
furnished far more experienced instructors, If the instructor
does not have practical experience and cannot answer questions on
how the technology can be applied, then the material can just as
easily be presented through video tapes, CAI packages, and
technical publications,

11

3.3. IN-HOUSE TRAINING

3.3.1. Informal In-house Lectures

Informal in-house lectures can be effective 1if Ada
experience already exists in the development team, CCSO attempted
to establish an in-house informal lecture program for the SARAH
project team but found that it was not cost effective, The main
reasons for establishing this type of program were to:

. provide team members with a good insight into the Ada
language prior to formal training.

. provide a means of Ada technology transfer between the
SARAH project and other branches at CCSO.

Thne main reason for failure was that CC3) did not nave
personnel available with sufficient Ada experience to conduct
this type of lecture program, Since the amount of time used for
preparation adversely affected team productivity, the SARAH
managers canceled the in-house lectures and placed more emphasis
on self-study, use of the CAI package, and the viewing of video
tapes.

Organizations should be careful in establishing an in-house
lecture program if there is insufficient Ada and software
engineering experience available, During an early experience with
Ada, CCSO developed this type of program to train a team involved
in evaluating the Ada language for use in digital communications
applications. The personnel involved in developing the course had
never received formal Ada training and based their instruction on
traditional language technology. As such, the aAda software
produced by the team resembled FORTRAN code. Since the team did
not use any of the advanced features such as packayges, dgenerics,
or tasks, the software was unstructured and difficult to
understand. Moreover, the benefits of using the Ada languayge were
not recognized since the team did not apply modern software
engineering practices,

3.3.2, Cdmputer Aided Instruction

A CAI package 1is very beneficial for teaching Ada syntax and
for consolidation during and after formal Ada language training.
The SARAH team used the ALSYS "Lessons on Ada" CAI package. This
package provided a high level of training in Ada syntax. The
extensive use of examples and problems make this package very
effective. The interactive nature of the package also allows
users to review specific areas and so it serves as a good
reference source, IBM-PC compatible microcomputers were used to
host the package. The package was used extensively prior to
formal Ada language training so that the students could gain
maximum benefit from the instructor's experience. Since they were

12

already familiar with much of the Ada syntax, they were able to
concentrate on how the language could be used to develop the
SARAH system. The ALSYS CAI package will be used throughout the
SARAH project to allow software personnel to revise certain areas
of the language.

The CAI package allows for training flexibility; however,
usage must be controlled so that all personnel benefit from the
package. Members of the SARAH team were able to organize training
to suit their other work commitments, Enthusiasm for the package
remains high; personnel spend a great deal of their own time
training with the package. During work hours, a schedule was set
up for CAI training. This was necessary sO that team members
could schedule their training times and so ensure that the entire
team received training. An invitation was open for other members
of CCSO to train with the package and so allow for technology
transfer across the organization.

3.3.3. video Tapes

Video tapes were found to be effactive but were time
consuming and did not allow for training flexipbility. The
SARAH team viewed several different series of tapes. The tapes
varied in both quality and effectiveness. Time was allccated for
viewing the tapes and attendance varied depending on the workload
of the individual team members, The University of Houston video-
taped a complete semester course on software engineering and the
Ada language. Elements of this course were very beneficial;
however quality was poor and it took some time to cover the major
language features. A series of tapes named "The World of Ada"
provided good background on the Ada language and were useful for
manager education. The SARAH team also previewed "Ichbiah, Barnes
and Firth on Ada". These tapes provide an in-depth introduction
into Ada language syntax and could be used very effectively in an
overall training program,

Tapes should be previewed and only the most appropriate
tapes should be used for overall team training. To make effactive
use of video tapes, they should be used in conjunction with
other training, Only those tapes which provide good supoort for
particular topic areas should be viesed. A Jreat deal of valuabi2
time can be wasted by subjecting the entire development team t9
videos that do not necessarily support the overall training
approach,

3.3.4. Self-Study

A library of Ada books and materials should be provided for
self-study and research., In addition, the development area should
have a "quiet area" where people can study without being
disturbed. A project library was established soon after the
commencement of the SARAH project, Team members set up a data
base to control library inputs., The 1library consists of a

13

collection of Ada articles, catalogs, regulations and books.
Today, the library is a very valuable asset to both the SARAH
team and CCSO. Team members use the library to remain current
with Ada technology advances and to familiarize themselves with
various Ada features.

Access to an Ada compiler is necessary if self-study is to
be of value. The SARAH team used the self-study method to learn
the basic features of the Ada language. There is little point in
learning features of the language if they cannot be reinforced by
practical exercise problems, A TELESOFT compiler on a Burroughs
XE-~-550 computer has been used extensively for this purpose. The
self-study method has proven very effective as a prelude to
formal training.

3.3.5. Attendance at Conferences

Attendance at confersnces and seminars provided tz2am manecs
with training in tht= practical application of Ada tecnnolojy. Th:
SARAH team has been very active in national and local Adza
organizations. These organizations provided a good forua £o-
discussion and allowed members to gain a good insignt into some
of the problems and pitfalls encountered during software
development., The benefits of first-hand experience are not always
achievable through formal training alone,

In addition to benefits gained through active participation,
conferences often provide free tutorials., The SARAH team has
benefited significantly from the tutorials. Topics covered are
generally applicable to practical Ada design and implementation.
The knowledge gained can help speed software development and
enhance software quality.

4., SUMMARY AND LESSONS LEARNED
4.1. SUMMARY

Software development using the Ada lanjuage development
environment requires a high degree of training ia ord=2¢ to
achieve the full benetits designed into th2 system. Potential
Ada developers must Jgain a practical insight iato what 1is
required to successfully develop Ada software, This includes the
need to understand and apply the facilities of the aAda language,
the various new design methodologies, the Ada programming support
environment tools, and the high*'startup cost.

Those desiring to become Ada developers should be prepared
to take full advantage of the language facilities. These
facilities enhance the software engineering concepts for
structured programming such as strong data typing, data
abstraction, and procedural abstraction. Educators can
prudently and reasonably include them in their course structure
by properly partitioning the language facilities into coherent

14

training blocks. As other aspects of the software lifecycle
environments become available such as configuration management,
improved documentation techniques, testing, software reuse, and
the Ada programming support environment, they should be included
in a structured training program.

The development methodology selection is based on an
analysis of individual needs, Software engineers must be
cognizant of related methods and maintain an awareness of current
and new efforts in order to take full advantage of improvements
in lifecycle application techniques.

The Ada programming support environment provides
productivity benefits and will become increasingly significant as
the CAIS standards are implemented in ~industry. The
understanding of this environment and its applicability are
important for ensuring lifecycle integrity of software. Ada
oriented conterences and seminars provide excellent £orums £o
share information on current events 1n tne Ada world and co Zinl
out what others are accomplishing.

Ada language training can be acquired from many difterent
places., Training in the Ada language and its associated
environment 1is available through commercial contractors,
government, and through self-taught in-~house programs. Risks
associated with each must be carefully considered. High training
costs, the possibility of inadequate or improper training, and
procurement problems have been addressed. Care must be taken to
ensure the training acquired is worth while and cost effective.
The government provides some training opportunities but on a
limited basis at this time., In-house training must be undertaken
with the greatest of care, The Ada language environment is
designed to support the most current and best software
programming technigues in use today. These advanced technigues
are beyond the capability of previous languages such as FORTRAN
and COBOL. For example, 1in-house training may only teach the
Ada syntax and semantics. Programmers will likely recreate
FORTRAN or COBOL code in Ada which may not be as efficient as the
original code. In-house training can be effective when using a
combination of computer aided instruction, wvideo tapes and self-
study to supplement formal qualified training programs.

Sottware development using the Ada language and associated
software enginesring technologies will only be successful if full
support is provided by management. Only then will the long term
benefits be realized,

4.2. LESSONS LEARNED
CCSO has arrived at its present level of awareness about the
Ada language environment through many hours of effort. The

information contained in this paper represents what we considered
important in gearing up for the SARAH project., Efforts prior to

15

the SARAH project within CCSO fell short of expectations “because
of a lack of understanding of the philosophy of modern software
engineering and the software engineering facilities inherent in
the Ada language. Self-training without that understanding
proved to be useless. Subsequent formal training both commercial
and government fell short of expectations. As a result of these
experiences our training plan for SARAH is comprised of several
methods, including the use of a CAI package, video tapes,
selfstudy and active participation in local and national Ada
communities. Through in-house training, team members were in a
better position to take advantage of formal instruction. The
formal training consisted of two 40 hour courses with a week
separating them for time to exercise newly acquired knowledge.

5. CONCLUSIONS AND RECOMMENDATIONS

5.1. CONCLUSION

The Ada language and assoclated software technology can
provide significant benefits in terms of mailntainability,
software reuse, and programmer productivity, Howevar, managers
must be aware that language syntax alone will not provide these
benerits. If the Ada language is used without an emphasis on
software engineering and without productivity tools, the software
produced may be less maintainable and of poorer quality than that
developed using older programming languages. Managers must bhe
educated in this new technology if their project teams are to
successfully develop Ada software, They must understand that the
initial capital investment will be high., Development teams
require education in the areas language training, software
engineering, development methodologies, and support environments,

5.2. RECOMMENDATIONS
Recommendations are:

. Base Ada training on sound Software Engineering
principles.

. Provide up front training for management.,

. Research the proposed training organization for
instructor experience and approach.

. Ensure that the training investment is sufficient to
cover all training needs eyg. design, environment,
language, management, and software engineering training.

. Provide the development team with CAI packages tc help
consolidate language training.

. Provide quiet self—study areas , Time

16

I

should be allocated to allow team members te
consolidate their training and to keep current with Ada
technology.

Support the Ada development team. Members will be

regquired to make a significant personal effort if they
are to become fully educated in the Ada environment,

17

A. BIBLIOGRAPHY

(1) URUFFEL L.E., "The Potential Effect of Ada on Goitware
Engineering in the 1980s", North Holland Publishing Company,
1983,

{2] CARLSON W.E., DRUFF&L L.E., FISHER D.A., WHITTAKER W.A.,
"Introducing Ada", Proceedings of ACM 80, pp 263-271, 28-30
October 1980,

(3] "Packages Spawn Ada's Growth", Software and Systems, April
1985, pp 93-100.

(4] STANLEY R.A., "Whither ada?", DS&t, March 1985, pp 60-64

(5] BOOCH G., Software Engineeringy with aAda, Benjamin/Cummings
Publisnhiny, Menlo Park CA, 1983,

(6] JUDGE J.¥., "Ada Progress Satisties DOD", Defence
Electronics, June 1985, pp 77-87

(7] "Ada as a Design Language", Ada as a PDL Working Group,
IEEE Computer Society, 18 September 1985,

(8] "SARAH Operational Concept Document", US Air Force, 20
December 1985, '

(91 WAGNER P., "Ada Education and Technology Transfer
Activities", ACM Ada Letters, Vol II No 2.

[10] "Methodman", Ada Joint Program Office, National Technical
Information Service (NTIS), accession number AD Al23 ZlO.

[12] BOOCH G., "Object Oriented Development", IEEE Transactions
on Software Engineering, Vol. SE-12 No, 2, February 1986.

[13] CAMERON J.R., "An overview of JSD", IEEE Transactions on
Software Engineering, Vvol, SE-~12 No, 2, February 1986.

[14] CHERRY G.W., "The PAMELA Designer's Handbook", Thought
Tools, Reston Virginia.

{15} HAILPERN B., "Multiparadigm Languages and Environments",
IEEE Software, Vol.3 No.l, January 1986,

(16] "Ada Language System Textbook", 1102-9, Softech Inc,
Waltham MA, February 1984,

(17) "MIL-STD Common Ada Interface Set {(CAIS)", National
Technical Information Service (NTIS), accession number AD Al57-
589.

(18] CONN R., "Overview Of the DoD Ada Software Repository", Dr
Dobbs Journal, February 1986.

18

