
ADA* EVALUATION PROJECT U l"

MODIFIABILITY EXPERIENCES

WITH ADA* SOFTWARE

DTIC(, EI-ECTE

I In MARO 1 1990

00 Prepared for D
wD

HEADQUARTERS UNITED STATES AIR FORCE
00 Assistant Chief of Staff of Systems for Command, Control,

Communications, and Computers
crJ Technology & Security Division

IA

*4j7~ ~ ; 1as

Prepared by
Standard Automated Remote to AUTODIN Host (SARAH) Branch

COMMAND AND CONTROL SYSTEMS OFFICE (CCSO)
Tinker Air Force Base

Oklahoma City, OK 73145 - 6340
COMMERCIAL (405) 734-2457/5152

AUTOVON 884 - 2457 / 5152

* Ada is a registered trademark of the U.S. Government

(Ada Joint Program Office)
29 April 1987

90 02 2700'

TABLE OF CONTENTS

1. INTRODUCTION ... 1
1.1. ?URPOSE ... 1
1.2. BACKGROUND .. 1
1.3. ASSUMPTIONS AND CONSTRAINTS 1

2. SOFTWARE MODIFIABILITY 3
2.1. DEFINITION OF SOFTWARE MODIFIABILITY 3
2.2. REASONS FOR SOFTWARE MODIFIABILITY 3
2.3. BENEFITS OF SOFTWARE MODIFIABILITY 4
2.4. COSTS OF SOFTWARE MODIFIABILITY 4

3. WAYS TO IMPROVE SOFTWARE MODIFIABILITY 5
3.1. SOUND SOFTWARE ENGINEERING TECHNIQUES 5
3.2. PROGRAM STRUCTURE 5

3.2.1. DEVELOP MODULAR COMPONENTS 5
3.2.2. ISOLATE ALL MACHINE DEPENDENT CODE 6
3.2.3. DEFINE COMMON TOOLS 6

3.3. GENERAL CODING PRACTICES 7
3.3.1. SAY WHAT YOU MEAN 7
3.3.2. AVOID THE USE CLAUSE 7
3.3.3. INITIALIZE ALL VARIABLES 9

3.4. DOCUMENTATION ... 9
3.4.1. STANDARDIZE DOCUMENTATION 10
3.4.2. USE COMMENTS TO DEFINE STRUCTURE 10
3.4.3. USE COMMENTS TO EXPLAIN CODE WITHIN MODULES...11
3.4.4. USE COMMENTS TO DOCUMENT RATIONALE 12
3.4.5. USE DESCRIPTIVE NAMES 13
3.4.6. USE SPACE TO YOUR ADVANTAGE 14
3.4.7. DOCUMENT THINGS EXPECTED TO CHANGE 15

4. SUMMARY AND RECOMMENDATIONS 16
4.1. SUMMARY .. 16
4.2. RECOMMENDATIONS 16

Appendices

A. SARAH PROJECT -- CODING GUIDELINES FOR COMMENTS 17

B. REFERENCES .. 22

LIST OF FIGURES

3-1: Burkhardt and Lee Ada Structure Chart 11

I I I l l

THIS REPORT IS THE EIGHTH OF A SERIES WHICH
DOCUMENT THE LESSONS LEARNED IN THE USE OF ADA IN A

COMMUNICATIONS ENVIRONMENT.

ABSTRACT

This paper presents some of the techniques used by
the Standard Automated Remote to Automatic Digital
Network (AUTODIN) Host (SARAH) Development Team to
increase the modifiability of their software. The
first section of the paper provides some background
information on the Ada evaluation task and defines
the scope of the paper.

The second section looks at some of the main issuej
associated with modifiability. A definition of
modifiability .s established and reasons that
software will require modification are given. Some
of the benefits of producing modifiable software
are covered along with some of the costs and
problems.

The third section looks at specific methods that
can aid the production of modifiable software. This
section states that a sound software engineering
methodology is the single most important factor in
Lhe devrGlpmen± of modifiable software. Powever,
program structure, general coding practices, and
internal documentation standards are also important
and can significantly add to a software prz:ects
modifiability.

The final section summarizes some of the main
points and provides some recommendations on the
development of modifiable Ada software.

I'

Ada Evalation Report Series by CCSO

Ada Training March 13, 1986

Design Issues May 21, 1986

Security May 23, 1986

Micro Compilers December 9, 1986

Ada Environments December 9, 1986

Transportability March 19, 1987

Runtime Execution March 27, 1987

Modifiability April 20, 1987

Project Management Spring 87

Module Reuse Fall 87

Testing Fall 87

Summary Fall 87

AcC(_. .,fo

NTI;
D T i c " 7 , d

'1,,

STAT EENT "A" per Capt. Addison Et y-4(
Tinker AFB, OK NCSC/XPTA DI: - . . .
TELECON 2/28/90 CG 7 "

I
Y

1. INTRODUCTION

1.1. PURPOSE

The purpose of this paper is to share experiences of the SARAH
project concerning software modifiability and the Ada language
with other members of the Ada community. This paper is one in a
series of papers being written by the Command and Control Systems
Office (CCSO) for Headquarters United States Air Force.

1.2. BACKGROUND

Headquarters United States Air Force tasked the CCSO with
evaluating the Ada language in the context of real-time digital
commun'Ations software so that potential Ada developers could
gain a practical insight into what is required to successfully
develop Ada software. This tasking was divided into twelve
evaluation topics, one of which was Modifiability. CCSO chose
the Standard Automated Remote to AUTODIN (Automatic Digital
Network) Host (SARAH) project as the basis for this evaluation.

SARAH is a small to medium size project (approximately IO0,00"-,
lines of source code, and 40,000 lines of executable code) which
will function as a standard intelligent terminal for AUTODIN
users and will be used to hell eliminate punched cards and paper
tape as transmit/receive media . The source code for the SARAH
project is being written in ADA, except for approximately 60O
lines of assembly language code required to drive the
communications port. The source code produced is compiled on IBM
PC ATs and Zenith 248s using Alsys Ada compilers. The SAPAH
software will run on a range of PC XT, PC AT, and compatible
microcomputers under the MS-DOS opetating system (version 2.0 or
higher).

1.3. ASSUMPTIONS AND CONSTRAINTS

The assumptions and constraints under which this paper was
written are as follows:

I. This paper is based upon experiences gained while
developing the first Prototype for the SARAH project. The first
prototype does not include the Mode I communications interface or
the heavy use of tasking that is required for the Communications
version of SARAH.

2. Development has been limited to the Alsys Ada compiler
running on the IBM PC/AT and the Zenith Z-248.

3. Observations presented come from different and varied
perspectives. The SARAH team members have a variety of previous
experience. Some members have had very little software
experience. Others are very experienced in system design and
development, and have a good working knowledge of different
software development environments.

2

2. SOFTWARE MODIFIABILITY

2.1. DEFINITION OF SOFTWARE MODIFIABILITY

To "modify" means to "change or alter" 2 . Modifiability of
software adds to this basic definition a quality of ease with
which the change or alteration can be made. Thus, the
modifiability of software is the measure of how easy it is to
change or alter some feature of the software to achieve a new
desired result. At best, software modifiability is a subjective
quality. It you make "one little change" and problems ripple
through out your program, then you would say that the software
showed poor modifiability. If on the other hand, y 'u :an quickly
locate and change a piece of software and it performs as you
expected, you would say that the software was very modifiable.

2.2. REASONS FOR SOFTWARE MODIFIABILITY

There are three basic reasons that software may require
modification: a change in program requirements, a change ;n
hardware, o1 an eror ;n the original program.

As long as software is used by people, there will be requirements
for changes in the original design. The DoD may introduce a new
message format or change an old one. Operators may want an
additional error message or the meaning of a function key
changed. The programmer may want a series of debugging routines
added. The user may not have known what he wanted in the first
place. Whatever the reason, the result is the same, software
must be modified to meet new or altered requirements.

Microcomputer technology is advancing rapidly. The modifiability
of our software will directly effect whether or not we take
advantage of new advances in technology. The SARAH pro e:t has
already been modified to function on target computers other than
those i~entified in the original SARAH Concept of Operations
Document-. Initially, the SARAH software was to be targeted only
to the Zenith Z-150. To date, the Zenith Z-246 and the Z-200
have been added to this list. The new Z-386, which uses the
advanced 80386 microprocessor, will most likely also end up being
one of the target machines. The SARAH software has been able to
adapt to changes in hardware without rewriting large sections of
code or creating a large number of hardware specific versions of
SARAH.

Although no programmer likes to admit it, software will also
require modification because it never ran correctly in the first
place. Modifiability techniques discussed later in this paper
will not prevent logic errors, however they will make correction
of those errors easier, quicker, and less likely to create
additional problems.

3

2.3. BENEFITS OF SOFTWARE MODIFIABILITY

Significant software cost savings can be realized by producing
modifiable software. Studies have shown that 80% of the total
system lifecycleliosts are directly related to system enhancement
and maintenance. If a program is easily modified, maintenance
and enhancement costs are lower because it will take less time to
modify the current system to achieve the new result and will not
cause the problem of having to "fix the fix."

An example of how the SARAH project is using modifiable software
to reduce development costs can be seen in the message mask
processing of the SARAH workstation. The DD 173 Message Mask,
which provides a mask prompting the user for the various fields
required to complete a DD 173 form, required approximately 4 mnn-
months to design and code for the first SARAH prototype.
Modifying the original design to provide a mask for the DD l3q,2
took approximately 2 man-months. This trend is expected to
continue for several additional masks that must be developed.

2.4. COSTS OF SOFTWARE MODIFIABILITY

The benefits of software modifiability are not free. In order to
develop modifiable software, you must be willing to accept larger
source and executable files, longer design and development time,
and increased training costs.

Both the source files and the executable files of easily modified
software are usually larger than their less easily modified
counterparts. Modifiable software projects use software
engineering principles such as abstraction, information hiding
and modularity to achieve their goal of software modifiability.
Additional code will be required to implement these principles.
Additional code translates into larger executable files. The
larger source files cost more to manage and store. Larger
executable files may require more memory or a faster system to
operate.

Another cost of easily modified software is increased development
and training time. A modifiable software project requires
planning and coordination to implement the engineering principles
that promote software modifiability. The Ada language provides
the tools with which solid maintainable software can be
constructed. However, use of the Ada language does not guarantee
modifiable software. Designers and programmers must be trained
to use these tools. This training will tl e time and experience.
"Ada Training for Development Teams" discusses specific
training issues and addresses the training experiences of the
SARAH Project Team.

4

3. WAYS TO IMPROVE SOFTWARE MODIFIABILITY

In this section, we will discuss specific actions taken by the
SARAH development pro3ect to make the coae for SARAH more
modifiable. Some of these recommended actions are relatively
simple while others are more complex. We feel that by following
these suggestions we have made our software easier to modify now
and easier to maintain and enhance in the future.

3.1. SOUND SOFTWARE ENGINEERING TECHNIQUES

Modifiable software is well-engineered software. Using solid
software engineering techniques to design software is the single
most important thing that can be done to insure ts
modifiability. Like a poorly designed house, poorly designed
software can be shored up, patched, and poor features hidden.
However, like a poorly designed house, poorly designed software,
no matter how much it is "fixed", remains poorly designed
software that will cause its owner continual problems. The
software engineering techniques used in the development of the
SARAH project were strongly influenced by the Structured Design
Techniques of Yourdon and Object Oriented Design techniques of
Booch . More details on the specific software engineering
approach used in the SARAH project is discssed in "An
Architectural Approach to Developing Ada Software"

3.2. PROGRAM STRUCTURE

3.2.1. DEVELOP MODULAR COMPONENTS

It is doubtful that a single computer programmer can comprehend
each detail of today's large complex software systems. Even the
rather modest 20,000 lines of executable source code found in the
first SARAH prototype would challenge most programmers. This is
a problem for software modification because a programmer should
not attempt to modify any code that he does not understand or the
resulting change may cause a rippling effect that will bring down
the entire system. Decomposing a software system into component
modules allows us to apply modern programming principles such as
abstraction and information hiding to create software that is
easier to understand. Breaking a software system into modules
allows us to attack a largely incomprehensible problem as we
might a jigsaw puzzle. When first dumped out of the box, the
jigsaw puzzle picture is rather incomprehensible. Then, piece by
piece, the picture takes shape. The programmer that could not
comprehend the whole system can study each of its composite
modules and then join the pieces to finally understand the whole
picture.

Breaking software into component modules promotes modifiability
because it limits the scope of the modification. A programer
may not need to fully understand the entice system in order to

5

modify a module of the system. Well defined modules with explicit
interfaces can be coded and debugged as independent units. Coding
errors should be detected at the module level and corrected
before integrating the module into the overall system.

3.2.2. ISOLATE ALL MACHINE DEPENDENT CODE

Since SARAH is being developed for IBM PC compatible machines,
some of the code must address IBM ipecific machine and operating
system dependencies, such aE the address of me'oory mapped video
for the Mono and CGA adapter cards. In order to construct a more
easily modifiable system, the SARAH designers identified a
logical kernel to isolate the application from the machine and
DOS dependencies. When making machine specific modifications,
such as adding an Enhanced Graphics Adapter capability, only the
code in the kernel packages needs to be changed.

3.2.3. DEFINE COMMON TOOLS

Project designers should always be on the lookout for common
code. Any code that provides similar functions or data ob~ects
for two or more packages should be grouped into a common tools
package. By isolating common code in one place the locati n of
any modification to the functions performed by the tools is
readily found and changed. If or the other hand, we did not have
common tools packages and code performing the same functions war
spread throughout the system, any change would greatly increase
the time required to make a modification because each place tho
code is located must be found and changed. The chances of making
an error is increased with each change.

An example of a common tools package identified by the SARAH
project designers is the MessageValidation package. A message
must be validated before the Utilities package will print it,
fields of a message mask must be validated before the Ed;t
package will save it, and the security of an incoming message
must be checked against the maximum allowable security for the
terminal before the COMM package will accept it. These and other
message content checks require validation of the same fields of a
message. By placing the tools to perform the validation of
various message fields in a common package we can control message
validation. If DoD defines a new message precedence of Q, the
only code that needs to be modified is isolated in the
MessageValidation package.

Combining similar functions into a common routine or package is a
technique which should not be limited to the system designers.
Programmers can enhance the modifiability of packages and
subprograms that they code by isolating similar code. In the
SARAH message mask processing, three procedures need to know the
starting row and column in the Text Window where data for a given
field should be displayed. The three procedures place data into
the data area of the Text Window at various times, so it is

6

imperative that they all start in the same place. A common
pxocedure, Calculate _ StartingPoaitions, was defined to insure
that each of the using procedures displays data in the proper
position on the screen.

3.3. GENERAL CODING PRACTICES

3.3.1. SAY WHAT YOU MEAN

Definitions of Ada types should include range constraiits to
prevent machine dependencies from being inadvertently written
into a program. To illustrate, consider the following example.
If the compiler manufacturer implements the pre-defined type
Integer based on word length, the loop in the example would ze
executed 32767 times on a 16 bit machine, but only 1 .27 times on
an eight bit machine.

subtype LoopCounter is Integer;
for i in I..LoopCounter'last loop

Execute some code

end loop;

By constraining the Loop Counter, two things are accomplished.
First, the code is not dependent upon the comp"Ier 's
implementation of predefined types. Second, the execution of th
code is made less ambiguous. For example:

subtype LoopCounter is Intiger range 1..127;
for i in 1..LoopCounter last loop

. Execute some code

end loop;

3.3.2. AVOID THE USE CLAUSE

The "Use" clause allows us to achieve direct visibility of
components specified in compilatioyo units (packages and
subprograms) that we have "withed" Even though this
simplifies referencing components by allowing the use of a
component's simple name, direct visibility can cause problems
when trying to determine the source of an imported subprogram,
type, or object identified only by its simple name. For
example, the SARAH ViewOperations package that contains routines
which allow the operator to view files and directories lists ten
packages in its context clause. If these packages were also
listed in a Use Clause at this point, how would we know whe e
"low" came from in this instruction?

SetInt AttribTransient(WindowID,low);

7

It would be very difficult without actually searching through the
ten packages in the Context Clause. Generally, the Use Clause is
avoided by SARAH programmers in order to clarify the source of
each component.

While explicitly naming each component of the previous
instruction makes their source clear, it does little for overall
readability:

Transient _WindowManager.SetIntAttribTransient(WindowID,
SARAHV" . _Constants.low);

Restricting the use of the Use Clause does not mean that sc urce
code must be cluttered with long extended names for every
component imported into a package. Renaming components can
improve readability of Ada source code while maintaiPing easily
identified components. Applying this technique to the
View Operations package, we "withed" the ten packages we wished
direct visibility to. Then, at the top of the package we renamed
the packages using their acronym. Using a packages acronym in
the extended name gives a crisp short name that can quickly be
traced back to its parent. For Example:

with UtilitiesDisk_10, TiansientWindowMgr, Transient Msg_Mgr,
PromptWindowMgr, HelpWindow_Mgr, MenuMgr,
Key_Mgr, SARAHVDTConstants, SysBufr,
OutOfMemoryTools;

package body ViewOperations is

------------------------- Rename Packages- ----------------------

-- packages are renamed to reduce
-- clutter, but are not "used" because
-- there are so many external routines
-- called, it would be confusing which
-- came from which package

package UDIO renames Utilities DiskIO;
package TWM renames TransientWindowMgr;
package TMM renames Transient_Msg_Mgr;
package PWM renames PromptWindow_Mgr;
package HWM renames HelpWindow_Mgr;
package MM renames Menu_Mgr;
package KM renames Key Ngr;
package SVC renames SARAH VDT Constants;
package SB renames SysBufr;
package OOMT renames OutOfMemoryTools;

8

-- give buffers back to the system
SB.ReturnList(Directory);

-- close the transient window and reset the
-- transient window intensity to low

TWM.Close Transient Window(WindowID);
TWM.SetIntAttribTransient(WindowID,SVC.low);

exception
when UDIO.OperatorAbort => null;
when UDIO.BufFailure => RAISE SB.BufFailure;

3.3.3. INITIALIZE ALL VARIABLES

All objects used in an Ada program should be initialized with a
value when they are declared, unless you can be absolutely
certain that they will be initialized before use. The Ala
Reference Manual does not specify a default value for Ada
objects. Since this is left up to the various compiler
manufacturers, the value of uninitialized objects is undefined.
The unreliable results caused by uninitialized variables may be
compounded in large systems where procedures nested within
another procedure or package rely on variables in still another
package.

3.4. DOCUMENTATION

Documentation is another important means of insuring software
modifiability. Documentation of software can be divided into two
types, external documentation and internal documentation.
External documentation consists of the plans and documents
associated with the software that are not part of the actual
code. A problem with External Documentation is its tendency to
become outdated when changes are made in the code and not in the
External Documentation. This problem is compounded when External
Documentation is manually maintained. External Documentation for
the SARAH project was written using the guidance of Mil-Std 2167
and will not be directly addressed by this paper.

Internal Documentation consists of any of the comments or coding
standards listed in the actual code. The following paragraphs
discuss some of the Internal Documentation actions the SARAH
project has taken to increase the quality of modifiability in our
software.

9

3.4.1. STANDARDIZE DOCUMENTATION

Documentation and coding standards should be established and
followed by all members of the development team. Common coding
standards lend an air of familiarity to code that makes the
entire software system easier to understand, debug, and maintain.
It is important to insure that the entire project team
understands and agrees to follow the projects documentation
standards because the success or failure of documentation
standards depends upon the attitude of the individual designers
and programmers.

The Draft Aga Design Coding Standards outlined in Appendix D of
Mil-STD-2167 was not available to guide as in our effort to
establish a coding standard fo the SARAH proiect. We started
with the Intellimac Style Guide and added our own ideas. Many
of our added features are similar to those ultimately listed in
the proposed Mil-Std Appendix. Several draft documentation
standards were reviewed by the proDect staff before a final
standard was established. This expanded the base of experience
upon which the standards were made and increased the acceptance
of the final standard. Some of the more salient features Df :he
documentation standard used in the SARAH Project are discussed in
the following paragraphs.

3.4.2. USE COMMENTS TO DEFINE STRUCTURE

One of the first standards we established ,as the overall
documentation structure that our code would follow. We defined
structures for packages, subprograms, major sections, and
comments found within our SARAH code. It is not important that an
Ada software project follow any given standard, only that th"
project follow a reasonable standard that will eaze the
identification of various parts of each software element. A
draft of the standard used by the SARAH project, including an
example of its use, is attached as Appendix A.

While not a required standard, we have found that including a
diagram based upon Burkhardt and Lee Ada structure charts in
the description box of our package specifications greatly
enhanced their usability. The structure chart for the
COMM Support package is depicted in figure 3-1. The Initialize,
Start, and Shutdown procedures drawn partially in and partially
out of the package are visible to entities that "with"
COMM Support. The right-hand portion of the package represents
the package body. The MessageDistribution package and the
:LaLibtlcsReport procedure are totally within the body of
COMM-Support and are not visible outside that package. We
organize the packages and procedures inside of the package
specification and body in the order shown in the structure chart.
The COMMSulport package would list the MessageDistribution
package, followed by the StatisticsReport procedure, followed by
the Initialize, Start and Shutdown procedures. Thus, the
Burkhardt and Lee charts act as a quick pictorial reference to
the contents of the package.

10

/

/ COMM_Support
+ - +

: / MessageDistribution \
+---------------------- ----------------

Initialize
+-------+-----------------

-------- +-----------------

Start
+----------------------+ ----- ----------------- +

: StatisticsReport :
+----------------------+ : +----- ----------------- +

Shutdown
-------- +-----------------

\ : ,/

Fig. 3-1: Burkhardt and Lee Ada Structure Chart

3.4.3. USE COMMENTS TO EXPLAIN CODE WITHIN MODULES

Ideally source code and comments complement each other. One
should gain a certain amount of information from "reading" codk.
Comments should provide an additional perspective. Tcgether,
source code and comments should present a comprehensive picture
of the functions taking place. The comment in the following
example is almost useless because it simply repeats the code it
is describing and adds nothing to the overall understanding of
the code segment.

-- set Apples to 0
Apples := 0;

A more meaningful comment might appear as:

-- initialize number of fruit for salad
Apples := 0; -- out of season

The SARAH project team has found the time required to develop
worthwhile comments to be well worth the effort. Because of
limited programming resources and a tight ti,,e schedule, the
programmer that starts coding a module may not be the same
programmer that finishes or modifies it. The increased
understanding provided by meaningful comments reduces the the
time required for modifications and enhancements by smoothing the
transition between programmers.

11

The standards developed for commenting SARAH source code allow a
certain amount of flexibility. Since this is the first project
using the Ada language developed by CCSO, we were not certain
exactly what form we really wanted comments to take and hesitated
to lock ourselves into a rigid format that would be difficult to
follow, such as requiring a comment for every line ot source
code.

A convention that comments will start in, or after, column 25 has
worked out well. By restricting comments to the right side of
the page, a programmer can concentrate on the source code if he
is working on the coding details or read through the comments if
he simplywants an overview.

A commenting style adopted by many of the SARAH programmers uses
a comment block to document 3-8 lines of source code instead of
commenting each line individually. This style has proven to be
a good balance between describing source code in detail and tixe
required to prepare comments. For example:

Example of Block Comments to Explain Code:

-- draw line for input field

Column := InputColumn;
for i in l..FormTable(Screen(Display_Element)).input length 2 ofcp

Put _ CharXY Text(Column,InputRow,ScreenSpace);
Column := Column + 1;

end loop;

Example of Commenting Each Line of the Above Code:

Column := InputColumn; -- start in column I
for i in l Form Table(Screen(DisplayElement)).input length 1oop

-- do the following for each space
-- in the current input field

PutCharXYText(Column,InputRow,ScreenSpace);
-- put in an underline

Column := Column + 1; -- point to next column in input field
end loop; -- end of loop to draw a line

3.4.4. USE COMMENTS TO DOCUMENT RATIONALE

The SARAH Software Development File contains notes detailing the
rationale for some of our coding decisions. However, we also
include som? of this information in our code. This helps to
prevent misunderstandings caused by the misplaced or outdated
documentation inherent with a manual documentation system. Often
formal documentation of a module is maintained in a separate
location from the program source code for the module. Thus,
documenting the rationale for even "slightly" obscure programminq

12

techniques will help programmers quickly understand why code was
written as it was. For example, the following comments are
extracted from the SARAH VDT_Manager and explain how we can
determine whether a given video adapter is installed. Without
the comments, it might appear strange +o a- code that writes a
character to memory and then immediately reads a character from
that very same spot in momory. Why would the character ever be
different?

-- The video memory addresses used by the
-- IBM PC and compatible machireq are
-- logical addzesses (do not physically
-- exist in the machine memory) . The
-- physical video memory is on the video
-- adapter card. Using this fact, we can
-- check to see if the video adapter card is
-- installed and working by storing
-- something to a memory location on the
-- video card and then reading the location
-- to see if we get the same thing back. If
-- the video adapter card is not installed,
-- anything we write goes in the 01' Bit Bucket.

3.4.5. USE DESCRIPTIVE NAMES

Descriptive identifiers can substantially increase the
readability, understandability and therefore the modifiability of
a program. As pointed out in Ada in Practice, "Good identifi 1s
serve as comments, making programs largely self-explanatory
This is particularly important in Ada where context clauses allow
the use of identifiers declared in any number of separately
compiled units.

Ada gives us the freedom to use meaningful names of any length
(up to one line) for all Ada entities, including types, objects,
subprograms, packages, and tasks. Often this capability is not
effectively used because of long established coding habits. The
backgrounds of the majority of the SARAH programmers is deeply
rooted in assembly language, which forces the use of short,
cryptic names. Thus, there was a period of learning and
experimentation at the beginning of the coding phase where names
such as Dsl finally gave way to more descriptive names like
DynamicString_1.

Care must be taken howe-er, to not create names longer than
needed to convey the meaning desired. Excessively long
identifiers contribute as much to code unreadability as short
cryptic identifiers do.

13

ItIsNotTimeToQuitEditingTheCurrentMulti LineField)Yet

may be a very descriptive loop control object. However, it is
awkward to use because it barely fits on a line and takes a
relatively long time to type. EditingMultiLineField is an
alternative that, while still descriptive, can be used more
effectively:

while EditingMultiLineField loop

Descriptive names can also help to identify the source or purpose
of the item named. On the SARAH project, we have found it useful
to specify the relationship of closely related entities with a
suffix that indicates their function:

xxxxtype = name of a type or subtype
xxxx_ptr or xxxx pointer = name of access type

pointing to something of
x.xxx type

xxxx or something xxxx = object of xxxx-type.

Putting these suffixes to use in the following example, you can
see how easy it is to discern that MyBuffer is an actual buffer
while My BufferPtr and SomeOtherBufferPointer are pointers to
buffers.

type BufferType is
type BufferPtr_Type is access Buffer-Type;

My-Buffer : Buffer_Type;
MyBufferPtr : Buffer _ Ptr_Type;
SomeOtherBufferPointer : BufferPtrType;

We have found this descriptive naming convention particularly
useful for types and objects that will be used by several
packages. The BufferManager is a common tools package that
manages linked lists of buffers for the entire SARAH system. A
common system buffer and a pointer to the buffer is defined by
the Buffer-Manager package. Anywhere in the SARAH system, we can
easily determine whether we are working with a buffer or an
access type pointing to a buffer simply by looking at an objects
name.

3.4.6. USE SPACE TO YOUR ADVANTAGE

In addition to specific documentation structures mentioned above,
-spacing can be used effectively to enhance the readability of Ada
code at all levels. Source code that is easy to read and
understand is easier to modify. Effective use of spacing may
consist of skipping three lines between subprograms or indenting
if, loop, and block statements to show structure. Spacing can
also be used to enhance individual lines of code. The following
instruction that determines if the input field we are about to

14

display will fit on the current line is almost unintelligible
when written without any spacing to help differentiate its
various components-

if(Field.Descriptor.all 'leigth+Field.x+Screen Delimiter 'length+
shortinteger(Field.Inputlength)+String_at_EndofInput'length
+Length_of_MultiLineSign)>TextScreen Width

Adding space to separate various parts of this long instruction
makes it easier to understand:

if (Field.Descriptor.all 'length +
Field. x +
Screen _ Delimiter'length +
shortinteger(Field. Inputlength) +
Stringat End ofInput'length +
LengthofMulti LineSign) > TextScreenWidth

3.4.7. DOCUMENT THINGS EXPECTED TO CHANGE

Document areas of code that are expected to change. One way to
accomplish this is to thoroughly document data structures,
especially complex records and arrays. In the SARAH proiect,
displaying a message mask on the screen and capturing input data
for specific fields is controlled by an internal table. After a
brief explanation, comments defining the use of each record
component, made it possible for a programmer new to the message
mask table structure to add a table for a new message mask.

A very visual way that areas of code expected to change are
documented is use of a procedure called Stub. Stub opens a
transient window and displays a message that a certain feature of
the system is not available. The hooks for features that will be
implemented at a later date can be put into the code now. Then,
Stub can be called if the missing feature is requested.

15

4. SUMMARY AND RECOMMENDATIONS

4.1. SUMMARY

Requirements changes, hardware advancements, and programming
errors lend truth to the statement by Grady Booch th! "Large
software systems don't die; they simply get modified. We can
drastically reduce the overall costs of system software if we
keep this in mind and design software systems with modifiability
as one of our engineering goals.

The SARAH project team has implemented specific techniques to
enhance the modifiability of SARAH software. The primary too!
used to construct modifiable software is a sound design
methodology. SARAH uses a combination of proven design
methodologies as described in "An Architectural Approach to
Developing Ada Software Systems", another paper in this series.

In addition to a sound design foundation, the SARAH project team
has kept modifiability in mind as code is written and docuentec.
Modularizing software components, especially machine dependent
code and common tools packages, limits the sco)pe of
modifications. Several documentation conventions were implemented
that have made the code produced by the SARAH team easier to
read, easier to understand and, thus, easier to modify.

This paper is not intended to be an exhaustive list of all
factors that promote software modifiability. It presents
specific examples of the type of issues that should be considered
with the hope that other software development projects will be
able to adapt them to increase the modifiability of their
software efforts.

4.2. RECOMMENDATIONS

Recommendations are:

Use sound software engineering techniques to plan
for software modifiability

Use modularization techniques to reduce the overall
system complexity and to isolate the effects of any
modifications made

Use comments to thoroughly document the structure
and code of your system

-- Create and follow coding/documentation standards

16

A. SARAH PROJECT -- CODING GUIDELINES FOR COMMENTS

In addition to the Intellimac Ada coding standards, we have
considered the following additional guidelines that apply to
program comments:

-- Each compile unit/major package should have a box of asterisks
at the top

within this box, show:
-- the unit name
-- its full Ada name
-- its MS-DOS filename
-- designer, programmer, etc. if appropriate
-- a narrative description of what it is/does

-- If you wish to have "major sections" within the spec or
program, you may mark these withe the name/description in a small
box. It should have dotted lines all the way across the page.
Example:

---------- -------- > CALCULATE CRC SECTION <---------------------

--

To help locate functions and procedures, show their name in the
same type box as above. However, start the middle line of dashes
in approximately column 25. Example:

------------->------------- DISPLAY MENU -

-- All comments (except for those in the box of stars at the top)
will start in approximately column 25. This will help keep the
comments out of the way when you just want to "r-ad the code".
You can the look over to the right side of the page if you want
to "read the comments". A single line of dashes should surround
(top and bottom) the comments. Example:

-- This procedure allows writing a
-- single character to the menu bar area.
-- The 'x' parameter is the character
-- location on the menu bar where the
-- character is to be written.

The following pages show these guidelines implemented for the
PULLDOWNMGR.

17

vdtmgr\sarah\prommgr\prompmgr.ads
-- , ,--

-- ,--

-- 4. PACKAGE SPEC PromptWindow_Mgr
-- ,. LLCSC 5.1.6

-- 4 * --

-- * Design: Oscar Staudt Code: Oscar Staudt
Susan Fannin Susan Fannin *--

-- 4. This package contains the basic tools needed to control the
-- * Prompt Window. Users of this package may write short messages *--
-- * or receive short replies from this window. *--

-- * NOTE:If control of the video attributes is needed, then
it is necessary to "with" the package SARAHVDTConstants 4--

--- 4z

PromptWindow_Mgr -
-- 4. 4-- , . -

-- + ----------------------
-- 4 : InitializePrompt :
-- ----------------------

-- + ------------------------
-- 4 : ClearScreenPrompt : 4:--
-- + ------------------------ +

-- 4. + * ,--
* ------------------------------ +:

-- * : PutCharXPrompt :
-- +-........------------ --------

--. +-----------------------------

PutStrXPrompt : :
-- +.------- -+-----------------+ --

-- * ------- ----------------- : --
:SetForeAttribPrompt: -

-- + ------------------------

-- * +..------- -+------------------+ --
:SetBackAttribPrompt:

-- * +------------------------------+ : --
-- 4.: : 4.--

-- +-..... -+-.------------------------:
:SetBlnkAttribPrompt: : ,--

-- * ------------------------ :

-- + ----------------------- -
-- 4. :SetIntAttrib_Pronpt: : --

- +- - --------------+ :

18

-* -------------------------------

Get -AnswerPrompt
-* -------------------------------

-* +------------------------------

StopPrompt:
-* +------------------------------

-- --

With KeyNgr; Use KeyMgr;
With HelpWindowMgr; Use HelpWindowMgr;
With VDTTypes; Use VDT -Types;
With Virtual _ VDT _ Tools; Use Virtual VDT _Tools;
With SARAH _VDT Constants; Use SARAH _VDT Constants;

Package PromptWindowMgr is

-- ------------------- > Constants & Types <-------------------------------------

Subtype Prompt -X Coord -Type is X_ Coord Type range 1..Prompt-MaN-_Cols;
Subtype Prompt-YCoord Type is Y _Coord Type range I- Prompt-_Max _ Pow;

Prompt -Screen -Width: constant:= PromptMaxCols;
PromptScreen-Length: constant:= Prompt Max Rows;

------------------PROCE --URES

S>mi tial i ze--rompt-------------

Procedure Initialize _Prompt;

-- unit 5.1.6.1

-- DESCRIPTION:
-This procedure is called by the Initialize
-procedure in the parent package (SARAH VDT-
-Tools). It does all the internal processing
-necessary to initialize the Prompt Window.
-The functions performed are:

-- 1. Get a window -TD for use throu;hout.
-- the life of tne Prompt Window

19

-- 2. Set the default write attribute
-- 3. Clear the Prompt Window

-- NOTE:
These functions are internal considerations

-- for Prompt Window Mgr., and need not concern the
-- user of this package. In a testing
-- environment, this procedure will need to be
-- called by any routine doing testing without
-- the entire system environment.

------------- > CLEARSCREENPrompt <

Procedure ClearscreenPrompt;

unit 5.1.6.2

-- DESCRIPTION:
-- This procedure will clear the "screen".
-- relative to the Prompt Window.
-- By definition, clearing the screen means
-- writing blank characters to all positions
-- within the Prompt Window.

-- NOTE:
-- The Default Write Attribute is used as the
-- video attribute when the character is witte:.
-- You must set it to the colors you want before
-- calling this procedure.

-- NOTE: Since CLEARSCREEN PROMPT is not visibi,3
-- in the spec, it must be declared before it :s
-- used by any routine in the body.
-- (ie. Initialize-Prompt)

20

-- PutCharXPrompt < ----- ---------

Procedure PutCharXPrompt(X : IN Prompt_ X _CoordType;
Ch: IN Character);

-- unit 5.1.6.3

-- DESCRIPTION:
-- This procedure will write a single character
-- at the screen coordinate X (column) relative
-- to the the Prompt Window.

-- INPUT PARAMETERS:
-- X = the horizontal coordinate
-- (x axis or column) where the charac't,
-- is to be placed within the Main
-- Menu Bar

-- Ch = the ASCII character to be placed at
-- the X coordinate of the Prompt Win.c- .

-- NOTE:
-- The Prompt Window has only one line,
-- therefore it is not necessary to input a Y
-- coordinate to this procedure.

-- NOTE:
-- The first position in the X coordinate
-- system is I (not 0). Location i is the f:rt
-- column of the Prompt Window.

-- NOTE:
-- The Default Write Attribute is used as the
-- video attribute when the character is written.
-- You must set it to the colors you want before
-- calling this procedure.

-- NOTE:
-- This procedure is totally independent of the
-- positioning of the cursor. If you wish the
-- cursor to move to a different position, that
-- must be done with the CursorX Menu procedure.

21

IIIIII

B. REFERENCES

[1 "SARAH Operational Concept Document", Command and Control
Systems Office, US Air Force, 5 September 1986.

[2] Merriam-Webster Dictionary, G. & C. Merriam Co., division of
Simon & Schuster, New York, New York, 1974, pp 451.

[3] "An Architectural Approach to Developing Ada S,.-cware
System3", Headquarters United States Air Force, Information
Systems Technology and Security Division, Washington D.C., 21 May
1986.

[4] Booch G., "Software Engineering with Ada", Ben-amin/Cumm nigz
Publishing Company, Inc., Menlo Park, California, 1983.

C53 Gardner M, et all, "Ada Programming Style", INTELLIMAC,
Inc., Rockville, Maryland, 1983.

£6] "Defense System Software Development", Mil-STD 2167,
Appendix D (draft), Department of Defense, Washington D.'-

£7] E. Yourdon and L.L. Constantine, Structured Design,
Englewood Cliffs, NJ: Prentice-Hall, 1979.

[3 Booch G., "Object Oriented Development", IEEE Transactionz
on Software Engineering, Vol. SE-12 No. 2, February 1986.

£93 "SARAH Operational Concept Document", Command and Control
Systems Office, US Air Force, 5 September 1986.

C103 U.S. Department of Defense, "Reference Manual fto: the Ada
Programming Language", ANSI/MIL-STD 1815A, Jan 1983.

[11] Ausnit C., Cohen N., Goodenough J., and Eanes R., "Ada in
Practice", Springer-Verlag, West Hanover, Massachusetts, 1985.

[12] Booch G., "Software Engineering with Ada",
Benjamin/Cummings Publishing Company, Inc., Menlo Park,
California, 1983, page 25.

[13] Boehm, B. W., "Software and Its impact: A Quantitative
Assessment", Datamation, May 1973.

C14] "Ada training for Development Teams", Headquarters United
States Air Force, Information Systems Technology and Security
Division, Washington D.C., 13 March 1986.

'2

