
ADA EVALUATION PROJECT

THE IMPACT OF THE ADA LANGUAGE

ON SOFTWARE TESTING "'i r C

: ,oMRWlO9cID

Prepared for

" HEADQUARTERS UNITED STATES AIR FORCE
N Assistant Chief of Staff of Systems for Command, Control,

Communications, and Computers
Technology & Security Division

U)

Prepared by
Standard Automated Remote to AUTODIN Host (SARAH) Branch

COMMAND AND CONTROL SYSTEMS OFFICE (CCSO)
Tinker Air Force Base

Oklahoma City, OK 73145 -6340
Commercial (405) 734-2457

AUTOVON 864 - 2467/5152

10 JUNE 1988

90 02 28 009

Ada Evaluation Report Series 1y CCS0

Ada Training March 13, 1986

Design Issues lay 21, 1986

Security May 23, 1986

Micro Compilers December 9, 1986

Ada Environments December 9, 1986

Transportability March 19, 1987

Runtime Execution March 27, 1987

Modifiability April 29, 1987

Testing June 10, 1988

Module Reuse June 20, 1988

Project Management Summer 88

Summary Fall 88

Accesjon TOr

NTIS CRA&I
OTIC TAIB
Ullalolvr".d

JoJstD IDt,,

STATEMENT "A" per Capt. Addison
Tinker AFB, OK rI*,SC/XPTA By&._. _
TELBCON 2/28/90 CG Oisjibulori i

AvwIlt-it ' Codcs

Avjt inj Ior
DimS,:C,-

fdk

THIS REPORT IS THE NINTH OF A SERIES WHICH DOCUMENT THE

LESSONS LEARNED IN THE USE OF ADA IN A COMMUNICATIOES
ENVIRONMENT.

ABSTRACT

')Testing on the Standard Automated Remote to AUTODIN
Host (SARAH) project was a continuous process. Development
testing provided a stabilizing environment for the

project. The early design interfaces were done in the

implementation code (Ada), developing confidence in both

the language and software engineering techniques it

supports. The Ada environment had the right tools to

allow incremental building. The packaging concept
provided a continuous testing platform ensuring

functional isolation, verification of data integrity, and

an immediate decrease in the opportunity for the

introduction of errors. This supported the principles of

modularity, high cohesion, and low coupling. Shared
packages of tools made the subsystem developers more

productive. Generics were used to reduce redundancy in
the development of code. Our greatest testing problems

occurred because of the tasking environment. The

library management system and the vendor developed debug

tools proved to be essential in development testing and

integration. Testing of software is not affected as

significantly by the language used as it is by the

engineering appl'ed during the design and development of
the system./ .1j,).

\I

FOREWORD

The ideas expressed here are the thoughts and concerns
rendered by tho actual staff that participated in the
development of the SARAH project from its inception
through the final acceptance test. These ideas and
concepts are the result of the oxperiences and reflect the
attitudes at the completion of the project. The actual
implementation of the SARAH system does not necessarily
reflect the best of the ideas presented in this paper.
The first project using the Ada language and its
associated environment and software engineering
techniques, as most experts advise, should not be
expected to, and does not, make proper use of all the
benefits available. That development staff consisted of
both experienced programmer/analysts and inexperienced
programmers from varying backgrounds in computer s ftware
development.

TABLE OF CONTENTS

1. INTRODUCTION o- .
1.1 THE ADA EVALUATION TASK'.......
1.2o PURPOSE ... o.....

2. SOFTWARE DEVELOPMENT ENVIRONMENT 1

2.1o EARLY EXPERIENCES I
2.2. A CONTINUOUS PROCESS o 00....2

3. DESIGN LEVEL SPECIFICATIONS 2
3.1. TH -E ARLY DEVELOPMENT PHASEo.............. 2
3.2. ADVANTAGES OBSERVED o.......... 3
3.3. ADVANTAGES OF DESIGN METHOD......................... .3
3.4. OTHER ADVANTAGES OF ADA 0 o

4. PACKAGING 000....**.... 3
4.1. PACKAGING COICEPT.................. 3
4.2. ADVANTAGES OF PACKAGES 0.00 0............ 4

4.2.10 Modularity 4
4.2.2. High Cohesion0.... 4
4.2.3. Low Coupling 4

4.3. CREATING TOOL PACKAGES(SETS).......................... 4
4.40 UTILIZATION OF TOOL PACKAGES 5

4.4.1. ANALYST COMMENTS ON PACKAGING o............ 5
4.5. SEPARATE COMPILATIONS.0.0.. 000. 0 0... 00.6

4.5.1. ANALYST COMMENTS ON COMPILER DIAGNOSTICS 6

5. USE OF GENERICS ... 6
5 . STABILITY OF CODE o... 6
5.2. REDUCTION OF COMPLEX CODEo 7
5.3. EASE OF CORRECTION AND IMPROVEMENT 7

6. USE OF TASKING .. 8
:..TASKING WAS DIFFICULT00..... 8

6.2. ANALYST COMMENTS ON THE USE OF TASKING 8

7. THE ADA PROGRAMMING SUPPORT ENVIRONRENT(APSE) 00 o.8
7.1. ADA LIBRARY MANAGEMENT SYSTEM o...............o...8

7.1.1. AUTOMATIC LIBRARY FUNCTIONS 8
7.1.2. DISADVANTAGES IN THE LIBRARY SYSTEM 9
7.1.3. ANALYST COMMENTS O ADA LIBRARY MANAGEMENT 9

7.2. ADA CODE EXECUTION TEST TOOLS......................... 9
7.2.1. WHEN TO USE TEST TOOLS......................... 9
7.2.2. ALSYS ADAPROBE o.............. o
7.2.3. TEST HARNESSES10
7.2.4. ANALYST COMMENTS ON THE PROBE DEBUG TOOL 1o

8. LESSONS LEARNED 10

9. SUMMARY o........**..... 11

1. INTRODUCTION

1.1. THE ADA EVALUATION TASK

This paper is one in a series which seeks to help potential Ada
developers gain practical insight into what is required to
successfully develop Ada software. With this goal in mind, Air
Staff tasked the Command and Control Systems Office (CCSO) to
evaluate the Ada language while developing real-time
communications software. The task involves writing papers on
various aspects of Ada development such as training, Ada design,
environments and security issues.

CCSO chose the Standard Automated Remote to AUTODIN (Automatic
Digital Network) Host (SARAH) project as the vehicle basis for
the Ada evaluation. SARAH is a small to medium size p roject
(approximately 50,000 lines of executable source code) which
will function as a standard intelligent terminal for AUTODIN
users and will be used to help eliminate punched cards and
paper tape as a transmit/receive medium. The development
environment for SARAH consists of a number cf IBM ?C
ATs and Zenith Z-248 microcomputers. Source code is
developed, compiled, and integrated on these machines. The
compiler and symbolic debugger used are from Alsys, inc. The
SARAH software runs on the IBM PC ATs, Zenith Z-248s, and
Zenith Z-200 (TEMPEST microcomputer which is basically
compatible with the PC ATs and Z-248s).

1.2. PURPOSE

The purpose of this paper is to examine the methods used to test
an Ada software product. It addresses the advantages and
disadvantages of testing techniques used and makes
recommendations that may help future efforts take more effective
advantage of the Ada language and its associated development
environment. It is to provide a forum for CCSO to share knowledge
about testing in the Ada software development environment.

2. SOFTWARE DEVELOPNENT ENVIRONRENT

2.1. EARLY EXPERIENCES
Working with the Ada language was a traumatic experience early in
the project. The learning curve was difficult. The staff tried
to use the development environment to get maximum advantage of
its capabilities. Experience, however, has shown that at best,
many mistakes were made in this first project in Ada. Despite the
lack of experience, the effort was successful in creating a
relatively good product.

Software engineering methods and standards were established
during system development. The purpose was to improve aspects of
the system in the area of modifiability, efficiency, reliability,
and understandability. The design method used is described in
the CCSO Design Issues Ada paper dated May 21, 1987. It
satisfied the requirements for modifiability throughout the
design. The need for efficiency was not pressed as much because
we were constantly behind schedule and efficient code was not
given priority. Reliability was accomplished by having
additional efforts applied during the initial development of a
package. Specifically, this was aimed at circumventing failure
of the software due to a poor concept of operation, to an
incomplete design, or to poor architectural structure. The issue
of the understandability goal was handled by developing a set of
coding, designing and commenting standards. These software
engineering practices were evolved as the development progressed
-- 3ome in a very formal manner and others by experience. The
cunulative effect of these efforts was positive on this project.
They will be better defined as we gain experience to help even
more in future projects.

2.2. A CONTINUOUS PROCESS
Testing is a continuous process. Testing became an ongoing
automatic process done through various support programs available
in the Ada environment for the development team throughout the
design and development process. It ensured the integrity of the
basic parts of the system. Ada was used to develop compilable
specifications. This provided the initial testing at the basic
design level. The use of software engineering techniques and
the Ada environment that enforced strong typing standards helped
eliminate system level problems. These steps forced the
programmers and analysts to recognize the effect of their
decisions very early in the project, and continuously as it
was developed. Corrections were made much earlier and at much
less cost to the project. As a result, the stability of the
product was greatly improved. This early enforcement of
standards provided a positive step in the improvement of
the software development environment. The final phase of the
testing process was the comprehensive tests done by an
independent test group using a suite of tests designed to
ensure compliance with requirements.

3. DESIGN LEVEL SPECIFICATIONS

3.1. THE EARL! DEVELOPMENT PHASE
The development process identified eleven (11) major
subsystems in the SARAH design. The subsystem interfaces were
implemented in code shortly after they were defined. This proved
to be a great advantage. Those interfaces were then tested
(verified by the compiler) immediately, allowing an
opportunity to re-design and re-code when there was only a little
code to be changed to implement a "now" design.

2

3.2. ADVANTAGES OBSERVED
This was where confidence began to grow in the language and the
software engineering techniques it supports. These early steps
were the beginning of the continuous software testing process we
were to later recognize as one of the most beneficial aspects of
the language and its environment. This beneficial effect occurred
throughout the development of the SARAH project.

3.3. ADVANTAGES OF DESIGN RETHOD
Since the resulting design was already in the implementation
language there was no chance for design errors to be introduced
when the design was implemented into code.

3-4. OTHER ADVANTAGES OF ADA
The Ada environment had the right tools to allow incremental
building of the system. It is easy to put in selected stubs, and
selected segments of "real" code. This allowed the "analyze
a little, design a little, implement a little, Pnd test a
little" approach (a more technical description might be
"iterative development at increasingly lower levels of
abstraction"). This ability to develop and compile and test
an incomplete system for proper operation was vital in the
development testing. Problems uorrected at these higher
levels of abstraction proved much easier to fix because
dependent subordinate code did not exist. Also, the thorough
compiler and strong typing characteristics found a lot of errors
before the code could be run.

4. PACKAGING

4.1. PACKAGING CONCEPT
This provided a forum for testing that ensured functional
isolation, verification of data integrity, and an
immediate decrease in the opportunity for the introduction of
errors. The high level subsystem designs were each developed in
Ada packages. Subsequent decomposition of the SARAH system
into subordinate packages and procedures re-enforced these
advantages, each level providing the same advantages of
verification of interface and data type that was available for
the design level development work. The packaging concept thus
permeates the system allowing the total segregation of
subsystems and associated data structures.

The SARAH project made use of this concept. However, major
coupling problems were built into the implementation. The system
has some good modularity but it has plenty of room for
improvement. Many of the current problems were caused by lack of
time for proper design in the latter stages of the project. The

3

packaging techniques used need improvements. These areas are
currently being studied to improve this situation within the
system.

4.2. ADVANTAGES OF PACKAGES
The communication package was developed using a stubbed
subprogram environment. This allowed the testing of the upper
level design without having to worry with the operation of the
detailed low level programs that were hardware dependent. This
stubbed version later became a formal version for training
purposes. The simulated communication package allows practical
hands-on operation of the system with responses as it would be
in an actual operations environment.

Packaging in the Ada environment aids in the testing of the
resultant system because it supports the principles of
modularity, high cohesion- and low coupling. (It does not
enforce these principles.)

4.2.1. Modularity
The system is partitioned into smaller understandable units.
Understandable partitioning results in easier
identification of the guilty units when a bug is uncovered.

4.2.2. High Cohesion
Most of the data needed for a module is contained within the
module. This results in easier to fix modules since, ideally,
changes will be limited to the one module to be fixed. As an
example take a bug occurring in the read routine of disk. Since
most pertinent data is defined inside the routine, corrections
are required only inside that one routine. This one "Ada
separate module" could then be recompiled and rebound without
having to change any other code within the system.

4.2.3. Low Coupling
This is the corollary to high cohesion. Inter-module
dependencies are minimized. Accomplishment of this goal is
definitely aided by the existence of package specifications
making package interfaces explicitly defined and enforced. This
is a boon to the system integration phase. Many integration
errors are uncovered by the compiler. Integration errors not
uncovered by the compiler are often easy to identify since
system modularity provides well defined unit scope,
responsibility, and effect.

4.3. CREATING TOOL PACKAGES(SETS)
Shared packages of tools were developed, tested and made
available to the subsystem developers. These packages provided
stability in the development environment. The eleven subsystems
were analyzed to identify common data types and facilities

4

needed throughout the system. The result* were used to establish

specifications for common tool packages. Packages such as the

buffer manager, video display terminal manager, and disk manager
were produced as a result of this process. After this formal

definition of the packages, each was developed and some were
tested with test harnesses to verify proper operation. Once a

package was operable for the system environment it was made
available for the major subsystem developers.

4-4. UTILIZATION OF TOOL PACKAGES
These packages improved the stability of the SARAH system

development. They used proven logic and prevented the

introduction of errors that occur if many versions of the same

logic are peppered throughout the system. It centralized the

areas involved if and when error corrections or modifications
were needed, greatly reducing the potential for the introduction
of errors. We experienced surprisingly quick and smooth subsystem

implementations because of this stability.

4.4.1. ANALYST COMMENTS ON PACKAGING
These are a few of the comments made by the developmant staff

about the Ada environment and its packaging and modular
architecture:

"Ada's packaging concept aids testing because it supports the
principles of modularity, high cohesion, and low coupling.

"Ada can be a very valuable testing tool during the code and

checkout phase, and the system integration phase of development.

It is less valuable during formal system test."

"The other problem we encountered was the fact that we were

developing code before the support code(tool boxes) were written.

Going back and modifying code later to use this new support
code caused all sorts of problems and resulted in a complete
retesting each time a new subsystem was incorporated. (i.e..
disk, buffer manager) I believe that if we would have had
the support packages ... that the basic editor could have been

built and tested as each function had been coded and that the
testing would have been a lot smoother and easier."

"I think that the facility to modularize the code allows for

smaller chunks to be tested rather rapidly and new functions can
be added and tested with ease."

"Incremental testing (i.e. the testing of individual modules or
subsystems) was, however, aided by the use of Ada, primarily

because of the package aspect of the language. This facilitated
the testing by allowing confirmability of the operation of a
particular function in isolation of the remainder of the system.

This aspect is of particular importance when desiring to ensure
that no -revious operation has been adversely affected by a
modification to a previously tested module."

5

"The language structures of Ada made software testing easier
than previous assembler language projects done here at CCSO. The
strong type checking and modularity prevented us from making
costly mistakes. However, I'm not convinced that Ada provides
greater advantages than other modern high order languages
(Pascal, Modula2, etc.)."

"Modularity is not unique to Ada. It is a programming technique
that can be applied to many (maybe all) other languages. It is a
technique that could be good or bad regardless of the language
used. However, if modularity had not been used, a lot of the
other features of Ada could not have been used. i.e. incremental
compilation, information hiding, strong typing in passed
parameters, software tools."

"In the long run, if we can make reuse of modules, Ada may
provide an edge in testing because each individual module will
have been tested when it was developed and again when it is
reused. The more testing (both in a test environment and in the
field) a module gets the more reliable it becomes."

4.5. SEPARATE COMPILATIONS
The compilation process produced advantages quickly for these
subsystem packages. Almost everyone took advantage of separate
compilations. The strong object typing enforced by the compiler
between modules and inside instructions improved the integrity of
the resultant code dramatically. Basically, the programmer is
forced to face the results of bad design before the software is
executing as a program. Inconsistencies in these areas are not
allwed and are brought to the attention of the programmer in the
form of specific diagnostic messages. The result is that the code
has greater integrity in the overall system environment.

4.5.1. ANALYST COMMENTS ON COMPILER DIAGNOSTICS
"These were good by themselves; but when added to strong typing

in passed parameters, modularity, constraint error exceptions,
limited data manipulation, private types, incremental
compilation; they were even more useful. This is a good example
of where the whole is greater than the sum of its parts. The
combination allowed test and debug solutions to be determined
easier."

5. USE OF GENERICS

5.1. STABILITY OF CODE
Another facility of the Ada environment that proved beneficial to
the validity of the final product was the use of generics.
Basically that is the use of a template program that can be
created (instantiated) in a module to accomplish a common

6

type function or. data struc tures unique to that module. Generics
were not used to any great extent in this im.plementation due
to our lack of understanding of their usefulness and to the fact
that it appears that they cost an excessive amount of
memory to instantiate.

Generics were used by some programmers to improve the stability
of frequently used procedures. They did effectively prove to be a
stabilizing factor. After the generics were tested they
provided no problems. The major difficulty encountered with the
generic was that our debug tool Alsys "AdaProbe" would not
operate inside a generic instantiation. This made the
debugging of complex generics very difficult compared to
straight non-generic coding.

5.2. REDUCTION OF COKPLEX CODE
Within the SARAH zystem there is a screen masking system
developed for the entry of different ,aessage formats. Each
message type requires different sets of screen masks o. templates
because of varying requirements for the different formats. A
data structure was developed to satisfy these differing
mask requirements in a non-generic form. After the message mask
was implemented, a need for additional screen masks was
defined for the SARAH configuration package. There was no
way the implemented code could be used. The new requirement
functionally operates the same way as the original mask. The
new requirement also had to satisfy screen input requirements
for both a large routing database file management system and
the site terminal specific table entries. The screen functions
were to be identical but the application and type of data was
entirely different. To meet these requirements, and to prevent
the creation of two more screen management systems, a generic
solution was developed. The resulting generic was
instantiated into each application. Problems were
encountered in the f-rst instantiation and corrected in a
timely manner. The second instantiation worked with no
problems. The screen operation was stable and met all
requirements.

5.3. BASE OF CORRECTION AND IMPROVEMENT
The screen requirements were changed to improve the capability of
the generic and to redAce the coupling of the application
programs to the data structures in the generic. The changes were
made in the generic and the implementation was tested in both
instantiations. The fix in the generic took care of the problem
in both applications of the packages. This provided a great
amount of confidence in the techniques being used and the
developing product because the product had less chance for the
introduction of errors during the correction and enhancement
processes.

7

6. USE OF TASKING

6.1. TASKING WAS DIFFICULT
Testing of the SARAH system was greatly inhibited at the
development level because of tasking. Since little was known or
understood about it, it was a trial and error process. The
communication and input/output systems had to use tasking. Our
greatest testing problems occurred because of this environment.
As noted by the analyst quote below, che diagnostic debugger did
not function well in the tasking environment. Therefore our
testing and isolation of logic problems required the programming
of diagnostic logic. This was difficult and time consuming.

6.2. ANALYST COMMENTS ON THE USE OF TASKING
"One feature of Ada that hinders testing is tasking. Because

the timing of tasks (which task will become active if several are
waiting, exactly how long a task will stay active, etc.) is not
exact, we experienced what were apparently different results from
the same sequence of events. Tasks are particularly hard tu debug
because we could not use the Alsys AdaProbe. Trying to use it
charges the timing and many times the problem does not occur (you
may even be unable to breakpoint at the spot where you need to)."

7. THE ADA PROGRAMMING SUPPORT ENVIRONXRNT(APSK)

The Ada Programming Support Environment (APSE) consists of the
configuration management, command processor, editor, compiler,
debugger, and linker/loader. These facilities of the Ada
development environment provide capabilities that greatly
influence productivity and the stability of the software product.
The concept of a programming support environment is probably more
valuable to testing than the Ada language. A proper APSE provides
the software engineer a cadre of interactive development and
testing tools. The Alsys system we used provided a library
management system, a compiler, a debugger, and a linker/loader.

It is not a complete APSE. It did provide a good library
management system that resolves some configuration problems and
an excellent debug tool set that assists tremendously in
integration testing.

7.1. ADA LIBRARY MANAGEMENT SYSTEM

7.1.1. AUTOMATIC LIBRARY FUNCTIONS
A strong reason for the improvement of the software product is
the library management system. It prevents the use of old
compilations of subordinate programs when a specification is
recompiled. This automatically prevents the creation of
executable code from outdated subordinate program files. This
feature is another continuou' step throughout the development

a

process that tusts ir.d ensures th6 £rtgrity of the software
being produced. in addition, the compiler checks the usage of a
package by other packages and automatically requires users of a
recompiled package to be recompiled. This prevents the
inadvertent creation of a system with the wrong version of
packages included in the executable code.

7.1.2. DISADVANTAGES IN THK LIBRARY SYSTEM
File dating is not managed by the library management system under
the environment for the SARAH project. Thus generations of a
file, i.e. father, grandfather, greatgrandfather, etc., are not
managed by thia system. Current methods use MSDOS BAT files to
control configuration compilations. This allows the creation of
executable code using older versions of a program module without
being aware that more current versions exist. it has proven to
be a source of major problems for our configuration environment.

7.1.-3. ANALYST CONMENTS 01 ADA LIBRARY NANAGEKENT
"The object code library concept that Ada provi:-s car. aid

greatly in subsystem and integration testing. A separately
compiled unit can quickly be compiled in, rebound and retested
with confidence that the only code changed was the one unit that
was recompiled (don't have to recompile the er tire system or
subsystem)."

7.2. ADA CODE EXECUTION TEST TOOLS

7.2.1. WHEN TO USE TEST TOOLS
Debug tools proved to be essential in the development testing and
integration process. It was also necessary for diagnostic,
isolation and correction of problems when the independent testing
group identified them. In addition to all the previous procedural
and environmental circumstances that have helped create a more
stable product, the system could not have been developed without
the vendor's debug tool system.

A tool to breakpoint and step through the executing program
is an absolute necessity. There is no other way to check reason
and logic automatically. Development work was done during the
early stages of the system when it was very simple without the
aid of a debugging tool. Ireat difficulties were encountered in
trying to isolate the simplest problems. Debug tools were
ordered when their criticality to the project was realized . Ar
example of the problem iR an error that was present in the "EDIT"
program. It was studied and tested for threu days without
solution. Then the Alsys "AdaProbe" arrived and the problem was
located in about 5 minutes.

9

7.2.2. ALSYS ADAPROBE
The debug too! used was the Alsys "AdaProbe." This tool provided
direct visibility into the source code for walking through
problem code as it executes. This debugging tool, however, did
not function well in the tasking environment.

7.2.3. TEST HARNESSES
A technique used by some developers was the development of a
subsystem driver that presented a series of controlled input
paraneters to a subsystem package. The output from the package
was checked for the expected result to confirm proper operation
by the driver. This proved to be a beneficial exercise for
packages such as the disk, vdt and buffer packages.

7.2.4. ANALYST COMMENTS ON THE PROBE DEBUG TOOL
"Adaprobe is a very powerful symbolic debugger. Without this

tool SARAH development may well have taken an additional 6 to 12
months."

"This was an excellent tool. Debugging would have been much
slower and more cumbersome if this tool had not been available."

"Some systems do not have good debug tools. With them, it is
necessary to stop the system at specific memory locations (which
may involve hex or octal addition or subtraction with a hardcopy
of the -oftware at hand); look at registers and memory locations;
and translate data to a recognizable form (with a hardcopy of the
software at hand)."

"With probe, we were able to view the software on line, use the
cursor to mark lines/data (without determining memory locations),
and examine data easily and quickly without having to translate
it."

8. LESSONS LEARNED

The continuous checking for conformance to interface
specifications and data typing done by the compiler forced
adherence to design. This helps improve the validity of the
software product constantly throughout the development process.

Packaging in the Ada environment can greatly improve the
correction and maintenance situations in the system and reduce
the opportunity for the introduction of errors into the system.

The actual implementation of modular, highly cohesive, and low
coupled environments is not easy and requires a deeper
understanding of the complete environment than wns available on
the project.

10

The debug tools should be ordertd with the compiler. They are a
necessity for diagnostic work to isolate problems.

Test harnesses are good for verifying the correctness of a set of
packaged procedures. It helps ensure a good product before other
portions of a system become dependent on it.

The tasking and generic environments make testing difficult since
the debug tool used did not work iell in these type of programs
when trying to diagnose runtime problems.

9. SURMARY

In summary, the Ada environment provides the tools to make
testing a more continuous, efficient and complete process. The

Ada language can be used in the absence of proper aesign and
proper tools. You may be no better off than with FORTRAN or

any other language.

The Ada environment causes very early identificatioL of errors
and forces corrections. The reuse of modules and creation of
selected tool boxes for commonly used functions provide increased
reliability in the product. Generics are a potentially powerful
facility that can be used to great advantage but it must be done
correctly and administered properly to be beneficial. The
programming support environment provides the capabilities to
greatly improve the products.

Ada is not a panacea. It is difficult to use to your advantage
because of its versatility and infinite number of ways to apply
it, but it can improve the 3tability of software products if
applied using proven software engineering practices.

11

